Freescale Semiconductor
User's Guide

Document Number: KBLQSPIUG
Rev. 0, 09/2015

Kinetis Bootloader QuadSPI User's
Guide

1

The QuadSPI controller available on selected Kinetis devices
supports execute-in-place (XIP) for external SPI flash memory

Introduction

devices. This document describes the usage of Kinetis
bootloader (KBOOT) in configuring various features of
QuadSPI block, including XIP, generating plaintext and
encrypted bootable SB file image, and flashing QuadSPI
memory with the SB file image.

QuadSPI features supported by Kinetis bootloader:

2

Various types of SPI NOR flash memory devices
available in the market.

Flash memory booting from QuadSPI directly, using
Kinetis bootloader.

Single/Dual/Quad and Octal SPI NOR flash memory
devices.

High-performance read/write operation with parallel and

DDR modes.
Protecting intellectual property with AES-128
algorithm.

Overview

This document mainly focuses on the following topics:

© 2015 Freescale Semiconductor, Inc.

el

10

11

12

13

Contents
Introduction..........ccccooueeieniiies veviniecneeceeeee 1
OVEIVIBW...ouiiiiiieiieiteieeienit ettt 1
Creating application for QuadSPI
INEINOTYenvienreirereeirenteeerenteesesseesenae eereseenenseens 5
Configure QuadSPI with Kinetis
bootloader......c..cocuevieiiiiiiiiiieen e 19
Flash QuadSPI image via SB file......... cc.occcecee. 21
Advanced Usage: Encrypted QuadSPI
IMAZE..ccvvieveeneeeireteere sttt et eiees seennesaeenenanes 24
Change QuadSPI clock in QuadSPI
IMAZC..ccvveveeieenrenieerenirete et eare s caresaeenenaees 29
Application running on QuadSPI alias
ATC..eeneiueeieeirenie ettt sttt ete et ettt e 34
Appendix A - QuadSPI configuration
PIOCEAULE.couviiiiniieiieieeieie e e 43
Appendix B - Re-enter Kinetis bootloader
under direct boot mode...........ccoceecvenieviene veviennnens 43
Appendix C - Explore more features in
QCBi... e e 44
Appendix D - DDR mode issue
WOrkaround.........cc.ooceevieienieiinienninienns e 47
Revision hiStory.......cccoeeceeieiiicieninienicieeeciee 56

Z“ freescale

Overview

* QuadSPI image boot procedure

 Creating an application image running on QuadSPI memory
* Configuring QuadSPI with Kinetis bootloader

¢ Programming QuadSPI memory with SB file

¢ Advanced usage: QuadSPI encrypted boot image

* Application requirements for re-configuring QuadSPI clock

In addition, the following topics are also covered in the appendix sections:

* QuadSPI configuration block (QCB)

* Re-enter Kinetis bootloader under direct boot mode

» Explore features supported in QCB

* Working around ROM issues in supported DDR mode devices

2.1 Terminology

The following table summarizes the terms and abbreviations included in this user's guide.

Table 1. Terminology and abbreviations

Terminology Description
KBOOT Kinetis bootloader
BCA Bootloader Configuration Area, which provides customization of bootloader

options, such as enabledPeripherals, peripheralDetectionTimeout, and so on.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

QcB QuadSPI Configuration Block, a structure containing configurable parameters
needed by the Kinetis bootloader to configure the QuadSPI controller.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

KeyBlob A data structure which holds the KeyBlob entries. Each keyblob entry defines the
encrypted QuadSPI memory region, decryption key, and so on.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

KEK KeyBlob Encryption Key, an AES-128 key used for encrypting plaintext KeyBlob
and decrypting encrypted KeyBlob.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

SB file The SB file is the Freescale binary file format for bootable images. The file consists
of sections and sequence of bootloader commands and data that assists Kinetis
bootloader in programming the image to target memory. The image data in the SB
file can be encrypted as well. The file can be downloaded to the target using the
Kinetis bootloader receive-sb-file command.

See the Kinetis bootloader chapter in silicon's reference manual for more details

OTFAD On-the-fly AES Decryption is a powerful IP block in MK81F256 and MK82F256,
which supports decryption of the encrypted QuadSPI image on-the-fly using
KeyBlob.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

2 Freescale Semiconductor, Inc.

Overview

2.2 Requirements

2.2.1 Hardware requirements

¢ TWR-K80F150M Freescale Tower System module
e TWR-KS82F Freescale Tower System module

2.2.2 Host tools

The following host tools are available with the release package. They assist in generating and provisioning of QuadSPI
bootable image for the target device.

¢ blhost: command line host tool for Kinetis bootloader.
¢ Elftosb: command line host tool for SB file generation.
 KinetisUpdater: GUI host tool for Kinetis bootloader.

2.2.3 Demo application

¢ Led_demo running in internal flash and QuadSPI memory, under demo/led_demo/targets/TWR-KSOF 150M/builds

¢ QCBGenerator, under demo/QCBGenerator/build

2.2.4 Required toolchains

2.2.4.1 Firmware project

The following toolchains can be used to build the example led_demo firmware application provided with the release package.

+ ARM® Keil® development tool v5.15 with MK80F256 device pack
+ TAR Embedded Workbench for ARM® v7.40.3
* Kinetis Design Studio (KDS) IDE v3.0.0

2.2.4.2 Host project

The following toolchains can be used to build the example QCBGenerator application provided with the release package.

 Microsoft® Visual Studio for Windows® OS
¢ Codeblocks
e GCC

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 3

Overview

2.3 QuadSPI image boot procedure

To understand how to boot a QuadSPI image with Kinetis bootloader, it is necessary to understand the QuadSPI image boot
flow. There are two types of QuadSPI image boot flow:

* Boot from a plaintext QuadSPI image. This method can be used on all targets with QuadSPI support.
* Boot from an encrypted QuadSPI image. This method can only be used on K8x processors that include OTFAD
support, such as MK81F256 and MK82F256.

2.3.1 Plaintext QuadSPI image boot flow

The figure below shows the boot flow of Kinetis bootloader in booting the device with a plaintext QuadSPI image.

Enter KBOOT | »- Init hardware | Load BC A » Init Flash driver
es
Configure T QCBin e) QCB at . FOPT[T:E]
Quadspl (4 7ES Flash %Mo 16800_00002— ¥ 'ES ==0b10?
ND ND
T Peripheral ¥
bootFlags . Mo Wait for
L e Mo D etection | 3 L
== 0xFE? - Timeouts? communication
. A
Yes
¥
“Yes Image valid Mo
Yes
L4
Jump to
application

Figure 1. Plaintext QuadSPI image boot flow

2.3.2 Encrypted QuadSPI image boot flow

The below figure shows the boot flow of Kinetis bootloader in booting the device with an encrypted QuadSPI image.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

4 Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

Enter KBOOT * Init hardware | L Load BCA ® Init Flesh driver
es
¥
¥
Caonfigure QCHin Q2T B at FOPT[T 8]
QusdsFl ¥ Yes Flash 4o 0x8500 00007 4 YES =0b107
Mo
b No
FPerigheral No M
bootFla Wait f
L =={m|:|s:_;: Mo Detection I'_'t}l'l'll'l'f.lni;ﬁ{}n -
- Timecuts?
Y
Yes Yes
¥ Y
KeyBlob KEK QuadsHA
valigz % Yes Valid? +Ye Configured?
Mo
h J
Yes Nor = Trzatas plaintsxdt
No
¥ ¥
Caonfigure OTFAD
With decrypted = Image valid?
keyBlob)
es
¥
Jump to
Mo application

Figure 2. Encrypted QuadSPI image boot flow

3 Creating application for QuadSPl memory

This section describes how to modify a normal flash application (led_demo) to run from QuadSPI. The fully functional LED
demo example for QuadSPI with binary and source code is already available in the package for reference. The chapter also
discuss on how to create QCB data structure for a typical QuadSPI flash memory device.

3.1 Starting point: Basics of internal flash memory mapped led-
demo example project

Start from an LED demo example project code for the MK82F256 device. Example led-demo project files for each of the
supported toolchains are available under the led_demo/targets/TWR-KSOF 150M/builds folder of the package. This document
focuses on IAR project examples only. Open led_demo.eww file from the IAR folder and choose the led_demo_PFLASH
project as the active project. See the following figure.

Note that the linker file for led_demo_PFLASH project shows all sections located in the internal flash memory region,
including vector table, flash config area, and text sections.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 5

Creating application for QuadSPI memory

When the led_demo_PFLASH image is built and flashed to the internal flash memory of the target device and begins its
execution, it causes the blue and green LEDs to blink on the target board.

The subsequent sections show changes needed to convert led_demo_PLASH project to run on QuadSPI memory for the
target device.

% led_demo - IAR Embedded Workbemch 1T E _
~ File | Edit | View Project Tools Window Help
DEEd & | | - B S(LL
Workspace x) . .
system_MKB2F25615_gspi.c | startup_MKB2F25615_gspi.s | led_demo_QSPLmap | MKB2FN256xxx15_gspi.icf MKB2FN256xxx15_
[Helease hd a6 *k
Filas £ B a7 gt R MR TR R TR R R R R
S 48 */
E(Fled_demo_PFLASH-Rel... v a9
H= Clapplication 50 define symbol _ ram vector_table_size_ = isdefinedsymbol(__ram wvector_table_) 3
led_demo.c * Sl define symbol _ ram vector table offset = isdefinedsymbol(_ ram vector_ table |}
milliseconds_delay.c £ .]
3 Clinker 53 define symbol m interrupts_start = 0x00000000;
L = . 54 define symbol m interrupts_end = 0x000003BF;
MKEZFMN2E600 B_flash.ic .
_EDK32F2551E 56 define symbol m bootloader config start = 0x000003C0;
startup.c 57 define symbol m bootloader config end = 0x000003FF:
iz startup_MKB2F25615 5 . 58
system_MKBEFEEHE.C * 58 define symbol m flash coniig atart = 0x00000400;
—E[:IOutput a0 define symbol m_flash_config end = 0x0000040F;
[led_demo_PFLASH.out . &1 .
62 define symbol m text Start = 0x00000410;
63 define symbol m_text_end = 0x0003FFFE;
64
65 define symbol m_interrupts_ram start Ox1FFFO000;

66 define symbol m interrupts_ram end Ox1FFFO000 + _ ram vector table ofifset

(] define symbol m data start m_interrupts_ram start + _ ram vector_tak

&9 define symbol m data_end Ox1FEFFFFE;

70

71 define symbol m data 2_start = 0x20000000;

72 define aymbol m data_2_end = 0x2002FFFE;

73

T4 /* Sizes */

75 if (isdefinedsymbol {_ stack size_ }) {

76 define symbol _ size cstack = _ stack size
17 1 elase |

78 define symbol _ size_catack = 0x0400;

79 }

80

g1 if (isdefinedsymbol{_ heap size)} {

a2 define symbol _ size_heap_ = __heap_szize_ ;
83 } else |

g4 define symbol _ size heap = 0x0400;

85 }

Figure 3. The led_demo_PFLASH project

3.2 Changes to the led-demo project

The following subsections describe the steps to map the led-demo to run from external QuadSPI flash memory.

3.2.1 Changes to the linker file

The first step is to update the linker file. The m_text start,and m_text end symbol names need to be updated. The
address of m_text_start should be changed to 0x68001000, and m_text end to 0x6FFFFFFF or the actual end address of
the selected SPI flash device. See the changes in the following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

6 Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

ﬁ led_demo - IAR Embedded Workbench IDE

File Edit View Project Tools Window Help

DeEdd &S| 2@l «|

YRR EH YRS D

Workspace

led_demo_gspi.c | misc.h | msic.c | miliseconds_delay.c | system_MK&2F25615_gspi.c | startup_MK&2F25615_gspi.s | led_demo_QSPL.map MKB2FN25

Release

Files

B Fled_demo_QS5PI - Release
& Cd application
led_dema_gspi.c
millisecands_delay.c
msic.c
= o linker
L_BR
2 [hKBZF2EETS
startup.c
fen startup_tKB2F25615_gspis
system_MKAZF25615_gspic

define symbcl _ ram vector table_size = isdefinedsymbel(_ ram wector_table) 2 0x000003C0 : 0O;
define symbol _ ram vector table offset = isdefinedsymbol{_ ram wvector table) 2 OxO00003BF : O;

define symbol m interrupts_start
define symbol m interrupts_end

= 0x00000000;
= 0x000003BE;

define symbol m bootloader config start = 0x000003CO0;

define symbol m bootloader config end

define symbol m flash config start
define symbol m flash config end

= 0x000003FF;

0x00000400;7
0x0000040F;

efine symbol m text Start
efine 3 ol m text end

= Ox&E00I000;
Ox6FFFFEFE;

Figure 4. Linker file changes

3.2.2 Changes to flash config area

Bit 7-6 in FOPT (0x40D) needs to be changed to 0b’10 in order to select ROM as the boot source upon reset. QuadSPI is
configured after ROM starts, and if the QCB is present. After this operation, the flash config area is changed, as shown in the

following figure.

318
315
320
321
322
323
324
325
326
327

__Wectors EQT
__Wectors_Size EOU

SECTION FlashConfig:COLDE

__FlashConfig

DCD OxFFFFFFEF
DCD OxFFFFFFEF
DCD OxFFFFFFEF
DCD OxFFF :@

___FlashConfig End

__wector_table
__Vectors_End - _ Vectors

Figure 5. Change flash config area for QuadSPI image

See startup_ MK82F2515_qgspi.s under led_demo->devices/MK82F25615/startup/<toolchain> folder for more details

3.2.3 Configure BCA

After the previous step, the target is able to run the led-demo application once the active peripheral detection timeout occurs.

To customize the boot option for the QuadSPI image, the BCA is required. The first step to is to define
BOOTLOADER_CONFIG in the project. Implement the operation shown in the following figure for IAR EWARM

toolchain as an example.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

A ————
Creating application for QuadSPI memory

Options for node "led_demo_QSPI"

Categaony; [Factom Settings]

General Options [bulti-file: Campilation

Static Analysis Dizcard Unuzed Publics
Runtime Chedking

| Language 2 I Code | Optimizations | Outpurt | List | Preprocessor || 4 | *

Assembler
Output Converter [Ignere standard include directories

Custom Build Additional include directories: (one per ling)

Build Actions SPROJ_DIRS\.\.\.\. \devices NS

Linker EPROJ_DIRS . M AN devices\MEB2F25615 startup

Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GDE Server E]

IAR. ROM-monitor _
I-4jet/ITAGet Defined symbols: (one per ling)

ILink/1-Trace NDEBUG . [C]Preprocessor output to file
TI Stellaris CPU_MKSZFNZ56VDCT5 Preserve comments

Macraigor _ i Generate Hine directives

PE micro

RDI

STLINK
Third-Party Driver
TLXDS

[Ok,] [Cancel

Figure 6. Enable BCA in EWARM

There are two ways to configure the QuadSPI image boot option:

1. Change the peripheralDetectionTimeoutMs. For example, change it to 0x01F4 (500 ms).
2. Change the bootFlags to OxFE, which means boot directly from application without delay. To re-enter Kinetis
bootloader again, see Appendix B.

NOTE
The first way to configure the QuadSPI image boot option is recommended.

In this example, there is a BootloaderConfig constant variable defined in system_MKS82F25615.c. It can be changed as
shown in the following figure.

When the BCA change is complete, the target supports execution of led demo image if it has been programmed to internal
flash or QuadSPI memory.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

8 Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

#ifdef BOOTLOADER CONFIG

4% Bootlader configuration area */
#if defined(IR SY3STEMS ICC)

#* Pragma to place the Bootleoader Configuration Array on correct location defined in

#pragma language=extended

#pragma location = "BootloaderConfiig”

__root const system bootloader config t Bootloaderlonfig @ "BootloaderConfig™ =
#elif defined(_ GNUC_)

__attribute (({section (".Bootloaderfonfig™))) const system bootloader config t Boo
#elif defined(_ CC_ABEM)

__attribute (({section ("BootloaderConfig™))) const system bootloader config t Boot
#else
#error Unsupported compiler!
#endif

{
Lag = (x6TEEE36RT, /% Magic Number #/
.crcitartiddress = (xFFFFFFFFU, /% Disable CRC check #/
. crcBytelount = (xFFFFFFFFU, /% Disable CRC check #/
.crcExpectedValue = (xFFFFFFFFU, /% Disable CRC check #/
.enabledPeripherals = 0x17, 4% Enable gll peripherals *#/
12c3lavelkddress = 0XFF, A% Use default I2C address */
.peripherallDetectionTimecutMs = 0x01F4T, A% timeout: 500ms *V_J
usbv1id = UAFFFFU, /* Use delfault USH Vendor ID */
uskbPid = O0XxFFFFU, A% Use default USB Product ID */
usbStringsPointer = (xFFFFFFFFU, /% Use default USB Strings */
.clockFlags = 0x01, /% Enabhle High speed modes *#/
.clockDivider = 0xFF, A% Use clock divider 1 #/
bootFlags = 0x01, /% Enable communication with host *#/
JamcauConfigPointer = OxFFFFFFFFU, /* No MMCAU configuration #*/
.keyBlobPointer = 0x000001000, #*% keyblob data 1s at 0x1000 #/
.g3piConfigBlockPtr = OxFFFFFFFFU /#* No Q5PI configuration #*/

b:

#Fendif

Figure 7. Set peripheralDetectionTimeoutMs to 500 ms

3.3 Generate QCB

QuadSPI Config Block (QCB) is required for Kinetis ROM bootloader to properly configure and access the QuadSPI device.
This section shows the QCB structure, determines the QCB parameters for the specified SPI flash device, and generates the
QCB with a simple project.

3.3.1 The QCB structure

The QCB is a data structure containing the most common used parameters for QuadSPI module. See the Kinetis bootloader
chapter in the silicon’s reference manual for more details. The QCB is organized as follows.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 9

Creating application for QuadSPI memory

Table 2. QuadSPI configuration block

Offset

Size (bytes)

Configuration field

Description

0x00 - 0x03

tag

Magic number to verify whether QCB is valid.
Must be set to ‘kqcf’.

[31:24] - /f’ (0x66)
[23:16] - ‘¢’ (0x63)
[15: 8] - ‘q'(0x71)

[7: 0] - ‘k’(Ox6B)

0x04 - 0x07

version

Version number of QuadSPI config block.
[31:24] - name: must be ‘Q’(0x51)

[23:16] - major: must be 1

[15: 8] - minor: must be 1

[7: 0] - bugfix: must be 0

0x08 - 0x0b

lengthinBytes

Size of QuadSPI config block, in terms of bytes.
Must be 512.

0x0c - OxOf

dgs_loopback

Enable DQS loopback support:
0 DQS loopback is disabled.

1 DQS loopback is enabledd, the DQS loopback
mode is determined by subsequent
'dqs_loopback_internal' field.

0x10 - 0x13

data_hold_time

Serial flash data hold time. Valid value 0/1/2. See
the QuadSPI Chapter for details.

0x14 - Ox1b

Reserved.

Ox1c - Ox1f

device_mode_config_e
n

Configure work mode enable for external flash
devices:

0 Disabled - ROM does not configure work mode
of external flash devices.

1 Enabled - ROM configures work mode of
external flash devices based on "device_cmd"
and LUT entries indicated by "write_cmd_ipcr".

0x20 - 0x23

device_cmd

Command to configure work mode of external
flash devices. Effective only if
"device_mode_config_en" is setto 1.

This command is device-specific.

0x24 - 0x27

write_cmd_ipcr

IPCR pointed to LUT index for the command
sequence of configuring the device to work
mode.

Value = index<<24

0x28 - Ox2b

word_addressable

Word addressable:
0 Byte addressable serial flash mode.

1 Word addressable serial flash mode.

0x2c - Ox2f

cs_hold_time

Serial flash CS hold time in terms of flash clock
cycles.

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

10 Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

0x30 - 0x33

cs_setup_time

Serial flash CS setup time in terms of flash clock
cycles.

0x34 - 0x37

sflash_A1_size

Size of external flash connected to ports of
QSPIOA and QSPIOA_CSO, in terms of bytes.

0x38 - 0x3b

sflash_A2_size

Size of external flash connected to ports of
QSPIOB and quadSPI0OA_CSH1, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x3c - Ox3f

sflash_B1_size

Size of external flash connected to ports of
QSPIOB and quadSPIOB_CSO, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x40 - 0x43

sflash_B2_size

Size of external flash connected to ports of
QSPIOB and quadSPIOB_CS1, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x44 - 0x47

sclk_freq

Frequency of QuadSPI serial clock:
0 Low frequency

1 Mid frequency

2 High frequency

See the Kinetis bootloader chapter in silicon’s
reference manual for the definition of low-
frequency, mid-frequency and high-frequency. In
MK82F256, they are 24 MHz, 48 MHz, and 96
MHz.

0x48 - Ox4b

busy_bit_offset

Busy bit offset in status register of Serial flash
[31:16]:

0 - Busy flag in status register is 1 when flash
devices are busy.

1 - Busy flag in status register is 0 when flash
devices are busy.

[15:0]:

The offset of busy flag in status register, valid
range 0-31.

0x4c - Ox4f

sflash_type

Type of serial flash:
0 Single-pad

1 Dual-pad

2 Quad-pad

3 Octal-pad

0x50 - 0x53

sflash_port

Port enablement for QuadSPI module:
0 Only pins for QSPIOA are enabled.

1 Pins for both QSPIOA and QSPIOB are
enabled.

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

11

Creating application for QuadSPI memory

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

0x54 - 0x57

ddr_mode_enable

Enable DDR mode:
0 DDR mode is disabled.
1 DDR mode is enabled.

0x58 - 0x5b

dgs_enable

Enable DQS:
0 DQS is disabled.
1 DQS is enabled.

0x5¢ - Ox5f

parallel_mode_enable

Enable Parallel Mode:
0 Parallel mode is disabled.

1 Parallel mode is enabled.

0x60 - 0x63

portA_cs1

Enable QuadSPIOA_CS1:
0 QuadSPIOA_CS1 is disabled.
1 QuadSPIOA_CS1 is enabled.

This field must be set to 1 if sflash_A2_size is not
equal to 0.

0x64 - 0x67

portB_cs1

Enable QuadSPIOB_CS1
0 QuadSPIOB_CSt1 is disabled
1 QuadSPIOB_CS1 is enabled

This field must be set to 1 if sflash_B2_size is not
equal to 0.

0x68 - 0x6b

fsphs

Full Speed Phase selection for SDR instructions:
0 Select sampling at non-inverted clock.

1 Select sampling inverted clock.

0x6¢ - Ox6f

fsdly

Full Speed Delay selection for SDR instructions:
0 One clock cycle delay.

1 Two clock cycles delay.

0x70 - 0x73

ddrsmp

DDR sampling point:
Valid range: 0 - 7.

0x74 - 0x173

256

look_up_table

Look-up-table for sequences of instructions.

See the QuadSPI chapter in silicon’s reference
manual for more details.

0x174 - 0x177

column_address_space

Column Address Space:

The parameter defines the width of the column
address.

0x178 - 0x17b

config_cmd_en

Enable additional configuration command:

0 Additional configuration command is not
needed.

1 Additional configuration command is needed.

0x17c - 0x18b

16

config_cmds

IPCR arrays for each connected SPI flash.

"config_cmds[n]" provides IPCR value, namely
seq_id << 24.

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

12

Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

All fields must be set to 0 if config_cmd_en is not
set.

0x18c - 0x19b

16

config_cmds_args

Command arrays needed to be transferred to
external SPI flash.

"config_cmds_args[n]" provides commands to be
written.

All fields must be set to 0 if config_cmd_en is not
asserted.

0x19c - Ox19f

differential_clock_pin_e
nable

Enable differential flash clock pin:
0 Differential flash clock pin is disabled.

1 Differential flash clock pin is enabled.

Ox1a0 - Ox1a3

flash_CK2_clock_pin_e
nable

Enable flash CK2 clock pin:
0 Flash CK2 clock pin is disabled.
1 Flash CK2 clock pin is enabled.

Ox1a4 - Ox1a7

dgs_inverse_sel

Select clock source for internal DQS generation:

0 Use 1x internal reference clock for DQS
generation.

1 Use inverse 1x internal reference clock for the
DQS generation.

Ox1a8 - Ox1ab

dgs_latency_enable

DQS Latency Enable:
0 DQS latency disabled.

1 DQS feature with latency included enabled.

Ox1ac - Ox1af

dgs_loopback_internal

DQS loop back from internal DQS signal or DQS
Pad:

0 DQS loop back is sent to DQS pad first and
then looped back to QuadSPI.

1 DQS loop back from internal DQS signal
directly.

0x1b0 - 0x1b3

dgs_phase_sel

Select Phase Shift for internal DQS generation:
0 No Phase shift.

1 Select 45 degree phase shift.

2 Select 90 degree phase shift.

3 Select 135 degree phase shift.

0x1b4 - Ox1b7

dgs_fa_delay_chain_se
I

Delay chain tap number selection for QuadSPIOA
DQS:

Valid range: 0-63

0x1b8 - Ox1bb

dgs_fb_delay_chain_se
I

Delay chain tap number selection for QuadSPI0B
DQS:

Valid range: 0-63

Ox1bc - Ox1c3

Reserved.

Ox1c4 - Ox1c7

page_size

Page size of external flash.

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

13

Creating application for QuadSPI memory

Table 2. QuadSPI configuration block (continued)

Offset

Size (bytes)

Configuration field

Description

Page size of all SPI flash devices must be the
same.

Ox1c8 - Ox1cb

sector_size

Sector size of exernal SPI in flash.

Sector size of all SPI flash devices must be the
same.

Ox1cc - Ox1cf

timeout_milliseconds

Timeout in terms of milliseconds:
0 Timeout check is disabled.

Other: QuadSPI Driver returns timeout if the time
that external SPI devices are busy lasts more
than this value.

0x1dO0 - 0x1d3

ips_cmd_second_divide
r

Second driver for IPs command based on
QSPI_MCR[SCLKCFG], the maximum value of
QSPI_MCR[SCLKCFG] depends on specific
devices.

0Ox1d4 - 0x1d7

need_multi_phase

0 Only one phase is needed to access external
flash devices.

1 Multiple phases are needed to erase/program
external flash devices.

0x1d8 - Ox1db

is_spansion_hyperflash

0 External flash devices do not belong to
Spansion Hyperflash family.

1 External flash devices belong to Spansion
Hyperflash family.

Ox1dc - Ox1df

pre_read_status_cmd_
address_offset

Additional address for the PreReadStatus
command.

Set this field to OxXFFFFFFFF if it is not required.

0x1e0 - Ox1e3

pre_unlock_cmd_addre
ss_offset

Additional address for PreWriteEnable command.
Set this field to OXFFFFFFFF if it is not required.

Ox1e4 - Ox1e7

unlock_cmd_address_o
ffset

Additional address for WriteEnable command.
Set this field to OXFFFFFFFFF if it is not required.

Ox1e8 - Ox1eb

pre_program_cmd_add
ress_offset

Addtional address for PrePageProgram
command.

Set this field to OXFFFFFFFF if it is not required.

Ox1ec - Ox1ef

pre_erase_cmd_addres
s_offset

Additional address for PreErase command.
Set this field to OXFFFFFFFF if it is not required.

0x1f0 - Ox1f3

erase_all_cmd_address
_offset

Additional address for EraseAll command.
Set this field to OXFFFFFFFF if it is not required.

0x1f4 - Ox1ff

Reserved.

NOTE

Though there are several parameters in QCB, only a few parameters need to be
configured for most SPI flash devices available on the market.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

14 Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

In the QCB, the most important field is the Lookup Table (LUT), which contains command sequence for QuadSPI
instructions, such as erase, read, and program. The command sequence in the LUT should appear in the order as shown in the
following table:

Table 3. Look-up table entries for Kinetis bootloader

Index Field Description

0 Read Sequence for read instructions.

1 WriteEnable Sequence for WriteEnable instructions.

2 EraseAll Sequence for EraseAll instructions.

3 ReadStatus Sequence for ReadStatus instructions.

4 PageProgram Sequence for Page Program instructions.

6 PreErase Sequence for Pre-Erase instructions.

7 SectorErase Sequence for Sector Erase.

8 Dummy Sequence for dummy operation if needed
For example, if continuous read is configured in
index 0, the dummy LUT should be configured to
force external SPI flash to exit continuous read
mode. If it is not required, this LUT entry must be
set to 0.

9 PreWriteEnable Sequence for Pre-WriteEnable instructions.

10 PrePageProgram Sequence for Pre-PageProgram instructions.

11 PreReadStatus Sequence for Pre-ReadStatus instructions.

For most types of SPI flash devices available in the market. However, for other types of high-end SPI flash devices, such as
Spansion Hyperflash, and additional indexes may be required.

3.3.2 Example QCB for MX25U3235F device on TWR-K80F150M
Tower System module

This section creates an example QCB data structure for TWR-K80F150M Tower System module. There are two
MX25U3235F QuadSPI flash devices connected to QuadSPIOA and QuadSPIOB ports, respectively, on the board. The
datasheet for MX25U3235F are available on the MXIC website, and the schematics for the TWR-K80F150M Tower System
module is available on the Freescale website.

The following are some attributes which are essential to create the QCB for the MX25U3235F flash device. The same (but
not limited to the following) information can be found in its data sheet as well:

Table 4. MX25U3235F features for QuadSPI configuration

Attribute Value/timing Description
Maximum supported frequency (4 I/O) 104 MHz (6 dummy cycles) -
Page size 256 bytes -
Sector size 4 KB/32 KB/64 KB 4 KB is selected in this guide.
Chip size 4 MB -
Busy/WritelnProgress bit in status Bit 0 Bit O in status registers is called busy
register flag.

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 15

Creating application for QuadSPI memory

Table 4. MX25U3235F features for QuadSPI configuration (continued)

Attribute

Value/timing

Description

1 means SPI flash device is busy.
0 means it is idle.

The value needs to be set to
'busy_bit_offset' in QCB.

Enable Quad mode

High-Z msB

Write status register, bité must be set to
1 in order to enable Quad mode.

Following the QuadSPI chapter, the
command sequence for this operation is:

1. CMD: 01, single pad
2. Write: length=1, single pad

The data to be written is 0x40, and is
configured to 'device_cmd' in QCB.

Write Enable

T\ [

This is required before issuing any write/
erase operations to SPI flash devices.

Mode3d . 012 3 4567 I
SCLK : The command sequence for this
Mosel e Command —] operation is:
s [06h KU 1. CMD: 0x06, single pad
50 High-Z
Sector Erase s T\ /— |Each sector must be erased before

Mode 3 0123456789 29 30 31

s = AUUUULLULL..... LT
(XX

Mode 0

[#—— Command 24-Bit Address
« N =90 0

doing any program operation.

The command sequence for this
operation is:

1. CMD: 0x20, single pad
2. ADDR: 0x18 (24-bit address),
single pad

Chip Erase

cs# _\ /_

Mode 3 01 2 3 4 568 7

Mode 0 I-I—Cummand—l-|
o [snorcn X[[I[IT11]]

This command can be used to erase the
entire content on SPI flash device.

The command sequence for this
operation is:

1. CMD: 0x60, single pad

4 x 1/0O Page program

fe—— Command ‘ﬂ-c» 6 ADD cycles ¢ Dala | Data : Data | Data |
Byle 118yt 2 'Byle 3 | Byle 4

_ |desired data to SPI flash device. Here,
- |we use 4 x /O page program command

siot WX

S0z CERRERAEASAAAS =

sioa

This command is used to program the

in order to improve the program
performance.

The command sequences for this
operation are:

1. CMD: 0x38, single pad

2. ADDR: 0x18 (24 bit address) quad
pads

3. WRITE: 0x40 (ignore this value)

quad pads

Table continues on the next page...

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

16

Freescale Semiconductor, Inc.

Creating application for QuadSPI memory

Table 4. MX25U3235F features for QuadSPI configuration (continued)

Attribute

Value/timing

Description

4 1/0 Read

~

=| Read in order to improve read

) nm

This command is used to read data from
SPI flash device. Here, we use 4 x I/O

performance.

The command sequence for this
operation is:

1. CMD: OxEB, single pad

2. ADDR: 0x18 (24 bit address) quad
pads

3. DUMMY: 0x06 (6 cycles) quad
pads

4. READ: 0x80 (128 byte at one
pass) quad pads

5. JUMP_ON_CS: 0 (single pad)

Read Status

CSﬁ_\

SCLK

Moda 0

[+ command —*

Moded O 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15

s [

05h

)

(HRRRIRER R

I

S0

High-Z

Status Register Out

TAGASAARIRZET1R0

This command is used to check if the
SPI flash device is busy after having
issued a program/erase command to it.

The command sequence for this
operation is:

1. CMD: 0x05, single pad
2. READ: 1 (byte) single pad

The information needed for QCB creation for the TWR-K80F150M Tower System module is summarized in Table 3-3. The
“Programmable Sequence Engine” and "Example Sequences" sections within the QuadSPI chapter of the MK80F256
Reference Manual can be referenced to create customized QCBs. The “Description” column in Table 3-3 also provides the

LUT instructions for each command.

Based on the above summary, the ‘qspi_config_block_generator’ project is provided with the package as an example along
with this user's guide. The example project can be used as a basis to generate customized QCBs.

3.3.3 Generate the QCB with a simple example project

The project can be found in the package at location demo/qspi_config_block/QCBGenerator/build. Currently, two projects
are provided to build from toolchains Microsoft Visual Studio 2013 and codeblocks. Launch Microsoft Visual Studio
example project available in the Visual Studio folder. Edit the file qspi_config_block_generator.c to configure
gspi_config_block in the main function:

const gspi_config t gspi_config block

.tag = kQspiConfigTag,
.version = { .version
.lengthInBytes = 512,

.sflash Al size = 0x400000,
.sflash Bl size = 0x400000,
// In K80 ROM bootloader,

.busy bit offset = 0,
.ddr_mode_enable = 0,

.dgs_enable = 0,

.parallel mode enable = 0,

// Fixed value,

// Fixed value,
kQspivVersionTag }, // Fixed value, do not change.
do not change.
// 4MB - MX25U3235F connected to QSPIOA
// 4MB - MX25U3235F connected to QSPIOB

do not change.

QSPI serial clock frequency is 96MHz

.sclk freq = kQspiSerialClockFreq High, // High frequency, 96MHz / 1 = 96MHz
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort EnableBothPorts,

// Both QSPIOA and QSPIOB are enabled.

// Busy offset is 0
// disable DDR mode
// Disable DQS feature

// QuadSPI module work under serial mode

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

17

Creating application for QuadSPI memory

.pagesize = 256, // Page Size: 256 bytes

.sectorsize = 0x1000, // Sector Size: 4KB

.device mode config en = 1, // configure quad mode for SPI flash device
.device cmd = 0x40, // Enable quad mode

.write_cmd_ipcr = 0x05000000U, // IPCR indicating enable segid (5<<24), see QCB structure
// Set second divider for QSPI serial clock to 3 if K80 ROM Bootloader cannot program

// SPI flash at 96 MHz, in this configuration, the program speed is 96MHz/4 = 24MHz
.ips_command second divider = 3,

.look up table =

// Seq0: Quad Read (maximum supported freq: 104MHz)
*

CMD: OxEB - Quad Read, Single pad

ADDR: 0x18 - 24bit address, Quad pads
DUMMY: 0x06 - 6 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 0

*/

[0] = O0x0A1804EB,

[1] = 0x1E800EO06,

[2] = 0x2400,

// Seqgl: Write Enable (maximum supported freq: 104MHz)
/*

CMD: 0x06 - Write Enable, Single pad

*/

[4] = 0x406,

// Seqg2: Erase all (maximum supported freq: 104MHz)

/*

CMD: 0x60 - Erase All chip, Single pad
*/

[8] = 0x460,

// Seq3: Read Status (maximum supported freq: 104MHz)
/*

CMD: 0x05 - Read Status, single pad

READ: 0x01 - Read 1 byte

*/

[12] = 0x1c010405,

// Seg4: 4 I/0 Page Program (maximum supported freqg: 104MHz)
/*

CMD: 0x38 - 4 I/0 Page Program, Single pad

ADDR: 0x18 - 24bit address, Quad pad

WRITE: 0x40 - Write 64 bytes at one pass, Quad pad,

(Ignore the 64, as it will be overwritten by page size)

*/
[16] = 0x0A180438,
[17] = 0x2240),

// Seg5: Write status register to enable guad mode
/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad

*/

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
*/

[28] = 0x08180420,

// Seq8: Dummy

/*

CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.
Unnecessary here because the continuous read mode isn't enabled.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

18 Freescale Semiconductor, Inc.

4
Configure QuadSPI with Kinetis bootloader

*/
(321 = o0,

}i
After modifying the qspi_config_block variable, right-click the QCBGenerator project and choose to build.

If the project successfully builds, run QCBGenerator.exe from the Debug folder. The output file named
'qspi_config_block.bin' is generated under the Debug folder.

Both the QuadSPI project and QCB are ready. The next chapter describes how to flash the QuadSPI image to the target
device with Kinetis bootloader.

4 Configure QuadSPI with Kinetis bootloader

There are typically two scenarios where QuadSPI will be configured using Kinetis bootloader:

1. Configure QuadSPI at runtime.
2. Configure QuadSPI at start-up.

4.1 Configure QuadSPI at runtime

The TWR-K80F150M Tower System module is shipped without any pre-programmed QCB in QuadSPI memory or in
internal flash memory. The following figure shows a simple example demonstrating steps to write and configure QCB. See
the following figure.

1. Hold the NMI button, press the reset button, then release the reset button and NMI button, in that order.

2. Use the blhost property command to get the Reserved Region property value from Kinetis bootloader. This provides the
RAM region reserved by Kinetis bootloader.

Choose a free RAM region, and using blhost, write QCB to that region.

4. Configure the QuadSPI with the "configure-quadspi" command.

»

NOTE
The first command line parameter to configure-quadspi command is "1" to represent the

QuadSPIO0, and the second parameter "0x2000_0000" to represent the start address of the
QCB.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 19

Configure QuadSPI with Kinetis bootloader

§ blhost -u -- get-pr operty
Ir|'|e-:t -'Curnand

mnr
Wor
Wor g
Worda] £ L
Regions ash: 0 x0 (0 bytes), RAM: Ox1FFF0000-0x1FFF1D67

¥ blhost -u -- mrite—memnr5
ject command vriTH memor
aring to send 5 (bytes to the TargHT
sful ge : o command 'wr -memory’
aric r o command 'write—memnry'

$ blhost -u -- configure-quadspi 1 0x2
Ir|'|" 'ﬂrnand "ﬂhhgur e-quadspi’ _. .
: to --cwnnwud "configure-quadspi’

SUCC

$ blhost -u -- read-memory (
command '
F 'read-memory’
30 00 10 01 01 00
'read-memory'

Figure 8. Configure QuadSPI at runtime with blhost

4.2 Configure QuadSPI at start-up

The previous sections show how to configure QCB when there is no QCB pre-programmed on the device. For subsequent
boots, it makes sense to save the QCB to non-volatile memory, such as internal flash pointed by the BCA member field,
'gspiConfigBlockPtr', or at the start offset of QuadSPI memory. Then, next time the device boots from the ROM, the Kinetis
bootloader in ROM will detect the presence of the QCB and configure the QuadSPI automatically at start-up. The following
steps are the recommended procedure based on the previous section. To program QCB at the start address of QuadSPI
memory, see the following figure for the Blhost command sequence.

Erase the first sector in QuadSPI memory before programming the QCB.
Write the QCB to the start of QuadSPI memory.

Erase the flash config area.
Program the FOPT with the desired value. Make sure FOPT[7:6] (0x40D address in internal flash) is set to Ob10 to

default to boot from Kinetis bootloader in ROM.
5. Reset the target device and use the "read-memory command" to check and ensure if QuadSPI is configured successfully

at start-up, as shown in the following figure.

Cal o e

When all of the above operations are completed, the QuadSPI is configured at start-up.

So far, we understand the basic steps of creating QCB and configuring QuadSPI using the Kinetis bootloader. The next
sections describe how to program the QuadSPI image.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
20 Freescale Semiconductor, Inc.

Gmmand '+
ul generic
status =

-u -- write-memory (

ommand "write-m
ing_to send 512 (
ful generic r
ul gaﬂar1_ r
status = 0
Wrote 512 of 512 by

nmmand
ul generic r
status = 0

ommand
ul gener
status

Flash QuadSPI image via SB file

egion
~egion

command 'flash-erase-region’

0000 gspi_config block.bin

es to the target.
mmand 'write-memo
mmand "write-memory

jon Ox0 0

~egion’

ymmand e-region’

o000 512

Figure 9. Configure QuadSPI at start-up

5 Flash QuadSPI image via SB file

Generally, the QuadSPI image contains separate segments. For example, vector table and flash config area are in internal
flash, and executable code is located in QuadSPI memory. Additionally, the corresponding regions need to be erased before
programming. It is inconvenient to use separate commands to finish this task. Here, we introduce SB files and “receive-sb-

file” command to simplify the programming procedure.

5.1 Brief introduction of SB file

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

21

A ————
Flash QuadSPI image via SB file

The Kinetis bootloader supports loading of the SB files. The SB file is a Freescale-defined boot file format designed to ease
the boot process. The file is generated using the Freescale elftosb tool. The format supports loading of elf or srec files in a
controlled manner, using boot commands such as load, jump, fill, erase, and so on. The boot commands are prescribed in the
input command file (boot descriptor .bd) to the elftosb tool. The format supports encryption of the boot image using AES-128
input key.

Elftosb and SB file formats are described in greater detail in the accompanying documentation in the package.

In this user's guide, the typical use case is provided to demonstrate the usage of elftosb host tool and how to download the SB
file with Kinetis bootloader.

5.2 Generate SB file for QuadSPI image

This section describes generation of the SB file. The output led-demo srec file is used to generate SB file (for KEIL, a similar
approach can be followed).

* Open the led_demo_qgspi project using IAR EWARM toolchain. Using project options dialog select "linker" and make
sure the extension of the output file is ".out".

* Select the "Output Converter" and change the output format to "Motorola" for outputting .srec format image. See the
following figure.

Options for node “led_dema_QSPT™ BEEESS Options for node "led_dema QSPE X
e Faciory Selrgs | Categon: ! [Factoy Setings |
General Options | Ganeral Opbicns
Static Analysis | Stabc Anahyss
Ruritime Chedang : e = Runtime Chedang

C e ++ Compler Corfig | Librsry | input | Optimizations | Advanced | Outpt (st | <1+ €6 ++ Conpler Output
Assembier " Aeembler |]
Output Converter i S | Generste sddtionsl auput
Cistnm Buid led_demo_(X5P1.out Custom Buld i feha
Buskd Actions Jh .. S—— Bl Acagns Pl s)
clude debug information in cutput Linder Moctorcla -
be’m.ff | -J'ic.-
Samlator Simulator o
Angel weride defaul
(CMSTS DAP IZH:E;E:JAF led deang CHoPl o
L8 Server GDE Server
LN B STt IAR: RLOM-moritor
I-pet/ITAGIt It/ ITASjet
EI*;’.“E";T’“’ Jink/} Trace
IR — TI Stelaris
Macraigor Macraigee
PE micro PE mizo
;D-qu: RDI
Third-Party Driver i::ﬂl-r:{y*','n--w
TI¥DS Rk S :
0K | [Cancel | LI [Cancel

Figure 10. Generate led_demo_gspi.srec with EWARM

* Build either Debug or Release configuration of the project. Once the build is completed, the led_demo_QSPL.srec file
should be available in the output/Debug or output/Release folder.

The next step is to generate the SB file using a command-line host tool, elftosb. The boot descriptor file, qspi_image.bd file is
passed as input to the elftosb tool on the command line. The following figure shows the BD file content, "Sources" section
provides path to the input srec and QCB files and "Section (0)" shows the flow of boot commands.

After creating the BD file shown in the following figure, copy the "gspi_config_block.bin", elftosb.exe,
"led_demo_QSPL.srec", and the BD file into the same directory. Then, open the window with command prompt and invoke
elftosb such as “elftosb -V —c gspi_image.bd —o image.sb”. The elftosb processes the gspi_image.bd file and generates an
image.sb file. Elftosb also outputs the commands list as shown in Figure 12. Notice the list corresponds to the BD file
Section(0) statements.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

22 Freescale Semiconductor, Inc.

4
Flash QuadSPI image via SB file

The sources block assigns file names to identifiers.

sources {
SREC File path
mySrecFile = "led_demo_Q5PI.srec”;

qCe file path
gspiconfigBlock = "gspi_config_block.bin";

The section block specifies the sequence of boot commands to be written to
the sB file.
section (0) {

#1. Erase the vector table and flash config field.
erase 0..0x800;

Step 2 and Step 3 are optional if the qQuadsPI is configured at startup
#2. Load the QCB to RAM
load gspiconfigBlock > 0x20000000;

#3. Configure QuadsPI with the QCE above
enable gspi 0x20000000;

#4. Erase the QuadsPI memory region before programming.
erase Ox68000000. .0x68004000;

#5. Load the QCB above
load gspiconfigelock > Ox68000000;

#6,7. Load all the rO data from srec file, including vector table,
flash cuﬂfi? area and codes.
load mysrecFile;

#B8. Reser Target
reset;

Figure 11. Create a BD file for the QuadSPI image

F1Q=GHUUUU

Figure 12. Elftosb command line usage example and output text

5.3 Flash QuadSPI image via Kinetis bootloader

When the SB file image is generated, either the blhost or KinetisUpdater can be used to program the image to the target. The
following figure shows an example of programming the SB file with blhost.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 23

Advanced Usage: Encrypted QuadSPI image

Figure 13. Flash SB file with blhost

6 Advanced Usage: Encrypted QuadSPI image

The SB file generated in Section 5.2 is in plaintext form and not encrypted. This section focuses on several aspects of
encrypted boot with Kinetis bootloader.

To use the encrypted boot feature, user must have basic knowledge of the SB key, KeyBlob Block, and KeyBlob Encryption
Key (KEK), SB Key, AES-128 CTR, AES-128 CBC-MAC, and so on. See the Kinetis bootloader chapter in the silicon's
reference manual for a detailed description. The following is a brief introduction to these terms:

* The KeyBlob Block is a data structure that contains up to four groups of KeyBlob entries. Each entry consists of the
start address, length, decryption key, and counter of an encrypted QuadSPI memory region.

* The KeyBlob Block itself is encrypted by another AES key, called Key encryption key (KEK). KEK needs to be pre-
programmed in flash's IFR region. In MK82F256, the Flash IFR index for KEK is from index 0x20 to 0x23. With the
Key Blob and KEK, sections belonging to encrypted QuadSPI memory region (QuadSPI image data) can be encrypted
using elftosb tools. The generated SB file has encrypted image data for the encrypted QuadSPI memory region.

* For devices with flash security enabled, only encrypted SB file images are allowed to be provisioned. Kinetis
bootloader decrypts the encrypted SB image as it receives from the host using a separate SB key. The SB key is an
AES-128 key pre-programmed into flash's IFR region at word offsets 0x30 to 0x33. Elftosb allows generation of
encrypted SB file image using the SB key.

In general, the QuadSPI image is encrypted using the parameters in the KeyBlob with AES-128 CTR mode, the KeyBlob
Block itself encrypted with KEK, and the SB file is encrypted via SB key with AES-128 CBC-MAC. The following figure
shows an SB file containing plaintext QuadSPI image data. The vector table and other regions are in plaintext.

Based on the application type, the user can choose to have plaintext or encrypted QuadSPI image or encrypted SB file image
solution.

Plaintaxt 5B Fila

0iz0 WIMGERER r1| Vechr ble: | o0

3 00 68 28| Plaintexd 60 €8 00 00 00 00

Plainlext Q3P| Image

g 00 03 2 Bctor table; |14 00 &% 78 1r 90 48
o 13 ! . 14 & 00 00 90 00
7 00 00w F.'i.ami.uxl w00 00 00 &9 1% 00 &%

. o 60 14
00 &2 09 00 00 00 &D 14 00 &2 ES 62 E - A
4 00 68 61 14 00 63 &1 14 00 63 61 62 On fL
: Elftosb 68 61 14
i B4 =
£ iy Q5P| Image: ﬁ-
- BA Plainbecd 33 48 N4 45 4F F4 B0 41 01
L3 B0 0 A1 QSPIImage: |r a3
. —
& 0B Plaintexi C D&
0D oD I3 08 73 13 &B 3

Figure 14. Plaintext SB file with Plaintext QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

24 Freescale Semiconductor, Inc.

Advanced Usage: Encrypted QuadSPI image

Flalntext SB File
Plaintext 5P Image

a Elftosh COD04ED Flpssss s anoeo 0 g2 7E 12 00 &R
: b Bo0504F0 ED 13 0o 68 28| VESIrBEbR as gx o2 g0 00 oo
: 0o oo 0o oo oo Pleintea 00 o0 6% 14 00 &8
? =L £3 34 00 €8 0O OO 00 00 €5 I3 00 68 ES 11 00 £
+ £1 14 00 6B &1 14 00 6B €1 15 00 68 6L 14 00 &8

Ky Blab GOCOOSI0 61 14 00 €8 6L 14 00 68 B1 14 00 68 EL 14 00 6B

T R PR T R

: mage \F OB OF? 1% Fu 87 332
T Encrypled 1E FC 05 EF TF BE &F
oF 40 53 51 56 B
F& IB AT EF 34
o0 PE 38 FE 4D
AD 3C A% 82 B2
B BE 62 B TH
Ef T3 %3 F1 15 CO € = 07
EE IS 43 P4 53 AR 40 85 O P8 04 61 93
ER &8 B3 FE FI &3 IE BB AT FS 01 TE Eo

B AR

-1}
48 0a ES

Figure 15. Plaintext SB file with Encrypted QuadSPI image

The following figure provides an encrypted SB file containing an encrypted QuadSPI image. The entire content of the SB file
is obfuscated.

Elftost Encrypled S8 Fig
Plaintext Q5P Image .
KEK
+ TD 48 F\T DO &8 DO 46 0% EE 26 BC AC 2C
33 AF Fq4 8C AB 2C 5L 41 %3 FO 11 43 FB
Kay Blob -1 OB 83 EE ED AR £7 10 B DA AL B8
+ L hE 3& 21 14 T8 45 €8
o] pL BF B4 &2 CF 4B 40
58 Kay 17 ¥ bE o2 %8 £1 63 TP 34
48 27T BB & 8 A 01 RB® 34 C7T 10
ﬁr Encryptad S8 file,
o8 42 ca o Cannot recognize 2
FECL EE R a “'lﬂl"cb e
a0 Or 26 ¥ Y ra 1
EC D3 Bo 3 and data o
6E 3% F6 O he
F3 54 07 N t
AR RD FB % i
4F 38 1 4 7

ER 31 51 DL C1 C5 41 TF OF 44
38 FD DA 94 5& 1R DE 8C B2 29

Figure 16. Encrypted SB file with Encrypted QuadSPI image

The rest of the sections in this chapter provide step-by-step instructions on programming keys, generating encrypted QuadSPI
image data in the SB file, and encrypting the entire SB file image with the SB key.

6.1 Generate an SB file with KEK and SB KEY

Here is an example of generating an SB file with just the KEK and SB KEY. The generated SB file can be provisioned using
Kinetis bootloader to program the keys into IFR region of the device.

The SB KEY is a 16 byte array. For example:

uint8 t sbKey[16] = {OxOO, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, Oxaa, O0xbb,
O0xcc, 0xdd, Oxee, Oxff}.

The KEK is also a 16 byte array. For example:

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 25

A ————
Advanced Usage: Encrypted QuadSPI image

uint8 t kek[16] = {OXOO, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f}.

Pay attention to the correct order of the data to be programmed to Flash IFR, because each IFR field needs to be programmed
with 32-bit little-endian data. See the example BD file content provided in the following figure to understand how to specify
the SB key and KEK to generate SB file image to program the keys.

To generate SB file, a specified BD file needs to be generated first, assuming the BD file is called "program_keys.bd".

No source Tile needed, keep this block empty
sources {

The section block specifies the sequence of boot commands to be written to
the 5B file.
section (0) {

Use the "load ifr’ statement to program the SB key to IFR memory.

The SB key occupies IFR index 0x30-0x33.

The 5B key is 128-bit specified as 4 little-endian long-word values.

SB Key = {0x00, 0x11, 0x22, 0x33, Ox44, 0x55, Ox66, O0x77, OxB8&, 0x99, Oxaa, Oxbb, Oxcc, Oxdd, Oxee, Oxff}
load ifr 0x33221100 = 0x30;
load ifr Ox77665544 > 0x31; SB KEY
load ifr Oxbbaa%9988 > 0x32; | ~
load ifr Oxffeeddcc > 0x33;

Use the 'load ifr' statement to program the OTFAD KEK To IFR memory.

The KEKE is used to unwrap (decrypt? the keyblob at boot time in order to

correctly set up the OTFAD engine.

The key is specified as 4 1ittle endian values, with the "least significant”

key word going into the lTowest IFR index;

KEK = {0x00, Ox01, O0x02, Ox03, Ox04, Ox05, Ox06, 0Ox07, Ox08, Ox09, Ox0a, OxOb, Ox0Oc, OxOd, OxOe, OxOf}
load ifr OxOFOECDOC = OxZ0;
load ifr OxOBOADS08 > 0Ox21; KEK
load ifr Ox07060504 > 0x22;
load ifr 0x03020100 = 0x23;

4 e e e e

Reset target in order to let these keys take effect.
reset;

Figure 17. Specified BD file for SB key and KEK

Using elftosb, the desired SB file is generated. The elftosb command line and output is shown in the following figure.

program_k

Figure 18. Generate program_keys.sb

Either blhost or KinetisUpdater can be used to flash the SB file to the target device.

6.2 Generate an SB file with encrypted QuadSPI image

After the previous operation, another SB file which contains the encrypted QuadSPI image is still needed. Similar as to how
the SB file was generated in the previous section, a BD file is needed to describe all the operations in this SB file. Besides the
operations listed in Chapter 4, it also contains the Key Blob Block, encrypted QuadSPI image, and Key Blob encryption
wrapper.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

26 Freescale Semiconductor, Inc.

4
Advanced Usage: Encrypted QuadSPI image

6.2.1 The KeyBlob Block

This section shows the syntax of the keyBlob entry in the BD file with an example in the following figure. The example
shows one QuadSPI memory region identified by the counter value.

keyblob (0) {

#key blob 0

(

start = addressl,

end = address2,

key=keystring,

counter=counterstring

)

key blob 1, keep this blank if this key blob isn’t needed.
()

key blob 2, keep this blank if this key blob isn’t needed.
0

key blob 3, keep this blank if this key blob isn’t needed.
()

}

B The sources block assigns file names to identifiers.

sources {
SREC File path
mySrecFile = "led_demo_Q5PI.srec”;

qCB file path
gspiconfigBlock = "gspi_config_block.bin";

h

The keyblob creates a structure with up to 4 keyblob entries.

The empty parentheses syntax specifies an entry of all zeros (no encryption).
Each entry consists of 4 parameters:

start - start address of encrypted block.

end - end address of encrypted block.

ey - AES-CTR mode encry?tiun key for this range.

counter - initial counter wvalue for AES-CTR encryption for this range.

K

eyb}nb (0 {

start=0x68001000,

end=0x68001FFF, KevBlob
key="000102030405060708090A080C0OD0DECF", !
counter="0123456789ABCDEF"

i
N

Figure 19. KeyBlob definition

6.2.2 Encrypt QuadSPI image

This section shows BD file changes required to encrypt the QuadSPI image using the KeyBlob. The encrypt (0) section in the
BD file, shown in the following figure, causes elftosb to encrypt the QuadSPI image data falling in the QuadSPI memory
regions pointed by the keyBlob counter.

The keyBlob itself is encrypted with the KEK. The keywrap (0) section in the BD file causes elftosb to wrap the keyBlob
using the KEK specified in the load command of keywrap section.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 27

A ————
Advanced Usage: Encrypted QuadSPI image

The syntax for the keywrap section of BD file is as follows:

keywrap (0)
load {{KEK hex string}} > destination of encrypted key blob block;

The memory address 0x1000 in the example shown in the following figure is where the wrapped keyBlob is loaded during
provisioning of SB file to the target device using Kinetis bootloader.

The section block specifies the sequence of boot commands to be written to
the sg file.
section (0) {

#1. Erase the vector table and flash config field.
erase 0..0x800;

Step 2 and Step 3 are optional if the QuadsPI s configured at start-up
#2. Load the QCBE to RAM
load gspiconfigelock > 0x20000000;

#3. Configure QuadsPI with the QCB above
enable gspi 0x20000000;

#4. Erase the QuadsPI memory region before programming.
erase 0x68000000..0x68004000;

#5. Load the QCB above
load gspiconfigBlock > 0Ox&B000000;

#6,7. The encrypt statement indicates that load commands should encrypt data from the srec file
using AES-CTR mode encryEtiun. The encrypt argument (0) specifies the keyblob parameters

to use (see the keyblob block above} section from the srec file that do not fall in the

range of one of the keyblob entries are left unecrypted.

ENCrYPT L0

Load a11 the RO data from srec file. TN i i / cpT i
Toad mysrecrile; Entire image including encrypted QuadSPI image

#B. Load the encrypted keyblob block to specified location.
The keywraE statement wra s (encrypts) the keyblob specified in the ar?ument(ﬂ} using the
specified key Encr ption ay (KEK% and loads the keyblob to dinternal flash. The load
destination(0x1000¥ must match the default location (0x410) or the keyblob pointer in the
Bootloader Configuration Area(BCA) contained in the srec image, Make sure the sector at
0x1000 has not been written by the srec file Toad above, otherwise it will need to be
erased again.
keywrap (0) {

WGad {{000102030405060708090A0B0CODOECF}} > 0x1000; | Load encrypted keyblob to 0x1000

#0. ReseT Target
reset;

Figure 20. Encrypt QuadSPI image and KeyBlob

6.2.3 Encrypting SB file with the SB key

To encrypt the SB file with elftosb, a file containing the SB key needs to be created, as shown in the following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

28 Freescale Semiconductor, Inc.

Change QuadSPI clock in QuadSPI image

i D:%valkey. txt — Notepadit [Administrator]

File Edit Search View Encoding Language Saettings Macro Bun Flugin

| R = L= o&|*hm|ac|ﬁﬂ‘m| £ 3

|:| key. txdl
1 0011223344556677889%aabbecddesetff

Figure 21. Create key.txt containing SB key

The following figure shows generation of the encrypted SB file using the BD file drafted in the previous sections. The SB
key is passed on the command line to elftosb using -k option.

spi_image
d range

d k lob

f1g=0x=0000

Flg=t
flg
flg
flg

Figure 22. Generate encrypted SB file with encrypted QuadSPI image

The output image.sb can be programmed to the target device using blhost or KinetisUpdater as shown in earlier examples.
Based on the example BD file, the image.sb has the wrapped keyBlob, keyBlob encrypted QuadSPI image data, and the
entire content of the SB file encrypted with the SB key.

7 Change QuadSPI clock in QuadSPI image

When using Kinetis bootloader, if the target is booted from the QuadSPI image, both the QuadSPI serial clock and core clock
are from MCGFLL. MCG is under FEE mode, using the IRC48M as the clock source. In some cases, this may not meet the
system’s accuracy and performance requirement. The MCG mode needs to be switched from FEE to PEE, with an external
OSC as clock source. Be aware that this operation has great impact on the QuadSPI serial clock, so avoid running the clock
switch function on the QuadSPI image directly. A relatively safer way to avoid this is to either copy this function to SRAM,
or place this function in internal flash.

This chapter provides an example for how to create a clock switch function running on RAM.

7.1 Create a RAM function with KDS

This sections shows the steps required for the KDS to create the ram function.

First, declare a section to place RAM function codes, in this example, a section called “ramfunc_section” is declared as
following:

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 29

Change QuadSPI clock in QuadSPI image

extern uint32_t ramfunc_load_address[];

extern uint32 t ramfunc_length;

extern uint32_t ramfunc_execution_address[];

void clock change(void) _ attribute_ ((section("ramfunc_secticn™))); // Execute address of ram function

Figure 23. Declare a RAM function in KDS

Then, implement a copy_to_ram() function in the KDS project. An example is shown in the following figure:

void copy to ram{void)

{

uintd_t* codeRelocateRomStart;
uint32_t codeRelocateSize;
uintd t* codeReloocateRamStart;

codeRelocateRomStart = (uintd _t*)ramfunc_load_address;
codeRelocateSize = ramfunc_length;
codeReloocateRamStart = (uint3 t*)ramfunc_execution address;

while(codeRelocateSize)

{

*codeReloocateRamStart++ = *codeRelocateRomStart++:
codeRelocatesize--;

b

Figure 24. Implement copy_to_ram() function in KDS project

Finally, the linker file needs to be updated to let KDS realize that a RAM function is defined, and needs to be placed at some
location. The following figure demonstrates the changes for RAM function in linker file. A complete project for this example
can be found under led_demo/targets/TWR-KS0F 1 50M/builds/kds/led_demo_QSPI folder.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

30 Freescale Semiconductor, Inc.

4
Change QuadSPI clock in QuadSPI image

57 /* Specify the memory areas */

58 MEMORY

59 {

6@ m_interrupts (RX) : ORIGIN = ©x8P000088, LENGTH = Ox808083(e
61 m_bootloader_config (RX) : ORIGIN = 0x000003(0, LENGTH = 0x00000040
62 m_flash_config (RX) : ORIGIN = @x@000e4e@, LENGTH = Ox00000e81e
63 m_text (RX) : ORIGIN = ©x68€01088, LENGTH = 0xeB8486000
64 m_data (RW) : ORIGIN = Ox1FFF@@0O, LENGTH = Ox0000F(C00
65 m_data_2 (RW) : ORIGIN = @x20000000, LENGTH = @x00030000
66 |m_ramfunc (RX) : ORIGIN = @x1FFFFCBe, LENGTH = ©xebeee4oe

[)
~J
e

245 |ramfunc_section : AT(__ DATA_END)

246 |{

247 *(ramfunc_section)

248 |} > m_ramfunc

249

25@ | /* ram function section parameters*/

251 |ramfunc_load_address = LOADADDR(ramfunc_section);
252 |ramfunc_length = SIZEOF(ramfunc_section);

253 | ramfunc_execution_address = ADDR(ramfunc_section);
254

Figure 25. Linker file changes for ram function in KDS

7.1.1 Create a RAM function via IAR EWARM

In order to create a RAM function with IAR EWARM, two sections need to be defined. The first is “ramfunc_section_init”,
which is used to store the data of a RAM function, and a “ramfunc_section”, which is the actual execution section of the
RAM function. The following code snippets provide an example of how to define and place code to these sections.

A/ Bbrief switch to PEE meode from FEE mode.

A4 In this functicon, the QuadSPI source clock 15 changed to MOGFLL,

J/1 The QuadSPI serial clock divider 1s set ko 1.

A4 The SystemCoreClock 15 updated to 120MHE, the MCS 15 switheced from FEE to EEE mode.
$if defined (_ICCARM)

#pragma section = "ramfunc section”™

#rragma section = "ramfunc section_init"

wold cleck change (wvoid) @ "ramfunc section™;

Figure 26. Declare ram function section in EWARM project

After the previous operation, we still need to define another function. For example, copy_to_ram() to copy the RAM func
codes from QuadSPI memory to RAM. The following figure provides an example.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 31

Change QuadSPI clock in QuadSPI image

A/ Bbrief switch to PEE meode from FEE mode.

A4 In this functicon, the QuadSPI source clock 15 changed to MOGFLL,

J/1 The QuadSPI serial clock divider 1s set ko 1.

A4 The SystemCoreClock 15 updated to 120MHE, the MCS 15 switheced from FEE to EEE mode.
$if defined (_ICCARM)

#pragma section = "ramfunc section”™

fpragma section = "ramfunc section_init"

wold cleock change (void) B "ramfunc section™;

Figure 27. Implement copy_to_ram() function in EWARM project

Finally, change the linker file in order to let the linker know a RAM function section has been defined. The location to place
this section, and the section, need to be copied to RAM manually.

define symbol m data_start = m_interrupts_ram start + _ ram vector_table_size_;
define symbol m data_end = Ox1FFFFBFEF;
define symbeol m ramfunc start = 0x1FFFFCO0;
define symbol m_ramfunc_end = OX1FFFFFFF;

define region m ramfunc_region = mem: [from m_ramfunc_start to m_ramfunc_end]:;

initialize by copy { readwrite, section .textrw };
do not initialize { section .noinit };

initialize manually {section .ramfunc section}; |

place in m _ramfunc region { section ramfunc section };
Figure 28. Linker file changes for ram function in EWARM project

A complete project for this change is included in the package along with this user's guide. It can be found in the led_demo/
targets/TWR-K8OF 150M/builds/iar folder.

7.1.2 Create a RAM function via Keil MDK

Keil also supports the creation of a RAM function, using a similar method as described for IAR EWARM. To create a RAM
function via KEIL, declare a section. In this example, "ramfunc_section" has been declared. See the following figure.

extern uint32 t Load$$EXEC m remfuncséBase; // Base address for loading ram function

extern uint32 t Load$$EXEC m_ramfuncsilength:// Size of ram function

extern uint32 t ImageffEXEC m ramfunciiBase;

void clock change (void) _ attribute (({section("ramfunc_section™))); // Execute address of ram function

Figure 29. Declare RAM function in MDK project

A copy_to_ram function is still necessary to copy the data from ROM to an actual execution address. See the following
figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
32 Freescale Semiconductor, Inc.

4
Change QuadSPI clock in QuadSPI image

void copy_to_ram(void)

{
uint8 t* codeRelocateRomStart:
uint32 t codeRelocateSize;
uint8 t* codeReloocateRamStart;

codeRelocateRomStart = (uint8 t*)Load$$EXEC m ramfuncssBase;
codeRelocateSize = Load$$EXEC_m ramfuncéslength;
codeReloocateRamStart = (uint@ t*)Image$$EXEC_m ramfunc$sBase;

while (codeRelocatesSize)

{
*codeReloocateRamStart++ = *codeRelocateRomStart++;
codeRelocateSize——;

Figure 30. Implement copy_to_ram() function in MDK project
To let the linker know a RAM function has been defined, add some information to the linker file. For example:

void copy_to_ram(void)

{
uint8 t* codeRelocateRomStart:
uint32 t codeRelocateSize;
uint8 t* codeReloocateRamStart;

codeRelocateRomStart = (uint8 t*)Load$$EXEC m ramfuncssBase;
codeRelocateSize = Load$$EXEC_m ramfuncéslength;
codeReloocateRamStart = (uint8 t*)Image$$EXEC_m ramfuncé$sBase;

while (codeRelocateSize)

{
*codeReloocateRamStart++ = *codeRelocateRomStart++;
codeRelocateSize——;

Figure 31. Linker file changes for ram function in MDK project

A complete project for this example can be found in the led_demo/targets/TWR-K8OF 150M/builds/keil folder.

7.2 Ensure no timing issue after clock change

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 33

Application running on QuadSPI alias area

After performing changes listed in the previous section, the clock switch function can be implemented next. Note that the
clock switch function must not violate timing requirements for the QuadSPI module and external SPI flash device. For
example, if the external SPI flash is working under SDR mode, and plan to switch the QuadSPI clock source to PLL 120
MHez, it is required to set the QuadSPI_MCR [SCLKCFG] to at least 1 (which means the QuadSPI serial clock frequency is
120 MHz/2 = 60 MHz) because the maximum supported clock for SDR mode is 100 MHz. See the clock_change() function
in the example for more details.

8 Application running on QuadSPI alias area

For reasons such as performance improvements, the application should be addressed to run from QuadSPI alias area
(0x0400_0000 to 0xO7FF_FFFF on MK82F256) instead of physical addresses. Kinetis bootloader does not support
downloading the application running on the alias area directly. However, a workaround solution is described in this section to
allow application to run from the alias region. Here we use the led_demo demonstrated before as an example and show how
to download and run such application from the alias memory region.

8.1 Create an application to run on QuadSPI Alias Area

Using led_demo_QSPI as a starting point, modify the linker file, using the IAR project as an example. The following figure
shows the changes to address symbols in the linker file to allocate sections to the QuadSPI alias memory.

53 define symbol m_interrupts_start + 0x04001000;
54 define symbol m interrupts end = O0x040013BF;
35

36 define symbol m bootloader config start 5 O0x040013C0;

37 define symbol m bootloader config end = (0x000013FF;
58

39 define symbol m flash config start = 0x04001400;
60 define symbol m flash config end = 0x0400140F;
al

62 define symbol m_text_start = 0x04001000;
63 define symbol m text_end = Ox07FFFFFF;

Figure 32. Linker file changes for QuadSPI Alias image in IAR project

Next, remove the BOOTLOADER_CONFIG macro from the IAR project, because the BCA is placed in the internal flash
memory. In this example, the application is placed in QuadSPI alias memory. See the following figure for details.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

34 Freescale Semiconductor, Inc.

Application running on QuadSPI alias area

Opions o e T e 5 o T

Categony:

General Options
Static Analysis
Runtime Chedking
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDBE Server
TAR. ROM-manitor
THet/TTAGjet
JHink/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
STLINK
Third-Party Driver
TLXDS

[] Mutifile Compilation

Digcard Unuzed Publics

[Factory Settings]

| Language 1 I Language 2 | Code I Optimizations | Output | List

|[4 Y

SPROJ_DIRSY M N Ndevices

Preinclude file:

Defined symbols: {one per ling)

NDEBUG
CPU MKEZFNZEEVDC1E

[Ignore standard include directories

Additional include directories: (one per ling)

EPROJ_DIRS . M AN Ndevices \MKE2F 25615 startup

-~

Remove BOOTLOADER.__ CONFIG from here

- [

[

[] Preprocessor output to file
Preserve comments
Generate Hine directives

I k. I[Cancel]

Figure 33. Remove BOOTLOADER_CONFIG macro from IAR project

Finally, change the "Output Converter" option, and let IAR generate a binary file. See the following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

35

A ————
Application running on QuadSPI alias area

Options for node "Ied_denm_QSPI_alias"“ u
-

Categaony; [Factom Settings]

General Options
Static Analysis
Runtime Chedking

C/C++ Compiler Output

Assembler
Y —— Generate addtional output

Custom Build Output format:
Build Actions

Linker [binary i
Debugger Output file

Simulator)
Angel [] Ovenide default

CMSIS DAP led_demo_Q5SP|_alias bin
GDBE Server

TAR. ROM-manitor
I-et/ITAGjet |
JHink/1-Trace
TI Stellaris |
Macraigor

PE micro

RDI

STLINK
Third-Party Driver
TLXDS

[Ok][Cancel] |

Figure 34. Let IAR output binary file

8.2 Create a simple boot application

As previously mentioned, Kinetis boootloader does not support boot from QuadSPI alias memory directly, and as such the
host tool should command Kinetis bootloader to write the led_demo_QSPI application image to the physical address of
QuadSPI memory starting with 0x6800_0000 address range. The workaround to make the QuadSPI application run out of
alias memory is to create a simple boot application that, when invoked at boot, causes the PC to jump to the alias address
where led_demo_QSPI application is linked. The boot application functionality includes:

* Change the VTOR to the actual base address of the vector table in the led_demo_QuadSPI application.

* Change the stack pointed to the actual address pointed to in the start of the vector table for the led_demo_QuadSPI
application.

e Jump to the led_demo_QuadSPI application.

In addition, the BCA and keyBlob also need to be included in the boot application. The example boot application is provided
along with the led_demo_QuadSPI in the package under led_demo/targets/TWR-K8OF 150M/builds/<toolchain>. The
following steps demonstrate how to generate the project for the boot application:

First, use the led_demo_PFLASH as a starting point, and replace the main() function with the code snippet from the
following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

36 Freescale Semiconductor, Inc.

4
Application running on QuadSPI alias area

typedel wvoid(*application handler t) (void):
ernum

Quad3PTI Image Start = 0x04001000ul,

int main (woid)

static uint32 t s_stackPointer = 07
static application_handler t runfpplication;

A4 Bet the VTOR to the application vector tshle address
SCB->VIOR = Quad3PI_Image Start;

3_stackPointer *{uint32 t*)Quad3PT_Image Start;
runfpplication = * (application _handler t#*) (Quad3PI_Tmage Start + 4);

__3set MSP(s_stackPointer):
__3et_PSP(s_stackPointer);

runipplication()»

/7 Never run here
while (1}
{

Figure 35. Jump to application running on QuadSPI Alias Area

Next, change the startup_ MK82F25616.s file. Ensure that FOPT [7:6] (loaded from address 0x40D) is set to Ob10. See the
following figure.

319 __FlashConfig

320 DCD OXFFFFFFFE
321 DCD OXFFFFFFFE
322 DCD OXFFFFFFFE
323 DCD 0xFFFEBDFE

Figure 36. Change FOPT to 0xBD
Enable BCA in the boot project by defining BOOTLOADER_CONFIG macro. See the following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 37

A ————
Application running on QuadSPI alias area

Options for node "bmt_t;:-_qspi_al'las_memrf' _ u

Category: [Factory Settings]
General Options [bulti-file: Campilation
Static Analysis Dizzard Unuzed Publics
Runtime Chedking
| Language 2 I Code | Optimizations | Output | List | Preprocessor |[4 | ¢
Assembler
Output Converter [Ignore standard include directories
Custom Build Additional include directories: (one per ling)
Build Actions SPROJ_DIRS\.\.\.\. \devices NS
Linker EPROJ_DIRS . M AN devices\MEB2F25615 startup
Debugger
Simulator i
Angel
CMSIS DAP Preinclude file:
GDE Server E]
TAR. ROM-manitor
I-jet/TTAGjet Defined symbols: (one per ling)
Hink{)-Trace MOEBUG . | [] Preprocessor output to file
11 Stellaris ’iﬂLMJﬂENZfﬂLDClE‘ Preserve comments
Macraigor BOOTLOADER_CONFIG i Generate Hine directives
PE micro
RDI
STLINK
Third-Party Driver
TLXDS
i Ok] [Cancel

Figure 37. Change Enable BCA in IAR project

Change the BCA fields as needed. For example, if 'peripheralDetectionTimeoutMs' needs to be changed to 500 and the
'keyBlobPointer' to 0x1000. The example BCA structure is shown in the following figure.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

38 Freescale Semiconductor, Inc.

Application running on QuadSPI alias area

128
127
128
123
130
131
132
133
134
135
138
137
138
133
140
141
142
143

8.3 Downloading application running on QuadSPI alias memory

Assume that the application running on QuadSPI alias memory is called “led_demo_qspi_alias.bin”, the boot application is
called “boot_to_qgspi_alias_memory.srec”, and the QCB is called “qspi_config_block.bin”. An example BD file to generate

.tag =
.crcitarthddress =
.crcByteCount =
.crcExpectedValue =
.enabledPeripherals =
.12c5lavelddress =
.peripheralDetectionlimecutMs
.1u13bVid =
.u1sbFid =
usb5tringsPointer =
.clockFlags =
.clockDivider =
bootFlags =
JgmcauConfigPointer =
.keyBlobPointer =
.gqspiConfigBlockPtr =

0xETEEE3IEET,
0xFFFFFFFET,
0xFFFFFFFET,
0xFFFFFFFET,
0x17,

0xFF,

= 0x01F4T,
0xFFFET,
0xFFFET,
0xFFFFFFFET,
0x01,

0xFF,

0x01,
0xFFFFFFFET,
0x00001000T,
0xFFFFFFFED

_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
_I,H*
fa-
fa-
fa-
fa-
fa-

Magic Number #/

Disshle CRC check
1sable CRC check
1sable CRC check

£
£
£

Enable g1l periphersls #/
Use default I2C address

Timeout
Use default
Use default
Use default
Enable High

Use clock divider 1
Enable communication with host

:500ms

=/

=/

USB Vendor ID

USB Produc

-
[

ID

USBE Strings */
speed mode */

7

No MMCAUD configuration #/
kevblob data 1s at O0x1000 #4

No OSFI configuration */

Figure 38. Update BCA

Finally, change the "Output Converter" option, and let the IAR output SREC file.

with SB file

£
=

£

the required SB file is shown in the following figure. Note that only one SB file is needed to load both boot application
"boot_to_qspi_alias_memory.srec" and led_demo_QuadSPI_alias.bin.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

39

Application running on QuadSPI alias area

Configure PINMUX Enable QuadSPI
Read QCB using values from >
acs clock gate

of 5P| flash if needed.

Cﬂnflgur?SF:Iﬂash Configure QuadsP
device if . : :
.) registers using values |« Configure LUT
config_cmd_en is set from QCB
in QCB
h 4
Congfigure work mode

Figure 39. QuadSPI configurations flow in Kinetis bootloader

As previously mentioned, Kinetis bootloader does not recognize the QuadSPI alias memory addresses. Therefore, in the BD
file the QuadSPI physical memory addresses should be specified for load and erase commands as shown in the following

figure.

Generate the SB file and download it to the target device following instructions provided in Section 5.3.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

40

Freescale Semiconductor, Inc.

4
Application running on QuadSPI alias area

The sources block assigns file names to identifiers.

sources {
SREC File path
mySrecFile = "boot_to_gspi_alias_memory.srec';

qCe file path

gspiconfigBlock = ”q5qi_cunfig_b1uck.biﬂ”;
Alias Q5PI image File path

myEinFile = "led_demo_QsFI_alias.bin";

¥

The section block specifies the seguence of boot commands to be written to
the sB file.
section (0) {

#1. Erase the vector table and flash config field.
erase 0Ox0000..0x0800;

Step 2 and Step 3 are optional if the QuadsPI s configured at startup
#2. Load the QCB to RAM
load gspiconfigBlock > 0x20000000;

#3. Configure QuadsPI with the QCB above
enable gspi 0x20000000;

#41. Erase the QuadsPI memory region before programming.
erase 0Ox68000000. . 0x08004000;

#5. Load the qCce above
load gspiconfigBlock > 0x68000000;

#6 Load all boot_to_gspi_alias_memory application
load mysrecFile;

#7 Load alias QSPI image
Toad myBinFile > Ox68001000;

#8. Reset target
#reset;

¥

Figure 40. Create a SB file contained boot application and QuadSPI demo application

8.4 Creating encrypted QuadSPI application running on QuadSPI
Alias memory with SB file

Using the steps mentioned in Section 6.1 and Section 6.2 and using the same SB key, KEK, and KeyBlob, an encrypted SB
file containing encrypted QuadSPI alias image can be generated. See the following BD file for more details.

NOTE
1. The application is linked to the alias address range (0x0400_0000).
2. The application is loaded to the physical address range (see BD file step #7).
3. In the KeyBlob block, the OTFAD range is programmed to the physical address
range.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 41

Application running on QuadSPI alias area

$ The =osurces block assignas file pames to identifiers.
ssurces |

SREC File path

mySrecFllie = "bBROT_To Qapl_allas_MEmoIY.SEec™;

Alias §5P1 image File path

=yBinfile = "led damno QSPI_alias bin";

QLB file path

gapiConfigBlock = "gapi_config block.bin™;

t The keyblck creates & Structure with up to § keyblob entries.
Hotae: tha start and end address should ba physical JuadsRI address
keyblob (0) |
L
SEaFE=0xEAI01000,
end=0xE§3001FFF,

key="000102030405060703 030at0e0dRalt™,
counTer="01134573 Sabodef"™

saction (0] |
#1. Erase the vector table and flash config field.
erase 0. 0x800;

#i. Load the QCB to RAM
load gepiConfigBlock > 0x20000000;

#3. Confiqure fuadSPI with the QLB above
enable gapi Ox20000000;

24 Erase the QuadsSPT memsry region before programming, using physical adress
erase 0HG3IDI0OD0. .0x63004000;

#6. Load all boot to_gepi alias mamory applicatcion

load myESrecFile;

#€. Load QCB to QuadSPL memory
load gapiConfigBleck > ORE3I00DO00;

7. Encrypr QuadSDI Alias Application and load it to QuadSPI =emory
en=zypt (0]

{
load myBinFile > Qx&8001000;

#3. Encrypc KeyBlok structure with KEE and load it to Dx1000
kayuwrap (0] {
load {{QJ0010Z03040E060708090a0b0c0dDedE)} » Oxl00d;

£3. Heasr carges
Feget.

Figure 41. Create a SB file contained boot application and encrypted QuadSPI alias
demo application

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

42 Freescale Semiconductor, Inc.

4
Appendix A - QuadSPI configuration procedure

9 Appendix A - QuadSPI configuration procedure

For Kinetis bootloader, follow the below steps to perfrom QuadSPI configuration using the QCB data. The following figure
depicts the corresponding flow chart:

* Detect the location of QCB from either start address of QuadSPI memory or internal flash

* Configure QuadSPI pinmux based on the information from QCB

* Enable QuadSPI clock gate, prepare to configure QuadSPI registers

* Configure look-up table

* Configure QuadSPI registers such as AHB buffer size and DDR mode as needed

» Configure work mode of external SPI flash device, for example, Quad Mode or Octal Mode
* Additional configuration for external SPI flash device, if required in the QCB

Gat QCE Configure Tomux .| Enable QSPI
Prepare configuring Based on QCB o clock gate
;:onhgurg SH Configure Q5PI #
ash device is .
| registers based on | Configure LUT
config_cmd_en is QCE
satin QCB

Congfigure work
mode of SPI flash Done
if needed. |

Figure 42. QuadSPI Configuration Flow in Kinetis bootloader

10 Appendix B - Re-enter Kinetis bootloader under direct
boot mode

When direct boot is enabled in the BCA with bootFlags field set to OxXFE, ROM configures the QCB and jumps to the
QuadSPI application image directly, bypassing the detection of active peripherals for firmware update from host. In this case,
the QuadSPI application has to implement a workaround to invoke Kinetis bootloader when the host needs to update the
application image. The QuadSPI application has to detect boot pin (NMI pin) assertion by the user and if asserted can follow
below procedure to invoke Kinetis bootloader:

1. Erase the first sector of the internal flash to clear the BCA. Note that the flash configuration field of the BCA may have
to be restored back, as shown in the code snippet in Figure 42.
2. Jump to the runBootloader() ROM API using the bootloader API tree pointer.

The following figure shows sample implementation of re-entry into bootloader from application code. The example code
with the package contains the implementation of this feature in the led_demo_QuadSPI application.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 43

Appendix C - Explore more features in QCB

wvoid app enter bootloader (void)

{
F4 Get Kinetis Bootloader Tres polinter.
const bootloader tree t * bootloaderlree = (const bootloader tree t *)BOOTLOADER TREE ROOT:
F4 Initislize Flash Driver
flash driver t flashInstance;
bootloaderTree->flashDriver->flash _init({sflashInstance);
F4 Bave the flash config field before srase
uint32_t flashConfigField([4];
const uint32_t *flashConfigField3tart = (const uint32 t*)0x400;
for({uint32_t i=0; i<sizeof (flashConfigField)/sizeof (flashConfigField[0]); i++)
{
flashConfigField[i] = *flashConfigField3tartd+;
}
J4 Erase the first sector.
bootloaderTree-»flashDriver->flash erase(sflashInstance, 0, 0x200, kFlashEraseKey):
F4 Write the flash config field back.
bootloaderTree-»>flashDriver->flash program(sflashInstance, 0x400, flashConfigField,
gizeof (flashConfigField)):
A4 Enter Kinetis Bootloader
bootloaderTree->»runBootloader (0) »
}

Figure 43. Implementation of re-entering Kinetis bootloader in application

11 Appendix C - Explore more features in QCB

Several more features of QuadSPI are supported by Kinetis bootloader such as parallel mode, continuous read mode, and so
on. The following sections provide examples of generating QCB with these modes enabled.

11.1 Parallel mode

This section provides an example of generating a QCB with parallel mode support. Pay attention to these key points:

* The sector size and page size should be twice the actual size for parallel mode.

» The ‘parallel_mode_enable' field in QCB must be set to 1.

* The Program command should be replaced with the Page Program command, as the QuadSPI module only supports
single pad parallel programming.

The following is an example:

// This is the QCB for the use case that two MX25U3235F are connected to QuadSPIOA and
QuadSPIOB ports.

// Work under parallel mode

const gspi config t gspi config block =

.tag = kQspiConfigTag,

.version = { .version = kQspiVersionTag },

.lengthInBytes = 512,

.sflash Al size = 0x400000, // 4MB

.sflash Bl size = 0x400000, // 4MB

.sclk_freq = kQspiSerialClockFreq High, // High frequency

.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort_EnableBothPorts, // Both QSPIOA and QSPIOB are enabled.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

44 Freescale Semiconductor, Inc.

Appendix C - Explore more features in QCB

.busy bit offset 0, // Busy offset is 0
.ddr mode_enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel mode enable = 1, // QuadSPI module work under parallel mode
.pagesize = 512, // Page Size : 256 *2 = 512 bytes
.sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
.device mode config en = 1, // configure quad mode for spi flash
.device cmd = 0x40, // Enable quad mode

.write cmd_ipcr = 0x05000000U, // IPCR indicating enable segid (5<<24)
.ips_command second divider = 3,// Set second divider for QSPI serial clock to 3
look up table =

// Seqg0: Quad Read (maximum supported freq: 104MHz)

/*

CMD: 0XEB - Quad Read, Single pad
ADDR: 0x18 - 24bit address, Quad pads
DUMMY : 0x06 - 6 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 0

*/

[0] = OxO0A1804EB,

[1] = 0x1E800E06,

[2] = 0x2400,

// Seql: Write Enable (maximum supported freq: 104MHz)

/*

CMD: 0x06 - Write Enable, Single pad
*/

[4] = 0x406,

// Seq2: Erase All (maximum supported freq: 104MHz)

/*

CMD: 0x60 - Erase All chip, Single pad
*/

[8] = 0x460,

// Seg3: Read Status (maximum supported freq: 104MHz)

/*

CMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte

*/

[12] = 0x1c010405,

// Seg4: Page Program (maximum supported freqg: 104MHz)

/*
CMD: 0x02 - Page Program, Single pad
ADDR: 0x18 - 24bit address, Single pad

WRITE: 0x40 - Write 64 bytes at one pass, Single pad
(0x40 is ignored, as it will be overwritten by page size)

*/
[16] = 0x08180402,
[17] = 0x2040),

// Seqg5: Write status register to enable quad mode

/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad
*/

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad

*/

[28] = 0x08180420,

// Seg8: Dummy

/*

CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 45

Appendix C - Explore more features in QCB

unecessary here because the continous read mode isn't enabled.
*/
[32] = 0,

NOTE
The previous example needs to be placed in the demo/QCBGenerator/src folder.

11.2 Continuous read mode

MX25U3235F supports continuous read mode (performance enhance mode) to provide high performance reads. The
important item to configure for this use case is:

e The Dummy LUT entry needs to be configured according to the condition of exiting continuous read mode. Otherwise,
the device would fail to perform an erase or program operation as it cannot exit this mode correctly.

The following is an example:

NOTE
Only the flash device connected on QuadSPIO A1 supports this module.

// This is the QCB for when two MX25U3235F are connected to QuadSPIOA and QuadSPIOB ports.
// Work under parallel mode
const gspi config t gspi config block =

.tag = kQspiConfigTag,
.version = { .version = kQspiVersionTag },
.lengthInBytes = 512,

.sflash Al size = 0x400000, // 4MB
.sclk_freqg = kQspiSerialClockFreq High, // High frequency
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under gquad-pad mode

.sflash port = kQspiPort EnableBothPorts, // Both QSPIOA and QSPIOB are enabled.
.busy bit offset = 0, // Busy offset is 0
.ddr mode_enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel mode enable = 1, // QuadSPI module work under parallel mode

.pagesize = 512, // Page Size : 256 *2 = 512 bytes

.sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
.device mode config en = 1, // configure quad mode for spi flash

.device cmd = 0x40), // Enable gquad mode

.write cmd_ipcr = 0x05000000U, // IPCR indicating enable seqgid (5<<24)

.ips command second divider = 3,// Set second divider for QSPI serial clock to 3

.look_up table =

// Seqg0: Quad Read (maximum supported freq: 104MHz)

/*

CMD: 0XEB - Quad Read, Single pad
ADDR: 0x18 - 24bit address, Quad pads
MODE : 0xA5 - Continuous read mode, Quad Pads
DUMMY : 0x04 - 4 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 1

*/

[0] = 0xOA1804EB,

[1] = 0x0E04012A5,

[2] = 0x24011E80,

// Seql: Write Enable (maximum supported freq: 104MHz)

/*

CMD: 0x06 - Write Enable, Single pad
*/

[4] = 0x406,

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
46 Freescale Semiconductor, Inc.

Appendix D - DDR mode issue workaround

// Seqg2: Erase All (maximum supported freq: 104MHz)

*
éMD: 0x60 - Erase All chip, Single pad
*
[é] = 0x460,
// Seqg3: Read Status (maximum supported freq: 104MHz)
*
C/iMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte
*
[{2] = 0x1c010405,

// Seq4: Page Program (maximum supported freqg: 104MHz)

/*
CMD: 0x02 - Page Program, Single pad
ADDR: 0x18 - 24bit address, Single pad

WRITE: O0x40 - Write 64 bytes at one pass, Single pad
(0x40 is ignored, as it will be overwritten by page size)

*/

[16] = 0x08180402,

[17] = 0x2040,

// Seg5: Write status register to enable quad mode
/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad

*/

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
*/

[28] = 0x08180420,

// Seqg8: Dummy

/*
CMD: 0xFF - Dummy command, used to force SPI flash to exit continuous read
mode.
Unnecessary here because the continuous read mode isn't enabled.
*/
[32] = OxFF,

¥
Vi

NOTE
See the example from the demo/QCBGenerator/src folder.

12 Appendix D - DDR mode issue workaround

The Kinetis bootloader in the ROM of MK80F256 devices supports programming and booting from QuadSPI devices with
double data rate (DDR) mode. However, due to an issue in the ROM code, a workaround is needed to use the DDR feature.
This workaround should be implemented in the application image. This appendix provides the details on implementing the
workaround. The package contains example application code with the workaround implemented.

ROM provides DDR mode support using the values provided in the QCB data structure. Specifically, these two fields of
QCB are used to support DDR mode:

¢ ddr_mode_enable - must be set to 1.
* data_hold_time - can be either 1 or 2 depending on the type of SPI Flash device.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 47

Appendix D - DDR mode issue workaround

12.1 Example QCB for QuadSPI device N25Q256A with DDR
mode support

The following is an example QCB for N25Q256A with DDR mode support:
const gspi config t gspi config block =

.tag = kQspiConfigTag,

.version = { .version = kQspiVersionTag },
.lengthInBytes = 512,
.sflash Al size = 0x2000000, // 32MB

.sclk_freqg = kQspiSerialClockFreq High, // High frequency, 96MHz/4 = 24MHz
.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode
.sflash port = kQspiPort EnablePortAa, // Only QSPIOA is enabled.
.busy bit offset = 0x00010007, // Busy offset is 7, polarity: 0 means busy

.ddr mode_enable = 1, // Enable DDR mode

.data_hold time = 1, // Data aligned with 2x serial flash half clock

.ddrsmp = 0,

.dgs_enable = 0, // Disable DQS feature

.dgs_loopback = 0,

.pagesize = 256, // Page Size : 256 bytes

.sectorsize = 0x1000, // Sector Size: 4KB

.ips command second divider = 0,

.device mode config en = 1, // Configure the device to 4-byte address mode
.device cmd = 0, // Not needed.

.write cmd ipcr = 5UL<<24, // Seqg5 for setting address type to 4 bytes

.look up_ table =

/* Seqg0 : Quad Read (maximum supported freq: 108MHz)

CMD_DDR: 0XED - Quad Read, Single pad
ADDR_DDR: 0x20 - 32bit address, Quad pads
DUMMY : 0x08 - 8 dummy cycles, Quad pads
READ DDR: 0x80 - Read 128 bytes, Quad pads
JUMP_ON_CS: 0

*/

[0] = 0x2A2004ED,

[1] = O0x3A800EO08,

[2] = 0x2400,

/* Seqgl: Write Enable (maximum supported freqg: 108MHz)

CMD: 0x06 - Write Enable, Single pad
*/
[4] = 0x406,

/* Seq2: Erase All (maximum supported freq: 108MHz)

CMD: 0xC7 - Erase All chip, Single pad
*/
[8] = 0x04C7,

/* Seqg3: Read Status (maximum supported freq: 108MHz)

CMD: 0x05 - Read Flag Status, single pad
READ: 0x04 - Read 4 bytes

*/

[12] = 0x1c040470,

/* Seqg4: Page Program (maximum supported freqg: 108MHz)

CMD : 0x02 - Page Program, Single pad

ADDR: 0x20 - 32bit address, Single pad

WRITE: 0x40 - Write 64 bytes at one pass, Single Pad
*/

[16] = 0x08200402,

[17] = 0x2040,

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

48 Freescale Semiconductor, Inc.

4
Appendix D - DDR mode issue workaround

/* Seg5: Enter 4-byte address mode

CMD: 0xB7 - Enter 4-byte address mode
*/
[20] = 0x04B7,

/* Seq7: Erase Sector

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x20 - 32 bit address, single pad
*/

[28] = 0x08200420,

}i

See Section 3.3.3 to generate the binary gspi_config_block.bin with the above example QCB data structures.

12.2 Example QCB for QuadSPI device S26KS128S with Octal
DDR mode support

Here is another example QCB for device S26KS128S with Octal DDR mode support:

const gspi config t gspi config block =

.tag = kQspiConfigTag,

.version = {.version = kQspiVersionTag},
.lengthInBytes = 512,

.word_addressable = 1,

.data_hold time = 1,

.sflash Al size = 0x1000000, // 16MB

.sclk_freq = kQspiSerialClockFreq High, // High frequency, in DDR mode, it means
96MHz /4 = 24MHz
.busy bit offset = 0x0001000F, // bit 15 represent busy bit, polarity of this bit is 0
.sflash type = kQspiFlashPad Octal, // Serial Nor Flash works under octal-pad mode
.sflash port = kQspiPort EnablePortA, // Only PortA are enabled
.ddr_mode_enable = 1,
.dgs_enable = 1, // DQS function is enabled.
look_up_table =

// Seqg0 : Read
[0] = 0x2B1847A0, // Read command with continuous burst type

[1] = 0x0F104F10, // 1lébit column address, 16 dummy cycles
[2] = 0x03003B80, // Read 128bytes and STOP.

// Seqgl: Write Enable

[4] = 0x2B184700,

[5] = 0x47004F10,

[6] = 0x4755,

// Seq2: Erase All

[8] = 0x2B184700,
[9] = 0x47004F10,
[10] = 0x4710,

// Seqg3: Read Status

[12] = 0x2B1847A0, // Read command with continuous burst type
[13] = OxOF104F10, // lébit column address, 16 dummy cycles
[14] = 0x3B02, // Read 2bytes and stop.

// Seg4: 8 I/0O Page Program

[16] = 0x2B184700,

[17] = 0x3F804F10,

// Seg6: Pre Erase

[24] = 0x2B184700,
[25] = 0x47004F10,
[26] = 0x4780,

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
Freescale Semiconductor, Inc. 49

Appendix D - DDR mode issue workaround

// Seq7: Erase Sector

[28] = 0x2B184700,
[29] = 0x47004F10,
[30] = 0x24004730,

// Seq9: PreWriteEnable
[36] = 0x2B184700,

[37] = 0x47004F10,

[38] = 0x47AA,

// Seql0: PrePageProgram
[40] = 0x2B184700,

[41] = 0x47004F10,

[42] = 0x47A0,

// Seqgll: PreReadStatus
[44] = 0x2B184700,
[45] = 0x47004F10,
[46] = 0x4770,

.column_address space = 3,

.differential clock pin enable = 1, // Differential clock is enabled.
.dgs_latency enable = 1, // External DQS input signal is used.
.dgs_fa delay chain sel = 0x10,

.pagesize = 512, // Page Size: 512 bytes

.sectorsize = 0x40000, // Sector Size: 256KB

.ips_command_second divider = 4,// Set second divider for QSPI serial clock to 16
.need multi phases = 1, // multiple phases are needed for Erase, Program, etc.
.is_spansion _hyperflash = 1, // this device belongs to HyperFlash family.
.pre_read status_cmd address offset = 0x555<<1,

.pre_unlock_cmd address_offset = 0x555<<1,
.unlock cmd address_offset = 0x2AA<<1,
.pre_program cmd address_ offset = 0x555<<1,
.pre_erase_cmd address_offset = 0x555<<1,
.erase_all cmd address_offset = 0x555<<1,

12.3 Changes to user application for implementing DDR mode
path

The following subsections describe the steps required to map the led-demo to run from external QuadSPI flash memory in
DDR mode. See the led_demo_QSPI_patch project under led_demo/targets/<platform>/builds/<ide> for more details.

12.3.1 Workaround solution

As mentioned above, a workaround solution is required for SPI flash devices with DDR mode. The ROM missed a step in its
implementation steps to set QuadSPI_FLSHCR [TDH], QuadSPI_SOCCR[DLYTAPSELA] and
QuadSPI_SOCCR[DLYTAPSELB] register bit fields. Therefore, the workaround patch consists of a very small piece of code
to set the missed bit fields before jumping to the application image residing in the external QuadSPI flash memory. The patch
function can reside in the internal flash memory.

The workaround patch function is defined with the following prototype in the package:

int rom patch(uint32 t gcbBaseAddress) ;

The following code shows how the workaround patch function is implemented in the example project provided with the
package:

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

50 Freescale Semiconductor, Inc.

Appendix D - DDR mode issue workaround
int rom patch(gspi_config t *base)

volatile uint32 t *gspi flshcr reg = (volatile uint32 t*)QuadSPIO_ FLSHCR BASE;
volatile uint32 t *gspi soccr reg = (volatile uint32 t*)QuadSPI0 SOCCR_BASE;

*gspi_flshcr reg &= (uint32_ t)~QuadSPI_FLSHCR TDH_ MASK;
*gspi flsher reg |= (base->data_hold time)<<QuadSPIO FLSHCR TDH SHIFT;

*gspi_soccr _reg &= (uint32 t)~QuadSPIO_SOCCR_DLYTAPSELA MASK;
*gspi soccr reg |= (base->dgs_fa delay chain sel << QuadSPIO_SOCCR DLYTAPSELA SHIFT)
& QuadSPIO SOCCR DLYTAPSELA MASK;

*gspi_soccr _reg &= (uint32 t)~QuadSPI0_SOCCR_DLYTAPSELB MASK;
*gspi soccr reg |= (base->dgs_fb _delay chain sel << QuadSPIO_SOCCR DLYTAPSELB_ SHIFT)
& QuadSPIO SOCCR DLYTAPSELB_ MASK;

return kStatus_Success;

}

The binary position-independent code generated using IAR compiler for the ROM patch function, available with the package,
is shown here:

const uint8 t s rom patch[128] =
{
0x10, 0xB5, 0x01, 0x00, 0x18, 0x4A, 0x10, 0x00,

0x18, 0x30, 0x18, 0x4B,0x1B, 0x68, O0xFO0, 0x24,
0x24, 0x04, 0x1C, 0x40, 0x02, 0xDO, 0x1le6, O0x4A,
0x10, 0x00, 0x18, 0x30, 0x13, 0x68, 0x1l5, 0x4C,
0x1C, 0x40, 0x14, 0x60,0x13, 0x68, 0x0C, 0x69,
0x24, 0x04, 0x1C, 0x43, 0x14, 0x60, 0x02, 0x68,
0x11, 0Ox4B, 0x13, 0x40, 0x03, 0x60, O0xDA, 0x22,
0x52, 0x00, 0x89, 0x18,0x02, 0x68, 0x0B, 0x68,
0x1B, 0x04, OxFC, 0x24, 0xA4, 0x03, 0x1C, 0x40,
0x14, 0x43, 0x04, 0x60, 0x02, 0x68, 0x0B, 0x4B,
0x13, 0x40, 0x03, 0x60,0x02, 0x68, 0x49, 0x68,
0x09, 0x06, OxFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
0x13, 0x43, 0x03, 0x60, 0x00, 0x20, 0x10, O0xBD,
0x0C, O0xA0, 0x0D, 0x40,0x24, 0x80, 0x04, 0x40,
0x0C, O0xA0, 0x05, 0x40, OxFF, OxFF, OxFC, OxFF,
OxFF, OxFF, 0xCO, OxFF, OxFF, OxFF, OxFF, 0xCO

Vi
The following are limitations for this workaround solution:

1. DDR commands are only allowed in a second QCB after invoking this rom_patch workaround.
2. CRC check feature is not allowed to validate the integrity of the image on QuadSPI memory.
3. The QCB must be placed at a specific location in internal flash pointed by gspiConfigBlockPointer in the BCA.

12.3.2 Changes to linker file

Using led_demo_QSPI as a starting point, and using the IAR project as an example, the first step is to update the linker file.
Two separate sections are needed in memory for this change. See the led_demo_QSPI_patch project in the led_demo projects
for more details.

const uint8_t s_rom patch[128] =

0x10, 0xB5, 0x01, 0x00, 0x18, 0x4A, 0x10, 0x00,
0x18, 0x30, 0x18, 0x4B,0x1B, 0x68, O0xFO0, 0x24,
0x24, 0x04, 0x1C, 0x40, 0x02, 0xD0O, 0xl6, O0x4A,
0x10, 0x00, 0x18, 0x30, 0x13, 0x68, 0x15, 0x4C,
0x1C, 0x40, 0x1l4, 0x60,0x13, 0x68, 0x0C, 0x69,
0x24, 0x04, 0x1C, 0x43, 0x14, 0x60, 0x02, 0x68,
0x11, 0x4B, 0x13, 0x40, 0x03, 0x60, 0xDA, 0x22,
0x52, 0x00, 0x89, 0x18,0x02, 0x68, 0x0B, 0x68,

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 51

Appendix D - DDR mode issue workaround

0x1B, 0x04, OxFC, 0x24, 0xA4, 0x03, 0x1C, 0x40,
0x14, 0x43, 0x04, 0x60, 0x02, 0x68, 0x0B, 0x4B,
0x13, 0x40, 0x03, 0x60,0x02, 0x68, 0x49, 0x68,
0x09, 0x06, OxFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
0x13, 0x43, 0x03, 0x60, 0x00, 0x20, 0x10, OxBD,
0x0C, 0xA0, 0x0D, 0x40,0x24, 0x80, 0x04, 0x40,
0x0C, 0xA0, 0x05, 0x40, OxFF, OxFF, OxFC, OXFF,
0xFF, OxFF, 0xCO0, OxFF, OxFF, OxFF, OxFF, 0xCO

Vi
The “m_rom_patch_handler_region” defined above is used for holding the section that contains the functions to invoke ROM
patch function.

The “m_rom_patch_code_region” defined above is used for placing the section that contains the ROM patch code mentioned
in previous section.

12.3.3 Changes to startup file

The Reset_Handler must be placed in internal flash (for example, placing it in m_rom_patch_handler_region) and the ROM
patch function must be called before other functions when the QuadSPI application is executed. See the changes in the
following figures.

--
L L o

e
:r Default interrupt handlers.
e

THIME

PUBWEAK Reset Handler
SECTION BootloaderPatchHandler:CODE:RECEDER :NOROOT (2)
Reset_Handler

CESID I : Mssk interrupts
LOR R0, =R0M_PatchHandler

BLX RO

LOE R0, =SystemlInit

BLX R

LOR R0, =init_data_has

BLX RO

CESIE I : Unmask interrupts
LOR R0, = iar_ program start

BX RO

Figure 44. Changes to startup file for DDR support

NOTE
ROM_Patchhandler is the function placed in the m_rom_patch_handler_region.

12.3.4 Changes to system_MK82F25615.c file

The ROM patch code must be placed in internal flash, for example, place it in rom_patch_code section. See the following
figure for these changes.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

52 Freescale Semiconductor, Inc.

#pragma language=extended

#pragma section = "rom patch code”

Appendix D - DDR mode issue workaround

const uinté_t s_rom patch[122]@ "rom patch_code” =

-

0xBS,
0x30,
0x04,
Ox00

=y

o
MM
-

=]
-
M = =
[£
-
Mo

-
(R
[

q
-

-

[]
]

-]

=

|-
0 = = 2 |
-

Do o
oM

-
[I
ila
-
| R -
o

0
-

0x40,
0x04,
0x4B,
0x00,

=t
Ly () b= CO () 0O =2
- -

s T e TR
Moom
o O s TR |
o
-

[-]
"
= =
s D0 D
£ - -
T's]
-

]

=
-
b
Lol
-

0x00,
0x4B, 0x1B,
0x40,
0x30, 0x13,
0x60,0x13,
0x43,
0x40, 0x03,
0x18,0x02,

=
o I T

Moo M OM O oM M O on M

[T e Y

1
=

[B o]

-
o N -

0x04, OxFC, 0x24,
Ox43, 0x04, Ox60, O0x02,
0x40, 0x03, 0x60,0x02,

0x09, Ox06, OxFC, 0x23,
0x13, Ox43, 0x03, Oxé0,
0x0C, 0xAO, 0x0D, 0x40,0x24,
0x0C, OxAO, 0Ox05, 0x40,
0xFF, OxFF, 0xCO0, OxFF,

=
D D M
ke
(%]

o on
(R

=

0x0B, 0x68,
0x1C, Ox40,
, O0x0B, 0x4B,
, 0x49, 0x68,
5, 0x0B, 0x40,
0, 0xl10, OxBD,
, 0x04, 0x40,
¥, OxFC, OxFF,
F, 0xFF, 0xCO

o O o O
(=]
-
i

o Ly ™

Figure 45. Definitions of ROM patch code in IAR project

The ROM_PatchHandler must be placed in internal flash as well. For example, it can be placed in the
BootloaderPatchHandler section. See the following figure for these changes.

/* Pragma to place the ROM PatchHandler on correct location defined in linker file. */

#pragma language=extended

#pragma section = "BootloaderPatchHandler™

void ROM PatchHandler (void) @ "BootloaderPatchHandler”

{

typedef int (*patch_handler t) (uint32_t):;

uint32_t s_rom patch_satart = (uint32_t)__ section_begin("rom patch_code™):

uint3Z_t patch_start = s_rom patch_start+l;

patch_handler t patch run = (patch_handler t)patch_start;
patch_run(BootloaderConfig.gapiConfigBlockPtr):

Figure 46. Define ROM patch handler in IAR project

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

53

Appendix D - DDR mode issue workaround
12.4 Workaround block diagram

The following figure shows the flow of Kinetis bootloader using QuadSPI DDR patch workaround mechanism described
earlier in provisioning the application image on the QuadSPI with DDR mode enabled.

0x2002_FFFF

Qce
Q\
\)f
o ROM_PATCH
@
1’\}'3.3 éﬂ‘
N
s
&
#o
A
0x1C00_7FFF ,:@QQ Ox1FFF_0000
S Internal RAM Memory

&
/ OX6FFF_FFFF

Kinetis
bootloader
Ox1C00 0000 Patch enat_:lgs QSPlin D_DR _moge and Ap_plmatlon
= ROM ROM provisions the application image image

0x6800_0000
External QSPI Memory

Figure 47. Workaround provisioning image on QuadSPI memory in DDR mode

The following figure shows the flow of Kinetis bootloader using QuadSPI DDR patch workaround mechanism described
earlier in booting the application image from the QuadSPI with DDR mode enabled.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015
54 Freescale Semiconductor, Inc.

Appendix D - DDR mode issue workaround

0x0003_FFFF

Vector Table
0P QcB
e 5
o & Ox6FFF_FFFF
&5
/ éﬁ'" & ROM patch
@ .5@ Handler
0x1C00_TFFF £ eg:-
3
‘? s
Patch enables DDR mode —
/ ROM_PATCH andjumpstothe —» A”iﬂ:':;g""
Kinetis application image
bootloader
0x1C00_0000 0x0000_0000 Dx6800_0000
ROM Internal Flash Memaory External QSPI Memory

Figure 48. Workaround booting image from QuadSPI memory in DDR mode

12.5 BD file for downloading QuadSPI image under DDR mode

The application image with the implemented workaround needs to be provisioned using the receive-sb-file Kinets bootloader
command to let the Kinetis bootloader support program and read with DDR mode. The following figure provides example
BD file changes to call the patch function.
The “K80_ROM_QSPI_patch.bin” in the below BD file is a binary file with the ROM patch code, mentioned above. It is
needed to be loaded to SRAM out of the reserved RAM region. For example, 0x2000_0200, which then needs to be executed
via the call command.
NOTE
1. Since the MK82F256 only supports thumb instructions, the address should be an
odd value, namely 0x2000_0201 in this example.
2. The second parameter for call command is the base address for QCB, namely
0x2000_0000 in this example.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 55

Revision history

The sources block assigns file names to identifiers.
Sources {
SREC File path

my3recFile = "led demo Q3PI patch.srec”:

OCE file path

gspiConfigBlock = "gspi config block.bin®:
ROM patch

rom patch = "ROM Q3FPI patch.bin':

The section hlock specifies the sequence of boot contrands to bhe written to
the 3B file.
section (01

#1. Erase Inetnal flash
eraze 0. .0x3000;

#z. Load the OCE to RAM
load gespiConfigBlock = O0xZ20000000;

#3. Configure Quad3PI with the QCE ahove
enable gspi 0xZ20000000;

#4. Load patch to RAM
load rom patch > 0x20000200;

#5. Call patch to invoke ROM workaround
call Ox20000201 (Ox20000000) ;

#6. Erase the Quad3PI memory region hefore programming.
eraze Oxe2000000..0=x62020000;

#7. Load the OCE above
load gepicConfigBlock > Ox2000;

#3. Load all the ED data from srec file, including wector table,
flash config area and codes.

load my3recFile:

#92. Reset target
reset;

Figure 49. BD file for invoking ROM patch for DDR mode

13 Revision history

The following table contains a history of changes made to this user's guide.

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

56 Freescale Semiconductor, Inc.

Revision history

Table 5. Revision history

Revision number

Date

Substantive changes

0

09/2015

Initial release

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc.

57

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

oY=
o]
o
Wi
=
<)
o
|

ARM

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale reserves the right to make changes without further notice to
any products herein. Freescale makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or
incidental damages. “Typical’ parameters that may be provided in
Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer
application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/
SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of
Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. ARM and the ARM powered
logo are registered trademarks of ARM Limited (or its subsidiaries) in
the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

Document Number KBLQSPIUG
Revision 0, 09/2015

2

Z“ freescale

http://freescale.com
http://freescale.com/support
http://freescale.com/SalesTermsandConditions
http://freescale.com/SalesTermsandConditions

	Kinetis Bootloader QuadSPI User's Guide
	Introduction
	Overview
	Terminology
	Requirements
	Hardware requirements
	Host tools
	Demo application
	Required toolchains
	Firmware project
	Host project

	QuadSPI image boot procedure
	Plaintext QuadSPI image boot flow
	Encrypted QuadSPI image boot flow

	Creating application for QuadSPI memory
	Starting point: Basics of internal flash memory mapped led-demo example project
	Changes to the led-demo project
	Changes to the linker file
	Changes to flash config area
	Configure BCA

	Generate QCB
	The QCB structure
	Example QCB for MX25U3235F device on TWR-K80F150M Tower System module
	Generate the QCB with a simple example project

	Configure QuadSPI with Kinetis bootloader
	Configure QuadSPI at runtime
	Configure QuadSPI at start-up

	Flash QuadSPI image via SB file
	Brief introduction of SB file
	Generate SB file for QuadSPI image
	Flash QuadSPI image via Kinetis bootloader

	Advanced Usage: Encrypted QuadSPI image
	Generate an SB file with KEK and SB KEY
	Generate an SB file with encrypted QuadSPI image
	The KeyBlob Block
	Encrypt QuadSPI image
	Encrypting SB file with the SB key

	Change QuadSPI clock in QuadSPI image
	Create a RAM function with KDS
	Create a RAM function via IAR EWARM
	Create a RAM function via Keil MDK

	Ensure no timing issue after clock change

	Application running on QuadSPI alias area
	Create an application to run on QuadSPI Alias Area
	Create a simple boot application
	Downloading application running on QuadSPI alias memory with SB file
	Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file

	Appendix A - QuadSPI configuration procedure
	Appendix B - Re-enter Kinetis bootloader under direct boot mode
	Appendix C - Explore more features in QCB
	Parallel mode
	Continuous read mode

	Appendix D - DDR mode issue workaround
	Example QCB for QuadSPI device N25Q256A with DDR mode support
	Example QCB for QuadSPI device S26KS128S with Octal DDR mode support
	Changes to user application for implementing DDR mode path
	Workaround solution
	Changes to linker file
	Changes to startup file
	Changes to system_MK82F25615.c file

	Workaround block diagram
	BD file for downloading QuadSPI image under DDR mode

	Revision history

