
Generating interrupt in NON-security world

For the CM33 of LPC55S6x family, the trust zone module is integrated, the
memory space and peripherals are classified as security and non-security space.
In order to generate interrupt in non-security mode, the NVIC module especially
the NVIC_ITNSx register must be initialized in security mode so that interrupt
module can generate interrupt in non-security mode.

The example demos that MRT0 module generates interrupt in non-security
mode, the NVIC module is initialized at security mode, MRT0 is initialized at
non-security mode.

The project is based on MCUXpresso IDE ver11.1 tools, LPC55S69-EVK board
and SDK_2.x_LPCXpresso55S69 SDK package version 2.7.1.

1) security and non-security mode introduction

The SDK package for LPC55S6x has an example:

In thetzm_config.c, add the following code:
//enable SYSCON module to be accessed by non-secure side
AHB_SECURE_CTRL->SEC_CTRL_APB_BRIDGE[0].SEC_CTRL_APB_BRIDGE0_MEM_CTRL0 =
0xFCCCCCFCU;
//enable MRT module to be accessed by non-secure side
AHB_SECURE_CTRL->SEC_CTRL_APB_BRIDGE[0].SEC_CTRL_APB_BRIDGE0_MEM_CTRL1 =
0xFCCCFFCCU;
//enable PIO1_7 pin to be accessed by non-secure side
AHB_SECURE_CTRL->SEC_GPIO_MASK1&=~(1<<7);
//enable MRT0 interrupt on non-secure side
NVIC_SetTargetState(MRT0_IRQn);

The lpcxpresso55s69_hello_world_s is the code that the LPC55S69 runs in

the security mode.
The lpcxpresso55s69_hello_world_ns is the code that the lpc55S69 runs in

non-security mode.
Users can compile the two project, then download ONLY the

lpcxpresso55s69_hello_world_s project, the lpcxpresso55s69_hello_world_ns is
loaded to flash automatically by the lpcxpresso55s69_hello_world_s project.

The lpcxpresso55s69_hello_world_s is loaded into PROGRAM_FLASH (rx) :
ORIGIN = 0x10000000, so the LPC55S69 runs in security mode after Reset.

2) NVIC-ITNSx registers introduction

For the CM33 core, there is additional NVIC-ITNSx registers,

The CM33 core has two interrupt vector table located at different memory

space, one is for security mode, another is for non-security mode. In other
words, each interrupt source has two interrupt vector, one is located in security
interrupt vector table, another is located at non-security interrupt vector
table.

If user wants to generate interrupt in non-security mode, user has to set
the interrupt source bit in NVIC_ITNSx register in the secure project. In this
way, the security project can control whether the interrupt source is allowed
or not allowed in non-security project.

Generally, the code to initialize the NVIC_ITNSx register is located in
the tzm_config.c to initialize the trust zone in the security project.

3) MRT0 and NVIC code

3.1 The following code is required to be located at the
lpcxpresso55s69_hello_world_ns project, I copy the hello_world_ns here

In non-secure side, the code initializes the PIO1_7 as GPIO output pin,
which drives a LED on LPC55S69-EVK board.

It also initializes the MRT0 module so that it can generate interrupt. In
the ISR of MRT0, a LED is toggling.

It initializes the NVIC so that MRT0 can trigger interrupt.

Result: after the code runs, the green LED toggles.

Hello_world_ns.c code:

#define PRINTF_NSE DbgConsole_Printf_NSE
void Init_PIO1_7_NS(void);
void Init_MRT0_NS(void);
void NS_InterruptInit(void);
void SystemInit(void)
{

}

/*!
 * @brief Main function
 */
int main(void)
{
 int result;

 /* set BOD VBAT level to 1.65V */
 POWER_SetBodVbatLevel(kPOWER_BodVbatLevel1650mv, kPOWER_BodHystLevel50mv,
false);

 PRINTF_NSE("Welcome in normal world!\r\n");
 PRINTF_NSE("This is a text printed from normal world!\r\n");

 result = StringCompare_NSE(&strcmp, "Test1\r\n", "Test2\r\n");
 if (result == 0)
 {
 PRINTF_NSE("Both strings are equal!\r\n");
 }
 else
 {
 PRINTF_NSE("Both strings are not equal!\r\n");
 }
 Init_PIO1_7_NS();
 __asm("nop");
 Init_MRT0_NS();
 __asm("nop");
 NS_InterruptInit();
 __asm("nop");
 while (1)

 {
 //GPIO->NOT[1]=1<<7;
 __asm("nop");
 }
}

void Init_PIO1_7_NS(void)
{
 //enable gated GPIOP1 clock
 __asm("nop");
 SYSCON->AHBCLKCTRL.AHBCLKCTRL0|=1<<15;
 //set the mux
 __asm("nop");
 //set GPIO direction reg
 GPIO->DIR[1]|=1<<7;
 //toggle the PIO1_4
 GPIO->NOT[1]=1<<7;
 __asm("nop");
 GPIO->NOT[1]=1<<7;
 __asm("nop");
 GPIO->NOT[1]=1<<7;

}

void Init_MRT0_NS(void)
{
 SYSCON->AHBCLKCTRL.AHBCLKCTRL1|=1<<0;
 //set up PIT0
 MRT0->CHANNEL[0].INTVAL=12000000;
 //repeated interrupt mode
 MRT0->CHANNEL[0].CTRL=0x00;
 //enable MRT channel0
 MRT0->CHANNEL[0].CTRL=1<<0;
}

void NS_InterruptInit(void)
{
 NVIC->IPR[9]=0x00;
 __asm("nop");
 NVIC->ISER[0]|=1<<9;
 __asm("nop");
 NVIC->ICPR[0]|=1<<9;
 __asm("cpsie i");
}

void MRT0_IRQHandler(void)
{
 //toggle LED
 //clear flag
 MRT0->CHANNEL[0].STAT|=1<<0;
 GPIO->NOT[1]=1<<7;

}

4. conclusion
In order to generate interrupt in non-security side, in the secure project,
customer has to set up the registers in Trusted Execution Environment so that
the corresponding peripherals can be accessed by the non-secure side, for
example MRT, GPIO pin, and enabling a specific interrupt source.

In the non-security project, the PIO1_7, MRT0 and NVIC are initialized so that MRT0 can trigger

interrupt on non-security project, in the MRT0 ISR, a PIIO1_7 pin is toggled, a Green LED is

flashing.

