

NXP Semiconductors Implementing Custom Hardware: KMS Lab Guide

Kinetis Motor Suite:

Implementing Custom Hardware
Lab Guide

Rev. 0.0

Implementing Custom Hardware: KMS Lab Guide Page 2 of 20

Kinetis Motor Suite: 1
Implementing Custom Hardware Lab Guide .. 1
Rev. 0.0 ... 1

1 Purpose ... 2

2 Resources ... 3

3 Overview and Essential Background .. 3
Bench Setup 3
Background on KMS ADC inputs.. 4
Code Review - USER_States for speed control ... 5
Custom Hardware Resources Needed for KMS ... 5
Lab sections 6

4 Running KMS – creating the reference project ... 6
Open KMS and create a FRDM-KV31 Sensorless Velocity project for MCUXpresso 6

5 Open MCUXpresso IDE and Import the project FRMDKV31F_SNLESSVEL_MXP_LastName
 7

Examine MCUXpresso IDE ... 7
Select Import and select Existing project into workspace .. 7

6 Running the KMS project on the FRDM-KV31 MCU ... 9

7 Open MCUXpresso Pins Tool and add ADC and GPIO... 12

8 Edit the source and header files to enable the ADC reading ... 14

9 Edit function main.c adding switch control code and ADC conversion code 17

10 Open KMS GUI, Add variables to watch window and Speed scope plot 19

1 Purpose
This document is provided as a hands-on lab guide for the NXP Technology day in Minneapolis
Minnesota. The intent of the lab is to demonstrate how to set up custom hardware, modify the pin
set up and add standalone user software to control the motor speed. For the case of this lab, we will
use the FRDM-KV31F and FRDM-MC-LV3PH as the target hardware in its default configuration.

 The lab will direct the user through a series of steps that show proper code development for you own
custom hardware using the Kinetis Motor Suite reference design.

By the end of this lab the user will learn how to use:

• MCUXpresso IDE for code download debug and execution
• MCUXpresso Pins tool to add GPIO and ADC inputs and outputs
• KMS user ADC conversion option
• Convert ADC input 16 bit single ended input to LQ speed input
• How to command USER State and Motor Speed

Implementing Custom Hardware: KMS Lab Guide Page 3 of 20

2 Resources
The following resources are for reference. If you could review the below before completing the lab it is
highly recommended.
Verify Debug Firmware – DO NOT mass erase MCU flash. Open the MSD FRDM-KVxx you have and
verify it’s the latest firmware apps and drivers. Update as needed. www.pemicro.com/opensda

FRDM-KV31F - MSD-DEBUG-TWR-KV31F12_Pemicro_v120.SDA
FRDM-KV11Z - MSD-DEBUG-FRDM-KV11Z_Pemicro_v120.SDA
HVP-KV31F - MSD-DEBUG-HVP-KV31F120M_Pemicro_v121.SDA

Press MCU reset button and plug in USB cable

If you need MCUXpresso IDE, SDK or pin or config tools training you can go here.
https://www.nxp.com/docs/en/supporting-information/APF-DES-T2744-MCUXpressor.pdf

3 Overview and Essential Background

Bench Setup
This LAB uses the FRDM-KV31F120M, the FRDM-MC-LV3PH, a motor and KMS on a PC running
Windows.

A potentiometer is used as a speed input. Plugged into pins 2, 4 and 6 of J4

The LAB assumes that the PC is preloaded with MCUXpresso IDE version 10.2 and the related drivers.
In this lab, only a USB connection to the debug port is needed.

http://www.pemicro.com/opensda
https://www.nxp.com/docs/en/supporting-information/APF-DES-T2744-MCUXpressor.pdf

Implementing Custom Hardware: KMS Lab Guide Page 4 of 20

Background on KMS ADC inputs
KMS employs a dual interrupt service routine (ISR) approach, A fast interrupt for dynamic control of the
electrical of the motor and a slow interrupt as an update to the mechanical response of the motor.

During the Fast ISR, the three motor phase currents and sampled (FEEDBACK), the sensorless angle
estimation is performed (EST) or the electrical angle will be provided by the sensor, the current
controllers are run to update the reference voltage (CURRENT), and the space vector modulator is called
to update the three PWM duty cycles (SVPWM). There are additional time-sensitive software
components dealing with fault detection (DSM) and braking (BRAKE) that are called during this ISR.

During the Slow ISR, the feedback speed is estimated (EST) or calculated from the encoder (ENC), the
reference speeds are updated (TRAJ), the speed (SPEED) or position (POSITION) is controlled, and the
field weakening controller is run (FW). There is also some additional software executed to handle the
drive (DSM) and user (USER) state machines.

ADC conversions measure the bus voltage and the phase currents at the Fast ISR rate. Since both ADC
modules are being used for motor control, any additional ADC channel sampling must be scheduled in-
between the motor control samples. This mechanism is built into the reference project. The code to set
up these additional samples runs at the same frequency as the motor control. After processing the motor
control sample, the current index of the user ADC channels is configured to be sampled. Then the motor

Implementing Custom Hardware: KMS Lab Guide Page 5 of 20

control software is executed, after which the results from the user ADC channel is stored in the results
buffer (adcxResults, where x is the ADC instance [0 or 1]). The ADC is then reconfigured for motor
control sampling.

To configure this code, three things need to be set in the main.c file.

1. The macro definition for NUMBER_USER_ADC_CHANNELS should be set to the total number
of ADC channels you want to sample on one of the ADC converters. For example, if you wish to
sample two channels on ADC 0, this would be set to 2. If you want to sample one channel on
ADC 0 and one channel on ADC 1, this would be set to 1.

2. The arrays adcUserChannelsChannelx (where x is the ADC instance (0 or 1)) identify the
channels that you wish to sample. This array represents the round-robin list of channels where
one is sampled per ADC converter during each ISR.

3. This additional ADC sampling is enabled or disabled using a static variable called
bEnableRoundRobinAdc. This variable needs to be set to true in order for these additional ADC
channels to be sampled.

Code Review - USER_States for speed control

• Idle
• Fault
• Self-commissioning (SCM)
• Inertia Estimation (Inertia)
• PWM Duty Control
• Voltage Control
• Current Control (Current)
• Speed Control (Speed)
• Position Control (Position) [Sensored Position]
• Motion Sequence (Plan)
• Braking (Brake)
• Encoder Alignment (Align) [Sensored Velocity or Sensored Position]

Custom Hardware Resources Needed for KMS
The KMS User’s Guide has a list of the resources used by the project and the tools. Open the Kinetis
Motor Suite Users Guide and go to chapter 11 page 191.

1. Execution cycles and clock speed
2. Flash  KMS pre-programmed code in the top 8K of the Flash.

+ (50472 to 58804 using MCUXpresso) or + (43,224 to 48456 using IAR)
3. RAM less than 8K
4. Peripherals FAC, ADC0, ADC1, PDB0, FlexTimer0 & 1, UART0, GPIO for Hall Sensor. If the

FET pre-driver is used (TWR-MC-LV3PH) then add SPI0, more GPIO
5. KMS GUI interacts with UART0 and a RDA client in the reference project. If you don’t use

UART0 you will need to reduce the com baud rate.
6. IDE uses Debug interface for programming and debug.

Implementing Custom Hardware: KMS Lab Guide Page 6 of 20

Lab sections
The major sections of this lab are:

• Using MCUXpresso Pins Tool - Adding ADC input pins and GPIO output to bias
the potentiometer

• Using MCUXpresso IDE to edit the Senorless Velocity KMS project adding
o Defines
o GPIO initialization code
o Enable and set up user ADC sampling configuration
o Create switch control code to change User States
o Add conversion and control code to control motor speed

• Using KMS GUI to monitor the commanded speed and actual speed

4 Running KMS – creating the reference project

Open KMS and create a FRDM-KV31 Sensorless Velocity project for
MCUXpresso
Click on the Kinetis Motor Suite Icon(on the desktop or the windows menu bar.

1) Select New
2) Select Motor Type PMSM
3) Select KV3x
4) Select Freedom
5) Select Sensorless Velocity
6) Select MCUXpresso
7) Change the project Name to FRMDKV31F_SNLESSVEL_MXP_LastName (inserting your last

name)
8) Click OK
9) Choose the Communication Port and Save and connect
10) Select Yes if the message pops up saying “The image on the MCU does not match the

Application Image for the current project.”
11) Or load the application image if communications cannot be made by selection Project  Load

Application Image
12) Connect the KMS GUI with FRDM board.
13) Enter the motor parameters and name of the motor
14) Select play button to save
15) Select Play button to measure the electrical properties
16) Select Play button to measure the mechanical properties, inertia
17) Select play to run to speed. A graph appears and the motor spins up to the rated speed.

1

Implementing Custom Hardware: KMS Lab Guide Page 7 of 20

5 Open MCUXpresso IDE and Import the project
FRMDKV31F_SNLESSVEL_MXP_LastName

Click on the MCUXpresso IDE Icon (On the desktop or the windows menu bar) and create a new
workspace area for your work.

Examine MCUXpresso IDE

A) You should see that the FRDM-KV31 SDK is already installed.

Select Import and select Existing project into workspace

B) From the MCUXpresso IDE quick start panel select Import SDK example

C) Select the “Existing Project into Workspace” and press “Next” on the bottom right
D) Select Browse and select the folder of the project you just created

Implementing Custom Hardware: KMS Lab Guide Page 8 of 20

E) Select OK. Then select “Finish”

F) From the ‘Project Explorer’ window select the project and explore the files.

Implementing Custom Hardware: KMS Lab Guide Page 9 of 20

6 Running the KMS project on the FRDM-KV31 MCU

A) Select the Project.

B) From the ICON list select the down triangle next the hammer icon and select ‘Release
(Release build)’

C) This will build your project. You can view the results of the build in the Console window

D) Go back to the KMS GUI window. Disconnect the KMS GUI from the MCU

click on communication icon - it will show this after disconnected .

E) Go back to the MCUXpresso IDE

Implementing Custom Hardware: KMS Lab Guide Page 10 of 20

F) From the Quickstart Panel Debug our project select Debug.

NOTE: If you ever want to seach the debug probes again hold down the shift key and click on
Debug.

G) Each time you search the debug probes you need to select the debug probe of your target and
select OK.

Implementing Custom Hardware: KMS Lab Guide Page 11 of 20

H) Check Remember my decision and Click No on the confirm perspective switch

I) If you had KMS connected you will get a message – Press OK

J) Code execution will halt at the beginning of main.c

K) Press Resume icon or Press F8

L) The Pause icon will light up indicating the MCU is running code. And the tri-color LED
on the FRDM-KV31 board will start flashing blue and green if all is well. Red will show if there is
a fault.

M) Close the debug session by selecting Terminate icon.

N) Go back to KMS GUI. Reconnect to the target by selecting - it should turn back to this

Implementing Custom Hardware: KMS Lab Guide Page 12 of 20

7 Open MCUXpresso Pins Tool and add ADC and GPIO
A) Select the Pins Tool

Note: after this entry future entry can be done in the top right had corner

 by selecting the chip icon.

B) Press OK to Warning

C) Type in the filter box PTC8 and click on the PTC8 text in the GPIO Column. Change the Identifier
and Label to POTVDD.

Implementing Custom Hardware: KMS Lab Guide Page 13 of 20

D) Type in the filter box PTB11 and click on the PTB11 text in the GPIO column. Change the
Identifier and Label to POTGND.

E) Type in the filter box PTC9 and select ACD1_SE5b text in the ADC column. Change the Identifier

and Lable to POTIN

F) Update project by selecting Update Project

G) Return to the ‘Develop’ perspective by selecting this Icon.
H) Open the folder ‘boards’ and open the pin_mux.h file in the editor. Check your handiwork.

Implementing Custom Hardware: KMS Lab Guide Page 14 of 20

8 Edit the source and header files to enable the ADC
reading

A) Open the file kms_hw.h file and add the following text at line 137

/* Functions mapping to Potentiometer */
#define POT_VDD_0 GPIO_WritePinOutput(BOARD_POTVDD_GPIO, BOARD_POTVDD_GPIO_PIN, 0)
#define POT_VDD_1 GPIO_WritePinOutput(BOARD_POTVDD_GPIO, BOARD_POTVDD_GPIO_PIN, 1)
#define POT_GND_0 GPIO_WritePinOutput(BOARD_POTGND_GPIO, BOARD_POTGND_GPIO_PIN, 0)
#define POT_GND_1 GPIO_WritePinOutput(BOARD_POTGND_GPIO, BOARD_POTGND_GPIO_PIN, 1)

B) Open file kms_hw.c and add the following lines of code after line 68.

/* Potentiometer config */
const gpio_pin_config_t pot_config =
{
 kGPIO_DigitalOutput, /* Set current pin as digital output */
 (uint8_t)1U /* Set default logic low */
};

Implementing Custom Hardware: KMS Lab Guide Page 15 of 20

C) Next add this code after line 87.
/* Enable port for potentiometer */

 GPIO_PinInit(BOARD_POTVDD_GPIO, BOARD_POTVDD_GPIO_PIN, &pot_config);
 GPIO_PinInit(BOARD_POTGND_GPIO, BOARD_POTGND_GPIO_PIN, &pot_config);

D) Open file main.c and edit the file to enable the user ADC inputs. We only need one input for

this demonstration, but the code allows for an input on ADC0 and ADC1 to be sampled. We
only need ADC!_SE5b – [ADC 1 Single Ended mux 5b].

E) Change line 194 – change it to true,
static const bool bEnableRoundRobinAdc = true; /* Enable use of ADC channels for application
layer signals. When false optimized away */

F) Change line 197 to 1 channels
/* Storage for user ADC samples */
#define NUMBER_USER_ADC_CHANNELS (1)

G) Change line 198 to channel 5
static uint16_t adcUserChannelsChannel0[NUMBER_USER_ADC_CHANNELS] = {5};

H) Change line 199 to channel 5
static uint16_t adcUserChannelsChannel1[NUMBER_USER_ADC_CHANNELS] = {5};

I) Change line 200 to 1
static uint16_t adcUserChannelsHW_MUX0[NUMBER_USER_ADC_CHANNELS]= {1};

J) Change line 201 to 1
static uint16_t adcUserChannelsHW_MUX1[NUMBER_USER_ADC_CHANNELS]= {1};:

K) Add the following code lines to main.c at line 204
// declare these as global variables for main.c
_lq adcSpeed;
_lq adcSpeedAccum;
_lq adcSpeedAvg;
uint16_t speedUpdateCounter;
static uint8_t adcMux = 0;

L) Add the following global variable reference so that main can access user states.

extern USER_t user;
It now show look like this:

Implementing Custom Hardware: KMS Lab Guide Page 16 of 20

M) Find the next occurrence of the variable ‘bEnableRoundRobinAdc’. If you highlight the

variable and then hit CTRL-F it will fill in the find window.

N) Look at the code in the function ADC1_IRQHandler (). Notice the code that will now execute

with the setting of ‘bEnableRoundRobinAdc’ true.

Implementing Custom Hardware: KMS Lab Guide Page 17 of 20

9 Edit function main.c adding switch control code and ADC
conversion code

A) Go to main.c line 419 using CTRL-L and typing 419.
// declare these as global variables in main.c
adcSpeed = 0;
adcSpeedAccum = 0;
adcSpeedAvg = 0;
speedUpdateCounter = 0;

Implementing Custom Hardware: KMS Lab Guide Page 18 of 20

B) Go to main.c line 431 using CTRL-L and typing 431. Add the following code to initialize the
output pins biasing the potentiometer:
 /* Set potentiometer bias voltage so */
 POT_VDD_1;
 POT_GND_0;

C) Got to line 507 and add the following code to control the motor user state:

 /* Switch is active Low but we want active high logic */

 if (GPIO_ReadPinInput(BOARD_SW3_GPIO, BOARD_SW3_GPIO_PIN) == 0)
 {
 user.state = USER_RUN_SPEED;
 }
 if (GPIO_ReadPinInput(BOARD_SW2_GPIO, BOARD_SW3_GPIO_PIN) == 0)
 {
 user.state= USER_RUN_PLAN;
 }

D) Next, add the conversion code that will take the ADC signed value and convert and scale it to
LQ format.

 /* this code takes the ADC reading, downshifts it by 4 to remove noise
 and uses that as a percentage of the maximum applicaton speed (in this case
6krpm)*/

 adcSpeed = _LQmpyLQX((adc1Results[0] >> 4), 8, _LQ(6000.0/FULL_SCALE_SPEED_RPM),
24);
 adcSpeed = _LQsat(adcSpeed, _LQ(1.0), _LQ(0.0));

E) Add this code next to average the ADC reading and drive the
 /* this code averages the adc reading over 10 samples before setting
 * it to user.command.targetSpeed. It will also handle setting the
 * control mode if the commanded speed is larger than 0*/
 if(adcSpeed > _LQ(0.0))
 {
 //user.state= USER_RUN_SPEED;
 if(speedUpdateCounter >= 10)
 {
 speedUpdateCounter = 0;
 adcSpeedAvg=(adcSpeedAccum/10)&0x00FF0000;
 user.command.targetSpeed = adcSpeedAvg;
 adcSpeedAccum = 0;
 }
 else

Implementing Custom Hardware: KMS Lab Guide Page 19 of 20

 {
 adcSpeedAccum = adcSpeed + adcSpeedAccum;
 speedUpdateCounter++;
 }
 }
 else
 {
 user.state= USER_IDLE;
 adcSpeedAccum = 0;
 adcSpeedAvg = 0;
 speedUpdateCounter = 0;
 }

F) Build, Download and debug the resulting code

10 Open KMS GUI, Add variables to watch window and
Speed scope plot

A) Open the KMS GUI.

B) Reconnect to the MCU Go back to KMS GUI. Reconnect to the target by selecting - it

should turn back to this
C) Try running speed and running the plan in the GUI.

D) Open the Watch Window by selecting

Add two variables. Hit the Plus Sign
And est.output.rotorSpeed with a data type of Q24
Add adcSpeedAvg with a data type of Q24

E) Press the Run Button it will change to this
F) Press SW3 on the FRDM-KV31 Board and adjust potentiometer and watch the speed change

G) Open the Software Oscilloscope by selecting

Implementing Custom Hardware: KMS Lab Guide Page 20 of 20

H) Select the SpeedFeedback plot and hit the plus sign to add the variable adcSpeedAvg on Axis 2

I) Press the Update button

J) And press play
K) Press SW2 and watch the graph show the motion control plan.
L) Press SW3 and while Adjusting the potentiometer and watch the resulting graph.

	Kinetis Motor Suite:
	Implementing Custom Hardware Lab Guide
	Rev. 0.0
	1 Purpose
	2 Resources
	3 Overview and Essential Background
	Bench Setup
	Background on KMS ADC inputs
	Code Review - USER_States for speed control
	Custom Hardware Resources Needed for KMS
	Lab sections

	4 Running KMS – creating the reference project
	Open KMS and create a FRDM-KV31 Sensorless Velocity project for MCUXpresso

	5 Open MCUXpresso IDE and Import the project FRMDKV31F_SNLESSVEL_MXP_LastName
	Examine MCUXpresso IDE
	Select Import and select Existing project into workspace

	6 Running the KMS project on the FRDM-KV31 MCU
	7 Open MCUXpresso Pins Tool and add ADC and GPIO
	8 Edit the source and header files to enable the ADC reading
	9 Edit function main.c adding switch control code and ADC conversion code
	10 Open KMS GUI, Add variables to watch window and Speed scope plot

