
 Multiple ADC channels conversion with CTimer triggering once for LPC55S69

The ADC of LPC55xx supports scan mode, in scan mode, once ADC triggering (either

hardware or software) can convert multiple analog channels. The document gives an example

that the CTImer2 module triggers ADC and ADC converts two analog channels for each

triggering.

The doc introduces the CTimer configuration, ADC triggering control register configuration,

and ADC Command buffer chain and ADC result reading , in this way, the CTimer can trigger

ADC, the ADC can convert multiple channels.

The ADC of LPC55xx supports hardware trigger mode, each hardware trigger source

corresponds to a trigger register, as the Table 753 copied from UM11126.pdf, the

ct2_mat3_out triggering source index is 7, so you have to initialize the ADC trigger control

register TCTRL7. In the TCTRL7 register, you can assign the command buffer, select the FIFO0 or FIFO1

to save the ADC result, enable hardware triggering. In order to implement the scan mode to convert

multiple ADC analog channels, you have to initialize multiple Command Buffers so that multiple Command

Buffers can be chained each other, each Command Buffers specify one or two ADC analog channels.

1. CTimer configuration.

void CTimerInit(void)

{

ctimer_config_t config;

 ctimer_match_config_t matchConfig;

 /* Use 12 MHz clock for some of the Ctimers */

 CLOCK_AttachClk(kFRO_HF_to_CTIMER2);

 CTIMER_GetDefaultConfig(&config);

 CTIMER_Init(CTIMER2, &config);

 matchConfig.enableCounterReset = true;

 matchConfig.enableCounterStop = false;

 matchConfig.matchValue = 12000000; //the CTimer frequency is

12MHz/12000000=1Hz

 matchConfig.outControl = kCTIMER_Output_Toggle;

 matchConfig.outPinInitState = true;

 matchConfig.enableInterrupt = false;

 CTIMER_SetupMatch(CTIMER2, kCTIMER_Match_3, &matchConfig);

 CTIMER_StartTimer(CTIMER2);

}

The void CTimerInit(void) api function initializes CTimer2, in the

function, the CTimer driving clock source is FRO-HF, which is 12MHz. Because the

CTimer2_mat3 signal is toggled once the CTimer2 counter reaches up to the match3 value

12000000, so the CTimer2_mat3 signal frequency is 12MHz/(2*12000000)=0.5Hz.

The “Table 735 ADC Hardware triggers” describes the CTimer incorrectly, the CTimer is

standard counter/timers, the “state counter timer” should have been “standard counter/timers”

or use only “CTimer”.

The ADC triggering index for ct2_mat3_out signal is 7, so user has to configure the TCTRL7

register, especially the command buffer in the TCTRL7 register.

Based on the lpadc_interrupt project in SDK package for LPC55S69-EVK board, I develop the

code

2. Initialize the ADC trigger control register

The original ADC example for LPC5569 uses software triggering mode, in software triggering mode,

any TCTRLx register can be used. But for ct2_mat3_out signal triggering, it corresponds to trigger

register 7 by hardware connection, so you have to initialize only TCTRL7 register and enable

hardware triggering mode. In the TCTRLx register, there is TCMD bits(Trigger command select) as

above table 740, with which the trigger source is bonded to a specific command buffer, in the

command buffer, the analog channel and conversion type can be defined.

#define DEMO_LPADC_USER_CMDID 1U /* CMD1 */

#define DEMO_LPADC_USER_CMDID_2 2U /* CMD2 */

#define CTIMER2_TRIGGER_INDEX 7

/* Set trigger configuration. */

 LPADC_GetDefaultConvTriggerConfig(&mLpadcTriggerConfigStruct);

 mLpadcTriggerConfigStruct.targetCommandId = DEMO_LPADC_USER_CMDID;

 mLpadcTriggerConfigStruct.enableHardwareTrigger = true;

 LPADC_SetConvTriggerConfig(DEMO_LPADC_BASE, CTIMER2_TRIGGER_INDEX,

&mLpadcTriggerConfigStruct);

There are total 15 command buffers ranging from 1 to 15, note that the command buffer 0

does not exist, it means the command buffer chain has terminated if the Next bits in

command buffer is assigned as 0.

The assigned command buffer is DEMO_LPADC_USER_CMDID or 1.

the CTIMER2_TRIGGER_INDEX is 7.

The above code initialize the TCTRL7 register, the TCTRL7[TCMD]=

DEMO_LPADC_USER_CMDID=1

3. ADC analog channel configuration:

In the example, two channels ADC0_CH0A(PIO0_23 pin) and ADC0_CH0B(PIO0_16 pin)

are measured.

The PIO0_23 is ADC0_CH0A, it is ADC channel 0 with CTYPE bits as 0, which means single-

ended mode and A side channel.

The following code used to initialize the command buffer1 and command buffer2. The

command buffer2 is chained by command buffer1. Each command buffer includes the

components: ADC analog channel, conversion type such as single-ended side A or

single-ended side B to select different ADC pin with the same analog channels such as

ADC0_0A or ADC0_0B, next chained command buffer.

3.1 initialize Commend buffer1

#define DEMO_LPADC_USER_CHANNEL 0

/* Set conversion CMD1 configuration. ADC channel is ADC0_0A PIO0_23*/

 LPADC_GetDefaultConvCommandConfig(&mLpadcCommandConfigStruct);

 mLpadcCommandConfigStruct.channelNumber = DEMO_LPADC_USER_CHANNEL;

 mLpadcCommandConfigStruct.sampleChannelMode

=kLPADC_SampleChannelSingleEndSideA;

 mLpadcCommandConfigStruct.chainedNextCommandNumber =

DEMO_LPADC_USER_CMDID_2;

#if defined(DEMO_LPADC_USE_HIGH_RESOLUTION) &&

DEMO_LPADC_USE_HIGH_RESOLUTION

 mLpadcCommandConfigStruct.conversionResolutionMode =

kLPADC_ConversionResolutionHigh;

#endif /* DEMO_LPADC_USE_HIGH_RESOLUTION */

 LPADC_SetConvCommandConfig(DEMO_LPADC_BASE, DEMO_LPADC_USER_CMDID,

&mLpadcCommandConfigStruct);

3.2 3.1 initialize Commend buffer2

The PIO0_16 is ADC0_CH0B, it is ADC channel 0 with CTYPE bits as 1, which means single-

ended mode and B side channel.

LPADC_GetDefaultConvCommandConfig(&mLpadcCommandConfigStruct);

 mLpadcCommandConfigStruct.channelNumber = DEMO_LPADC_USER_CHANNEL;

 mLpadcCommandConfigStruct.sampleChannelMode

=kLPADC_SampleChannelSingleEndSideB;

 mLpadcCommandConfigStruct.chainedNextCommandNumber=0;

#if defined(DEMO_LPADC_USE_HIGH_RESOLUTION) &&

DEMO_LPADC_USE_HIGH_RESOLUTION

 mLpadcCommandConfigStruct.conversionResolutionMode =

kLPADC_ConversionResolutionHigh;

#endif /* DEMO_LPADC_USE_HIGH_RESOLUTION */

 LPADC_SetConvCommandConfig(DEMO_LPADC_BASE, DEMO_LPADC_USER_CMDID_2,

&mLpadcCommandConfigStruct);

In other words, for the two analog channels ADC0_CH0A(PIO0_23 pin) and

ADC0_CH0B(PIO0_16 pin), the channel index is the same as “0”, but the CType mode is

different, ADC0_CH0A(PIO0_23 pin) analog channel is A side Single-ended mode,

ADC0_CH0B(PIO0_16 pin) is B side Single-ended mode.

For the pin configuration, you have to configure the IOCON register with the code:

/ADC0_0 function as ADC0_0A

 const uint32_t port0_pin23_config = (/* Pin is configured as ADC0_0 */

 IOCON_PIO_FUNC0 |

 /* No addition pin function */

 IOCON_PIO_MODE_INACT |

 /* Standard mode, output slew rate

control is enabled */

 IOCON_PIO_SLEW_STANDARD |

 /* Input function is not inverted */

 IOCON_PIO_INV_DI |

 /* Enables analog function */

 IOCON_PIO_ANALOG_EN |

 /* Open drain is disabled */

 IOCON_PIO_OPENDRAIN_DI |

 /* Analog switch is closed (enabled)

*/

 IOCON_PIO_ASW_EN);

 /* PORT0 PIN23 (coords: 20) is configured as ADC0_0A */

 IOCON_PinMuxSet(IOCON, 0U, 23U, port0_pin23_config);

 //ADC0_8 function as ADC0_0B

 const uint32_t port0_pin16_config = (/* Pin is configured as ADC0_8 */

 IOCON_PIO_FUNC0 |

 /* No addition pin function */

 IOCON_PIO_MODE_INACT |

 /* Standard mode, output slew rate

control is enabled */

 IOCON_PIO_SLEW_STANDARD |

 /* Input function is not inverted */

 IOCON_PIO_INV_DI |

 /* Enables analog function */

 IOCON_PIO_ANALOG_EN |

 /* Open drain is disabled */

 IOCON_PIO_OPENDRAIN_DI |

 /* Analog switch is closed (enabled)

*/

 IOCON_PIO_ASW_EN);

 /* PORT0 PIN16 is configured as ADC0_0B */

 IOCON_PinMuxSet(IOCON, 0U, 16U, port0_pin16_config);

4. Set up the ADC channel chain feature so that multiple analog channels can be

converted with one trigger.

The ADC of LPC55xx supports scan mode, in other words, multiple ADC analog channels

can be converted with one ADC trigger, the trigger can be either software trigger or

hardware trigger.

The command buffer specify the analog channel and conversion type, in the command

buffer register, there is a “Next” bits as the following figure, which specifies the chained

command buffer, if the Next bits is assigned for example 5, the next chained command

buffer index is 5, so the command buffer 5 will define the chained analog channel. With

the method, you can convert multiple analog channels.

For the software, you can use the scheme to implement the command buffer chain so

that you can convert multiple analog channels.

When the .chainedNextCommandNumber=0, it means that the command buffer chain is

terminated.

This is the software flow chart to implement chained command buffer in SDK

ADC Command Buffer Register CMD_H_L[x]

ADC Command Buffer Register CMD_H_L[y]

ADC Command Buffer Register CMD_H_L[z]

5. The multiple ADC channels reading

In the ADC ISR(Interrupt Service Routine), first of all, read the FCOUNT bits in FCTRL[0]

register to get the number of entries stored in each FIFO0 if you use the FIFO0 to save

sample results, then based on the number of ADC result entries, read the ADC results

from FIFO0. The ADC result in FIFO includes ADC sample, command buffer index, trigger

. channelNumber

. sampleChannelMode

. sampleTimeMode

. chainedNextCommandNumber=y;

. channelNumber

. sampleChannelMode

. sampleTimeMode

. chainedNextCommandNumber=z;

. channelNumber

. sampleChannelMode

. sampleTimeMode

. chainedNextCommandNumber=0;

. channelAFIFOSelect

. channelBFIFOSelect

. enableHardwareTrigger

. targetCommandId=x;

sources, with the commend buffer index, you can know the analog channel the ADC result

corresponds.

lpadc_conv_result_t g_LpadcResultConfigStruct[SAMPLE_NUMBER];

uint32_t channelNumber, channelNumberIndex, displayIndex;

void DEMO_LPADC_IRQ_HANDLER_FUNC(void)

{

 channelNumber=LPADC_GetConvResultCount(DEMO_LPADC_BASE,0);

 g_LpadcInterruptCounter++;

 GPIO_PortToggle(GPIO,1,1<<4);

 for(uint32_t i=0; i<channelNumber; i++)

 {

 LPADC_GetConvResult(DEMO_LPADC_BASE,

&g_LpadcResultConfigStruct[channelNumberIndex], 0U);

 channelNumberIndex++;

 }

 if(channelNumberIndex>=SAMPLE_NUMBER)

 {

 g_LpadcConversionCompletedFlag = true;

 channelNumberIndex=0;

 }

#if 0

#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) &&

(FSL_FEATURE_LPADC_FIFO_COUNT == 2U))

 if (LPADC_GetConvResult(DEMO_LPADC_BASE, &g_LpadcResultConfigStruct,

0U))

#else

 if (LPADC_GetConvResult(DEMO_LPADC_BASE,

&g_LpadcResultConfigStruct))

#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */

 {

 g_LpadcConversionCompletedFlag = true;

 }

#endif

 SDK_ISR_EXIT_BARRIER;

}

6. ADC conversion result:

The ADC example uses ct2_mat3_out signal to trigger ADC with hardware mode, the

example convert two analog channels with once trigger. The first channel is PIO0_23,

which is connected to pin4 of P19 connector on LPC55S69-EVK as ADC0_P, the second

channel is PIO0_16, which is connected to pin2 of P19 connector on LPC55S69-EVK as

ADC0_N.

When the PIO0_23 pin is connected to GND, the PIO0_16 is connected to 3.3V, this is the

result. Command ID 1 corresponds to ADC0_CH0A(PIO0_23 pin, pin4 of P19), Command

ID 2 corresponds to ADC0_CH0B(PIO0_16, pin2 of P19).

You can see that two analog channels are converted and reading are interleaved

ADC0_CH0A/ADC0_CH0B/ ADC0_CH0A/ADC0_CH0B/………….

