
PE_User_Manual.book Page 1 Thursday, April 18, 2013 11:34 AM
Processor Expert
User Guide

 Revised: 18 April 2013

PE_User_Manual.book Page 2 Thursday, April 18, 2013 11:34 AM
Freescale, the Freescale logo, CodeWarrior, ColdFire, Kinetis, and Processor Expert are trademarks of Freescale Semi-
conductor, Inc.,Reg. U.S. Pat. & Tm. Off. Flexis and Processor Expert are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trade-
marks and service marks licensed by Power.org. All other product or service names are the property of their respective
owners.

© 2011-2013 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

PE_User_Manual.book Page 3 Thursday, April 18, 2013 11:34 AM
Table of Contents

1 Introduction 7
Overview. 7

Features of Processor Expert . 8

Key Components . 10

Advantages . 10

Concepts . 13

Embedded Components. 13

Creating Applications . 14

RTOS Support . 15

Terms and Definitions Used in Processor Expert . 15

2 User Interface 19
Main Menu . 20

Project Pop-up Menu. 20

Processor Expert Options . 20

Components View. 22

View Menu . 24

Pop-up Menu . 24

Components Library View . 26

Modes . 26

Filtering . 26

Pop-up Menu . 26

Component Assistant. 27

Component Inspector View. 28

Read Only Items . 28

View Mode Buttons. 28

View Menu . 28

Graphical Mode. 29

Pop-up Menu . 29

Inspector Items . 30

Items Visibility . 33

Pin Settings . 34
3Processor Expert User Guide

Table of Contents

PE_User_Manual.book Page 4 Thursday, April 18, 2013 11:34 AM
Component Inspector. .34

Configuration Inspector .43

Processor View .44

Control Buttons .44

Memory Map View .47

Configuration Registers View .48

Initialization Sequence View. .49

3 Application Design 51
Creating Application using Processor Expert .51

Basic Principles .52

Embedded Components .52

Processor Components .60

Configuring Components .65

Interrupts and Events .65

Configurations .72

Design Time Checking: Consequences and Benefits 73

Timing Settings .75

Creating User Component Templates .76

Signal Names .77

Component Inheritance and Component Sharing .79

Pin Sharing .81

Implementation Details .88

Reset Scenario with PE for HCS08, RS08 and 56800/E.90

Reset Scenario with PE for 56800EX .92

Reset Scenario with PE for ColdFire and Kinetis Microcontrollers95

Version Specific Information for 56800/E/EX .96

Version Specific Information for Freescale HC(S)08 and ColdFire V1
derivatives .99

Version Specific Information for RS08 .107

Version Specific Information for HCS12 and HCS12X 111

Version Specific Information for Kinetis and ColdFire+ 114

Code Generation and Usage .114

Code Generation .115

Predefined Types, Macros and Constants .118
4 Processor Expert User Guide

Table of Contents

PE_User_Manual.book Page 5 Thursday, April 18, 2013 11:34 AM
Typical Usage of Component in User Code . 125

User Changes in Generated Code . 130

Embedded Component Optimizations . 131

General Optimizations. 131

General Port I/O Optimizations. 133

Timer Components Optimizations . 133

Code Size Optimization of Communication Components 134

Converting Project to Use Processor Expert. 135

Low-level Access to Peripherals. 136

Peripheral Initialization . 136

Peripheral Driver Implementation. 136

Physical Device Drivers . 137

Processor Expert System Library . 137

Direct Access to Peripheral Registers . 138

Processor Expert Files and Directories . 140

PE Project File. 140

Project Directory Structure . 140

User Templates and Components . 141

4 Processor Expert Tutorials 143
Tutorial Project 1 for Kinetis Microcontrollers . 143

Creating a New Project . 143

Adding Components . 144

Configuring Components . 145

Code Generation . 146

Index 149
5Processor Expert User Guide

Table of Contents

PE_User_Manual.book Page 6 Thursday, April 18, 2013 11:34 AM
6 Processor Expert User Guide

PE_User_Manual.book Page 7 Thursday, April 18, 2013 11:34 AM
1
Introduction

Processor Expert (PE) is designed for rapid application development of embedded
applications for a wide range of microcontrollers and microprocessor systems.

This chapter explains:

• Overview

• Features of Processor Expert

• Concepts

• Terms and Definitions Used in Processor Expert

Overview
Processor Expert provides an efficient development environment for rapid application
development of the embedded applications. You can develop embedded applications for a
wide range of microcontrollers and microprocessor systems using Processor Expert.

Processor Expert is integrated as a plug-in into the Eclipse IDE. You can access Processor
Expert from the IDE using the Processor Expert menu in the IDE menu bar. The Processor
Expert plug-in generates code from the embedded components and the IDE manages the
project files, and compilation and debug processes.

Figure below shows the Processor Expert menu in the IDE menu bar.
7Processor Expert User Guide

Introduction
Features of Processor Expert

PE_User_Manual.book Page 8 Thursday, April 18, 2013 11:34 AM
Figure 1.1 IDE with Processor Expert Menu

NOTE For more information about how to create a new project, refer to the Processor
Expert Tutorials chapter or Creating Application using Processor Expert
chapter for step-by-step instructions on how to create a new Processor Expert
project.

NOTE Processor Expert generates all drivers during the code generation process. The
generated files are automatically inserted into the active (default) target in the
project. For more information on generated files, refer to the Code Generation
chapter.

Features of Processor Expert
Processor Expert has built-in knowledge (internal definitions) about all microcontroller
units and integrated peripherals. The microcontroller units and peripherals are
encapsulated into configurable components called embedded components, each of which
provides a set of useful properties, methods, and events.

The following are the main features of Processor Expert:

• The application is created from components called embedded components.

• Embedded components encapsulate functionality of basic elements of embedded
systems like processor core, processor on-chip peripherals, FPGA, standalone
peripherals, virtual devices, and pure software algorithms, and change these facilities
to properties, methods, and events (like objects in OOP).
8 Processor Expert User Guide

Introduction
Features of Processor Expert

PE_User_Manual.book Page 9 Thursday, April 18, 2013 11:34 AM
• Processor Expert connects, and generates the drivers for embedded system hardware,
peripherals, or used algorithms. This allows you to concentrate on the creative part of
the whole design process.

• Processor Expert allows true top-down style of application design. You can start the
design directly by defining the application behavior.

• Processor Expert works with an extensible components library of supported
microprocessors, peripherals, and virtual devices.

• Processor Expert peripheral initialization components generate effective
initialization code for all on-chip devices and support all their features.

• Logical Device Drivers (LDD components) are efficient set of embedded
components that are used together with RTOS. They provide a unified hardware
access across Microcontrollers allowing to develop simpler and more portable RTOS
drivers or bare board application. For more details, refer to the Logical Device
Drivers topic.

• Processor Expert allows to examine the relationship between the embedded
component setup and control registers initialization.

An intuitive and powerful user interface allows you to define the system behavior in
several steps. A simple system can be created by selecting the necessary components,
setting their properties to the required values and also dragging and dropping some of their
methods to the user part of the project source code.

The other key features are:

• Design-time verifications

• Microcontroller selection from multiple Microcontroller derivatives available

• Microcontroller pin detailed description and structure viewing

• Configuration of functions and settings for the selected Microcontroller and its
peripherals

• Definition of system behavior during initialization and at runtime

• Design of application from pre-built functional components

• Design of application using component methods (user callable functions) and events
(templates for user written code to process events, e.g. interrupts)

• Customization of components and definition of new components

• Tested drivers

• Library of components for typical functions (including virtual SW components)

• Verified reusable components allowing inheritance

• Verification of resource and timing contentions

• Concept of project panel with ability to switch/port between Microcontroller family
derivatives
9Processor Expert User Guide

Introduction
Features of Processor Expert

PE_User_Manual.book Page 10 Thursday, April 18, 2013 11:34 AM
• Code generation for components included in the project

• Implementation of user written code

• Interface with Freescale CodeWarrior

This section includes the following topics:

• Key Components

• Advantages

Key Components
The key components are:

• Graphical IDE

• Built-in detailed design specifications of the Freescale devices

• Code generator

Advantages
PE based tool solution offers the following advantages to Freescale Microcontroller
customers:

• In all phases of development, customers will experience substantial reductions in

– development cost

– development time

• Additional benefits in product development process are:

– Integrated Development Environment Increases Productivity

– Minimize Time to Learn Microcontroller

– Rapid Development of Entire Applications

– Modular and Reusable Functions

– Easy to Modify and Port Implementations

Integrated Development Environment Increases
Productivity
Integrated development environment increases productivity:

• This tool lets you produce system prototypes faster because the basic setup of the
controller is easier. This could mean that you can implement more ideas into a
prototype application having a positive effect on the specification, analysis, and
10 Processor Expert User Guide

Introduction
Features of Processor Expert

PE_User_Manual.book Page 11 Thursday, April 18, 2013 11:34 AM
design phase. Processor Expert justifies its existence even when used for this purpose
alone.

• This system frees you up from the hardware considerations and allows you to
concentrate on software issues and resolve them.

• It is good for processors with embedded peripherals. It significantly reduces project
development time.

The primary reasons why you should use Processor Expert are:

• Processor Expert has built-in knowledge (internal definition) of the entire
microcontroller with all its integrated peripherals.

• Processor Expert encapsulates functional capabilities of microcontroller elements
into concepts of configurable components.

• Processor Expert provides an intuitive graphical user interface, displays the
microcontroller structure, and allows you to take the advantage of predefined and
already verified components supporting all typically used functions of the
microcontroller.

• Applications are designed by defining the desired behavior using the component
settings, drag and drop selections, utilizing the generated methods and events
subroutines, and combining the generated code with user code.

• Processor Expert verifies the design based on actual microcontroller resource and
timing contentions.

• Processor Expert allows the efficient use of the microcontroller and its peripherals
and building of portable solutions on a highly productive development platform.

Minimize Time to Learn Microcontroller
There are exciting possibilities in starting a new project if the user is starting from ground
zero even if the user is using a new and unfamiliar processor.

• You can work on microcontroller immediately without studying about the
microcontroller

• Documentation

• You can implement simple applications even without deep knowledge of
programming

• PE presents all necessary information to the user using built-in descriptions and hints

• PE has built-in tutorials and example projects.
11Processor Expert User Guide

Introduction
Features of Processor Expert

PE_User_Manual.book Page 12 Thursday, April 18, 2013 11:34 AM
Rapid Development of Entire Applications
Processor Expert allows you to try different approaches in real time and select the best
approach for the final solution. You are not confined to a pre-determined linear approach
to a solution.

• Easy build of application based on system functional decomposition (top-down
approach)

• Easy microcontroller selection

• Easy Processor initialization

• Easy initialization of each internal peripheral

• Simple development of reusable drivers

• Simple implementation of interrupt handlers

• Inherited modularity and reuse

• Inherited ease of implementation of system hardware and software/firmware
modifications

Modular and Reusable Functions
Processor Expert decreases the start-up time and minimizes the problems of device.

• It uses the concept of a function encapsulating entity called embedded component
with supporting methods and events

• Uses a library of predefined components

• Uses the concept of device drivers and interrupt handlers that are easy to reapply

• Uses the concept of well-documented programming modules to keep the code well
organized and easy to understand

NOTE Processor Expert embedded component were formerly called Processor Expert
Embedded Beans.

Easy to Modify and Port Implementations
Processor Expert allows optimal porting to an unused processor.

• Supports multiple devices within a project and makes it extremely easy to switch
them

• Supports desired changes in the behavior of the application with an instant rebuild

• Supports interfacing of the IDE
12 Processor Expert User Guide

Introduction
Concepts

PE_User_Manual.book Page 13 Thursday, April 18, 2013 11:34 AM
Concepts
The main task of Processor Expert is to manage processor and other hardware resources
and to allow virtual prototyping and design.

Code generation from components, the ability to maintain user and generated code, and an
event based structure significantly reduce the programming effort in comparison with
classic tools.

This section covers the following topics:

• Embedded Components

• Creating Applications

• RTOS Support

Embedded Components
Component is the essential encapsulation of functionality. For instance, the TimerInt
component encapsulates all processor resources that provide timing and hardware
interrupts on the processor.

Figure 1.2 Example of TimerInt Component (Periodical Event Timer) Properties

You will find many components that are called embedded components in the Processor
Expert Components library window. These components are designed to cover the most
commonly required functionality used for the microcontroller applications, such as from
handling port bit operations, external interrupts, and timer modes up to serial
asynchronous/synchronous communications, A/D converter, I2C, and CAN.

By setting properties, you can define the behavior of the component in runtime. You can
control properties in design time by using the Component Inspector. Runtime control of
the component function is done by the methods. Events are interfacing hardware or
software events invoked by the component to the user's code.

You can enable or disable the appearance (and availability) of methods of the component
in generated source code. Disabling unused methods could make the generated code
shorter. For more details, refer to the General Optimizations topic.
13Processor Expert User Guide

Introduction
Concepts

PE_User_Manual.book Page 14 Thursday, April 18, 2013 11:34 AM
Events, if used, can be raised by interrupt from the hardware resource such as timer, SIO
or by software reason, such as overflow in application runtime. You can enable or disable
interrupts using component methods and define priority for event occurrence and for
executing its Interrupt Service Routine (ISR). The hardware ISR provided by the
component handles the reason for the interrupt. If the interrupt vector is shared by two (or
more) resources, then this ISR provides the resource identification and you are notified by
calling the user event handling code.

Creating Applications
Creation of an application with Processor Expert on any microcontroller is fast. To create
an application, first choose and set up a processor component, add other components,
modify their properties, define events and generate code. Processor Expert generates all
code (well commented) from components according to your settings. For more details,
refer to the Code Generation topic.

This is only part of the application code that was created by the Processor Expert
processor knowledge system and solution bank. The solution bank is created from hand
written and tested code optimized for efficiency. These solutions are selected and
configured in the code generation process.

Enter your code for the events, provide main code, add existing source code and build the
application using classic tools, such as compiler, assembler and debug it. These are the
typical steps while working with Processor Expert.

Other components may help you to include pictures, files, sounds, and string lists in your
application.

Processor Expert has built-in knowledge (internal definitions) about the entire
microcontroller with all integrated peripherals. The microcontroller units and peripherals
are encapsulated into configurable components called embedded components and the
configuration is fast and easy using a graphical Component Inspector.

Peripheral Initialization components are a subset of embedded components that allow you
to setup initialization of the particular on-chip device to any possible mode of operation.
You can easily view all initialization values of the microcontroller produced by Processor
Expert with highlighted differences between the last and current properties settings.

Processor Experts performs a design time checking of the settings of all components and
report errors and warnings notifying you about wrong property values or conflicts in the
settings with other components in the project. For more information, refer to the Design
Time Checking: Consequences and Benefits topic.

Processor Expert contains many useful tools for exploring a structure of the target
microcontroller showing the details about the allocated on-chip peripherals and pins.

Processor Expert generates a ready-to-use source code initializing all on-chip peripherals
used by the component according to the component setup.
14 Processor Expert User Guide

Introduction
Terms and Definitions Used in Processor Expert

PE_User_Manual.book Page 15 Thursday, April 18, 2013 11:34 AM
RTOS Support
Processor Expert provides a set of LDD components (Logical Device Drivers) that support
generation of driver code that can be integrated with RTOSes (Real Time Operating
Systems). For more details, refer to the Logical Device Drivers topic.

Terms and Definitions Used in Processor
Expert

Component — An Embedded Component is a component that can be used in Processor
Expert. Embedded Components encapsulate the functionality of basic elements of
embedded systems like processor core, processor on-chip peripherals, standalone
peripherals, virtual devices and pure software algorithms and wrap these facilities to
properties, methods, and events (like objects in OOP). Components can support several
languages (ANSI C, Assembly language or other) and the code is generated for the
selected language.

Component Inspector — Window with all parameters of a selected component:
properties, methods, events.

Bus clock — A main internal clock of the processor. Most of the processor timing is
derived from this value.

Processor Component — Component that encapsulates the processor core initialization
and control. This component also holds a group of settings related to the compilation and
linking, such as Stack size, Memory mapping, linker settings. Only one processor
component can be set active as the target processor. For details, refer to the Processor
Components topic.

Component Driver — Component drivers are the core of Processor Expert code
generation process. Processor Expert uses drivers to generate the source code modules for
driving an internal or external peripheral according to the component settings. A
Component can use one or more drivers.

Counter — Represents the whole timer with its internal counter.

Events — Used for processing events related to the component's function (errors,
interrupts, buffer overflow etc.) by user-written code. For details, refer to the Embedded
Components topic.

External user module — External source code attached to the PE project. The external
user module may consist of two files: implementation and interface (*.C and *.H).

Free running device — Virtual device that represents a source of the overflow interrupt
of the timer in the free running mode.

High level component — Component with the highest level of abstraction and usage
comfort. An application built from these components can be easily ported to another
15Processor Expert User Guide

Introduction
Terms and Definitions Used in Processor Expert

PE_User_Manual.book Page 16 Thursday, April 18, 2013 11:34 AM
microcontroller supported by the Processor Expert. They provide methods and events for
runtime control. For details, refer to the Component Categories topic.

Internal peripherals — internal devices of the microcontroller such as ports, timers, A/D
converters, etc. usually controlled by the processor core using special registers.

ISR - Interrupt Service Routine — code which is called when an interrupt occurs.

LDD components — Logical Device Driver components. The LDD components are
efficient set of components that are ready to be used together with RTOS. They provide a
unified hardware access across microcontrollers allowing to develop simpler and more
portable RTOS drivers. For details, refer to the Component Categories topic.

Low level component — a component dependent on the peripheral structure to allow the
user to benefit from the non-standard features of a peripheral. The level of portability is
decreased because of this peripheral dependency. For details, refer to the Component
Categories topic.

Microcontroller - Microcontroller Unit — microcontroller used in our application.

Methods — user callable functions or sub-routines. The user can select which of them
will be generated and which not. Selected methods will be generated during the code
generation process into the component modules.

Module - Source code module — could be generated by Processor Expert (Component
modules, Processor Module, events.c) or created by the user and included in the project
(user module).

OOP — Object-oriented programming (OOP) was invented to solve certain problems of
modularity and reusability that occur when traditional programming languages such as C
are used to write applications.

PE — Abbreviation of Processor Expert that is often used within this documentation.

PESL — Processor Expert System Library (PESL) is dedicated to power programmers,
who are familiar with microcontroller architecture - each bit and each register. PESL
provides the macros to access the peripherals directly, so PESL should be used only in
some special cases. For details, refer to the Processor Expert System Library topic.

Peripheral Initialization component — encapsulates the whole initialization of the
appropriate peripheral. Components that have the lowest levels of abstraction and usage
comfort. For details, refer to the Component Categories topic. They usually do not support
any methods or events except the initialization method. The rest of the device driver code
needs to be written by hand using either PESL or direct control of the peripheral registers.
For details, refer to the Low-level Access to Peripherals topic.

Popup menu — this menu is displayed when the right mouse button is pressed on some
graphical object.

PLL — Phase Locked Loop. This circuit is often built-in inside the processor and can be
used a main source of the clock within the processor.
16 Processor Expert User Guide

Introduction
Terms and Definitions Used in Processor Expert

PE_User_Manual.book Page 17 Thursday, April 18, 2013 11:34 AM
Prescaler — A fixed or configurable device that allows to divide or multiply a clock
signal for a peripheral processor peripheral or its part.

Properties — Parameters of the component. Property settings define which internal
peripherals will be used by the component and also initialization and behavior of the
component at runtime.

RTOS — Real Time Operating System is an operating system (OS) intended for real-time
applications.

Processor — The processor derivative used in a given project.

Template — It is a component template with preset parameters.

User-defined Component Template — User-defined component template is a
component with preset parameters saved under a selected name. Also the name of the
author and short description can be added to the template.

User module — Source code module created or modified by the user. (Main module,
event module or external user module).

Xtal — A crystal - a passive component used as a part of an oscillator circuit.
17Processor Expert User Guide

Introduction
Terms and Definitions Used in Processor Expert

PE_User_Manual.book Page 18 Thursday, April 18, 2013 11:34 AM
18 Processor Expert User Guide

PE_User_Manual.book Page 19 Thursday, April 18, 2013 11:34 AM
2
User Interface

The Processor Expert menu is integrated as a plugin in the Eclipse IDE providing set of
views. The IDE main menu has a menu item named Processor Expert.

The user interface of Processor Expert consists of the following windows:

– Component Inspector — Allows you to setup components of the project.

– Component Library — Shows all supported components including processor
components and component templates.

– Configuration Registers — Shows overview of the peripheral initialization
settings for the current processor.

– Memory Map — Shows the processor address space and internal and external
memory mapping.

– Components — Shows an embedded component that can be used in Processor
Expert.

– Initialization Sequence — It is possible to customize the initialization sequence of
components. By default, the sequence is not specified. You can change the
sequence using up or down buttons. Initialization of processor component is
always first.

– Processor — The processor derivative used in a given project.

This chapter explains:

• Main Menu

• Components View

• Components Library View

• Component Inspector View

• Processor View

• Memory Map View

• Configuration Registers View

• Initialization Sequence View
19Processor Expert User Guide

User Interface
Main Menu

PE_User_Manual.book Page 20 Thursday, April 18, 2013 11:34 AM
Main Menu
The Processor Expert plug-in is integrated into the Eclipse IDE as plugin application. The
IDE main menu contains a new menu item named Processor Expert.

The Processor Expert menu includes:

• Show views — Shows standard Processor Expert windows in case they are hidden.

• Hide views — Hides Processor Expert views.

• Import Componets(s) — This command allows to select and install Processor
Expert update packages (.PEUpd) files. These files can be created in Component
Development Environment (CDE) by exporting a user's component.

Project Pop-up Menu
This menu is available on right-clicking at the ProcessorExpert.pe file. It contains
the standard commands with the Processor Expert specific command:

Generate Processor Expert Code — Invokes code generation for the current project.
The generated files are automatically inserted into the active (default) target in the project.
Generated files corresponding to the Embedded Components can be accessed from the
Generated_Code folder. For more details, refer to the Code Generation topic.

For Processor Expert related settings and options, refer to the Processor Expert Options.

Processor Expert Options
This section contains the following topics:

• Project Options

• Preferences

Project Options
Project options related to Processor Expert can be found in Properties dialog box. To
access this dialog box, click Project > Properties. The Properties dialog box appears.

Select Processor Expert option in the list on the left. Description of the individual options
can be found in the hint window displayed when the cursor is placed on an item.
20 Processor Expert User Guide

User Interface
Main Menu

PE_User_Manual.book Page 21 Thursday, April 18, 2013 11:34 AM
Figure 2.1 Project Properties Dialog Box

Preferences
Global settings related to Processor Expert can be found in Preferences dialog available
using the command Window > Preferences. The PE related items can be found under
Processor Expert in the list on the left. Description of the individual options can be found
in the hint window displayed when the cursor is placed on an item.

Figure 2.2 Preferences Dialog Box
21Processor Expert User Guide

User Interface
Components View

PE_User_Manual.book Page 22 Thursday, April 18, 2013 11:34 AM
There is an option Preferred inspector views that allows you to decide how to display the
tabs of Component Inspector view. There are two views Custom and Classic.

To start or shutdown the processor expert, click Windows > Preferences and expand
General and select Startup and Shutdown.

Processor Expert starts after the Eclipse workbench user interface is displayed if the
Processor Expert Core checkbox is selected as shown below.

Figure 2.3 Preferences — Startup and Shutdown

Components View
Components view shows the tree with the following items:

• Generator_Configurations — Configurations of the project.

• Operating System — contains special components that provide operating system
interface and configuration if there are any used.

• Processors — contains Processor Components included in the project.

• Components — it is included in the project. Every component inserted in the project
is displayed in the Component Inspector view and may have a sub tree showing
22 Processor Expert User Guide

User Interface
Components View

PE_User_Manual.book Page 23 Thursday, April 18, 2013 11:34 AM
items available for the component (note that components can offer only some or even
none of these items):

– Methods — Methods allow runtime control of the component's functionality.

– Events routines — Events allow handling of the hardware or software events
related to the component. If the event is disabled, the name of the event is shown.
For enabled events, the name of the handling function is shown.

– ISRs — Represent component-related interrupt routines that is created by you for
low-level interrupt processing. For items, whose ISR names have been specified
within component settings, a user-specified name of an ISR and name of the
interrupt vector is shown. If an ISR name is not specified (interrupt has to be
disabled in this case), only the interrupt vector name is present.

– PESL commands — low-level PESL commands related to the peripheral
configured by this component. This folder is available only for Peripheral
Initialization components.

Under the peripheral initialization components, there are relevant PESL or PDD macros
for allocated peripherals. PDD commands are low level peripheral access macros and they
are the replacement of PESL macros. PDD commands are available on all platforms
supported by Logical Device Drivers (LDD). Macros can be dragged and dropped into the
source code. PDD macros automatically pre-fill the peripheral address.

Figure 2.4 Macros for Peripheral Components

All component's items have status icons that signify the enabled or disabled state. If this
state cannot be changed directly, the background of the icon is gray. For more details,
refer to the Embedded Components topic.

Shared components are automatically placed into a dedicated subfolder
Referenced_Components. You can move the component from this folder to anywhere.
23Processor Expert User Guide

User Interface
Components View

PE_User_Manual.book Page 24 Thursday, April 18, 2013 11:34 AM
This table explains the various states of a component.

Figure 2.5 Referenced Components

When you have more than one Processor Expert project in your workspace and you are
working with those projects, the last project shown in Components view is recorded in
the workspace history. When you restart the Eclipse IDE, the last session project is opened
automatically.

Table 2.1 Description of Component States

Component Status Icon Description

Signifies that component is enabled. It can
be configured and code can be generated
from this component.

Signifies that component is disabled. It can
be configured, but the configuration
validation/ generation is disabled. No code is
generated from this component.

Signifies error in the component. For
example, Components folder contains
component with error.

Signifies that component is frozen and will
not be re-generated. When the user
generates the code again, files of this
component are not modified and the
generated code is frozen.
24 Processor Expert User Guide

User Interface
Components View

PE_User_Manual.book Page 25 Thursday, April 18, 2013 11:34 AM
View Menu
• Generate Processor Expert Code — invokes code generation for the current

project.

• Close/Open Project — closes the project if it is open or opens the project if it is
closed.

• Properties — displays the Processor Expert properties for a specific project.

• Edit Initialization Sequence — modify the initialization sequence of components.

• Export — allows to export component settings or configuration of selected
Processor Expert components.

• Import — allows to import component settings or configuration of selected
Processor Expert components.

Pop-up Menu
• Inspector — opens Component Inspector view for the component. For more

details, refer to the Component Inspector View topic.

• Inspector - Pinned — opens Component Inspector view for the component in
"pinned" mode. This command allows to have several inspector views for different
components opened at once. For more details, refer to the Component Inspector
View topic.

• Code Generation — allows to disable/enable the generated module for the
component.

• Configuration Registers — displays the Configuration Registers view for the
peripheral initialized by the selected component. For more details, refer to the
Configuration Registers View topic.

• Target Processor Package — displays the Processor view for the processor
derivative used in a given project.

• Processor Memory Map — displays the Memory Map view for the processor
address space and internal and external memory mapping.

• Rename Component — changes the name of the component.

• Select Distinct/Shared mode — switches between shared and distinct mode of the
component. This setting is available for LDD components only. For more details,
refer to the Logical Device Drivers topic.

• Open File — opens the generated code from the selected component for the source
code editor. Note that the code is available only after successful code generation.

• Component Enabled — enables/disables component in the project.

• Remove component from project — deletes the component from the project.
25Processor Expert User Guide

User Interface
Components Library View

PE_User_Manual.book Page 26 Thursday, April 18, 2013 11:34 AM
• Help on component — shows a help page for the component.

• Save Component Settings As Template — creates a template of the selected
component. For more details, refer to the Creating User Component Templates topic.

• View Code — Opens code editor at the code of the selected method or event.

• Toggle Enable/Disable — Enables/Disables the Method or Event.

Figure 2.6 Components View

Components Library View
The Components Library view shows supported embedded components including
processor components and component templates. It lets you select a desired component or
template and add it to the project.

Modes
The Components Library has the following four tabs allowing you to select components in
different modes:

• Categories — Contains all available components. The components are sorted in a
tree based on the categories defined in the components. For more details, refer to the
Component Categories topic.

• Alphabetical — Shows alphabetical list of the available components.

• Assistant — Guides you during the component selection process. The user answers a
series of questions that finally lead to a selection of a component that suits best for a
required function. For more details, refer to the Component Assistant topic.

• Processors — Contains list of the available processors.
26 Processor Expert User Guide

User Interface
Components Library View

PE_User_Manual.book Page 27 Thursday, April 18, 2013 11:34 AM
Component names are colored black and the component template names are colored blue.
The components that are not supported for the currently selected target processor are gray.
By double-clicking on the component, it is possible to insert the component into the
current project. The description of the component is shown in a hint.

Filtering
Filter can be activated using the filtering icon. If it is active, only the components that
could be used with the currently selected target processors are shown.

If the filter is inactive, Processor Expert also shows components that are not available for
the current processor.

Pop-up Menu
A pop-up menu opens by right-clicking a component or folder. It contains the following
commands:

• Add to project — Adds the component to the current project.

• Add to project with wizard — Adds the component to the current project and opens
a configuration wizard.

• Expand all — Expands the folder and all its subfolders.

• Collapse all — Collapses the folder and all its subfolders.

• Refresh — Refreshes the view area.

• Delete — Only user templates and components are deleted. User component is
deleted from the folder <Processor Expert Install>/
ProcessorExpert/Beans/<ComponentToBeDeleted>. Other files like
*.inc, *.drv, *.src remain intact.

• Help on component — Opens help information for the selected component.
27Processor Expert User Guide

User Interface
Components Library View

PE_User_Manual.book Page 28 Thursday, April 18, 2013 11:34 AM
Figure 2.7 Components Library

Component Assistant
The Component Assistant is a mode of Components Library view. It guides you during
the selection of components, that is basic application building blocks. You will have to
answer a series of questions that finally lead to a selection of a component that suits best
for a required function. In this mode, the Components Library view consists of the
following parts:

• History navigation buttons and the history line showing answers for already
answered questions. You can walk through the history using the arrow buttons or by
clicking the individual items.

• A box with a current question.

• A list of available answers for the current question.

If the answer already corresponds to a single component (it has an icon of the
component and there is a [component name] at the end of the list line) and user
double-clicks it, it is added into the project. Also, you can right-click on the line to
open the pop-up menu of the component, allowing to add it into the project or view
its documentation (for details, refer to the Components Library View topic).

If more questions are necessary for the component selection, the line with the answer
contains a group icon and in brackets a number of components that still can possibly
be selected. After clicking on such line a next question is displayed.

This mode of Components Library does not offer addition of processor components. If
you would like to add another processor component, switch to processors tab.
28 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 29 Thursday, April 18, 2013 11:34 AM
Component Inspector View
Component Inspector allows to view and edit attributes of the item selected in the Project
Explorer.

Inspector window contains the three columns:

• Name — Name of the item to be selected. Groups of items may be collapsed or
expanded by double clicking on the first line of the group with its name, it has '+' or '-
' sign on the left.

• Value — the settings of the items are made in this column. For list of item types,
refer to the Inspector Items topic for details.

• Details — the current setting or an error status may be reflected on the same line, in
the rightmost column of the inspector.

Figure 2.8 Component Inspector View — Displaying Pin variant and Package

Read Only Items
Some items are read-only so you can not change the content. Such values are gray.

View Mode Buttons
They are placed at the top of the window (Basic, Advanced, Expert). These buttons allow
you to switch complexity of the view of the component's items. Refer to the Items
Visibility topic for details.
29Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 30 Thursday, April 18, 2013 11:34 AM
View Menu
This menu can be invoked by clicking on the down arrow icon. The menu contains the
following commands:

• Basic, Advanced, Expert — view mode switching. These options have the same
meaning as the view mode buttons.

• Ignore Constraints and non-Critical Errors — this option enables a special mode
of Processor Expert. In this mode, Processor Expert allows you to generate output
files, even though some settings may break some constraints or limits and errors are
reported.

• Expand All — if a group is selected, expands all items within the selected group.
Otherwise, all groups in the Inspector are expanded. If the expanded group contains
any groups that are disabled (gray), the user is asked if the disabled groups should all
be expanded.

• Collapse All — if a group is selected, collapses all items within the selected group.
Otherwise, all groups in the Inspector are collapsed.

• Help on Component — shows a help page for the component.

• Save component settings as template — creates a template for the current
component settings. Refer to the Creating User Component Templates topic for
details.

• Open New pinned view — opens a copy of the inspector for currently selected
component. This command allows to have several inspector views for different
components opened at once.

• Search — searches Inspector item by name. It also accepts wild cards like * or ? (*
=any string and ? = any character).

Graphical Mode
Graphical mode can be switched on/off using the Graphical Mode toolbar button. The
inspector view is split into two panels. The left contains a list of items (properties) and the
right one allows an alternative way of editing the property selected on the left.
30 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 31 Thursday, April 18, 2013 11:34 AM
Figure 2.9 Component Inspector with Graphical Mode On

Pop-up Menu
This menu is invoked by right-clicking a specific inspector item. The menu contains the
following commands:

Figure 2.10 Component Inspector View - Pop-up Menu

• Expand All — if a group is selected, expands all items within the selected group.
Otherwise, all groups in the inspector are expanded. If the expanded group contains
any groups that are disabled (gray), the user is asked if the disabled groups should all
be expanded.

• Collapse All — if a group is selected, collapses all items within the selected group.
Otherwise, all groups in the inspector are collapsed.

• Help on Component — shows a help page for the component.

• Pin Sharing Enabled — enables the pin sharing. This command is available only
for pin properties. For more information, refer to the Pin Sharing topic.

• Move Item Up - moves the item up in the list.

• Move Item Down - moves the item down in the list.
31Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 32 Thursday, April 18, 2013 11:34 AM
• Move Item Top - moves the item on the top of the list.

• Move Item Bottom - moves the item at the bottom of the list.

NOTE Move options are enabled for ListItemFromFIle property.

• Delete Item — does not delete the component, but can delete the property item from
the list of property. The list of items can have some constraints on minimal or
maximum number of items. Add ADC component into the project and add at least
one extra channel then you will be able to see this option enabled.

Inspector Items
The following types of the items are there in the Component Inspector view.

Figure 2.11 Example Component with Various Inspector Item Types
32 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 33 Thursday, April 18, 2013 11:34 AM
Table 2.2 explains the various types of items.

Table 2.2 Inspector Item Types

Field Description

Boolean Group A group of settings controlled by this boolean
property. If the group is enabled, all the items
under the group are valid; if it is disabled, the
list of items is not valid. Clicking + sign will
show/hide the items in the group but doesn't
affect value or validity of the items.

Boolean yes/no You can switch between two states of the
property using a drop-down menu. The
Generate code/Don't generate code settings
of methods and events works the same way
and determines whether the implementation
code for the corresponding method or event
will be generated or not (you may thus
generate only the methods and events used
by your application).

Enumeration Selection from a list of values. If you click the
arrow icon (), a list of the possible values for
the property is offered. For some derivatives,
pin and package details are displayed for
processor variant.

Enumeration Group A list of items. Number of visible (and
valid) items in the group depends on chosen
value. Clicking the arrow icon () will show
a list of the possible values of the property.
Clicking the + sign shows/hides the items in
the group but does not influence value or
validity of the items.

File/Directory Selection Allows to specify a file or directory. Clicking
the icon opens a system dialog window
allowing to select a file/directory.

Group A list of items that can be expanded/
collapsed by clicking on the plus/minus icon
or by double-clicking at the row. Values of
the items in the group are untouched.
33Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 34 Thursday, April 18, 2013 11:34 AM
Integer Number You can insert a number of a selected radix.
Radix of the number could be switched using
the icons (D = Decimal, H = Hexadecimal, B
= Binary). Only reasonable radixes are
offered for the property. If the radix switching
icon is not present, Processor Expert
expects the decimal radix.

Link to Inherited component The down-arrow button allows to change the
ancestor from the list of possible ancestor.
Refer to the Component Inheritance and
Component Sharing topic for details.

Link to shared component The down-arrow button allows to change the
component from the list of the available
components or add a new component to the
project. Refer to the Component Inheritance
and Component Sharing topic for details.

List of items A list of items may be expanded/collapsed by
clicking on the plus/minus button in the left
side of the row or by double clicking on the
row. You may add/remove items by clicking
on the plus/minus button. The items in the list
can be arranged using the Pop-up Menu
related commands.

Peripheral selection You can select a peripheral from the list of
the available peripherals. The peripheral that
are already allocated have the component
icon in the list. The properties that conflicts
with the component settings have the red
exclamation mark.

Real Number You can insert any real (floating point)
number.

Table 2.2 Inspector Item Types

Field Description
34 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 35 Thursday, April 18, 2013 11:34 AM
Items Visibility
Processor Expert supports selectable visibility of the component items. Each item is
assigned a predefined level of visibility. Higher visibility level means that items with this
level are more special and rarely used than the others with the lower visibility level.
Component Inspector displays only items on and below the selected level. It could help
especially beginners to set only basic properties at first and do optimization and
improvements using advanced and expert properties or events later. There are three
visibility levels:

• Basic view — The key and most often used items that configure the basic
functionality of the components.

String Allows to enter any text or value. If there are
no recommended values specified, there is
no change in the user interface. If the values
are specified, these values helps user to
select typical or recommended value for the
property. This feature is supported for String
and Real Number properties. The
recommended values used for the property
are ONE, TWO, and THREE. The string
property can offer predefined values
accessible hitting key stroke ctrl+space.
You can see that this is available when the
string value is edited and there are
predefined values available, small yellow
bulb is displayed before top-left corner of edit
field.

String list Clicking the browse button (...) opens the
simple text editor that allows to enter an
array of text lines.

Time, Date Allows to setup the Time/Date in a format
according to the operating system settings.

Timing settings Allows a comfortable setting of the
component's timing. The timing dialog box
opens on clicking on browse button (...).
Refer to the Dialog Box for Timing Settings
topic for details.

Table 2.2 Inspector Item Types

Field Description
35Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 36 Thursday, April 18, 2013 11:34 AM
• Advanced view — All items from Basic view and the settings that configure some
of more advanced and complex features of the component.

• Expert view — Maximum visibility level - All possible settings, including all
settings of basic and advanced view.

The visibility can be switched in the Component Inspector using Basic, Advanced, and
Expert buttons or within its view menu.

NOTE If an error occurs in a property with a higher visibility level than the level
currently selected, then also this error is displayed.

Pin Settings
New pin model in Processor Expert is currently supported for Vybrid derivative. It allows
to specify requirements for the pin configuration from different components. By default,
property for pin selection contains Automatic value which represents no requirement for
the configuration. If there is no requirement from the property:

• If there are requirement for pin assignment from another component, this pin is used

• If there are no requirements from any component, default assigned pin is used

• If there is no default assigned pin or the default assigned pin is in conflict with
another configuration, no pin is assigned to the property

The requirements for pin configuration is specified from several components. Duplicated
requirements does not represent any conflict and are accepted.

PinSettings component allows to specify pin configuration for all pins of the processor.
You have the choice to specify pin routing either in PinSettings component or directly in
LDD components (or both).

For automotive applications, it is expected that HW designer specify pin (pin routing)
during board design (HW perspective is used) and sends it to SW engineers as an input for
configuration of the SW application.

Component Inspector
Component Inspector is one of the inspector view variants intended to configure
component settings. It allows to setup Properties, Methods, and Events of a component.
Use command Help on Component from View menu (invoked by the down arrow icon)
to see documentation for currently opened component.

NOTE Property settings influencing the hardware can often be better presented by the
processor package view using the Processor view. Refer to the Processor View
topic for details.
36 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 37 Thursday, April 18, 2013 11:34 AM
Figure 2.12 Component Inspector View

The Build options page is present only in the processor component and it provides access
to the settings related to linker and compiler.

The Resources page shows list of the processor component resources. You can also
manually block individual resources for using them in Processor Expert.

The page consists of the three columns:

• First shows the name of the resource. Resources are in groups according to which
device they belong to.

• Second column allows you to reserve resource (for example pin) for external
module. Click on icon to reserve/free a resource. Reserved resource is not used in
Processor expert any more.

• Third column shows the current status of the resource and the name of the
component which uses it (if the resource is already used).

For more details on component inspector items, refer to the Dialog Box for Timing
Settings and Syntax for the Timing Setup in the Component Inspector topic.

In the Component Inspector view, you can view the clock diagram for only vybrid
derivative. Create a project with Vybrid MVF50GS10xx derivative and add some
peripheral initialization components, for example Init_FTM. See the Clock Diagram
tab in the Inspector view.
37Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 38 Thursday, April 18, 2013 11:34 AM
Figure 2.13 Inspector View — Clock Diagram

The following shows the graphical schematic of each element:

• Clock Source — It represents XTAL, internal oscillator, external pin or signal from
another peripheral.

Figure 2.14 Bus Clock

• Expressions — This element represents general expression, defined by element name
and expression function, followed by output frequency.

Figure 2.15 Expression

• Clock Selection — It represents selection of clock signal, optionally input signals
may represent disabled clock.

Figure 2.16 Clock Selection

• Switch — It represents disabled path (optional).
38 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 39 Thursday, April 18, 2013 11:34 AM
Figure 2.17 Switch

• More complex elements should be interpreted as combination of all the above
elements. For example, clock selection with prescaler. It represents selection of clock
source and divider by the single bit-field. There are three sub-variants with different
graphical representation:

– Divider that can be disabled optionally.

Figure 2.18 Clock Selection with Prescaler

– Upto 8 clock sources and some of them with divider.

Figure 2.19 Multiple Clock Sources

– Different clock sources with high number of dividers.

Figure 2.20 Clock Sources with Dividers

• Clock Branch — Branch is represented by connection of several elements to one
source element.

Figure 2.21 Clock Branch
39Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 40 Thursday, April 18, 2013 11:34 AM
• Clock consumer or peripheral

Figure 2.22 Clock Consumer

Dialog Box for Timing Settings
The Timing dialog box provides a user-friendly interface for the settings of the component
timing features. When you click the ... button of a timing item in the Component
Inspector view, the Timing dialog box is displayed.

Before you start to edit component timing, you should set:

• Target processor in the Components view

• Used peripherals in the component's properties

• Supported speed modes in the component's properties

The settings are instantly validated according to the Processor Expert timing model. For
details on the timing settings principles, refer to the Timing Settings topic.

Timing Dialog Box Controls
Timing dialog allows to select clock source manually. To access clock source, click
Advanced button. You can manually select the value for prescaler and clock source.

Clock path shows current clock path from source to consumer, including all used
prescalers and its configuration. Additionally, it shows frequency at each point of path.
40 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 41 Thursday, April 18, 2013 11:34 AM
Figure 2.23 Timing Settings Dialog Box

Auto select timing option
This option is not supported for all components. It is supported only for timer, where the
requirement can be specified both for counter and for compare/capture/overrun on this
counter. For example, if Auto select timing option is selected for counter, this timing is
configured based on peripherals for compare/capture/overrun. And if this option is
selected for overrun, it is configured based on requirement for counter configuration.
Currently, it is supported only in timerUnit_LDD component.

Runtime Setting Configuration

NOTE Runtime setting cannot be selected in the Basic view mode.

Runtime setting determines how the timing setting can be modified at runtime. The
following options available are:

• fixed value — Timing cannot be changed at runtime.

• from a list of values — Allows to change the timing by selecting one of predefined
values (from the list) using component method "SetXXXMode". This method sets
the value(s) corresponding to the selected timing into the appropriate prescaler and
other peripheral register(s). The values (modes) in the list can be added/removed by
editing the timing values table.
41Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 42 Thursday, April 18, 2013 11:34 AM
• from interval — Allows to change a timing freely within a selected interval, while
all values of the interval are selected with specified precision. Prescaler value is fixed
in this mode, timing is set only using compare/reload registers value. It means that it
is possible to reach all values within the interval by using the same prescaler.

Note that this kind of runtime setting requires runtime computations that can be time and
space consuming and may not be supported on all microcontrollers.

NOTE Some of the methods used for runtime setting of timing will be enabled only if
the appropriate runtime setting type is selected.

Timing Values Table
This table allows to set or modify a requested value(s) for the configured timing. Each row
represents one time value and the number of rows depends on the selected type of runtime
setting.

• For the option fixed value, there is only one row (Init.Value) containing the fixed
initialization value.

• For the option from a list of values, there is one row for each of the possible timing
modes. It is possible to enter 16 possible values (modes). The empty fields are
ignored. You can drag and drop rows within the table to change their order. Refer to
the Runtime Setting Configuration topic for more information.

• For the option from interval, the table has three rows that contain the Initial value,
low limit and high limit of the interval. Refer to the Runtime Setting Configuration
topic for details on this type of runtime setting.

There are two editable columns:

• Value — Fill in a requested time value (without units). The drop-down arrow button
displays a list of values and you can select one of them. It is also possible to set the
value by double-clicking on a value from the settings table.

• Units — Time units for the value. Refer to the Syntax for the Timing Setup in the
Component Inspector topic for details.

Timing Precision Configuration
It is possible to specify desired precision of the timer settings by using one of the
following settings (which one is used depends on the type of the timing):

• The field Allowed error allows to specify a tolerated difference between the real
timing and the requested value. The Unit field allows to specify the units for the
error allowed field (time units or a percentage of the requested value).

• The field Min. resolution is used for setting interval or capture component timing.
Allows you to specify maximum length of one tick of the timer.
42 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 43 Thursday, April 18, 2013 11:34 AM
In case of interval settings type, the % of low limit (percentage of the low limit value) can
be used as the unit for this value.

Minimal Timer Ticks

NOTE This item is available only for setting of period in components where it is
meaningful, for example PWM, PPG.

It represents requirement for minimal number of timer ticks for specified period (usually it
affects minimal value set into reload or modulo register). This is useful for configurations
where it is expected to change period or duty in runtime, and in this case the parameter
affects supported scale for such changes. There will be guarateed that there will be at least
the given number of distinct values available for adjusting the duty of output signal. This
will also be guaranteed for any available period of the signal.

Adjusted Values
This table displays real values for each speed mode of the selected row in the Timing
values table.

These values are computed from the chosen on-chip peripheral settings, selected
prescaler(s) value and the difference between a value selected by the user and the real
value.

Status Box
The status box displays a status of the timing setting(s). If the timing requirements are
impossible to meet, a red error message is displayed, otherwise it is blank and gray.

Possible Settings Table
This table is displayed on the right side of the timing dialog box when you click the
Possible settings button on the top. The table displays values supported by the Processor
for the selected peripheral.

If there are only individual values available to set, the table contains a list of values, each
row represents one value. If there are intervals with a constant step available, each row
contains one of the intervals with three values: From, Till - minimum and maximum
value, Step - a step between values within the interval.

The way the values are displayed may be dependent on:

• Runtime setting type — If it is fixed value or from list of values the values present
in rows (overlapping intervals) are shown only once. If from time interval runtime
setting type is used, all intervals that can be set by various prescalers combinations
are shown, even if they overlap. It is because intervals can differ in resolution, that is
number of individual timing steps that can be achieved within them.
43Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 44 Thursday, April 18, 2013 11:34 AM
• Timing unit — If a frequency unit is used (for example, Hz, kHz), the step column is
not visible.

By clicking on the table header, there is possible to order the rows as per selected column.
By clicking the same column again, you can arrange the rows in ascending or descending
order.

Double-clicking on a value will place the value into the currently edited row within the
Timing values table.

The values listed in the possible settings table depend on the following timing settings:

• prescalers

• minimal timer ticks

and it also depends on

• selected processor

• selected peripheral

• speed-modes enabled for the component

The table contains a speed mode tabs (speed modes and related settings are supported
only in the Expert view mode) that allow to filter the displayed intervals for a specific
speed mode or show intersection of all. Note that the intersection contains only values that
can be set in all speed modes with absolute precision (without any error), so some values
that are still valid, but due to non-zero Error allowed, values are not shown.

Syntax for the Timing Setup in the Component
Inspector
The properties that contain timing settings can be configured using the timing dialog box
(For details, refer to the Dialog Box for Timing Settings topic) or directly entering the
timing value. If the timing values are specified directly, it is necessary to enter not only a
value (integer or real number) but also the unit of that value. The following units are
supported:

• microseconds — A value must be followed by us.

• milliseconds — A value must be followed by ms.

• seconds — A value must be followed by s.

• Processor ticks — A unit derived from the frequency of external clock source. If
there is no external clock enabled or available, it is derived from the value of internal
clock source. A value must be followed by ticks.

• Timer ticks — A unit representing number of changes (for example increments) of
the counter used by the component. The real time of one tick is influenced by input
clock set for the timer.
44 Processor Expert User Guide

User Interface
Component Inspector View

PE_User_Manual.book Page 45 Thursday, April 18, 2013 11:34 AM
• Hertz — A value must be followed by Hz.

• kilohertz — A value must be followed by kHz.

• megahertz — A value must be followed by MHz.

• bit/second — A value must be followed by bits.

• kbit/second — A value must be followed by kbits.

For example, if you want to specify 100 milliseconds, enter 100 ms.

For more details on timing configuration, refer to the Timing Settings topic.

Configuration Inspector
Configuration Inspector is a variant of an inspector window. It shows the settings that
belong to selected component. It could be invoked from configurations pop-up menu in
the Components view (click on a configuration with the right-button and choose the
Configuration Inspector). For details on configurations, refer to the Configurations topic.

Properties
The Properties tab contains optimization settings related to the configuration. These
settings should be used when the code is already debugged. It could increase speed of the
code, but the generated code is less protected for the unexpected situations and finding
errors could be more difficult.

Note that some of the options may not be present for all Processor Expert versions.

• Ignore range checking — This option can disable generation of the code that
provides testing for parameter range. If the option is set to yes, methods do not
return error code ERR_VALUE neither ERR_RANGE. If the method is called with
incorrect parameter, it may not work correctly.

• Ignore enable test — This option can disable generation of the code that provides
testing if the component/peripheral is internally enabled or not. If the option is set to
yes, methods do not return error code ERR_DISABLED neither ERR_ENABLED. If
the method is called in unsupported mode, it may not work correctly.

• Ignore speed mode test — This option can disable generation of the code, that
provides a testing, if the component is internally supported in the selected speed
mode. If the option is set to yes, methods do not return error code ERR_SPEED. If
the method is called in the speed mode when the component is not supported, it may
not work correctly.

• Use after reset values — This option allows Processor Expert to use the values of
peripheral registers which are declared by a chip manufacturer as default after reset
values. If the option is set to no, all registers are initialized by a generated code, even
45Processor Expert User Guide

User Interface
Processor View

PE_User_Manual.book Page 46 Thursday, April 18, 2013 11:34 AM
if the value after reset is the same as the required initialization value. If the option is
set to yes, the register values same as the after reset values are not initialized.

• Complete initialization in Peripheral Init. Component — This option can disable
shared initialization peripheral in Init methods of Peripheral Initialization
Components. If this option is set to yes, the complete peripheral initialization is
provided in Init method, even for parts that are already initialized in processor or
elsewhere. It could mean longer code, but the initialization can be repeated in
application using the Init method.

Processor View
This view displays selected target microcontroller with its peripherals and pins. It allows
you to generate code from processor and also to switch the CPU package. To open this
vew, click Window > Show View > Other... and select Processor Expert > Processor.

Figure 2.24 Processor View

You can change the CPU package when the Components view is not being displayed by
selecting the Select New CPU Package option on Processor view.
46 Processor Expert User Guide

User Interface
Processor View

PE_User_Manual.book Page 47 Thursday, April 18, 2013 11:34 AM
Figure 2.25 Processor View — Select New CPU Package

Control Buttons
The following table lists and describes the control buttons:

Table 2.3 Control Buttons

Buttons Description

Zoom in – Increases the detail level of the
view. The whole picture might not fit the
viewing area.

Zoom out – Decreases the detail level of the
view. Processor Expert tries to fit the whole
picture to the viewing area.

Rotate – Rotates the package clockwise.

Resources (available for BGA type packages
only) – Selects Resources view mode that
shows a top side of the package without pins
but including list of peripherals and showing
their allocation by components.
47Processor Expert User Guide

User Interface
Processor View

PE_User_Manual.book Page 48 Thursday, April 18, 2013 11:34 AM
Pins
The following information about each pin is displayed on the processor picture:

(in case of BGA type package the pins are displayed only in the Pins view mode)

• pin name (default or user-defined)

• icon of a component that uses (allocates) the pin

• direction of the pin (input, output, or input/output) symbolized by blue arrows if a
component is connected

• With new pin model (supported for few derivatives only), the background color of
the pin reflects routing of the pin to the peripheral.

Pin names are shortened and written either from left to right or from top to bottom and are
visible only if there is enough space in the diagram.

Some signals and peripherals cannot be used by the user because they are allocated by
special devices such as power signals, external, or data bus. The special devices are
indicated by a special blue icons. The allocation of peripherals by special devices can be
influenced by processor component settings.

In case of BGA package, the pins that are used by some component are colored yellow.
Move the cursor on the pin to get detailed information.

Hints
Pin hint contains:

• number of the pin (on package)

• both names (default and user-defined)

• owner of the pin (component that allocates it)

• short pin description from processor database

Pins Bottom (available for BGA type
packages only) – Selects Pins view mode
that shows a bottom side of the package with
pins. The peripherals are not shown in this
mode beacause the surface is covered with
pins.

Pins Top – Selects Pins view mode that
shows a top side of the package with pins.

Table 2.3 Control Buttons

Buttons Description
48 Processor Expert User Guide

User Interface
Processor View

PE_User_Manual.book Page 49 Thursday, April 18, 2013 11:34 AM
Component icon hint contains:

• component name

• component type

• component description

Shared Pins
If a pin is shared by multiple components, the line connecting the pin to the component
has a red color. Refer to the Pin Sharing topic for details.

On-chip Peripherals
The following information about each on-chip peripheral is displayed on the processor
package:

• peripheral device name (default or user-defined)

• icon of the component that uses (allocates) the peripheral device

Peripheral device hint contains:

• peripheral device name

• owner of the pin (component that allocates it)

• short peripheral device description

Hint on icon contains:

• component name

• component type

• component description

If a peripheral is shared by several components (for example, several components may use
single pins of the same port), the icon is displayed.

NOTE Some peripherals work in several modes and these peripherals can be
represented by a several devices in the processor databases. For example, the
device "TimerX_PPG and "TimerX_PWM represents TimerX in the PPG and
PWM mode. These devices can be displayed on the processor package, but
they are also represented as a single block in the microcontroller block
diagram.

Peripheral or Pin Pop-up Menu
The following commands are available in the pop-up menu:
49Processor Expert User Guide

User Interface
Memory Map View

PE_User_Manual.book Page 50 Thursday, April 18, 2013 11:34 AM
• Show Peripheral Initialization — shows initialization values of all control, status
and data registers. This option is supported for all devices displayed on a processor
package. Refer to the Configuration Registers View topic for details.

• Zoom in — Increases the detail level of the view. The whole picture might not fit the
viewing area.

• Zoom out — Decreases the size of the picture and detail level of the view.

• Rotate — Rotates the package by 90 degrees.

• Add Component/Template — adds a component or template for the appropriate
peripheral; all available components and templates suitable for the selected
peripheral are listed. The components and templates in the list are divided by a
horizontal line. It is possible to add only components or templates which are
applicable for the peripheral. It means that is possible to add the component or
template only if the peripheral is not already allocated to another component or
components. The components/templates that cannot be added to the peripheral are
grayed in the pop-up menu as unavailable. This option is supported for all devices
displayed on processor package.

• Remove Component — allows to remove all components allocating peripheral in
Processor view. Processor component cannot be removed.

Memory Map View
Figure below shows the processor address space and internal and external memory
mapping. Detailed information for an individual memory area is provided as a hint when
you move the cursor over it.
50 Processor Expert User Guide

User Interface
Configuration Registers View

PE_User_Manual.book Page 51 Thursday, April 18, 2013 11:34 AM
Table 2.4 Legend

The address in the diagram is increasing upwards. To improve the readability of the
information, the size of the individual memory blocks drawn in the window are different
from the ratio of their real size (small blocks are larger and large blocks are smaller).

The black line-crossed area shows the memory allocated by a component or compiler. The
address axis within one memory block goes from the left side to the right (it means that the
left side means start of the block, the right side means the end).

Figure 2.26 Sample Of Used Part Of The Memory Area

Configuration Registers View
Configuration Registers view shows overview of the peripheral initialization settings for
the current target microcontroller. It displays initialization values of all control, status, and
data registers of selected peripheral/device including single bits. The values are grouped
into two parts: Peripheral registers containing registers directly related to the selected
peripheral/device and Additional registers containing the registers that are influenced by
the component but are not listed for the peripheral currently selected in this view.

The initialization information reflects:

• Microcontroller default settings — When the peripheral is not utilized by any
Embedded Component.

Legend Description

white: non-usable space

dark blue: I/O space

blue: RAM

light blue: ROM, OTP or Firmware

cyan: FLASH memory or EEPROM. This area can also contain a flash
configuration registers area.

black: external memory
51Processor Expert User Guide

User Interface
Initialization Sequence View

PE_User_Manual.book Page 52 Thursday, April 18, 2013 11:34 AM
• Embedded Component settings — When the peripheral is utilized by an Embedded
Component and the component settings are correct. Peripheral Initialization
Inspector shows initialization as required by the component settings.

Figure 2.27 Configuration Registers View

The table shows the registers and their initialization value displayed in the column Init.
value. You can modify the register value. Registers value can be changed if:

• They are not read-only and when the project is without errors

• Editing of configuration registers is supported by given component

This value written into the register or bit by the generated code during the initialization
process of the application. It is the last value that is written by the initialization function to
the register. The After reset column contains the value that is in the register by default
after the reset.

The values of the registers are displayed in the hexadecimal and binary form. In case the
value of the register (or bit) is not defined, an interrogation mark "?" is displayed instead
of the value. The Address column displays the address of registers.

NOTE For some registers, the value read from the register after sometime can be
different than the last written value. For example, some interrupt flags are
cleared by writing 1. For details, refer to the microcontroller manual on
registers.

In case the peripheral is allocated by a component and the setting of the component is
incorrect, the initialization values are not displayed in the Configuration Registers view.

Initialization Sequence View
It is possible to customize initialization sequence of components. By default, the sequence
is not specified. You can change the sequence using up/down buttons.
52 Processor Expert User Guide

User Interface
Initialization Sequence View

PE_User_Manual.book Page 53 Thursday, April 18, 2013 11:34 AM
Figure 2.28 Initialization Sequence

Third column displays any conflicts or component specific messages. Initialization of
processor component is always first. Disabled components are also listed (even if the code
is not generated). This allows to create configuration for the disabled component to re-
enable them. You can unspecify the initialization order of given component by clicking on
the Don’t care button.
53Processor Expert User Guide

PE_User_Manual.book Page 51 Thursday, April 18, 2013 11:34 AM
3
Application Design

This chapter will help you to design application using Processor Expert and Embedded
Components. You will find here recommendations and solutions to write and optimize a
code effectively.

This chapter explains:

• Creating Application using Processor Expert

• Basic Principles

• Configuring Components

• Implementation Details

• Code Generation and Usage

• Embedded Component Optimizations

• Converting Project to Use Processor Expert

• Low-level Access to Peripherals

• Processor Expert Files and Directories

Creating Application using Processor
Expert

You can create new project using project wizard for Processor Expert application that
support many targets and also for MQXLite project that support only Kinetics target.

To create an application using processor expert:

1. Open an example

You can start learning Processor Expert by opening one of the available examples.
Select File > Import to open the Import dialog. Then select General > Existing
Projects into workspace and click Next.

2. In the Import Projects screen, click the Browse button and select the directory of the
sample project that you want to use under this folder.

3. Click Finish.
51Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 52 Thursday, April 18, 2013 11:34 AM
4. Code generation

After opening an example, invoke the code generation of the project to obtain all
sources. In the project tree, right-click the ProcessorExpert.pe file and select
the Generate Processor Expert Code command. The generated code is placed in the
Generated_Code sub-folder of the project.

The Processor Expert views can be opened any time using the menu command
Processor Expert > Show Views.

NOTE Refer to the Processor Expert Tutorials topic for step-by-step tutorials on
creating Processor Expert projects from the beginning.

Basic Principles
The application created in Processor Expert is built from the building blocks called
Embedded Components. The following topics describe the features of the Embedded
Components and the processor components that are special type of Embedded
Components and what they offer to the user.

• Embedded Components

• Processor Components

Embedded Components
Embedded components encapsulate the initialization and functionality of embedded
systems basic elements, such as microcontroller core, on-chip peripherals, (for details on
categories of components delivered with Processor Expert, refer to the Component
Categories topic) FPGAs, standalone peripherals, virtual devices, and pure software
algorithms.

These facilities are interfaced to the user through properties, methods and events. It is very
similar to objects in the Object Oriented Programming (OOP) concept.

Easy Initialization
You can initialize components by setting their initialization properties in the Component
Inspector. Processor Expert generates the initialization code for the peripherals according
to the properties of the appropriate components. You can decide whether the component
will be initialized automatically at startup or manually by calling the component's Init
method.
52 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 53 Thursday, April 18, 2013 11:34 AM
Easy On-chip Peripherals Management
Processor Expert knows exactly the relation between the allocated peripherals and the
selected components.

When you select a peripheral in the component properties, Processor Expert proposes all
the possible candidates but signals which peripherals are allocated already (with the icon
of the component allocating the peripheral). PE also signalizes peripherals that are not
compatible with the current component settings (with a red exclamation mark). In case of
an unrealizable allocation, an error is generated.

Unlike common libraries, Embedded Components are implemented for all possible
peripherals with optimal code. The most important advantages of the generated modules
for driving peripherals are that you can:

• Select any peripheral that supports component function and change it whenever you
want during design time.

• Be sure that the component setting conforms to peripheral parameters.

• Choose the initialization state of the component.

• Choose which methods you want to use in your code and which event you want to
handle.

• Use several components of the same type with optimal code for each component.

The concept of the peripheral allocation generally does not enable sharing of peripherals
because it would make the application design too complicated. The only way to share
resources is through the components and their methods and events. For example, it is
possible to use the RTIshared component for sharing periodic interrupt from timers.

Methods
Methods are interfacing component functionality to user's code. All enabled methods are
generated into appropriate component modules during the code generation process. All
Methods of each component inserted into the project are visible as a subtree of the
components in the Components view.

You can use in your code all enabled methods. The easiest way to call any method from
your code is to drag and drop the method from Components view to the editor. The
complexity and number of methods depend on the component's level of abstraction.

Events
Some components allow handling the hardware or software events related to the
component. You can specify the name on function invoked in the case of event
occurrence. They are usually invoked from the internal interrupt service routines
generated by Processor Expert. If the enabled event handling routine is not already present
53Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 54 Thursday, April 18, 2013 11:34 AM
in the event module then the header and implementation files are updated and an empty
function (without any code) is inserted. You can write event handling code into this
procedure and this code will not be changed during the next code generation.

All Methods and Events of each component inserted into the project are visible as a
subtree of components in the Components view.

Interrupt Subroutines
Some components, especially the low-level components and the Peripheral Initialization
components (refer to more details in Component Categories topic) allow to assign an
interrupt service routine (ISR) name to a specific interrupt vector setup.

The name of the Interrupt service is generated directly to the interrupt vector table and you
have to do all necessary control registers handling within the user code. Refer to the
Typical Usage of Component in User Code topic for details.

ISRs items are listed in the subtree of a component in the Components view.

Figure 3.1 Example Of a Component With Two ISRs

Highly Configurable and Extensible Library
Embedded Components can be created and edited manually or with the help of CDE.
Processor components are a special category of components.

Component Categories
Complete list of the component categories and corresponding components can be found in
the Component Categories page of the Components Library View.

The components are categorized based on their functionality, so you can find an
appropriate component for a desired function in the appropriate category.

These are the following main categories, which further contain various sub-categories.

• Processor External Devices — Components for devices externally controlled to the
processor. For example, sensors, memories, displays or EVM equipment.

• Processor Internal Peripherals — Components using any of on-chip peripherals
offered by the processor. The Components Library folder with the same name
contains sub-folders for the specific groups of functionality. For example,
Converters, Timers, PortIO.
54 Processor Expert User Guide

B45511
Highlight

Application Design
Basic Principles

PE_User_Manual.book Page 55 Thursday, April 18, 2013 11:34 AM
NOTE It seems that components (especially in this category) correspond to on-chip
peripherals. Even this declaration is close to true, the main purpose of the
component is providing the same interface and functionality for all supported
microcontrollers. This portability is the reason why the component interface
often doesn't copy all features of the specific peripheral.

• Logical Device Drivers — LDD components. Refer to the Logical Device Drivers
topic for details.

• Operating systems — Components related to Processor Expert interaction with
operating system running on the target.

• SW — Components encapsulating a pure software algorithms or inheriting a
hardware-dependent components for accessing peripherals. These components
(along with components created by the user) can be found in a components library in
the folder SW.

Specific functionality of the microcontroller may be supported as a version-specific
settings of the component. For more information about this feature, refer to the Version
specific parts in the component documentation or Components Implementation Details
topic.

Levels of Abstraction
Processor Expert provides components with several levels of abstraction and
configuration comfort.

• LDD Components — Logical Device Drivers. The LDD components are efficient
set of components that are ready to be used together with RTOS. They provide a
unified hardware access across microcontrollers allowing to develop simpler and
more portable RTOS drivers or bare board application. Refer to the Logical Device
Drivers topic for details.

• High Level Components — Components that are the basic set of components
designed carefully to provide functionality to most microcontrollers in market. An
application built from these components can be easily ported to another
microcontroller supported by the Processor Expert. This basic set contains for
example components for simple I/O operations (BitIO, BitsIO, ByteIO, ...), timers
(EventCounter, TimerInt, FreeCntr, TimerOut, PWM, PPG, Capture, WatchDog,...),
communication (AsynchroSerial, SynchroMaster, SynchroSlave, AsynchroMaster,
AsynchroSlave, IIC), ADC, internal memories.

This group of components allows comfortable settings of a desired functionality such
as time in ms or frequency in Hz without user knowing about the details of the
hardware registers. microcontroller specific features are supported only as processor
specific settings or methods and are not portable.
55Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 56 Thursday, April 18, 2013 11:34 AM
The components inheriting or sharing a high-level component(s) to access hardware
are also high-level components.

• Low Level Components — Components that are dependent on the peripheral
structure to allow you to benefit from the non-standard features of a peripheral. The
level of portability is decreased due to a different component interface and the
component is usually implemented only for a microcontroller family offering the
appropriate peripheral. However, you can easily set device features and use effective
set of methods and events.

• Peripheral Initialization Components — Components that are on the lowest level
of abstraction. An interface of such components is based on the set of peripheral
control registers. These components cover all features of the peripherals and are
designed for initialization of these peripherals. Usually contain only Init method,
refer to the Typical Usage of Peripheral Initialization Components topic for details.
The rest of the function has to be implemented using a low level access to the
peripheral. This kind of components are located at: processor Internal Peripherals/
Peripheral Initialization Components of the components library and they are
available only for some processor families. The interface of these components might
be different for a different processor. The name of these components starts with the
prefix 'Init_'.

Table 3.1 Features of Components at Different Level of Abstraction

Feature LDD
Components

High
level

Low level Peripheral
Init

High-level settings
portable between
different
microcontroller families

partially yes partially no

Portable method
interface for all
processor families

yes yes partially
(usually
direct access
to control
registers)

Init method
only

Processor specific
peripheral features
support

mostly yes partially mostly yes full

Low-level peripheral
initialization settings

partially no partially yes

Speed mode
independent timing

yes yes mostly yes no
56 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 57 Thursday, April 18, 2013 11:34 AM
Logical Device Drivers
Logical Device Drivers were developed to offer users the Hardware Abstraction Layer
(HAL) for bare-metal applications as well as RTOS applications. The components provide
tested, optimized C code tuned to the application needs. The code may be tuned to the
specific RTOS when the RTOS component is in the project.

Differences Between LDD and High Level Components
• Each component provides Init() method to initialize appropriate peripheral and

driver. Init() method returns a pointer to driver’s device structure.

• Each component provides Deinit() method to de-initialize appropriate peripheral
and driver.

• The first parameter of each component’s method is a pointer to a device structure
returned from Init() method. It is up to you to pass a valid device structure
pointer to component’s methods (null check is highly recommended).

• The Init() method has one parameter UserDataPtr. You can pass a pointer to
its own data and this pointer is then returned back as a parameter in component’s
events. The pointer or date pointed by this pointer is not modified by driver itself. A
bare-board application typically passes a null pointer to Init() method.

• LDD components are not automatically initialized in processor component by
default. If Auto initialization property is not enabled, you must call
appropriate Init() method during runtime. Otherwise the Init method is
automatically called in processor component and device structure is automatically
defined.

Events support yes yes yes no (direct
interrupt
handling)

Software emulation of
a component function
(if the specific
hardware is not
present)

no yes no no

Support for RTOS
drivers creation

yes no no no

Table 3.1 Features of Components at Different Level of Abstraction

Feature LDD
Components

High
level

Low level Peripheral
Init
57Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 58 Thursday, April 18, 2013 11:34 AM
• LDD components have RTOS adapter support allowing to generate variable code for
different RTOSes.

• Runtime enable/disable of component events.

• Low Power Modes support.

Logical Device Drivers in Bare-metal Applications
Logical Device Drivers can be used in applications where the RTOS is not required.
Logical Device Drivers in bare-metal environment have following specific features:

• Init() method of each component uses a static memory allocation of its device
structure.

• Interrupt Service Routines are statically allocated in generated interrupt vector table
(IVT).

• The Linker Command File (LCF) is generated from processor component.

• The main module (ProcessorExpert.c) is generated.

Logical Device Drivers in RTOS Environment
Logical Device Drivers in RTOS environment have following specific features:

• Init() method of each component uses a dynamic allocation of its device structure
through the RTOS API.

• Deinit() method of each component uses a dynamic de-allocation of its device
structure through the RTOS API.

• Interrupt Service Routines are allocated through the RTOS API in Init() method
and de-allocated in Deinit() method of each component.

• The Interrupt table is not generated from processor component in case whether
RTOS provides runtime allocation of interrupt service routines.

• The Linker Command File (LCF) is not generated from processor component in case
that RTOS provides its own LCF for applications.

• The main module (ProcessorExpert.c) is not generated if specified in RTOS adapter.

For information and hints on LDD components usage, refer to the Typical LDD
Components Usage topic for details.

RTOS Adapter
The RTOS adapter component is a way how to utilize generated code to the specific
RTOS. The RTOS adapter provides necessary information to the driver which API should
be used to allocate memory, create a critical section, allocate interrupt vector.
58 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 59 Thursday, April 18, 2013 11:34 AM
Figure 3.2 Example of HAL Integration into Existing RTOS

Shared Drivers
Logical device drivers support the shared mode that means that more components can be
put together to provide one instance of API. You can access each component instance
through the API of the shared component. A driver device data structure is used for
resolution which peripheral instance shall be accessed. Currently there are three
components that support shared mode: Serial_LDD, CAN_LDD and Ethernet_LDD.

Low Power Features
Logical device drivers in conjunction with processor component implement low power
features of a target microcontroller. Each LDD component define two methods related to
the low power capability – SetOperationMode() and GetDriverState(). For
more details, refer to the documentation of components.
59Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 60 Thursday, April 18, 2013 11:34 AM
Figure 3.3 Usage of Low Power API in Logical Device Drivers

In the example above, DPM (Dynamic Power Manager) task may opt to care for a selected
number of peripherals for graceful power mode change (for example, FEC, CAN) and rest
of the peripheral drivers need not know the power mode change. When opted for
informing a peripheral device driver, the DPM can build a semaphore object for low
power acknowledgement from the device drivers. When all such acknowledgements arrive
(ie. Semaphore count equals zero) the processor can be placed into a wait/sleep power
mode. In the future, with silicon design modifications, these semaphores can be
implemented in the hardware and as a result a much faster power mode change can be
expected. There is no DPM in typical bare-metal applications the DPM task is
implemented. In this case, DPM is substituted by a user application code.

Processor Components
A processor component is an Embedded Component encapsulating one processor type. A
Processor Expert project may contain one or more processor components. The project
generated for one processor is called an application. Processors included in a project are
displayed in the upper part of the Components view. It is possible to switch among the
processor component, but only one of the processor can be active at one time.

The Build options accessible in the Component Inspector of the processor component
allow you to set properties of the Compiler and Debugger (if it is supported).
60 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 61 Thursday, April 18, 2013 11:34 AM
Portability
• It is possible to change the target microcontroller during the development of an

application and even to switch between multiple microcontrollers. This can be done
simply by adding another processor to the project and selecting it as the target
processor.

• To connect the new processor peripherals to the application components correctly, it
is possible to specify the processor on-chip peripheral names. This way the same
peripheral could be used on different processor derivatives even if the original name
is different.

Adding a Processor to a Project
1. In the Components Library view, select the Processors tab and find the desired

processor component.

2. Double-click the desired processor icon to add it to the project. When the processor
component is added, it appears in the upper part of the Components view. If selected
as the target processor, the processor will be displayed in the Processor view.

Selecting a Processor as Target Processor
The first microcontroller added to the project is automatically selected as the target
processor. It means that code will be generated for this microcontroller. When there are
more than one processor in the project, the target processor can be changed by following
these steps:

1. Right-click the processor icon in the Components view to display a pop-up menu.

2. Select the Select processor as target option, the processor is selected as target.

This setting doesn't affect the setting of the target. If user changes the target processor in
the Components view and the processor doesn't match with the current target settings, the
Linker dialog box is invoked during the code generation allowing user to update the
linker setup.

Changing Settings
To modify the processor component settings (its properties, methods, events, external bus,
timing, user-reserved peripherals, compiler and debugger settings) is to invoke the
Inspector for the selected processor component.

If you have added processor to your project, you can invoke Component Inspector by
performing either of the following:

• Right-click the processor icon in the Components view to display pop-up menu and
select the Component Inspector view.
61Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 62 Thursday, April 18, 2013 11:34 AM
• Double-click the processor icon in the Components view.

For a detailed description of the current processor properties, methods and events, select
Help on Component command in the View menu (drop-down arrow) in the Component
Inspector view.

Processor Component Variants Selection
This dialog is shown during the creation of a new project using Project Wizard or when
you add a new processor component into project using Components Library view.

Figure 3.4 Processor Component Variants Selection

In this dialog, you can select processor pin-variants and configurations that will be
supported for switching later in the project. Each selection of variant or configuration
represent one processor component pre-set. For example, if you select two pin variants
and two configuration, there will be four processor components added into the project.

If you have selected Initialize all peripherals checkbox, it adds all initialization
components to the project for all supported peripherals.

NOTE This option is not supported for all derivatives. If supported on given family,
the project can contain except the CPU component and the PinSettings
component for configuring pin routing and electrical properties.
62 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 63 Thursday, April 18, 2013 11:34 AM
The project wizard offers support for CPUs that how the static files are used in the
Processor Expert project. There are two project modes:

• In Linked mode, static files (for instance, cpu and peripheral init modules, PDD
modules, io map, system files) are linked from the repository of Processor Expert
(ProcessorExpert\lib\subdirectory). Modification of these files is
possible only in the Processor Expert's repository and affects other projects.

• In Standalone mode, static files (for instance, cpu and peripheral init modules, PDD
modules, io map, system files) are placed in the project folder. They are copied from
Processor Expert's repository (ProcessorExpert\lib\subdirectory)
during project creation. This mode allows to modify the static files in the project
without affecting other projects.

NOTE Static files are not supported for all derivatives.

For details on configurations, refer to the Configurations topic.

Compiler Selection
This dialog is shown when you add a new processor component into project using
Components Library view.

If there are more target compilers available, you can select the compiler to be used for the
newly added processor.

Figure 3.5 Compiler Selection
63Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 64 Thursday, April 18, 2013 11:34 AM
Processor Properties Overview
Processor Properties can be set in processor Component Inspector view. The complete
list of processor properties and their description is available in the help page for the
processor. To open the processor help page, select Help > Help on Component from the
menu bar in the Component Inspector view.

Following properties define the basic settings of the processor:

• Processor type

• External Xtal frequency (and sub-clock xtal frequency)

• PLL settings

• Initialization interrupt priority

• External bus and signals

• Speed modes (Refer to the Speed Modes Support topic).

• All other functions that are not directly encapsulated by components

Speed Modes Support

NOTE Speed Modes are not available for Kinetis and ColdFire+ family
microcontrollers.

The processor component supports up to three different speed modes. The three speed
modes are Processor Expert specific concept which (among all the other PE features and
concepts) ensures the portability of the PE projects between different processor models.

In fact, the three speed modes are a generalization of all the possible processor clock speed
modes used for power-saving that can be found in most of the modern microcontrollers. In
the area of embedded systems, power saving and power management functions are so
important that you can not neglect the proper HW- independent software implementation
of these functions.

Therefore, for keeping the portability (HW independence) of PE projects, it is
recommended not to program the processor speed functions manually, but use these three
processor Component speed modes instead:

• High speed mode — this mode is selected after reset and must be enabled in the
project. This speed mode must be the fastest mode of the main processor clock.

• Low speed mode — this mode is usually used for another PLL or main prescaler
settings of the main processor clock.

• Slow speed mode — this mode is usually used for the slowest possible mode of the
main processor clock.
64 Processor Expert User Guide

Application Design
Basic Principles

PE_User_Manual.book Page 65 Thursday, April 18, 2013 11:34 AM
Switching Speed Modes at Runtime
The modes can be switched in the runtime by the following processor component
methods:

• SetHighSpeed

• SetLowSpeed

• SetSlowSpeed

If a speed mode is enabled in the processor Component properties, the corresponding
method is enabled automatically.

NOTE It is highly recommended to disable interrupts before switching to another
speed mode and enable them afterwards.

Speed Modes Support in Components
Using the component property processor clock/speed selection, it is possible to define the
speed modes supported by the component.

Some components allow to set two values of the processor clock/speed selection property:

• Supported — The processor clock/speed selection group contains properties
defining which speed modes are supported for the component.

• Ignored — The speed mode settings are ignored and there are no action is performed
when a speed mode is changed, that is the peripheral continues to run with the same
configuration for all speed modes. No speed mode handling code is generated for this
component. The component timing values are valid only for high-speed mode.

The following features are available for high-level components, if the processor clock/
speed selection is not set to ignored:

• During the design, all the timing-related settings for such a component are checked
to be correct in all the speed modes that the component supports and the component
is enabled in these modes.

• If the speed mode is changed, the current timing components are preserved
(recalculated to be the same in the new speed mode), except the timing that is set at
runtime from interval. If the processor speed mode is changed to a mode that the
component does not support for any reason, the component is disabled right after the
processor speed mode is changed. Otherwise, the component is enabled.

• Before or after the speed mode is changed, the BeforeNewSpeed and
AfterNewSpeed event functions are called.
65Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 66 Thursday, April 18, 2013 11:34 AM
Configuring Components
Configuring the components in the project is one of the main activities in Processor
Expert. It affects the initialization, run-time behavior and range of functionality available
to the generated code. For the description of the user interface of the components settings,
refer to the Components View and Component Inspector.

The following topics provide hints and information about how to configure the Embedded
Components used in the project correctly and effectively.

• Interrupts and Events

• Configurations

• Design Time Checking: Consequences and Benefits

• Timing Settings

• Creating User Component Templates

• Signal Names

• Component Inheritance and Component Sharing

• Pin Sharing

• Export and Import

Interrupts and Events
It describes the details of interrupt and events processing in the code generated by
Processor Expert.

An interrupt is a signal that causes the processor stop the execution of the code and
execute the Interrupt service routine. When the execution of the code is suspended, the
current state of the processor core is saved on the stack. After the execution finishes, the
previous state of the processor core is restored from the stack and the suspended program
continues from the point where it was interrupted. The signals causing interrupts can be
hardware events or software commands. Each interrupt can have an assigned Interrupt
Service Routine (ISR) that is called when the interrupt occurs. The table assigning the
subroutines to interrupts is called Interrupt Vector Table and it is completely generated by
Processor Expert. Most of the interrupts have corresponding Processor Expert Events that
allow handling of these interrupts. Processor Expert allows to configure interrupt
priorities, if they are supported by the processor. Refer to the Processor Expert Priority
System for details.

Processor Expert Events are part of the Embedded component interface and encapsulate
the hardware or software events within the system. Events are offered by the High and
Low Level components to help you to service the events without any knowledge of the
platform specific code required for such service.
66 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 67 Thursday, April 18, 2013 11:34 AM
Processor Expert Events can be enabled and disabled and have a user-written program
subroutines that are invoked when the event occurs. Events often correspond to interrupts
and for that case are invoked from the generated ISR. Moreover, the event can also be a
software event caused by a buffer overflow or improper method parameter.

Interrupts Usage in Component's Generated
Code
Some high-level components use interrupt service routines to provide their functionality.
Usage of interrupts can usually be enabled/disabled through property Interrupt service/
event. If the interrupt service is used, complete interrupt service routine is generated into
component's driver and the generated code contains configuration of the corresponding
peripheral to invoke the interrupts.

You should be careful while disabling an interrupt. If a component should operate
properly, it is necessary to allow the interrupt invocation by having interrupts enabled and
(if the processor contains priority system) set the corresponding interrupt priority level.
This can be done using the appropriate method of the processor component.

NOTE It is a common bug in user code, if the application is waiting for a result of the
component action while the interrupts are disabled. In this situation, the result
of the component method does not change until the interrupt service routine is
handled. Refer to the description of the property Interrupt service/event for
detailed information about the particular component.

Enabling Event
Functionality of each event can be enabled or disabled. You can easily enable the event
and define its name within the Component Inspector of the appropriate component.
Another possibility is to double-click an event icon in the component's subtree or use a
pop-up menu in the Component Inspector view.

Figure 3.6 Event Example in the Component Inspector Events Tab
67Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 68 Thursday, April 18, 2013 11:34 AM
Writing an Event Handler
Event handler is a subroutine that is assigned to a specific event. After the event is
enabled, Processor Expert generates the function with the specific name to the Event
module. Refer to the Code Generation for details.

You can open the Event handler code (if it already exists) using a component pop-up menu
View/Edit event module or double-click on the event. The event handler is an ordinary
function and you need not to provide the interrupt handling specific code in the event
code.

Interrupt Service Routines
When High or Low-level components are used, the interrupts functionality is covered by
the events of the components. The interrupt subroutines calling user's event handlers are
generated to the component modules and PE provides parts of the background code
necessary to handle the interrupt requests correctly.

The Peripheral Initialization components can only provide the initialization of the
interrupt and generate a record to the Interrupt Vector Table. You have to provide a full
implementation of the interrupt subroutine. Refer to the Typical Usage of Peripheral
Initialization Components for details.

Processor Expert Priority System
Some processors support selectable interrupts priorities. You may select a priority for each
interrupt vector. The interrupt with a higher priority number can interrupt a service routine
with the lower one.

Processor Expert supports the following settings in design-time: Interrupt Priority and
priority of the event code. Priority can also be changed in the user code. You may use a
processor component method to adjust the priority to a requested value.

Interrupt Priority
You may select interrupt priority in the component properties, just below the interrupt
vector name. Processor Expert offers the following values, which are supported for all
microcontrollers:

• minimum priority

• low priority

• medium priority

• high priority

• maximum priority
68 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 69 Thursday, April 18, 2013 11:34 AM
The selected value is automatically mapped to the priority supported by the target
microcontroller. It is indicated in the third column of the Component Inspector view.

You may also select a target-specific numeric value (such as priority 255), if portability of
the application to another architecture is not required.

Peripheral Initialization components on some platforms also allow to set the default value
that means that you don't have any requirement, so the priority value will be the default
after-reset value.

Version Specific Information for HCS08 Derivatives with IPC
(Interrupt Priority Controller)

The HCS08 derivatives with IPC module offer an interrupt priority configuration. There
are four interrupt priority levels 0 to 3 available, where 0 is the lowest priority and 3 is the
highest one. The platform-independent interrupt priority values in Processor Expert
described above are mapped to these values.

Version specific Information for RS08 Without Interrupt
Support and HCS08 Derivatives without IPC (Interrupt Priority
Controller)

These derivatives do not support interrupt priorities. The interrupt priority settings, for
example imported from a project for another processor are ignored.

Version Specific Information for RS08 with Interrupt Support

On these RS08 derivatives, the interrupts are handled through single interrupt vector. The
priority of each individual emulated interrupt is determined by order in which the SIPx
registers are polled in the sofware handler. The priority can be in the range 0
..number_of_interrupts-1 (for example 0 .. 15). The lower is the number the higher is the
priority. The platform independent interrupt priority values in Processor Expert described
above are mapped to these values.

The default priority depends on the position of an associated bit in a SIPx register. The
interrupt priority can be changed to any value within the allowed range. Interrupts with
lower priority number (higher priority of execution) are polled first. If two interrupts have
assigned the same priority number then the order in which they are polled depends on the
default priority. For more details on interrupts on RS08, refer to the Version Specific
Information for RS08 topic.

Version Specific Information for ColdFire V1 Derivatives

On the ColdFire V1 platform, an interrupt priority of an interrupt is determined by an
Interrupt Level (1-7) and a Priority within Level (0-7). Refer to the processor data sheet
for interrupt priority system details.

The applied interrupt priority value (the value displayed in the third column of the
Component Inspector) contains both values. For example, Level 4, priority within level 6.
69Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 70 Thursday, April 18, 2013 11:34 AM
The target-independent values of interrupt priority (for example, minimum, maximum) are
mapped either to the default priority of the selected interrupt or to Level 6, Priority within
level 6 or level 6, Priority within level 7.

Priority of Event Code

Version Specific Information for Kinetis and ColdFire+
Derivatives

Priority of event code is not supported for Kinetis and ColdFire+.

You can also select a priority for the processing of the event code. This setting is available
for the events that are invoked from the Interrupt Service Routines. This priority may be
different from the interrupt priority. However, the meaning of the number is same, the
event may be interrupted only by the interrupts with the higher priority. Processor Expert
offers the following architecture independent values:

• same as interrupt — default value which means that Processor Expert does not
generate any code affecting the priority of the event; the priority is in the state
determined by the default hardware behavior.

• minimum priority

• low priority

• medium priority

• high priority

• maximum priority

• interrupts disabled — For example, the highest priority supported by the
microcontroller, which may be interrupted only by non-maskable interrupts.

The selected value is automatically mapped to the priority supported by the target
microcontroller and the selected value is displayed in the third column of the Component
Inspector.

Refer to the version specific information below. You may also select a target-specific
value, if portability of the application to another architecture is not required.

NOTE Some events do not support priorities because their invocation is not caused by
the interrupt processing.

WARNING! Processor Expert does not allow you to decrease an event code priority
(with the exception of 'Interrupts enabled' value on some platforms).
This is because Processor Expert event routines are not generally
reentrant so there is a risk that the interrupt would be able to interrupt
itself during the processing. If there is such functionality requested, you
have to do it manually (for example, by calling a appropriate processor
70 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 71 Thursday, April 18, 2013 11:34 AM
component method setting a priority) and carefully check possible
problems.

Version Specific Information for HCS08 Derivatives with IPC
(Interrupt Priority Controller)

Processor Expert offers the following event priority options:

• interrupts enabled — Interrupts are enabled and the priority of the event routine stays
at the same level as the interrupt. The interrupts with the higher priority than the
current interrupt priority can interrupt the event code.

• interrupts disabled — All maskable interrupts are disabled.

• 1..3 — Priorities from lowest (1) to highest (3). The code generated by Processor
Expert before the event invocation sets the event code priority to the specified value.

• 4 — Same as 'interrupts disabled'

• same as interrupt — Default behavior of the architecture, no interrupts can interrupt
the event. It is same as interrupts disabled.

• Other values are mapped to the priorities 1..4.

Version Specific Information for HCS08 Derivatives without
IPC (Interrupt Priority Controller)

Processor Expert offers the following event priority options:

• interrupts disabled — All maskable interrupts are disabled.

• interrupts enabled — All maskable interrupts are enabled. Note that this settings
might lead to possible problems.

• same as interrupt — Default behavior of the architecture; no interrupts can interrupt
the event. It is same as interrupts disabled.

Version Specific Information for RS08 with Interrupt Support

Because of architecture limitations, the Processor Expert allows only interrupts disabled
value so the interrupt is always disabled within the event routines. The same as interrupt
value is mapped to interrupts disabled.

Version Specific Information for ColdFire V1 Derivatives

Processor Expert offers the following event priority options:

• interrupts disabled — All maskable interrupts are disabled within the event routine.

• 0..7 — Priorities from the lowest (0) to the highest (7). The code generated by
Processor Expert before the event invocation sets interrupt priority mask to the
specified value. The event routine may be then interrupted only by an interrupt with
higher priority than the specified number.
71Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 72 Thursday, April 18, 2013 11:34 AM
• same as interrupt — The priority of the event routine stays on the level set for the
interrupt. The event routine can be interrupted only by a higher priority interrupt then
the value set for the interrupt.

Version Specific Information for HCS12X Derivatives

Processor Expert offers the following event priority options:

• interrupts enabled — Interrupts are enabled and the interrupts with the higher priority
than the current interrupt priority can interrupt the event code. (The state of the
register CCRH is not changed.)

• interrupts disabled — All maskable interrupts are disabled. (The state of the register
CCRH is not changed.)

• 0 — Same as interrupts disabled

• 1..7 — Priorities from lowest (1) to highest (7). The code generated by Processor
Expert before the event invocation sets the event code priority to the specified value
(by writing to the CCRH register) and enables interrupts.

• same as interrupt — Default behavior of the architecture; no interrupts can interrupt
the event. It is same as Interrupts Disabled.

• Other values are mapped to the priorities 1..7.

Version Specific Information for HCS12 Derivatives

Processor Expert offers the following event priority options:

• interrupts disabled — All maskable interrupts are disabled.

• interrupts enabled — All maskable interrupts are enabled. Note that this settings
might lead to possible problems, see the warning within this chapter.

• same as interrupt — Default behavior of the architecture; no interrupts can interrupt
the event. It is same as Interrupts Disabled.

Version Specific Information for 56800 Derivatives

Processor Expert offers the following event priority options:

• interrupts enabled — Interrupts are enabled so the event routine can be interrupted by
another interrupt. Note that this settings might lead to possible problems, see the
warning within this chapter.

• interrupts disabled — All maskable interrupts are disabled.

• same as interrupt — Default behavior of the architecture within interrupts service
routines; interrupts are disabled.

Version Specific Information for 56800E Derivatives

Processor Expert offers the following event priority options:
72 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 73 Thursday, April 18, 2013 11:34 AM
• interrupts disabled — All maskable interrupts are disabled within the event routine.

• 1..3 — Priorities from the lowest (1) to the highest (3). The code generated by
Processor Expert before the event invocation sets the event code priority to the
specified value. The event routine can be interrupted only by a higher priority
interrupt than the specified number.

• same as interrupt — The priority of the event routine stays on the level set for the
interrupt. The event routine can be interrupted only by a higher priority interrupt than
the value set for the interrupt.

• Other values are mapped to the priorities 1..3.

Configurations
You can have several configurations of the project in one project file. The configuration
system is very simple. Every configuration keeps the enable/disable state of all
components in the project (it does not keep any component settings). If you enable/disable
a component in the project, the component state is updated in the currently selected
configuration. If you create a new configuration the current project state is memorized.

Configurations of the current project are listed in the Generator_Configurations folder
of the Components view.

Configurations can also hold additional settings that may influence code generation. These
settings can be changed in the configuration inspector. Refer to the Configuration
Inspector for details.

The symbol for conditional compilation is defined if it is supported by the selected
language/compiler. The symbol PEcfg_[ConfigurationName] is defined in the processor
interface.

You can switch using this symbol between variants of code according to the active
configuration (see example in this chapter).

Configuration also stores which processor is selected as the target processor.

If the name of the configuration matches the name of one of the CodeWarrior's targets, the
target is automatically selected as an active target when the user runs code generation.

NOTE It is possible to have two components with the same name in project. Each of
the components could be enabled in different configuration. This way you can
have different setup of a component (a component with the same name) in
multiple configurations.
73Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 74 Thursday, April 18, 2013 11:34 AM
Example
Suppose, there is a configuration named, Testing case. You can use a component and
part of our code using the component only in the Testing case configuration. Then
you can make the testing case configuration active. After the successful code generation,
the Cpu.h file contains the following definition:

/* Active configuration define symbol */

#define PEcfg_Testingcase 1

Add the following lines:

...

#ifdef PEcfg_TestingCase

Component_MethodCall(...);

#endif

...

Design Time Checking: Consequences
and Benefits
During the design time, Processor Expert performs instant checking of the project. As a
result of this checking, error messages may appear in the Problems view or directly in the
third column of the Component Inspector (on the faulty items line). Sometimes, it may
happen that only one small change in the project causes several (general) error messages.

On-Chip Peripherals
Some components use on-chip peripherals. In the Component Inspector, you can choose
from all possible peripherals that can be used for implementation of the function of the
current component. Processor Expert provides checking for required peripheral features
such as word width and stop bit for serial channel, pull resistor for I/O pin and others.

Processor Expert also protects against the use of one peripheral in two components. If the
peripheral is allocated for one component then the settings of this peripheral cannot be
changed by any other component. The state of an allocated peripheral should never be
changed directly in the user code. (Using special registers, I/O ports etc.) It is
recommended to always use methods generated by Processor Expert. If the functionality
of generated methods is not sufficient for your application, you can use PESL (Processor
Expert System Library). Refer to the Low-level Access to Peripherals topic for details.

Note that if a peripheral is allocated to any component, all its parts are reserved. For
example, if you use the 8-bit I/O port, all the I/O pins of the port are allocated and it is not
possible to use them in other components.
74 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 75 Thursday, April 18, 2013 11:34 AM
In some timer components, you can choose if you want to use only a part of the timer
(compare register) or an entire timer. If you select the entire timer, the driver can be
optimized to work best with the timer. For example, invoke reset of the timer whenever it
is needed by the component function.

Interrupt Priority
If the target processor shares interrupt priority between several interrupt vectors or shares
interrupt vectors, Processor Expert provides checking of interrupt priority settings. For
detailed information about Interrupt Priority, refer to the Interrupt Priority topic.

Memory
Processor Expert always checks the usage of the internal and external memories accessible
throught processor address and data bus. Position and size of internal memory is defined
by the processor type and can be configured in the processor Properties (if supported).
External memories must be defined in processor Properties.

Any component can allocate a specific type of memory. Processor Expert provides
checking of memory and protects you from making a wrong choice. For example, if a
component requires external Flash, it is not possible to enter an address in internal RAM.

The bits can also allocate memory. Therefore, you can be sure that only one component
uses an allocated bit of a register in external address space.

Timing
The settings of all timed high-level components are checked using the internal timing
model. Refer to the Timing Settings topic for details. If there is no error reported, it means
that Processor Expert was successful in calculating the initialization and runtime control
values for all components and hence the settings should work according to the
configuration.

Timing Settings
Many high-level components contain a timing configuration (for example, speed of the
serial communication, period of the interrupt, conversion time of the ADC). Processor
Expert allows to configure such timing using user-friendly units and it also contains a
model of the complete microcontroller timing. This model allows calculation of the
required values of control registers and continuous validation of the timing settings.
75Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 76 Thursday, April 18, 2013 11:34 AM
Timing Model
A component timing can be viewed like a chain of elements, such as dividers and
multipliers between the main clock source and the device configured by the component.
You can set the desired timing value using the Timing dialog box (refer to the Dialog Box
for Timing Settings topic for details) or directly by specifying the value in Component
Inspector (refer to the Syntax for the Timing Setup in the Component Inspector topic for
details). Processor Expert tries to configure individual elements in the timing chain to
achieve the result and the user is informed if it was successful. After leaving the Timing
dialog box, the real value of the timing is shown in the third column of the component
inspector.

Timing Setup Problems
The errors are reported in red in the Timing dialog box or in the timing property line in the
Component Inspector. The error summary is available in the Error window. Follow the
error message text to find the source of the problem. If no error is reported, it means that
Processor Expert can achieve the desired timing for all components in the project.

Common problems that make impossible to set a timing value:

• It is impossible to set some item(s).

This problem is reported in the component or the Timing dialog box and the user is
informed which value has incorrect value. The reason is usually the hardware
structure and limitations of the processor. The Timing dialog box shows the list of
values (ranges) that are allowed to be set. It might be necessary to increase the
allowed error (using the 'Error' field in the Timing dialog) that specifies the allowed
difference between the required value and possible value that can be produced by the
hardware.

• Settings for the device are mutually incompatible (or can't be used with another
device).

In this case, the problem is reported by all components that share some timing
hardware. Due to dependencies between used parts of the timer, it is necessary to
adjust the values of the shared elements (such as prescalers) to the same value.

For example, if two TimerInt components are using two channels of one timer
and all timer channels are connected to one common prescaler, it is not possible to
set the values that would require a different prescaler values. In this case, it is useful
to manually adjust the prescaler values of all components to the same value (switch
to Expert view mode and adjust the property in the Component Inspector view).

• The Runtime setting from interval is selected and it is not possible to set the values.

The required run-time settings are outside the range of one prescaler. This is a
limitation of this mode of runtime setting.
76 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 77 Thursday, April 18, 2013 11:34 AM
Run-time Timing Settings Limitation
Some components allow to change the timing at run-time by switching among several
predefined values or by setting a value from given interval.

For the runtime setting from interval the prescaler value is fixed and the Processor Expert
allows to adjust the time using a compare/reload registers. It means that Processor Expert
allows to configure the limits of an interval only within a range of one prescaler and it is
possible to set values from this interval only. Refer to the Dialog Box for Timing Settings
topic for details.

Speed Modes
Processor Expert provides three speed modes that are generalization of all the possible
processor clock speed modes used for power-saving supported by most of the modern
microcontrollers. Refer to the Speed Modes Support topic for details.

Creating User Component Templates
If you frequently use a component with the same specific settings, you may need to save
the component with its settings as a template. This template is displayed in the
Components Library View view under given name, behaves as a normal component and
could be added to any project. The template has the same properties as the original
component. The value of the properties are preset in the template and could be marked as
read only.

This section describes how to create a component template and save it.

Creating and Saving Templates
1. Open the pop-up menu of the component in the Component view and select Save

component settings as template.

Alternatively, you can use the Component Inspector window: open the view menu
using the arrow icon in the top right corner and select Save component settings as
template.

2. Fill in the template details into the dialog box and confirm:
77Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 78 Thursday, April 18, 2013 11:34 AM
Figure 3.7 Component Template

3. The template appears within the Components Library View and can be inserted into
projects. It may be necessary to invoke refresh command by selecting the pop-up menu
of Components Library and select Refresh option.

Figure 3.8 Components Library View

Signal Names
The main purpose of signals allows you to name the pins used by components with names
corresponding to the application.

Assigning Signals to Pins
A signal name can be assigned to an allocated pin by specifying the signal name into the
appropriate property (for example, Pin_signal) in the Component Properties
(available in Advanced view mode). Signal name is an identifier that must start with a
letter and rest of the name must contain only letters, numbers, and underscore characters.

For the components that allocate a whole port, such as ByteIO, there are two options:

• Assign a same signal name to all pins of port by writing the name into the Port
signal property. Processor Expert automatically assigns this name extended with a
bit number suffix to each of the individual pins.
78 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 79 Thursday, April 18, 2013 11:34 AM
• Assign a different signal names to individual pins by writing pin signal names (from
the lowest bit to the highest one) separated by commas or spaces into the Port signal
property.

Figure 3.9 Signal Names List for a Port

Generated Documenation
Processor Expert automatically generates a document
{projectname}_SIGNALS.txt or {projectname}_SIGNALS.doc containing
a list of relationship between defined signals and corresponding pins. There is an
additional signal direction information added next to each signal name and pin number
information next to each pin name. This document can be found in the Documentation
folder of the Component view.

Listing 3.1 Sample of Generated Signals Documentation

===
SIGNAL LIST

SIGNAL-NAME [DIR] => PIN-NAME [PIN-NUMBER]

LED1 [Output] => GPIOA8_A0 [138]
LED2 [Output] => GPIOA9_A1 [10]
Sensor [Input] => GPIOC5_TA1_PHASEB0 [140]
TestPin [I/O] => GPIOE0_TxD0 [4]
Timer [Output] => GPIOC4_TA0_PHASEA0 [139]
===
===
PIN LIST

PIN-NAME [PIN-NUM] => SIGNAL-NAME [DIRECTION]

GPIOA8_A0 [138] => LED1 [Output]
GPIOA9_A1 [10] => LED2 [Output]
GPIOC4_TA0_PHASEA0 [139] => Timer [Output]
GPIOC5_TA1_PHASEB0 [140] => Sensor [Input]
GPIOE0_TxD0 [4] => TestPin [I/O]
===
79Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 80 Thursday, April 18, 2013 11:34 AM
Component Inheritance and Component
Sharing

Basic Terms
• Ancestor is a component that is inherited (used) by another component.

• Descendant is a new component that inherits (uses) another component(s).

• Shared Ancestor is a component that can be used and shared by multiple
components.

Inheritance
Inheritance in Processor Expert means that an ancestor component is used only by the
descendant component. Inheritance is supported in order to allow components to access
peripherals by hardware-independent interface of the ancestor components. For example,
a component that emulates a simple I2C transmitter may inherit two BitIO components for
generation of an output signal.

On several complex components inheritance is used to separate component settings into
several logical parts, for example, settings of channel is inherited in the component with
settings of the main peripheral module.

Settings in Processor Expert
The Descendant component contains a property that allows selecting an ancestor
component from a predefined list of templates. The component is created after selection of
an appropriate template name (or component name) from the list of the templates fitting
the specified interface. Any previously used ancestor component is discarded.

Figure 3.10 Inherited Component Item in Inspector

Processor Expert allows you to select from ancestors that implement the required interface
and are registered by the descendant component.

The ancestor component is displayed under its descendant in the project structure tree in
the Components view.

Figure 3.11 Example of Ancestor and Descendant Components in the Components View
80 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 81 Thursday, April 18, 2013 11:34 AM
An ancestor component requires a list of methods and events (interface), which must be
implemented by an ancestor component. The error is shown if the ancestor component
does not implement any of them. For example, if the settings of the descendant component
do not allow it to generate this method.

Component Sharing
Component sharing allows you to cause several components to use capability of one
component similar to inheritance. This feature allows sharing of its resources and its
drivers with other components. For example, components may share an I2C component
for communication with peripherals connected to the I2C bus or some component may do
DMA transfers using DMA component.

Settings in Processor Expert
A shared ancestor component contains a property that allows you to select existing shared
ancestor component or create a new one. In this case, the ancestor component is included
in the project tree as the other components. The ancestor component may be used with the
descendant component only if it is created from a template registered in the descendant
component or if the component type is registered in the descendant component. It is
recommended that you always create a shared ancestor component through a descendant
component.

Figure 3.12 Popup Menu for Selection/Creation of a Shared Ancestor Component

Run-time Resources Allocation
Processor Expert (generated code) does not check the usage of shared resources/code. It's
up to you to ensure the correct run-time resources allocation of a shared ancestor
component. Often, it is not possible for a shared ancestor component to be used
simultaneously by several components.

Pin Sharing

Sharing Pins Among Peripherals
Some processors allows few pins to be used by multiple peripherals. This may lead to the
need of sharing pin(s) by multiple components. Normally, if you select one pin in more
81Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 82 Thursday, April 18, 2013 11:34 AM
than one component, a conflict is reported. However, it is possible to setup a sharing for
such pin in the component inspector.

One of the components sharing a pin has to be chosen as a main component. This
component will initialize the pin. In the properties of other components that use the pin,
the pin has to be marked as shared (see figure below).

Pin sharing can be set in the Component Inspector. The Component Inspector must be
in Expert view mode. Use the pop-up menu of the property and select the command Pin
Sharing Enabled.

Figure 3.13 Pin Property with Sharing Enabled

Pin sharing is advanced usage of the processor peripherals and should be done only by
skilled users. Pin sharing allows advanced usage of the pins even on small processor
packages and allows application-specific usage of the pins.

ConnectPin Method
It is necessary to invoke the component method ConnectPin to connect a component to
the shared pin. It is also necessary to invoke the main component method to connect pin
back to the main component. In fact, the peripherals can usually operate simultaneously,
but they have no connection to the shared pins unless the ConnectPin method is
executed. In case that all components control the shared pin using one peripheral, it is not
necessary to use the ConnectPin method.

Shared pins are presented in the Processor View as well. The component to pin connection
line is red.

Export and Import
Processor Expert allows to import or export component settings or configuration of
selected Processor Expert components.

This topic explains:

• Export Component Settings

• Export Board Configuration

• Apply Board Configuration

• Component Settings to Project

• Component(s) to Components Library

Export Component Settings
It is possible to export one or more component settings, such as:
82 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 83 Thursday, April 18, 2013 11:34 AM
• Configurations

• Operating system

• Processors

• Components

To export component settings:

1. In the IDE, select File > Export. The Export wizard appears.

Expand Processor Expert tree. Select Export Component Settings option as shown
below.

Figure 3.14 Export Wizard

2. Click Next. The Export Processor Expert Component Settings page appears.
83Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 84 Thursday, April 18, 2013 11:34 AM
Figure 3.15 Export Processor Expert Component Settings Page

In the left panel, select the project for which you want to export the component
settings. In the right panel, select the components to export. Click the Browse button
to select the output file in which the export settings are saved. The default location for
saving the output file is recently selected folder, your home directory. The extension of
the file is .pef.

3. Click Finish to complete the exporting of component settings.

Export Board Configuration
It is possible to export one processor and one or more components (the components
automatically selected are CPU, Pin settings, LDD, and Init components)

You can save the current state of components related to board configuration in to the
external file. The extension of the file is .peb. The default location for saving the output
file is recently selected folder, your home directory.

To export board configuration:

1. In the IDE, select File > Export. The Export wizard appears.

Expand Processor Expert tree. Select Export Board Configuration option as shown
below.
84 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 85 Thursday, April 18, 2013 11:34 AM
Figure 3.16 Export Wizard

2. Click Next. The Expert Processor Expert Board Configuration page appears.

Figure 3.17 Expert Processor Expert Board Configuration Page

In the left panel, select the project for which you want to export the board settings. In the
right panel, the processor and components are already selected. Click the Browse button
to select the output file in which the export settings are saved. The default location for
saving the output file is either recently selected folder or your home directory. The
extension of the file is .peb.
85Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 86 Thursday, April 18, 2013 11:34 AM
3. Click Finish to complete the exporting of board configurations.

Apply Board Configuration
You can import board configuration from a file. The imported configurations are added
into the selected project.

To import board configuration:

1. In the IDE, select File > Import. The Import wizard appears.

Expand Processor Expert tree. Select Apply Board Configuration option as shown
below.

Figure 3.18 Import Wizard

2. Click Next. The Apply Board Configuration page appears.
86 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 87 Thursday, April 18, 2013 11:34 AM
Figure 3.19 Apply Board Configuration Page

Before importing, you can rename some of the components (as shown in figure above),
so it will show the mapping of components with different names, but same device
allocation.

To import component settings from the file to selected project, click the Browse
button. Select the input file with the .peb extension. The default option Replace
settings is selected if imported component settings are having same peripheral device
allocation (or ID) and type.

For more information on different types of modes, refer to the Import Component
Settings topic.

3. Click Finish. The settings from the .peb file is imported to the selected project.

Component Settings to Project
You can import one or more component settings from a file. Although, components with
existing name results in conflict, but it is still possible to import. The imported
components are added into the selected project.

To import component settings:

1. In the IDE, select File > Import. The Import wizard appears.

Expand Processor Expert tree. Select Component Settings to Project option as
shown below.
87Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 88 Thursday, April 18, 2013 11:34 AM
Figure 3.20 Import Wizard

2. Click Next. The Import Component Settings page appears.
88 Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 89 Thursday, April 18, 2013 11:34 AM
Figure 3.21 Import Component Settings Page

To import component settings from the file to selected project, click the Browse
button. Select the input file with the .pef or .peb or .pe extension. The default
option Replace settings is selected if imported component settings are having same
name (or ID) and type.

You can select the mode for importing components settings, the options are:

• Ignore — do not import this component settings

• Add new — add new component with imported settings

• Add new, keep existing — if component with same name or type exists, it will
add a new component with imported settings and keep the existing one (may
cause conflicts)

• Add new, disable existing — if component with same name or type exists, it
will add a new component with imported settings and disable the existing one

• Replace settings — replace existing component with new settings from
imported file

3. Click Finish. The settings from the .pef file is imported to the selected project.

Component(s) to Components Library
To import a component:

1. In the IDE, select File > Import. The Import wizard appears.

Expand Processor Expert tree. Select Component(s) to Component Library option as
shown below.
89Processor Expert User Guide

Application Design
Configuring Components

PE_User_Manual.book Page 90 Thursday, April 18, 2013 11:34 AM
Figure 3.22 Import Wizard

2. Click Next. The Import Processor Expert Components page appears.

Figure 3.23 Import Processor Expert Components Page

3. Click Finish to select and install Processor Expert update packages (.PEUpd) files.
90 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 91 Thursday, April 18, 2013 11:34 AM
Implementation Details
This topic explains implementation details for Embedded Components and Processor
Expert generated code.

The following describes:

• Reset Scenario with PE for HCS08, RS08 and 56800/E

• Reset Scenario with PE for 56800EX

• Reset Scenario with PE for ColdFire and Kinetis Microcontrollers

• Version Specific Information for 56800/E/EX

• Version Specific Information for Freescale HC(S)08 and ColdFire V1 derivatives

• Version Specific Information for RS08

• Version Specific Information for HCS12 and HCS12X

• Version Specific Information for Kinetis and ColdFire+

Additional implementation specific information can be found on individual component
documentation pages.
91Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 92 Thursday, April 18, 2013 11:34 AM
Reset Scenario with PE for HCS08, RS08
and 56800/E

Figure 3.24 Reset Sequence Diagram with Processor Expert
92 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 93 Thursday, April 18, 2013 11:34 AM
_EntryPoint Function
The _EntryPoint() function is called as the first function after the reset. This function
is defined in the cpu module, usually Cpu.c, and provides necessary system initialization
such as PLL and external bus.

Sometimes it is necessary to do some special user initialization immediately after the cpu
reset. Processor Expert provides a possibility to insert user code into the
_EntryPoint() function. There is a User Initialization property in the Build Options
tab of a processor component inspector defined for this purpose. Refer to the Component
Inspector topic for details.

C startup Function
The C startup function in the C startup module is called at the end of the
_EntryPoint() function. It provides a necessary initialization of the stack pointer,
runtime libraries. At the end of the C startup function, the main() function is called.

PE_low_level_init()
There is a second level of Processor Expert initialization PE_low_level_init()
called at the beginning of the main() function. PE_low_level_init() function
provides initialization of all components in project and it is necessary for proper
functionality of the Processor Expert project.

OnReset Event
You can write the code that will be invoked from the PE_low_level_init()
function after the Processor Expert internal initialization, but before the initialization of
individual components. Thus, you should expect that peripherals are not completely
initialized yet. This event can be enabled/disabled in the processor component inspector's
events page.

For details on 56800EX family, refer to the Reset Scenario with PE for 56800EX topic.
93Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 94 Thursday, April 18, 2013 11:34 AM
Reset Scenario with PE for 56800EX
Figure 3.25 Reset sequence diagram with Processor Expert

_EntryPoint function
The _EntryPoint() function is called as the first function after the reset. This function
is defined in the cpu module, usually Cpu.c, and provides necessary system initialization
such as PLL and external bus. Sometimes it is necessary to do some special user
initialization immediately after the cpu reset. Processor Expert provides a possibility to
insert user code into the _EntryPoint() function. There is a User Initialization
property in the build options tab of a processor component inspector defined for this
purpose. Refer to the Component Inspector for details.

The first level of PE initialization in _EntryPoint contains:
94 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 95 Thursday, April 18, 2013 11:34 AM
1. Disabling of the watchdog if required in Common settings/Watchdog item in Cpu
component.

2. Initialization of the fast interrupt 0 and fast interrupt 1 if they are used.

3. Initialization of the PLL interrupt priority.

4. MCM Core fault settings including interrupt priority based on OnCoreFault event
enabling and processor interrupts/Interrupt Core Fault items in processor component.

5. Initialization of the oscillators related pins based on settings of Clock properties in
processor component.

6. Initialization of the oscillators based on settings of Clock properties in processor
component.

7. If PLL is enabled, initialization and enabling of the PLL and PLL interrupt (based on
Enabled speed modes/High speed mode properties in processor component and PLL
event setting).

8. Initialization of the processor clock sources based on Enabled speed modes/High
speed mode/Input clock source property.

C startup function
The C startup function in the C startup module is called at the end of the
_EntryPoint() function. It provides a necessary initialization of the stack pointer,
runtime libraries. At the end of the C startup function the main() function is called.

PE_low_level_init()
There is a second level of Processor Expert initialization PE_low_level_init()
called at the beginning of the main() function. PE_low_level_init() function
provides initialization of all components in project and it is necessary for proper
functionality of the Processor Expert project.

The second level of PE initialization contains:

1. Initialization of internal peripherals in the following order; based on settings of the
Internal peripherals items in Cpu component

a. Initialization of SIM module — except pin muxing. GPIOn clock gate is enabled if
it's needed for pin muxing initialization. It is enabled even if it is disabled in
Internal peripherals/System Integration Module/Clock gating control in processor
component (it will be disabled later).

b. Initialization of MCM module.

c. Initialization of PMC module if enabled.

d. Initialization of FMC module if enabled.
95Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 96 Thursday, April 18, 2013 11:34 AM
e. Initialization of GPIOn modules (pin functional properties drive strength, slew rate
except pull resistor and open drain).

2. Initialization of the two's complement rounding and enabling saturation according to
value of the Common settings/Saturation mode property in the processor component

3. Initialization of the shadow registers based on Initialize shadow registers settings in
the processor component.

4. Common initialization

• Initialization of the pin/signal muxing collected from all components in the project –
enabling/disabling of the GPIOn clock gate is ensured automatically.

• Initialization of the interrupt priorities collected from all components except some
system interrupts like MCM Core fault PLL Error or PMC Low voltage.

• Initialization of the unused I/O pins based on Initialize unused I/O pins properties in
processor component.

• Other initialization originated from some components (for example, Init_GPIO,
BitIO,...)

5. Disabling of the GPIOn clock gates if it is disabled in Internal peripherals/System
Integration Module/Clock gating control in processor component in case it was
temporarily enabled (see the first step).

6. Initialization of components in a project (typically calling their Init method (for
example, Init_ADC, ADC, Init_SPI, SynchroMaster,...).

7. Required priority level setup based on Common settings/Initialization priority item in
the processor component.

OnReset event
You can write the code that will be invoked from the PE_low_level_init()
function after the Processor Expert internal initialization, but before the initialization of
individual components. Thus, you should expect that peripherals are not completely
initialized yet. This event can be enabled/disabled in the processor component inspector's
events page.
96 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 97 Thursday, April 18, 2013 11:34 AM
Reset Scenario with PE for ColdFire and
Kinetis Microcontrollers

Figure 3.26 Reset Sequence Diagram with Processor Expert
97Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 98 Thursday, April 18, 2013 11:34 AM
_startup()
The _startup() function is called as the first function after the reset. The
_startup() function initializes the stack pointer, calls the
__initialize_hardware() function and continues with initialization of the
enviroment (such as memory initialization). At the end of the _startup() function the
main() function is called.

__initialize_hardware()
The __initialize_hardware() function is called from the _startup function
after an initialization of the stack pointer. This function is defined in the cpu module,
usually Cpu.c, and provides necessary system initialization such as PLL, and external
bus.

Sometimes it is necessary to do some special user initialization immediately after the cpu
reset. Processor Expert provides a possibility to insert user code into the
__initialize_hardware() function. There is a User Initialization property in the
build options tab of a processor component inspector defined for this purpose. Refer to the
Component Inspector topic for details.

PE_low_level_init()
There is a second level of Processor Expert initialization PE_low_level_init()
called at the beginning of the main() function. PE_low_level_init() function
provides initialization of all components in project and it is necessary for proper
functionality of the Processor Expert project.

OnReset Event
You can write the code that will be invoked from the PE_low_level_init()
function after Processor Expert internal initialization, but before the initialization of
individual components. Thus, you should expect that peripherals are not completely
initialized yet. This event can be enabled/disabled in the processor component inspector's
events page.

Version Specific Information for 56800/E/
EX

Priority of Interrupts and Events
For more details of version specific information in the Processor Expert Priority System
topic.
98 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 99 Thursday, April 18, 2013 11:34 AM
Chaining of Timer Channels
The timer channels can be chained. Chaining of 16-bit counters is supported by
accommodating counts up to 64-bits. The chained channels can be selected by a Timer
property. For example, if 32-bit counts are required for the FreeCntr component, it is
possible to set the Timer property of the component by selecting the TMRA01_Compare
or TMRA01_Free values. These counters are not standalone 32- bit HW counters, but
rather two chained 16-bit counters.

NOTE Only chaining of the channels 0-1, 2-3 and 0-1-2-3 are available. Another
possible chains can be created using Init_TMR components.

Capture Component
Once the capture is triggered, the capture register cannot be overwritten until the Input
edge flag is enabled again. This is provided in a different way depending on the Interrupt
service settings and OnCapture Event usage.

The following cases can occur:

• Interrupt service is disabled. Once a capture event occurs, no further updating of the
capture register will occur until the method GetCaptureValue is used (the Input
edge flag is enabled in this method).

• Interrupt service is enabled and event OnCapture is disabled. The Input edge flag
is cleared immediately after the interrupt occurs. Content of the capture register can
be updated immediately with any input active transition.

• Interrupt service is enabled and event OnCapture is enabled. It is recommended to
use the method GetCaptureValue within OnCapture event. Content of the
capture register is protected against the change until the end of OnCapture event
only.

TimeDate Component
It is recommended to set a resolution to multiples of 10 ms (resolution of the time
provided by the GetTime/SetTime methods). It should be 10ms or more. Smaller
values are unnecessarily overloading the system.

PulseAccumulator Component
This component is generally used to count pulses (events) generated on external inputs.
Thus, the primary and secondary input can only be a physical pins of the device. The
primary input is required to be an internal clock, the Init_TMR component should be used.
99Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 100 Thursday, April 18, 2013 11:34 AM
WatchDog Component
The interrupt service routine for the vector INT_COPReset is generated only if the
OnWatchDog event is used. Otherwise the INT_COPreset entry in the interrupt vector
table contains only the call of the _EntryPoint, which is same as INT_Reset service
routine. You can find out the cause of the reset by using a processor component method
GetResetSource.

FreescaleCAN Component
This component can encapsulate FlexCAN device or MSCAN12 device.

• FlexCAN device

The FlexCAN device receives self-transmitted frames if there exist a matching
receive MB. FlexCAN module is implemented on 56F83xx derivatives. Message
buffers should be configured as receive or transmit using the FreescaleCAN
component's settings.

• MSCAN12 device

When interrupt mode is enabled, received frames should be read in the
OnFullRxBuffer event to avoid message buffer lock/unlock problems.

AsynchroSerial, SynchroMaster, SynchroSlave,
FreescaleSSI Components
When the component is configured in DMA mode then Send/Receive routines use a user
buffer that is passed as a parameter to these methods. You should avoid changing a buffer
content during receive/transmit process.

IntFlash Components
If Save write method is used (property Write method), the Save buffer (buffer for saving
data from the sector which has to be erased) is implemented by component in data RAM.

If the Virtual page feature is used (property Virtual page), the page buffer is implemented
by component in data RAM.

The basic addressing mode of IntFLASH component methods is a 16-bit word. It is used
by most of the memory access methods. Only SetByteFlash, GetByteFlash, SetBytePage,
GetBytePage and SetBlockFlash, GetBlockFlash methods use a byte addressing mode. An
address of the byte location is an address according to a 16-bit word location multiplied by
2 and then the even/odd bytes are discriminated by LSB: 0 for even byte, 1 for odd byte.

PE does not check if the memory mode selected in the processor component corresponds
to the current target. Thus it is needed to take care to the memory mode selection
100 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 101 Thursday, April 18, 2013 11:34 AM
especially if the program and boot flash memory is served by the IntFLASH component (if
the program and boot flash memory has to be served by the component, then one of the
internal memory targets has to be selected).

• 56F83xx, 56F81xx, 56F80xx derivatives:

If the project contain both IntFLASH components (one for each memory space), then
none of the components could be disabled in High speed mode.

If a programming/erasing operation is started by component and it is configured not
to wait until the end of the operation (property Wait enabled in init., method
SetWait), then calling of a programming/erasing method of the other component is
not allowed before the end of the programming/erasing operation of the first
component (ERR_BUSY is returned).

• 56F80x, 56F82x derivatives:

Internal flash has no protection feature, so the SetProtection and SetGlobalProtection
methods are not implemented.

If the component is configured not to wait until the end of the programming/erasing
operation (property Wait enabled in init., method SetWait), the FinishProcess
method has to be called after the end of the operation.

Since the flash device does not support erase verification feature, the
EraseVerify method is implemented by software routine. Thus it takes more time
to verify the flash memory than this method is implemented by hardware module (all
parts of the flash memory have to be read).

Version Specific Information for Freescale
HCS08 and ColdFire V1 derivatives
The ROM, Z_RAM, and RAM ranges depend on the target microcontroller. It is
recommended to increase the stack size if some standard libraries are used.

For the detailed information on debugging HC08 application using MON8 interface refer
to the Debugging on HC08 Using MON8 topic.

Components' implementation details:

• All the components:

Interrupts priorities - For details on priority settings for interrupts and event, refer
to the Processor Expert Priority System topic.

• Processor:

– Speed Mode selection (processor methods SetHighSpeed, SetLowSpeed,
SetSlowSpeed): If processor clock-dependent components are used, the
signals generated from such internal peripherals may be corrupted at the moment
of the speed mode selection (if function of clocked devices is enabled). Handling
101Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 102 Thursday, April 18, 2013 11:34 AM
of such a situation may be done using events BeforeNewSpeed and
AfterNewSpeed.

– Interrupt vector table in ROM is placed at the default address in the ROM or in
the Flash:

If the interrupt vector table in RAM is selected, the vectors table is generated into
RAM and special redirection code is generated to ROM. This code transfers
program control to the selected address according to the table in RAM. You can
use processor methods SetIntVect to set the address of interrupt service routine.

NOTE You cannot change the interrupt vector that is allocated by any component in
your project. It is recommended to select the event OnSWI together with this
option to minimize size of the generated code.

• PPG: The PPG component always allocates the whole timer. Although it is
technically possible to share the selected timer between 2 PPG components, it would
be impossible to set the PPG period for two components separately.

• PWM: In contrast to the PPG components, it is possible for the PWM components to
share the selected timer, since they do not have the SetPeriod method.

• EventCntr16: Since the timer overflow flag is set when the timer reaches a value of
65535, the maximum number of events that can be counted by this component is
limited to 65534 (value of 65535 is marked as invalid as the method GetNumEvents
returns the ERR_OVERFLOW value as its result).

• TimeDate: It is recommended to make a setting close to 10 ms (resolution provided
by GetTime/SetTime methods). Smaller values unnecessarily overload the
system.

• WatchDog: When the Watchdog component is added to the project, it is
automatically enabled. The enabling code is placed in the processor initialization
code.

NOTE Watchdog is enabled by a write to the configuration register. This register can
be written only once after processor reset. Since the register also contains other
bits that are written during the processor initialization, the watchdog must be
enabled when processor is initialized. The property CPU clock/speed
selection has no effect because the COP timer clock source is
CGMXCLK.

• AsynchroSerial:

– Timing setting 'values from list' enables to select various values denoted by
changes of the prescaler most tightly coupled with UART.

– If a software handshake is used for extremely high baud-rates it may happen that
no overruns appear and transmitted characters get lost
102 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 103 Thursday, April 18, 2013 11:34 AM
• AsynchroMaster: Same as AsynchroSerial

• AsynchroSlave: Same as AsynchroMaster.

• SynchroMaster: Because of the disability of an SPI device (configured as Master)
caused by a mode fault, the mode fault automatically disables the component (inside
an interrupt service) if interrupt service is enabled. If the interrupt service is disabled
and a mode fault occurs, the component will be disabled at the beginning of
RecvChar method.

• SynchroSlave:

– On HC08 family microcontrollers: A mode fault doesn't disable an SPI device
(configured as Slave), therefore it doesn't disable the component.

If a mode fault error occurs, software can abort the SPI transmission by disabling
and enabling of the device (Enable and Disable methods).

– When Clock edge property = "falling edge", Shift clock idle polarity property =
"Low" or Clock edge property = "rising edge" and Shift clock idle polarity
property = "High", the SS pin of the slave SPI module must be set to logic 1
between bytes. The falling edge of SS indicates the beginning of the transmission.
This causes the SPI to leave its idle state and begin driving the MISO pin with the
MSB of its data. Once the transmission begins, no new data is allowed into the
shift register from the data register. Therefore, the slave data register must be
loaded with the desired transmit data before the falling edge of SS.

• BitIO, BitsIO, ByteIO, Byte2IO, Byte3IO, Byte4IO:

The GetVal and GetDir methods are always implemented as macros.
Optimization for property (BitIO, BitsIO) does not influence the generated code.

• WordIO, LongIO:

These components could not be implemented on Freescale HC08; this processor has
no instructions for 16-bit and 32-bit access into the I/O space.

• ADC: Clock input of A/D clock generator cannot be changed in runtime.

A conversion time in the Conversion time dialog box is calculated for the worse
case, which is usually 17 cycles per conversion.

• ExtInt:

If a pin other than IRQ (IRQ1) is set in this component, setting of the 'Pull resistor'
property affects only disable state of the device (component). If the device
(component) is enabled, the pull-up resistor is always connected to the pin.

• KBI:

– Limitation for HC08: Setting of the 'Pull resistor' property affects only the
disabled state of the device (component). If device (component) is enabled, the
pull-up resistors are always connected to the used pins.

– Only one KBI component can be used to handle one peripheral in PE project.
103Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 104 Thursday, April 18, 2013 11:34 AM
• IntEEPROM:

A component expects that all security options of EEPROM are disabled. If some
security option is enabled, methods performing write operation (such as SetByte) can
return an error.

For details on sharing and usage of the high-level timer components, refer to the
HC(S)08/ColdFire V1 Timers Usage and Sharing topic for details.

HCS08/ColdFire V1 Timers Usage and Sharing
The HC(S)08 and ColdFire V1 microcontrollers provide two main groups of timer
devices.

Single-channel Timer Peripherals
These devices are simple counters that do not contain multiple individually configurable
channels and usually do not allow to control any pins. These devices cannot be shared
(that is used by multiple components).

The following devices are members of this group:

• HC08: PIT (TIM on some derivatives), TBM, PWU, RTC

• HCS08, RS08, ColdFire V1: RTI, CMT, MTIM, RTC, TOD

These devices are usually listed in Processor Expert under their original names without
any extensions. These devices can be used by the following high-level components:
TimerInt, RTIshared, TimerOut and FreeCntr8/16/32. The MTIM peripheral can
additionally be used in event counter components (EventCntr8/16/32). All peripherals
from this group are also supported by the Peripheral Initialization Components
(Component Categories).

Multi-channel Timer Peripherals
These timer peripherals provide multiple channels and allow several modes of operation.

The following devices are members of this group:

• HC08: TIM (Timer Interface Modules)

• HCS08, RS08, ColdFire V1: TPM and FTM (Timer/PWM modules)

Processor Expert shows each of these timer peripherals as multiple devices that can be
used by the components. The name of such device (shown in the peripheral selection list)
consists of the peripheral and a suffix specifying the part of the peripheral or it's specific
function. These named devices represent the whole peripheral or parts of the peripheral set
to work in a specific mode. Using only a part of the timer allows to share the timer by
multiple components.

The following devices are usually defined for the complex timer peripherals:
104 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 105 Thursday, April 18, 2013 11:34 AM
(the examples are for the MC68HC908AZ60 processor)

• TIMx (e.g. TIMA) — The whole timer including counter, all channels and control
registers. Name of the device should be same as name listed in datasheet.
(Sometimes the 'x' is omitted if there is only one such timer on the chip). This device
blocks all other devices defined for this timer.

• TIMxy (e.g. TIMA0) — Channel 'y' of the timer TIMx.

• TIMxfree (e.g. TIMAfree) — This device represents the overflow flag and the
interrupt capabilities of the counter. The range of the counter is not limited and it is
determined by the size of the counter register so the timing is controlled only by the
prescaler selection.

• TIMx_PPG (e.g. TIMA_PPG) — The whole timer in a programmable pulse
generation mode. If the timer is used in this mode, it is not possible to use any of the
TIMx, TIMxy and TIMxfree devices.

• TIMxPP (e.g. TIMAPP) — modulo register of the timer in a programmable pulse
generation mode, that controls period of the generated signal.

• TIMxyPPG (e.g. TIMA0PPG) — channel 'y' of the timer 'TIMx' in the
programmable pulse generation mode.

NOTE Even though the multiple devices defined for a timer are configured
independently, they can be mutually dependent. For example, they share one
common prescaler. Processor Expert instantly checks components
configuration and only valid combinations are allowed. See Timing Settings
for details.

Timing Model Restrictions for High level components
• TOD — Interrupt each 1/4 second is not available.

• TPM — It is not possible to select interrupt after 1 tick of the counter, because of
hardware restrictions. At least 2 ticks must be used.

• MTIM1 as a shared prescaler — On some derivatives MTIM1 can be used as a
clock-source for other timers. This feature allows you to select large range of timing;
even the timing model does not support all combinations of the MTIM1 prescaler
and the modulo register.

Using Complex Timers in High Level Components
This topic explains the options of usage of the complex timers in the high-level
components allowing you to benefit from the advanced features of these components. All
peripherals from this group are also supported by the Peripheral Initialization Components
(for details, refer to the Component Categories topic).
105Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 106 Thursday, April 18, 2013 11:34 AM
The following table shows a list of the timer components and PE devices that can be used
in the components as rows. The columns show the state of all devices defined for the timer
for conditions determined by rows.

Table legend:

• Blocked — Device might not be directly used by the component, but it cannot be
used (shared) by other components because it would disrupt the component's
function.

• Used — Device is required and used by the component.

Table 3.2 Timer Components and PE Devices

Component
Selected

Selected
device(s)

 PE devices defined for the timer

TIMx TIMxy TIMxfree TIMx_P
PG

TIMxPP TIMxyP
PG

PWM TIMxy Blocked Used 1
channel (2 in
buffered mode)
Others free

Blocked Blocked Blocked Blocked

PPG TIMxPP
TIMxyPP
G

Blocked All channels
blocked

Blocked Used Used Used

TimerOut TIMxy Blocked Used 1
channel (2 in
buffered mode)
Others free

Free Blocked Blocked Blocked

TimerInt
RTIShared
TimeDate
FreeCntr8
FreeCntr6
FreeCntr32

TIMxy Blocked Used 1
channel Others
free

Free Blocked Blocked Blocked

TIMxfree Blocked All channels
free

Used Blocked Blocked Blocked

EventCntr8
EventCntr1
6
EventCntr3
2

TIMx Used All channels
blocked

Blocked Blocked Blocked Blocked

Capture TIMxy Blocked Used 1
channel Others
free

Free Blocked Blocked Blocked
106 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 107 Thursday, April 18, 2013 11:34 AM
• Free — Device is not used nor blocked by the component so it can be used by
another component.

How to Use the Table

The table allows to find which component (in which setup) can share the timer peripheral.
The following rule determines the condition necessary for sharing: When you take the
rows of table corresponding to the components and their configurations you want to use,
every column containing "Used" value must contain "Free" in all other rows (it cannot be
used or blocked). In case of individual channels, there has to be enough channels for all
components. Note that if a component allocates some channels, it is possible to share the
timer among several components of the same type (for example, TimerInt using the
TIMxy device).

PWM Sharing Limitation
There are some limitations for the PWM component, if it shares the timer peripheral with
other devices. The PWM in this case uses the whole range of the counter (that is the
modulo register is not used) so the period values are limited to the value(s) determined by
the prescaler value.

Example

The 68HC908AZ60 contains two timer modules TIMA and TIMB. Each one of these
modules is based on a 16-bit counter that can operate as a free-running counter or a
modulo-up counter. TIMB module has 2 channels and 2 related input/output pins. Can we
use the TIMB peripheral for PWM output and input capture components at once?

Timer Module B (TIMB) is supported in PE by the following devices: TIMB, TIMB0,
TIMB1, TIMBfree, TIMB_PPG, TIMBPP, TIMB0PPG, TIMB1PPG.

It follows from the table in this chapter that:

• For the PWM component (in non-buffered mode), you use only one channel (for
example, TIMB0). According to the columns, the component will use one channel
and TIMBfree device, other channels will stay free, all other devices will be blocked.

• The Capture component, according to the columns, uses only one channel. Such
channel is available: TIMB1.

• Sharing of the TIMB peripheral by the PWM and Capture component is possible.
There is no remaining free device on the timer peripheral.

Because the channels of this timer are sharing one prescaler, it is necessary to configure
the same prescaler value for both the PWM component and the Capture component.
107Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 108 Thursday, April 18, 2013 11:34 AM
Debugging on HC08 Using MON8
Every member of the HC08 microcontroller family is equipped with a basic support for in-
system programming and debugging (MON8, for details see datasheet of a HC08
processor). The microcontroller can work in two modes, normal and monitor.

In the monitor mode, the microcontroller can accept couple of commands over the single
wire interface. The commands allow to read/write the memory and run a code. In
combination with Break module a simple debugging system can be built (for example,
ICS boards, P&E Multilink, or various custom designs).

There are few issues that results from the characteristics of the MON8 system:

• To achieve a standard communication speed (19200, 9600, 4800 bauds) a specific
oscillator frequency must be used (usually 9.83 or 4.915MHz). Suitable source of
processor clock is usually part of the debugging system. The user must set the same
clock frequency in the processor component of his project to ensure that the timing of
components will be correct. Care must be taken when using PLL and speed modes.
Change of the operating frequency of the target processor can result in loss of
communication with the target system.

• Some processor models allows to by-pass internal divider-by-2, which effectively
doubles the bus clock of the processor. The bypass is selected by logic state of
selected input pin (for example, PTC3) during processor reset. The user must set
appropriate property in the processor component to reflect actual state of the pin.

• One I/O pin (for example, PTA0) is used for communication with the host computer,
therefore it can't be used as a general I/O pin.

• In some configuration of the debugging system, the IRQ pin can be also used to
control the target board, therefore it can't be used in user application.

Capturing Unused Interrupts
The debugging system based on MON8 allows only one breakpoint placed in the flash
memory. However, executing an SWI instruction while running is functionally equivalent
to hitting a breakpoint, except that execution stops at the instruction following the SWI.
The user can use this feature to actively capture unused interrupts. There are two options
for capturing such interrupts:

• If the property named 'Unhandled interrupts' located in Build Options tab is set to
Own handler for every, there is an interrupt routine generated for each unhandled
interrupt generated into the Cpu.c module. The SWI instruction can be placed in the
generated routine of the interrupt that need to be caught.

• You can also use the InterruptVector component. In the properties of the component,
select which interrupt will be monitored and set the name of the ISR function, for
example, Trap. One function can be used to capture more interrupts if property
Allow duplicate ISR names is set to yes. The Trap function will contain
only the SWI instruction:
108 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 109 Thursday, April 18, 2013 11:34 AM
__interrupt void Trap(void)

{

asm(SWI);

}

Version Specific Information for RS08
The ROM and RAM ranges depend on the target processor. The RESERVED_RAM size for
pseudo registers storage is by default 5 bytes.

Component implementation details:

• Interrupts: Some of the RS08 derivatives do not support interrupts so the
components on these processors are limited and some are not available. The
following components are not available on the RS08 derivatives without interrupt
support because they depend on interrupt(s):

ExtInt,TimerInt,FreeCntr8,FreeCntr16,FreeCntr32,RTIshared,
InterruptVector,TimeDate

Derivatives of the RS08 family with processor core version 2 support a single global
interrupt vector. The interrupt doesn't support a vector table lookup mechanism as
used on the HC(S)08 devices. It is the responsibility of a routine servicing the global
interrupt to poll the system interrupt pending registers (SIPx) to determine if an
interrupt is pending. To support the single global interrupt vector Processor Expert
defines a set of emulated interrupt vectors for each HW module, which duplicates
interrupt vectors of the HCS08 family. When an emulated interrupt vector is used by
a component a call to the appropriate interrupt service routine is added to the global
interrupt service routine. The global interrupt vector routine performs check of the
SIPx registers to determine if an interrupt is pending. The order in which the SIPx
registers are polled is affected by priority of the emulated interrupts. For priority
settings, refer to the Processor Expert Priority System topic for details.

• Processor:

– Speed Mode selection (processor methods SetHighSpeed, SetLowSpeed,
SetSlowSpeed): if processor clock-dependent components are used then signals
generated from such internal peripherals may be corrupted at the moment of the
speed mode selection (if function of clocked devices is enabled). Handling of
such a situation may be done using events BeforeNewSpeed and
AfterNewSpeed.

• PPG: The PPG components always allocate whole timer. Although it is possible to
share the selected timer between 2 PPG components, it would be impossible to set
the PPG period for these two components separately.

• PWM: In contrast to the PPG components, it is possible for PWM components to
share the selected timer, since they do not have the SetPeriod method.
109Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 110 Thursday, April 18, 2013 11:34 AM
• WatchDog: When the Watchdog component is added to the project, it is
automatically enabled. The enabling code is placed in the processor initialization
code.

NOTE Watchdog is enabled by a write to the configuration register. This register can
be written only once after processor reset. Since the register also contains other
bits, which are written during the processor initialization, the watchdog must
be enabled when processor is initialized. The property "CPU clock/speed
selection" has no effect because the COP timer clock source is CGMXCLK.

• AsynchroSerial: Timing setting 'values from list' enables to select various values
denoted by changes of the prescaler most tightly coupled with UART.

• SynchroMaster: If a mode fault occurs, the component is disabled at the beginning
of the RecvChar method.

• SynchroSlave: When Clock edge property = "falling edge", Shift clock idle polarity
property = "Low" or Clock edge property = "rising edge" and Shift clock idle
polarity property = "High", the SS pin of the slave SPI module must be set to logic 1
between bytes. The falling edge of SS indicates the beginning of the transmission.
This causes the SPI to leave its idle state and begin driving the MISO pin with the
MSB of its data. Once the transmission begins, no new data is allowed into the shift
register from the data register. Therefore, the slave data register must be loaded with
the desired transmit data before the falling edge of SS.

• BitIO, BitsIO, ByteIO, Byte2IO, Byte3IO, Byte4IO:

The GetVal and GetDir methods are always implemented as macros.
Optimization for property (BitIO, BitsIO) does not influence the generated code.

• ADC: Clock input of A/D clock generator cannot be changed in runtime.

A conversion time in the Conversion time dialog box is calculated for the worst
case.

• KBI: Only one KBI component can be used to handle one peripheral in PE project.

• For details on sharing and usage of the high-level timer components, refer to the
RS08 Timers Usage and Sharing topic for details.

RS08 Timers Usage and Sharing
RS08 microcontrollers provide two main groups of timer devices.

Simple Timer Peripherals
These devices are simple counters that do not contain multiple individually configurable
channels and usually do not allow to control any pins. These devices cannot be shared (i.e.
used by multiple components).
110 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 111 Thursday, April 18, 2013 11:34 AM
The following devices are members of this group on RS08: RTI, MTIM

These devices are usually listed in Processor Expert under their original names without
any extensions. These devices can be used by the TimerOut component. The MTIM
peripheral can additionally be used in event counter components (EventCntr8,16,32). All
peripherals from this group are also supported by the Peripheral Initialization Components
(for details please see the chapter Component Categories).

Complex Timer Peripherals
These timer peripherals provide multiple channels and allow several modes of operation.

The RS08 contains only one device of such kind: TPM (Timer/PWM modules) Processor
Expert shows each of these timer peripherals as multiple devices that can be used by the
components.

The name of such device (shown in the peripheral selection list) consists of the peripheral
and a suffix specifying the part of the peripheral or it's specific function. These named
devices represent the whole peripheral or parts of the peripheral set to work in a specific
mode. Using only a part of the timer allows to share the timer by multiple components.

The following devices are usually defined for the complex timer peripherals:

(the examples are for MC9RS08SA12 processor)

• TPM (for example, TPM) — Whole timer including all channels and control
registers. (Sometimes the 'x' is omitted if there is only one such timer on the chip).
This device blocks all other devices defined for this timer.

• TPMxy (for example, TPM1) — Channel 'y' of the timer 'x'. (Sometimes the 'x' is
omitted if there is only one timer on the chip)

• TPMx_PPG (for example, TPM_PPG) — Whole timer in a programmable pulse
generation mode (Sometimes the 'x' is omitted if there is only one timer on the chip)

• TPMxPP (for example, TPMPP) — Modulo register of the timer in a
programmable pulse generation mode (Sometimes the 'x' is omitted if there is only
one timer on the chip)

• TPMxyPPG (for example, TPMPPG) — Channel 'y' of the timer 'x' in the
programmable pulse generation mode (Sometimes the 'x' is omitted if there is only
one timer on the chip)

• TPMxfree (for example, TPMfree) — This device represents the overflow flag and
interrupt capabilities of the counter. The range is of the counter is not limited and it is
determined by the size of the counter register so the timing is controlled only by the
prescaler selection (Sometimes the 'x' is omitted if there is only one timer on the
chip)

NOTE Even though the multiple devices defined for a timer are configured
independently, they can be mutually dependent. For example, they share one
111Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 112 Thursday, April 18, 2013 11:34 AM
common prescaler. Processor Expert instantly checks components
configuration and only valid combinations are allowed. For details, refer to the
Timing Settings topic.

Using Complex Timers in High Level Components
The options of usage of the complex timers in the high-level components allows you to
benefit from the advanced features of these components. All peripherals from this group
are also supported by the Peripheral Initialization Components (for details, refer to the
Component Categories topic).

The following table shows a list of the timer components and PE devices that can be used
in the components as rows. The columns show the state of all devices defined for the timer
for conditions determined by rows.

Table legend:

• Blocked — Device might not be directly used by the component but it cannot be used
(shared) by other components because it would disrupt the components' function.

Table 3.3 Timer Components and PE Devices

Component
Selected

Selected
device(s)

 PE devices defined for the timer

TIMx TIMxy TIMxfree TIMx_P
PG

TIMxPP TIMxyP
PG

PWM TIMxy Blocked Used 1
channel (2 in
buffered mode)
Others free

Blocked Blocked Blocked Blocked

PPG TIMxPP
TIMxyPP
G

Blocked All channels
blocked

Blocked Used Used Used

TimerOut TIMxy Blocked Used 1
channel (2 in
buffered mode)
Others free

Free Blocked Blocked Blocked

EventCntr8
EventCntr16
EventCntr32

TIMx Used All channels
blocked

Blocked Blocked Blocked Blocked

Capture TIMxy Blocked Used 1
channel Others
free

Free Blocked Blocked Blocked
112 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 113 Thursday, April 18, 2013 11:34 AM
• Used — Device is required and used by the component.

• Free — Device is not used nor blocked by the component so it can be used by
another component.

How to Use the Table

The table allows to find which components (in which setup) can share the timer
peripheral. The following rule determines the condition necessary for sharing: When you
take the rows of table corresponding to the components and their configurations you want
to use, every column containing "Used" value must contain "Free" in all other rows (it
cannot be used or blocked). In case of the individual channels there has to be enough
channels for all components. Note that if a component allocates some channels, it is
possible to share the timer among several components of the same type (for example,
TimerInt using the TIMxy device).

PWM Sharing Limitation
There are some limitations for the PWM component, if it shares the timer peripheral with
other devices. The PWM in this case uses the whole range of the counter (i.e. the modulo
register is not used) so the period values are limited to the value(s) determined by the
prescaler value.

Version Specific Information for HCS12
and HCS12X
All components were tested with the following compiler settings:

• Other parameters = -Onf

The ROM and RAM ranges depend on the target microcontroller. It is recommended
to increase the stack size if some standard libraries are used.

Components' implementation details :

• All the components:

– Interrupt priority and Event priority — refer to the version specific information
details in the Processor Expert Priority System topic.

– MISRA compliance — All component have been developed to MISCRA C 2004
standard compliant. The exceptions to this compliance are documented in the
HTML page accessible in the file:
{InstallDir}\ProcessorExpert\DOCs\Misra2004Compliance.
html

• Processor:

– Speed Mode selection (CPU methods SetHighSpeed, SetLowSpeed,
SetSlowSpeed): if processor clock-dependent components are used then signals
113Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 114 Thursday, April 18, 2013 11:34 AM
generated from such an internal peripheral may be corrupted at the moment of the
speed mode selection (if function of clocked devices is enabled). Handling of
such a situation may be done using events BeforeNewSpeed and
AfterNewSpeed.

– Interrupt vectors table (IVT) is by default generated on the default addresses for
of the current target processor. However, Processor Expert offers additional
configuration of the IVT:

On HCS12 derivatives:

The placement of the IVT can be configured in the Build Options tab of the
processor Component Inspector by changing the address of the memory area with
the name INT_VECTORS.

Note that if the IVT placement is changed, you have to provide a full IVT on the
the address defined by the processor datasheet and the vectors allocated by
Processor Expert have to be redirected into the IVT generated by PE.

If the interrupt vector table in RAM application option is selected then it
generates the table in RAM and special redirection code to ROM. This code
transfers program control to the selected address according the table in RAM.
You can use the processor method SetIntVect to set the address of interrupt
service routine. It is recommended to select the event OnSWI together with this
option to minimize the size of generated code. Please note that the redirection is
available only for interrupt vectors not used by Embedded Components in the
current project.

On HCS12X derivatives:

These derivatives allow to change the placement of the interrupt vectors
beginning. So the Processor Expert allows to adjust both the physical placement
of vectors or the placement of the generated IVT. The content of the property
group Interrupt/Reset vector table in the group Interrupt resource mapping and its
documentation.

• PPG: HW doesn't support an interrupt. Aligned Center Mode Counter counts from 0
up to the value period register and then back down to 0. If the align mode is switched
to Center align mode then real lengths of Period and Starting pulse width signals will
be twice as much as is being displayed in the Component Inspector. Note: See the
Internal peripheral property group of the processor component for special settings.

• PWM: HW doesn't support an interrupt. Aligned Center mode Counter counts from
0 up to the value period register and then back down to 0. If align mode is switched
to Center align mode then the real lengths of Period and Starting pulse width signals
will be twice as much as is being displayed in the Component Inspector.

NOTE See the Internal peripheral property group of the processor component for
special settings.
114 Processor Expert User Guide

Application Design
Implementation Details

PE_User_Manual.book Page 115 Thursday, April 18, 2013 11:34 AM
• EventCntr8/16/32: Functionality of this component is a subset of the pulse
accumulator. For work with hold registers, gated time mode use the
PulseAccumulator component instead of the EventCounter component.

• PulseAccumulator:

– Method Latch

This method causes capture of the counter in the hold registers of all capture and
pulse accumulator components in PE project because this method is invoked for
all ECT modules.

NOTE See Internal peripheral property group of the processor component for special
settings.

• Capture:

– Method Reset -If the counter can't be reset (is not allowed by HW or the counter
is shared by more components) this method stores the current value of the counter
into a variable instead of a reset.

– Method GetValue -If the counter can't be reset (is not allowed by HW or the
counter is shared by more components) this method doesn't return the value of
register directly, but returns the value as a difference between the register value
and the previously stored register value. This causes values that are proportional
to time elapsed from the last invocation of the method Reset.

– Method Latch -This method causes capture of the counter in the hold registers of
all capture and pulse accumulator components in PE project because this method
is invoked for all ECT modules.

– Method GetHoldValue -This method transfers the contents of the associated
pulse accumulator to its hold register.

NOTE See the Internal peripheral property group of the processor component for
special settings.

• BitIO, BitsIO, ByteIO, Byte2IO, Byte3IO, Byte4IO:

The GetVal and GetDir methods are always implemented as macros.

• LongIO:

This component could not be implemented on Freescale HCS12 - this processor has
no instructions for 32-bit access into the I/O space.

• IntEEPROM:

The EEPROM array is organized as rows of word (2 bytes), the EEPROM block's
erase sector size is 2 rows (2 words). Therefore it is preferable to use word aligned
115Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 116 Thursday, April 18, 2013 11:34 AM
data for writing - methods SetWord and SetLong - with word aligned address or to
use virtual page - property 'Page'. The size has to be a multiple of 4 bytes.

• SynchroMaster:

The mode fault causes disability of the component (and SPI device) automatically
(inside interrupt service) if interrupt service is enabled. If the interrupt service
isdisabled and a mode fault occurs, the component will be disabled at the beginning
of RecvChar method.

• IntFlash:

The Virtual page - Allocated by the user feature and corresponding methods and
events are not implemented.

• ExtInt:

If XIRQ is selected, the method 'Disable' can't be generated, because it isn't
supported by hardware. For pins of H, J, and P ports it is not possible to switch pull
resistor (pull up/pull down) and sensitive edge (rising edge/falling edge) arbitrarily.
Because of hardware limitations, pull down with falling edge and pull up with rising
edge settings aren't allowed.

Version Specific Information for Kinetis
and ColdFire+
Only the Peripheral Initialization and Logical Device Drivers (LDD) components are
available for the Kinetis and ColdFire+ derivatives. For details, refer to the Logical Device
Drivers and Component Categories topics.

Kinetis and ColdFire+ processor components support Clock configurations that are similar
to Speed Modes (available with High Level components) but provide more options on
configuring low power and slow clock modes of the processor. Refer to the details on
individual settings in the processor component's on-line help.

Code Generation and Usage
It expalis you about the principles and results of the Processor Expert code generation
process and the correct ways and possibilities of using this code in the user application.

Refer to the following topics for more information:

• Code Generation

• Predefined Types, Macros and Constants

• Typical Usage of Component in User Code

• User Changes in Generated Code
116 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 117 Thursday, April 18, 2013 11:34 AM
Code Generation
ProcessorExpert.pe pop-up menu > Generate Processor Expert Code Generate Code
command initiates the code generation process. During this process source code modules
containing functionality of the components contained in the project are generated. The
project must be set-up correctly for successful code generation. If the generation is error-
free all generated source code files are saved to the destination directory.

Files Produced by Processor Expert
The existence of the files can be conditional to project or Processor Expert environment
settings and their usage by the components.

• Component module

This module with its header file is generated for every component in the project with
exception of some components that generate only an initialization code or special
source code modules. Name of this file is the same as the name of the component.

Header file (.h) contains definitions of all public symbols, which are implemented in
the component module and can be used in the user modules.

The module contains implementation of all enabled methods and may also contain
some subroutines for internal usage only.

• Processor module

The processor module is generated according to the currently active target processor
component. The processor module additionally contains:

– microcontroller initialization code

– interrupt processing

• Main module

The main module is generated only if it does not already exist (if it exists it is not
changed). Name of this module is the same as the name of the project.

The main module contains the main function, which is called after initialization of
the microcontroller (from the processor module). By default, this function is
generated empty (without any reasonable code). It is designed so that you can write
code here.

• Event module

The event module is generated only if it does not exist. If it exists, only new events
are added into the module; user written code is not changed.

The event module contains all events selected in the components. By default, these
event handler routines are generated empty (without any meaningful code). It is
considered that user will write code here.
117Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 118 Thursday, April 18, 2013 11:34 AM
Event module can also contain the generated ISRs for the components that require a
direct interrupt handling (Peripheral Initialization Components). It is possible to
configure the name of event module individually for each component in the
ADVANCED view mode of the Component Inspector. However, note that the event
module is not generated by Processor Expert if there is no event enabled in the
component, except the processor component, for which the event module is always
generated.

• Method list file with description of all components, methods and events generated
from your project. The name of the file is {projectname}.txt or
{projectname}.doc. This documentation can be found in the Documentation
folder.

• Signal names

This is a simple text file {projectname}_SIGNALS.txt or
{projectname}_SIGNALS.doc with a list of all used signal names. The signal
name can be assigned to an allocated pin in the component properties (available in
ADVANCED view mode). This documentation can be found in the Documentation
folder of the Components view. Refer to the Signal Names topic for details.

• Code generation log that contains information on changes since last code
generation. Refer to the Tracking Changes in Generated Code for details.

• XML documentation containing the project information and settings of all
components in XML format. The generated file
{projectname}_Settings.xml can be found in the Documentation folder of
the Components view. It is updated after each successful code generation.

• Shared modules with shared code (the code which is called from several
components). Complete list of generated shared modules depends on selected
processor, language, compiler and on the current configuration of your project.
Typical shared modules are:

– IO_Map.h

Control registers and bit structures names and types definitions in C language.

– IO_Map.c

Control registers variable declarations in C language. This file is generated only
for the HC(S)08/HC(S)12 versions.

– Vectors.c

A source code of the interrupt vector table content.

– PE_Const.h

Definition of the constants, such as speed modes, reset reasons. This file is
included in every driver of the component.

– PE_Types.h
118 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 119 Thursday, April 18, 2013 11:34 AM
Definition of the C types, such as bool, byte, word. This file is included in every
driver of the component.

– PE_Error.h

Common error codes. This file contains definition of return error codes of
component's methods. See the generated module for detailed description of the
error codes. This file is included in every driver of the component.

– PE_Timer

This file contains shared procedures for runtime support of calculations of timing
constants.

– {startupfile}.c

This external module, visible in the External Modules folder of the Components
view, contains a platform specific startup code and is linked to the application.
The name of the file is different for the Processor Expert versions. For details on
the use of the startupfile during the reset, refer to the Reset Scenario with PE for
HCS08, RS08 and 56800/E topic.

– "PESL".h

PESL include file. This file can be included by the user in his/her application to
use the PESL library. For more details, refer to the Processor Expert System
Library topic.

For more details, refer to the Predefined Types, Macros and Constants topic.

Tracking Changes in Generated Code
Processor Expert allows to track changes in generated modules. It is just necessary to
enable the option Create code generation log in the Processor Expert Project options.
Refer to the Processor Expert Options topic for details. If this option is enabled, a file
ProcessorExpert_CodeGeneration.txt is generated into Documentation
folder.

The file contains a list of changes with details on purpose of each change. Refer to the
example below:

Listing 3.2 Example — Tracking Changes in Generated Code

###
Code generation 2010/10/22, 15:57; CodeGen: 1 by user:
by Processor Expert 5.00 for Freescale Microcontrollers; PE core 04.46
Configuration: Debug_S08GW64CLH
Target CPU: MC9S08GW64_64; CPUDB ver 3.00.000
The following code generation options were changed:
> option Create code generation log: value changed from false to true
###
119Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 120 Thursday, April 18, 2013 11:34 AM
Code generation 2010/10/22, 16:01; CodeGen: 2 by user: hradsky
by Processor Expert 5.00 Beta for Freescale Microcontrollers; PE core
04.46
Configuration: Debug_S08GW64CLH
Target CPU: MC9S08GW64_64; CPUDB ver 3.00.000
Component Cpu:MC9S08GW64_64, the following files modified due to
internal interdependency:
- Generated_Code\Vectors.c - changed
- Generated_Code\Cpu.h - changed
- Generated_Code\Cpu.c - changed
New component PWM1:PWM (ver: 02.231, driver ver. 01.28) added to the
project, the following - 78 -
Processor Expert User Manual Application Design
- Generated_Code\PWM1.h - added
- Generated_Code\PWM1.c - added
Documentation
- Documentation\ProcessorExpert.txt - regenerated
- Documentation\ProcessorExpert_Settings.xml - regenerated
Other files have been modified due to internal interdependency:
- Generated_Code\PE_Timer.h - added
- Generated_Code\PE_Timer.c - added
User modules
- Sources\ProcessorExpert.c - changed
> updated list of included header files
- Sources\Events.h - changed
> updated list of included header files
Totally 11 file(s) changed during code generation.

To view changes within the individual files, you can use a file pop-up menu command
Compare with > Local history... available in Components view. It allows to compare
files with the version before the code generation.

Predefined Types, Macros and Constants
Processor Expert generates definitions of all hardware register structures to the file
IO_Map.h. The Processor Expert type definitions are generated to the file
PE_Types.h which also containins definitions of macros used for a peripheral register
access. Refer to the Direct Access to Peripheral Registers topic for details.

Types
The following table lists the predefined types and their description:
120 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 121 Thursday, April 18, 2013 11:34 AM
Structure for Images
typedef struct { /* Image */

word width; /* Image width in pixels */

word height; /* Image height in pixels */

byte *pixmap; /* Image pixel bitmap */

word size; /* Image size in bytes */

char *name; /* Image name */

} TIMAGE;

typedef TIMAGE* PIMAGE ; /* Pointer to image */

Structure for 16-bit Register:
/* 16-bit register (big endian format) */

typedef union {

word w;

struct {

byte high,low;

} b;

} TWREG;

Table 3.4 Predefined Types

Type Description Supported for

byte 8-bit unsigned integer (unsigned char) all

bool Boolean value (unsigned char) (TRUE =
any non-zero value / FALSE = 0)

all

word 16-bit unsigned integer (unsigned int) all

dword 32-bit unsigned integer (unsigned long) all

dlong array of two 32-bit unsigned integers
(unsigned long)

 all

TPE_ErrCode Error code (uint8_t) all except MPC55xx
121Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 122 Thursday, April 18, 2013 11:34 AM
Version Specific Information for 56800/E
For information on SDK types definitions, go to the page SDK types.

Macros

For the list of macros available for Peripheral registers access, refer to the Direct Access to
Peripheral Registers topic.

Constants

Methods Error Codes
The error codes are defined in the PE_Error module. Error code value is 8-bit unsigned
byte. Range 0 - 127 is reserved for PE, and 128 - 255 for user.

__DI() - Disable global interrupts

__EI() - Enable global interrupts

EnterCritical() - It saves CCR register and disable
global interrupts

ExitCritical() - It restores CCR register saved in
EnterCritical()

ERR_OK 0 OK

ERR_SPEED 1 This device does not work in the active
speed mode

ERR_RANGE 2 Parameter out of range

ERR_VALUE 3 Parameter of incorrect value

ERR_OVERFLOW 4 Timer overflow

ERR_MATH 5 Overflow during evaluation

ERR_ENABLED 6 Device is enabled

ERR_DISABLED 7 Device is disabled
122 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 123 Thursday, April 18, 2013 11:34 AM
Version Specific Information for 56800/E
For information on SDK constants definitions, go to the page SDK types.

ERR_BUSY 8 Device is busy

ERR_NOTAVAIL 9 Requested value not available

ERR_RXEMPTY 10 No data in receiver

ERR_TXFULL 11 Transmitter is full

ERR_BUSOFF 12 Bus not available

ERR_OVERRUN 13 Overrun is present

ERR_FRAMING 14 Framing error is detected

ERR_PARITY 15 Parity error is detected

ERR_NOISE 16 Noise error is detected

ERR_IDLE 17 Idle error is detected

ERR_FAULT 18 Fault error is detected

ERR_BREAK 19 Break char is received during
communication

ERR_CRC 20 CRC error is detected

ERR_ARBITR 21 A node loses arbitration. This error
occurs if two nodes start transmission at
the same time

ERR_PROTECT 22 Protection error is detected

ERR_UNDERFLOW 23 Underflow error is detected

ERR_UNDERRUN 24 Underrun error is detected

ERR_COMMON 25 General unspecified error of a device.
The user can get a specific error code
using the method GetError

ERR_LINSYNC 26 LIN synchronization error is detected

ERR_FAILED 27 Requested functionality or process failed

ERR_QFULL 28 Queue is full
123Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 124 Thursday, April 18, 2013 11:34 AM
56800/E Additional Types For SDK Components
The following types definitions are generated into the file PETypes.h in the Processor
Expert for 56800/E. These types are intended to be used with the algorithms coming from
the original SDK library. For more details, refer to the appropriate components
documentation.

Listing 3.3 56800/E Additional Types For SDK Components

/* SDK types definition */
typedef signed char Word8;
typedef unsigned char UWord8;
typedef short Word16;
typedef unsigned short UWord16;
typedef long Word32;
typedef unsigned long UWord32;
typedef signed char Int8;
typedef unsigned char UInt8;
typedef int Int16;
typedef unsigned int UInt16;
typedef long Int32;
typedef unsigned long UInt32;
typedef union
{
struct
{
UWord16 LSBpart;
Word16 MSBpart;
} RegParts;
Word32 Reg32bit;
} decoder_uReg32bit;
typedef struct
{
union { Word16 PositionDifferenceHoldReg;
Word16 posdh; };
union { Word16 RevolutionHoldReg;
Word16 revh; };
union { decoder_uReg32bit PositionHoldReg;
Word32 posh; };
}decoder_sState;
typedef struct
{
UWord16 EncPulses;
UWord16 RevolutionScale;
Int16 scaleDiffPosCoef;
UInt16 scalePosCoef;
Int16 normDiffPosCoef;
Int16 normPosCoef;
124 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 125 Thursday, April 18, 2013 11:34 AM
}decoder_sEncScale;
typedef struct
{
UWord16 Index :1;
UWord16 PhaseB :1;
UWord16 PhaseA :1;
UWord16 Reserved :13;
}decoder_sEncSignals;
typedef union{
decoder_sEncSignals EncSignals;
UWord16 Value;
} decoder_uEncSignals;
/
**

*
* This Motor Control section contains generally useful and generic
* types that are used throughout the domain of motor control.
*
**
********/
/* Fractional data types for portability */
typedef short Frac16;
typedef long Frac32;
typedef enum
{
mcPhaseA,
mcPhaseB,
mcPhaseC
} mc_ePhaseType;
typedef struct
{
Frac16 PhaseA;
Frac16 PhaseB;
Frac16 PhaseC;
} mc_s3PhaseSystem;
/* general types, primary used in FOC */
typedef struct
{
Frac16 alpha;
Frac16 beta;
} mc_sPhase;
typedef struct
{
Frac16 sine;
Frac16 cosine;
} mc_sAngle;
typedef struct
125Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 126 Thursday, April 18, 2013 11:34 AM
{
Frac16 d_axis;
Frac16 q_axis;
} mc_sDQsystem;
typedef struct
{
Frac16 psi_Rd;
Frac16 omega_field;
Frac16 i_Sd;
Frac16 i_Sq;
} mc_sDQEstabl;
typedef UWord16 mc_tPWMSignalMask;
/* pwm_tSignalMask contains six control bits
representing six PWM signals, shown below.
The bits can be combined in a numerical value
that represents the union of the appropriate
bits. For example, the value 0x15 indicates
that PWM signals 0, 2, and 4 are set.
*/
/* general types, primary used in PI, PID and other controllers */
typedef struct
{
Word16 ProportionalGain;
Word16 ProportionalGainScale;
Word16 IntegralGain;
Word16 IntegralGainScale;
Word16 DerivativeGain;
Word16 DerivativeGainScale;
Word16 PositivePIDLimit;
Word16 NegativePIDLimit;
Word16 IntegralPortionK_1;
Word16 InputErrorK_1;
}mc_sPIDparams;
typedef struct
{
Word16 ProportionalGain;
Word16 ProportionalGainScale;
Word16 IntegralGain;
Word16 IntegralGainScale;
Word16 PositivePILimit;
Word16 NegativePILimit;
Word16 IntegralPortionK_1;
}mc_sPIparams;
#endif /* __PE_Types_H */
#define MC_PWM_SIGNAL_0 0x0001
#define MC_PWM_SIGNAL_1 0x0002
#define MC_PWM_SIGNAL_2 0x0004
#define MC_PWM_SIGNAL_3 0x0008
126 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 127 Thursday, April 18, 2013 11:34 AM
#define MC_PWM_SIGNAL_4 0x0010
#define MC_PWM_SIGNAL_5 0x0020
#define MC_PWM_NO_SIGNALS 0x0000 /* No (none) PWM signals */
#define MC_PWM_ALL_SIGNALS (MC_PWM_SIGNAL_0 | \
MC_PWM_SIGNAL_1 | \
MC_PWM_SIGNAL_2 | \
MC_PWM_SIGNAL_3 | \
MC_PWM_SIGNAL_4 | \
MC_PWM_SIGNAL_5)

Typical Usage of Component in User Code
This chapter describes usage of methods and events that are defined in most hardware
oriented components. Usage of other component specific methods is described in the
component documentation, in the section "Typical Usage" (if available).

Peripheral Initialization Components
Peripheral Initialization Components are the components at the lowest level of peripheral
abstraction. These components contain only one method Init providing the initialization of
the used peripheral. Refer to the Typical Usage of Peripheral Initialization Components
topic for details.

Peripheral Initialization Components
For typical usage and hints on Logical Device Drivers (LDD components), refer to the
Typical LDD Components Usage topic.

High Level Components

Methods Enable, Disable
Most of the hardware components support the methods Enable and Disable. These
methods enable or disable peripheral functionality, which causes disabling of functionality
of the component as well.

TIP Disabling of the peripheral functionality may save processor resources.

Overview of the method behavior according to the component type:

• Timer components: timer counter is stopped if it is not shared with another
component. If the timer is shared, the interrupt may be disabled (if it is not also
shared).
127Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 128 Thursday, April 18, 2013 11:34 AM
• Communication components, such as serial or CAN communication: peripheral is
disabled.

• Conversion components, such as A/D and D/A: converter is disabled. The
conversion is restarted by Enable.

If the component is disabled, some methods may not be used. Refer to components
documentation for details.

MAIN.C

void main(void)

{

...

B1_Enable(); /* enable the component functionality */

/* handle the component data or settings */

B1_Disable(); /* disable the component functionality */

...

}

Methods EnableEvent, DisableEvent
These methods enable or disable invocation of all component events. These methods are
usually supported only if the component services any interrupt vector. The method
DisableEvent may cause disabling of the interrupt, if it is not required by the component
functionality or shared with another component. The method usually does not disable
either peripheral or the component functionality.

MAIN.C

void main(void)

{

...

B1_EnableEvent(); /* enable the component events */

/* component events may be invoked */

B1_DisableEvent(); /* disable the component events */

/* component events are disabled */

...

}

128 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 129 Thursday, April 18, 2013 11:34 AM
Events BeforeNewSpeed, AfterNewSpeed
Timed components that depend on the microcontroller clock such as timers,
communication and conversion components, may support speed modes defined in the
processor component (in EXPERT view level). The event BeforeNewSpeed is invoked
before the speed mode changes and AfterNewSpeed is invoked after the speed mode
changes. Speed mode may be changed using the processor component methods SetHigh,
SetLow, or SetSlow.

EVENT.C

int changing_speed_mode = 0;

void B1_BeforeNewSpeed(void)

{

++changing_speed_mode;

}

void B1_AfterNewSpeed(void)

{

--changing_speed_mode;

}

NOTE If the speed mode is not supported by the component, the component
functionality is disabled, as if the method Disable is used. If the supported
speed mode is selected again, the component status is restored.

TRUE and FALSE Values of Bool Type
Processor Expert defines the TRUE symbol as 1, however true and false logical values in
C language are defined according to ANSI-C:

• False is defined as 0 (zero)

• True is any non-zero value

It follows from this definition, that the bool value cannot be tested using the expressions,
such as if (value

== TRUE) ...

Processor Expert methods returning bool value often benefit from this definition and they
return non-zero value as TRUE value instead of 1. The correct C expression for such test
is: if (value)

In our documentation, the "true" or "false" are considered as logical states, not any
particular numeric values. The capitalized "TRUE" and "FALSE" are constants defined as
FALSE=0 and TRUE=1.
129Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 130 Thursday, April 18, 2013 11:34 AM
Typical Usage of Peripheral Initialization
Components

Init Method
Init method is defined in all Peripheral Initialization Components. Init method contains a
complete initialization of the peripheral according to the component's settings.

In the following examples, let's assume a component named "Init1" has been added to the
project.

The Init method of the Peripheral Initialization component can be used in two ways:

• The Init method is called by Processor Expert

• The Init method is called by the user in his/her module

Automatic Calling of Init
You can let Processor Expert call the Init method automatically by selecting "yes" for
the Call Init method in the Initialization group of the Component's properties.

When this option is set, Processor Expert places the call of the Init method into the
PE_low_level_init function of the CPU.c module.

Manual Calling of Init
Add the call of the Init method into the user's code, for example in main module.

Enter the following line into the main module file:

Init1_Init();

Put the Init method right below the PE_low_level_init call.

void main(void)

{

/*** Processor Expert internal initialization. ***/

PE_low_level_init();

/*** End of Processor Expert internal initialization. ***/

Init1_Init();

for(;;) {}

}

130 Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 131 Thursday, April 18, 2013 11:34 AM
Interrupt Handling
Some Peripheral Initialization components allow the initialization of an interrupt service
routine. Interrupt(s) can be enabled in the initialization code using appropriate properties
that can be usually found within the group Interrupts.

After enabling, the specification of an Interrupt Service Routine (ISR) name using the ISR
name property is required. This name is generated to Interrupt Vector table during the
code generation process. Please note that if the ISR name is filled, it is generated into the
Interrupt Vector Table even if the interrupt property is disabled.

Figure 3.27 Example of the Interrupt Configuration

Enabling/disabling peripheral interrupts during runtime has to be done by user's code, for
example by utilizing PESL or direct register access macros, because the Peripheral
Initialization Components do not offer any methods for interrupt handling.

The ISR with the specified name has to be declared according to the compiler conventions
and fully implemented by the user.

NOTE For 56800/E version users: ISRs generated by Processor Expert contain the fast
interrupt handling instructions if the interrupt priority is specified as fast
interrupt.

Typical LDD Components Usage

Init method
The Init() method is defined in all Logical Device Drivers. The Init() method
contains a complete initialization of the peripheral according to the component's settings.
See Logical Device Drivers for details.

The following example shows how to use Init method in user code, main module in this
case. Let's assume a component named "AS1" has been added to the project.

The user needs to add the call of the Init method into the user code, for example in main
module.

void main(void)

{

LDD_TDeviceStructure MyDevice;

/*** Processor Expert internal initialization. ***/
131Processor Expert User Guide

Application Design
Code Generation and Usage

PE_User_Manual.book Page 132 Thursday, April 18, 2013 11:34 AM
PE_low_level_init();

/*** End of Processor Expert internal initialization. ***/

MyDevice = AS1_Init(NULL); /* Initialize driver and
peripheral */

. . .

AS1_Deinit(MyDevice); /* Deinitialize driver and peripheral
*/

for(;;) {}

}

Deinit Method
Deinit() method disables a peripheral and frees the allocated memory if supported by
the RTOS adapter. Deinit() method is usually used in RTOS applications, not in bare-
metal applications.

Interrupt Handling
Most of LDD components are designed to be used in the interrupt mode. It means that the
interrupt service routine (ISR) is called by the interrupt controller when an asynchronous
interrupt occurs. Interrupt service routine is defined in LDD driver and a user is notified
through component’s events. Events can be enabled or disable in the component inspector
according to an application needs. When an event is enabled, the appropriate function is
generated into Event.c, where a user can write own event handler code. Events are called
from the ISR context, so a user should keep an event code as short as possible to minimize
a system latency.

User Changes in Generated Code
It's necessary to say at the beginning of the chapter, that modification of the generated
code may be done only at user's own risk. Generated code was thoroughly tested by the
skilled developers and the functionality of the modified code cannot be guaranteed. We
strongly don't recommend modification of the generated code to the beginners. See more
information for generated modules in chapter Code Generation.

To support user changes in the component modules, Processor Expert supports the
following features:

• Code Generation Options for Component Modules

• Freezing the Code generation
132 Processor Expert User Guide

Application Design
Embedded Component Optimizations

PE_User_Manual.book Page 133 Thursday, April 18, 2013 11:34 AM
Code Generation Options for Component
Modules
It's possible to select mode of the code generation for each component, the following
options can be found in the components's pop-up menu in the Components view:

• Always Write Generated Component Modules (default) - generated component
modules are always written to disk and any existing previous module is overwritten

• Don't Write Generated Component Modules - the code from component is not
generated. Any initialization code of the component, which resides in the processor
component, interrupt vector table and shared modules are updated.

Freezing the Code generation
Sometimes, there is unwanted any change in the code generated by Processor Expert. It's
for example in case of manual modification done by the user and the user doesn't want to
loose the code by accidental re-generation of PE project. For such cases there is an option
in Processor Expert Project Options that completely disables the code generation. See
Processor Expert Options for details.

Embedded Component Optimizations
This chapter describes how the size and speed of the code could be optimized by choosing
right component for the specific task. It also describes how to setup components to
produce optimized code. The optimizations that are described are only for the High or
Low level components, not for the Peripheral Initialization components.

Please refer to sub-chapters for more details:

• General Optimizations

• General Port I/O Optimizations

• Timer Components Optimizations

• Code Size Optimization of Communication Components

General Optimizations
This chapter describes how to setup Processor Expert and components to generate
optimized code. The following optimization are only for the High or Low-level
components, and not for the Peripheral Initialization components.
133Processor Expert User Guide

Application Design
Embedded Component Optimizations

PE_User_Manual.book Page 134 Thursday, April 18, 2013 11:34 AM
Disabling Unused Methods

NOTE These optimization are not usable for the Peripheral Initialization
Components.

When Processor Expert generates the code certain methods and events are enabled by
default setting, even when the methods or events are not needed in the application, and
thus while they are unused, the code may still take memory. Basically, the unused
methods code is dead stripped by the linker but when the dependency among methods is
complex some code should not be dead stripped. When useless methods or events are
enabled the generated code can contain spare source code because of these unused
methods or events. Moreover some methods can be replaced by more efficient methods
that are for special purposes and therefore these methods are not enabled by default.

Disabling Unused Components
Disable unused and test purpose components or remove them from the project. Disabling
of these components is sufficient because the useless code is removed but the component
setting remains in the project. If these components are required for later testing then add a
new configuration to the project and disable these useless component only in the new
configuration. The previous configuration will be used when the application is tested
again. Moreover if it is required to use the same component with different setting in
several configurations, its possible to add one component for each configuration with
same name and different setting.

Speed Modes

NOTE These optimizations are not usable for the Peripheral Initialization
Components.

Timed components which depend on the processor clock (such as timer, communication
and conversion components), may support speed modes defined in the processor
component (in EXPERT view level). The Processor Expert allows the user to set closest
values for the component timing in all speed modes (if possible) . If the requested timing
is not supported by the component, for example if the processor clock is too low for the
correct function of the component, the component can be disabled for the appropriate
speed mode. The mode can be switched in the runtime by a processor method. The
component timing is then automatically configured for the appropriate speed mode or the
component is disabled (according to the setting). Note, however, that use of speed modes
adds extra code to the application. This code must be included to support different clock
rates. See speed mode details here.
134 Processor Expert User Guide

Application Design
Embedded Component Optimizations

PE_User_Manual.book Page 135 Thursday, April 18, 2013 11:34 AM
See chapter Embedded Component Optimizations for details on choosing and setting the
components to achieve optimized code.

General Port I/O Optimizations
NOTE These optimizations are not usable for the Peripheral Initialization

Components.

ByteIO Component Versus BitsIO Component
ByteIO component instead of BitsIO component should be used when whole port is
accessed. The BitsIO component is intended for accessing only part of the port (e.g. 4 bits
of 8- bit port)

Using the BitsIO component results more complex code because this component provides
more general code for the methods, which allows access to only some of the bits of the
port. On the other side, the ByteIO component provides access only to the whole port and
thus the resulted code is optimized for such type of access.

BitsIO Component Versus BitIO Components
In case of using only a part of the port the multiple BitIO components could be used. A
better solution is to use the BitsIO component replacing multiple calls of the BitIO
component's methods. The application code consist only of one method call and is smaller
and faster.

Timer Components Optimizations
NOTE These optimizations are not usable for the Peripheral Initialization

Components.

For better code size performance, it's recommended to not to use a bigger counter/reload/
compare register for timer than is necessary. Otherwise the code size generated by a
component may be increased (e.g. For 8-bit timer choose 8bit timer register).

In some cases, several timing periods are required when using timers (For example, the
TimerInt component). The Processor Expert allows changing the timer period during run-
time using several ways (note that this is an advanced option and the Component Inspector
Items visibility must be set to at least 'ADVANCED').

These ways of changing the run-time period of timer requires various amount of code and
thus the total application code size is influenced by the method chosen. When the period
must be changed during run-time, use fixed values for period instead of an interval if
135Processor Expert User Guide

Application Design
Embedded Component Optimizations

PE_User_Manual.book Page 136 Thursday, April 18, 2013 11:34 AM
possible to save code. There are two possibilities (See Dialog Box for Timing Settings for
details.):

• From list of values - this allow to specify several (but fixed in run-time) number for
given periods. This allows only exact values - modes, listed in the listbox. The
resulted code for changing the period is less complex than using an interval.

• From time interval - this is an alternative to using 'list of values', which requires
more code. Using an interval allows setting whatever value specified by the
component during run-time. This code re-calculates the time period to the processor
ticks and this value is used when changing the timer period.

If the application requires only a few different timing periods, even if the functionality is
the same for both cases, the correct usage of list of periods produces smaller code
compared to code using an interval.

Code Size Optimization of Communication
Components
NOTE These optimizations are not usable for the Peripheral Initialization

Components.

Communication components should be used with the smallest possible buffer. Thus the
user should compute or check the maximum size of the buffer during execution of the
application. For this purpose the method GetCharsInTxBuffer/GetCharsInTxBuffer
(AsynchroSerial component), which gets current size of a used buffer, can be used after
each time the SendBlock/RecvBlock method is called.

Use interrupts if you require faster application response. The interrupt routine is
performed only at the event time, that is the code does not check if a character is sent or
received. Thus the saved processor time can be used by another process and application is
faster.

Use polling mode instead of interrupts if you require less code because usually overhead
of interrupts is bigger than overhead of methods in polling mode. But the polling mode is
not suitable for all cases. For example when you use the SCI communication for sending
only the data, and a character is sent once in a while, then it is better to use the polling
mode instead of using interrupt because it saves the code size, that is when the interrupt is
used an interrupt subroutine is needed and code size is increased.

Examples
A module of an application sends once in a while one character to another device through
the SCI channel. If the delay between two characters is sufficient to sent one character at a
136 Processor Expert User Guide

Application Design
Converting Project to Use Processor Expert

PE_User_Manual.book Page 137 Thursday, April 18, 2013 11:34 AM
time then the polling mode of the SCI (the AsynchroSerial component) should be used in
this case.

A module of an application communicates with another device, that is it sends several
characters at one time and receives characters from the device. Thus the interrupt mode of
the SCI (the AsynchroSerial component) should be used in this case because when a
character is received the interrupt is invoked and the underlying process of the application
need not check if a character is received. When a buffer for sending is used, the characters
are saved into the buffer and AsynchroSerial's service routine of the interrupt sends these
characters without additional code of the application.

NOTE The polling mode of the component is switched on by disabling of the Interrupt
service of the component (AsynchroSerial, AsynchroMaster, and
AsynchroSlave).

Converting Project to Use Processor Expert
The C project that doesn't use Processor Expert can be can be converted to Processor
Expert. This is useful when the user finds out that he/she would like to use additional
features of Processor Expert.

WARNING! Note that in most cases this conversion involves necessary manual
changes in the application code, because for example the register
interrupt vectors table definitions created by the user often conflicts
with Processor Expert definitions. Don't forget to backup the whole
project before the conversion. Some files will have to be removed from
the project. The conversion to Processor Expert is recommended to
experienced users only.

The conversion steps are as follows:

1. Select the menu command File > New > Other...

2. Within the "Select a wizard" dialog box select Processor Expert/Enable Processor
Expert for Existing C Project and click on the Next button.

3. Select the project that you would like to convert and the project type.

– Processor Expert can generate initialization code and drivers for on-chip
peripherals and also drivers for selected external peripherals or software
algorithms. See Features of Processor Expert for details.

– Device Initialization is simpler tool that can generate initialization code for on-
chip peripherals, interrupt vector table and template for interrupt vector service
routines.
137Processor Expert User Guide

Application Design
Low-level Access to Peripherals

PE_User_Manual.book Page 138 Thursday, April 18, 2013 11:34 AM
4. Select the microcontroller that the project is designed for.

5. Select the microcontroller variant(s) and Processor Expert configuarions that you
would like to have available in the project.

6. Review the actions that Processor Expert is about to perform. You can uncheck the
checkboxes for items you would like not to be done. Please ensure you have backed-up
your project before confirming before you confirm by clicking on Finish.

7. Now it's necessary to move the application code from original main.c located in
"Sources" folder into new ProcessorExpert.c generated by Processor Expert in
previous step, consequently remove original main.c module from the project.

8. For Kinetis family projects, it's necessary to remove the files kinetis_sysinit.c
and kinetis_sysinit.h from Project_Settings/Startup_Code. This
module contains definitions that conflict with Processor Expert definitions.

Low-level Access to Peripherals
In some cases, a non-standard use of the peripheral is required and it is more efficient to
write a custom peripheral driver from scratch than to use the component. In addition, there
are special features present only on a particular chip derivative (not supported by the
component) that could make the user routines more effective; however, the portability of
such code is reduced.

Peripheral Initialization
It is possible to use Processor Expert to generate only the initialization code (function) for
a peripheral using the Peripheral initialization components. You can choose a suitable
Peripheral initialization component for the given peripheral using the Peripherals tab of
the Components Library. Refer to the Components Library View topic for details. Initial
values that will be set to the peripheral control registers can be viewed in the Peripheral
Initialization window. Refer to the Configuration Registers View topic for details.

Peripheral Driver Implementation
The rest of the peripheral driver can be implemented by the user using one of the
following approaches:

• Physical Device Drivers

• Processor Expert System Library

• Direct Access to Peripheral Registers
138 Processor Expert User Guide

Application Design
Low-level Access to Peripherals

PE_User_Manual.book Page 139 Thursday, April 18, 2013 11:34 AM
WARNING! Incorrect use of PESL or change in registers of the peripheral, which is
controlled by any Component driver can cause the incorrect Component
driver function.

Physical Device Drivers
NOTE PDD layer is available only for Kinetis and ColdFire+ family microcontrollers.

Physical Device Drivers (PDD) is a software layer that provides set of methods for
accessing microcontroller peripheral configuration registers.

PDD methods abstract from:

• What kind of registers are available

• How registers are organized

• How they are named

PDD header files are located in {InstallDir}\Processor Expert\lib\{MCU}\pdd. Each file
contains a definitions of PDD methods for one microcontroller peripheral. Basic PDD
methods are implemented by macros and do not provide any additional functionality like
register masking, shifting, etc.

Processor Expert System Library
NOTE PESL is supported only for 56800/E

PESL (Processor Expert System Library) is dedicated to power programmers, who are
familiar with the microcontroller architecture - each bit and each register. PESL provides
macros to access the peripherals directly. It should be used only in special cases when the
low-level approach is necessary.

PESL is peripheral oriented and complements with Embedded Components, which are
functionality oriented. While Embedded Components provide very high level of project
portability by stable API and inheritance feature across different CPU/DSP/PPC
architectures, PESL is more architecture dependent.

PESL commands grouped by the related peripheral can be found in Processor Expert
Components view in PESL folder.

Convention for PESL Macros
Each name of the PESL macro consists of the following parts:
139Processor Expert User Guide

Application Design
Low-level Access to Peripherals

PE_User_Manual.book Page 140 Thursday, April 18, 2013 11:34 AM
PESL(device name, command, parameter)

Example:

PESL(SCI0, SCI_SET_BAUDRATE, 0);

Using PESL and Peripheral Initialization
Components
For every Peripheral Initialization Component (for details, refer to the Component
Categories topic) there is a C macro defined by Processor Expert with the name
component name_DEVICE. This macro results to the name of the peripheral selected in
the component named 'component name'. Using this macro instead of a real peripheral
name allows a peripheral to be changed later by changing the component property without
modifying the PESL commands in user code.

Example:

Let's expect we have a component Init_SCI named SCI1:

PESL(SCI1_DEVICE, SCI_SET_BAUDRATE, 1);

Processor Expert shows the list of the available PESL commands as a subtree of the
Peripheral Initialization component in the Components view (refer to the Processor Expert
Options topic for details). User can drag and drop the commands into the code from this
tree. The PESL commands created this way use the component name _DEVICE macro
instead of a specific peripheral name.

PESL Commands Reference
For details on PESL, its commands and parameters, see PESL Library user manual using
the Help command of PESL folder pop-up menu.

Direct Access to Peripheral Registers
NOTE Register access macros are not available for Kinetis and ColdFire+ family

microcontrollers.

The direct control of the Peripheral's registers is a low-level way of creating peripheral
driver which requires a good knowledge of the target platform and the code is typically not
portable to different platform. However, in some cases is this method more effective or
even necessary to use (in the case of special chip features not encapsulated within the
Embedded component implementation). Refer to the Low-level Access to Peripherals
topic for details.
140 Processor Expert User Guide

Application Design
Low-level Access to Peripherals

PE_User_Manual.book Page 141 Thursday, April 18, 2013 11:34 AM
The common basic peripheral operations are encapsulated by the PESL library commands
which is effectively implemented using the simple control register writes. Refer to the
Processor Expert System Library topic for details.

Register Access Macros
Processor Expert defines a set of C macros providing an effective access to a specified
register or its part. The definitions of all these macros are in the file PE_Types.h. The
declaration of the registers which could be read/written by the macros is present in the file
IO_Map.h.

Whole Register Access Macros
• getReg{w} (RegName) — Reads the register content

• setReg{w} (RegName, RegValue) — Sets the register content

Register Part Access Macros
• testReg{w}Bits (RegName, GetMask) — Tests the masked bits for non-zero value

• clrReg{w}Bits (RegName, ClrMask) — Sets a specified bits to 0.

• setReg{w}Bits (RegName, SetMask) — Sets a specified bits to 1.

• invertReg{w}Bits (RegName, InvMask) — Inverts a specified bits.

• clrSetReg{w}Bits (RegName, ClrMask, SetMask) — Clears bits specified by
ClrMask and sets bits specified by SetMask

Access To Named Bits
• testReg{w}Bit (RegName, BitName) — Tests whether the bit is set.

• setReg{w}Bit (RegName, BitName) — Sets the bit to 1.

• clrReg{w}Bit (RegName, BitName) — Sets the bit to 0.

• invertReg{w}Bit (RegName, BitName) — Inverts the bit.

Access To Named Groups of Bits
• testReg{w}BitGroup (RegName, GroupName) — Tests a group of the bit for non-

zero value

• getReg{w}BitGroupVal (RegName, GroupName) — Reads a value of the bits in
group
141Processor Expert User Guide

Application Design
Processor Expert Files and Directories

PE_User_Manual.book Page 142 Thursday, April 18, 2013 11:34 AM
• setReg{w}BitGroupVal (RegName, GroupName, GroupVal) — Sets the group of
the bits to the specified value.

RegName - Register name

BitName - Name of the bit

GroupName - Name of the group

BitMask - Mask of the bit

BitsMask - Mask specifying one or more bits

BitsVal - Value of the bits masked by BitsMask

GroupMask - Mask of the group of bits

GetMask - Mask for reading bit(s)

ClrMask - Mask for clearing bit(s)

SetMask - Mask for setting bit(s)

InvMask - Mask for inverting bit(s)

RegValue - Value of the whole register

BitValue - Value of the bit (0 for 0, anything else = 1)

{w} - Width of the register (8, 16, 32). The available width of the registers depends on
used platform.

Example
Assume that you have a processor which has a PWMA channel and it is required to set
three bits (0,1,5) in the PWMA_PMCTL to 1. Use the following line:

setRegBits(PWMA_PMCTL,35); /* Run counter */

Processor Expert Files and Directories

PE Project File
All components in the project with their state and settings and all configurations are stored
in one file ProcessorExpert.pe in the root of project directory. If the whole content
of the project including subdirectories is copied or moved to another directory, it is still
possible to open and use it in the new location.

Project Directory Structure
Processor Expert uses the following sub-directory structure within the project directory:
142 Processor Expert User Guide

Application Design
Processor Expert Files and Directories

PE_User_Manual.book Page 143 Thursday, April 18, 2013 11:34 AM
• \Generated_Code — the directory containing all generated source code modules for
components.

• \Documentation — the directory with the project documentation files generated by
Processor Expert.

• \Sources — the directory for main module, event module other user modules.

For details on files generated by Processor Expert, refer to the Code Generation topic.

User Templates and Components
User-created templates (refer to the Creating User Component Templates topic) and
components are shared by all users and they are stored in the directory:

%ALLUSERSPROFILE%\ApplicationData\Processor
Expert\{version}\

For example C:\Documents and Settings\All
Users\ApplicationData\Processor Expert\CW08_PE3_02\
143Processor Expert User Guide

PE_User_Manual.book Page 143 Thursday, April 18, 2013 11:34 AM
4
Processor Expert Tutorials

This tutorial is provided for embedded system designers who wish to learn how to use the
features of Processor Expert. This tutorial will help you to start using Processor Expert for
your own application.

This chapter explains:

Tutorial Project 1 for Kinetis Microcontrollers

Tutorial Project 1 for Kinetis
Microcontrollers

This simple tutorial describes a periodically blinking LED project. The LED is connected
to one pin of the processor and it is controlled by a periodical timer interrupt.

The project is designed to work with MK60X256VLQ10 processor and TWR–K60N512
tower board. However, it is not necessary to have this hardware. The project can be
created without it.

This simple Processor Expert demo-project uses the following LDD Embedded
Components (refer to the Component Categories topic for details):

1. MK60X256VLQ10 — processor component

2. GPIO_LDD — This component will control LED output connected to PTA10 pin.

3. TimerUnit_LDD — This component will provide periodical timing.

This tutorial contains the following main steps:

1. Creating a New Project

2. Adding Components

3. Configuring Components

4. Code Generation

Creating a New Project
To create a new project:
143Processor Expert User Guide

Processor Expert Tutorials
Tutorial Project 1 for Kinetis Microcontrollers

PE_User_Manual.book Page 144 Thursday, April 18, 2013 11:34 AM
1. In the IDE, click File menu and select New > Bareboard Project in order to create a
new project.

2. The Project Wizard appears. Enter the name of the project LED and click Next.

NOTE You can also create a project outside Eclipse workspace. In the Create an
MCU bareboard project page, uncheck the User default location checkbox
and specify the location. This option will allow you to create a project and
generate the code that will be compiled by external compiler and is not
integrated in Eclipse.

3. Select Kinetis K Series > K6x Family > MK60X256. Click Next.

4. In the Connections page, P&E USB BDM Multilink Universal [FX]/USB Multilink
is set as the default connection. Click Next.

5. In the Language and Build Tool Options page, set C in Languages page. Click
Next.

6. In the Rapid Application Development page, select the Processor Expert from
Rapid Application Development group and click Finish.

The new project is created and ready for adding new components. For adding new
components, refer to the Adding Components topic.

Adding Components
1. In the Components Library view, switch to Alphabetical tab and find a GPIO_LDD

component and from its pop-up menu (invoked by the right mouse button) select Add
to project option.

2. Find TimerUnit_LDD component and from its pop-up menu (invoked by the right
mouse button) select Add to project option.

The components are now visible in the Components folder in the Components view.

Figure 4.1 Component View
144 Processor Expert User Guide

Processor Expert Tutorials
Tutorial Project 1 for Kinetis Microcontrollers

PE_User_Manual.book Page 145 Thursday, April 18, 2013 11:34 AM
 For configuring new components, refer to the Configuring Components topic.

Configuring Components
1. In the Components view, click GPIO1:GPIO_LDD component to open it in

Component Inspector view.

2. In the Component Inspector view, set the property Field name in the first Bit field
group to LedPin. From the drop-down menu, select the value for Pin as PTA10 (it
corresponds to LED17 on the tower board). Set the Initial pin direction property to
Output.

Figure 4.2 Component Inspector

3. In the Components view, click TU1:TimerUnit_LDD component to open it in the
Component Inspector.

4. Set the following properties:

– Counter to PIT_CVAL0

– Counter direction to Down

– Counter restart to On-match — allows to set desired period of interrupt,
otherwise interrupt invocation period is fixed to counter overflow.

– Counter frequency — use the dialog button and select the value offered in the
right pane: 20.972MHz.

– Interrupt to Enabled
145Processor Expert User Guide

Processor Expert Tutorials
Tutorial Project 1 for Kinetis Microcontrollers

PE_User_Manual.book Page 146 Thursday, April 18, 2013 11:34 AM
Figure 4.3 Component Inspector — Enabled Interrupt

For code generation, refer to the Code Generation topic.

Code Generation
To generate code, in the Project Explorer window, select ProcessorExpert.pe and right-
click on it. Select Generate Processor Expert Code option from the context menu. This
process generates source files for components to the Generated_Code folder in the
CodeWarrior project window. The other modules can be found in the Sources folder.

Writing Application Code
In the Project Explorer view, open the ProcessorExpert.c file under the Sources folder.
This is Processor Expert main file and do the following modifications:

Declare global variables of type LDD_TDeviceData by adding this line before main
function:

LDD_TDeviceData *LedData;

LDD_TDeviceData *TimerData;

In main function after PE_low_level_init(), call components initialization
functions:

TimerData = TU1_Init(NULL);

LedData = GPIO1_Init(NULL);
146 Processor Expert User Guide

Processor Expert Tutorials
Tutorial Project 1 for Kinetis Microcontrollers

PE_User_Manual.book Page 147 Thursday, April 18, 2013 11:34 AM
Figure 4.4 Application Code

In the Components view, expand the TU1: TimerUnit_LDD component's list of events
and methods. To view the source code of the TU1_OnCounterRestart in editor, select it
and right-click on it to select View Code option from context menu.

Figure 4.5 TU1_OnCounterRestart

Insert the following lines into the TU1_OnCounterRestart event handler function body:

extern LDD_TDeviceData *LedData;

GPIO1_ToggleFieldBits(LedData,LedPin,1);
147Processor Expert User Guide

Processor Expert Tutorials
Tutorial Project 1 for Kinetis Microcontrollers

PE_User_Manual.book Page 148 Thursday, April 18, 2013 11:34 AM
Figure 4.6 Inserted Command

Running the Application
1. Build the project using the Project > Build command from the CodeWarrior menu.

2. If you have the TWR–K60N512 board, connect it now. Run and debug the application
using the Run > Run command from the CodeWarrior menu. When the application
starts running, the on-board LED starts blinking.
148 Processor Expert User Guide

PE_User_Manual.book Page 149 Thursday, April 18, 2013 11:34 AM
Index

Symbols
"PESL".h 117
__DI() 120
__EI() 120
__initialize_hardware() 96
_DEVICE 138
_EntryPoint 91
_startup() 96
{projectname}_SIGNALS.doc 78
{projectname}_SIGNALS.txt 78
{startupfile}.c 117

Numerics
16-bit Register 119
56F80x 99
56F80xx 99
56F81xx 99
56F82x 99
56F83xx 99

A
A/D converter 13
Abstraction 55
Access Macros 139
ADC 101
Advanced view 33
AfterNewSpeed 100, 127
Alphabetical 26
Ancestor 79
Assistant 26
AsynchroMaster 101
AsynchroSerial 98, 100
AsynchroSlave 101

B
Bare-metal Applications 58
Basic view 33
BeforeNewSpeed 100, 127
bit 43
BitIO 101
bits 43

BitsIO 101, 133
buffer overflow 15
Bus clock 15
Byte2IO 101
Byte3IO 101
Byte4IO 101
ByteIO 101, 133

C
C startup 91
Capture 97
CGMXCLK 100
CMT 102
Code Generation 24
Code generation log 116
Code generator 10
ColdFire V1 derivatives 69
ColdFire+ 69
Communication Components 134
Component 15
Component Assistant 27
Component Categories 26
Component Driver 15
Component Enabled 25
Component icon 46
Component Inspector 15, 34
Component Inspector View 28
Component module 115
Component sharing 80
Components 141
Components Library 26
Configuration registers 25
PEcfg_ 73
ConnectPin 81
ConnectPin Method 81
Constants 118
Counter 15
CPU.H 73
Creating Applications 14
149Processor Expert User Guide

PE_User_Manual.book Page 150 Thursday, April 18, 2013 11:34 AM
D
Deinit() 58
Descendant 79
design specifications 10
Design-time verifications 9
DisableEvent 126
Distinct mode 25
Documentation 141

E
Easy Initialization 52
Embedded Components 13
EnableEvent 126
EnterCritical() 120
ERR_ARBITR 121
ERR_BREAK 121
ERR_BUSOFF 121
ERR_BUSY 121
ERR_COMMON 121
ERR_CRC 121
ERR_DISABLED 120
ERR_ENABLED 120
ERR_FAILED 121
ERR_FAULT 121
ERR_FRAMING 121
ERR_IDLE 121
ERR_LINSYNC 121
ERR_MATH 120
ERR_NOISE 121
ERR_NOTAVAIL 121
ERR_OK 120
ERR_OVERFLOW 100, 120
ERR_OVERRUN 121
ERR_PARITY 121
ERR_PROTECT 121
ERR_QFULL 121
ERR_RANGE 120
ERR_RXEMPTY 121
ERR_SPEED 120
ERR_TXFULL 121
ERR_UNDERFLOW 121
ERR_UNDERRUN 121
ERR_VALUE 120

Event module 115
Event priority 111
EventCntr16 100
Events 14, 15
ExitCritical() 120
Expert view 33
Extensible components library 9
Extensible Library 54
External Devices 54
External user module 15
External Xtal frequency 63
ExtInt 101

F
Filtering 26
fixed value 39
FlexCAN device 98
FPGA 8
FPGAs 52
Free running device 15
FreeCntr8/16/32 102
FreescaleCAN 98
FreescaleSSI 98
from interval 40
FTM 102

G
Generated_Code 141
getReg{w}BitGroupVal 139
Graphical IDE 10
Graphical Mode 29

H
HC(S)08 derivatives 68
HC(S)08 Derivatives without IPC 68
HC(S)08 derivatives without IPC 70
HCS08 Derivatives with IPC 68, 70
Help on Component 34
Help on component 25
Hertz 43
Hide views 20
High level component 15
High Level Components 55
150 Processor Expert User Guide

PE_User_Manual.book Page 151 Thursday, April 18, 2013 11:34 AM
High speed mode 64
Higher visibility level 33
Hints 46
Hz 43

I
Images 119
Import package 20
Inheritance 79
Init 128
Init() 58
Inspector 24
Inspector - Pinned 24
Inspector Items 30
INT_VECTORS 112
IntEEPROM 102
Internal Peripherals 54
Internal peripherals 16
Interrupt Priority 68, 74
Interrupt priority 111
Interrupt Priority Controller 68, 70
Interrupt Service Routine 66
Interrupt Subroutines 54
Interrupt Vector Table 66
Interrupts 65
Interrupts and Events 65
IntFlash 98
IO_Map.c 116
IO_Map.h 116, 139
IPC 68, 70
ISR 16, 54
ISRs 23
Items Visibility 33
IVT 112

K
KBI 101
kbit 43
kbits 43
kHz 43
kilohertz 43
Kinetis 69

L
LCF 58
LDD 9, 55
LDD Components 55
LDD components 9, 15, 16
Logical Device Drivers 9, 55
Logical Device Drivers) 15
LongIO 101
Low level component 16
Low Level Components 56
Low Power Features 59
Low speed mode 64

M
Macros 118, 120
Main module 115
megahertz 43
Memory 74
Methods 16
methods 14
MHz 43
Microcontroller 16
Microcontroller Unit 16
microseconds 42
milliseconds 42
MISRA compliance 111
MK60X256VMD100 143
Modes 26
Module 16
MON8 99, 106
ms 42
MSCAN12 device 98
MTIM 102
MTIM1 as a shared prescaler 103

N
Named Bits 139
Named Groups of Bits 139

O
On-Chip Peripherals 74
On-chip Peripherals 46
On-chip Peripherals Management 53
151Processor Expert User Guide

PE_User_Manual.book Page 152 Thursday, April 18, 2013 11:34 AM
-Onf 111
OnReset 91, 96
OOP 16

P
PDD 137
PE 16
PE_Const.h 116
PE_Error.h 117
PE_low_level_init() 91, 96
PE_Timer 117
PE_Types.h 116, 139
Peripheral Initialization component 16
Peripheral Initialization Components 56
PESL 16, 137
PESL commands 23
Physical Device Drivers 137
Pin hint 46
Pin_signal 77
Pins 45
PIT 102
PLL 16, 63
Pop-up Menu 26
Popup menu 16
Portability 61
PPG 41, 47, 100
Predefined Types 118, 119
Preferences 21
Prescaler 17
Priority of Event Code 69
Processor 17
Processor Component 15
Processor module 115
Processor ticks 42
Processors 26
Project Options 20
Project Pop-up Menu 20
Properties 17
PulseAccumulator 97
PWM 41, 100, 102, 105
PWM Sharing 105
PWU 102

R
Read Only Items 28
Remove component from project 25
Resources Allocation 80
RS08 with interrupt support 69
RS08 Without Interrupt Support 68
RTC 102
RTI 102
RTIshared 102
RTOS 17, 58
RTOS Adapter 58
RTOS environment 58

S
Save Component Settings 25
second 43
seconds 42
selectable visibility 33
setReg{w}BitGroupVal 140
Shared Ancestor 79
Shared Drivers 59
Shared mode 25
Shared modules 116
Shared Pins 46
Sharing Pins 81
Show views 20
Signal names 116
Single-channel 102
Slow speed mode 64
Sources 141
speed mode tabs 42
Speed Modes 76, 132
sub-clock xtal frequency 63
SW 55
SynchroMaster 98, 101
SynchroSlave 98, 101
system behavior 9

T
TBM 102
Template 17
Templates 141
testReg{w}BitGroup 139
152 Processor Expert User Guide

PE_User_Manual.book Page 153 Thursday, April 18, 2013 11:34 AM
ticks 42
TIM 102
TIMB peripheral 105
TIMB1 105
TimeDate 97, 100
Timer 102
Timer ticks 42
TimerInt 102
TimerOut 102
TimerX 47
TimerX_PPG 47
TimerX_PWM 47
Timing 75
Timing Model 75
Timing Precision Configuration 40
Timing Settings 38, 75
Timing Values Table 40
TIMx 103
TIMx_PPG 103
TIMxfree 103
TIMxPP 103
TIMxy 103
TIMxyPPG 103
TMRA01_Compare 97
TMRA01_Free 97
TOD 102, 103
TPM 102, 103
TU1_OnCounterRestart 147
TWR–K60N512 143
Types 118

U
UART 100
Unused Interrupts 106
Unused Methods 132
us 42
User module 17
User-defined Component Template 17

V
Vectors.c 116
View Code 25
View Menu 28
View Mode Buttons 28

View source 25

W
WatchDog 98, 100
WordIO 101

X
XML documentation 116
Xtal 17
153Processor Expert User Guide

PE_User_Manual.book Page 154 Thursday, April 18, 2013 11:34 AM
154 Processor Expert User Guide

	Introduction
	Overview
	Features of Processor Expert
	Key Components
	Advantages

	Concepts
	Embedded Components
	Creating Applications
	RTOS Support

	Terms and Definitions Used in Processor Expert

	User Interface
	Main Menu
	Project Pop-up Menu
	Processor Expert Options

	Components View
	View Menu
	Pop-up Menu

	Components Library View
	Modes
	Filtering
	Pop-up Menu
	Component Assistant

	Component Inspector View
	Read Only Items
	View Mode Buttons
	View Menu
	Graphical Mode
	Pop-up Menu
	Inspector Items
	Items Visibility
	Pin Settings
	Component Inspector
	Configuration Inspector

	Processor View
	Control Buttons

	Memory Map View
	Configuration Registers View
	Initialization Sequence View

	Application Design
	Creating Application using Processor Expert
	Basic Principles
	Embedded Components
	Processor Components

	Configuring Components
	Interrupts and Events
	Configurations
	Design Time Checking: Consequences and Benefits
	Timing Settings
	Creating User Component Templates
	Signal Names
	Component Inheritance and Component Sharing
	Pin Sharing

	Implementation Details
	Reset Scenario with PE for HCS08, RS08 and 56800/E
	Reset Scenario with PE for 56800EX
	Reset Scenario with PE for ColdFire and Kinetis Microcontrollers
	Version Specific Information for 56800/E/ EX
	Version Specific Information for Freescale HCS08 and ColdFire V1 derivatives
	Version Specific Information for RS08
	Version Specific Information for HCS12 and HCS12X
	Version Specific Information for Kinetis and ColdFire+

	Code Generation and Usage
	Code Generation
	Predefined Types, Macros and Constants
	Typical Usage of Component in User Code
	User Changes in Generated Code

	Embedded Component Optimizations
	General Optimizations
	General Port I/O Optimizations
	Timer Components Optimizations
	Code Size Optimization of Communication Components

	Converting Project to Use Processor Expert
	Low-level Access to Peripherals
	Peripheral Initialization
	Peripheral Driver Implementation
	Physical Device Drivers
	Processor Expert System Library
	Direct Access to Peripheral Registers

	Processor Expert Files and Directories
	PE Project File
	Project Directory Structure
	User Templates and Components

	Processor Expert Tutorials
	Tutorial Project 1 for Kinetis Microcontrollers
	Creating a New Project
	Adding Components
	Configuring Components
	Code Generation

	Index

