
1 Introduction
The QuadSPI controller available on selected Kinetis devices
supports execute-in-place (XIP) for external SPI flash memory
devices. This document describes the usage of Kinetis
bootloader (KBOOT) in configuring various features of
QuadSPI block, including XIP, generating plaintext and
encrypted bootable SB file image, and flashing QuadSPI
memory with the SB file image.

QuadSPI features supported by Kinetis bootloader:

• Various types of SPI NOR flash memory devices
available in the market.

• Flash memory booting from QuadSPI directly, using
Kinetis bootloader.

• Single/Dual/Quad and Octal SPI NOR flash memory
devices.

• High-performance read/write operation with parallel and
DDR modes.

• Protecting intellectual property with AES-128
algorithm.

2 Overview
This document mainly focuses on the following topics:

Freescale Semiconductor Document Number: KBLQSPIUG

User's Guide Rev. 0, 09/2015

Kinetis Bootloader QuadSPI User's
Guide

© 2015 Freescale Semiconductor, Inc.

Contents

1 Introduction.............................. 1

2 Overview................................ 1

3 Creating application for QuadSPI
memory.. 5

4 Configure QuadSPI with Kinetis
bootloader.. 19

5 Flash QuadSPI image via SB file......... 21

6 Advanced Usage: Encrypted QuadSPI
image...24

7 Change QuadSPI clock in QuadSPI
image.. 29

8 Application running on QuadSPI alias
area.. 34

9 Appendix A - QuadSPI configuration
procedure..43

10 Appendix B - Re-enter Kinetis bootloader
under direct boot mode.............................. 43

11 Appendix C - Explore more features in
QCB...44

12 Appendix D - DDR mode issue
workaround...47

13 Revision history.. 56

• QuadSPI image boot procedure
• Creating an application image running on QuadSPI memory
• Configuring QuadSPI with Kinetis bootloader
• Programming QuadSPI memory with SB file
• Advanced usage: QuadSPI encrypted boot image
• Application requirements for re-configuring QuadSPI clock

In addition, the following topics are also covered in the appendix sections:

• QuadSPI configuration block (QCB)
• Re-enter Kinetis bootloader under direct boot mode
• Explore features supported in QCB
• Working around ROM issues in supported DDR mode devices

2.1 Terminology

The following table summarizes the terms and abbreviations included in this user's guide.

Table 1. Terminology and abbreviations

Terminology Description

KBOOT Kinetis bootloader

BCA Bootloader Configuration Area, which provides customization of bootloader
options, such as enabledPeripherals, peripheralDetectionTimeout, and so on.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

QCB QuadSPI Configuration Block, a structure containing configurable parameters
needed by the Kinetis bootloader to configure the QuadSPI controller.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

KeyBlob A data structure which holds the KeyBlob entries. Each keyblob entry defines the
encrypted QuadSPI memory region, decryption key, and so on.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

KEK KeyBlob Encryption Key, an AES-128 key used for encrypting plaintext KeyBlob
and decrypting encrypted KeyBlob.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details.

SB file The SB file is the Freescale binary file format for bootable images. The file consists
of sections and sequence of bootloader commands and data that assists Kinetis
bootloader in programming the image to target memory. The image data in the SB
file can be encrypted as well. The file can be downloaded to the target using the
Kinetis bootloader receive-sb-file command.

See the Kinetis bootloader chapter in silicon's reference manual for more details

OTFAD On-the-fly AES Decryption is a powerful IP block in MK81F256 and MK82F256,
which supports decryption of the encrypted QuadSPI image on-the-fly using
KeyBlob.

See the Kinetis bootloader chapter in the silicon's reference manual for more
details

Overview

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

2 Freescale Semiconductor, Inc.

2.2 Requirements

2.2.1 Hardware requirements

• TWR-K80F150M Freescale Tower System module
• TWR-K82F Freescale Tower System module

2.2.2 Host tools

The following host tools are available with the release package. They assist in generating and provisioning of QuadSPI
bootable image for the target device.

• blhost: command line host tool for Kinetis bootloader.
• Elftosb: command line host tool for SB file generation.
• KinetisUpdater: GUI host tool for Kinetis bootloader.

2.2.3 Demo application

• Led_demo running in internal flash and QuadSPI memory, under demo/led_demo/targets/TWR-K80F150M/builds

• QCBGenerator, under demo/QCBGenerator/build

2.2.4 Required toolchains

2.2.4.1 Firmware project

The following toolchains can be used to build the example led_demo firmware application provided with the release package.

• ARM® Keil® development tool v5.15 with MK80F256 device pack
• IAR Embedded Workbench for ARM® v7.40.3
• Kinetis Design Studio (KDS) IDE v3.0.0

2.2.4.2 Host project

The following toolchains can be used to build the example QCBGenerator application provided with the release package.

• Microsoft® Visual Studio for Windows® OS
• Codeblocks
• GCC

Overview

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 3

2.3 QuadSPI image boot procedure

To understand how to boot a QuadSPI image with Kinetis bootloader, it is necessary to understand the QuadSPI image boot
flow. There are two types of QuadSPI image boot flow:

• Boot from a plaintext QuadSPI image. This method can be used on all targets with QuadSPI support.
• Boot from an encrypted QuadSPI image. This method can only be used on K8x processors that include OTFAD

support, such as MK81F256 and MK82F256.

2.3.1 Plaintext QuadSPI image boot flow

The figure below shows the boot flow of Kinetis bootloader in booting the device with a plaintext QuadSPI image.

Figure 1. Plaintext QuadSPI image boot flow

2.3.2 Encrypted QuadSPI image boot flow

The below figure shows the boot flow of Kinetis bootloader in booting the device with an encrypted QuadSPI image.

Overview

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

4 Freescale Semiconductor, Inc.

Figure 2. Encrypted QuadSPI image boot flow

3 Creating application for QuadSPI memory
This section describes how to modify a normal flash application (led_demo) to run from QuadSPI. The fully functional LED
demo example for QuadSPI with binary and source code is already available in the package for reference. The chapter also
discuss on how to create QCB data structure for a typical QuadSPI flash memory device.

3.1 Starting point: Basics of internal flash memory mapped led-
demo example project

Start from an LED demo example project code for the MK82F256 device. Example led-demo project files for each of the
supported toolchains are available under the led_demo/targets/TWR-K80F150M/builds folder of the package. This document
focuses on IAR project examples only. Open led_demo.eww file from the IAR folder and choose the led_demo_PFLASH
project as the active project. See the following figure.

Note that the linker file for led_demo_PFLASH project shows all sections located in the internal flash memory region,
including vector table, flash config area, and text sections.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 5

When the led_demo_PFLASH image is built and flashed to the internal flash memory of the target device and begins its
execution, it causes the blue and green LEDs to blink on the target board.

The subsequent sections show changes needed to convert led_demo_PLASH project to run on QuadSPI memory for the
target device.

Figure 3. The led_demo_PFLASH project

3.2 Changes to the led-demo project

The following subsections describe the steps to map the led-demo to run from external QuadSPI flash memory.

3.2.1 Changes to the linker file

The first step is to update the linker file. The m_text_start, and m_text_end symbol names need to be updated. The
address of m_text_start should be changed to 0x68001000, and m_text_end to 0x6FFFFFFF or the actual end address of
the selected SPI flash device. See the changes in the following figure.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

6 Freescale Semiconductor, Inc.

Figure 4. Linker file changes

3.2.2 Changes to flash config area

Bit 7-6 in FOPT (0x40D) needs to be changed to 0b’10 in order to select ROM as the boot source upon reset. QuadSPI is
configured after ROM starts, and if the QCB is present. After this operation, the flash config area is changed, as shown in the
following figure.

Figure 5. Change flash config area for QuadSPI image

See startup_MK82F2515_qspi.s under led_demo->devices/MK82F25615/startup/<toolchain> folder for more details

3.2.3 Configure BCA

After the previous step, the target is able to run the led-demo application once the active peripheral detection timeout occurs.

To customize the boot option for the QuadSPI image, the BCA is required. The first step to is to define
BOOTLOADER_CONFIG in the project. Implement the operation shown in the following figure for IAR EWARM
toolchain as an example.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 7

Figure 6. Enable BCA in EWARM

There are two ways to configure the QuadSPI image boot option:

1. Change the peripheralDetectionTimeoutMs. For example, change it to 0x01F4 (500 ms).
2. Change the bootFlags to 0xFE, which means boot directly from application without delay. To re-enter Kinetis

bootloader again, see Appendix B.

NOTE
The first way to configure the QuadSPI image boot option is recommended.

In this example, there is a BootloaderConfig constant variable defined in system_MK82F25615.c. It can be changed as
shown in the following figure.

When the BCA change is complete, the target supports execution of led demo image if it has been programmed to internal
flash or QuadSPI memory.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

8 Freescale Semiconductor, Inc.

Figure 7. Set peripheralDetectionTimeoutMs to 500 ms

3.3 Generate QCB

QuadSPI Config Block (QCB) is required for Kinetis ROM bootloader to properly configure and access the QuadSPI device.
This section shows the QCB structure, determines the QCB parameters for the specified SPI flash device, and generates the
QCB with a simple project.

3.3.1 The QCB structure

The QCB is a data structure containing the most common used parameters for QuadSPI module. See the Kinetis bootloader
chapter in the silicon’s reference manual for more details. The QCB is organized as follows.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 9

Table 2. QuadSPI configuration block

Offset Size (bytes) Configuration field Description

0x00 - 0x03 4 tag Magic number to verify whether QCB is valid.
Must be set to ‘kqcf’.

[31:24] - ‘f’ (0x66)

[23:16] - ‘c’ (0x63)

[15: 8] - ‘q’(0x71)

[7: 0] - ‘k’(0x6B)

0x04 - 0x07 4 version Version number of QuadSPI config block.

[31:24] - name: must be ‘Q’(0x51)

[23:16] - major: must be 1

[15: 8] - minor: must be 1

[7: 0] - bugfix: must be 0

0x08 - 0x0b 4 lengthInBytes Size of QuadSPI config block, in terms of bytes.

Must be 512.

0x0c - 0x0f 4 dqs_loopback Enable DQS loopback support:

0 DQS loopback is disabled.

1 DQS loopback is enabledd, the DQS loopback
mode is determined by subsequent
'dqs_loopback_internal' field.

0x10 - 0x13 4 data_hold_time Serial flash data hold time. Valid value 0/1/2. See
the QuadSPI Chapter for details.

0x14 - 0x1b 8 - Reserved.

0x1c - 0x1f 4 device_mode_config_e
n

Configure work mode enable for external flash
devices:

0 Disabled - ROM does not configure work mode
of external flash devices.

1 Enabled - ROM configures work mode of
external flash devices based on "device_cmd"
and LUT entries indicated by "write_cmd_ipcr".

0x20 - 0x23 4 device_cmd Command to configure work mode of external
flash devices. Effective only if
"device_mode_config_en" is set to 1.

This command is device-specific.

0x24 - 0x27 4 write_cmd_ipcr IPCR pointed to LUT index for the command
sequence of configuring the device to work
mode.

Value = index<<24

0x28 - 0x2b 4 word_addressable Word addressable:

0 Byte addressable serial flash mode.

1 Word addressable serial flash mode.

0x2c - 0x2f 4 cs_hold_time Serial flash CS hold time in terms of flash clock
cycles.

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

10 Freescale Semiconductor, Inc.

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes) Configuration field Description

0x30 - 0x33 4 cs_setup_time Serial flash CS setup time in terms of flash clock
cycles.

0x34 - 0x37 4 sflash_A1_size Size of external flash connected to ports of
QSPI0A and QSPI0A_CS0, in terms of bytes.

0x38 - 0x3b 4 sflash_A2_size Size of external flash connected to ports of
QSPI0B and quadSPI0A_CS1, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x3c - 0x3f 4 sflash_B1_size Size of external flash connected to ports of
QSPI0B and quadSPI0B_CS0, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x40 - 0x43 4 sflash_B2_size Size of external flash connected to ports of
QSPI0B and quadSPI0B_CS1, in terms of bytes.

This field must be set to 0 if the serial flash
devices are not present.

0x44 - 0x47 4 sclk_freq Frequency of QuadSPI serial clock:

0 Low frequency

1 Mid frequency

2 High frequency

See the Kinetis bootloader chapter in silicon’s
reference manual for the definition of low-
frequency, mid-frequency and high-frequency. In
MK82F256, they are 24 MHz, 48 MHz, and 96
MHz.

0x48 - 0x4b 4 busy_bit_offset Busy bit offset in status register of Serial flash
[31:16]:

0 - Busy flag in status register is 1 when flash
devices are busy.

1 - Busy flag in status register is 0 when flash
devices are busy.

[15:0]:

The offset of busy flag in status register, valid
range 0-31.

0x4c - 0x4f 4 sflash_type Type of serial flash:

0 Single-pad

1 Dual-pad

2 Quad-pad

3 Octal-pad

0x50 - 0x53 4 sflash_port Port enablement for QuadSPI module:

0 Only pins for QSPI0A are enabled.

1 Pins for both QSPI0A and QSPI0B are
enabled.

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 11

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes) Configuration field Description

0x54 - 0x57 4 ddr_mode_enable Enable DDR mode:

0 DDR mode is disabled.

1 DDR mode is enabled.

0x58 - 0x5b 4 dqs_enable Enable DQS:

0 DQS is disabled.

1 DQS is enabled.

0x5c - 0x5f 4 parallel_mode_enable Enable Parallel Mode:

0 Parallel mode is disabled.

1 Parallel mode is enabled.

0x60 - 0x63 4 portA_cs1 Enable QuadSPI0A_CS1:

0 QuadSPI0A_CS1 is disabled.

1 QuadSPI0A_CS1 is enabled.

This field must be set to 1 if sflash_A2_size is not
equal to 0.

0x64 - 0x67 4 portB_cs1 Enable QuadSPI0B_CS1

0 QuadSPI0B_CS1 is disabled

1 QuadSPI0B_CS1 is enabled

This field must be set to 1 if sflash_B2_size is not
equal to 0.

0x68 - 0x6b 4 fsphs Full Speed Phase selection for SDR instructions:

0 Select sampling at non-inverted clock.

1 Select sampling inverted clock.

0x6c - 0x6f 4 fsdly Full Speed Delay selection for SDR instructions:

0 One clock cycle delay.

1 Two clock cycles delay.

0x70 - 0x73 4 ddrsmp DDR sampling point:

Valid range: 0 - 7.

0x74 - 0x173 256 look_up_table Look-up-table for sequences of instructions.

See the QuadSPI chapter in silicon’s reference
manual for more details.

0x174 - 0x177 4 column_address_space Column Address Space:

The parameter defines the width of the column
address.

0x178 - 0x17b 4 config_cmd_en Enable additional configuration command:

0 Additional configuration command is not
needed.

1 Additional configuration command is needed.

0x17c - 0x18b 16 config_cmds IPCR arrays for each connected SPI flash.

"config_cmds[n]" provides IPCR value, namely
seq_id << 24.

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

12 Freescale Semiconductor, Inc.

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes) Configuration field Description

All fields must be set to 0 if config_cmd_en is not
set.

0x18c - 0x19b 16 config_cmds_args Command arrays needed to be transferred to
external SPI flash.

"config_cmds_args[n]" provides commands to be
written.

All fields must be set to 0 if config_cmd_en is not
asserted.

0x19c - 0x19f 4 differential_clock_pin_e
nable

Enable differential flash clock pin:

0 Differential flash clock pin is disabled.

1 Differential flash clock pin is enabled.

0x1a0 - 0x1a3 4 flash_CK2_clock_pin_e
nable

Enable flash CK2 clock pin:

0 Flash CK2 clock pin is disabled.

1 Flash CK2 clock pin is enabled.

0x1a4 - 0x1a7 4 dqs_inverse_sel Select clock source for internal DQS generation:

0 Use 1x internal reference clock for DQS
generation.

1 Use inverse 1x internal reference clock for the
DQS generation.

0x1a8 - 0x1ab 4 dqs_latency_enable DQS Latency Enable:

0 DQS latency disabled.

1 DQS feature with latency included enabled.

0x1ac - 0x1af 4 dqs_loopback_internal DQS loop back from internal DQS signal or DQS
Pad:

0 DQS loop back is sent to DQS pad first and
then looped back to QuadSPI.

1 DQS loop back from internal DQS signal
directly.

0x1b0 - 0x1b3 4 dqs_phase_sel Select Phase Shift for internal DQS generation:

0 No Phase shift.

1 Select 45 degree phase shift.

2 Select 90 degree phase shift.

3 Select 135 degree phase shift.

0x1b4 - 0x1b7 4 dqs_fa_delay_chain_se
l

Delay chain tap number selection for QuadSPI0A
DQS:

Valid range: 0-63

0x1b8 - 0x1bb 4 dqs_fb_delay_chain_se
l

Delay chain tap number selection for QuadSPI0B
DQS:

Valid range: 0-63

0x1bc - 0x1c3 8 - Reserved.

0x1c4 - 0x1c7 4 page_size Page size of external flash.

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 13

Table 2. QuadSPI configuration block (continued)

Offset Size (bytes) Configuration field Description

Page size of all SPI flash devices must be the
same.

0x1c8 - 0x1cb 4 sector_size Sector size of exernal SPI in flash.

Sector size of all SPI flash devices must be the
same.

0x1cc - 0x1cf 4 timeout_milliseconds Timeout in terms of milliseconds:

0 Timeout check is disabled.

Other: QuadSPI Driver returns timeout if the time
that external SPI devices are busy lasts more
than this value.

0x1d0 - 0x1d3 4 ips_cmd_second_divide
r

Second driver for IPs command based on
QSPI_MCR[SCLKCFG], the maximum value of
QSPI_MCR[SCLKCFG] depends on specific
devices.

0x1d4 - 0x1d7 4 need_multi_phase 0 Only one phase is needed to access external
flash devices.

1 Multiple phases are needed to erase/program
external flash devices.

0x1d8 - 0x1db 4 is_spansion_hyperflash 0 External flash devices do not belong to
Spansion Hyperflash family.

1 External flash devices belong to Spansion
Hyperflash family.

0x1dc - 0x1df 4 pre_read_status_cmd_
address_offset

Additional address for the PreReadStatus
command.

Set this field to 0xFFFFFFFF if it is not required.

0x1e0 - 0x1e3 4 pre_unlock_cmd_addre
ss_offset

Additional address for PreWriteEnable command.

Set this field to 0xFFFFFFFF if it is not required.

0x1e4 - 0x1e7 4 unlock_cmd_address_o
ffset

Additional address for WriteEnable command.

Set this field to 0xFFFFFFFFF if it is not required.

0x1e8 - 0x1eb 4 pre_program_cmd_add
ress_offset

Addtional address for PrePageProgram
command.

Set this field to 0xFFFFFFFF if it is not required.

0x1ec - 0x1ef 4 pre_erase_cmd_addres
s_offset

Additional address for PreErase command.

Set this field to 0xFFFFFFFF if it is not required.

0x1f0 - 0x1f3 4 erase_all_cmd_address
_offset

Additional address for EraseAll command.

Set this field to 0xFFFFFFFF if it is not required.

0x1f4 - 0x1ff 12 - Reserved.

NOTE
Though there are several parameters in QCB, only a few parameters need to be
configured for most SPI flash devices available on the market.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

14 Freescale Semiconductor, Inc.

In the QCB, the most important field is the Lookup Table (LUT), which contains command sequence for QuadSPI
instructions, such as erase, read, and program. The command sequence in the LUT should appear in the order as shown in the
following table:

Table 3. Look-up table entries for Kinetis bootloader

Index Field Description

0 Read Sequence for read instructions.

1 WriteEnable Sequence for WriteEnable instructions.

2 EraseAll Sequence for EraseAll instructions.

3 ReadStatus Sequence for ReadStatus instructions.

4 PageProgram Sequence for Page Program instructions.

6 PreErase Sequence for Pre-Erase instructions.

7 SectorErase Sequence for Sector Erase.

8 Dummy Sequence for dummy operation if needed

For example, if continuous read is configured in
index 0, the dummy LUT should be configured to
force external SPI flash to exit continuous read
mode. If it is not required, this LUT entry must be
set to 0.

9 PreWriteEnable Sequence for Pre-WriteEnable instructions.

10 PrePageProgram Sequence for Pre-PageProgram instructions.

11 PreReadStatus Sequence for Pre-ReadStatus instructions.

For most types of SPI flash devices available in the market. However, for other types of high-end SPI flash devices, such as
Spansion Hyperflash, and additional indexes may be required.

3.3.2 Example QCB for MX25U3235F device on TWR-K80F150M
Tower System module

This section creates an example QCB data structure for TWR-K80F150M Tower System module. There are two
MX25U3235F QuadSPI flash devices connected to QuadSPI0A and QuadSPI0B ports, respectively, on the board. The
datasheet for MX25U3235F are available on the MXIC website, and the schematics for the TWR-K80F150M Tower System
module is available on the Freescale website.

The following are some attributes which are essential to create the QCB for the MX25U3235F flash device. The same (but
not limited to the following) information can be found in its data sheet as well:

Table 4. MX25U3235F features for QuadSPI configuration

Attribute Value/timing Description

Maximum supported frequency (4 I/O) 104 MHz (6 dummy cycles) -

Page size 256 bytes -

Sector size 4 KB/32 KB/64 KB 4 KB is selected in this guide.

Chip size 4 MB -

Busy/WriteInProgress bit in status
register

Bit 0 Bit 0 in status registers is called busy
flag.

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 15

Table 4. MX25U3235F features for QuadSPI configuration (continued)

Attribute Value/timing Description

1 means SPI flash device is busy.

0 means it is idle.

The value needs to be set to
'busy_bit_offset' in QCB.

Enable Quad mode Write status register, bit6 must be set to
1 in order to enable Quad mode.

Following the QuadSPI chapter, the
command sequence for this operation is:

1. CMD: 01, single pad
2. Write: length=1, single pad

The data to be written is 0x40, and is
configured to 'device_cmd' in QCB.

Write Enable This is required before issuing any write/
erase operations to SPI flash devices.

The command sequence for this
operation is:

1. CMD: 0x06, single pad

Sector Erase Each sector must be erased before
doing any program operation.

The command sequence for this
operation is:

1. CMD: 0x20, single pad
2. ADDR: 0x18 (24-bit address),

single pad

Chip Erase This command can be used to erase the
entire content on SPI flash device.

The command sequence for this
operation is:

1. CMD: 0x60, single pad

4 x I/O Page program This command is used to program the
desired data to SPI flash device. Here,
we use 4 x I/O page program command
in order to improve the program
performance.

The command sequences for this
operation are:

1. CMD: 0x38, single pad
2. ADDR: 0x18 (24 bit address) quad

pads
3. WRITE: 0x40 (ignore this value)

quad pads

Table continues on the next page...

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

16 Freescale Semiconductor, Inc.

Table 4. MX25U3235F features for QuadSPI configuration (continued)

Attribute Value/timing Description

4 I/O Read This command is used to read data from
SPI flash device. Here, we use 4 x I/O
Read in order to improve read
performance.

The command sequence for this
operation is:

1. CMD: 0xEB, single pad
2. ADDR: 0x18 (24 bit address) quad

pads
3. DUMMY: 0x06 (6 cycles) quad

pads
4. READ: 0x80 (128 byte at one

pass) quad pads
5. JUMP_ON_CS: 0 (single pad)

Read Status This command is used to check if the
SPI flash device is busy after having
issued a program/erase command to it.

The command sequence for this
operation is:

1. CMD: 0x05, single pad
2. READ: 1 (byte) single pad

The information needed for QCB creation for the TWR-K80F150M Tower System module is summarized in Table 3-3. The
“Programmable Sequence Engine” and "Example Sequences" sections within the QuadSPI chapter of the MK80F256
Reference Manual can be referenced to create customized QCBs. The “Description” column in Table 3-3 also provides the
LUT instructions for each command.

Based on the above summary, the ‘qspi_config_block_generator’ project is provided with the package as an example along
with this user's guide. The example project can be used as a basis to generate customized QCBs.

3.3.3 Generate the QCB with a simple example project

The project can be found in the package at location demo/qspi_config_block/QCBGenerator/build. Currently, two projects
are provided to build from toolchains Microsoft Visual Studio 2013 and codeblocks. Launch Microsoft Visual Studio
example project available in the Visual Studio folder. Edit the file qspi_config_block_generator.c to configure
qspi_config_block in the main function:

 const qspi_config_t qspi_config_block =
 {
 .tag = kQspiConfigTag, // Fixed value, do not change.
 .version = { .version = kQspiVersionTag }, // Fixed value, do not change.
 .lengthInBytes = 512, // Fixed value, do not change.
 .sflash_A1_size = 0x400000, // 4MB - MX25U3235F connected to QSPI0A
 .sflash_B1_size = 0x400000, // 4MB - MX25U3235F connected to QSPI0B
 // In K80 ROM bootloader, QSPI serial clock frequency is 96MHz
 .sclk_freq = kQspiSerialClockFreq_High, // High frequency, 96MHz / 1 = 96MHz
 .sflash_type = kQspiFlashPad_Quad, // SPI Flash devices work under quad-pad mode
 .sflash_port = kQspiPort_EnableBothPorts, // Both QSPI0A and QSPI0B are enabled.
 .busy_bit_offset = 0, // Busy offset is 0
 .ddr_mode_enable = 0, // disable DDR mode
 .dqs_enable = 0, // Disable DQS feature
 .parallel_mode_enable = 0, // QuadSPI module work under serial mode

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 17

 .pagesize = 256, // Page Size: 256 bytes
 .sectorsize = 0x1000, // Sector Size: 4KB
 .device_mode_config_en = 1, // configure quad mode for SPI flash device
 .device_cmd = 0x40, // Enable quad mode
 .write_cmd_ipcr = 0x05000000U, // IPCR indicating enable seqid (5<<24), see QCB structure
 // Set second divider for QSPI serial clock to 3 if K80 ROM Bootloader cannot program
 // SPI flash at 96 MHz, in this configuration, the program speed is 96MHz/4 = 24MHz
 .ips_command_second_divider = 3,
 .look_up_table =
 {
 // Seq0: Quad Read (maximum supported freq: 104MHz)
 /*
 CMD: 0xEB - Quad Read, Single pad
 ADDR: 0x18 - 24bit address, Quad pads
 DUMMY: 0x06 - 6 clock cycles, Quad pads
 READ: 0x80 - Read 128 bytes, Quad pads
 JUMP_ON_CS: 0
 */
 [0] = 0x0A1804EB,
 [1] = 0x1E800E06,
 [2] = 0x2400,

 // Seq1: Write Enable (maximum supported freq: 104MHz)
 /*
 CMD: 0x06 - Write Enable, Single pad
 */
 [4] = 0x406,

 // Seq2: Erase all (maximum supported freq: 104MHz)
 /*
 CMD: 0x60 - Erase All chip, Single pad
 */
 [8] = 0x460,

 // Seq3: Read Status (maximum supported freq: 104MHz)
 /*
 CMD: 0x05 - Read Status, single pad
 READ: 0x01 - Read 1 byte
 */
 [12] = 0x1c010405,

 // Seq4: 4 I/O Page Program (maximum supported freq: 104MHz)
 /*
 CMD: 0x38 - 4 I/O Page Program, Single pad
 ADDR: 0x18 - 24bit address, Quad pad
 WRITE: 0x40 - Write 64 bytes at one pass, Quad pad,
 (Ignore the 64, as it will be overwritten by page size)

 */
 [16] = 0x0A180438,
 [17] = 0x2240,

 // Seq5: Write status register to enable quad mode
 /*
 CMD: 0x01 - Write Status Register, single pad
 WRITE: 0x01 - Write 1 byte of data, single pad
 */
 [20] = 0x20010401,

 // Seq7: Erase Sector
 /*
 CMD: 0x20 - Sector Erase, single pad
 ADDR: 0x18 - 24 bit address, single pad
 */
 [28] = 0x08180420,

 // Seq8: Dummy
 /*
 CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.
 Unnecessary here because the continuous read mode isn't enabled.

Creating application for QuadSPI memory

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

18 Freescale Semiconductor, Inc.

 */
 [32] = 0,
 },
};

After modifying the qspi_config_block variable, right-click the QCBGenerator project and choose to build.

If the project successfully builds, run QCBGenerator.exe from the Debug folder. The output file named
'qspi_config_block.bin' is generated under the Debug folder.

Both the QuadSPI project and QCB are ready. The next chapter describes how to flash the QuadSPI image to the target
device with Kinetis bootloader.

4 Configure QuadSPI with Kinetis bootloader
There are typically two scenarios where QuadSPI will be configured using Kinetis bootloader:

1. Configure QuadSPI at runtime.
2. Configure QuadSPI at start-up.

4.1 Configure QuadSPI at runtime

The TWR-K80F150M Tower System module is shipped without any pre-programmed QCB in QuadSPI memory or in
internal flash memory. The following figure shows a simple example demonstrating steps to write and configure QCB. See
the following figure.

1. Hold the NMI button, press the reset button, then release the reset button and NMI button, in that order.
2. Use the blhost property command to get the Reserved Region property value from Kinetis bootloader. This provides the

RAM region reserved by Kinetis bootloader.
3. Choose a free RAM region, and using blhost, write QCB to that region.
4. Configure the QuadSPI with the "configure-quadspi" command.

NOTE
The first command line parameter to configure-quadspi command is "1" to represent the
QuadSPI0, and the second parameter "0x2000_0000" to represent the start address of the
QCB.

Configure QuadSPI with Kinetis bootloader

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 19

Figure 8. Configure QuadSPI at runtime with blhost

4.2 Configure QuadSPI at start-up

The previous sections show how to configure QCB when there is no QCB pre-programmed on the device. For subsequent
boots, it makes sense to save the QCB to non-volatile memory, such as internal flash pointed by the BCA member field,
'qspiConfigBlockPtr', or at the start offset of QuadSPI memory. Then, next time the device boots from the ROM, the Kinetis
bootloader in ROM will detect the presence of the QCB and configure the QuadSPI automatically at start-up. The following
steps are the recommended procedure based on the previous section. To program QCB at the start address of QuadSPI
memory, see the following figure for the Blhost command sequence.

1. Erase the first sector in QuadSPI memory before programming the QCB.
2. Write the QCB to the start of QuadSPI memory.
3. Erase the flash config area.
4. Program the FOPT with the desired value. Make sure FOPT[7:6] (0x40D address in internal flash) is set to 0b10 to

default to boot from Kinetis bootloader in ROM.
5. Reset the target device and use the "read-memory command" to check and ensure if QuadSPI is configured successfully

at start-up, as shown in the following figure.

When all of the above operations are completed, the QuadSPI is configured at start-up.

So far, we understand the basic steps of creating QCB and configuring QuadSPI using the Kinetis bootloader. The next
sections describe how to program the QuadSPI image.

Configure QuadSPI with Kinetis bootloader

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

20 Freescale Semiconductor, Inc.

Figure 9. Configure QuadSPI at start-up

5 Flash QuadSPI image via SB file
Generally, the QuadSPI image contains separate segments. For example, vector table and flash config area are in internal
flash, and executable code is located in QuadSPI memory. Additionally, the corresponding regions need to be erased before
programming. It is inconvenient to use separate commands to finish this task. Here, we introduce SB files and “receive-sb-
file” command to simplify the programming procedure.

5.1 Brief introduction of SB file

Flash QuadSPI image via SB file

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 21

The Kinetis bootloader supports loading of the SB files. The SB file is a Freescale-defined boot file format designed to ease
the boot process. The file is generated using the Freescale elftosb tool. The format supports loading of elf or srec files in a
controlled manner, using boot commands such as load, jump, fill, erase, and so on. The boot commands are prescribed in the
input command file (boot descriptor .bd) to the elftosb tool. The format supports encryption of the boot image using AES-128
input key.

Elftosb and SB file formats are described in greater detail in the accompanying documentation in the package.

In this user's guide, the typical use case is provided to demonstrate the usage of elftosb host tool and how to download the SB
file with Kinetis bootloader.

5.2 Generate SB file for QuadSPI image

This section describes generation of the SB file. The output led-demo srec file is used to generate SB file (for KEIL, a similar
approach can be followed).

• Open the led_demo_qspi project using IAR EWARM toolchain. Using project options dialog select "linker" and make
sure the extension of the output file is ".out".

• Select the "Output Converter" and change the output format to "Motorola" for outputting .srec format image. See the
following figure.

Figure 10. Generate led_demo_qspi.srec with EWARM

• Build either Debug or Release configuration of the project. Once the build is completed, the led_demo_QSPI.srec file
should be available in the output/Debug or output/Release folder.

The next step is to generate the SB file using a command-line host tool, elftosb. The boot descriptor file, qspi_image.bd file is
passed as input to the elftosb tool on the command line. The following figure shows the BD file content, "Sources" section
provides path to the input srec and QCB files and "Section (0)" shows the flow of boot commands.

After creating the BD file shown in the following figure, copy the "qspi_config_block.bin", elftosb.exe,
"led_demo_QSPI.srec", and the BD file into the same directory. Then, open the window with command prompt and invoke
elftosb such as “elftosb –V –c qspi_image.bd –o image.sb”. The elftosb processes the qspi_image.bd file and generates an
image.sb file. Elftosb also outputs the commands list as shown in Figure 12. Notice the list corresponds to the BD file
Section(0) statements.

Flash QuadSPI image via SB file

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

22 Freescale Semiconductor, Inc.

Figure 11. Create a BD file for the QuadSPI image

Figure 12. Elftosb command line usage example and output text

5.3 Flash QuadSPI image via Kinetis bootloader

When the SB file image is generated, either the blhost or KinetisUpdater can be used to program the image to the target. The
following figure shows an example of programming the SB file with blhost.

Flash QuadSPI image via SB file

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 23

Figure 13. Flash SB file with blhost

6 Advanced Usage: Encrypted QuadSPI image
The SB file generated in Section 5.2 is in plaintext form and not encrypted. This section focuses on several aspects of
encrypted boot with Kinetis bootloader.

To use the encrypted boot feature, user must have basic knowledge of the SB key, KeyBlob Block, and KeyBlob Encryption
Key (KEK), SB Key, AES-128 CTR, AES-128 CBC-MAC, and so on. See the Kinetis bootloader chapter in the silicon's
reference manual for a detailed description. The following is a brief introduction to these terms:

• The KeyBlob Block is a data structure that contains up to four groups of KeyBlob entries. Each entry consists of the
start address, length, decryption key, and counter of an encrypted QuadSPI memory region.

• The KeyBlob Block itself is encrypted by another AES key, called Key encryption key (KEK). KEK needs to be pre-
programmed in flash's IFR region. In MK82F256, the Flash IFR index for KEK is from index 0x20 to 0x23. With the
Key Blob and KEK, sections belonging to encrypted QuadSPI memory region (QuadSPI image data) can be encrypted
using elftosb tools. The generated SB file has encrypted image data for the encrypted QuadSPI memory region.

• For devices with flash security enabled, only encrypted SB file images are allowed to be provisioned. Kinetis
bootloader decrypts the encrypted SB image as it receives from the host using a separate SB key. The SB key is an
AES-128 key pre-programmed into flash's IFR region at word offsets 0x30 to 0x33. Elftosb allows generation of
encrypted SB file image using the SB key.

In general, the QuadSPI image is encrypted using the parameters in the KeyBlob with AES-128 CTR mode, the KeyBlob
Block itself encrypted with KEK, and the SB file is encrypted via SB key with AES-128 CBC-MAC. The following figure
shows an SB file containing plaintext QuadSPI image data. The vector table and other regions are in plaintext.

Based on the application type, the user can choose to have plaintext or encrypted QuadSPI image or encrypted SB file image
solution.

Figure 14. Plaintext SB file with Plaintext QuadSPI image

Advanced Usage: Encrypted QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

24 Freescale Semiconductor, Inc.

Figure 15. Plaintext SB file with Encrypted QuadSPI image

The following figure provides an encrypted SB file containing an encrypted QuadSPI image. The entire content of the SB file
is obfuscated.

Figure 16. Encrypted SB file with Encrypted QuadSPI image

The rest of the sections in this chapter provide step-by-step instructions on programming keys, generating encrypted QuadSPI
image data in the SB file, and encrypting the entire SB file image with the SB key.

6.1 Generate an SB file with KEK and SB KEY

Here is an example of generating an SB file with just the KEK and SB KEY. The generated SB file can be provisioned using
Kinetis bootloader to program the keys into IFR region of the device.

The SB KEY is a 16 byte array. For example:

uint8_t sbKey[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb,
0xcc, 0xdd, 0xee, 0xff}.

The KEK is also a 16 byte array. For example:

Advanced Usage: Encrypted QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 25

uint8_t kek[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f}.

Pay attention to the correct order of the data to be programmed to Flash IFR, because each IFR field needs to be programmed
with 32-bit little-endian data. See the example BD file content provided in the following figure to understand how to specify
the SB key and KEK to generate SB file image to program the keys.

To generate SB file, a specified BD file needs to be generated first, assuming the BD file is called "program_keys.bd".

Figure 17. Specified BD file for SB key and KEK

Using elftosb, the desired SB file is generated. The elftosb command line and output is shown in the following figure.

Figure 18. Generate program_keys.sb

Either blhost or KinetisUpdater can be used to flash the SB file to the target device.

6.2 Generate an SB file with encrypted QuadSPI image

After the previous operation, another SB file which contains the encrypted QuadSPI image is still needed. Similar as to how
the SB file was generated in the previous section, a BD file is needed to describe all the operations in this SB file. Besides the
operations listed in Chapter 4, it also contains the Key Blob Block, encrypted QuadSPI image, and Key Blob encryption
wrapper.

Advanced Usage: Encrypted QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

26 Freescale Semiconductor, Inc.

6.2.1 The KeyBlob Block

This section shows the syntax of the keyBlob entry in the BD file with an example in the following figure. The example
shows one QuadSPI memory region identified by the counter value.

keyblob (0) {
#key blob 0
(
start = address1,
end = address2,
key=keystring,
counter=counterstring
)
key blob 1, keep this blank if this key blob isn’t needed.
()
key blob 2, keep this blank if this key blob isn’t needed.
()
key blob 3, keep this blank if this key blob isn’t needed.
()
}

Figure 19. KeyBlob definition

6.2.2 Encrypt QuadSPI image

This section shows BD file changes required to encrypt the QuadSPI image using the KeyBlob. The encrypt (0) section in the
BD file, shown in the following figure, causes elftosb to encrypt the QuadSPI image data falling in the QuadSPI memory
regions pointed by the keyBlob counter.

The keyBlob itself is encrypted with the KEK. The keywrap (0) section in the BD file causes elftosb to wrap the keyBlob
using the KEK specified in the load command of keywrap section.

Advanced Usage: Encrypted QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 27

The syntax for the keywrap section of BD file is as follows:

keywrap (0) {
load {{KEK hex string}} > destination of encrypted key blob block;
}

The memory address 0x1000 in the example shown in the following figure is where the wrapped keyBlob is loaded during
provisioning of SB file to the target device using Kinetis bootloader.

Figure 20. Encrypt QuadSPI image and KeyBlob

6.2.3 Encrypting SB file with the SB key

To encrypt the SB file with elftosb, a file containing the SB key needs to be created, as shown in the following figure.

Advanced Usage: Encrypted QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

28 Freescale Semiconductor, Inc.

Figure 21. Create key.txt containing SB key

The following figure shows generation of the encrypted SB file using the BD file drafted in the previous sections. The SB
key is passed on the command line to elftosb using -k option.

Figure 22. Generate encrypted SB file with encrypted QuadSPI image

The output image.sb can be programmed to the target device using blhost or KinetisUpdater as shown in earlier examples.
Based on the example BD file, the image.sb has the wrapped keyBlob, keyBlob encrypted QuadSPI image data, and the
entire content of the SB file encrypted with the SB key.

7 Change QuadSPI clock in QuadSPI image
When using Kinetis bootloader, if the target is booted from the QuadSPI image, both the QuadSPI serial clock and core clock
are from MCGFLL. MCG is under FEE mode, using the IRC48M as the clock source. In some cases, this may not meet the
system’s accuracy and performance requirement. The MCG mode needs to be switched from FEE to PEE, with an external
OSC as clock source. Be aware that this operation has great impact on the QuadSPI serial clock, so avoid running the clock
switch function on the QuadSPI image directly. A relatively safer way to avoid this is to either copy this function to SRAM,
or place this function in internal flash.

This chapter provides an example for how to create a clock switch function running on RAM.

7.1 Create a RAM function with KDS

This sections shows the steps required for the KDS to create the ram function.

First, declare a section to place RAM function codes, in this example, a section called “ramfunc_section” is declared as
following:

Change QuadSPI clock in QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 29

Figure 23. Declare a RAM function in KDS

Then, implement a copy_to_ram() function in the KDS project. An example is shown in the following figure:

Figure 24. Implement copy_to_ram() function in KDS project

Finally, the linker file needs to be updated to let KDS realize that a RAM function is defined, and needs to be placed at some
location. The following figure demonstrates the changes for RAM function in linker file. A complete project for this example
can be found under led_demo/targets/TWR-K80F150M/builds/kds/led_demo_QSPI folder.

Change QuadSPI clock in QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

30 Freescale Semiconductor, Inc.

Figure 25. Linker file changes for ram function in KDS

7.1.1 Create a RAM function via IAR EWARM

In order to create a RAM function with IAR EWARM, two sections need to be defined. The first is “ramfunc_section_init”,
which is used to store the data of a RAM function, and a “ramfunc_section”, which is the actual execution section of the
RAM function. The following code snippets provide an example of how to define and place code to these sections.

Figure 26. Declare ram function section in EWARM project

After the previous operation, we still need to define another function. For example, copy_to_ram() to copy the RAM func
codes from QuadSPI memory to RAM. The following figure provides an example.

Change QuadSPI clock in QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 31

Figure 27. Implement copy_to_ram() function in EWARM project

Finally, change the linker file in order to let the linker know a RAM function section has been defined. The location to place
this section, and the section, need to be copied to RAM manually.

Figure 28. Linker file changes for ram function in EWARM project

A complete project for this change is included in the package along with this user's guide. It can be found in the led_demo/
targets/TWR-K80F150M/builds/iar folder.

7.1.2 Create a RAM function via Keil MDK

Keil also supports the creation of a RAM function, using a similar method as described for IAR EWARM. To create a RAM
function via KEIL, declare a section. In this example, "ramfunc_section" has been declared. See the following figure.

Figure 29. Declare RAM function in MDK project

A copy_to_ram function is still necessary to copy the data from ROM to an actual execution address. See the following
figure.

Change QuadSPI clock in QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

32 Freescale Semiconductor, Inc.

Figure 30. Implement copy_to_ram() function in MDK project

To let the linker know a RAM function has been defined, add some information to the linker file. For example:

Figure 31. Linker file changes for ram function in MDK project

A complete project for this example can be found in the led_demo/targets/TWR-K80F150M/builds/keil folder.

7.2 Ensure no timing issue after clock change

Change QuadSPI clock in QuadSPI image

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 33

After performing changes listed in the previous section, the clock switch function can be implemented next. Note that the
clock switch function must not violate timing requirements for the QuadSPI module and external SPI flash device. For
example, if the external SPI flash is working under SDR mode, and plan to switch the QuadSPI clock source to PLL 120
MHz, it is required to set the QuadSPI_MCR [SCLKCFG] to at least 1 (which means the QuadSPI serial clock frequency is
120 MHz/2 = 60 MHz) because the maximum supported clock for SDR mode is 100 MHz. See the clock_change() function
in the example for more details.

8 Application running on QuadSPI alias area
For reasons such as performance improvements, the application should be addressed to run from QuadSPI alias area
(0x0400_0000 to 0x07FF_FFFF on MK82F256) instead of physical addresses. Kinetis bootloader does not support
downloading the application running on the alias area directly. However, a workaround solution is described in this section to
allow application to run from the alias region. Here we use the led_demo demonstrated before as an example and show how
to download and run such application from the alias memory region.

8.1 Create an application to run on QuadSPI Alias Area

Using led_demo_QSPI as a starting point, modify the linker file, using the IAR project as an example. The following figure
shows the changes to address symbols in the linker file to allocate sections to the QuadSPI alias memory.

Figure 32. Linker file changes for QuadSPI Alias image in IAR project

Next, remove the BOOTLOADER_CONFIG macro from the IAR project, because the BCA is placed in the internal flash
memory. In this example, the application is placed in QuadSPI alias memory. See the following figure for details.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

34 Freescale Semiconductor, Inc.

Figure 33. Remove BOOTLOADER_CONFIG macro from IAR project

Finally, change the "Output Converter" option, and let IAR generate a binary file. See the following figure.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 35

Figure 34. Let IAR output binary file

8.2 Create a simple boot application

As previously mentioned, Kinetis boootloader does not support boot from QuadSPI alias memory directly, and as such the
host tool should command Kinetis bootloader to write the led_demo_QSPI application image to the physical address of
QuadSPI memory starting with 0x6800_0000 address range. The workaround to make the QuadSPI application run out of
alias memory is to create a simple boot application that, when invoked at boot, causes the PC to jump to the alias address
where led_demo_QSPI application is linked. The boot application functionality includes:

• Change the VTOR to the actual base address of the vector table in the led_demo_QuadSPI application.
• Change the stack pointed to the actual address pointed to in the start of the vector table for the led_demo_QuadSPI

application.
• Jump to the led_demo_QuadSPI application.

In addition, the BCA and keyBlob also need to be included in the boot application. The example boot application is provided
along with the led_demo_QuadSPI in the package under led_demo/targets/TWR-K80F150M/builds/<toolchain>. The
following steps demonstrate how to generate the project for the boot application:

First, use the led_demo_PFLASH as a starting point, and replace the main() function with the code snippet from the
following figure.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

36 Freescale Semiconductor, Inc.

Figure 35. Jump to application running on QuadSPI Alias Area

Next, change the startup_MK82F25616.s file. Ensure that FOPT [7:6] (loaded from address 0x40D) is set to 0b10. See the
following figure.

Figure 36. Change FOPT to 0xBD

Enable BCA in the boot project by defining BOOTLOADER_CONFIG macro. See the following figure.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 37

Figure 37. Change Enable BCA in IAR project

Change the BCA fields as needed. For example, if 'peripheralDetectionTimeoutMs' needs to be changed to 500 and the
'keyBlobPointer' to 0x1000. The example BCA structure is shown in the following figure.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

38 Freescale Semiconductor, Inc.

Figure 38. Update BCA

Finally, change the "Output Converter" option, and let the IAR output SREC file.

8.3 Downloading application running on QuadSPI alias memory
with SB file

Assume that the application running on QuadSPI alias memory is called “led_demo_qspi_alias.bin”, the boot application is
called “boot_to_qspi_alias_memory.srec”, and the QCB is called “qspi_config_block.bin”. An example BD file to generate
the required SB file is shown in the following figure. Note that only one SB file is needed to load both boot application
"boot_to_qspi_alias_memory.srec" and led_demo_QuadSPI_alias.bin.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 39

Figure 39. QuadSPI configurations flow in Kinetis bootloader

As previously mentioned, Kinetis bootloader does not recognize the QuadSPI alias memory addresses. Therefore, in the BD
file the QuadSPI physical memory addresses should be specified for load and erase commands as shown in the following
figure.

Generate the SB file and download it to the target device following instructions provided in Section 5.3.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

40 Freescale Semiconductor, Inc.

Figure 40. Create a SB file contained boot application and QuadSPI demo application

8.4 Creating encrypted QuadSPI application running on QuadSPI
Alias memory with SB file

Using the steps mentioned in Section 6.1 and Section 6.2 and using the same SB key, KEK, and KeyBlob, an encrypted SB
file containing encrypted QuadSPI alias image can be generated. See the following BD file for more details.

NOTE
1. The application is linked to the alias address range (0x0400_0000).
2. The application is loaded to the physical address range (see BD file step #7).
3. In the KeyBlob block, the OTFAD range is programmed to the physical address

range.

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 41

Figure 41. Create a SB file contained boot application and encrypted QuadSPI alias
demo application

Application running on QuadSPI alias area

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

42 Freescale Semiconductor, Inc.

9 Appendix A - QuadSPI configuration procedure
For Kinetis bootloader, follow the below steps to perfrom QuadSPI configuration using the QCB data. The following figure
depicts the corresponding flow chart:

• Detect the location of QCB from either start address of QuadSPI memory or internal flash
• Configure QuadSPI pinmux based on the information from QCB
• Enable QuadSPI clock gate, prepare to configure QuadSPI registers
• Configure look-up table
• Configure QuadSPI registers such as AHB buffer size and DDR mode as needed
• Configure work mode of external SPI flash device, for example, Quad Mode or Octal Mode
• Additional configuration for external SPI flash device, if required in the QCB

Figure 42. QuadSPI Configuration Flow in Kinetis bootloader

10 Appendix B - Re-enter Kinetis bootloader under direct
boot mode

When direct boot is enabled in the BCA with bootFlags field set to 0xFE, ROM configures the QCB and jumps to the
QuadSPI application image directly, bypassing the detection of active peripherals for firmware update from host. In this case,
the QuadSPI application has to implement a workaround to invoke Kinetis bootloader when the host needs to update the
application image. The QuadSPI application has to detect boot pin (NMI pin) assertion by the user and if asserted can follow
below procedure to invoke Kinetis bootloader:

1. Erase the first sector of the internal flash to clear the BCA. Note that the flash configuration field of the BCA may have
to be restored back, as shown in the code snippet in Figure 42.

2. Jump to the runBootloader() ROM API using the bootloader API tree pointer.

The following figure shows sample implementation of re-entry into bootloader from application code. The example code
with the package contains the implementation of this feature in the led_demo_QuadSPI application.

Appendix A - QuadSPI configuration procedure

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 43

Figure 43. Implementation of re-entering Kinetis bootloader in application

11 Appendix C - Explore more features in QCB
Several more features of QuadSPI are supported by Kinetis bootloader such as parallel mode, continuous read mode, and so
on. The following sections provide examples of generating QCB with these modes enabled.

11.1 Parallel mode

This section provides an example of generating a QCB with parallel mode support. Pay attention to these key points:

• The sector size and page size should be twice the actual size for parallel mode.
• The 'parallel_mode_enable' field in QCB must be set to 1.
• The Program command should be replaced with the Page Program command, as the QuadSPI module only supports

single pad parallel programming.

The following is an example:

// This is the QCB for the use case that two MX25U3235F are connected to QuadSPI0A and
QuadSPI0B ports.
// Work under parallel mode
const qspi_config_t qspi_config_block =
 {
 .tag = kQspiConfigTag,
 .version = { .version = kQspiVersionTag },
 .lengthInBytes = 512,
 .sflash_A1_size = 0x400000, // 4MB
 .sflash_B1_size = 0x400000, // 4MB
 .sclk_freq = kQspiSerialClockFreq_High, // High frequency
 .sflash_type = kQspiFlashPad_Quad, // SPI Flash devices work under quad-pad mode
 .sflash_port = kQspiPort_EnableBothPorts, // Both QSPI0A and QSPI0B are enabled.

Appendix C - Explore more features in QCB

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

44 Freescale Semiconductor, Inc.

 .busy_bit_offset = 0, // Busy offset is 0
 .ddr_mode_enable = 0, // disable DDR mode
 .dqs_enable = 0, // Disable DQS feature
 .parallel_mode_enable = 1, // QuadSPI module work under parallel mode
 .pagesize = 512, // Page Size : 256 *2 = 512 bytes
 .sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
 .device_mode_config_en = 1, // configure quad mode for spi flash
 .device_cmd = 0x40, // Enable quad mode
 .write_cmd_ipcr = 0x05000000U, // IPCR indicating enable seqid (5<<24)
 .ips_command_second_divider = 3,// Set second divider for QSPI serial clock to 3
 .look_up_table =
 {
 // Seq0: Quad Read (maximum supported freq: 104MHz)
 /*
 CMD: 0xEB - Quad Read, Single pad
 ADDR: 0x18 - 24bit address, Quad pads
 DUMMY: 0x06 - 6 clock cycles, Quad pads
 READ: 0x80 - Read 128 bytes, Quad pads
 JUMP_ON_CS: 0
 */
 [0] = 0x0A1804EB,
 [1] = 0x1E800E06,
 [2] = 0x2400,

 // Seq1: Write Enable (maximum supported freq: 104MHz)
 /*
 CMD: 0x06 - Write Enable, Single pad
 */
 [4] = 0x406,

 // Seq2: Erase All (maximum supported freq: 104MHz)
 /*
 CMD: 0x60 - Erase All chip, Single pad
 */
 [8] = 0x460,

 // Seq3: Read Status (maximum supported freq: 104MHz)
 /*
 CMD: 0x05 - Read Status, single pad
 READ: 0x01 - Read 1 byte
 */
 [12] = 0x1c010405,

 // Seq4: Page Program (maximum supported freq: 104MHz)
 /*
 CMD: 0x02 - Page Program, Single pad
 ADDR: 0x18 - 24bit address, Single pad
 WRITE: 0x40 - Write 64 bytes at one pass, Single pad
 (0x40 is ignored, as it will be overwritten by page size)
 */
 [16] = 0x08180402,
 [17] = 0x2040,

 // Seq5: Write status register to enable quad mode
 /*
 CMD: 0x01 - Write Status Register, single pad
 WRITE: 0x01 - Write 1 byte of data, single pad
 */
 [20] = 0x20010401,

 // Seq7: Erase Sector
 /*
 CMD: 0x20 - Sector Erase, single pad
 ADDR: 0x18 - 24 bit address, single pad
 */
 [28] = 0x08180420,

 // Seq8: Dummy
 /*
 CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.

Appendix C - Explore more features in QCB

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 45

 unecessary here because the continous read mode isn't enabled.
 */
 [32] = 0,
 },
 };

NOTE
The previous example needs to be placed in the demo/QCBGenerator/src folder.

11.2 Continuous read mode

MX25U3235F supports continuous read mode (performance enhance mode) to provide high performance reads. The
important item to configure for this use case is:

• The Dummy LUT entry needs to be configured according to the condition of exiting continuous read mode. Otherwise,
the device would fail to perform an erase or program operation as it cannot exit this mode correctly.

The following is an example:

NOTE
Only the flash device connected on QuadSPI0 A1 supports this module.

// This is the QCB for when two MX25U3235F are connected to QuadSPI0A and QuadSPI0B ports.
// Work under parallel mode
const qspi_config_t qspi_config_block =
 {
 .tag = kQspiConfigTag,
 .version = { .version = kQspiVersionTag },
 .lengthInBytes = 512,
 .sflash_A1_size = 0x400000, // 4MB
 .sclk_freq = kQspiSerialClockFreq_High, // High frequency
 .sflash_type = kQspiFlashPad_Quad, // SPI Flash devices work under quad-pad mode
 .sflash_port = kQspiPort_EnableBothPorts, // Both QSPI0A and QSPI0B are enabled.
 .busy_bit_offset = 0, // Busy offset is 0
 .ddr_mode_enable = 0, // disable DDR mode
 .dqs_enable = 0, // Disable DQS feature
 .parallel_mode_enable = 1, // QuadSPI module work under parallel mode
 .pagesize = 512, // Page Size : 256 *2 = 512 bytes
 .sectorsize = 0x2000, // Sector Size: 4KB * 2 = 8KB
 .device_mode_config_en = 1, // configure quad mode for spi flash
 .device_cmd = 0x40, // Enable quad mode
 .write_cmd_ipcr = 0x05000000U, // IPCR indicating enable seqid (5<<24)
 .ips_command_second_divider = 3,// Set second divider for QSPI serial clock to 3
 .look_up_table =
 {
 // Seq0: Quad Read (maximum supported freq: 104MHz)
 /*
 CMD: 0xEB - Quad Read, Single pad
 ADDR: 0x18 - 24bit address, Quad pads
 MODE: 0xA5 - Continuous read mode, Quad Pads
 DUMMY: 0x04 - 4 clock cycles, Quad pads
 READ: 0x80 - Read 128 bytes, Quad pads
 JUMP_ON_CS: 1
 */
 [0] = 0x0A1804EB,
 [1] = 0x0E04012A5,
 [2] = 0x24011E80,

 // Seq1: Write Enable (maximum supported freq: 104MHz)
 /*
 CMD: 0x06 - Write Enable, Single pad
 */
 [4] = 0x406,

Appendix C - Explore more features in QCB

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

46 Freescale Semiconductor, Inc.

 // Seq2: Erase All (maximum supported freq: 104MHz)
 /*
 CMD: 0x60 - Erase All chip, Single pad
 */
 [8] = 0x460,

 // Seq3: Read Status (maximum supported freq: 104MHz)
 /*
 CMD: 0x05 - Read Status, single pad
 READ: 0x01 - Read 1 byte
 */
 [12] = 0x1c010405,

 // Seq4: Page Program (maximum supported freq: 104MHz)
 /*
 CMD: 0x02 - Page Program, Single pad
 ADDR: 0x18 - 24bit address, Single pad
 WRITE: 0x40 - Write 64 bytes at one pass, Single pad
 (0x40 is ignored, as it will be overwritten by page size)
 */
 [16] = 0x08180402,
 [17] = 0x2040,

 // Seq5: Write status register to enable quad mode
 /*
 CMD: 0x01 - Write Status Register, single pad
 WRITE: 0x01 - Write 1 byte of data, single pad
 */
 [20] = 0x20010401,

 // Seq7: Erase Sector
 /*
 CMD: 0x20 - Sector Erase, single pad
 ADDR: 0x18 - 24 bit address, single pad
 */
 [28] = 0x08180420,

 // Seq8: Dummy
 /*
 CMD: 0xFF - Dummy command, used to force SPI flash to exit continuous read
mode.
 Unnecessary here because the continuous read mode isn't enabled.
 */
 [32] = 0xFF,
 },
 };

NOTE
See the example from the demo/QCBGenerator/src folder.

12 Appendix D - DDR mode issue workaround
The Kinetis bootloader in the ROM of MK80F256 devices supports programming and booting from QuadSPI devices with
double data rate (DDR) mode. However, due to an issue in the ROM code, a workaround is needed to use the DDR feature.
This workaround should be implemented in the application image. This appendix provides the details on implementing the
workaround. The package contains example application code with the workaround implemented.

ROM provides DDR mode support using the values provided in the QCB data structure. Specifically, these two fields of
QCB are used to support DDR mode:

• ddr_mode_enable - must be set to 1.
• data_hold_time - can be either 1 or 2 depending on the type of SPI Flash device.

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 47

12.1 Example QCB for QuadSPI device N25Q256A with DDR
mode support

The following is an example QCB for N25Q256A with DDR mode support:

const qspi_config_t qspi_config_block =
 {
 .tag = kQspiConfigTag,
 .version = { .version = kQspiVersionTag },
 .lengthInBytes = 512,
 .sflash_A1_size = 0x2000000, // 32MB
 .sclk_freq = kQspiSerialClockFreq_High, // High frequency, 96MHz/4 = 24MHz
 .sflash_type = kQspiFlashPad_Quad, // SPI Flash devices work under quad-pad mode
 .sflash_port = kQspiPort_EnablePortA, // Only QSPI0A is enabled.
 .busy_bit_offset = 0x00010007, // Busy offset is 7, polarity: 0 means busy
 .ddr_mode_enable = 1, // Enable DDR mode
 .data_hold_time = 1, // Data aligned with 2x serial flash half clock
 .ddrsmp = 0,
 .dqs_enable = 0, // Disable DQS feature
 .dqs_loopback = 0,
 .pagesize = 256, // Page Size : 256 bytes
 .sectorsize = 0x1000, // Sector Size: 4KB
 .ips_command_second_divider = 0,
 .device_mode_config_en = 1, // Configure the device to 4-byte address mode
 .device_cmd = 0, // Not needed.
 .write_cmd_ipcr = 5UL<<24, // Seq5 for setting address type to 4 bytes

 .look_up_table =
 {
 /* Seq0 : Quad Read (maximum supported freq: 108MHz)
 CMD_DDR: 0xED - Quad Read, Single pad
 ADDR_DDR: 0x20 - 32bit address, Quad pads
 DUMMY: 0x08 - 8 dummy cycles, Quad pads
 READ_DDR: 0x80 - Read 128 bytes, Quad pads
 JUMP_ON_CS: 0
 */
 [0] = 0x2A2004ED,
 [1] = 0x3A800E08,
 [2] = 0x2400,

 /* Seq1: Write Enable (maximum supported freq: 108MHz)
 CMD: 0x06 - Write Enable, Single pad
 */
 [4] = 0x406,

 /* Seq2: Erase All (maximum supported freq: 108MHz)
 CMD: 0xC7 - Erase All chip, Single pad
 */
 [8] = 0x04C7,

 /* Seq3: Read Status (maximum supported freq: 108MHz)
 CMD: 0x05 - Read Flag Status, single pad
 READ: 0x04 - Read 4 bytes
 */
 [12] = 0x1c040470,

 /* Seq4: Page Program (maximum supported freq: 108MHz)
 CMD: 0x02 - Page Program, Single pad
 ADDR: 0x20 - 32bit address, Single pad
 WRITE: 0x40 - Write 64 bytes at one pass, Single Pad
 */
 [16] = 0x08200402,
 [17] = 0x2040,

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

48 Freescale Semiconductor, Inc.

 /* Seq5: Enter 4-byte address mode
 CMD: 0xB7 - Enter 4-byte address mode
 */
 [20] = 0x04B7,

 /* Seq7: Erase Sector
 CMD: 0x20 - Sector Erase, single pad
 ADDR: 0x20 - 32 bit address, single pad
 */
 [28] = 0x08200420,
 },
 };

See Section 3.3.3 to generate the binary qspi_config_block.bin with the above example QCB data structures.

12.2 Example QCB for QuadSPI device S26KS128S with Octal
DDR mode support

Here is another example QCB for device S26KS128S with Octal DDR mode support:

const qspi_config_t qspi_config_block =
{
 .tag = kQspiConfigTag,
 .version = {.version = kQspiVersionTag},
 .lengthInBytes = 512,
 .word_addressable = 1,
 .data_hold_time = 1,
 .sflash_A1_size = 0x1000000, // 16MB
 .sclk_freq = kQspiSerialClockFreq_High, // High frequency, in DDR mode, it means
96MHz/4 = 24MHz
 .busy_bit_offset = 0x0001000F, // bit 15 represent busy bit, polarity of this bit is 0
 .sflash_type = kQspiFlashPad_Octal, // Serial Nor Flash works under octal-pad mode
 .sflash_port = kQspiPort_EnablePortA, // Only PortA are enabled
 .ddr_mode_enable = 1,
 .dqs_enable = 1, // DQS function is enabled.
 .look_up_table =
 {
 // Seq0 : Read
 [0] = 0x2B1847A0, // Read command with continuous burst type
 [1] = 0x0F104F10, // 16bit column address, 16 dummy cycles
 [2] = 0x03003B80, // Read 128bytes and STOP.

 // Seq1: Write Enable
 [4] = 0x2B184700,
 [5] = 0x47004F10,
 [6] = 0x4755,

 // Seq2: Erase All
 [8] = 0x2B184700,
 [9] = 0x47004F10,
 [10] = 0x4710,

 // Seq3: Read Status
 [12] = 0x2B1847A0, // Read command with continuous burst type
 [13] = 0x0F104F10, // 16bit column address, 16 dummy cycles
 [14] = 0x3B02, // Read 2bytes and stop.

 // Seq4: 8 I/O Page Program
 [16] = 0x2B184700,
 [17] = 0x3F804F10,

 // Seq6: Pre Erase
 [24] = 0x2B184700,
 [25] = 0x47004F10,
 [26] = 0x4780,

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 49

 // Seq7: Erase Sector
 [28] = 0x2B184700,
 [29] = 0x47004F10,
 [30] = 0x24004730,

 // Seq9: PreWriteEnable
 [36] = 0x2B184700,
 [37] = 0x47004F10,
 [38] = 0x47AA,

 // Seq10: PrePageProgram
 [40] = 0x2B184700,
 [41] = 0x47004F10,
 [42] = 0x47A0,

 // Seq11: PreReadStatus
 [44] = 0x2B184700,
 [45] = 0x47004F10,
 [46] = 0x4770,

 } ,
 .column_address_space = 3,
 .differential_clock_pin_enable = 1, // Differential clock is enabled.
 .dqs_latency_enable = 1, // External DQS input signal is used.
 .dqs_fa_delay_chain_sel = 0x10,
 .pagesize = 512, // Page Size: 512 bytes
 .sectorsize = 0x40000, // Sector Size: 256KB
 .ips_command_second_divider = 4,// Set second divider for QSPI serial clock to 16
 .need_multi_phases = 1, // multiple phases are needed for Erase, Program, etc.
 .is_spansion_hyperflash = 1, // this device belongs to HyperFlash family.
 .pre_read_status_cmd_address_offset = 0x555<<1,
 .pre_unlock_cmd_address_offset = 0x555<<1,
 .unlock_cmd_address_offset = 0x2AA<<1,
 .pre_program_cmd_address_offset = 0x555<<1,
 .pre_erase_cmd_address_offset = 0x555<<1,
 .erase_all_cmd_address_offset = 0x555<<1,
};

12.3 Changes to user application for implementing DDR mode
path

The following subsections describe the steps required to map the led-demo to run from external QuadSPI flash memory in
DDR mode. See the led_demo_QSPI_patch project under led_demo/targets/<platform>/builds/<ide> for more details.

12.3.1 Workaround solution

As mentioned above, a workaround solution is required for SPI flash devices with DDR mode. The ROM missed a step in its
implementation steps to set QuadSPI_FLSHCR [TDH], QuadSPI_SOCCR[DLYTAPSELA] and
QuadSPI_SOCCR[DLYTAPSELB] register bit fields. Therefore, the workaround patch consists of a very small piece of code
to set the missed bit fields before jumping to the application image residing in the external QuadSPI flash memory. The patch
function can reside in the internal flash memory.

The workaround patch function is defined with the following prototype in the package:

int rom_patch(uint32_t qcbBaseAddress);

The following code shows how the workaround patch function is implemented in the example project provided with the
package:

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

50 Freescale Semiconductor, Inc.

int rom_patch(qspi_config_t *base)
 {
 volatile uint32_t *qspi_flshcr_reg = (volatile uint32_t*)QuadSPI0_FLSHCR_BASE;
 volatile uint32_t *qspi_soccr_reg = (volatile uint32_t*)QuadSPI0_SOCCR_BASE;

 *qspi_flshcr_reg &= (uint32_t)~QuadSPI_FLSHCR_TDH_MASK;
 *qspi_flshcr_reg |= (base->data_hold_time)<<QuadSPI0_FLSHCR_TDH_SHIFT;

 *qspi_soccr_reg &= (uint32_t)~QuadSPI0_SOCCR_DLYTAPSELA_MASK;
 *qspi_soccr_reg |= (base->dqs_fa_delay_chain_sel << QuadSPI0_SOCCR_DLYTAPSELA_SHIFT)
& QuadSPI0_SOCCR_DLYTAPSELA_MASK;

 *qspi_soccr_reg &= (uint32_t)~QuadSPI0_SOCCR_DLYTAPSELB_MASK;
 *qspi_soccr_reg |= (base->dqs_fb_delay_chain_sel << QuadSPI0_SOCCR_DLYTAPSELB_SHIFT)
& QuadSPI0_SOCCR_DLYTAPSELB_MASK;

 return kStatus_Success;
 }

The binary position-independent code generated using IAR compiler for the ROM patch function, available with the package,
is shown here:

const uint8_t s_rom_patch[128] =
{
 0x10, 0xB5, 0x01, 0x00, 0x18, 0x4A, 0x10, 0x00,
 0x18, 0x30, 0x18, 0x4B,0x1B, 0x68, 0xF0, 0x24,
 0x24, 0x04, 0x1C, 0x40, 0x02, 0xD0, 0x16, 0x4A,
 0x10, 0x00, 0x18, 0x30, 0x13, 0x68, 0x15, 0x4C,
 0x1C, 0x40, 0x14, 0x60,0x13, 0x68, 0x0C, 0x69,
 0x24, 0x04, 0x1C, 0x43, 0x14, 0x60, 0x02, 0x68,
 0x11, 0x4B, 0x13, 0x40, 0x03, 0x60, 0xDA, 0x22,
 0x52, 0x00, 0x89, 0x18,0x02, 0x68, 0x0B, 0x68,
 0x1B, 0x04, 0xFC, 0x24, 0xA4, 0x03, 0x1C, 0x40,
 0x14, 0x43, 0x04, 0x60, 0x02, 0x68, 0x0B, 0x4B,
 0x13, 0x40, 0x03, 0x60,0x02, 0x68, 0x49, 0x68,
 0x09, 0x06, 0xFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
 0x13, 0x43, 0x03, 0x60, 0x00, 0x20, 0x10, 0xBD,
 0x0C, 0xA0, 0x0D, 0x40,0x24, 0x80, 0x04, 0x40,
 0x0C, 0xA0, 0x05, 0x40, 0xFF, 0xFF, 0xFC, 0xFF,
 0xFF, 0xFF, 0xC0, 0xFF, 0xFF, 0xFF, 0xFF, 0xC0
};

The following are limitations for this workaround solution:

1. DDR commands are only allowed in a second QCB after invoking this rom_patch workaround.
2. CRC check feature is not allowed to validate the integrity of the image on QuadSPI memory.
3. The QCB must be placed at a specific location in internal flash pointed by qspiConfigBlockPointer in the BCA.

12.3.2 Changes to linker file

Using led_demo_QSPI as a starting point, and using the IAR project as an example, the first step is to update the linker file.
Two separate sections are needed in memory for this change. See the led_demo_QSPI_patch project in the led_demo projects
for more details.

const uint8_t s_rom_patch[128] =
{
 0x10, 0xB5, 0x01, 0x00, 0x18, 0x4A, 0x10, 0x00,
 0x18, 0x30, 0x18, 0x4B,0x1B, 0x68, 0xF0, 0x24,
 0x24, 0x04, 0x1C, 0x40, 0x02, 0xD0, 0x16, 0x4A,
 0x10, 0x00, 0x18, 0x30, 0x13, 0x68, 0x15, 0x4C,
 0x1C, 0x40, 0x14, 0x60,0x13, 0x68, 0x0C, 0x69,
 0x24, 0x04, 0x1C, 0x43, 0x14, 0x60, 0x02, 0x68,
 0x11, 0x4B, 0x13, 0x40, 0x03, 0x60, 0xDA, 0x22,
 0x52, 0x00, 0x89, 0x18,0x02, 0x68, 0x0B, 0x68,

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 51

 0x1B, 0x04, 0xFC, 0x24, 0xA4, 0x03, 0x1C, 0x40,
 0x14, 0x43, 0x04, 0x60, 0x02, 0x68, 0x0B, 0x4B,
 0x13, 0x40, 0x03, 0x60,0x02, 0x68, 0x49, 0x68,
 0x09, 0x06, 0xFC, 0x23, 0x9B, 0x05, 0x0B, 0x40,
 0x13, 0x43, 0x03, 0x60, 0x00, 0x20, 0x10, 0xBD,
 0x0C, 0xA0, 0x0D, 0x40,0x24, 0x80, 0x04, 0x40,
 0x0C, 0xA0, 0x05, 0x40, 0xFF, 0xFF, 0xFC, 0xFF,
 0xFF, 0xFF, 0xC0, 0xFF, 0xFF, 0xFF, 0xFF, 0xC0
};

The “m_rom_patch_handler_region” defined above is used for holding the section that contains the functions to invoke ROM
patch function.

The “m_rom_patch_code_region” defined above is used for placing the section that contains the ROM patch code mentioned
in previous section.

12.3.3 Changes to startup file

The Reset_Handler must be placed in internal flash (for example, placing it in m_rom_patch_handler_region) and the ROM
patch function must be called before other functions when the QuadSPI application is executed. See the changes in the
following figures.

Figure 44. Changes to startup file for DDR support

NOTE
ROM_Patchhandler is the function placed in the m_rom_patch_handler_region.

12.3.4 Changes to system_MK82F25615.c file

The ROM patch code must be placed in internal flash, for example, place it in rom_patch_code section. See the following
figure for these changes.

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

52 Freescale Semiconductor, Inc.

Figure 45. Definitions of ROM patch code in IAR project

The ROM_PatchHandler must be placed in internal flash as well. For example, it can be placed in the
BootloaderPatchHandler section. See the following figure for these changes.

Figure 46. Define ROM patch handler in IAR project

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 53

12.4 Workaround block diagram

The following figure shows the flow of Kinetis bootloader using QuadSPI DDR patch workaround mechanism described
earlier in provisioning the application image on the QuadSPI with DDR mode enabled.

Figure 47. Workaround provisioning image on QuadSPI memory in DDR mode

The following figure shows the flow of Kinetis bootloader using QuadSPI DDR patch workaround mechanism described
earlier in booting the application image from the QuadSPI with DDR mode enabled.

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

54 Freescale Semiconductor, Inc.

Figure 48. Workaround booting image from QuadSPI memory in DDR mode

12.5 BD file for downloading QuadSPI image under DDR mode

The application image with the implemented workaround needs to be provisioned using the receive-sb-file Kinets bootloader
command to let the Kinetis bootloader support program and read with DDR mode. The following figure provides example
BD file changes to call the patch function.

The “K80_ROM_QSPI_patch.bin” in the below BD file is a binary file with the ROM patch code, mentioned above. It is
needed to be loaded to SRAM out of the reserved RAM region. For example, 0x2000_0200, which then needs to be executed
via the call command.

NOTE
1. Since the MK82F256 only supports thumb instructions, the address should be an

odd value, namely 0x2000_0201 in this example.
2. The second parameter for call command is the base address for QCB, namely

0x2000_0000 in this example.

Appendix D - DDR mode issue workaround

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 55

Figure 49. BD file for invoking ROM patch for DDR mode

13 Revision history
The following table contains a history of changes made to this user's guide.

Revision history

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

56 Freescale Semiconductor, Inc.

Table 5. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

Revision history

Kinetis Bootloader QuadSPI User's Guide, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 57

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale reserves the right to make changes without further notice to
any products herein. Freescale makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in
Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer
application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/
SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of
Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. ARM and the ARM powered
logo are registered trademarks of ARM Limited (or its subsidiaries) in
the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

Document Number KBLQSPIUG
Revision 0, 09/2015

http://freescale.com
http://freescale.com/support
http://freescale.com/SalesTermsandConditions
http://freescale.com/SalesTermsandConditions

	Kinetis Bootloader QuadSPI User's Guide
	Introduction
	Overview
	Terminology
	Requirements
	Hardware requirements
	Host tools
	Demo application
	Required toolchains
	Firmware project
	Host project

	QuadSPI image boot procedure
	Plaintext QuadSPI image boot flow
	Encrypted QuadSPI image boot flow

	Creating application for QuadSPI memory
	Starting point: Basics of internal flash memory mapped led-demo example project
	Changes to the led-demo project
	Changes to the linker file
	Changes to flash config area
	Configure BCA

	Generate QCB
	The QCB structure
	Example QCB for MX25U3235F device on TWR-K80F150M Tower System module
	Generate the QCB with a simple example project

	Configure QuadSPI with Kinetis bootloader
	Configure QuadSPI at runtime
	Configure QuadSPI at start-up

	Flash QuadSPI image via SB file
	Brief introduction of SB file
	Generate SB file for QuadSPI image
	Flash QuadSPI image via Kinetis bootloader

	Advanced Usage: Encrypted QuadSPI image
	Generate an SB file with KEK and SB KEY
	Generate an SB file with encrypted QuadSPI image
	The KeyBlob Block
	Encrypt QuadSPI image
	Encrypting SB file with the SB key

	Change QuadSPI clock in QuadSPI image
	Create a RAM function with KDS
	Create a RAM function via IAR EWARM
	Create a RAM function via Keil MDK

	Ensure no timing issue after clock change

	Application running on QuadSPI alias area
	Create an application to run on QuadSPI Alias Area
	Create a simple boot application
	Downloading application running on QuadSPI alias memory with SB file
	Creating encrypted QuadSPI application running on QuadSPI Alias memory with SB file

	Appendix A - QuadSPI configuration procedure
	Appendix B - Re-enter Kinetis bootloader under direct boot mode
	Appendix C - Explore more features in QCB
	Parallel mode
	Continuous read mode

	Appendix D - DDR mode issue workaround
	Example QCB for QuadSPI device N25Q256A with DDR mode support
	Example QCB for QuadSPI device S26KS128S with Octal DDR mode support
	Changes to user application for implementing DDR mode path
	Workaround solution
	Changes to linker file
	Changes to startup file
	Changes to system_MK82F25615.c file

	Workaround block diagram
	BD file for downloading QuadSPI image under DDR mode

	Revision history

