Multiple ADC channels conversion with CTimer triggering once for LPC55S69

The ADC of LPC55xx supports scan mode, in scan mode, once ADC triggering (either
hardware or software) can convert multiple analog channels. The document gives an example
that the CTImer2 module triggers ADC and ADC converts two analog channels for each
triggering.

The doc introduces the CTimer configuration, ADC triggering control register configuration,
and ADC Command buffer chain and ADC result reading , in this way, the CTimer can trigger
ADC, the ADC can convert multiple channels.

The ADC of LPC55xx supports hardware trigger mode, each hardware trigger source
corresponds to a trigger register, as the Table 753 copied from UM11126.pdf, the
ct2_mat3_out triggering source index is 7, so you have to initialize the ADC trigger control
register TCTRL7. Inthe TCTRLY register, you can assign the command buffer, select the FIFOO or FIFO1
to save the ADC result, enable hardware triggering. In order to implement the scan mode to convert
multiple ADC analog channels, you have to initialize multiple Command Buffers so that multiple Command
Buffers can be chained each other, each Command Buffers specify one or two ADC analog channels.

Table 753. ADC hardware triggers

Hardware trigger Mapped to

GPI1O irg_pint[0]

GPIO irg_pint[1]

State Configurable Timer (SCT) sct0_outputs[4]
State Configurable Timer (SCT) sct0_outputs[5]
State Configurable Timer (SCT) sct0_outputs[9]
State Counter Timer (CTIMER) ct0_mat3_out

M| AWl =

All inforrnation provided in this docurment is subject o legal disclaimers. @ NXP B 2021. All rights resenved.
Rev. 2.4 — 8 October 2021 789 of 1227

luctors UM11126

Chapter 39: LPC55S6x/LPC55S2x/LPC552x 16-bit ADC controller

Table 753. ADC hardware triggers ...continued

Hardware trigger Mapped to

6 State Counter Timer (CTIMER) ct1_mat3_out
7 State Counter Timer (CTIMER) ct2_mat3_out
8 State Counter Timer (CTIMER) c¢t3_mat3_out
9 State Counter Timer (CTIMER) ct4_mat3_out
10 Comparator

1 ARM tx event

12 GPIO BMATCH

1. CTimer configuration.

void CTimerInit(void)

{

ctimer_config t config;

ctimer_match_config_t matchConfig;
/* Use 12 MHz clock for some of the Ctimers */
CLOCK_AttachClk(kFRO_HF_to CTIMER2);
CTIMER_GetDefaultConfig(&config);

CTIMER_Init(CTIMER2, &config);

matchConfig.enableCounterReset = true;
matchConfig.enableCounterStop = false;
matchConfig.matchvValue = 12000000; //the CTimer frequency is
12MHz/12000000=1Hz
matchConfig.outControl = RCTIMER Output_Toggle;
matchConfig.outPinInitState = true;
matchConfig.enableInterrupt = false;
CTIMER_SetupMatch(CTIMER2, kCTIMER Match 3, &matchConfig);
CTIMER_StartTimer(CTIMER2);
}
The void CTimerInit(void) api function initializes CTimer2, in the
function, the CTimer driving clock source is FRO-HF, which is 12MHz. Because the
CTimer2_mat3 signal is toggled once the CTimer2 counter reaches up to the match3 value
12000000, so the CTimer2_mat3 signal frequency is 12MHz/(2x12000000)=0.5Hz.

The "Table 735 ADC Hardware triggers” describes the CTimer incorrectly, the CTimer is
standard counter/timers, the “state counter timer” should have been “standard counter/timers”
or use only “CTimer”.

The ADC triggering index for ct2_mat3_out signal is 7, so user has to configure the TCTRL7
register, especially the command buffer in the TCTRL7 register.

Based on the lpadc_interrupt project in SDK package for LPC55S69-EVK board, | develop the
code

2. Initialize the ADC trigger control register

Table 740. Trigger control registers (TCTRL[0:15], offsets 0xAO0 to 0xDC) ...continued

Bit Symbol Value Description Reset
value

23:20 Reserved. 0x0
27:24 |TCMD Trigger command select. 0x0

0 Not a valid selection from the command buffer. Trigger event is ignored.

1 CMD1 is executed.

0b0010-0b111 | Corresponding CMD is executed.

0

15 CMD15 is executed.
31:28 Reserved. 0x0

The original ADC example for LPC5569 uses software triggering mode, in software triggering mode,

any TCTRLx register can be used. But for ct2_mat3_out signal triggering, it corresponds to trigger
register 7 by hardware connection, so you have to initialize only TCTRL7 register and enable
hardware triggering mode. In the TCTRLx register, there is TCMD bits(Trigger command select) as
above table 740, with which the trigger source is bonded to a specific command buffer, in the
command buffer, the analog channel and conversion type can be defined.

#define DEMO_LPADC_USER_CMDID U /* CMD1 */

#define DEMO_LPADC_USER_CMDID 2 2U /* CMD2 */

#define CTIMER2_TRIGGER_INDEX 7

/* Set trigger configuration. */
LPADC_GetDefaultConvTriggerConfig(&mLpadcTriggerConfigStruct);
mLpadcTriggerConfigStruct.targetCommandId = DEMO_LPADC_USER_CMDID;
mLpadcTriggerConfigStruct.enableHardwareTrigger = true;
LPADC_SetConvTriggerConfig(DEMO_LPADC_BASE, CTIMER2_TRIGGER_INDEX,

&mLpadcTriggerConfigStruct);

There are total 15 command buffers ranging from 1 to 15, note that the command buffer 0
does not exist, it means the command buffer chain has terminated if the Next bits in
command buffer is assigned as 0.

The assigned command buffer is DEMO_LPADC_USER_CMDID or 1.

the CTIMER2_TRIGGER_INDEX is 7.

The above code initialize the TCTRL7 register, the TCTRL7[TCMD]=
DEMO_LPADC_USER_CMDID=1

3. ADC analog channel configuration:

Table 725. ADC Inputs Selection & ADC programming

ADC Channel # GPIOs Inputs Type ADC Description Inputs
CMDL[ADCH] to be configured as Conversion Availability
Analog Inputs Mode
CMDLI[CTYPE]
- decimal
0 "PIO0_23/ADCO_0 "External 0 Single Ended HLQFP100,
(referred as CHOA) EAST" Conversion of CHOA VFBGASS,
3 1 Single Ended HTQFP64
PIOD_16/ADCO_8 Conversion of CHOB
(referred as CHOB)" 2 Differential Conversion
CHOA(P)-CHOB(N)
3 Dual Single Ended
Conversion CHOA &
CHOB

In the example, two channels ADCO_CHOA(PIO0_23 pin) and ADCO_CHOB(PIOQ_16 pin)
are measured.

The PIO0_23 is ADCO_CHOA, it is ADC channel 0 with CTYPE bits as 0, which means single-
ended mode and A side channel.

The following code used to initialize the command bufferl and command buffer2. The
command buffer2 is chained by command bufferl. Each command buffer includes the
components: ADC analog channel, conversion type such as single-ended side A or

single-ended side B to select different ADC pin with the same analog channels such as
ADCO_OA or ADCO_0B, next chained command buffer.

3.1 initialize Commend bufferl
#define DEMO_LPADC_USER_CHANNEL ©
/* Set conversion CMD1 configuration. ADC channel is ADCO_OA PIO0O@_23*/
LPADC_GetDefaultConvCommandConfig(&mLpadcCommandConfigStruct);
mLpadcCommandConfigStruct.channelNumber = DEMO_LPADC_USER_CHANNEL;
mLpadcCommandConfigStruct.sampleChannelMode
=RLPADC_SampleChannelSingleEndSideA;
mLpadcCommandConfigStruct.chainedNextCommandNumber
DEMO_LPADC_USER_CMDID 2;
#if defined(DEMO_LPADC_USE_HIGH_ RESOLUTION) &&
DEMO_LPADC_USE_HIGH_RESOLUTION
mLpadcCommandConfigStruct.conversionResolutionMode

kLPADC_ConversionResolutionHigh;

#endif /* DEMO_LPADC_USE_HIGH_RESOLUTION */
LPADC_SetConvCommandConfig(DEMO_LPADC_BASE, DEMO_LPADC_USER_CMDID,

&mLpadcCommandConfigStruct);

3.2 3.1 initialize Commend buffer2

The PIOQ_16 is ADCO_CHOB, it is ADC channel O with CTYPE bits as 1, which means single-
ended mode and B side channel.

LPADC_GetDefaultConvCommandConfig(&mLpadcCommandConfigStruct);
mLpadcCommandConfigStruct.channelNumber = DEMO_LPADC_USER_CHANNEL;
mLpadcCommandConfigStruct.sampleChannelMode

=RLPADC_SampleChannelSingleEndSideB;
mLpadcCommandConfigStruct.chainedNextCommandNumber=0;

#if defined(DEMO_LPADC_USE_HIGH_ RESOLUTION) &&

DEMO_LPADC_USE_HIGH_RESOLUTION
mLpadcCommandConfigStruct.conversionResolutionMode =

kLPADC_ConversionResolutionHigh;

#endif /* DEMO_LPADC_USE_HIGH_RESOLUTION */

LPADC_SetConvCommandConfig(DEMO_LPADC_BASE, DEMO_LPADC_USER_CMDID 2,

&mLpadcCommandConfigStruct);

In other words, for the two analog channels ADCO_CHOA(PIO0_23 pin) and
ADCO_CHOB(PIOQ_16 pin), the channel index is the same as “0”, but the CType mode is
different, ADCO_CHOA(PIO0_23 pin) analog channel is A side Single-ended mode,
ADCO_CHOB(PIOQ_16 pin) is B side Single-ended mode.

For the pin configuration, you have to configure the IOCON register with the code:

/ADCO_0 function as ADCO_OA
const uint32_t port®_pin23_config = (/* Pin is configured as ADCO 0 */
IOCON_PIO_FUNCO |
/* No addition pin function */
IOCON_PIO_MODE_INACT |
/* Standard mode, output slew rate
control is enabled */
IOCON_PIO_SLEW_STANDARD |
/* Input function is not inverted */
IOCON_PIO_INV DI |
/* Enables analog function */
IOCON_PIO_ANALOG_EN |
/* Open drain is disabled */
IOCON_PIO OPENDRAIN DI |
/* Analog switch is closed (enabled)
*/
IOCON_PIO_ASW_EN);
/* PORT@O PIN23 (coords: 20) is configured as ADCO_OA */
IOCON_PinMuxSet(IOCON, ©@U, 23U, port@_pin23 config);

//ADCO_8 function as ADCO_OB
const uint32_t port@_pinlé_config = (/* Pin is configured as ADCO 8 */
IOCON_PIO_FUNCO |
/* No addition pin function */
IOCON_PIO_MODE_INACT |
/* Standard mode, output slew rate
control is enabled */
IOCON_PIO_SLEW_STANDARD |
/* Input function is not inverted */
IOCON_PIO_INV DI |
/* Enables analog function */
IOCON_PIO_ANALOG_EN |
/* Open drain is disabled */
IOCON_PIO OPENDRAIN DI |
/* Analog switch is closed (enabled)
*/
IOCON_PIO_ASW_EN);
/* PORTO PIN16 is configured as ADCO_©B */
IOCON_PinMuxSet(IOCON, @U, 16U, porte pinlé_config);

4. Set up the ADC channel chain feature so that multiple analog channels can be
converted with one trigger.
The ADC of LPC55xx supports scan mode, in other words, multiple ADC analog channels
can be converted with one ADC trigger, the trigger can be either software trigger or

hardware trigger.

The command buffer specify the analog channel and conversion type, in the command
buffer register, there is a “Next” bits as the following figure, which specifies the chained
command buffer, if the Next bits is assigned for example 5, the next chained command
buffer index is 5, so the command buffer 5 will define the chained analog channel. With
the method, you can convert multiple analog channels.

Table T45. ADC command high buffer registers (CMDH[1:13], offsets 0x104 to 0x174)) .. _continued

Bit Symbaol Value Description Reset
value
10:8 |STS Sample time select When programmed to 000 the minimwm sample time of |0

3.5 ADCK cycles is selected. When 5T5 is programmed to 3 non-zero value
the sample time is (3.5 + 2*5T5) ADCK cycles. The shortest sample time
|maximizes conversion speed for lower impedance inputs. Extending sample
time allows higher mpedance inputs to be accurately sampled. Longer
sample times can also be used to lower overall power consumption when
command kooping and sequencing is configured and high conversion rates
are not required.

a Mmimum sample time of 3.5 ADCK cycles.

1 3.5 + 2*1 ADCK cydes; 5.5 ADCK cycles total sample time.

2 3.5+ 2"2 ADCK cydes; 7.5 ADCK cycles total sample time.

3 3.5 + 2*3 ADCK cydles; 11.5 ADCK cycles total sample time.

4 3.5 + 2*4 ADCK cycles; 10.5 ADCK cycles total sample time.

5 3.5 + 2*5 ADCK cydles; 35.5 ADCK cycles total sample time.

8 3.5 + 23 ADCK cycles; 67.5 ADCK cycles total sample time.

7 3.5 + 27 ADCK cydes; 131.5 ADCK cycles total sample time.
1 - Reserved. (Do)
14:12 |AVGS Hardware average select LiE]

a Single conwversion.

1 2 conversions averaged.

2 4 conversions averaged.

3 8 conversions averaged.

< 16 conversions averaged.

5 32 conversions averaged.

i &4 conversions averaged.

7 128 conversions averaged.
15 - Reserved. (0o
18:16 |LOOP Loop Count Select. (Do

0 Looping not enabled. Command executes 1 time.

1 Loop 1 time. Command executes 2 times.

2 Loop 2 times. Command executes 3 times.

020011-001110 |Locp comesponding number of times. Command executes LOOP:1 times.

15 Loop 15 times. Command executes 16 times.

23:20 |- Reserved. b

27:24 |NEXT Next Command Select LiE]

0 No next command defined. Terminate conversions at completion of cument
command. If lower priority trigger pending, begin command associated with
|lower pricrity trigger.

1 Select CMD1 command buffer register as next command.

02D010-0b01110 | Select comesponding CMD command buffer register as next command
15 Select CMD15 command buffer register as next command.
31:28 |- Reserved. (Do)

For the software, you can use the scheme to implement the command buffer chain so
that you can convert multiple analog channels.

When the .chainedNextCommandNumber=0, it means that the command buffer chain is
terminated.

This is the software flow chart to implement chained command buffer in SDK

. channelAFIFOSelect

. channelBFIFOSelect

. enableHardwareTrigger
. targetCommandId=x;

ADC Command Buffer Register CMD_H_L[x] {

. channelNumber

. sampleChannelMode
. sampleTimeMode
. chainedNextCommandNumber=y

ADC Command Buffer Register CMD_H_L[y]

. channelNumber

. sampleChannelMode

. sampleTimeMode

. chainedNextCommandNumber=z

ADC Command Buffer Register CMD_H_L[z]

. channelNumber

. sampleChannelMode

. sampleTimeMode

. chainedNextCommandNumber=0;

5. The multiple ADC channels reading
In the ADC ISR(Interrupt Service Routine), first of all, read the FCOUNT bits in FCTRL[0]
register to get the number of entries stored in each FIFOO if you use the FIFOO to save
sample results, then based on the number of ADC result entries, read the ADC results
from FIFOO. The ADC result in FIFO includes ADC sample, command buffer index, trigger

sources, with the commend buffer index, you can know the analog channel the ADC result
corresponds.

lpadc_conv_result_t g LpadcResultConfigStruct[SAMPLE_NUMBER];
uint32_t channelNumber, channelNumberIndex, displayIndex;
void DEMO_LPADC_IRQ HANDLER_FUNC(void)

{

channelNumber=LPADC_GetConvResultCount(DEMO_LPADC_BASE,9);
g LpadcInterruptCounter++;
GPIO_PortToggle(GPIO,1,1<<4);
for(uint32_t i=0; i<channelNumber; i++)
{
LPADC_GetConvResult(DEMO_LPADC_BASE,
&g_LpadcResultConfigStruct[channelNumberIndex], ©@U);
channelNumberIndex++;

}
if(channelNumberIndex>=SAMPLE_NUMBER)
{
g_LpadcConversionCompletedFlag = true;
channelNumberIndex=0;
}
#if o

#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) &&
(FSL_FEATURE_LPADC_FIFO_COUNT == 2U))

if (LPADC_GetConvResult(DEMO_LPADC_BASE, &g LpadcResultConfigStruct,
eu))
#else
if (LPADC_GetConvResult(DEMO_LPADC_BASE,
&g LpadcResultConfigStruct))
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
{

g LpadcConversionCompletedFlag = true;
}
#endif
SDK_ISR_EXIT BARRIER;

ADC conversion result:

The ADC example uses ct2_mat3_out signal to trigger ADC with hardware mode, the
example convert two analog channels with once trigger. The first channel is PIO0_23,
which is connected to pin4 of P19 connector on LPC55S69-EVK as ADCO_P, the second

channel is PIO0_16, which is connected to pin2 of P19 connector on LPC55S69-EVK as
ADCO_N.

P19
1 | 1 > 2 ADCO_N
3 13 4 apcorp
R 4
5 | % R 6 COMPARATOR
pLu_INo/GPi0 T | - g | 8 PLU_INO/GPIO
FC1 l2c spa 9 g 10 | 10 Fc1_12c_spa
. - 8 . .
FC112c scL 11 11 12 | 12 FC112c scL
PPPCO62LFBN-RC

When the PIO0_23 pin is connected to GND, the PIO0_16 is connected to 3.3V, this is the
result. Command ID 1 corresponds to ADCO_CHOA(PIO0_23 pin, pin4 of P19), Command
ID 2 corresponds to ADCO_CHOB(PIOQ_16, pin2 of P19).

You can see that two analog channels are converted and reading are interleaved
ADCO_CHOA/ADCO_CHOB/ ADCO_CHOA/ADCQO_CHOB/-+++++++ .

EF COMA4S - PuTTY - O X

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d

B b b e b e =
e e s e o e e e e o e = e s s e

