Embedded Systems Interfacing

* File I/O

Embedded Systems Interfacing
Interfacing

i Overview

= DOS Data Structure
= Sectors and Clusters
= Master Boot Records/Boot Record
= File Allocation Table
= Root Directory
= Subdirectory File
= File IO Module

i Sectors and Clusters

= Sectors are hardware units with 512 bytes
per sector

= Cluster is an file system unit with 27x512
bytes per cluster

= Each cluster numbers start at a value of 2 at
start of the data space (see future slide)

= Each cluster is an allocation unit in the File
Allocation Table or FAT (see future slide)

i SD Card Map Structure

= Partition Table (divides media into
drives)

= Boot Record (divides drive into data
structures)

= 16-Bit File Allocation Table 1 (FAT1)
= 16-Bit File Allocation Table 2 (FAT2)
= Root Directory (fixed number of files)
= Data Area (files and subdirectories)

File System Layout
Master Boot Record
(Partition Table) e Cluster #1 used for
Boot Record Disk Type
I *MBR, BR, FATs and
FAT #2 Root not covered by
Root Directory FAT Cluster Numbers
Cluster #2 *FAT-16 uses two
Cluster #3 bytes per cluster
| 1
Cluster #nnnn .

Copyright James Grover, 2008

i 512 MB SD Card Map

Address Sector Cluster Description

0:0000] NA Master Boot Record which contains the Partition table
1:DA00 O0ED NA Boot Record

1:DC00 OEE NA Flle Allocation Table 1 with 16-bit FAT entries
2:CE00 167 NA File Allocation Table 2 with 16-bit FAT entries.
3:C000 1E0 NA Root Directory with VFAT and directory entries
4:0000 200 2 Bill of Right.txt

4:4000 220 3 MyFile.txt

512 Bytes = 1 Sector!

! Hardware Term

Embedded Systems Interfacing

Partition Table Image

Contains
Code for
Bootable
Media

Read/Executed By B.I.O.S.

SD Card Partition Table

Offset Size Data Description
O0x1BE 1Byte 0x00 Not bootable media
0x01BF 1Byte 0x03 Starting Head (Boot Record)

0x1C0 6 Bits 0B110001 Starting Sector (Boot Record)
0x1C0 10 Bits 0B000000000000 Staring Cylinder (Boot Record)
0x1C2 1Byte 0x06 System ID: BIGDOS FAT16 partition

0x1C3 1Byte 0x0F Ending Head
0x1C4 6 bits 0B111111 Ending Sector
0x1C4 10 bits 0B1101011011 Ending Cylinder
0x1C6 4 Bytes 0x000000ED Relative Sector
0x1CA 4 Bytes 0X000F1DA3 Total Sectors

Go to LBA 0x000000ED for Boot Record

Boot Record Image

Contains
Code for
Bootable

Media

Read/Executed By B.1.O.S.

SD Card Boot Record

0x0B 2 Bytes 0x200 Bytes per sector (512)

0x0D 1Byte 0x20 Sectors per cluster (32)

Ox0E 2 Bytes 0x0001 Reserved sectors

0x10 1Byte 0x02 Number of File Allocation Tables
0x11 2 Bytes 0x0200 Root entries (512)

0x13 2 Bytes 0x0000 Small sectors

Standard Information in BIOS Parameter Block
* 512 Bytes/Sector
® 32 Sectors/Cluster
* 1 Reserved Sector
e 2 FATs
¢ 200 Directory Entries (x 32 Bytes/Entry)

SD Card Boot Record

0x15 1Byte 0xF8 Media type
0x16 2 Bytes 0x0079 Sectors per File Allocation Table (121)
0x18 2Bytes 0x003F Sectors per track (63)

Ox1A 2Bytes 0x0010 Number of heads (16)

0x1C 4 Bytes 0X000000ED Hidden sectors (237)

0x20 4Bytes 0X000F1DA3 Large sectors (990627)

0x24 1 Bytes 0x80 Physical drive number

0x25 1Byte 0x00 Current head

0x26 1Byte 0x29 Signature

ox27 4 bytes 063343362 Volume serial number

0x2B 11 Bytes "NONAME " Volumn label

0x36 8 Bytes FATI6 * System ID

I T

FAT Entry Reference

0x0000 Free cluster
0X0001 Reserved cluster
0X0002 - OXFFEF | Used cluster; value points to next cluster
OXFFFO - OXFFF6 | Reserved values
OXFFF7 Bad cluster

OXFFF8 - OXFFFF | Last cluster in file

Maximum of 65520 Clusters in FAT-16

Cluster is Software (OS) Term

12

Copyright James Grover, 2008

Embedded Systems Interfacing

* FAT1 Image

!L FAT2 Image

EEBEEEI}

BEEE

B33333EEAB8REREMN
S88EEEE8EEREEE

14

oVFAT entries
eDirectory entries

wwiLe T
ras

ription
8.3 Filename.

8.3 File extension
Attribute

Reserved

Creation time milliseconds

Creation time in hours, minutes and seconds
Creation date in years since 1980, months, and da)
Last accessed date

0x14 2Bytes | 0x0000 EA-index

0x16 2Bytes | Ox42EF Last modified time

0x18 2Bytes | 0x3571 Last modified date

OXIA | 2Bytes | 0x0002 First cluster

OxIC | 4Bytes | O0x00000F23 | File size in bytes.

16

15
i Long File Reference (VFAT)
Offset Data
0x00 1Byte [Sequence number
0x01 10 Bytes “Bill " Name characters as five UTF-16 characters
0x0B 1Byte OxOF Attribute
0x0C 1Byte 0x00 Reserved
0x0D 1Byte 0x2A Checksum of DOS file name
Ox0E 12 Bytes "of Right" Name characters as six UTF-16 characters
Ox1A 2 Bytes First cluster which is always 0x0000
17

Copyright James Grover, 2008

First (and only) Sector of
Bill of Rights

18

Embedded Systems Interfacing

File Allocation Table

= FAT12 used for floppy disk
= Dreamed up by Bill Gates over a weekend

= Very cryptic and atypical of other OS allocation
methods

. Hm — OFF 100

= FAT16 used for small hard drives and SD
Cards

= FAT32 used for large hard drives

i FAT and Directory Interaction

20

i Get Out Calculator

Find Partition Table 0?
Sector 0, Offset 1BE

Find Boot Record?

0 + (1C6)pworp = OXO00000ED
Find FAT 1?

0x000000ED + Reservedg, = 0x000000EE
Find FAT 2?

OXEE + Sec/FATgz = 0x00000176

21

i Get Out Calculator

Find Root Directory?
0x176 + Sector/FATg; = 0x00000001E0

Data Area?
Ox1EO + Root Entriesgs*(Bytes/Entry) /(Bytes/Sec)gs
= 0x0000000200

Cluster n
0x200 + (n-2)gsr *Sector/Clustergy
0x200 + (3-2)par ¥0x20 = 0x220

22

i Get Out Calculator

First Cluster of File?

0x200+(File EntrYpirectory entry=2)* Sector/Clustergy
Next Cluster of File?

0x200 + (n)gar* Sector/Clustergg

23

Copyright James Grover, 2008

Structure Review

= Template of memory

= struct structTag {
dataType variable name;
(XX]
b7
= Example
struct myStructTag{
int myNum;
char myLetter[4];
int * myPointer;

24

Embedded Systems Interfacing

i Structure Review

= Declaration
struct structTag structureName;

= Examples
struct myStructTag myStruct =
{34512,’A",'Y’,'8',9,&Buffer[0]};
struct myStructTag * myStructPtr;

25

Structure Review

= Access Array Element
ch=myStruct.myLetter[3];
ch=myStructPtr->myLetter[3];

= Access Scalar
num=myStruct.myNum;
num=myStructPtr->myNumber;

= Access Pointer
ptr=myStruct.myPointer;
ptr=myStructPtr->myPointer;

= Access Data Pointer To
ch=*gmyStruct.(myPointer+5));
ch=*(myStruct->(myPointer+5));

26

i Data types

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;

enum BOOL {TRUE=0,FALSE=1};

27

i Partition Information

struct PARTITIONINFO {
BYTE bootid; /* bootable? 0=no, 128=yes */
BYTE beghead; /* beginning head number */
BYTE begsect; /* beginning sector number */
BYTE begcyl; /* 10 bit nmbr, with high 2 bits put in begsect */
BYTE systid; /* Operating System type indicator code */
BYTE endhead; /* ending head number */
BYTE endsect; /* ending sector number */
BYTE endcyl; /* also a 10 bit nmbr, with same high 2 bit trick */
DWORD relsect; /* first sector relative to start of disk */
DWORD numsect; /* number of sectors in partition */
i
How much space allocated?

28

i Master Boot Record

struct MBR{

BYTE codes[446];

struct PARTITIONINFO partition[4];
WORD mbrid;

)7

How much space allocated?

29

Copyright James Grover, 2008

i Access MBR Data

struct MBR * p=(struct MBR *)&buffer[0];

BYTE BOOTID,BEGHEAD,BEGSECT,SYSTID,ENDHEAD,ENDSECT;
WORD BEGCYL,ENDCYL,SIGNATURE;
DWORD RELSECT,NUMSECT;

BOOTID=p->partition[0].bootid;

BEGHEAD=p->partition[0].beghead;

BEGSECT=(p->partition[0].begsect)&0x3F;

BEGCYL=(((p->partition[0].begsect)&0xC0)< <8)+p->partition[0].begcyl;

SYSTID=p->partition[0].systid;

ENDHEAD=p->partition[0].endhead;

ENDSECT=(p->partition[0].endsect)&0x3F;

ENDCYL=(((p->partition[0].endsect)&0xC0)< <8)+p->partition[0].endcyl;
30

Embedded Systems Interfacing

i Access MBR Data

RELSECT=p->partition[0].relsect;
NUMSECT=p->partition[0].numsect;
SIGNATURE=p->mbrid;

31

i MEDIA Structure

typedef unsigned long LBA;

typedef struct {
LBA fat;
LBA root;
LBA data;
unsigned maxroot;
unsigned maxcls;
unsigned fatsize;
unsigned char fatcopy;
unsigned char sxc;
} MEDIA;

32

i MFILE Structure

typedef struct {
MEDIA * mda; // media structure pointer
unsigned char * buffer; // sector buffer
unsigned cluster; // first cluster
unsigned ccls; // current cluster in file
unsigned sec; // sector in current cluster
unsigned pos; // position in current sector
unsigned top; // number of data bytes in the buffer
long seek; // position in the file
long size; // file size

33

i MFILE Structure

unsigned time; // last update time

unsigned date; // last update date

char name[11]; // file name

char chk; // checksum = ~(entry + name[0])
unsigned entry; // entry position in cur directory
char mode; // mode 'r', 'w'

} MFILE;

34

i Directory Entries

= Filename @ 0x00 for 8 bytes
= 0x00 Unused
= OXE5S erased entry
= OX2E Dot entry (. or ..)
= File extension @ 0x08 for 3 bytes, padded
with spaces
= File Attribute @ 0xO0B for 1 byte

= VFAT has read only, hidden, system and volumn
label or OxOF attribute

35

Copyright James Grover, 2008

i Directory Entries

= Reserved @ 0xO0C for 1 byte

= Time Created @ 0x0D for 3 bytes

= Dated Created @ 0x10 for 2 bytes

= Date Last Accessed @ 0x12 for 2 bytes
= Extended Attribute @ 0x14 for 2 bytes
= Last Modify Time @ 0x16 for 2 bytes

= Last Modify Date @ 0x18 for 2 bytes

36

Embedded Systems Interfacing

i Directory Entries

= First Cluster in FAT-16 @ 0x1B for 2
bytes
= File Size in bytes @ 0x1C for 4 bytes

= Should be 0 for Volume label or
subdirectory

= See web

37

= Long File Name overlays directory entry

i FAT Tread

= Get current cluster, ccls

= Determine FAT sector p=ccls>>8
= Check if cached

= Else read FAT sector

= Get LBA of next FAT entry

38

i File I/O Support

= Fileio.h contains:
= Error Codes
= Media Structure
= Mfile Structure
= File Attributes

= Function Prototypes
= NextFAT
= NewFAT

39

i File I/O Support

= Function Prototypes
= readDIR
= writeDIR
= newDIR
= mount
= unmount
» fopenM
= freadM
» fwriteM
= fcloseM

40

i File I/O Support

= Fileio.c contains:
= Offset values for items in:
» Master Boot Record
« Partition Table
= Directroy Entries
= Global Vasiables
« FERROR
= Media Structure Instance
= Code for Prototypes in fileio.h
= Code for helper functions

41

Copyright James Grover, 2008

i Homework

= Chapter 14 Handout

= Exercise 1: LBA of Boot Record, FAT1,
FAT2, Root Directory, Data Area.

= Exercise 2: Given Directory and FAT find
LBA of file sectors.

= Exercise 3: Write structure for decoding
directory entry

43

