
1 Overview
The Kinetis Software Development Kit (KSDK) provides
comprehensive software support for Kinetis Microcontrollers.
The KSDK includes a flexible set of peripheral drivers
designed to speed up and simplify development of embedded
applications. Along with the peripheral drivers, the KSDK
provides an extensive and rich set of example applications
covering everything from basic peripheral use case examples
to full demo applications. The KSDK also contains RTOS
kernels, a USB host and device stack, and various other
middleware to support rapid development on Kinetis devices.

For supported toolchain versions, see the Kinetis SDK v.2.0.0
Release Notes (document KSDK200RN).

For the latest version of this and other Kinetis SDK
documents, see the Kinetis SDK homepage www.nxp.com/
ksdk

NXP Semiconductors Document Number: KSDK20GSUG

User's Guide Rev. 2, 07/2016

Getting Started with Kinetis SDK
(KSDK) v.2.0

Contents

1 Overview................................ 1

2 KSDK Board Support Folders.........2

3 Run a demo application using IAR.......4

4 Run a demo using Keil® MDK/
μVision.. 8

5 Run a demo using Kinetis Design
Studio IDE.. 11

6 Run a demo using Atollic®
TrueSTUDIO®.......................................25

7 Run a demo using ARM GCC.............................. 33

8 KSDK Project Generator.......................................42

9 Appendix A - How to determine COM
port...46

10 Appendix B - Default debug interfaces 48

11 Appendix C - Updating OpenSDA
firmware..48

12 Revision History........................ 50

http://www.nxp.com/ksdk
http://www.nxp.com/ksdk

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS, uC/OS-II/III)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. KSDK layers

2 KSDK Board Support Folders
KSDK board support provides example applications for Kinetis development and evaluation boards. Board support packages
are found inside of the top level boards folder, and each supported board has its own folder (a KSDK package can support
multiple boards). Within each <board_name> folder there are various sub-folders to classify the type of examples they
contain. These include (but are not limited to):

• demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the KSDK’s peripheral drivers for a
single use case. These applications typically only use a single peripheral, but there are cases where multiple are used
(for example, ADC conversion using DMA).

• rtos_examples: Basic FreeRTOS examples showcasing the use of various RTOS objects (semaphores, queues, and so
on) and interfacing with the KSDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example Application Structure

This section describes how the various types of example applications interact with the other components in the KSDK. To get
a comprehensive understanding of all KSDK components and folder structure, see the Kinetis SDK v.2.0 API Reference
Manual document (KSDK20APIRM).

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. We’ll discuss the hello_world example (part of the demo_apps folder), but the same general rules apply to
any type of example in the <board_name> folder.

In the hello_world application folder you see this:

KSDK Board Support Folders

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

2 NXP Semiconductors

Toolchain folders: project and linker files

Board macro definitions (LEDs, buttons, etc)

Application-specific clock configuration

Pre-compiled application

Application main source file

Application-specific pin mux configuration

Description and instructions for running

armgcc

atl

iar

kds

mdk

board.c

board.h

clock_config.c

clock_config.h

demo_name.bin

demo_name.c
pin_mux.c

pin_mux.h

readme.txt

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it’s very easy to copy-paste an existing example to start
developing a custom application based on a project provided in the KSDK.

2.2 Locating Example Application Source Files

When opening an example application in any of the supported IDEs, there are a variety of source files referenced. The KSDK
devices folder is designed to be the "golden core" of the application and is, therefore, the central component to all example
applications. Because it’s a core component, all of the examples reference the same source files and, if one of these files is
modified, it could potentially impact the behavior of other examples.

The main areas of the KSDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, KSDK feature file and a few other things.
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU.
• devices/<device_name>/<tool_name>: Toolchain-specific startup code. Vector table definitions are here.
• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications.

KSDK Board Support Folders

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 3

For examples containing middleware/stacks and/or a RTOS, there will be references to the appropriate source code.
Middleware source files are located in the middleware folder and RTOSes are in the rtos folder. Again, the core files of each
of these are shared, so modifying them could have potential impacts on other projects that depend on them.

3 Run a demo application using IAR
This section describes the steps required to build, run, and debug example applications provided in the Kinetis SDK. The
hello_world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an example, although
these steps can be applied to any example application in the KSDK.

3.1 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for
other example applications as some of these applications may have additional layers of folders in their path.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the FRDM-K64F Freedom hardware platform as an example, the hello_world workspace is located in

<install_dir>/boards/frdmk64f/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. For this example, select the “hello_world – Debug” target.

Run a demo application using IAR

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

4 NXP Semiconductors

Figure 3. Demo build target selection

3. To build the demo application, click the “Make” button, highlighted in red below.

Figure 4. Build the demo application

4. The build completes without errors.

3.2 Run an example application

Run a demo application using IAR

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 5

To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform.

• For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver.

• For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the
P&E Micro Hardware Interface Drivers package.

• For the MRB-KW01 board, visit www.nxp.com/USB2SER to download the serial driver. This board does not
support OpenSDA, so an external debug probe (such as a J-Link) is required. Steps below referencing OpenSDA
do not apply as there is only a single USB connector for serial output.

2. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Figure 5. Terminal (PuTTY) configuration
4. In IAR, click the "Download and Debug" button to download the application to the target.

Run a demo application using IAR

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

6 NXP Semiconductors

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.freescale.com/USB2SER

Figure 6. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the main() function.

Figure 7. Stop at main() when running debugging

6. Run the code by clicking the "Go" button to start the application.

Figure 8. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your

terminal settings and connections.

Figure 9. Text display of the hello_world demo

Run a demo application using IAR

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 7

4 Run a demo using Keil® MDK/μVision
This section describes the steps required to build, run, and debug example applications provided in the Kinetis SDK. The
hello_world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an example, although
these steps can be applied to any demo or example application in the KSDK.

4.1 Install CMSIS device pack

After the MDK tools are installed, Cortex Microcontroller Software Interface Standard (CMSIS) device packs must be
installed to fully support the device from a debug perspective. These packs include things such as memory map information,
register definitions and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the “Pack Installer” icon.

Figure 10. Launch the Pack installer
2. After the installation finishes, close the Pack Installer window and return to the μVision IDE.

4.2 Build an example application

• If not already done, open the desired example application workspace in: <install_dir>/boards/<board_name>/
<example_type>/<application_name>/mdk

The workspace file is named <demo_name>.uvmpw, so for this specific example, the actual path is:

<install_dir>/boards/frdmk64f/demo_apps/hello_world/mdk/hello_world.uvmpw
• To build the demo project, select the "Rebuild" button, highlighted in red.

Figure 11. Build the demo
• The build completes without errors.

4.3 Run an example application

To download and run the application, perform these steps:

Run a demo using Keil® MDK/μVision

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

8 NXP Semiconductors

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform.

• For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows serial configuration.
• For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download and

install the P&E Micro Hardware Interface Drivers package.
• For the MRB-KW01 board, visit www.nxp.com/USB2SER to download the serial driver. This board does not

support the OpenSDA. Therefore, an external debug probe (such as a J-Link) is required. Steps below referencing
the OpenSDA do not apply because there is only a single USB connector for serial output.

• For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.
2. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named

OSJTAG on some boards) and the PC USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to

determine the COM port number, see Appendix A). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable

in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 12. Terminal (PuTTY) configurations
4. In μVision, after the application is properly built, click the "Download" button to download the application to the

target.

Run a demo using Keil® MDK/μVision

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 9

https://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.freescale.com/USB2SER
http://www.keil.com/download/docs/408.asp

Figure 13. Download button
5. After clicking the “Download” button, the application downloads to the target and should be running. To debug the

application, click the “Start/Stop Debug Session” button, highlighted in red.

Figure 14. Stop at main() when run debugging

6. Run the code by clicking the “Run” button to start the application.

Run a demo using Keil® MDK/μVision

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

10 NXP Semiconductors

Figure 15. Go button

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 16. Text display of the hello_world demo

5 Run a demo using Kinetis Design Studio IDE
NOTE

Ensure that you selected the Kinetis Design Studio IDE toolchain when you generated the
KSDK Package.

This section describes the steps required to configure Kinetis Design Studio (KDS) IDE to build, run, and debug example
applications. The hello_world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an
example, though these steps can be applied to any example application in the KSDK.

5.1 Select the workspace location

The first time that KDS IDE launches, it prompts the user to select a workspace location. KDS IDE is built on top of Eclipse,
which uses workspace to store information about its current configuration, and in some use cases, source files for the projects
in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be outside of
the KSDK tree.

5.2 Updating the KDS IDE components

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 11

The user must update the KDS IDE installation before using the Kinetis SDK with it. How the update is performed depends
on the KDS IDE version.

5.2.1 Update KDS IDE 3.0 and KDS IDE 3.1

NOTE
If you have previously installed New Project Wizard for KSDK 2.0 to KDS IDE, update
it using the instructions described in the subsequent section.

1. Select the menu Help -> Install New Software.

Figure 17. Install new software
2. Select "Freescale KDS Update Site" as the site to work with.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

12 NXP Semiconductors

Figure 18. Select KDS IDE update site
3. Wait until the site content is displayed and select the "New Kinetis SDK 2.x Project Wizard".

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 13

Figure 19. Select New Project Wizard
4. Confirm and complete installation.
5. Restart the IDE.

5.2.2 Update KDS IDE 3.2

1. Select the menu Help -> Check for Updates.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

14 NXP Semiconductors

Figure 20. Check for updates
2. Wait until the site content is displayed and select "New Kinetis SDK 2.x Project Wizard". Ensure that no other items

are selected.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 15

Figure 21. Available updates for KDS IDE
3. Confirm and complete update.
4. Restart the IDE.

5.3 Build an example application

NOTE
The steps required for the Linux® OS and Mac® OS are identical to those for the
Windows® operating system. The only difference is that the IDE looks slightly different.

1. Select "File -> Import" from the KDS IDE menu. In the window that appears, expand the "Project of Projects" folder
and select "Existing Projects Sets". Then, click the "Next" button.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

16 NXP Semiconductors

Figure 22. Selection of the correct import type in KDS IDE
2. Click the "Browse" button next to the "Import from file:" option.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 17

Figure 23. Projects directory selection window
3. Point to the example application project, which can be found using this path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/kds

For this example, the specific location is:

<install_dir>/boards/frdmk64f/demo_apps/hello_world/kds

4. After pointing to the correct directory, your "Import Working Sets and Projects" window should look like the figure
below. Click the "Finish" button.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

18 NXP Semiconductors

Figure 24. Select K64F12 platform library project
5. There are two project configurations (build targets) supported for each KSDK project:

• Debug – Compiler optimization is set to low, and debug information is generated for the executable. This target
should be selected for development and debug.

• Release – Compiler optimization is set to high, and debug information is not generated. This target should be
selected for final application deployment.

6. Choose the appropriate build target, "Debug" or "Release", by clicking the downward facing arrow next to the hammer
icon, as shown below. For this example, select the "Debug" target.

Figure 25. Selection of the build target in KDS IDE

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 19

The library starts building after the build target is selected. To rebuild the library in the future, click the hammer icon
(assuming the same build target is chosen).

5.4 Run an example application

NOTE
The steps required for the Linux OS and Mac OS are identical to those for the Windows
operating system. The only difference is that the IDE looks slightly different. Any
platform-specific steps are listed accordingly.

To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform.

• For Windows operating system and Linux OS users, download the driver that corresponds to your debug
interface:

- For boards with the CMSIS-DAP/mbed/DAPLink interface, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system serial driver. If running
on Linux OS, this step is not required.

- For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download
and install the P&E Micro Hardware Interface Drivers package.

If J-Link is used, either a standalone debug pod or OpenSDA, see www.segger.com/jlink-software.html.

For the MRB-KW01 board, see www.nxp.com/USB2SER to download the serial driver. This board does not
support OpenSDA, so an external debug probe (such as a J-Link) is required. Steps below referencing OpenSDA
do not apply as there is only a single USB connector for serial output.

• For Mac OS users, KDS only supports the J-Link OpenSDA interface.

Follow the instructions in Appendix C to update your board's OpenSDA interface to the J-Link OpenSDA
application. Then, see www.segger.com/jlink-software.html to download the necessary software and drivers.

• For TWR-K80F150M and FRDM-K82F platforms, the J-Link OpenSDA application is required to be loaded
because KDS IDE does not support CMSIS-DAP/mbed for those devices. See Appendix C for more information.

2. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector.

3. In the Windows operating system environment, open the terminal application on the PC, such as PuTTY or TeraTerm,
and connect to the debug serial port number (to determine the COM port number, see Appendix A). For Linux OS,
open your terminal application and connect to the appropriate device.

Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

20 NXP Semiconductors

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
https://www.segger.com/jlink-software.html
http://www.freescale.com/USB2SER
http://www.segger.com/jlink-software.html

Figure 26. Terminal (PuTTY) configurations
4. For Linux OS users only, run the following commands in your terminal. These install libudev onto your system, which

is required by KDS IDE to launch the debugger.

user@ubuntu:~$ sudo apt-get install libudev-dev libudev1

user@ubuntu:~$ sudo ln –s /usr/lib/x86_64-linux-gnu/libudev.so /usr/lib/x86_64-linux-
gnu/libudev.so.0

5. In KDS IDE, ensure that the debugger configuration is correct for the target you’re attempting to connect to. Consult
Appendix B for more information about the default debugger application on the various hardware platforms supported
by the KSDK.

a. To check the available debugger configurations, click the small downward arrow next to the green “Debug”
button and select “Debug Configurations”.

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 21

Figure 27. Debug Configurations dialog button
b. In the Debug Configurations dialog box, select the debug configuration that corresponds to the hardware platform

you’re using. In this example, since the FRDM-K64F is used, select is the CMSIS-DAP/DAPLink option under
OpenOCD. To determine the interface to use for other hardware platforms, refer to Appendix B.

After selecting the debugger interface, click the "Debug" button to launch the debugger.

Figure 28. Selection of the debug configuration and debugger launch

6. The application is downloaded to the target and automatically run to main():

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

22 NXP Semiconductors

Figure 29. Stop at main() when running debugging

7. Start the application by clicking the "Resume" button:

Figure 30. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 31. Text display of the hello_world demo

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 23

5.5 Create a new project

1. Select the menu File -> New -> Kinetis SDK 2.x Project.

Figure 32. Select the menu File -> New -> Kinetis SDK 2.x Project
2. Enter the project name and use the default project location.

Figure 33. Enter the project name
3. The wizard supports three kinds of projects:

• Empty project for a board - see Board-><board>->New <board> project

Run a demo using Kinetis Design Studio IDE

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

24 NXP Semiconductors

• Example project - see Board -> <board> Examples -> <category> -> <example>

NOTE
This item allows a clone example project from boards/<board>/ folder in the
KDS work space. It is available only if the KSDK package contains
information about the project cloning.

• Empty project for a processor – see Processor -> <processor> -> New <processor> project

NOTE
An empty project means that there is no significant code in the main function.

Figure 34. Select board/processor
4. For empty projects, you can select an RTOS and drivers:

• All drivers – to have all KSDK drivers and utilities copied into the project
• Minimum set – to have only a basic set of drivers
• Empty - to create a bare metal project

5. Finish.

You can now build and debug the project.

6 Run a demo using Atollic® TrueSTUDIO®

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 25

This section describes the steps to configure Atollic TrueSTUDIO to build, run, and debug example applications provided in
the KSDK. The hello_world example application targeted for the FRDM-K64F Freedom hardware platform used as an
example, though these steps can be applied to any demo or example application in the KSDK.

6.1 Select the workspace location

The first time that TrueSTUDIO launches, it prompts the user to select a workspace location. TrueSTUDIO uses Eclipse,
which uses workspace to store information about its current configuration, and in some use cases, source files for the projects
in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be outside of
the KSDK tree.

6.2 Build an example application

1. Select “File -> Import” from the TrueSTUDIO menu. Expand the “General” folder and select “Existing Projects into
Workspace”. Then, click the “Next” button.

Figure 35. Selection of the correct import type in TrueSTUDIO
2. Click the “Browse” button next to the “Select root directory:” option.

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

26 NXP Semiconductors

Figure 36. Projects directory selection window
3. Point to the example application project for the appropriate device, which can be found using this path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/atl

For this example, the specific location is:

<install_dir>/boards/frdmk64f/demo_apps/hello_world/atl
4. After pointing to the correct directory, your “Import Projects” window should look like this figure. Click the “Finish”

button.

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 27

Figure 37. Select the K64F12 platform library project

NOTE
Do not select the "Copy projects..." option.

5. There are two project configurations (build targets) supported for each KSDK project:
• Debug – Compiler optimization is set to low, and debug information is generated for the executable. This target

should be selected for development and debug.
• Release – Compiler optimization is set to high, and debug information is not generated. This target should be

selected for final application deployment.
6. Choose the appropriate build target, “Debug” or “Release”, by clicking the “Manage build configurations” icon, as

shown below. For this example, select the “Debug” target and click “Set Active”. Since the default configuration is to
use the Debug target, there should not be a change required.

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

28 NXP Semiconductors

Figure 38. Selection of build target in TrueSTUDIO

7. Click the "Build" icon to build the application.

6.3 Run an example application

The Atollic tools require either a J-Link or P&E Micro debug interface. As a result, some hardware platforms require an
update to the OpenSDA debug firmware found on the board. To determine the default debug interface of your board, see
Appendix B. If the default interface is not J-Link or P&E Micro, see Appendix C for instructions on how to install one of
these debug interfaces.

This section describes steps to run a demo application using a J-Link debugger, although the P&E Micro interface is also
supported.

In order to perform this exercise with the J-Link interface, two things must be done:

• Install the J-Link software (drivers and utilities), which can be downloaded from segger.com/downloads.html.
• Make sure that either:

• The OpenSDA interface on your board is programmed with the J-Link OpenSDA firmware. To determine if your
board supports OpenSDA, see Appendix B. For instructions on reprogramming the OpenSDA interface, see
Appendix C. If your board does not support OpenSDA, then a standalone J-Link pod is required.

• A standalone J-Link pod is connected to the debug interface of your board. Note that some hardware platforms
require hardware modification in order to function correctly with an external debug interface.

The P&E Micro interface can also be used. To use this interface:

• Install the P&E Micro Hardware Interface Drivers, which can be downloaded from www.pemicro.com/support/
downloads_find.cfm.

• If your board does not come loaded with a P&E Micro interface, if supported, reprogram the OpenSDA interface with
P&E Micro OpenSDA firmware. To determine if your board supports OpenSDA, see Appendix B. For instructions on
reprogramming the OpenSDA interface, see Appendix C.

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 29

https://segger.com/downloads.html
http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

For the MRB-KW01 board, visit www.nxp.com/USB2SER to download the serial driver. This board does not support
OpenSDA, so an external J-Link is required.

After the debug interface is configured and ready to use to download and run the application:

1. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Figure 39. Terminal (PuTTY) configurations
3. In Atollic IDE, ensure that the debugger configuration is correct for the target you are attempting to connect to.

a. To check the debugger configurations, click the “Configure Debug” icon.

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

30 NXP Semiconductors

http://www.freescale.com/USB2SER

Figure 40. Debug configurations dialog button
b. In the Debug Configurations window, select debug configuration that corresponds to the hardware platform

you’re using. The Atollic tools require either a J-Link or P&E Micro debug interface, so some hardware
platforms require an update to the OpenSDA debug firmware. To determine the default debug interface of your
board, see Appendix B. If the default interface is not J-Link or P&E Micro, see Appendix C for instructions on
how to install one of these debug interfaces. Important: This example assumes the J-Link interface has been
installed on the FRDM-K64F Freedom hardware platform.

c. Select the J-Link “Debug” interface and click the “Debug” button.

Figure 41. Selection of debug configuration in Debug Configuration dialog box

4. The application is downloaded to the target and automatically runs to main():

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 31

Figure 42. Stop at main() when running debugging

5. Run the code by clicking the "Resume" button to start the application.

Figure 43. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 44. Text display of the hello_world demo

Run a demo using Atollic® TrueSTUDIO®

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

32 NXP Semiconductors

7 Run a demo using ARM GCC
This section describes the steps to configure the command line ARM GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the KSDK. The hello_world demo application targeted for the FRDM-K64F
Freedom hardware platform is used as an example, though these steps can be applied to any board, demo or example
application in the KSDK.

7.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a KSDK demo application with
the ARM GCC toolchain, as supported by the KSDK. There are many ways to use ARM GCC tools, but this example focuses
on a Windows operating system environment. Though not discussed here, ARM GCC tools can also be used with both Linux
OS and Mac OSX.

7.1.1 Install GCC ARM Embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (i.e., compiler, linker, etc.).
The GCC toolchain should correspond to the latest supported version, as described in the Kinetis SDK v.2.0.0 Release Notes.
(document KSDK200RN).

7.1.2 Install MinGW

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third party
C-Runtime DLLs (such as Cygwin). The build environment used by the KSDK does not utilize the MinGW build tools, but
does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

Figure 45. Setup MinGW and MSYS
4. Click “Apply Changes” in the “Installation” menu and follow the remaining instructions to complete the installation.

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 33

https://launchpad.net/gcc-arm-embedded
http://sourceforge.net/projects/mingw/files/Installer/

Figure 46. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control

Panel -> System and Security -> System -> Advanced System Settings in the "Environment Variables..." section. The
path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the
toolchain does not work.

NOTE
If you have "C:\MinGW\msys\x.x\bin" in your PATH variable (as required by
KSDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

34 NXP Semiconductors

Figure 47. Add Path to systems environment

7.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the ARM
GCC Embedded tool chain installation path, which, for this example, is:

C:\Program Files (x86)\GNU Tools ARM Embedded\5.2 2015q4

Reference the installation folder of the GNU ARM GCC Embedded tools for the exact path name of your installation.

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 35

Figure 48. Add ARMGCC_DIR system variable

7.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option "Add CMake to system PATH" is selected when installing. The user chooses to

select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all
users.

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

36 NXP Semiconductors

http://www.cmake.org/cmake/resources/software.html

Figure 49. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

7.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC ARM Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC Command Prompt”.

Figure 50. Launch command prompt
2. Change the directory to the example application project directory, which has a path like this:

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 37

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/examples/frdmk64f/demo_apps/hello_world/armgcc

NOTE
To change directories, use the 'cd' command.

3. Type “build_debug.bat” on the command line or double click on the "build_debug.bat" file in Windows Explorer to
perform the build. The output is shown in this figure:

Figure 51. hello_world demo build successful

7.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, two
things must be done:

• Make sure that either:
• The OpenSDA interface on your board is programmed with the J-Link OpenSDA firmware. To determine if your

board supports OpenSDA, see Appendix B. For instructions on reprogramming the OpenSDA interface, see
Appendix C. If your board does not support OpenSDA, then a standalone J-Link pod is required.

• You have a standalone J-Link pod that is connected to the debug interface of your board. Note that some
hardware platforms require hardware modification in order to function correctly with an external debug interface.

After the J-Link interface is configured and connected, follow these steps to download and run the demo application:

1. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod, also connect it to the
SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUD variable in
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

38 NXP Semiconductors

Figure 52. Terminal (PuTTY) configurations
3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by

going to the Windows operating system Start menu and selecting “Programs -> SEGGER -> J-Link <version> J-Link
GDB Server”.

4. Modify the settings as shown below. The target device selection chosen for this example is the MK64FN1M0xxx12.

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 39

Figure 53. SEGGER J-Link GDB Server configuration
5. After it is connected, the screen should resemble this figure:

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

40 NXP Semiconductors

Figure 54. SEGGER J-Link GDB Server screen after successful connection

6. If not already running, open a GCC ARM Embedded tool chain command window. To launch the window, from the
Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC
Command Prompt”.

Figure 55. Launch command prompt
7. Change to the directory that contains the example application output. The output can be found in using one of these

paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/frdmk64f/demo_apps/hello_world/armgcc/debug

Run a demo using ARM GCC

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 41

8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is “arm-none-eabi-gdb.exe
hello_world.elf”.

Figure 56. Run arm-none-eabi-gdb

9. Run these commands:
a. "target remote localhost:2331"
b. "monitor reset"
c. "monitor halt"
d. "load"
e. "monitor reset"

10. The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 57. Text display of the hello_world demo

8 KSDK Project Generator
The KSDK Project Generator tool can generate new projects for IAR, Keil MDK, Kinetis Design Studio and Atollic
TrueSTUDIO IDEs containing all KSDK drivers and utilities which are supported for the selected device and also generate
new standalone projects based on KSDK examples.

KSDK Project Generator

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

42 NXP Semiconductors

The KSDK Project Generator can be found on www.nxp.com. For more information about the installation process, see the
KSDK Project Generator Release Notes.

8.1 Create projects using KSDK project generator

Projects can be generated in these modes:

• A quick generation, which creates only linked projects for a board on all supported toolchains
• An advanced generation, which creates linked/standalone projects for a board/device or cloned projects for selected

toolchains with a selected RTOS.

8.2 Create a linked project

Create a linked project for a board in the quick generation mode.

Figure 58. Quick generation mode

1. Run the tool and set the correct KSDK path using the Browse button.
2. Type the project name into the corresponding field and select a board in the list of boards.
3. Click on the Quick Generate! button.
4. A dialog with the information about the project location is displayed.

Create a linked project for a board or a device in the advanced generation mode (Generator 2 image).

KSDK Project Generator

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 43

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=KSDK-PROJECT-GENERATOR-TOOL

Figure 59. Advanced generation mode

1. Run the tool and set te correct KSDK path using the Browse button.
2. Click on the Advanced button.
3. Type the project name into the corresponding field.
4. In the Device or Board: section select the Device option and choose a device name or select a Board option and choose

a board name.
5. Select toolchains in the corresponding list.
6. Optionally, choose an RTOS in the RTOS Configuration.
7. Click on the Advanced Generate! button.
8. A dialog with the information about the project location is displayed.

8.3 Create a standalone project

Create a standalone project for a board or a device (Generator 2):

KSDK Project Generator

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

44 NXP Semiconductors

Figure 60. Advanced generation mode

1. Run the tool and set the correct KSDK path, using the Browse button.
2. Click on the Advanced button.
3. Type the project name in the corresponding field.
4. In the Device or Board: section select the Device option and choose the device name or select the Board option and

choose a board name.
5. Select toolchains in the corresponding list.
6. Optionally, choose an RTOS in the RTOS Configuration.
7. Choose the Generate standalone project option.
8. Click on the Advanced Generate! button.
9. A dialog with information about the project location is displayed.

8.4 Clone KSDK examples using the KSDK Project Generator

Clone SDK examples – create new linked or standalone project based on KSDK examples.

KSDK Project Generator

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 45

Figure 61. Clone KSDK examples

1. Run the tool and set the correct KSDK path using the Browse button.
2. Click on the Advanced button.
3. Select the Clone option in the Project Type section.
4. Select the source project for cloning in the Project section.
5. Choose the Generate standalone project option to generate a standalone project. Otherwise, a generated project is

linked (option Generate standalone project is supported only for some boards).
6. Click on the Advanced Generate! button.
7. A dialog with the information about the project location is displayed.

9 Appendix A - How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform. All NXP boards ship with a factory programmed, on-board debug interface, whether it’s based on OpenSDA or the
legacy P&E Micro OSJTAG interface. To determine what your specific board ships with, see Appendix B.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to
the Windows operating system Start menu and typing “Device Manager” in the search bar, as shown below:

Appendix A - How to determine COM port

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

46 NXP Semiconductors

Figure 62. Device manager
2. In the Device Manager, expand the “Ports (COM & LPT)” section to view the available ports. Depending on the NXP

board you’re using (see Appendix B), the COM port can be named differently:
a. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

Appendix A - How to determine COM port

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 47

Figure 63. OpenSDA – CMSIS-DAP/mbed/DAPLink interface
b. OpenSDA – P&E Micro:

Figure 64. OpenSDA – P&E Micro

c. OpenSDA – J-Link:

Figure 65. OpenSDA – J-Link
d. P&E Micro OSJTAG:

Figure 66. P&E Micro OSJTAG

10 Appendix B - Default debug interfaces
The Kinetis SDK supports various Kinetis hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. The following table lists the hardware platforms supported by the KSDK, their default debug
interface, and any version information that helps differentiate a specific interface configuration.

All recent and future NXP hardware platforms support the configurable OpenSDA standard.

Table 1. Hardware platforms supported by KSDK

Hardware platform Default interface OpenSDA details

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

11 Appendix C - Updating OpenSDA firmware

Appendix B - Default debug interfaces

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

48 NXP Semiconductors

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface has the ability to update the
OpenSDA firmware. This typically means switching from the default application (either CMSIS-DAP/mbed/DAPLink or
P&E Micro) to a SEGGER J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to also restoring the original image.

For reference, OpenSDA firmware files can be found at the links below:
• J-Link: Download appropriate image from www.segger.com/opensda.html. Chose the appropriate J-Link binary based

on the table in Appendix B. Any OpenSDA v1.0 interface should use the standard OpenSDA download (i.e., the one
with no version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP/mbed/DAPLink: This interface is provided to support the ARM mbed initiative. Navigate to
developer.mbed.org/platforms and select your hardware platform. On the specific platform/board page, there is a link to
the firmware image and instructions on how to load it, though the instructions are the same as below.

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with P&E Micro
(www.pemicro.com).

These steps show how to update the OpenSDA firmware on your board for Windows operating system and Linux OS users:.

1. Unplug the board's USB cable.
2. Press the board's "Reset" button. While still holding the button, plug the board back in to the USB cable.
3. When the board re-enumerates, it shows up as a disk drive called "BOOTLOADER".

Figure 67. BOOTLOADER drive
4. Drag the new firmware image onto the BOOTLOADER drive in Windows operating system Explorer, similar to how

you would drag and drop a file onto a normal USB flash drive.

NOTE
If for any reason the firmware update fails, the board can always re-enter
bootloader mode by holding down the "Reset" button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

NOTE
The USB-KW019032 board has a specific OpenSDA interface, which is not compatible
with the J-Link and P&E Micro OpenSDA firmware image.

1. Unplug the board's USB cable.
2. Press the board's "Reset" button. While still holding the button, plug the board back in to the USB cable.
3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called "BOOTLOADER" in Finder. Boards with

OpenSDA v1.0 may or may not show up depending on the bootloader version. If you see the drive in Finder, you may
proceed to the next step. If you do not see the drive in Finder, use a PC with Windows® OS 7 or an earlier version to

Appendix C - Updating OpenSDA firmware

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

NXP Semiconductors 49

http://www.segger.com/opensda.html
http://developer.mbed.org/platforms
http://www.pemicro.com/opensda/index.cfm

either update the OpenSDA firmware or update the OpenSDA bootloader to version 1.11 or later. The bootloader
update instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new firmware image onto the
BOOTLOADER drive in Finder, similar to how you would drag and drop the file onto a normal USB Flash drive.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

 > sudo mount -u -w -o sync /Volumes/BOOTLOADER
 > cp -X <path to update file> /Volumes/BOOTLOADER

NOTE
If for any reason the firmware update fails, the board can always re-enter
bootloader mode by holding down the "Reset" button and power cycling.

12 Revision History

This table summarizes revisions to this document.

Table 2. Revision History

Revision number Date Substantive changes

2 07/2016 Added Chapter 8 and updated Section
5.5

1 06/2016 Added Section 5.5 related to the New
Project Wizard for KSDK 2.0.0

0 01/2016 Initial release

Revision History

Getting Started with Kinetis SDK (KSDK) v.2.0, Rev. 2, 07/2016

50 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service

names are the property of their respective owners. ARM, ARM powered logo,

Keil, µVision, and Cortex are registered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. mbed is a trademark of ARM Limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 NXP B.V.

Document Number KSDK20GSUG
Revision 2, 07/2016

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	KSDK Board Support Folders
	Example Application Structure
	Locating Example Application Source Files

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using Keil® MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application

	Run a demo using Kinetis Design Studio IDE
	Select the workspace location
	Updating the KDS IDE components
	Update KDS IDE 3.0 and KDS IDE 3.1
	Update KDS IDE 3.2

	Build an example application
	Run an example application
	Create a new project

	Run a demo using Atollic® TrueSTUDIO®
	Select the workspace location
	Build an example application
	Run an example application

	Run a demo using ARM GCC
	Set up toolchain
	Install GCC ARM Embedded tool chain
	Install MinGW
	Add a new system environment variable for ARMGCC_DIR
	Install CMake

	Build an example application
	Run an example application

	KSDK Project Generator
	Create projects using KSDK project generator
	Create a linked project
	Create a standalone project
	Clone KSDK examples using the KSDK Project Generator

	Appendix A - How to determine COM port
	Appendix B - Default debug interfaces
	Appendix C - Updating OpenSDA firmware
	Revision History

