
1 Overview
The elftosb tool creates a binary output file that contains the
user's application image along with a series of bootloader
commands. The output file is known as a "Secure Binary" or
SB file for short. These files typically have a .sb extension.
The tool uses an input command file to control the sequence of
bootloader commands present in the output file. This
command file is called a "boot descriptor file" or BD file for
short.

The Elftosb tool is command line driven and can be separately
built to run on Windows® OS, Linux® OS, and Apple Mac®

OS. The Kinetis bootloader package contains the executable
for all the three targets.

This document describes the usage of elftosb in terms of its
command line parameters, input command file (.bd) structure,
and contents of the output .sb file. The below block diagram
describes the operation of elftosb at a high level, working on
the inputs passed on command line such as image file, BD file,
Key file, etc., and processing contents of the BD file to
generate the output SB file.

Freescale Semiconductor Document Number: KBLELFTOSBUG

User's Guide Rev. 1, 04/2016

Kinetis Elftosb User's Guide

© 2016 Freescale Semiconductor, Inc.

Contents

1 Overview..1

2 Command line interface................... 2

3 Command file.............................. 4

4 elftosb key file format.......................23

5 Appendix A: Command file grammar..................... 23

6 Appendix B: SB boot image file format.. 26

7 Revision history.......................... 42

Figure 1. Elftosb diagram

2 Command line interface
The elftosb has the set of command line options listed in the following table. Not all options are listed here, but only those
that directly interface with the things described in this document are described. Note that a space is required between both the
short or long form option and any value. Any arguments listed after the options are the positional source files utilized by the
extern() syntax (see Section 3.1.1.3, "Sources").

The command line usage for the elftosb tool is:

elftosb [-?|--help] [-v|--version] [-f|--chip-family <family>]
 [-c|--command <file>] [-o|--output <file>]
 [-P|--product <version>] [-C|--component <version>]
 [-k|--key <file>] [-z|--zero-key] [-D|--define <const>]
 [-O|--option <option>] [-K|--keygen] [-n|--number <int>]
 [-x|--extract] [-x|--sbtool] [-i|--index <int>] [-b|--binary]
 [-d|--debug] [-q|--quiet] [-V|--verbose]
 [-p|--search-path <path>] files...

Table 1. Command line options

Option Description

-p PATH, --search-path PATH Adds a path to the end of the list of search paths.

-f CHIP, --chip-family CHIP Selects output boot image format. The default is "Kinetis".

-c FILE, --command FILE Specify the command file to use. This option is required.

Table continues on the next page...

Command line interface

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

2 Freescale Semiconductor, Inc.

Table 1. Command line options (continued)

Option Description

-o FILE, --output FILE Set the output file path. Also required.

-P VERS, --product VERS Set product version.

-C VERS, --component VERS Set component version.

-k FILE, --key FILE Add a key file and enable encryption.

-z, --zero-key Add a key of all zeroes and enable encryption.

-D NAME=INT, --define NAME=INT Override or set a constant value.

-O OPTION=VALUE, --option NAME=VALUE Set a global option value.

-V, --verbose Print more detailed output.

-q, --quiet Print only warnings and errors.

-d, --debug Enable debug output.

-v, --version Display tool version.

-?, --help Show usage information.

-K/--keygen Generate AES-128 key file.

-n/--number <int> Number of keys to generate per file (default=1)(valid only
when -K is specified).

-x/--extract/--sbtool Extract a specified section.

-i/--index <int> Section index to extract(default=None Section) (valid only
when -x is specified).

-b/--binary Extract section data as binary (valid only when -x is specified)
(Warning: -q is enabled implicitly if -b is specified).

Two required command line options are used to set the command file and the output file paths.

The -f or --chip-family switch is used to tell elftosb what format of output .sb file to use. If this switch is present, the
argument must be "kinetis" (the default). Case is ignored when comparing chip family names.

The output boot image is by default not encrypted. To encrypt the boot image you need to provide one or more keys. Use the
-z switch to add a key that consists of all zeroes. This is the default state of the hardware key in a chip that has not yet had its
key programmed.

One very useful option is -D or --define, used to set and potentially override a constant value. The argument to the option is
an identifier and an integer value separated by an equals sign. The constant name identifier can be any constant name allowed
in command files, and the value can be any integer value allowed in command files except multicharacter integer literals.

Before producing the output boot image, all constants set with -D or --define options are set in the expression namespace
inside elftosb. These special constants override any normal constants with the same name that are specified in the command
file. This allows you to put a default value for a constant in the command file and very easily change it with each invocation
of elftosb.

Similar to -D is the -O or --option switch that lets you set or override global option settings from the command line. The
argument value is again an option name and value separated by an equals sign. The value can be any integer or string value
allowed in the command file except multicharacter literals.

To extract section content, use the -x/--extract/--sbtool option. Optionally pass the index of the section you want with the -i/--
index option. The section indices are printed under the "Section table" header in the normal output. The -x option alone
causes a hex dump of the section contents to be printed inline with the normal output under the "Sections" header. If you
additionally pass the -b/--binary option on the command line, then the binary contents of the section are instead echoed to
stdout, allowing you to easily redirect the the data to a file. In this mode, no other output is produced. And in all cases, the
section contents are unencrypted before being displayed.

Command line interface

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 3

To generate a random AES-128 key file in the format described below, use the -K/--keygen option.

3 Command file
Command files are simply text files in any encoding that use ASCII for the lower 128 characters. In particular, this includes
UTF-8. Line endings do not matter. Unix, DOS, and Mac OS endings are all supported. Even mixed line endings are
accepted.

The standard extension for command files, or boot descriptor files as they are more commonly called, is .bd.

The elftosb command file works very much like a linker command file. It describes the output file (the .sb file) in terms of
the input file or files. Elftosb supports ELF, S-record, and binary input files. The command file can either explicitly declare
the input files' paths, or it can let the user provide the paths on the command line. This feature enables written command files
that are fairly generic in purpose and reusable.

The command file declares a number of source files and assigns unique, easily referenced names to each. As mentioned
above, each source can either explicitly call out the path to its file or let the user provide the path on the command line. When
a user enters a path in a command line, the path can lead to any file and can change each time elftosb is called.

The command file then defines the sections required in the output .sb file. Each of these sections provides a definition for a
sequence of operations, such as load and call, that refer to the contents of the source files, or constant values present in the
command file. These operations are mapped to bootloader commands.

3.1 Blocks

The command file is broken into several different blocks: options, constants, sources, keyblob, and sections. All blocks are
optional, and there can be as many blocks of each type as the command file author likes. The only rule is that all section
blocks must come after all other block types. Each block in a command file is introduced with a block type keyword and
includes contents enclosed in braces, as demonstrated in Example 1.

Example 1. Basic block syntax

define the options block
options {
 # content goes here
}

3.1.1 Block syntax

Blocks are arranged in two groups within a command file. First come the configuration blocks: options, constants, sources,
and keyblob. There can be any number of these and they can be placed in any order. All configuration block types are
optional, but usually at least one sources block is necessary for a useful command file.

After the configuration blocks come the section definition blocks. There can be any number of section blocks. Their lexical
order in the command file determines the logical order of sections in the output boot image.

3.1.1.1 Options

An options block contains zero or more name/value pairs, the option settings, that assign values to global options used by
elftosb to control the generation of the output file.

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

4 Freescale Semiconductor, Inc.

Each entry in the options block takes the following form:

option_def ::= IDENT ‘=’ const_expr
 ;
const_expr ::= bool_expr
 | STRING_LITERAL
 ;

Within the block, each option definition must be terminated by a semicolon. The value of an option can be either a string or
any integer or Boolean expression. Acceptable values depend on the particular option.

The option names are predefined by elftosb itself and are not used anywhere else in the command file. Thus, it is possible to
have a source with the same name as one of the options, although that might be confusing. The complete list of available
options is in Table 2.

Table 2. Option names for elftosb

Option name Applies to Description

alignment Section Power of 2 integer alignment
requirement for start of the boot image
section.

cleartext Section Integer Boolean value. Makes a section
unencrypted, even in an encrypted
image.

componentVersion Boot image Same format as the productVersion
option.

driveTag Boot image Integer, sets drive tag field of the image
header.

flags Boot image Integer value that is used for image-wide
flags.

productVersion Boot image Version string in the form "xxx.yyy.zzz".

secinfoClear GHS ELF source files One of the "default", "ignore", "rom", or
"c" where "default" is equal to "c".

sectionFlags Section Integer value used to set flags for boot
image sections. Or-ed with implicit flags.

toolset ELF source files One of "GHS", "GCC", or "ADS".

The two version options are used to set the default product and component version numbers. Either version can be overridden
from the command line.

The flags option sets the flags field in the header of a boot image file. See the appendix describing the boot image format for
the possible values of this field. The same applies to the sectionFlags option, except it sets the flags field in the boot image
section header.

3.1.1.2 Constants

Similar to the options block, the constants block contains a sequence of zero or more constant definition statements, each
followed by a semicolon. Each constant definition statement is simply a name/value assignment. The right hand side is the
constant's name, a standard identifier, while the left hand side is an integer or Boolean expression.

The constant definition grammar looks like this:

constant_def ::= IDENT ‘=’ bool_expr
 ;

Constant values retain the integer word size that they evaluated to when they are used in another expression.

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 5

A constant defined earlier in the constants block can be used in the definition of constants that follow it, as shown in the
following example.

Example 2: Constants block

this is an example constants block
constants {
 ocram_start = 0;
 ocram_size = 256K;
 ocram_end = ocram_start + ocram_size -- 1;
}

3.1.1.3 Sources

The sources block is where the input files are listed and assigned the identifiers with which they are referenced throughout
the rest of the command file. Each statement in the sources block consists of an assignment operator (the "=" character) with
the source name identifier on the left hand side, and the source's path value on the right hand side. Individual source
definitions are terminated with a semicolon.

The syntax for the source value depends on the type of source definition. The two types are explicit paths and externally
provided paths. Sources with explicit paths simply list the path to the file as a quoted string literal.

The external sources use an integer expression to select one of the positional parameters from the command line. This type of
source allows the user to easily vary the input file by changing the command line arguments.

The sorce definition grammar follows this form:

source_def ::= IDENT ‘=’ source_value (‘(‘ source_attr_list? ‘)’)?
 ;
source_value ::= STRING_LITERAL
 | ‘extern’ ‘(‘ int_const_expr ‘)’
 ;
source_attr_list
 ::= source_attr (‘,’ source_attr)*
 ;
source_attr ::= IDENT ‘=’ const_expr
 ;

There source definition can optionally have a list of source attributes contained in parentheses at the end of the definition.
These attributes are the same as options in an options block but only a few options apply to sources. See Table 2 for the
complete list of options.

3.1.1.4 Keyblob

There may be any number of keyblob blocks, but they must all come before any section block types within the command file.
A keyblob block must be referenced in a keywrap statement to be useful. The grammar for a keyblob block is shown below.

keyblob_block ::= ‘keyblob’ ‘(‘ int_const_expr ‘)’ keyblob_contents
 ;
keyblob_contents
 ::= ‘{‘ (‘(‘ keyblob_options_list ‘)‘)* ‘}’
 ;
keyblob_options_list
 ::= keyblob_option (‘,’ keyblob_option)*
 ;
keyblob_option ::= (IDENT ‘=’ const_expr)?
 ;

If an options list is empty, the corresponding keyblob entry is allocated but not populated. Supported keyblob option
identifiers are:

• start: Start address of encrypted region.

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

6 Freescale Semiconductor, Inc.

• end: End address of encrypted region.
• key: AES-128 counter mode encrypted key for region.
• counter: Initial counter value for region.

Example 3: Keyblob Block

keyblob (0) {
 (
 start=0x68001000,
 end=0x68001fff,
 key="00112233445566778899AABBCCDDEEFF",
 counter="0011223344556677"
)
 ()
 ()
 ()
}

NOTE
Region addresses that appear in the keyblob block must be supported by the underlying
hardware. For example, alias addresses may not be supported. See the corresponding chip
reference manual.

3.1.1.5 Sections

There may be any number of section blocks, but they must all come after the other block types within the command file. Each
section block corresponds directly to a section created in the output .sb file. Section blocks also have a slightly different
opening syntax than other blocks, in that you specify the section's unique identifier value and any options specific to that
section.

The grammar for a section block is shown below. The statement non-terminal is described in detail in Section 3.12,
"Statements".

section_block ::= ‘section’ ‘(‘ int_const_expr section_options? ‘)’ section_contents
 ;
section_options ::= ‘;’ section_option_list
 ;
section_option_list
 ::= source_option (‘,’ source_option)*
 ;
source_option ::= IDENT ‘=’ const_expr
 ;
section_contents
 ::= ‘{‘ statement* ‘}’
 | ‘<=’ SOURCE_NAME ‘;’
 ;

As is demonstrated in the following example, there are two forms of section contents. The first, with braces containing a
sequence of statements, creates a bootable section with a number of bootloader commands as its content. Most sections are in
this form. The syntax for statements in a bootable section are covered in detail in Section 3.12, "Statements".

The second form creates an arbitrary data section. The raw binary contents of the listed source file are copied wholesale into
that section of the output file. There is no predetermined format or data sections. As examples, data sections can be used to
hold resource files or a backing store for virtual memory paging.

An SB file created for a Kinetis ROM must start with a bootable section. The ROM stops processing at the end of this
bootable section. Additional bootable and data sections are ignored.

Example 4: Two section blocks

create a bootable section
section (32) {
 # statements...

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 7

}
create a data section
section (64) <= my_source_file;

The section identifier number that appears in the parentheses must be unique for that section. If two sections have the same
identifier, an error is reported.

Set options that apply only to a single section by inserting them after the section's unique identifier, separated by a semicolon.
In the grammar above, options are described by the section_options non-terminal. If there more than one option, they are
separated by commas instead of semicolons as in an options block.

These are the important options that apply to sections in output files that you should be aware of. They are also listed in Table
2.

alignment

This option takes an integer power of two as its value. The offset within the output .sb file to the first byte of a section with a
special alignment is guaranteed to be divisible by the alignment value. Alignments equal to or below 16 is ignored, as that is
the minimum alignment guaranteed by the cipher block size of an .sb file. Note that the section itself is aligned, not the boot
tag for that section. Any padding inserted to align a section consists of "nop" bootloader commands.

cleartext

Set this option to a Boolean value. The keywords "yes", "no", "true", and "false" are accepted, as is any integer expression
that evaluates to zero or non-zero. The default is false. When set to true, and if the output file is encrypted, the section to
which the cleartext option applies is left unencrypted. Beware that the ROM does not currently support unencrypted bootable
sections in an encrypted file. So this option is most useful for data sections.

As with all options, these can be set globally using an options block instead of individually per section. You can also set a
global default and override it with a section-specific option. For example, set the default section alignment to 2 K and then
align one particular section to 4 K.

Sections are always created in the output .sb file in the order they appear in the command file. In addition, the first bootable
section that is defined in the command file becomes the section that the bootloader starts processing first, after it examines
the .sb file headers.

3.2 Lexical elements

This section describes the various textual components that go into a command file, their syntax, and how they are used.
While reading the sections below, see Table 3 for examples of how tokens are written in the file.

Table 3. Example token values

Token Description

10000 Integer literal.

0x200 Integer with value of 512.

256K Integer with value of 262144.

0b001001 Integer with value of 9.

'q' Byte-sized integer with value of 0x71 or 113.

'dude' Word-sized integer with value of 0x64756465 or 1685415013.

"this is a test" String literal.

$.text Section name matching ".text".

$* Section name matching all sections.

Table continues on the next page...

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

8 Freescale Semiconductor, Inc.

Table 3. Example token values (continued)

Token Description

$*.bss Another section name matching all .bss sections, such as
".sdram.bss".

appElfFile:main Symbol reference with explicit source file.

:printMessage Symbol reference using default source file.

{{ 01 02 03 0b }} A four byte long binary object.

3.3 Whitespace

Whitespace in the form of space characters, tabs, newlines, or carriage returns is ignored throughout the command file,
except within a string. Any form of line ending is allowed.

3.4 Keywords

The following table lists every keyword used in elftosb command files. These identifiers are not available for use as source
file or constant names. Not all of the keywords are actively used in command files yet, but they are set aside for features that
are intended for the future.

Table 4. Command file keywords

call no

constants options

extern raw

false section

filters sources

from switch

jump true

load yes

mode if

else defined

info warning

error sizeof

qspi unsecure

ifr jump_sp

enable keyblob

start end

key counter

keywrap reset

all encrypt

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 9

3.5 Comments

Single-line comments are introduced at any point on a line with either a pound character ("#") or two slashes ("//") and run
until the end of the line.

Multiline comments work exactly the same as they do in ANSI C.

They begin with

"/*"

and end with

"*/"

Additionally, like ANSI C, there is no support for nested multiline comments.

3.6 Identifiers

Identifiers are used for option names, constants, and source names. They follow the familiar ANSI C rules for identifiers.
They can begin with an underscore or any alphabetic character, and may contain any number of underscores and
alphanumeric characters.

3.7 Integers

Integers literals are of one of three supported bases: binary, decimal, or hexadecimal. Decimal integers have no prefix.
Hexadecimal integers must be introduced with '0x', and binary integers must be introduced with '0b'.

Integer literals can optionally be followed by a metric multiplier character: "K", "M", or "G". Space characters are allowed
between the last digit and the multiplier. Note that binary multiplier values are used, not the standard metric multipliers. This
means that "K" multiplies the integer by 1024, "M" by 1048576, and "G" by 1073741824. Lower case "k", "m", or "g" are
not allowed.

All integer values within a command file are unsigned and have an associated size. Supported integer sizes are byte (8 bits),
half-word (16 bits), and word (32 bits). Integer literals are by default all word-sized values. To change the word size, the
"word size" operator is used in an expression.

Integer constants can also be created with character sequences contained in single quotes. One, two, or four character
sequences are allowed. These correspond to byte, half-word, and word sized integers. For example, 'oh' is equal to a half-
word with the value 0x6f68 hex (the value of the characters "o" and "h" in ASCII) or 28520 decimal.

Several keywords are set aside for built-in integer constants for Boolean values. These are "yes", "no", "true", and "false".
The "yes" and "true" keywords evaluate to 1, while "no" and "false" evaluate to 0. These keywords can be used anywhere that
accepts an integer value, including the command line.

3.7.1 Integer expressions

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

10 Freescale Semiconductor, Inc.

An integer expression can be used in any place an integer constant value is required in the grammar. These expressions for
the most part follow the style of standard C expressions, with a few extensions. The following table lists the available
operators.

Table 5. Integer expression operators

Operator Description

+ add

- subtract

* multiply

/ divide

% modulus

& bitwise and

| bitwise or

^ bitwise xor

<< logical left shift

>> logical right shift

. set integer size

sizeof() get size of a constant or symbol

In addition to those operators listed in the above table, unary plus and minus are also supported. For operator precedures, see
the following table.

3.7.1.1 Operator precedence

This table lists the expression operators grouped in their order of precedence. The first row in the table is the lowest and the
last row is the highest precedence.

Table 6. Operator precedence in increasing order

Operator Description

| bitwise or

^ bitwise xor

& bitwise and

<< >> left shift, right shift

+ - add, subtract

* / % multiply, divide, modulus

. word size

unary + - unary positive and negative

3.7.1.2 Word size operator

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 11

The one operator that needs extra discussion is the integer size operator ("."), which is fairly unique. It consists of a period
followed by one of the characters "w", "h", or "b". These characters are case-sensitive; "W", "H", and "B" are not accepted.
Whitespace is allowed between the period and the following character. This operator changes the word size for the
expression to its left. The "w" character sets the size to a 32-bit word, the default, "h" to a 16-bit word, and "b" to an 8-bit
word.

For any given binary operation, the result assumes the largest word size of the two operands. So a byte-sized integer
multiplied by a half-word-sized integer results in a half-word. It does not matter which side of the operation the two
differently sized operands are located. The actual operation is always performed as 32-bit words and the result truncated if
necessary.

3.7.1.3 Sizeof operator

The sizeof operator is used to take the size of either a symbol or constant. This operator's syntax is simply the keyword
"sizeof" followed by either a symbol reference or constant identifier in parentheses. Unlike the sizeof operator in ANSI C, the
parentheses are required. Sizes are always 32-bit values.

3.7.1.4 Constant references

Along with integer literals, expressions may refer to constants defined in the constants blocks by their name. A constant name
is simply a standard identifier. Placing a constant name in an expression is equivalent to inserting that constant's integer
value. Although sources share the same namespace as constants, they cannot be used within an integer expression.

3.7.1.5 Symbol references

Just like constants, symbol references may also be used in integer expressions. A symbol reference has the value of the
symbol's value in the ELF file and is a 32-bit value. Usually, a symbol's value is its address, although some special symbols
can have other values. If the referenced symbol does not exist in the source file, then the symbol reference has a value of 0.

3.7.2 Boolean expressions

Unlike integer expressions, Boolean expressions are limited in use. They are only allowed to be used when defining a
constant or option, or as the conditional for the if and else-if statements described in Section 3.12.6. Specifically, you cannot
use Boolean expressions as the source or target of a load statement.

Table 7. Boolean expression operators

Operator Description

&& Boolean and

|| Boolean or

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

!= not equal to

exists(src_file) does a source file exist?

Table continues on the next page...

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

12 Freescale Semiconductor, Inc.

Table 7. Boolean expression operators (continued)

Operator Description

defined(const) is a constant defined?

As shown in the above, there are number of new operators that can be used in Boolean expressions. In addition to those
operators, the unary not operator, or the character "!", is supported. All of these operators evaluate to either 0 or 1. Like ANSI
C, a value of 0 means false and any non-zero value means true.

There are two function-like operators that can be used in a Boolean expression. The first, "exists()", returns true if the source
file named inside the parentheses exists on disk and was opened successfully. It is a syntax error to put a source name that has
not been defined in a sources block inside an exists operator.

The second special operator is "defined()". It takes the name of a constant between the parentheses. The operator has a value
of true if the named constant has been assigned a value, either within the boot descriptor file or from the command line.

The && and || binary operators are short-circuit operators. This means that if the left-hand operand is equal to a value that
makes the value of the right-hand operand unimportant (because the expression has the same end value either way), the right
hand operand is not evaluated. This is particularly useful in an expression such as "if defined(const) && const > 10…". Here,
the right-hand greater than expression is only evaluated if the constant "const" is defined. If the right-hand expression was
always evaluated, and "const" happened to not be defined, an error is reported.

3.8 Strings

All string literals are contained within double quote characters. They may not extend beyond the end of a line. C-style escape
sequences are not supported so that the backslash character can be used as-is in file paths. Unfortunately this makes it
impossible to insert a double quote, newline, or other special character in the middle of a string.

3.9 Section names

Named sections of ELF files are selected with a section name literal. These special literals begin with a dollar-sign character
('$') and continue until the first character that is not allowed in a section name. The name is actually a standard glob-type
expression that can match any number of ELF sections. Accepted characters include alphanumerics, underscore, the period,
asterisk, question mark, dashes, caret, and square brackets. Many of these characters are used only as part of the glob
expression.

The supported glob sub-expressions are:

* Matches any character, zero or more times in a row.

? Matches any single character.

[set] Matches any character in the set.

[^set] Matches any character not in the set.

In the above list, a set is any combination of single characters and ranges. Ranges are formed as two characters separated by a
hyphen: "a-z" inclusively matches all characters from "a" to "z".

When used in the section list of a load statement, you can prefix a section name with a tilde ("~") character to invert the set of
matched ELF sections.

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 13

3.10 Symbol references

Source files in the ELF format have a symbol table embedded in them. A symbol reference is used to refer to a particular
symbol in an ELF file by its name. When used in an integer expression the symbol reference has the symbol's value, which is
usually its address.

The syntax for a symbol reference is quite simple, consisting of an optional source file name followed by a colon and then the
symbol's name. The symbol name is not placed in quotes or any sort of delimiters and has the same character set as a regular
identifier.

If no source file is placed before the colon, the symbol comes from the default source file that is specified with a from
statement. If the symbol reference is not within the context of a from statement, the source file name is required.

3.11 Binary objects

Binary object values, known as "blobs", are simply a sequence of hexadecimal bytes that form an object. Double curly braces
open and close a blob. Every two hexadecimal characters form one byte in the blob, and all whitespace is ignored. Case does
not matter for the hex characters. Non-hex characters are illegal, and comments are not allowed within a blob.

3.12 Statements

Each statement within a bootable section block describes an operation that is performed by the bootloader when it processes
the output .sb file. Individual statements correspond to at least one, and possible more than one, boot command created in the
output file. The intent is for statements to describe what the user wants to happen, rather than exactly which boot commands
are to be generated. It is the responsibility of elftosb to ensure that valid boot commands are generated.

All statements except the from and if-else statements must end with a semicolon.

For all of the inline examples below, assume the following definitions:

sources {
 myElfFile = “app.elf”;
 mySRecFile = “utility.s37”;
 myBinFile = “data.bin”;
}

3.12.1 Load

The load statement is used for any operation where the user wants to put some form of data into memory. In terms of
bootloader commands, this includes data loads, pattern fills, and word pokes. The goal is for the load statement to be
extremely flexible. These statements can be very simple in syntax but very complex underneath. In other words, a short load
statement can produce a large sequence of boot commands. On the other hand, a long and complex load statement may
produce a single boot command. The idea is to abstractly describe the desired operation and let elftosb determine how to best
convert it into bootloader commands.

The load command is also used to write to flash memory. When loading to flash memory, the region being loaded to must
have been erased prior to the load. See the erase command for details of how to accomplish this.

The grammar for a load statement is:

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

14 Freescale Semiconductor, Inc.

load_stmt ::= ‘load’ load_data (‘>’ load_target)?
 ;
load_data ::= const_expr
 | SOURCE_NAME
 | section_list (‘from’ SOURCE_NAME)?
 ;
section_list ::= section_ref (‘,’ section_ref)*
 ;
section_ref ::= (‘~’)? SECTION_NAME
 ;
load_target ::= ‘.’
 | address_or_range
 ;
address_or_range
 ::= int_const_expr
 | int_const_expr ‘..’ int_const_expr
 ;

As shown in the grammar, all load statements are introduced with the "load" keyword. Each load statement is comprised of a
data source and a target location. The source is always required, but the target can be implicit, in which case it is based on the
source itself. Not all combinations of source and target types are allowed.

The source is represented by the load_data non-terminal in the grammar above. There are four types of sources that are
allowed: integer values, string literals, a source file, or one or more named sections of a source file. These diverse sources
boil down to one or more segments of data, depending on the type of source. Data sources, and therefore segments, may or
may not have a natural location in memory associated with them. This natural location is the range of addresses in memory
where the data is placed by default. They also may have a natural size in bytes.

For instance, a section of an ELF file is linked to a certain address and has a length. These combine to form the section's
natural address and size. For example, the content of a binary file has a natural size but not an address.

The target of the load statement determines the address in memory at which the source is loaded and the length of the load.
For certain source types that have a natural location, the target is optional and can be excluded from the statement. If
explicitly listed, the target follows a '>' symbol after the source data. An alternative, equivalent form for an implicit target is
to put a dot (period) after the '>'. Values for the target are either an address or address range. When a target is a single address
it does not have a length associated with it. In this case, the length of the load comes from the source data itself. References
to symbols from an ELF file can also be used as a load target. They are equivalent to an address range, from the symbol's
start address to its end address.

When the target is a single address, the entire data source is loaded to that address. This is true even if the source has a
natural address. This allows the user to, for instance, load ELF sections to different addresses from which they were linked.

When the target is an address range or a symbol equivalent to an address range, the source is both located and potentially
truncated. The load address is the start of the target range. This works the same as with a single target address. If the natural
size of the data source is equal to or smaller than the size of the target range (the end address minus the start address) then the
entire source is loaded. When the source's size is smaller than the target range, the leftover bytes are not modified in any way.
Whenever natural size of the source is larger than the target range, the source is truncated to the size of the range when
loaded.

Data sources that are composed of multiple segments, such as ELF files with multiple sections, must be loaded to their
natural location. This is because only one target address or range can be specified, and it's useless to load each segment to the
same address.

The most common form of load statement is to simply load a source file by name. This can produce quite different data
sources, depending on the source file's type. The specific features of each data source type are described below.

ELF file — Using an entire ELF file as a data source causes all sections within the file to be loaded. Not all sections are
loaded; only those sections whose type is SHT_PROGBITS or SHT_NOBITS are considered. All sections from ELF files
have natural locations and sizes.

these two loads are completely equivalent
load myElfFile;
load myElfFile > .;

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 15

S-record file — The contents of the file are turned into an in-memory image where contiguous regions of data are found by
coalescing the individual load commands. Load segments are created from each of the contiguous regions. These segments
do have natural addresses.

load mySRecFile;

Binary file — The entire contents of the file form one load segment that does not have a natural address. However, a binary
file does have a natural length.

// load an entire binary file to an address
load myBinFile > 0x70000000;

// load part of a binary file
load myBinFile > 0x70000000..0x70001000;

Binary object — Almost like a binary file except the data is listed inline in the boot descriptor file. Again, raw binary data
has no natural address but does have a natural length.

// load an eight byte blob
load {{ ff 2e 90 07 77 5f 1d 20 }} > 0xa0000000;

ELF section list – If you want to load only certain sections of an ELF file, a syntax is supported that lets you select ELF
sections using glob expressions. See Section 3.9 for more information about section names. The data source syntax is a list of
one or more section names followed by the "from" keyword and a source name for an ELF file. The "from" keyword and
following source name are allowed to be omitted if the load statement is within a from statement. These examples
demonstrate the syntax:

Example 5: Example load block

// inclusive section name
load $.text from myElfFile;

// exclusive section name
load ~$.mytext from myElfFile;

// example load inside a from statement
 from myElfFile {
 load $.text.*, ~$.text.sdram;
}

Because all sections of an ELF file have a natural location and size, and the code in those sections expects to be at that
location, an explicit load target is not likely to be used. In fact, elftosb only allows explicit targets for statements that select a
single ELF section because it does not make sense to load multiple sections to the same target address. On the other hand, it
can be useful to relocate a single section to a new address in memory.

The actual comma separated list of ELF section name expressions that follows the "load" keyword progressively filters the
selected ELF sections. Each section name in the list can optionally be preceded by a tilde character (i.e., ""), in which case
the set of matched sections is inverted. For example, the section name "$.sdram.*" matches every section that does not begin
with ".sdram.".

As an example of how multiple section names in the list works, consider the third example load statement above. The first
section name "$.text.*" matches every ELF section that begins with ".text.". The second name in the list matches every ELF
section but the one named ".text.sdram" out of those sections matched by the previous section name. If the source file
contains ".text.ocram", ".text.sdram", ".bss", and ".data" then only ".text.ocram" is selected.

Integer value — Integers values are a unique type of load data, in that the value is used as a pattern to fill a region of
memory. Integer sources do not have a natural address but they do have a natural length.

pattern fill
load 0x55.b > 0x2000..0x3000;

load two bytes at an address
load 0x1122.h > 0xf00;

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

16 Freescale Semiconductor, Inc.

If you load an integer value to a single address without a range, the load fills as many bytes as the integer value is long. The
second load statement in the example above loads two bytes to 0xf00 because the integer value is a half-word.

If you instead load an integer to an address range, only those bytes that are included in the range are filled. This is true even if
the integer value's size is larger than the address range's length.

String literal — Using string literals as the load data source is very similar to loading a binary file. One interesting use for
this ability is to fill a buffer in memory that contains a message to be displayed to the user or printed over a serial port. Once
the buffer is set you can invoke the print routine with a call statement.

load a string at the address of a symbol
load “hello world!” > myElfFile:szMessage;

3.12.1.1 Load IFR

An IFR option to the load command to specifies that the data in the data source should be programmed to the Flash IFR index
indicated in the target location.

The grammar is below.

load_ifr_stmt ::= ‘load ifr’ int_const_expr ‘>’ int_const_expr
 ;

There are two forms of the load IFR statement, one to program to a four byte IFR location and another to program to an eight
byte IFR location.

Example 6: Four byte load IFR statement

section (0) {
 load ifr 0x1234567 > 0x30;
}

Example 7: Eight byte load IFR statement

section (0) {
 load ifr {{11 22 33 44 55 66 77 88}} > 0x40;
}

3.12.2 Call

The call statement is used for inserting a bootloader command that executes a function from one of the files that has been
loaded into memory. The type of function call is determined by the introductory keyword of the statement.

The grammar for these statements looks like this:

call_stmt ::= call_type call_target call_arg?
 ;
call_type ::= ‘call’
 | ‘jump’
 ;
call_target ::= SOURCE_NAME
 | symbol_ref
 | int_const_expr
 ;
call_arg ::= ‘(‘ int_const_expr? ‘)’
 ;

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 17

As with the load statement, the call statement begins with a special keyword. But instead of a single keyword there are two
possibilities. The keyword selects which specific boot command is produced by the statement, dependant upon the output
boot image format. In general, "call" commands are expected to return the bootloader and "jump" commands are not. For
boot images, "call" produces a ROM_CALL_CMD and "jump" produces a ROM_JUMP_CMD. See the boot image format
design document for specific details about these commands, such as the function prototypes they expect.

After the introductory keyword comes the call target, of which there are three forms that each have their own syntax. All
forms of the target boil down to just an address in memory. The different forms are described in detail below.

Source file — If a source file name is used as the call target, the call statement uses the entry point to that source file as the
target address. This implies that the source file must have an entry point. If a source file is used that does not support entry
points or does not have one set, an error is reported.

call the entry point
call myElfFile;

same here
jump mySRecFile;

this produces an error because binary files
do not have an entry point
call myBinFile;

Integer expression — Using an integer expression is the most straightforward call target. The expression simply evaluates to
the address of the function that is invoked by the call or jump boot command.

jump to a fixed address
jump 0xffff0000;

Symbol — Although it is just another form of integer expression, it is important to point out that a reference to a symbol in
an ELF file can be used as the call target. Both the form where the source file is explicit and the form where it is implicit are
supported. The implicit form uses the source file from the enclosing from statement (see section 0). It is an error to use the
implicit form outside of a from statement. It is also an error to list a symbol that is not present in the source file, or to use a
source file with a type other than ELF.

call a function by name and pass it an arg
call myElfFile:initSDRAM (32);

this is the implicit form of symbol usage
from myElfFile {
 call :reboot();
}

this is an error because Srecords do not have symbols
jump mySRecFile:anEntryPoint();

Note that the file the symbol comes from does not actually have to be loaded by the same command file. It is only used to
find an address, whether or not the function actually exists at that location.

The final part of a call statement is the optional argument value. It is just an integer expression wrapped in parentheses. The
expression determines what value is passed as the first argument to the call or jump boot command. If the expression is
excluded from the statement then the argument value defaults to zero. Using empty parentheses is equivalent to completely
excluding the parentheses.

3.12.3 From

More of a block than a true statement, the from statement is the simplest as far as syntax. It produces no boot commands by
itself. Instead, a from statement allows the user to use simpler forms of the statements contained within it.

The simple grammar for from statements follows this form:

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

18 Freescale Semiconductor, Inc.

from_stmt ::= ‘from’ SOURCE_NAME ‘{‘ statement* ‘}’
;

A from statement consists of the "from" keyword, a source identifier, and a sequence of statements enclosed in braces. There
is no terminating semicolon after the closing brace. Any type of statement is allowed between the braces, except for
additional from statements, as they cannot be nested.

Certain forms of the load and call statements use an implicit source file. All a from statement does is set this implicit source
file for the statements found within it. This makes for cleaner and easier to read command files.

Example 8. The from statement

name our input file
sources {
 example = extern(0);
}

create a section
section (0) {
 from example {
 # load from example and call a function inside it
 load $.ocram.*;
 call :_start;
 }
}

The above example demonstrates how the from statement is used. The load and call statements inside the from do not have
any source explicitly listed. Which file should the named sections be loaded from? Which file is the symbol "_start" located
in? The from statement supplies the implicit source file for these statements.

The load statement loads all sections in the example source that have a name beginning with ".ocram.". The call statement
generates a call boot command to the address of the "_start" symbol within the example source file.

3.12.4 Erase

The erase statement inserts a bootloader command to erase flash memory.

Grammar for the erase statement:

erase_stmt ::= 'erase' address_or_range
 | 'erase' 'all'
 ;

There are two forms of the erase statement. The simplest form, "erase all", creates a command that erases all available flash
memory. The actual effect of this command depends on runtime settings of the bootloader and whether the bootloader resides
in flash, ROM, or RAM.

The second form of the erase statement accepts an address or address range as an argument. It causes the flash sectors, which
are intersected by the address or range, to be erased. To erase a single sector, provide a single address within that sector.

Example 9: The erase statement

sources {
 example = extern(0);
}

create a section
section (0) {
 erase all;
 load example;
}

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 19

3.12.5 Print

The print statement is actually three very similar statements that are used to print different categories of messages to the user.
The three types of print statement are info, warning, and error. All print statements begin with a keyword corresponding to
their type, as seen in the grammar here:

print_stmt ::= ‘info’ STRING
 | ‘warning’ STRING
 | ‘error’ STRING
 ;

The info statement simply prints the message to standard out. The message is visible unless the caller has enabled the quiet
output feature. The warning statement does basically the same thing as the info statement, except it prefixes the message with
"warning:". Additionally, the message is always visible. Finally, the error statement stops the execution of elftosb
immediately and prints the message prefixed by "error:".

Example 10: The print statement

sources
{
 # give the ELF file a name
 afile = “file.elf”;
}

constants
{
 # create a constant that is the size of a symbol
 bufsize = sizeof(afile:_my_buf);
}

create a section
section (0)
{
 if bufsize < 128
 {
 # elftosb stops after this is printed
 error “Buffer size $(bufsize) is too small!”;
}
else
{
 info “Buffer size $(bufsize) is acceptable”;
}

/* ...more... */
}

The three print statements support substitution of constant values and source file paths using a syntax like that for Unix shell
variable substitution. A constant name or source file name placed in parentheses and prefixed with a dollar sign causes the
appropriate value to be inserted before the message is printed to standard out.

For constant substitution, there is limited control of the formatting of the constant's value. Formatting options are placed
before a colon that prefixes the name of the constant inside the parentheses. The two supported formatting options are the
characters "d" and "x", only one of which is allowed at a time. "d" formats the constant as decimal and "x" formats it as
hexadecimal. For example, "$(x:floop)" formats the constant "floop" as hex.

3.12.6 If-Else

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

20 Freescale Semiconductor, Inc.

To make it easier to create reusable boot descriptor files, elftosb has the if-else statement. These statements work just like if
statements in any other language you have used. Chain as many else-if statements as you like. The final else branch is
optional and may be excluded.

The grammar looks like this:

if_stmt ::= ‘if’ bool_expr ‘{‘ statement* ‘}’ else_stmt?
;
else_stmt ::= ‘else’ ‘{‘ statement* ‘}’
| ‘else’ if_stmt
;

There are several differences in syntax from ANSI C. No parentheses are required around the Boolean expression after the
"if" keyword. Additionally, curly braces are always required around statements on both the if and possible else branch.

All types of statements are allowed inside an if-else statement, including from statements. The converse is also true: if-else
statements may be placed inside from statements.

3.12.7 Erase QuadSPI All statement

The erase QuadSPI all statement erases the entire external QuadSPI flash.

The grammar is:

erase_qspi_stmt ::= ‘erase’ ‘qspi’ ‘all’
 ;

Example 11: Erase QuadSPI All statement

section (0) {
 erase unsecure all;
}

3.12.8 Erase Unsecure All statement

The erase unsecure all statement erases the entire internal flash, leaving flash security disabled.

The grammar is:

unsecure_stmt ::= ‘erase’ ‘unsecure’ ‘all’
 ;

Example 12: Erase Unsecure All statement

section (0) {
 erase unsecure all;
}

3.12.9 Enable QuadSPI statement

The enable QuadSPI statement initializes the external QuadSPI Flash using a parameter block previously loaded to RAM.

The grammar is:

enable_stmt ::= ‘enable’ ‘qspi’ int_const_expr
 ;

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 21

Example 13: Enable QuadSPI statement

section (0) {
 # Load quadspi config block bin file to RAM, use it to enable QSPI.
 load myBinFile > 0x20001000;
 enable qspi 0x20001000;
}

3.12.10 Reset statement

The reset statement generates a booloader reset command that resets the target device. Any additional commands in the SB
file after the reset command are ignored by the bootloader.

The grammar is:

reset_stmt ::= ‘reset’
 ;

Example 14: Reset statement

section (0) {
 reset;
}

3.12.11 Jump with stack pointer statement

The jump with stack pointer statement generates a booloader jump command that sets the stack pointer before jumping. Any
additional commands in the SB file after the jump command is ignored by the bootloader. The first argument is the value of
the stack pointer. The second argument is the jump address. The third (optional) argument is the argument to the function
being jumped to.

The grammar is below. The call_target and call_arg elements are described in the regular elftosb documentation.

jump_sp_stmt ::= ‘jump_sp’ sp_arg call_target call_arg?
 ;
sp_arg ::= int_const_expr
 ;

Example 15: Jump with stack pointer statement

section (0) {
 jump_sp 0x20000e00 0x1000 (0x5a5a5a5a);
}

3.13 Common usage example

The most common use of elftosb is to simply load a single ELF file and jump to its entry point, which is almost always the
_start symbol defined by the C runtime library.

Basic reusable boot descriptor file

// Define one input file that will be the first file listed
// on the command line. The file can be either an ELF file
// or an S-record file.
sources {
 inputFile = extern(0);

Command file

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

22 Freescale Semiconductor, Inc.

}

// create a section
section (0) {
 load inputFile; // load all sections
call inputFile; // jump to entry point
}

4 elftosb key file format
The key files provided to elftosb with the -k/--key command line switch have a very simple format. Each line of a key file
contains one key, which is an uninterrupted string of 32 hexadecimal characters, for a total of 128 bits of key data. Any
number of keys may appear in a key file, each on a separate line. The line ending format does not matter.

Example 16. Key file with two keys

3F3CFBC001F399991035C3C6C7065924
1BA3CD4030FC4376B4AA8CB5E932432E

As can be seen in Example 9, the contents of a key file are in plaintext.

5 Appendix A: Command file grammar
The grammar for the command file format is presented below in Extended Backus-Naur Format (EBNF).

command_file ::= pre_section_block* section_def*
 ;

pre_section_block
 :: options_block
 | constants_block
 | sources_block
 ;

options_block ::= ‘options’ ‘{‘ option_def* ‘}’
 ;

option_def ::= IDENT ‘=’ const_expr ‘;’
 ;

constants_block
 ::= ‘constants’ ‘{’ constant_def* ‘}’
 ;

constant_def ::= IDENT ‘=’ int_const_expr ‘;’
 ;

sources_block ::= sources ‘{’ source_def* ‘}’
 ;

source_def ::= IDENT ‘=’ source_value (‘(‘ source_attr_list? ‘)’)? ‘;’
 ;

source_value ::= STRING_LITERAL
 | ‘extern’ ‘(‘ int_const_expr ‘)’
 ;

source_attr_list
 ::= option_def (‘,’ option_def)*
 ;

elftosb key file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 23

section_block ::= ‘section’ ‘(‘ int_const_expr section_options? ‘)’
 section_contents
 ;

keyblob_block ::= ‘keyblob’ ‘(‘ int_const_expr ‘)’ keyblob_contents
 ;

keyblob_contents
 ::= ‘{‘ (‘(‘ keyblob_options_list ‘)‘)* ‘}’
 ;

keyblob_options_list
 ::= keyblob_option (‘,’ keyblob_option)*
 ;

keyblob_option ::= (IDENT ‘=’ const_expr)?
 ;

section_options
 ::= ‘;’ source_attr_list?

section_contents
 ::= ‘{‘ statement* ‘}’
 | ‘<=’ SOURCE_NAME ‘;’
 ;

statement ::= basic_stmt ‘;’
 | from_stmt
 | if_stmt
 ;

basic_stmt ::= load_stmt
 | call_stmt
 | mode_stmt
 | message_stmt
 ;

load_stmt ::= ‘load’ load_data (‘>’ load_target)?
 ;

load_data ::= int_const_expr
 | STRING_LITERAL
 | SOURCE_NAME
 | section_list (‘from’ SOURCE_NAME)?
 ;

section_list ::= section_ref (‘,’ section_ref)*
 ;

section_ref ::= (‘~’)? SECTION_NAME
 ;

load_target ::= ‘.’
 | address_or_range
 ;

address_or_range
 ::= int_const_expr
 | int_const_expr ‘..’ int_const_expr
 ;

symbol_ref ::= SOURCE_NAME? ‘:’ IDENT
 ;

load_ifr_stmt ::= ‘load ifr’ int_const_expr ‘>’ int_const_expr
 ;

call_stmt ::= call_type call_target call_arg?
 ;

Appendix A: Command file grammar

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

24 Freescale Semiconductor, Inc.

call_type ::= ‘call’
 | ‘jump’
 ;

call_target ::= SOURCE_NAME
 | symbol_ref
 | int_const_expr
 ;

call_arg ::= ‘(‘ int_const_expr? ‘)’
 ;

jump_sp_stmt ::= ‘jump_sp’ sp_arg call_target call_arg?
 ;

sp_arg ::= int_const_expr
 ;

from_stmt ::= ‘from’ SOURCE_NAME ‘{‘ in_from_stmt* ‘}’
 ;

in_from_stmt ::= basic_stmt ‘;’
 | if_stmt
 ;

mode_stmt ::= ‘mode’ int_const_expr
 ;

message_stmt ::= message_type STRING_LITERAL
 ;

message_type ::= ‘info’
 | ‘warning’
 | ‘error’
 ;

if_stmt ::= ‘if’ bool_expr ‘{‘ statement* ‘}’ else_stmt?
 ;

else_stmt ::= ‘else’ ‘{‘ statement* ‘}’
 | ‘else’ if_stmt
 ;

encrypt_stmt ::= ‘encrypt’ ‘(‘ int_const_expr ‘)’ encrypt_stmt_list
 ;

encrypt_stmt_list
 ::= ‘{‘ (statement)* ‘}’
 ;

erase_qspi_stmt ::= ‘erase’ ‘qspi’ ‘all’
 ;

unsecure_stmt ::= ‘erase’ ‘unsecure’ ‘all’
 ;

enable_stmt ::= ‘enable’ ‘qspi’ int_const_expr
 ;

reset_stmt ::= ‘reset’
 ;

const_expr ::= bool_expr
 | STRING_LITERAL
 ;

int_const_expr ::= expr
 ;

Appendix A: Command file grammar

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 25

bool_expr ::= int_const_expr
 | bool_expr ‘<’ bool_expr
 | bool_expr ‘<=’ bool_expr
 | bool_expr ‘>’ bool_expr
 | bool_expr ‘>=’ bool_expr
 | bool_expr ‘==’ bool_expr
 | bool_expr ‘!=’ bool_expr
 | bool_expr ‘&&’ bool_expr
 | bool_expr ‘||’ bool_expr
 | ‘!’ bool_expr
 | IDENT ‘(‘ SOURCE_NAME ‘)’
 | ‘(‘ bool_expr ‘)’
 | ‘defined’ ‘(‘ IDENT ‘)’
 ;

expr ::= INT_LITERAL
 | IDENT
 | symbol_ref
 | expr ‘+’ expr
 | expr ‘-‘ expr
 | expr ‘*’ expr
 | expr ‘/’ expr
 | expr ‘%’ expr
 | expr ‘<<’ expr
 | expr ‘>>’ expr
 | expr ‘&’ expr
 | expr ‘|’ expr
 | expr ‘^’ expr
 | unary_expr
 | expr ‘.’ INT_SIZE
 | ‘(‘ expr ‘)’
 | ‘sizeof’ ‘(‘ symbol_ref ‘)’
 | ‘sizeof’ ‘(‘ IDENT ‘)’
 ;

unary_expr ::= ‘+’ expr
 | ‘-‘ expr
 ;

6 Appendix B: SB boot image file format

6.1 Glossary

AES-128 - Rijndael cipher with block and key sizes of 128 bits.

Block cipher - Encryption algorithm that works on blocks of N={64, 128, ...} bits.

CBC - Cipher Block Chaining, a cipher mode that uses feedback between ciphertext blocks.

CBC-MAC - A message authentication code computed with a block cipher.

Cipher block - The minimum amount of data on which a block cipher operates.

Ciphertext - Encrypted data.

DEK - Data encryption key, a one time session key used to encrypt the bulk of the boot image.

ECB - Electronic Code Book, a cipher mode with no feedback between ciphertext blocks.

Hash - Digest computation algorithm.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

26 Freescale Semiconductor, Inc.

KEK - Key encryption key, used to encrypt a session key or DEK.

MAC - Message authentication code. Provides integrity and authentication checks.

Message digest - Unique value computed from data using a hash algorithm. Provides only an integrity check unless
encrypted.

Plaintext - Unencrypted data.

Rijndael - Block cipher chosen by the US Government to replace DES. Pronounced "rain-dahl".

Session key - Encryption key generated at the time of encryption. Only ever used once.

SHA-1 - Hash algorithm that produces 160-bit message digest.

6.2 Introduction

The entire boot image format is built around the requirements of AES-128, with its minimum block size of 128 bits or 16
bytes. AES-128 is the symmetric block cipher that is used for encrypted boot images. Using its block size as the base unit
throughout the image makes it much easier to accommodate encryption.

In order to support multiple executables within one image, the format has the concept of sections. Each section can contain a
standalone bootable image, or may be part of a larger sequence of sections. A boot command is provided that can be used to
direct the bootloader to continue from another section at runtime.

There are a number of features of this format that are not useful for all applications or methods of reading. For instance, the
section table is only useful if random access to the boot image is available. While the boot tags are most useful when booting
from a streaming media. The goal here is to provide a great deal of capability to the image, regardless of how it is accessed.

6.3 Basic types

Throughout this document several basic C types are used to represent cipher blocks, keys, and other important elements. The
definitions for these types are shown below.

//! An AES-128 cipher block is 16 bytes.
typedef uint8_t cipher_block_t[16];

//! An AES-128 key is 128 bits, or 16 bytes.
typedef uint8_t aes128_key_t[16];

//! A SHA-1 digest is 160 bits, or 20 bytes.
typedef uint8_t sha1_digest_t[20];

//! Unique identifier for a section.
typedef uint32_t section_id_t;

6.4 Boot image format

The boot image format consists of five distinct regions. First there is a plaintext header containing basic information about
the image. A section table, also plaintext, comes afterwards. It describes each of the different sections within the image. For
encrypted images, a key dictionary that is used to support multiple customer keys then follows. Next, each section has its
data, which is prefixed with a tag used by the bootloader. And finally, the image terminates with an authentication code for
the entire image. Figure 1 shows the basic layout of a boot image.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 27

The image format is designed to be read from streaming media without support for random access while requiring caching of
as little data as possible. However, the format also includes features that are most useful when random access to the image is
possible. For example, the image ends with an authentication code computed from the entire rest of the image. This isn’t
particularly useful for the ROM, but can be used by host-resident utilities to verify and authenticate boot images before using
them.

Figure 2. Boot image regions

The basic unit size of the format is that of an AES-128 cipher block, or 16 bytes. Every region in the file always starts on a
cipher block boundary. Every field within the image is formatted in little endian byte order.

6.4.1 Image header

The header of a boot image is always unencrypted. It provides required information about the image as a whole, as well as
some useful pointers to the other regions within the image.

Image header size is always a round number of cipher blocks. Any padding bytes that are necessary to fill out the structure is
always set to random values. No padding is necessary if the header completely fills the last cipher block it occupies. The
section table dictionary immediately follows.

The C structure definition for the image header follows:

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

28 Freescale Semiconductor, Inc.

struct boot_image_header_t
{
 union
 {
 sha1_digest_t m_digest;
 struct
 {
 cipher_block_t m_iv;
 uint8_t m_extra[4];
 };
 };
 uint8_t m_signature[4];
 uint8_t m_majorVersion;
 uint8_t m_minorVersion;
 uint16_t m_flags;
 uint32_t m_imageBlocks;
 uint32_t m_firstBootTagBlock;
 section_id_t m_firstBootableSectionID;
 uint16_t m_keyCount;
 uint16_t m_keyDictionaryBlock;
 uint16_t m_headerBlocks;
 uint16_t m_sectionCount;
 uint16_t m_sectionHeaderSize;
 uint8_t m_padding0[2];
 uint8_t m_signature2[4];
 uint64_t m_timestamp;
 version_t m_productVersion;
 version_t m_componentVersion;
 uint16_t m_driveTag;
 uint8_t m_padding1[6];
};

The fields of boot_image_header_t have their descriptions in the following table. The flags defined for the m_flags field
are shown in the the second table.

Table 8. Image header fields

Field Description

m_digest SHA-1 digest of all fields of the header prior to this one. The
first 16 bytes (of 20 total) also act as the initialization vector
for CBC-encrypted regions.

m_signature Always has the value 'STMP'.

m_majorVersion Major version of the boot image format, currently 1.

m_minorVersion Minor version of the boot image format, currently 1 or 2.

m_flags Flags associated with the entire image.

m_imageBlocks Size of the entire image in blocks.

m_firstBootTagBlock Offset from start of file to the cipher block containing the first
boot tag.

m_firstBootableSectionID Unique identifier of the section to start booting from.

m_keyCount Number of entries in the DEK dictionary.

m_keyDictionaryBlock Starting block number, from the beginning of the image, for
the DEK dictionary.

m_headerBlocks Size of the entire image header in blocks.

m_sectionCount Number of sections.

m_sectionHeaderSize Size in blocks of a section header.

m_padding0 Two bytes of padding to align m_signature2 to a word
boundary. Set to random values.

Table continues on the next page...

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 29

Table 8. Image header fields (continued)

Field Description

m_signature2 Always set to 'sgtl'. This second signature is only present in
files with a minor version greater or equal to 1.

m_timestamp Timestamp in microseconds size 1-1-2000 00:00 when the
image was created.

m_productVersion Product version.

m_componentVersion Component version.

m_driveTag Identifier for the disk drive or partition containing this image.

m_padding1 Eight bytes of padding to fill out the cipher block. Set to
random values.

Table 9. Boot image fields

Constant Bit Description

ROM_DISPLAY_PROGRESS 0 Turn on progress reports of executed
commands.

ROM_VERBOSE_PROGRESS 1 Prints extra information in reports about
executed commands. Applies only if
ROM_DISPLAY_PROGRESS is also
enabled.

The m_majorVersion and m_minorVersion fields describe the version of the boot image format, not the version of the
ROM (as in previous boot image formats). The major version field is currently 1. Any time this field is changed, the format is
no longer backwards compatible with previous versions and a new bootloader is expected to be required. The minor version
field should be incremented for any format changes that are backwards compatible with previous bootloader versions. For
instance, adding a new field to the end of the image header is backwards compatible due to the presence of the
m_headerBlocks field. In this case only m_minorVersion should be incremented. However, if the image header fields
were reordered the current bootloader can no longer read the image and the m_majorVersion field must be incremented.
See the file format versions table at the end of this document for more version details.

If the value of the m_keyCount is zero, then the boot image in fully unencrypted. The image is always encrypted if there is at
least one key in the dictionary.

The SHA-1 digest of the header provides a basic integrity check for unencrypted images. It does not provide any extra
security because it can simply be updated along with any changes made to the header.

Throughout the rest of the file, any time something is encrypted using CBC mode the first 16 bytes of the m_digest field are
used as the initialization vector. The digest is random enough because the header differs for all boot images. The
m_timestamp field, in addition to its nominal purpose, serves to guarantee that the plaintext header is different for every
boot image that is created. In addition to improving the randomness of the header digest, this is important because the header
is authenticated with the customer key.

The m_keyDictionaryBlock field is also used to help the boot ROM speed its processing of the header. This value can be
calculated from other header fields, but having it pre-calculated allows the ROM code to keep track of fewer header fields.

The m_productVersion and m_componentVersion fields contain version values that describe the firmware within the
boot image. These fields use the following C structure defintion:

struct version_t
{
 uint16_t m_major;
 uint16_t m_pad0;
 uint16_t m_minor;

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

30 Freescale Semiconductor, Inc.

 uint16_t m_pad1;
 uint16_t m_revision;
 uint16_t m_pad2;
};

Within each of the major, minor, and revision fields of the version_t structure, the version number is in right-aligned BCD
format. The default value for both versions is 999.999.999.

The m_padding0 and m_padding1 fields are used to align other fields and round out the structure size to an even cipher
block. These bytes are set to random values when the image is created to add to the “whiteness” of the header for
cryptographic purposes.

6.4.2 Section table

The section table is basically an index of the starting block and length for each section within a boot image. It also contains
flags that apply solely to that section.

The table is always unencrypted and comes immediately after the plaintext image header and before the DEK dictionary, if
the dictionary is present.

The C type definition for the section table and its entries is as follows:

struct section_header_t
{
 section_id_t m_identifier;
 uint32_t m_offset;
 uint32_t m_length;
 uint32_t m_flags;
};
struct section_table_t
{
 section_info_t m_sections[1];
};

The fields of section_header_t are described in the following table. The flags defined for the m_flags field of
section_header_t are as shown in the second table.

Table 10. Section header fields

Field Description

m_identifier Unique 32-bit identifier for this section.

m_offset The starting cipher block for this section's data from the
beginning of the image.

m_length The length of the section data in cipher blocks.

m_flags Flags that apply to the entire section.

Table 11. Section flags

Constant Bit Description

ROM_SECTION_BOOTABLE 0 The section is bootable and contains a
sequence of bootloader commands.

ROM_SECTION_CLEARTEXT 1 The section is unencrypted. Applies only
if the rest of the boot image is encrypted.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 31

The length of each entry in the section table comes from the m_sectionHeaderSize field of the image header. Entries are
always a round number of cipher blocks long, being padded if necessary. And all entries in the table are the same length. In
version 1 of the file format, section table entries are a single cipher block long and have no padding.

The total number of sections, and thus the number of entries in the section table, is given in the m_sectionCount field of
the image header. This should always be at least 1 for a valid bootable image. If it is 0, then the image contains no boot
commands and is considered invalid In addition, there must be at least one section with the ROM_SECTION_BOOTABLE flag
set for an image to be valid.

The size of the section table is either (header.m_sectionCount * header.m_sectionHeaderSize) cipher
blocks or (header.m_sectionCount * header.m_sectionHeaderSize * 16) bytes.

6.4.3 DEK dictionary

The key dictionary always follows the image header in the next cipher block in encrypted images. Unencrypted images do
not have a DEK dictionary.

Its purpose is to allow a single boot image to work with any number of customer keys. This is accomplished by generating a
new key, the data encryption key (DEK), every time a boot image is generated. Except for this dictionary, the rest of the
image is encrypted with this DEK. The dictionary is used to map from any given customer key to the DEK in a secure
manner, by encrypting the DEK with each customer key to be supported. Thus the DEK is never available without a valid
customer key.

Each entry in the dictionary is comprised of two pieces of data: a message authentication code (MAC) and the encrypted
DEK itself. The MAC acts as a check code, a known value that can be searched for. Otherwise there is no way to tell a valid
decryption of the DEK from garbage.

Figure 3. DEK dictionary

The message authentication code or MAC is generated using a technique called CBC-MAC. The header of the boot image
and the section table, which are both always plaintext, are encrypted in CBC mode using the KEK for the given dictionary
entry. The initialization vector for this encryption is always zero. Only the last cipher block is retained throughout this
process. The authentication code is the last cipher block.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

32 Freescale Semiconductor, Inc.

The C type definition for the DEK dictionary is shown here:

struct dek_dictionary_entry_t
{
 cipher_block_t m_mac;
 aes128_key_t m_dek;
};
struct dek_dictionary_t
{
 dek_dictionary_entry_t m_entries[1];
};

The m_dek field in each entry is encrypted using the KEK in CBC mode using the IV from the image header. The CBC-
MAC result, held in the m_mac field, is not encrypted. This is not necessary because it is generated from the secret OTP key.

The number of entries in the dictionary is determined from the m_keyCount field of the image header. The dictionary size is
always header.m_keyCount * 2 cipher blocks, or header.m_keyCount * 32 bytes. If m_keyCount is zero,
then the DEK dictionary occupies no cipher blocks in the image and the entire image is unencrypted.

The only realistic limit on the size of the dictionary is boot time. The more dictionary entries, the longer it takes to boot the
device. At least the algorithm to search for the DEK should be O(n).

6.4.4 Section boot tags

Before each section data region, there is a special tag cipher block that describes the following section. These tags are called
boot tags because the boot ROM uses them to search for sections without having to maintain a copy of the entire section table
in memory or re-read portions of the image from storage. Boot tags are always paired with a section data region—there is
never one without the other. Another way to think of boot tags is as a section header local to the section contents.

The actual structure of a boot tag is that of the ROM_TAG_CMD bootloader command. Reusing the boot command structure for
the boot tag simplifies the ROM code somewhat. The tag command contains duplicates of some of the fields from the section
table entry for the section data region with which it is paired. The most important of these are the section identifier and the
section length in blocks.

Because there is no padding allowed between sections, the section length effectively points to the next boot tag. This allows
the boot ROM to easily search for section data regions by comparing identifiers and following the chain formed by boot tags.
The last boot tag in an image always has its ROM_LAST_TAG flag set to help the ROM know at what point to stop searching.

6.4.5 Section data regions

There are two types of section data regions. The first is a bootable region that contains a sequence of boot commands. Second
is any non-bootable region that can contain arbitrary data that is not processed by the boot ROM. These regions may contain
resources or other data to be used by customer applications.

The contents of a bootable region are simply a number of bootloader commands sequenced one after another. Bootable
sections must always begin with a ROM_TAG_CMD bootloader command. See section 9 for more details about the structure of
bootloader commands and the details of individual commands.

An SB file created for a Kinetis ROM must start with a bootable section. The ROM stops processing at the end of this
bootable section. Additional bootable and data sections are ignored.

Section data regions must be ordered in the same sequence as they appear in the section table. That is, the data region for
section number 1 must come after the data region for section number 0 within the boot image. Also, there must be no pad
blocks inserted before or after section data regions, even though the format implicitly supports this by the use of cipher block
pointers. These restrictions are intended to make the processing of the boot image by the ROM easier.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 33

6.4.6 Image authentication code

Every boot image ends with an authentication code that is computed from the entire contents of the image (excluding the
authentication code, of course). This code is a SHA-1 digest encrypted with the DEK using CBC mode. The authentication
code consumes two cipher blocks in the image, with 3 words of padding added after the last word of the SHA-1 digest
(because a SHA-1 digest is 160 bits and cipher blocks are 128 bits). The padding bytes are set to random values.

The digest is computed from the following components, in this order: plaintext header, plaintext section table, DEK
dictionary, plaintext section contents.

Hash algorithms do not themselves provide authentication, only providing an integrity check. However, if the digest is
encrypted with a secret key then it can be used to provide authentication.

In an unencrypted boot image, the image authentication code is of course also unencrypted. The code no longer provides
authentication, but does still provide an integrity check over the entire image.

The authentication code will always be located starting at cipher block number (header.m_imageBlocks - 2).

6.5 Encryption details

6.5.1 Encryption process

The process of encryption takes place solely within the elftosb utility as it converts ELF or S-record binaries into a boot
image. The sequence below shows the steps that elftosb will take to encrypt an image.

1. Build plaintext image header
a. Generate IV
b. Computer SHA-1 over image header

2. Generate plaintext section table
3. Generate DEK
4. For every KEK:

a. Read KEK key file
b. Compute CBC-MAC over plaintext image header with IV=0
c. Encrypt DEK with KEK in CBC mode with IV from header
d. Combine unencrypted CBC-MAC and encrypted DEK into dictionary entry

5. For every section:
a. Generate a ROM_TAG_CMD as the boot tag for this section
b. Encrypt the boot tag using CBC mode with IV from header
c. Generate plaintext section contents
d. Encrypt the section contents using CBC mode with IV from header

6. Compute SHA-1 digest of image
7. Encrypt image digest using CBC node with IV from header

6.5.2 Decryption process

The decryption process takes place within the ROM. In addition, there is a host utility program that can decrypt a boot image
for testing purposes.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

34 Freescale Semiconductor, Inc.

1. Read first cipher block of image header. The m_keyCount field in the first cipher block tells if the image is encrypted
or not. If the image is encrypted, m_keyCount wil be non-zero.

2. As the image header is read, compute the CBC-MAC over it using the customer key.
3. For each entry in the DEK dictionary

a. Does m_mac field match the computed CBC-MAC? If not, skip to next entry.
b. If m_mac matches, decrypt DEK using customer key and exit loop.

4. For each of the section table and any section data regions that is are to be read:
a. Decrypt the region using the DEK in CBC mode with IV from header.

6.5.3 Boot commands

A bootable section in an image contains a sequence of boot commands and any data required by those commands. The
commands are processed in a linear sequence starting with the first. Each boot command occupies a single cipher block, plus
any cipher blocks required for data associated with that command. The C structure definition for a boot command is as
follows:

struct boot_command_t
{
 uint8_t m_checksum;
 uint8_t m_tag;
 uint16_t m_flags;
 uint32_t m_address;
 uint32_t m_count;
 uint32_t m_data;
};

The commands described in this section are chosen to allow the greatest flexibility in construction of boot images using the
fewest number of command types. For the most part, the individual fields of boot_command_t vary in exact meaning
between each command and are described below.

Because the m_checksum field is always calculated in the same way for every command, it deserves special mention here.
This field provides a cheap and easy way to verify that the cipher block contains a valid bootloader command. While 8 bits is
certainly not enough to act as a solid defense against either corruption or intended changes, it is far better than nothing.

The checksum is computed in the following manner:

boot_command_t bootCommand;
uint8_t * bytes = reinterpret_cast<uint8_t *>(&bootCommand);
uint8_t checksum = 0x5a;
int i;

// Unroll this loop for better optimization.
for (i = 1; i < sizeof(bootCommand); ++i)
{
 checksum += bytes[i];
}

Note that the checksum is computed only over bytes 1 through 15 of the boot_command_t structure for each boot command.
Put another way, any additional cipher blocks of data following a command are not included in the checksum. Also note that
the initial checksum value is 0x5a instead of zero. This is to prevent an all-zero command from also having a zero checksum.

The m_tag fields of each boot command contains a unique byte value that identifies which command it structure describes.
The list of boot command tag values is shown in Table 5.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 35

Command tag value Command tag mnemonic

0x00 ROM_NOP_CMD

0x01 ROM_TAG_CMD

0x02 ROM_LOAD_CMD

0x03 ROM_FILL_CMD

0x04 ROM_JUMP_CMD

0x05 ROM_CALL_CMD

0x06 Reserved

0x07 ROM_ERASE_CMD

0x08 ROM_RESET_CMD

0x09 ROM_MEM_ENABLE_CMD

0x10 ROM_PROG_CMD

Any values of m_tag that do not match those listed in the previous table are invalid. If encountered, the bootloader stops and
reports an error.

ROM_NOP_CMD

The ROM_NOP_CMD command is a no-operation. The bootload simply skips over it. All fields except the m_tag fields are
ignored by the bootloader and can contain any value. However, until other uses are documented for these fields, they should
contain the values presented in the following table.

Table 12. No-op command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeroes.

m_tag 0x00 or ROM_NOP_CMD

m_flags 0

m_address 0

m_count 0

m_data 0

Any values of m_tag that do not match those listed in the previous table are invalid. If encountered, the bootloader stops and
reports an error.

ROM_TAG_CMD

The ROM_TAG_CMD is used as a kind of “key frame” that describes a section, or a local section header. It contains most of the
fields from the section’s entry in the section table.

This command in not expected to appear within the command stream in a bootable section, and the bootloader will just
ignore it if it is present. The purpose of this command definition is to describe the structure of the boot tag cipher block. Boot
tags use the exact same structure as boot commands to make the bootloader’s job that much easier.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

36 Freescale Semiconductor, Inc.

Table 13. Hint Tag command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x01 or ROM_TAG_CMD

m_flags Bit 0: ROM_LAST_TAG

m_address The m_tag field from the section header.

m_count The number of cipher blocks that the data for this section
occupies. This also happens to be the number of cipher
blocks until the next boot tag (except for the last one).

m_data The m_flags field from the section header.

ROM_LOAD_CMD

This command is followed by an arbitrary number of cipher blocks that contain data to be loaded into memory starting at the
location specified by the m_address field of boot_command_t. The m_count field contains the number of bytes to be
loaded to this location in memory.

Table 14. Load command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x02 or ROM_LOAD_CMD

m_flags Bit 0: Reserved

m_address Memory address to which the data is stored.

m_count Number of bytes to load. This is also the number of valid
bytes in the data cipher blocks following this command.

m_data CRC-32 over the data to be loaded.

The number of cipher blocks following the command is (m_count + 15) / 16. This means that there may be up to 15
bytes of padding in the last data cipher block. Pad bytes are always filled with random data. See the following figure for an
example of how the cipher blocks are arranged for a load command with a data size of 18 bytes.

Figure 4. Load comment cipher blocks

There are no restrictions on alignment for the m_address or m_count fields. It is up to the ROM implementation to decide
how to best optimize loading of data. Thus there is no guarantee on the order in which the data is written to memory.

The m_data field contains a CRC-32 value computed over the data following the command header block. Any pad bytes in
the last data cipher block are included in the CRC-32 calculation.

ROM_FILL_CMD

This bootloader command is used to fill regions of memory with a bit pattern. The fill pattern is always a full 32 bits wide,
but a byte aligned fill length and target address are fully supported.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 37

Table 15. Fill command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x03 or ROM_FILL_CMD

m_flags Always 0.

m_address The starting memory address to which the fill pattern will be
written.

m_count Number of bytes to fill.

m_data The fill pattern. Always replicated across the word regardless
of the pattern size.

The fill pattern, regardless of its actual size, must be spread across the entire m_data field. So a pattern that is a byte wide
must be replicated four times across m_data, and twice for half-word patterns.

When filling, the pattern is adjusted so that the most significant byte is aligned with the first byte to be filled. The following
figure demonstrates what this looks like.

Figure 5. Fill pattern alignment

Note that this command is guaranteed to use word writes between any unaligned ragged edges. This enables the use of the fill
command as a word poke operation to write to registers.

ROM_JUMP_CMD

When the bootloader encounters this command, bootloading stops and CPU control is transferred to the function residing at
m_address. The contents of m_data are passed as a single argument to the function. The ROM does not expect to regain
control of the CPU after this command is executed.

Table 16. Jump command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x04 or ROM_JUMP_CMD

m_flags Bit 0: Reserved.

m_address Address that the PC will be set to.

m_count Initial stack pointer if m_flags bit 1 is set, otherwise 0.

m_data Argument to pass to the entry point in R0.

The prototype of the function executed by ROM_JUMP_CMD is as follows.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

38 Freescale Semiconductor, Inc.

void jump_function(uint32_t arg);

Note the void result. If the function does return, the bootloader fails with error ERROR_ROM_LDR_JUMP_RETURNED.

If bit 1 of m_flags is set, the m_count field contains the initial stack pointer register value to set before the jump is executed.

ROM_CALL_CMD

Like the ROM_JUMP_CMD, the ROM_CALL_CMD also invokes a function residing at m_address and passes the value m_data
as the its argument. The first and most important difference between the two commands is a semantic one, in that the function
invoked by ROM_CALL_CMD is expected to relinquish control and return to the ROM to allow bootloading to continue. In
addition, this command adds a second optional argument to the function prototype. This second argument in combination
with the function’s return value can be used to tell the bootloader to jump to another section in the current boot image or
prepare for an entirely new boot image.

Table 17. Call command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x05 or ROM_CALL_CMD

m_flags Bit 0: Reserved.

m_address Address that the function to call.

m_count 0

m_data Argument to pass to the function in R0.

The full prototype of the function executed by ROM_CALL_CMD is as follows:

int call_function(uint32_t arg, uint32_t * resultId);

The value of the m_data field is passed in the first argument to the function. The second argument is a pointer to a word that
the function can modify to return a section or image ID.

The return value determines what happens when call_function() returns and whether *resultId is examined. Possible
return values are shown in the following table.

Table 18. Call command return values

Return value Action

< 0 Negative values as errors.

0=SUCCESS Success. Continue executing commands in the current
section.

1=ROM_BOOT_SECTION_ID Switch to the section with the ID of *resultId.

2=ROM_BOOT_IMAGE_ID Restart bootloader in expectance of a new boot image. The
*resultId value is passed to the driver when its initialization
function is called again.

> 2 Ignored, same as SUCCESS.

The two positive return codes have special meanings. If the function returns ROM_BOOT_SECTION_ID then the bootloader
begins searching for a section of the current image that has an ID equal to the value returned through resultId. This section
must follow the current section in the image or it will not be found as the bootloader only searches forward through the
image. If no section with a matching unique identifier is found the boot fails with an error.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 39

If the function return ROM_BOOT_IMAGE_ID then the bootloader prepares itself to start reading an entirely new boot
image file and signals this to the current boot driver by calling its initialization function again. The value returned through
resultId is the ID of a boot image; the meaning of the image ID is specific to each boot driver, and not all boot drivers support
switching to new image files. The behaviour is undefined when switching boot images with a driver that does not support this
functionality.

Only if the return value is ROM_BOOT_SECTION_ID or ROM_BOOT_IMAGE_ID is the value pointed to by resultId
examined when the bootloader resumes execution. Because of this and how the ARM® ABI works, functions that do not
expect to return ROM_BOOT_SECTION_ID or ROM_BOOT_IMAGE_ID can shorten their prototype to the following:

int call_function_short(uint32_t arg);

ROM_ERASE_CMD

The Erase command applies only to devices with an internal flash memory array (i.e., Kinetis devices). It executes a flash
erase command for either the entire flash array or the range of memory specified in the command fields.

Table 19. Erase command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x07 or ROM_ERASE_CMD

m_flags See the following table.

m_address Start address of flash to erase.

m_count Number of bytes of flash to erase. The end address is
m_address + m_count - 1.

m_data 0

Table 20. Erase command flag bits

Bit Flag Description

0 ROM_ERASE_ALL_MASK If set, erase all flash instead of only the
specified range. If cleared, the
m_address and m_count fields are
used to determine the range of flash to
erase.

1 ROM_ERASE_ALL_UNSECURE_MASK If set, erase all flash and set flash
security state to disabled (erase-all-
unsecure).

11:8 0x00
kLdrMemoryCtrl_InternalFlash

0x01 kLdrMemoryCtrl_QSPI0

Memory controller ID. Value 0x0
(default) indicates internal flash. Value
0x01 indicates external QSPI0 on
devices that support QSPI0. If set to
0x01, then bit 1
(ROM_ERASE_ALL_UNSECURE_MASK) is
ignored.

Bit 0 of the m_flags field determines whether the entire flash array will be erased, or if only a subset will be erased. If bit 0
is set, the command will erase all of flash. In this case, the m_address and m_count fields are ignored.

If bit 0 of m_flags is cleared, then the range of flash memory to erase is specified by the m_address and m_count
command fields. Because flash memory can only be erased on a whole-sector basis, all flash sectors that are intersected by
the address range will be erased. This applies even if the address range does not begin or end on an aligned sector boundary.

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

40 Freescale Semiconductor, Inc.

If bit 1 of the m_flags field is set, the flash security state is set to disabled after the flash is erased. See the specific chip
reference manual for details on the flash erase all unsecure command.

Bits 11:8 indicate the memory controller ID of the flash device to erase. Value 0x0 (default) indicates internal flash. Value
0x01 indicates external QSPI0 on devices that support QSPI0.

ROM_RESET_CMD

The target is reset.

Table 21. Reset command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeroes.

m_tag 0x08 or ROM_RESET_CMD

m_flags 0

m_address 0

m_count 0

m_data 0

ROM_MEM_ENABLE_CMD

Enable (configure) external memory. The m_flags field bits 11:8 indicate the memory controller ID. The m_address field
contains the address in RAM where the config block was previously written, and the m_count field contains the size of the
config block. The format of the configuration block depends on the memory space.

Note that this command does not actually write the config block to the external media, but simply uses the config block to
configure the interface.

Table 22. Memory enable command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeroes.

m_tag 0x09 or ROM_MEM_ENABLE_CMD

m_flags See Memory controller ID table.

m_address Address in RAM of the existing config block.

m_count Size of the config block.

m_data 0

Table 23. Memory Enable command flag bits

Bits Value Description

11:8 0x01 kLdrMemoryCtrl_QSPI0 Memory controller ID. Value 0x01
indicates external QSPI0 on devices that
support QSPI0. No other values are
supported.

ROM_PROG_CMD

Appendix B: SB boot image file format

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

Freescale Semiconductor, Inc. 41

Write to program-once persistent bits. Bits 11:8 of the m_flags field contains the memory space ID (only
kLdrMemorySpace_IFR0 is supported). Bit 1 of the m_flags field indicates 8-byte write (if set), otherwise 4-byte write (if
clear). The m_address field contains the IFR index. The m_count field contains the first four bytes to be programmed. The
m_data field (optionally) contains the next 4 bytes to be written (if bit 1 of the flags field is set).

Table 24. Program command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeroes.

m_tag 0x0a or ROM_PROG_CMD

m_flags See Program command flags bits table.

m_address IFR index.

m_count First four bytes to be programmed.

m_data Second four bytes to be programmed (if 1 of m_flags is set.

Table 25. Program command flags bits

Bit(s) Flag/Value Description

1 ROM_PROG_8BYTE_MASK If set write eight bytes, otherwise write 4
bytes.

11:8 0x04 kLdrMemorySpace_IFR0 Memory space. Value 0x04 indicates
internal IFR flash. No other values are
supported.

6.6 File format versions

Versions are listed as Major.minor.

Table 26. File format versions

Version Description

1.3 Support for Kinetis-specific features.

7 Revision history
The following table contains a history of changes made to this user's guide.

Table 27. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

1 04/2016 Kinetis Bootloader v2.0 release

Revision history

Kinetis Elftosb User's Guide, Rev. 1, 04/2016

42 Freescale Semiconductor, Inc.

Document Number: KBLELFTOSBUG
Rev. 1
04/2016

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: nxp.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
nxp.com

Web Support:
nxp.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. ARM, and ARM Powered Logo are

registered trademarks of ARM limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

	Kinetis Elftosb User's Guide
	Overview
	Command line interface
	Command file
	Blocks
	Block syntax
	Options
	Constants
	Sources
	Keyblob
	Sections

	Lexical elements
	Whitespace
	Keywords
	Comments
	Identifiers
	Integers
	Integer expressions
	Operator precedence
	Word size operator
	Sizeof operator
	Constant references
	Symbol references

	Boolean expressions

	Strings
	Section names
	Symbol references
	Binary objects
	Statements
	Load
	Load IFR

	Call
	From
	Erase
	Print
	If-Else
	Erase QuadSPI All statement
	Erase Unsecure All statement
	Enable QuadSPI statement
	Reset statement
	Jump with stack pointer statement

	Common usage example

	elftosb key file format
	Appendix A: Command file grammar
	Appendix B: SB boot image file format
	Glossary
	Introduction
	Basic types
	Boot image format
	Image header
	Section table
	DEK dictionary
	Section boot tags
	Section data regions
	Image authentication code

	Encryption details
	Encryption process
	Decryption process
	Boot commands

	File format versions

	Revision history

