
Kinetis Bootloader v1.2.0 Reference
Manual

Rev. 0, 07/2015

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Introduction...9

1.2 Terminology..9

1.3 Block diagram...10

1.4 Features supported.. 10

1.5 Components supported..11

Chapter 2
Functional description

2.1 Introduction...13

2.2 Memory map...13

2.3 The Kinetis Bootloader Configuration Area (BCA)...13

2.4 Start-up process...15

2.5 Clock configuration.. 17

2.6 Bootloader entry point.. 18

2.7 CRC-32 Check on application data...19

Chapter 3
Kinetis bootloader protocol

3.1 Introduction...21

3.2 Command with no data phase...21

3.3 Command with incoming data phase..22

3.4 Command with outgoing data phase...23

Chapter 4
Bootloader packet types

4.1 Introduction...27

4.2 Ping packet..27

4.3 Ping response packet...28

4.4 Framing packet..29

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 3

Section number Title Page

4.5 CRC16 algorithm..30

4.6 Command packet.. 31

4.7 Response packet..33

Chapter 5
Kinetis bootloader command API

5.1 Introduction...37

5.2 GetProperty command.. 37

5.3 SetProperty command...39

5.4 FlashEraseAll command... 41

5.5 FlashEraseRegion command...42

5.6 FlashEraseAllUnsecure command.. 43

5.7 ReadMemory command..44

5.8 WriteMemory command...46

5.9 FillMemory command.. 48

5.10 FlashSecurityDisable command..50

5.11 Execute command...51

5.12 Call command... 52

5.13 Reset command...52

5.14 FlashProgramOnce command...53

5.15 FlashReadOnce command.. 55

5.16 FlashReadResource command.. 56

Chapter 6
Supported peripherals

6.1 Introduction...59

6.2 I2C Peripheral... 59

6.3 SPI Peripheral... 61

6.4 UART Peripheral.. 63

6.5 USB HID Peripheral... 65

6.5.1 Device descriptor... 66

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

4 Freescale Semiconductor, Inc.

Section number Title Page

6.5.2 Endpoints... 68

6.5.3 HID reports.. 68

6.6 FlexCAN Peripheral..69

Chapter 7
Peripheral interfaces

7.1 Introduction...73

7.2 Abstract control interface..74

7.3 Abstract byte interface.. 75

7.4 Abstract packet interface...76

7.5 Framing packetizer..76

7.6 USB HID packetizer... 76

7.7 Command/data processor..77

Chapter 8
Memory interface

8.1 Abstract interface.. 79

8.2 Flash driver interface.. 80

8.3 Low level flash driver... 81

Chapter 9
Kinetis Flash Driver API

9.1 Introduction...83

9.2 Flash driver data structures... 83

9.2.1 flash_driver_t... 83

9.3 Flash driver API..84

9.3.1 flash_init...84

9.3.2 flash_erase_all..85

9.3.3 flash_erase_all_unsecure... 85

9.3.4 flash_erase..86

9.3.5 flash_program.. 87

9.3.6 flash_get_security_state... 88

9.3.7 flash_security_bypass.. 89

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 5

Section number Title Page

9.3.8 flash_verify_erase_all.. 90

9.3.9 flash_verify_erase.. 91

9.3.10 flash_verify_program...92

9.3.11 flash_get_property... 93

9.3.12 flash_program_once...95

9.3.13 flash_read_once... 96

9.3.14 flash_read_resource... 97

9.3.15 flash_register_callback...98

9.4 Integrate Wrapped Flash Driver API to actual projects..99

9.4.1 Add flash.h and flash_api_tree.c to corresponding project..99

9.4.2 Include flash.h to corresponding files before calling WFDI..101

Chapter 10
Kinetis bootloader porting

10.1 Introduction...103

10.2 Choosing a starting point.. 103

10.3 Preliminary porting tasks.. 103

10.3.1 Download device header files.. 104

10.3.2 Copy the closest match.. 104

10.3.3 Provide device startup file (vector table)... 104

10.3.4 Clean up the IAR project... 105

10.3.5 Bootloader peripherals... 106

10.4 Primary porting tasks.. 108

10.4.1 Header file modification.. 108

10.4.2 Bootloader peripherals... 109

10.4.2.1 Supported peripherals.. 109

10.4.2.2 Peripheral initialization.. 109

10.4.2.3 Clock initialization...110

10.4.3 Bootloader configuration... 110

10.4.4 Bootloader memory map configuration... 111

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

6 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 11
Creating a custom flash-resident bootloader

11.1 Introduction...113

11.2 Where to start..113

11.3 Flash-resident bootloader source tree... 114

11.4 Modifying source files.. 116

11.5 Example.. 116

11.6 Modifying a peripheral configuration macro..117

Chapter 12
Appendix A: status and error codes

Chapter 13
Appendix B: GetProperty and SetProperty commands

Chapter 14
Revision history

14.1 Revision History... 125

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 7

Chapter 1
Introduction

1.1 Introduction

The Kinetis bootloader is a configurable flash programming utility that operates over a
serial connection on Kinetis MCUs. It enables quick and easy programming of Kinetis
MCUs through the entire product life cycle, including application development, final
product manufacturing, and beyond. The bootloader is delivered in two ways. The
Kinetis bootloader is provided as full source code that is highly configurable. The
bootloader is also preprogrammed by Freescale into ROM or flash on select Kinetis
devices. Host-side command line and GUI tools are available to communicate with the
bootloader. Users can utilize host tools to upload/download application code via the
bootloader.

1.2 Terminology

target

The device running the bootloader firmware (aka the ROM).

host

The device sending commands to the target for execution.

source

The initiator of a communications sequence. For example, the sender of a command or
data packet.

destination

Receiver of a command or data packet.

incoming

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 9

From host to target.

outgoing

From target to host.

1.3 Block diagram

This block diagram describes the overall structure of the Kinetis bootloader.

Figure 1-1. Block diagram

1.4 Features supported

Here are some of the features supported by the Kinetis bootloader:

• Supports UART, I2C, SPI, CAN, and USB peripheral interfaces.
• Automatic detection of the active peripheral.
• Ability to disable any peripheral.
• UART peripheral implements autobaud.
• Common packet-based protocol for all peripherals.
• Packet error detection and retransmit.

Block diagram

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

10 Freescale Semiconductor, Inc.

• Flash-resident configuration options.
• Fully supports flash security, including ability to mass erase or unlock security via

the backdoor key.
• Protection of RAM used by the bootloader while it is running.
• Provides command to read properties of the device, such as Flash and RAM size.
• Multiple options for executing the bootloader either at system start-up or under

application control at runtime.

1.5 Components supported

Components for the bootloader firmware:

• Startup code (clocking, pinmux, etc.)
• Command phase state machine
• Command handlers

• GenericResponse
• FlashEraseAll
• FlashEraseRegion
• ReadMemory
• ReadMemoryResponse
• WriteMemory
• FillMemory
• FlashSecurityDisable
• GetProperty
• GetPropertyResponse
• Execute
• Call
• Reset
• SetProperty
• FlashEraseAllUnsecure
• FlashProgramOnce
• FlashReadOnce
• FlashReadOnceResponse
• FlashReadResource
• FlashReadResourceResponse

• SB file state machine
• Packet interface

• Framing packetizer
• Command/data packet processor

Chapter 1 Introduction

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 11

• Command implementation
• Flash erase all
• Flash erase region
• Read memory
• Write memory
• Fill memory
• Flash security disable
• Get property
• Recieve SB file
• Execute
• Call
• Reset
• Set property
• Flash program once
• Flash read once
• Flash read resource

• Memory interface
• Abstract interface
• Flash Driver Interface
• Low level flash driver

• Peripheral drivers
• I2C slave
• SPI slave
• CAN
• UART

• Auto-baud detector
• USB device HID class

• USB controller driver
• USB framework
• USB HID class

• CRC check engine
• CRC algorithm

Components supported

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

12 Freescale Semiconductor, Inc.

Chapter 2
Functional description

2.1 Introduction
The following subsections describe the Kinetis bootloader functionality.

2.2 Memory map

See the Kinetis bootloader chapter of the reference manual of the particular SoC for the
ROM and RAM memory map used by the bootloader.

2.3 The Kinetis Bootloader Configuration Area (BCA)
The Kinetis bootloader reads data from the Bootloader Configuration Area (BCA) to
configure various features of the bootloader. The BCA resides in flash memory at offset
0x3C0 from the beginning of the user application, and provides all of the parameters
needed to configure the Kinetis bootloader operation. For uninitialized flash, the Kinetis
bootloader uses a predefined default configuration. A host application can use the Kinetis
bootloader to program the BCA for use during subsequent initializations of the
bootloader.

Table 2-1. Configuration Fields for the Kinetis bootloader

Offset Size (bytes) Configuration Field Description

0x00 - 0x03 4 tag Magic number to verify bootloader
configuration is valid. Must be set to
'kcfg'.

0x04 - 0x07 4 crcStartAddress Start address for application image
CRC check. To generate the CRC,
see the CRC chapter.

Table continues on the next page...

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 13

Table 2-1. Configuration Fields for the Kinetis bootloader (continued)

Offset Size (bytes) Configuration Field Description

0x08 - 0x0B 4 crcByteCount Byte count for application image CRC
check.

0x0C - 0x0F 4 crcExpectedValue Expected CRC value for application
CRC check.

0x10 1 enabledPeripherals Bitfield of peripherals to enable.

bit 0 LPUART

bit 1 I2C

bit 2 SPI

bit 4 USB

0x11 1 i2cSlaveAddress If not 0xFF, used as the 7-bit I2C
slave address.

0x12 - 0x13 2 peripheralDetectionTimeout If not 0xFF, used as the timeout in
milliseconds for active peripheral
detection.

0x14 - 0x15 2 usbVid Sets the USB Vendor ID reported by
the device during enumeration.

0x16- 0x17 2 usbPid Sets the USB Product ID reported by
the device during enumeration.

0x18 - 0x1B 4 usbStringsPointer Sets the USB Strings reported by the
device during enumeration.

0x1C 1 clockFlags See clockFlags Configuration Field.

0x1D 1 clockDivider Inverted value of the divider used for
core and bus clocks when in high-
speed mode.

0x1E 1 bootFlags One's complement of direct boot flag.
0xFE represents direct boot.

0x1F 1 pad0 Reserved, set to 0xFF.

0x20 - 0x23 4 mmcauConfigPointer Reserved, holds a pointer value to the
MMCAU configuration.

0x24 - 0x27 4 keyBlobPointer Reserved, holds a value to the key
blob array used to configure OTFAD.

0x28 1 pad1 Reserved.

0x29 1 canConfig1 ClkSel[1], PropSeg[3], SpeedIndex[4]

0x2A - 0x2B 2 canConfig2 Pdiv[8], Pseg[3], Pseg2[3], rjw[2]

0x2C - 0x2D 2 canTxId txId

0x2E - 0x2F 2 canRxId rxId

The Kinetis Bootloader Configuration Area (BCA)

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

14 Freescale Semiconductor, Inc.

The first configuration field 'tag' is a tag value or magic number. The tag value must be
set to 'kcfg' for the bootloader configuration data to be recognized as valid. If tag-field
verification fails, the Kinetis bootloader acts as if the configuration data is not present.
The tag value is treated as a character string, so bytes 0-3 must be set as shown in the
table.

Table 2-2. tag Configuration Field

Offset tag Byte Value

0 'k' (0x6B)

1 'c' (0x63)

2 'f' (0x66)

3 'g' (0x67)

The flags in the clockFlags configuration field are enabled if the corresponding bit is
cleared (0).

Table 2-3. clockFlags Configuration Field

Bit Flag Description

0 HighSpeed Enable high-speed mode (i.e., 48 MHz).

1 - 7 - Reserved.

2.4 Start-up process
It is important to note that the startup process for bootloader in ROM, RAM (flashloader),
and flash (flash-resident) are slightly different. See the chip-specific reference manual for
understanding the startup process for the ROM bootloader and flashloader. This section
focuses on the flash-resident bootloader startup only.

There are two ways to get into the flash-resident bootloader.

1. If the PC holds the start address of the flash-resident bootloader and the valid SP, the
hardware boots into the bootloader.

2. A user application running on flash or RAM calls into the Kinetis bootloader entry
point address in flash to start the Kinetis bootloader execution.

After the Kinetis bootloader has started, the following procedure starts the bootloader
operations:

1. Initializes the bootloader's .data and .bss sections.
2. Reads the bootloader configuration data from flash at offset 0x3C0. The

configuration data is only used if the tag field is set to the expected 'kcfg' value. If the

Chapter 2 Functional description

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 15

tag is incorrect, the configuration values are set to default, as if the data was all 0xFF
bytes.

3. Clocks are configured.
4. Enabled peripherals are initialized.
5. The the bootloader waits for communication to begin on a peripheral.

• If detection times out, the bootloader jumps to the user application in flash if the
valid PC and SP addresses are specified in the application vector table.

• If communication is detected, all inactive peripherals are shut down, and the
command phase is entered.

Start-up process

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

16 Freescale Semiconductor, Inc.

Figure 2-1. Kinetis bootloader start-up flowchart

2.5 Clock configuration

Chapter 2 Functional description

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 17

The clock configuration used by the bootloader depends on the clock settings in the
bootloader configuration area and the requirements of the enabled peripherals. The
bootloader starts by using the default clock configuration of the part out of reset.

• Alternate clock configurations are supported by setting fields in the bootloader
configuration data.

• If the HighSpeed flag of the clockFlags configuration value is cleared, the core and
bus clock frequencies are determined by the clockDivider configuration value.

• The core clock divider is set directly from the inverted value of clockDivider, unless
a USB peripheral is enabled. If a USB peripheral is enabled and clockDivider is
greater than 2, clockDivider is reduced to 2 in order to keep the CPU clock above 20
MHz.

• The bus clock divider is set to 1, unless the resulting bus clock frequency would be
greater than the maximum supported value. In this instance, the bus clock divider is
increased until the bus clock frequency is at or below the maximum.

• The flash clock divider is set to 1, unless the resulting flash clock frequency would
be greater than the maximum supported value. In this instance, the flash clock
divider is increased until the flash clock frequency is at or below the maximum.

• If flex bus is available, the flex bus clock divider is set to 1, unless the resulting flex
bus clock frequency would be greater than the maximum supported value. In this
instance, the flex bus clock divider is increased until the flex bus clock frequency is
at or below the maximum.

• If a USB peripheral is enabled, the IRC48Mhz clock is selected as the USB
peripheral clock and the clock recovery feature is enabled.

• Note that the maximum baud rate of serial peripherals is related to the core and bus
clock frequencies.

2.6 Bootloader entry point
The Kinetis bootloader provides a function (runBootloader) that a user application can
call, to run the bootloader.

NOTE
Flashloader does not support this feature.

To get the address of the entry point, the user application reads the word containing the
pointer to the bootloader API tree at offset 0x1C of the bootloader's vector table. The
vector table is placed at the base of the bootloader's address range.

The bootloader API tree is a structure that contains pointers to other structures, which
have the function and data addresses for the bootloader. The bootloader entry point is
always the first word of the API tree.

Bootloader entry point

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

18 Freescale Semiconductor, Inc.

The prototype of the entry point is:

void run_bootloader(void * arg);

The arg parameter is currently unused, and intended for future expansion. For example,
passing options to the bootloader. To ensure future compatibility, a value of NULL
should be passed for arg.

Example code to get the entry pointer address from the ROM and start the bootloader:

// Variables

uint32_t runBootloaderAddress;

void (*runBootloader)(void * arg);

// Read the function address from the ROM API tree.

runBootloaderAddress = **(uint32_t **)(0x1c00001c);

runBootloader = (void (*)(void * arg))runBootloaderAddress;

// Start the bootloader.

runBootloader(NULL);

NOTE
The user application must be executing at Supervisor
(Privileged) level when calling the bootloader entry point.

2.7 CRC-32 Check on application data

Using CRC-32 and a given address range, the ROM bootloader supports performing an
application integrity check. To properly configure this functionality, the following fields
in the bootloader configuration area must be set:

• Set crcStartAddress to the start address that should be used for the CRC check.
• Set crcByteCount to the number of bytes to run the CRC check on, from the start

address.
• Set crcExpectedValue to the value that the CRC calculation should result in.

Considerations:

Chapter 2 Functional description

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 19

• If all of the above fields are unset (all 0xFF bytes for crcStartAddress, crcByteCount,
and crcExpectedValue), then the ROM bootloader returns
kStatus_AppCrcCheckInvalid.

• If any one of the above fields are set (crcStartAddress, crcByteCount, and
crcExpectedValue), then the ROM bootloader checks if the given address range of
the application is valid and if the application just resides in internal flash or external
QSPI flash:

• If false, then the bootloader returns kStatus_AppCrcCheckOutOfRange.
• If true, then the CRC check occurs. If the CRC check fails, then the bootloader

returns kStatus_AppCrcCheckFailed; if the CRC check succeeds, then it returns
kStatus_AppCrcCheckPassed.

• If the bootloader returns kStatus_AppCrcCheckOutOfRange or
kStatus_AppCrcCheckFailed, then an external pin (PTA6) will also be asserted,
to indicate CRC check failure.

NOTE
PTA6 is only available on the 121 MAP BGA and 100 LQFP
packages.

• Only if kStatus_AppCrcCheckPassed is returned, will the application be jumped to;
otherwise the bootloader will stay active, and wait for further commands.

CRC-32 Check on application data

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

20 Freescale Semiconductor, Inc.

Chapter 3
Kinetis bootloader protocol

3.1 Introduction

This section explains the general protocol for the packet transfers between the host and
the Kinetis bootloader. The description includes the transfer of packets for different
transactions, such as commands with no data phase and commands with incoming or
outgoing data phase. The next section describes various packet types used in a
transaction.

Each command sent from the host is replied to with a response command.

Commands may include an optional data phase.

• If the data phase is incoming (from the host to Kinetis bootloader), it is part of the
original command.

• If the data phase is outgoing (from Kinetis bootloader to host), it is part of the
response command.

3.2 Command with no data phase

NOTE
In these diagrams, the Ack sent in response to a Command or
Data packet can arrive at any time before, during, or after the
Command/Data packet has processed.

Command with no data phase

The protocol for a command with no data phase contains:

• Command packet (from host)
• Generic response command packet (to host)

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 21

Figure 3-1. Command with no data phase

3.3 Command with incoming data phase

The protocol for a command with incoming data phase contains:

• Command packet (from host)(kCommandFlag_HasDataPhase set)
• Generic response command packet (to host)
• Incoming data packets (from host)
• Generic response command packet (to host)

Command with incoming data phase

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

22 Freescale Semiconductor, Inc.

Figure 3-2. Command with incoming data phase

Notes

• The host may not send any further packets while it is waiting for the response to a
command.

• The data phase is aborted if the Generic Response packet prior to the start of the data
phase does not have a status of kStatus_Success.

• Data phases may be aborted by the receiving side by sending the final Generic
Response early with a status of kStatus_AbortDataPhase. The host may abort the
data phase early by sending a zero-length data packet.

• The final Generic Response packet sent after the data phase includes the status for
the entire operation.

3.4 Command with outgoing data phase

Chapter 3 Kinetis bootloader protocol

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 23

The protocol for a command with an outgoing data phase contains:

• Command packet (from host)
• ReadMemory Response command packet (to host)(kCommandFlag_HasDataPhase

set)
• Outgoing data packets (to host)
• Generic response command packet (to host)

Figure 3-3. Command with outgoing data phase

Note

• The data phase is considered part of the response command for the outgoing data
phase sequence.

• The host may not send any further packets while the host is waiting for the response
to a command.

• The data phase is aborted if the ReadMemory Response command packet, prior to
the start of the data phase, does not contain the kCommandFlag_HasDataPhase flag.

Command with outgoing data phase

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

24 Freescale Semiconductor, Inc.

• Data phases may be aborted by the host sending the final Generic Response early
with a status of kStatus_AbortDataPhase. The sending side may abort the data phase
early by sending a zero-length data packet.

• The final Generic Response packet sent after the data phase includes the status for
the entire operation.

Chapter 3 Kinetis bootloader protocol

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 25

Chapter 4
Bootloader packet types

4.1 Introduction
The Kinetis bootloader device works in slave mode. All data communication is initiated
by a host, which is either a PC or an embedded host. The Kinetis bootloader device is the
target, which receives a command or data packet. All data communication between host
and target is packetized.

NOTE
The term "target" refers to the "Kinetis bootloader device".

There are 6 types of packets used:
• Ping packet
• Ping Response packet
• Framing packet
• Command packet
• Data packet
• Response packet

All fields in the packets are in little-endian byte order.

4.2 Ping packet
The Ping packet is the first packet sent from a host to the target to establish a connection
on selected peripheral in order to run autobaud. The Ping packet can be sent from host to
target at any time that the target is expecting a command packet. If the selected peripheral
is UART, a ping packet must be sent before any other communications. For other serial
peripherals it is optional, but is recommended in order to determine the serial protocol
version.

In response to a Ping packet, the target sends a Ping Response packet, discussed in later
sections.

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 27

Table 4-1. Ping Packet Format

Byte # Value Name

0 0x5A start byte

1 0xA6 ping

Target executes UART autobaud if necessary

Host Target

PingResponse Packet:
0x5a 0xa7 0x00 0x02 0x01 0x50 0x00 0x00 0xaa 0xea

Ping Packet 0x5a 0xa6

Figure 4-1. Ping Packet Protocol Sequence

4.3 Ping response packet
The target sends a Ping Response packet back to the host after receiving a Ping packet. If
communication is over a UART peripheral, the target uses the incoming Ping packet to
determine the baud rate before replying with the Ping Response packet. Once the Ping
Response packet is received by the host, the connection is established, and the host starts
sending commands to the target.

Table 4-2. Ping Response packet format

Byte # Value Parameter

0 0x5A start byte

1 0xA7 Ping response code

2 Protocol bugfix

3 Protocol minor

4 Protocol major

5 Protocol name = 'P' (0x50)

6 Options low

7 Options high

Table continues on the next page...

Ping response packet

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

28 Freescale Semiconductor, Inc.

Table 4-2. Ping Response packet format (continued)

Byte # Value Parameter

8 CRC16 low

9 CRC16 high

The Ping Response packet can be sent from host to target any time the target expects a
command packet. For the UART peripheral, it must be sent by host when a connection is
first established, in order to run autobaud. For other serial peripherals it is optional, but
recommended to determine the serial protocol version. The version number is in the same
format at the bootloader version number returned by the GetProperty command.

4.4 Framing packet
The framing packet is used for flow control and error detection for the communications
links that do not have such features built-in. The framing packet structure sits between
the link layer and command layer. It wraps command and data packets as well.

Every framing packet containing data sent in one direction results in a synchronizing
response framing packet in the opposite direction.

The framing packet described in this section is used for serial peripherals including the
UART, I2C, and SPI. The USB HID peripheral does not use framing packets. Instead, the
packetization inherent in the USB protocol itself is used.

Table 4-3. Framing Packet Format

Byte # Value Parameter

0 0x5A start byte

1 packetType

2 length_low Length is a 16-bit field that specifies the entire
command or data packet size in bytes.3 length_high

4 crc16_low This is a 16-bit field. The CRC16 value covers entire
framing packet, including the start byte and command
or data packets, but does not include the CRC bytes.
See the CRC16 algorithm after this table.

5 crc16_high

6 . . .n Command or Data packet
payload

Chapter 4 Bootloader packet types

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 29

A special framing packet that contains only a start byte and a packet type is used for
synchronization between the host and target.

Table 4-4. Special Framing Packet Format

Byte # Value Parameter

0 0x5A start byte

1 0xAn packetType

The Packet Type field specifies the type of the packet from one of the defined types
(below):

Table 4-5. packetType Field

packetType Name Description

0xA1 kFramingPacketType_Ack The previous packet was received successfully; the sending
of more packets is allowed.

0xA2 kFramingPacketType_Nak The previous packet was corrupted and must be re-sent.

0xA3 kFramingPacketType_AckAbort Data phase is being aborted.

0xA4 kFramingPacketType_Command The framing packet contains a command packet payload.

0xA5 kFramingPacketType_Data The framing packet contains a data packet payload.

0xA6 kFramingPacketType_Ping Sent to verify the other side is alive. Also used for UART
autobaud.

0xA7 kFramingPacketType_PingResponse A response to Ping; contains the framing protocol version
number and options.

4.5 CRC16 algorithm
This section provides the CRC16 algorithm.

The CRC is computed over each byte in the framing packet header, excluding the crc16
field itself, plus all of the payload bytes. The CRC algorithm is the XMODEM variant of
CRC-16.

The characteristics of the XMODEM variant are:

width 16

polynomial 0x1021

init value 0x0000

reflect in false

reflect out false

xor out 0x0000

check result 0x31c3

CRC16 algorithm

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

30 Freescale Semiconductor, Inc.

The check result is computed by running the ASCII character sequence "123456789"
through the algorithm.

uint16_t crc16_update(const uint8_t * src, uint32_t lengthInBytes
 {
 uint32_t crc = 0;
 uint32_t j;
 for (j=0; j < lengthInBytes; ++j)
 {
 uint32_t i;
 uint32_t byte = src[j];
 crc ^= byte << 8;
 for (i = 0; i < 8; ++i)
 {
 uint32_t temp = crc << 1;
 if (crc & 0x8000)
 {
 temp ^= 0x1021;
 }
 crc = temp;
 }
 }
 return crc;
 }

4.6 Command packet
The command packet carries a 32-bit command header and a list of 32-bit parameters.

Table 4-6. Command Packet Format

Command Packet Format (32 bytes)

Command Header (4 bytes) 28 bytes for Parameters (Max 7 parameters)

Tag Flags Rsvd Param
Count

Param1
(32-bit)

Param2
(32-bit)

Param3
(32-bit)

Param4
(32-bit)

Param5
(32-bit)

Param6
(32-bit)

Param7
(32-bit)

byte 0 byte 1 byte 2 byte 3

Table 4-7. Command Header Format

Byte # Command Header Field

0 Command or Response tag The command header is 4 bytes long, with
these fields.1 Flags

2 Reserved. Should be 0x00.

3 ParameterCount

The header is followed by 32-bit parameters up to the value of the ParameterCount field
specified in the header. Because a command packet is 32 bytes long, only 7 parameters
can fit into the command packet.

Chapter 4 Bootloader packet types

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 31

Command packets are also used by the target to send responses back to the host. As
mentioned earlier, command packets and data packets are embedded into framing packets
for all of the transfers.

Table 4-8. Command Tags

Command Tag Name

0x01 FlashEraseAll The command tag specifies one of the
commands supported by the Kinetis
bootloader. The valid command tags for the
Kinetis bootloader are listed here.

0x02 FlashEraseRegion

0x03 ReadMemory

0x04 WriteMemory

0x05 FillMemory

0x06 FlashSecurityDisable

0x07 GetProperty

0x08 Reserved

0x09 Execute

0x10 FlashReadResource

0x11 Reserved

0x0A Call

0x0B Reset

0x0C SetProperty

0x0D FlashEraseAllUnsecure

0x0D Reserved

0x0E FlashProgramOnce

0x0F FlashReadOnce

Table 4-9. Response Tags

Response Tag Name

0xA0 GenericResponse The response tag specifies one of the responses
the Kinetis bootloader (target) returns to the host.
The valid response tags are listed here.

0xA0 GenericResponse The response tag specifies one of the responses
the Kinetis bootloader (target) returns to the host.
The valid response tags are listed here.

0xA7 GetPropertyResponse (used for sending
responses to GetProperty command only)

0xA3 ReadMemoryResponse (used for sending
responses to ReadMemory command only)

0xAF FlashReadOnceResponse (used for sending
responses to FlashReadOnce command only)

0xB0 FlashReadResourceResponse (used for sending
responses to FlashReadResource command
only)

Command packet

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

32 Freescale Semiconductor, Inc.

Flags: Each command packet contains a Flag byte. Only bit 0 of the flag byte is used. If
bit 0 of the flag byte is set to 1, then data packets follow in the command sequence. The
number of bytes that are transferred in the data phase is determined by a command-
specific parameter in the parameters array.

ParameterCount: The number of parameters included in the command packet.

Parameters: The parameters are word-length (32 bits). With the default maximum
packet size of 32 bytes, a command packet can contain up to 7 parameters.

4.7 Response packet
The responses are carried using the same command packet format wrapped with framing
packet data. Types of responses include:

• GenericResponse
• GetPropertyResponse
• ReadMemoryResponse
• FlashReadOnceResponse
• FlashReadResourceResponse

GenericResponse: After the Kinetis bootloader has processed a command, the
bootloader sends a generic response with status and command tag information to the host.
The generic response is the last packet in the command protocol sequence. The generic
response packet contains the framing packet data and the command packet data (with
generic response tag = 0xA0) and a list of parameters (defined in the next section). The
parameter count field in the header is always set to 2, for status code and command tag
parameters.

Table 4-10. GenericResponse Parameters

Byte # Parameter Descripton

0 - 3 Status code The Status codes are errors encountered during the execution of a
command by the target. If a command succeeds, then a kStatus_Success
code is returned.

4 - 7 Command tag The Command tag parameter identifies the response to the command sent
by the host.

GetPropertyResponse: The GetPropertyResponse packet is sent by the target in
response to the host query that uses the GetProperty command. The GetPropertyResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a GetPropertyResponse tag value (0xA7).

Chapter 4 Bootloader packet types

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 33

The parameter count field in the header is set to greater than 1, to always include the
status code and one or many property values.

Table 4-11. GetPropertyResponse Parameters

Byte # Value Parameter

0 - 3 Status code

4 - 7 Property value

.

Can be up to maximum 6 property values, limited to the size of the 32-bit
command packet and property type.

ReadMemoryResponse: The ReadMemoryResponse packet is sent by the target in
response to the host sending a ReadMemory command. The ReadMemoryResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a ReadMemoryResponse tag value (0xA3), the flags field
set to kCommandFlag_HasDataPhase (1).

The parameter count set to 2 for the status code and the data byte count parameters shown
below.

Table 4-12. ReadMemoryResponse Parameters

Byte # Parameter Descripton

0 - 3 Status code The status of the associated Read Memory command.

4 - 7 Data byte count The number of bytes sent in the data phase.

FlashReadOnceResponse:The FlashReadOnceResponse packet is sent by the target in
response to the host sending a FlashReadOnce command. The FlashReadOnceResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a FlashReadOnceResponse tag value (0xAF), and the flags
field set to 0. The parameter count is set to 2 plus the number of words requested to be
read in the FlashReadOnceCommand.

Table 4-13. FlashReadOnceResponse Parameters

Byte # Value Parameter

0 – 3 Status Code

4 – 7 Byte count to read

… …

Can be up to 20 bytes of requested read data.

Response packet

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

34 Freescale Semiconductor, Inc.

The FlashReadResourceResponse packet is sent by the target in response to the host
sending a FlashReadResource command. The FlashReadResourceResponse packet
contains the framing packet data and command packet data, with the command/response
tag set to a FlashReadResourceResponse tag value (0xB0), and the flags field set to
kCommandFlag_HasDataPhase (1).

Table 4-14. FlashReadResourceResponse Parameters

Byte # Value Parameter

0 – 3 Status Code

4 – 7 Data byte count

Chapter 4 Bootloader packet types

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 35

Chapter 5
Kinetis bootloader command API

5.1 Introduction

All Kinetis bootloader command APIs follows the command packet format wrapped by
the framing packet as explained in previous sections.

See Table 4-8 for a list of commands supported by Kinetis bootloader.

For a list of status codes returned by Kinetis bootloader see Appendix A.

5.2 GetProperty command
The GetProperty command is used to query the bootloader about various properties and
settings. Each supported property has a unique 32-bit tag associated with it. The tag
occupies the first parameter of the command packet. The target returns a
GetPropertyResponse packet with the property values for the property identified with the
tag in the GetProperty command.

Properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. Properties may be read-only or read-write. All read-write
properties are 32-bit integers, so they can easily be carried in a command parameter.

For a list of properties and their associated 32-bit property tags supported by Kinetis
bootloader, see Appendix B.

The 32-bit property tag is the only parameter required for GetProperty command.

Table 5-1. Parameters for GetProperty Command

Byte # Command

0 - 3 Property tag

4 - 7 External Memory Identifier (only applies to get property for external memory)

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 37

Process command

Host Target

GetProperty: Property tag = 0x01
0x5a a4 08 00 73 d4 07 00 00 01 01 00 00 00

0x5a a4 0c 00 07 7a a7 00 00 02 00 00 00 00 00 00 01 4b

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

Figure 5-1. Protocol Sequence for GetProperty Command

Table 5-2. GetProperty Command Packet Format (Example)

GetProperty Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x08 0x00

crc16 0x73 0xD4

Command packet commandTag 0x07 – GetProperty

flags 0x00

reserved 0x00

parameterCount 0x01

propertyTag 0x00000001 - CurrentVersion

The GetProperty command has no data phase.

Response: In response to a GetProperty command, the target sends a
GetPropertyResponse packet with the response tag set to 0xA7. The parameter count
indicates the number of parameters sent for the property values, with the first parameter
showing status code 0, followed by the property value(s). The next table shows an
example of a GetPropertyResponse packet.

Table 5-3. GetProperty Response Packet Format (Example)

GetPropertyResponse Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

Table continues on the next page...

GetProperty command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

38 Freescale Semiconductor, Inc.

Table 5-3. GetProperty Response Packet Format (Example) (continued)

GetPropertyResponse Parameter Value

length 0x0c 0x00 (12 bytes)

crc16 0x07 0x7a

Command packet responseTag 0xA7

flags 0x00

reserved 0x00

parameterCount 0x02

status 0x00000000

propertyValue 0x0000014b - CurrentVersion

5.3 SetProperty command
The SetProperty command is used to change or alter the values of the properties or
options of the bootloader. The command accepts the same property tags used with the
GetProperty command. However, only some properties are writable--see Appendix B. If
an attempt to write a read-only property is made, an error is returned indicating the
property is read-only and cannot be changed.

The property tag and the new value to set are the two parameters required for the
SetProperty command.

Table 5-4. Parameters for SetProperty Command

Byte # Command

0 - 3 Property tag

4 - 7 Property value

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 39

Process command

Host Target

SetProperty: Property tag = 10, Property Value = 1
0x5a a4 0c 00 67 8d 0c 00 00 02 0a 00 00 00 01 00 00 00

GenericResponse:
0x5a a4 00 9e 10 a0 00 0c 02 00 00 00 00 0c 00 00 00

ACK:
0x5a a1

ACK:
0x5a a1

Figure 5-2. Protocol Sequence for SetProperty Command

Table 5-5. SetProperty Command Packet Format (Example)

SetProperty Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x0C 0x00

crc16 0x67 0x8D

Command packet commandTag 0x0C – SetProperty with property tag 10

flags 0x00

reserved 0x00

parameterCount 0x02

propertyTag 0x0000000A - VerifyWrites

propertyValue 0x00000001

The SetProperty command has no data phase.

Response: The target returns a GenericResponse packet with one of following status
codes:

Table 5-6. SetProperty Response Status Codes

Status Code

kStatus_Success

kStatus_ReadOnly

kStatus_UnknownProperty

kStatus_InvalidArgument

SetProperty command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

40 Freescale Semiconductor, Inc.

5.4 FlashEraseAll command
The FlashEraseAll command performs an erase of the entire flash memory. If any flash
regions are protected, then the FlashEraseAll command fails and returns an error status
code. Executing the FlashEraseAll command releases flash security if it (flash security)
was enabled, by setting the FTFA_FSEC register. However, the FSEC field of the flash
configuration field is erased, so unless it is reprogrammed, the flash security is re-enabled
after the next system reset. The Command tag for FlashEraseAll command is 0x01 set in
the commandTag field of the command packet.

The FlashEraseAll command requires no parameters.

Process command

Host Target

FlashEraseAll
0x5a a4 04 00 c4 2e 01 00 00 00

0x5a a4 0c 00 53 63 a0 00 04 02 00 00 00 00 01 00 00 00

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

Figure 5-3. Protocol Sequence for FlashEraseAll Command

Table 5-7. FlashEraseAll Command Packet Format (Example)

FlashEraseAll Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x04 0x00

crc16 0xC4 0x2E

Command packet commandTag 0x01 - FlashEraseAll

flags 0x00

reserved 0x00

parameterCount 0x00

The FlashEraseAll command has no data phase.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 41

Response: The target returns a GenericResponse packet with status code either set to
kStatus_Success for successful execution of the command, or set to an appropriate error
status code.

5.5 FlashEraseRegion command
The FlashEraseRegion command performs an erase of one or more sectors of the flash
memory.

The start address and number of bytes are the 2 parameters required for the
FlashEraseRegion command. The start and byte count parameters must be 4-byte aligned
([1:0] = 00), or the FlashEraseRegion command fails and returns
kStatus_FlashAlignmentError(101). If the region specified does not fit in the flash
memory space, the FlashEraseRegion command fails and returns
kStatus_FlashAddressError(102). If any part of the region specified is protected, the
FlashEraseRegion command fails and returns kStatus_MemoryRangeInvalid(10200).

Table 5-8. Parameters for FlashEraseRegion Command

Byte # Parameter

0 - 3 Start address

4 - 7 Byte count

The FlashEraseRegion command has no data phase.

Response: The target returns a GenericResponse packet with one of following error
status codes.

Table 5-9. FlashEraseRegion Response Status Codes

Status Code

kStatus_Success (0)

kStatus_MemoryRangeInvalid (10200)

kStatus_FlashAlignmentError (101)

kStatus_FlashAddressError (102)

kStatus_FlashAccessError (103)

kStatus_FlashProtectionViolation (104)

kStatus_FlashCommandFailure (105)

FlashEraseRegion command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

42 Freescale Semiconductor, Inc.

5.6 FlashEraseAllUnsecure command
The FlashEraseAllUnsecure command performs a mass erase of the flash memory,
including protected sectors. Flash security is immediately disabled if it (flash security)
was enabled, and the FSEC byte in the flash configuration field at address 0x40C is
programmed to 0xFE. However, if the mass erase enable option in the FSEC field is
disabled, then the FlashEraseAllUnsecure command fails.

The FlashEraseAllUnsecure command requires no parameters.

Process command

Host Target

FlashEraseAllUnsecure
0x5a a4 04 00 f6 61 0d 00 cc 00

0x5a a4 0c 00 61 2c a0 00 04 02 00 00 00 00 0d 00 00 00

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

Figure 5-4. Protocol Sequence for FlashEraseAll Command

Table 5-10. FlashEraseAllUnsecure Command Packet Format (Example)

FlashEraseAllUnsecure Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x04 0x00

crc16 0xF6 0x61

Command packet commandTag 0x0D - FlashEraseAllUnsecure

flags 0x00

reserved 0x00

parameterCount 0x00

The FlashEraseAllUnsecure command has no data phase.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 43

Response: The target returns a GenericResponse packet with status code either set to
kStatus_Success for successful execution of the command, or set to an appropriate error
status code.

5.7 ReadMemory command
The ReadMemory command returns the contents of memory at the given address, for a
specified number of bytes. This command can read any region of memory accessible by
the CPU and not protected by security.

The start address and number of bytes are the two parameters required for ReadMemory
command.

Table 5-11. Parameters for read memory command

Byte Parameter Description

0-3 Start address Start address of memory to read from

4-7 Byte count Number of bytes to read and return to caller

ReadMemory command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

44 Freescale Semiconductor, Inc.

Figure 5-5. Command sequence for read memory

ReadMemory Parameter Value

Framing packet Start byte 0x5A0xA4,

packetType kFramingPacketType_Command

length 0x0C 0x00

crc16 0x1D 0x23

Command packet commandTag 0x03 - readMemory

flags 0x00

reserved 0x00

parameterCount 0x02

startAddress 0x20000400

byteCount 0x00000064

Data Phase: The ReadMemory command has a data phase. Since the target works in
slave mode, the host need pull data packets until the number of bytes of data specified in
the byteCount parameter of ReadMemory command are received by host.

Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon successful execution of the command, or set to an appropriate
error status code.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 45

5.8 WriteMemory command
The WriteMemory command writes data provided in the data phase to a specified range
of bytes in memory (flash or RAM). However, if flash protection is enabled, then writes
to protected sectors fail.

Special care must be taken when writing to flash.
• First, any flash sector written to must have been previously erased with a

FlashEraseAll, FlashEraseRegion, or FlashEraseAllUnsecure command.
• First, any flash sector written to must have been previously erased with a

FlashEraseAll or FlashEraseRegion command.
• Writing to flash requires the start address to be 4-byte aligned ([1:0] = 00).
• The byte count is rounded up to a multiple of 4, and trailing bytes are filled with the

flash erase pattern (0xff).
• If the VerifyWrites property is set to true, then writes to flash also performs a flash

verify program operation.

When writing to RAM, the start address does not need to be aligned, and the data is not
padded.

The start address and number of bytes are the 2 parameters required for WriteMemory
command.

Table 5-12. Parameters for WriteMemory Command

Byte # Command

0 - 3 Start address

4 - 7 Byte count

WriteMemory command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

46 Freescale Semiconductor, Inc.

Process command

Host Target

WriteMemory: startAddress = 0x20000400, byteCount = 0x64
0x5a a4 0c 00 06 5a 04 00 00 02 00 04 00 20 64 00 00 00

Generic Response:

ACK: 0x5a a1

ACK: 0x5a a1

Data packet :
0x5a a5 20 00 CRC16 32 bytes data

Process Data
ACK: 0x5a a1

Final Data packet
0x5a a5 length16 CRC16 32 bytes data

ACK

Process Data

Generic Response
0x5a a4 0c 00 23 72 a0 00 00 02 00 00 00 00 04 00 00 00

ACK: 0x5a a1

0x5a a4 0c 00 a0 0e 04 01 00 02 00 04 00 20 40 00 00 00

Figure 5-6. Protocol Sequence for WriteMemory Command

Table 5-13. WriteMemory Command Packet Format (Example)

WriteMemory Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x0C 0x00

crc16 0x06 0x5A

Command packet commandTag 0x04 - writeMemory

flags 0x00

reserved 0x00

parameterCount 0x02

startAddress 0x20000400

byteCount 0x00000064

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 47

Data Phase: The WriteMemory command has a data phase; the host sends data packets
until the number of bytes of data specified in the byteCount parameter of the
WriteMemory command are received by the target.

Response: The target returns a GenericResponse packet with a status code set to
kStatus_Success upon successful execution of the command, or to an appropriate error
status code.

5.9 FillMemory command
The FillMemory command fills a range of bytes in memory with a data pattern. It follows
the same rules as the WriteMemory command. The difference between FillMemory and
WriteMemory is that a data pattern is included in FillMemory command parameter, and
there is no data phase for the FillMemory command, while WriteMemory does have a
data phase.

Table 5-14. Parameters for FillMemory Command

Byte # Command

0 - 3 Start address of memory to fill

4 - 7 Number of bytes to write with the pattern
• The start address should be 32-bit aligned.
• The number of bytes must be evenly divisible by 4. (Note: for a part that

uses FTFE flash, the start address should be 64-bit aligned, and the
number of bytes must be evenly divisible by 8).

8 - 11 32-bit pattern

• To fill with a byte pattern (8-bit), the byte must be replicated 4 times in the 32-bit
pattern.

• To fill with a short pattern (16-bit), the short value must be replicated 2 times in the
32-bit pattern.

For example, to fill a byte value with 0xFE, the word pattern would be 0xFEFEFEFE; to
fill a short value 0x5AFE, the word pattern would be 0x5AFE5AFE.

Special care must be taken when writing to flash.
• First, any flash sector written to must have been previously erased with a

FlashEraseAll, FlashEraseRegion, or FlashEraseAllUnsecure command.
• First, any flash sector written to must have been previously erased with a

FlashEraseAll or FlashEraseRegion command.

FillMemory command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

48 Freescale Semiconductor, Inc.

• Writing to flash requires the start address to be 4-byte aligned ([1:0] = 00).
• If the VerifyWrites property is set to true, then writes to flash also performs a flash

verify program operation.

When writing to RAM, the start address does not need to be aligned, and the data is not
padded.

Process command

Host Target

FillMemory, with word pattern 0x12345678

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

0x5a a4 10 00 e4 57 05 00 00 03 00 70 00 00 00 08 00 00 78 56 34 12

0x5a a4 0c 00 97 04 a0 00 00 02 00 00 00 00 05 00 00 00

Figure 5-7. Protocol Sequence for FillMemory Command

Table 5-15. FillMemory Command Packet Format (Example)

FillMemory Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x10 0x00

crc16 0xE4 0x57

Command packet commandTag 0x05 – FillMemory

flags 0x00

Reserved 0x00

parameterCount 0x03

startAddress 0x00007000

byteCount 0x00000800

patternWord 0x12345678

The FillMemory command has no data phase.

Response: upon successful execution of the command, the target (Kinetis bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 49

5.10 FlashSecurityDisable command
The FlashSecurityDisable command performs the flash security disable operation, by
comparing the 8-byte backdoor key (provided in the command) against the backdoor key
stored in the flash configuration field (at address 0x400 in the flash).

The backdoor low and high words are the only parameters required for
FlashSecurityDisable command.

Table 5-16. Parameters for FlashSecurityDisable Command

Byte # Command

0 - 3 Backdoor key low word

4 - 7 Backdoor key high word

Process command

Host Target

FlashSecureDisable, with backdoor key 0102030405060708
0x5a a4 0c 00 43 7b 06 00 00 04 03 02 01 08 07 06 05

0x5a a4 0c 00 35 78 a0 00 0c 02 00 00 00 00 06 00 00 00

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

Figure 5-8. Protocol Sequence for FlashSecurityDisable Command

Table 5-17. FlashSecurityDisable Command Packet Format (Example)

FlashSecurityDisable Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x0C 0x00

crc16 0x43 0x7B

Command packet commandTag 0x06 - FlashSecurityDisable

flags 0x00

reserved 0x00

Table continues on the next page...

FlashSecurityDisable command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

50 Freescale Semiconductor, Inc.

Table 5-17. FlashSecurityDisable Command Packet Format (Example) (continued)

FlashSecurityDisable Parameter Value

parameterCount 0x02

Backdoorkey_low 0x04 0x03 0x02 0x01

Backdoorkey_high 0x08 0x07 0x06 0x05

The FlashSecurityDisable command has no data phase.

Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon successful execution of the command, or set to an appropriate
error status code.

5.11 Execute command
The execute command results in the bootloader setting the program counter to the code at
the provided jump address, R0 to the provided argument, and a Stack pointer to the
provided stack pointer address. Prior to the jump, the system is returned to the reset state.

The Jump address, function argument pointer, and stack pointer are the parameters
required for the Execute command. If the stack pointer is set to zero, the called code is
responsible for setting the processor stack pointer before using the stack.

If QSPI is enabled, it is initialized before the jump. QSPI encryption (OTFAD) is also
enabled if configured.

Table 5-18. Parameters for Execute Command

Byte # Command

0 - 3 Jump address

4 - 7 Argument word

8 - 11 Stack pointer address

The Execute command has no data phase.

Response: Before executing the Execute command, the target validates the parameters
and return a GenericResponse packet with a status code either set to kStatus_Success or
an appropriate error status code.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 51

5.12 Call command
The Call command executes a function that is written in memory at the address sent in
the command. The address needs to be a valid memory location residing in accessible
flash (internal or external) or in RAM. The command supports the passing of one 32-bit
argument. Although the command supports a stack address, at this time the call still takes
place using the current stack pointer. After execution of the function, a 32-bit return value
is returned in the generic response message.

QSPI must be initialized prior to executing the Call command if the call address is on
QSPI. The Call command does not initialize QSPI.

Table 5-19. Parameters for Call Command

Byte # Command

0 - 3 Call address

4 - 7 Argument word

8 - 11 Stack pointer

Response: The target returns a GenericResponse packet with a status code either set to
the return value of the function called or set to kStatus_InvalidArgument (105).

5.13 Reset command
The Reset command results in the bootloader resetting the chip.

The Reset command requires no parameters.

Call command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

52 Freescale Semiconductor, Inc.

Process command

Host Target

Reset
0x5a a4 04 00 6f 46 0b 00 00 00

GenericResponse:
0x5a a4 0c 00 f8 0b a0 00 04 02 00 00 00 00 0b 00 00 00

ACK :
0x5a a1

ACK:
0x5a a1

Figure 5-9. Protocol Sequence for Reset Command

Table 5-20. Reset Command Packet Format (Example)

Reset Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x04 0x00

crc16 0x6F 0x46

Command packet commandTag 0x0B - reset

flags 0x00

reserved 0x00

parameterCount 0x00

The Reset command has no data phase.

Response: The target returns a GenericResponse packet with status code set to
kStatus_Success, before resetting the chip.

The reset command can also be used to switch boot from flash after successful flash
image provisioning via ROM bootloader. After issuing the reset command, allow 5
seconds for the user application to start running from Flash.

5.14 FlashProgramOnce command
The FlashProgramOnce command writes data (that is provided in a command packet) to a
specified range of bytes in the program once field. Special care must be taken when
writing to the program once field.

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 53

• The program once field only supports programming once, so any attempted to
reprogram a program once field gets an error response.

• Writing to the program once field requires the byte count to be 4-byte aligned or 8-
byte aligned.

The FlashProgramOnce command uses three parameters: index 2, byteCount, data.

Table 5-21. Parameters for FlashProgramOnce Command

Byte # Command

0 - 3 Index of program once field

4 - 7 Byte count (must be evenly divisible by 4)

8 - 11 Data

12 - 16 Data

Process command

Host Target

FlashProgramOnce: index=0, byteCount=4, data=0x12345678

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

0x5a a4 10 00 7e 89 0e 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

0x5a a4 0c 00 88 1a a0 00 00 02 00 00 00 00 0e 00 00 00

Figure 5-10. Protocol Sequence for FlashProgramOnce Command

Table 5-22. FlashProgramOnce Command Packet Format (Example)

FlashProgramOnce Parameter Value

Framing packet start byte 0x5A

packetType 0xA4, kFramingPacketType_Command

length 0x10 0x00

crc16 0x7E4 0x89

Command packet commandTag 0x0E – FlashProgramOnce

flags 0

reserved 0

parameterCount 3

index 0x0000_0000

Table continues on the next page...

FlashProgramOnce command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

54 Freescale Semiconductor, Inc.

Table 5-22. FlashProgramOnce Command Packet Format (Example) (continued)

FlashProgramOnce Parameter Value

byteCount 0x0000_0004

data 0x1234_5678

Response: upon successful execution of the command, the target (Kinetis bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

5.15 FlashReadOnce command
The FlashReadOnce command returns the contents of the program once field by given
index and byte count. The FlashReadOnce command uses 2 parameters: index and
byteCount.

Table 5-23. Parameters for FlashReadOnce Command

Byte # Parameter Description

0 - 3 index Index of the program once field (to read from)

4 - 7 byteCount Number of bytes to read and return to the caller

Process command

Host Target

FlashReadOnce: index=0, byteCount=4

ACK:
0x5a a1

ACK:
0x5a a1

Generic Response:

0x5a a4 0c 00 c1 a5 0f 00 00 02 00 00 00 00 04 00 00 00

0x5a a4 10 00 3f 6f af 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

Figure 5-11. Protocol Sequence for FlashReadOnce Command

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 55

Table 5-24. FlashReadOnce Command Packet Format (Example)

FlashReadOnce Parameter Value

Framing packet start byte 0x5A

packetType 0xA4

length 0x0C 0x00

crc 0xC1 0xA5

Command packet commandTag 0x0F – FlashReadOnce

flags 0x00

reserved 0x00

parameterCount 0x02

index 0x0000_0000

byteCount 0x0000_0004

Table 5-25. FlashReadOnce Response Format (Example)

FlashReadOnce
Response

Parameter Value

Framing packet start byte 0x5A

packetType 0xA4

length 0x10 0x00

crc 0x3F 0x6F

Command packet commandTag 0xAF

flags 0x00

reserved 0x00

parameterCount 0x03

status 0x0000_0000

byteCount 0x0000_0004

data 0x1234_5678

Response: upon successful execution of the command, the target returns a
FlashReadOnceResponse packet with a status code set to kStatus_Success, a byte count
and corresponding data read from Program Once Field upon successful execution of the
command, or returns with a status code set to an appropriate error status code and a byte
count set to 0.

5.16 FlashReadResource command
The FlashReadResource command returns the contents of the IFR field or Flash firmware
ID, by given offset, byte count, and option. The FlashReadResource command uses 3
parameters: start address, byteCount, option.

FlashReadResource command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

56 Freescale Semiconductor, Inc.

Table 5-26. Parameters for FlashReadResource Command

Byte # Parameter Command

0 - 3 start address Start address of specific non-volatile memory to be read

4 - 7 byteCount Byte count to be read

8 - 11 option 0: IFR

1: Flash firmware ID

Process command

Host Target

ACK: 0x5a a1

ACK: 0x5a a1

Data packet

Process Data

ACK: 0x5a a1

Generic Response

ACK: 0x5a a1

FlashReadResource: start address=0, byteCount=8, option=1

5a a4 10 00 b3 cc 10 00 00 03 00 00 00 00 08 00 00 00 01 00 00 00

FlashReadResource Response
5a a4 0c 00 08 d2 b0 01 00 02 00 00 00 00 08 00 00 00

5a a5 08 00 9c d3 00 08 00 00 00 01 00 06

5a a4 0c 00 75 a3 a0 00 00 02 00 00 00 00 10 00 00 00

Figure 5-12. Protocol Sequence for FlashReadResource Command

Table 5-27. FlashReadResource Command Packet Format (Example)

FlashReadResource Parameter Value

Framing packet start byte 0x5A

packetType 0xA4

length 0x10 0x00

crc 0xB3 0xCC

Command packet commandTag 0x10 – FlashReadResource

flags 0x00

Table continues on the next page...

Chapter 5 Kinetis bootloader command API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 57

Table 5-27. FlashReadResource Command Packet Format (Example) (continued)

FlashReadResource Parameter Value

reserved 0x00

parameterCount 0x03

startAddress 0x0000_0000

byteCount 0x0000_0008

option 0x0000_0001

Table 5-28. FlashReadResource Response Format (Example)

FlashReadResource
Response

Parameter Value

Framing packet start byte 0x5A

packetType 0xA4

length 0x0C 0x00

crc 0xD2 0xB0

Command packet commandTag 0xB0

flags 0x01

reserved 0x00

parameterCount 0x02

status 0x0000_0000

byteCount 0x0000_0008

Data phase: The FlashReadResource command has a data phase. Because the target
(Kinetis bootloader) works in slave mode, the host must pull data packets until the
number of bytes of data specified in the byteCount parameter of FlashReadResource
command are received by the host.

FlashReadResource command

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

58 Freescale Semiconductor, Inc.

Chapter 6
Supported peripherals

6.1 Introduction
This section describes the peripherals supported by the Kinetis bootloader. To use an
interface for bootloader communications, the peripheral must be enabled in the BCA.If
the BCA is invalid (such as all 0xFF bytes), then all peripherals are enabled by default.

6.2 I2C Peripheral
The Kinetis bootloader supports loading data into flash via the I2C peripheral, where the
I2C peripheral serves as the I2C slave. A 7-bit slave address is used during the transfer.

Customizing an I2C slave address is also supported. This feature is enabled if the
Bootloader Configuration Area (BCA) is enabled (tag field is filled with ‘kcfg’) and the
i2cSlaveAddress field is filled with a value other than 0xFF. Otherwise, 0x10 is used as
the default I2C slave address.

The Kinetis bootloader uses 0x10 as the I2C slave address, and supports 400 kbps as the
I2C baud rate.

The maximum supported I2C baud rate depends on corresponding clock configuration
field in the BCA. Typical supported baud rate is 400 kbps with factory settings. Actual
supported baud rate may be lower or higher than 400 kbps, depending on the actual value
of the clockFlags and the clockDivider fields.

Because the I2C peripheral serves as an I2C slave device, each transfer should be started
by the host, and each outgoing packet should be fetched by the host.

• An incoming packet is sent by the host with a selected I2C slave address and the
direction bit is set as write.

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 59

• An outgoing packet is read by the host with a selected I2C slave address and the
direction bit is set as read.

• 0x00 is sent as the response to host if the target is busy with processing or preparing
data.

The following flow charts demonstrate the communication flow of how the host reads
ping packet, ACK and response from the target.

Fetch
Ping response

Yes

Yes

End

Report Error

No

No

Read 1 byte
from target

0x5A
received?

packet

Read leftover bytes
of ping response

0x7A
received?

Read 1 byte
from target

Figure 6-1. Host reads ping response from target via I2C

Fetch ACK

No Yes

End

No

Process NAK Yes

Report an error

No

Yes

No

Reached
maximum
retries?

Report a timeout
error

Yes

0x5A
received?

0xA2
received?

0xA1
received?

Read 1 byte
from target

Read 1 byte
from target

Figure 6-2. Host reads ACK packet from target via I2C

I2C Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

60 Freescale Semiconductor, Inc.

Fetch
Response

Yes

Yes
payload length

part from target
(2 bytes)

CRC checksum
from target

Payload length
less than supported

length?

Yes

payload data
from target

No

Set payload length
to maximum

supported length
No

No

Reached
maximum

Report a timeout

Yes

End

No

(2 bytes)

Read 1 byte
from target

0x5A
received?

0xA4
received?

Read 1 byte
from target

retries?

error (End)

Read Read

Read

Figure 6-3. Host reads response from target via I2C

6.3 SPI Peripheral
The Kinetis bootloader supports loading data into flash via the SPI peripheral, where the
SPI peripheral serves as a SPI slave.

Maximum supported baud rate of SPI depends on the clock configuration fields in the
Bootloader Configuration Area (BCA). The typical supported baud rate is 400 kbps with
the factory settings. The actual baud rate is lower or higher than 400 kbps, depending on
the actual value of the clockFlags and clockDivider fields in the BCA.

The Kinetis bootloader supports 400 kbps as the SPI baud rate.

Because the SPI peripheral serves as a SPI slave device, each transfer should be started
by the host, and each outgoing packet should be fetched by the host.

The transfer on SPI is slightly different from I2C:
• Host receives 1 byte after it sends out any byte.
• Received bytes should be ignored when host is sending out bytes to target
• Host starts reading bytes by sending 0x00s to target
• The byte 0x00 is sent as response to host if target is under the following conditions:

• Processing incoming packet
• Preparing outgoing data
• Received invalid data

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 61

The following flowcharts demonstrate how the host reads a ping response, an ACK and a
command response from target via SPI.

Fetch
Ping response

Yes

Yes

End

Report Error

No

No0x5A
received?

0xA7
received?

Send 0x00 to
shift out 1 byte
from target

Send 0x00 to
shift out 1 byte
from target

Send 0x00s to shift
out leftover bytes
of ping response

Figure 6-4. Host reads ping packet from target via SPI

Fetch ACK

No

Yes

No

Next action

No

Process NAK Yes

Report an error

No

Yes

No

maximum

Report a
timeout error

Yes

0x5A
received?

0xA2
received?

0xA1
received?

Send 0x00 to
shift out 1 byte
from target

Send 0x00 to
shift out 1 byte
from target

Reached

retries?

Figure 6-5. Host reads ACK from target via SPI

SPI Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

62 Freescale Semiconductor, Inc.

Fetch Response

Yes

Yes out payload length
part from target

(2 bytes)

out CRC checksum
from target

Payload length
less than supported

length?

Yes

out payload data
from target

No

Set payload length
to maximum

supported length
No

No

maximum

Report a timeout
error (End)

Yes

End

No
(2 bytes)

0x5A
received?

0xA4
received?

Reached

retries?

Send 0x00 to
shift out 1 byte
from target

Send 0x00 to
shift out 1 byte
from target

Write 0x00s to shift Write 0x00s to shift

Write 0x00s to shift

Figure 6-6. Host reads response from target via SPI

6.4 UART Peripheral
The Kinetis bootloader integrates an autobaud detection algorithm for the LPUART
peripheral, thereby providing flexible baud rate choices.

Autobaud feature: If LPUARTn is used to connect to the bootloader, then the
LPUARTn_RX (PTB2)(PTA1) pin must be kept high and not left floating during the
detection phase in order to comply with the autobaud detection algorithm. After the
bootloader detects the ping packet (0x5A 0xA6) on LPUARTn_RX, the bootloader
firmware executes the autobaud sequence. If the baudrate is successfully detected, then
the bootloader sends a ping packet response [(0x5A 0xA7), protocol version (4 bytes),
protocol version options (2 bytes) and crc16 (2 bytes)] at the detected baudrate. The
Kinetis bootloader then enters a loop, waiting for bootloader commands via the LPUART
peripheral.

NOTE
The data bytes of the ping packet must be sent continuously
(with no more than 80 ms between bytes) in a fixed LPUART
transmission mode (8-bit data, no parity bit and 1 stop bit). If
the bytes of the ping packet are sent one-by-one with more than
80 ms delay between them, then the autobaud detection

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 63

algorithm may calculate an incorrect baud rate. In this instance,
the autobaud detection state machine should be reset.

Supported baud rates: The baud rate is closely related to the MCU core and system
clock frequencies. Typical baud rates supported are 9600, 19200, 38400, and 57600. Of
course, to influence the performance of autobaud detection, the clock configuration in
BCA can be changed.

Packet transfer: After autobaud detection succeeds, bootloader communications can
take place over the LPUART peripheral. The following flow charts show:

• How the host detects an ACK from the target
• How the host detects a ping response from the target
• How the host detects a command response from the target

Wait
for ACK

No Yes

End

No

Process NAK Yes

Report an error

No

Yes

No

Reached
maximum

Report a timeout
error

Yes

0x5A
received?

0xA2
received?

0xA1
received?

Wait for 1 byte
from target

Wait for 1 byte
from target

retries?

Figure 6-7. Host reads an ACK from target via LPUART

UART Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

64 Freescale Semiconductor, Inc.

Wait for
ping response

Yes

Yes

End

Report Error

No

No

Wait for 1 byte
from target

Wait for 1 byte
from target

0x5A
received?

0xA7
received?

Wait for
remaining bytes
of ping response
packet

Figure 6-8. Host reads a ping response from target via LPUART

Wait
for response

Yes

Yes
Wait for payload
length part from
target (2 bytes)

Wait for CRC
checksum from

Payload length
less than supported

length?

Yes

Wait for payload
data from target

No

Set payload length
to maximum

supported length
No

No

Reached
maximum

Report a timeout
error (End)

Yes

End

No

0x5A
received?

0xA4
received?

Wait for 1 byte
from target

Wait for 1 byte
from target

retries?

target (2 bytes)

Figure 6-9. Host reads a command response from target via LPUART

6.5 USB HID Peripheral
The Kinetis bootloader supports loading data into flash via the USB peripheral. The
target is implemented as a USB HID class.

USB HID does not use framing packets; instead the packetization inherent in the USB
protocol itself is used. The ability for the device to NAK Out transfers (until they can be
received) provides the required flow control; the built-in CRC of each USB packet
provides the required error detection.

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 65

6.5.1 Device descriptor

The Kinetis bootloader configures the default USB VID/PID/Strings as below:

Default VID/PID:

• VID = 0x15A2
• PID = 0x0073

Default Strings:

• Manufacturer [1] = "Freescale Semiconductor Inc."
• Product [2] = "Kinetis bootloader"

The USB VID, PID, and Strings can be customized using the Bootloader Configuration
Area (BCA) of the flash. For example, the USB VID and PID can be customized by
writing the new VID to the usbVid(BCA + 0x14) field and the new PID to the
usbPid(BCA + 0x16) field of the BCA in flash. To change the USB strings, prepare a
structure (like the one shown below) in the flash, and then write the address of the
structure to the usbStringsPointer(BCA + 0x18) field of the BCA.

 g_languages = { USB_STR_0,
 sizeof(USB_STR_0),
 (uint_16)0x0409,
 (const uint_8 **)g_string_descriptors,
 g_string_desc_size};
 the USB_STR_0, g_string_descriptors and g_string_desc_size are defined as below.
 USB_STR_0[4] = {0x02,
 0x03,
 0x09,
 0x04
 };
 g_string_descriptors[4] =
 { USB_STR_0,
 USB_STR_1,
 USB_STR_2,
 USB_STR_3};
 g_string_desc_size[4] =
 { sizeof(USB_STR_0),
 sizeof(USB_STR_1),
 sizeof(USB_STR_2),
 sizeof(USB_STR_3)};

• USB_STR_1 is used for the manufacturer string.
• USB_STR_2 is used for the product string.
• USB_STR_3 is used for the serial number string.

By default, the 3 strings are defined as below:

 USB_STR_1[] =
 { sizeof(USB_STR_1),
 USB_STRING_DESCRIPTOR,

USB HID Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

66 Freescale Semiconductor, Inc.

 'F',0,
 'r',0,
 'e',0,
 'e',0,
 's',0,
 'c',0,
 'a',0,
 'l',0,
 'e',0,
 ' ',0,
 'S',0,
 'e',0,
 'm',0,
 'i',0,
 'c',0,
 'o',0,
 'n',0,
 'd',0,
 'u',0,
 'c',0,
 't',0,
 'o',0,
 'r',0,
 ' ',0,
 'I',0,
 'n',0,
 'c',0,
 '.',0
 };

 USB_STR_2[] =
 { sizeof(USB_STR_2),
 USB_STRING_DESCRIPTOR,
 'M',0,
 'K',0,
 ' ',0,
 'M',0,
 'a',0,
 's',0,
 's',0,
 ' ',0,
 'S',0,
 't',0,
 'o',0,
 'r',0,
 'a',0,
 'g',0,
 'e',0
 };

 USB_STR_3[] =
 { sizeof(USB_STR_3),
 USB_STRING_DESCRIPTOR,
 '0',0,
 '1',0,
 '2',0,
 '3',0,
 '4',0,
 '5',0,
 '6',0,
 '7',0,
 '8',0,
 '9',0,
 'A',0,
 'B',0,
 'C',0,
 'D',0,
 'E',0,
 'F',0

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 67

 };

6.5.2 Endpoints

The HID peripheral uses 3 endpoints:

• Control (0)
• Interrupt IN (1)
• Interrupt OUT (2)

The Interrupt OUT endpoint is optional for HID class devices, but the Kinetis bootloader
uses it as a pipe, where the firmware can NAK send requests from the USB host.

6.5.3 HID reports

There are 4 HID reports defined and used by the bootloader USB HID peripheral. The
report ID determines the direction and type of packet sent in the report; otherwise, the
contents of all reports are the same.

Report ID Packet Type Direction

1 Command OUT

2 Data OUT

3 Command IN

4 Data IN

For all reports, these properties apply:

Usage Min 1

Usage Max 1

Logical Min 0

Logical Max 255

Report Size 8

Report Count 34

Each report has a maximum size of 34 bytes. This is derived from the minimum
bootloader packet size of 32 bytes, plus a 2-byte report header that indicates the length (in
bytes) of the packet sent in the report.

USB HID Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

68 Freescale Semiconductor, Inc.

NOTE
In the future, the maximum report size may be increased, to
support transfers of larger packets. Alternatively, additional
reports may be added with larger maximum sizes.

The actual data sent in all of the reports looks like:

0 Report ID

1 Packet Length LSB

2 Packet Length MSB

3 Packet[0]

4 Packet[1]

5 Packet[2]

...

N+3-1 Packet[N-1]

This data includes the Report ID, which is required if more than one report is defined in
the HID report descriptor. The actual data sent and received has a maximum length of 35
bytes. The Packet Length header is written in little-endian format, and it is set to the size
(in bytes) of the packet sent in the report. This size does not include the Report ID or the
Packet Length header itself. During a data phase, a packet size of 0 indicates a data phase
abort request from the receiver.

6.6 FlexCAN Peripheral
The Kinetis Bootloader in MA512P ROM supports loading data into flash via the
FlexCAN peripheral.

It supports 5 predefined speeds on FlexCAN transferring:

• 125 KHz
• 250 KHz
• 500 KHz
• 750 KHz
• 1 MHz

The curent FlexCAN IP can support up to 1 MHz speed, so the default speed is set to 1
MHz.

In host applications, the user can specify the speed for FlexCAN by providing the speed
index as 0 through 4, which represents those 5 speeds.

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 69

In bootloader, this supports the auto speed detection feature within supported speeds. In
the beginning, the bootloader enters the listen mode with the initial speed (default speed 1
MHz). Once the host starts sending a ping to a specific node, it generates traffic on the
FlexCAN bus. Since the bootloader is in a listen mode. It is able to check if the local
node speed is correct by detecting errors. If there is an error, some traffic will be visible,
but it may not be on the right speed to see the real data. If this happens, the speed setting
changes and checks for errors again. No error means the speed is correct. The settings
change back to the normal receiving mode to see if there is a package for this node. It
then stays in this speed until another host is using another speed and try to communicate
with any node. It repeats the process to detect a right speed before sending host timeout
and aborting the request.

The host side should have a reasonable time tolderance during the auto speed detect
period. If it sends as timeout, it means there is no response from the specific node, or
there is a real error and it needs to report the error to the application.

This flow chart demonstrates the communication flow for how the host reads the ping
packet, ACK, and response from the target.

Figure 6-10. Host reads ping response from target via FlexCAN

FlexCAN Peripheral

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

70 Freescale Semiconductor, Inc.

Figure 6-11. Host reads ACK packet from target via FlexCAN

Figure 6-12. Host reads command response from target via FlexCAN

Chapter 6 Supported peripherals

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 71

Chapter 7
Peripheral interfaces

7.1 Introduction

The block diagram shows connections between components in teh architecture of the
peripheral interface.

Figure 7-1. Components peripheral interface

In this diagram, the byte and packet interfaces are shown to inherit from the control
interface.

All peripheral drivers implement an abstract interface built on top of the driver's internal
interface. The outermost abstract interface is a packet-level interface. It returns the
payload of packets to the caller. Drivers which use framing packets have another abstract
interface layer that operates at the byte level. The abstract interfaces allow the higher
layers to use exactly the same code regardless which peripheral is being used.

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 73

The abstract packet interface feeds into the command and data packet processor. This
component interprets the packets returned by the lower layer as command or data
packets.

7.2 Abstract control interface

This control interface provides a common method to initialize and shutdown peripheral
drivers. It also provides the means to perform the active peripheral detection. No data
transfer functionality is provided by this interface. That is handled by the interfaces that
inherit the control interface.

The main reason this interface is separated out from the byte and packet interfaces is to
show the commonality between the two. It also allows the driver to provide a single
control interface structure definition that can be easily shared.

struct BoatloaderInitInfo
{
 void * contextArea; //!< Pointer to memory region for use by the driver.
 uint32_t available; //!< Size of the memory region the driver can use.
 uint32_t used; //!< Actual number of bytes used by the driver (filled in by the
driver).
};

struct PeripheralDescriptor {
 //! @brief Bit mask identifying the peripheral type.
 //!
 //! See #_peripheral_types for a list of valid bits.
 uint32_t typeMask;

 //! @brief The instance number of the peripheral.
 uint32_t instance;

 //! @brief Control interface for the peripheral.
 const peripheral_control_interface_t * controlInterface;

 //! @brief Byte-level interface for the peripheral.
 //!
 //! May be NULL since not all periperhals support this interface.
 const peripheral_byte_inteface_t * byteInterface;

 //! @brief Packet level interface for the peripheral.
 const peripheral_packet_interface_t * packetInterface;
};

struct PeripheralControlInterface
{
 status_t (*minimalInit)(const PeripheralDescriptor * self, BoatloaderInitInfo * info);
 void (*minimalShutdown)(const PeripheralDescriptor * self);
 bool (*pollForActivity)(const PeripheralDescriptor * self);

Abstract control interface

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

74 Freescale Semiconductor, Inc.

 status_t (*init)(const PeripheralDescriptor * self, BoatloaderInitInfo * info);
 void (*shutdown)(const PeripheralDescriptor * self);

Table 7-1. Abstract control interface

Interface Description

minimalInit() Initialize the driver only enough to detect start of
communications.

minimalShutdown() Shutdown the driver from its minimal init state.

pollForActivity() Check whether communications has started.

init() Fully initialize the driver.

shutdown() Shutdown the fully initialized driver.

After minimalShutdown() is called, the driver is expected to no longer use any memory
that it allocated through the BootloaderInitInfo structure.

7.3 Abstract byte interface

This interface exists to give the framing packetizer, which is explained in the later
section, a common interface for the peripherals that use framing packets.

The abstract byte interface inherits the abstract control interface.

struct PeripheralByteInterface
{
 status_t (*init)(const peripheral_descriptor_t * self, bootloader_init_info_t * info);
 status_t (*read)(uint8_t * buffer, uint32_t requestedBytes, uint32_t * actualBytes);
 status_t (*write)(const uint8_t * buffer, uint32_t byteCount);
};

Table 7-2. Abstract byte interface

Interface Description

init() Initialize the interface.

read() Return the requested number of bytes. Blocks until all bytes
available.

write() Write the requested number of bytes.

The read() interface returns a pointer into the driver's internal buffer. No data is copied.
The driver must ensure that the returned range of bytes is not overwritten until the next
call into read(). Each call of this interface tells the driver that it may reuse the range of
bytes that it last returned.

Chapter 7 Peripheral interfaces

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 75

7.4 Abstract packet interface

The abstract packet interface inherits the abstract control interface.

struct PeripheralPacketInterface
{
 status_t (*init)(const PeripheralDescriptor * self, BoatloaderInitInfo * info);
 status_t (*readPacket)(const PeripheralDescriptor * self, uint8_t ** packet, uint32_t *
packetLength, packet_type_t packetType);
 status_t (*writePacket)(const PeripheralDescriptor * self, const uint8_t * packet,
uint32_t byteCount, packet_type_t packetType);
 void (*abortDataPhase)(const PeripheralDescriptor * self);
 status_t (*finalize)(const PeripheralDescriptor * self);
 uint32_t (*getCurrentMaxBufferSize)(const PeripheralDescriptor * self);
 status_t (*requestNewMaxBufferSize)(const PeripheralDescriptor * self, uint32_t
newBufferSize);
};

Table 7-3. Abstract packet interface

Interface Description

init() Initialize the peripheral.

readPacket() Read a full packet from the peripheral.

writePacket() Send a complete packet out the peripheral.

abortDataPhase() Abort receiving of data packets.

finalize() Shut down the peripheral when done with use.

getCurrentMaxBufferSize() Returns the current maximum buffer size.

requestNewMaxBufferSize() Requests to set a new maximum buffer size.

7.5 Framing packetizer

The framing packetizer processes framing packets received via the byte interface with
which it talks. It builds and validates a framing packet as it reads bytes. And it constructs
outgoing framing packets as needed to add flow control information and command or
data packets. The framing packet also supports data phase abort.

7.6 USB HID packetizer

Abstract packet interface

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

76 Freescale Semiconductor, Inc.

The USB HID packetizer implements the abstract packet interface for USB HID, taking
advantage of the USB's inherent flow control and error detection capabilities. The USB
HID packetizer provides a link layer that supports variable length packets and data phase
abort.

7.7 Command/data processor

This component reads complete packets from the abstract packet interface, and interprets
them as either command packets or data packets. The actual handling of each command
is done by command handlers called by the command processor. The command handler
tells the command processor whether a data phase is expected and how much data it is
expected to receive.

If the command/data processor receives a unexpected command or data packet, it ignores
it. In this instance, the communications link resynchronizes upon reception of the next
valid command.

Chapter 7 Peripheral interfaces

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 77

Chapter 8
Memory interface

8.1 Abstract interface

The bootloader uses a common, abstract interface to implement the memory read/write/
fill commands. This is to keep the command layer from having to know the details of the
memory map and special routines.

This shared memory interface structure is used for both the high-level abstract interface,
as well as low-level entries in the memory map.

struct MemoryInterface
{
 status_t (*init)(void);
 status_t (*read)(uint32_t address, uint32_t length, uint8_t * buffer);
 status_t (*write)(uint32_t address, uint32_t length, const uint8_t * buffer);
 status_t (*fill)(uint32_t address, uint32_t length, uint32_t pattern);
 status_t (*flush)(void);
 status_t (*erase)(uint32_t address, uint32_t length)
}

The global bootloader context contains a pointer to the high-level abstract memory
interface, which is one of the MemoryInterface structures. The internal implementation of
this abstract interface uses a memory map table, referenced from the global bootloader
context that describes the various regions of memory that are accessible and provides
region-specific operations.

The high-level functions are implemented to iterate over the memory map entries until it
finds the entry for the specified address range. Read and write operations are not
permitted to cross region boundaries, and an error is returned if such an attempt is made.

The BootloaderContext::memoryMap member is set to an array of these structures:

struct MemoryMapEntry
{
 uint32_t startAddress;
 uint32_t endAddress;
 const MemoryInterface * interface;
};

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 79

This array must be terminated with an entry with all fields set to zero.

The same MemoryInterface structure is also used to hold the memory-type-specific
operations.

Note that the MemoryMapEntry::endAddress field must be set to the address of the last
byte of the region, because a <= comparison is used.

During bootloader startup, the memory map is copied into RAM and modified to match
the actual sizes of flash and RAM on the chip.

8.2 Flash driver interface

The flash driver uses the common memory interface to simplify the interaction with flash.
It takes care of high level features such as read back verification, flash protection
awareness, and so on. The flash memory functions map to the interface functions as so:

const memory_region_interface_t g_flashMemoryInterface = {
 .read = &flash_mem_read,
 .write = &flash_mem_write,
 .fill = &flash_mem_fill,
 .flush = NULL,
 .erase = flash_mem_erase
};

Bootloader startup code is responsible for initializing the flash memory.

API Description

flash_mem_read() Performs a normal memory read if the specified region isn't
protected from reading.

flash_mem_write() Calls the low-level flash_program() API. Also performs
program verification if enabled with the Set Property
command.

flash_mem_fill() Performs intelligent fill operations on flash memory ranges. If
the fill patterns are all 1's, special action is taken. If the range
is a whole number of sectors, then those sectors are erased
rather than filled. Any part of an all-1's fill that is not sector-
aligned and -sized is ignored (the assumption being that it has
been erased to 1's already). Fills for patterns other than all 1's
call into flash_program().

flash_mem_erase() Calls the low-level flash_erase() API. Also performs erasure
verification if enabled with the Set Property command
(Enabled by default).

All flash_mem_read(), flash_mem_write(), flash_mem_fill(), and flash_mem_erase()
check the flash protection status for the sectors being read or programmed or erased and
return an appropriate error if the operation is not allowed.

Flash driver interface

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

80 Freescale Semiconductor, Inc.

8.3 Low level flash driver

The low level flash driver (LLFD) handles erase and write operations on a word basis. It
cannot perform writes of less than a full word.

Bootloader startup code is responsible for initializing and shutting down the LLFD.

status_t flash_init();
status_t flash_erase_all(, uint32_t key);
status_t flash_erase(uint32_t start, uint32_t lengthInBytes, uint32_t key);
status_t flash_program(uint32_t start, uint32_t * src, uint32_t lengthInBytes);
status_t flash_get_security_state(flash_security_state_t * state);
status_t flash_security_bypass(const uint8_t * backdoorKey);
status_t flash_verify_erase_all(flash_margin_value_t * margin);
status_t flash_verify_erase(uint32_t start, uint32_t lengthInBytes, flash_margin_value_t
margin);
status_t flash_verify_program(uint32_t start, uint32_t lengthInBytes,
 const uint8_t * expectedData, flash_margin_value_t margin,
 uint32_t failedAddress, uint8_t *failedData);
status_t flash_is_region_protected(uint32_t start, uint32_t lengthInBytes,
 flash_protection_state_t * protection_state)
status_t flash_get_property(flash_property_t whichProperty, uint32_t * value)
status_t flash_program_once(flash_driver_t * driver, uint32_t index, uint32_t * src,
uint32_t lengthInBytes);

status_t flash_read_once(flash_driver_t * driver, uint32_t index, uint32_t *dst, uint32_t
lengthInBytes);

status_t flash_read_resource(flash_driver_t * driver, uint32_t start, uint32_t *dst,
uint32_t lengthInBytes, flash_read_resource_option_t option);

Chapter 8 Memory interface

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 81

Low level flash driver

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

82 Freescale Semiconductor, Inc.

Chapter 9
Kinetis Flash Driver API

9.1 Introduction

The main purpose of these APIs is to simplify the use of flash driver APIs exported from
Kinetis bootloader ROM. With APIs, the user does not need to care about the differences
among various version of flash drivers.

A set of parameters are required to ensure all APIs work properly.

This section describes how to use each flash driver API proivded in the Kinetis flash
driver API tree.

For all flash driver APIs require the driver parameter.

9.2 Flash driver data structures

9.2.1 flash_driver_t

The flash_driver_t data structure is a required argument for al flash driver APIs. It can be
initialized by calling flash_init API. For other APIs, an initialized instances of this data
structure should be passed as an argument.

Table 9-1. Definition of flash_driver_t

Offset Size Field Description

0 4 PFlashBlockBase Base address of the first
PFlash block.

4 4 PFlashTotalSize Size of all combined PFlash
block.

Table continues on the next page...

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 83

Table 9-1. Definition of flash_driver_t (continued)

Offset Size Field Description

8 4 PFlashBlockCount Number of PFlash blocks.

12 4 PFlashSectorSize Size in bytes of sector of
PFlash.

16 4 PFlashCallback Pointer to a callback function
used to do extra operations
during erasure. For example,
service watchdog.

20 4 PFlashAccessSegmentSize Size of FAC access segment.

24 4 PFlashAccessSegmentCount Count of FAC access
segment.

9.3 Flash driver API

This section describes each API supported in the flash driver API tree.

9.3.1 flash_init

This API checks and initializes the Flash module for the other Flash APIs. It must be
always called before calling other APIs.

Prototype:

status_t flash_init(flash_driver_t * driver);

Table 9-2. Parameters

Parameter Description

driver Driver Pointer to storage for the driver runtime state.

Table 9-3. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver is NULL.

100 kStatus_FlashSizeError Returned flash is incorrect.

0 kStatus_Success This function is successfully performed.

Example:

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

84 Freescale Semiconductor, Inc.

flash_driver_t flashInstance;
status_t status = flash_init(&flashInstance);

9.3.2 flash_erase_all

This API erases the entire flash array.

Prototype:

status_t flash_erase_all(flash_driver_t * driver, uint32_t key);

Table 9-4. Parameters

Parameter Description

Driver Driver pointer to storage for the driver runtime state.

Key Key used to validate erase operation. Must be set to
0x6B65666B.

Table 9-5. Possible status response

Value Constants Description

4 kStatus_InvalidArgument Driver is NULL.

103 kStatus_FlashAccessError Command is not available under current
mode/security.

104 kStatus_FlashProtectionViolation Any region of the program flash memory
is protected.

107 kStatus_FlashEraseKeyError Key is incorrect.

0 kStatus_Success This function is successfully performed.

Example:

status_t status = flash_erase_all(&flashInstance, kFlashEraseKey);

9.3.3 flash_erase_all_unsecure

This API erases the entire flash, including protected sectors, and restores flash to
unsecured mode.

Prototype:

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 85

status_t flash_erase_all_unsecure(flash_driver_t * driver, uint32_t key);

Table 9-6. Parameters

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

Key Key used to validate erase operation. Must be set to
0x6B65666B.

Table 9-7. Possible Status Response

Value Constant Description

4 kStatus_InvalidArgument Driver is NULL.

103 kStatus_FlashAccessError Command is not available under current
mode/security.

107 kStatus_FlashEraseKeyError Key is incorrect.

0 kStatus_Success This function is successfully performed.

Example:

status_t status = flash_erase_all_unsecure(&flashInstance, kFlashEraseKey);

9.3.4 flash_erase

This API erases expected flash sectors specified by parameters. For the KL series, the
minimum erase unit is one sector.

Prototype:

status_t flash_erase(flash_driver_t * driver, uint32_t start, uint32_t lengthInBytes,
uint32_t key);

Table 9-8. Parameters:

Parameters Description

Driver Driver Pointer to storage for the driver runtime state.

Start The start address of the desired flash memory to be erased.

The start address does not need to be sector aligned, but
must be word-aligned.

lengthInBytes The length, given in bytes (not words or long words) to be
erased. Must be word-aligned.

Key Key is used to validate erase operation. Must be set to
0x6B65666B.

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

86 Freescale Semiconductor, Inc.

Table 9-9. Possible status response:

Value Constant Description

4 kStatus_InvalidArgument Driver is NULL.

100 kStatus_FlashAlignmentError Start or lengthInBytes. Is not long word-
aligned.

102 kStatus_FlashAddressError The range to be erased is not a valid
flash range.

103 kStatus_FlashAccessError Command is not available under current
mode/security.

104 kStatus_FlashProtectionViolation The selected program flash sector is
protected.

107 kStatus_FlashEraseKeyError Key is incorrect.

0 kStatus_Success This function is successfully performed.

Example:

status_t status = flash_erase (&flashInstance, 0x800, 1024, kFlashEraseKey);

9.3.5 flash_program

This API programs flash with data at locations passed in through parameters.

Prototype:

status_t flash_program(flash_driver_t * driver, uint32_t start, uint32_t * src, uint32_t
lengthInBytes);

Table 9-10. Parameters:

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

Start The start address of the desired flash memory to be erased.

The start address does not need to be sector aligned but
must be word-aligned.

src Pointer to the source buffer of data that is to be programmed
into flash.

lengthInBytes The length, given in bytes (not words or long words) to be
erased.

Must be word-aligned.

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 87

Table 9-11. Possible status response:

Value Constant Description

4 kStatus_InvalidArgument Driver or src is NULL.

101 kStatus_FlashAlignmentError Start or lengthInBytes is not longword
aligned.

102 kStatus_FlashAddressError The range to be programmed is invalid.

103 kStatus_FlashAccessError Command is not available under current
mode/security.

104 kStatus_FlashProtectionViolation The selected program flash address is
protected.

0 kStatus_Success This function is successfully performed.

Example:

uint32_t m_content[] = {0x01234567, 0x89abcdef};
status_t status = flash_program (&flashInstance, 0x800, &m_content[0], sizeof(m_content));

NOTE
Ensure the region to be programmed is empty and is not
protected before calling this API.

9.3.6 flash_get_security_state

This API retrieves the current flash security status, including the security enabling state
and the backdoor key enabling state.

Prototype:

status_t flash_get_security_state(flash_driver_t * driver, flash_security_state_t * state);

Table 9-12. Parameters

Parameters Description

Driver Driver Pointer to storage for the driver runtime state.

State Pointer to the value returned for the current security status
code:

Table 9-13. Returned value

kFlashNotSecure 0 Flash is under
unsecured mode.

kFlashSecureBack
doorEnabled

1 Flash is under
secured mode and
Backdoor is
enabled.

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

88 Freescale Semiconductor, Inc.

Table 9-12. Parameters

Parameters Description

Table 9-13. Returned value (continued)

kFlashSecureBack
doorDisabled

2 Flash is under
secured mode and
Backdoor is
disabled.

Table 9-14. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or state is NULL.

0 kStatus_Success This function is successfully performed.

Example:

flash_security_state_t state;
status_t status = flash_get_security_state (&flashInstance, &state);

9.3.7 flash_security_bypass

The API allows user to bypass security with a backdoor key. If the MCU is in a secured
state, this function unsecures the MCU by comparing the provided backdoor key with
ones in the Flash Configuration Field.

Prototype:

status_t flash_security_bypass(flash_driver_t * driver, const uint8_t * backdoorKey);

Table 9-15. Parameters

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

backdoorKey Pointer to the user buffer containing the backdoor key.

Table 9-16. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or backdoorKey is NULL.

103 kStatus_FlashAccessError The following condition causes this
return value:

Table continues on the next page...

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 89

Table 9-16. Possible status response (continued)

Value Constant Description

1. An incorrect backdoor key is
supplied

2. Backdoor key access has not
been enabled.

0 kStatus_Success This function is successfully performed.

Example:

Assume that flash range from 0x400 to 0x40c contains following content after last reset,
which means that backdoor key is valid and backdoor key access has been enabled.

0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0xff 0xff 0xff 0xbf.

uint8_t backdoorKey[] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88};
status_t status = flash_security_bypass (&flashInstance, & backdoorKey[0]);

9.3.8 flash_verify_erase_all

This API checks if the entire flash has been erased to the specified read margin level.

This API is often called after executing flash_erase_all in order to verify if the entire
flash has been fully erased.

Prototype:

status_t flash_verify_erase_all(flash_driver_t * driver, flash_margin_value_t margin);

Table 9-17. Parameters

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

Margin1 Read margin choice as follows:

kFlashMargin_Normal 0

kFlashMargin_User 1

kFlashMargin_Factory 2

Table 9-18. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or backdoorKey is NULL.

103 kStatus_FlashAccessError An invalid margin choice is specified.

105 kStatus_FlashCommandFailure The entire flash is not fully erased.

0 kStatus_Success This function is successfully performed.

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

90 Freescale Semiconductor, Inc.

Example:

Assume that flash_erase_all has been successfully executed.

status_t status = flash_verify_erase_all (&flashInstance, kFlashMargin_User);

NOTE
For the choice of margin, see the FTFA chapter in the reference
manual for detailed information.

9.3.9 flash_verify_erase

This API verifies erasure of the desired flash area at specified margin level. This function
checks the appropriate number of flash sectors based on the desired start address and
length to see if the flash has been erased at the specified read margin level.

This API is often called after successfully performing the flash_erase API.

Prototype:

status_t flash_verify_erase(flash_driver_t * driver, uint32_t start, uint32_t lengthInBytes,

flash_margin_value_t margin);

Table 9-19. Parameters:

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

Start The start address of the desired flash memory to be verified.

lengthInBytes The length, given in bytes (not words or long words) to be
verified.

Must be word-aligned.

margin Read margin choice as follows:

kFlashMargin_Normal 0

kFlashMargin_User 1

kFlashMargin_Factory 2

Table 9-20. Possible status response:

Value Constant Description

4 kStatus_InvalidArgument Driver or backdoorKey is NULL.

101 kStatus_FlashAlignmentError Start or lengthInBytes is not longword
aligned.

Table continues on the next page...

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 91

Table 9-20. Possible status response: (continued)

Value Constant Description

102 kStatus_FlashAddressError The range to be verified is not a valid
flash range.

103 kStatus_FlashAccessError The following situation causes this
response:

1. Command is not available under
current mode/security

2. An invalid margin code is provided
3. The requested number of bytes is

0
4. The requested sector crosses a

Flash block boundary.

105 kStatus_FlashCommandFailure The flash range to be verified is not fully
erased.

0 kStatus_Success This function is successfully performed.

Example:

Assume that flash region from 0x800 to 0xc00 has been successfully erased.

status_t status = flash_verify_erase(&flashInstance, 0x800, 1024, kFlashMargin_User);

NOTE
For the choice of margin, refer to the FTFA chapter in the
reference manual for detailed information.

9.3.10 flash_verify_program

This API verifies the data programmed in the flash memory using the Flash Program
Check Command, and compares it with expected data for a given flash area as
determined by the start address and length.

This API is often called after successfully doing flash_program().

Prototype:

status_t flash_verify_program(flash_driver_t * driver, uint32_t start, uint32_t
lengthInBytes,
 const uint8_t * expectedData, flash_margin_value_t margin,
 uint32_t * failedAddress, uint32_t * failedData);

Table 9-21. Parameters:

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

Table continues on the next page...

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

92 Freescale Semiconductor, Inc.

Table 9-21. Parameters: (continued)

Parameter Description

Start The start address of the desired flash memory to be verified.

LengthInBytes The length, given in bytes (not words or long-words) to be
verified. Must be word-aligned.

ExpectedData Pointer to the expected data that is to be verified against.

Margin Read margin choice as follows:

kFlashMargin_User 1

kFlashMargin_Factory 2

FailedAddress Pointer to returned failing address.

FailedData Pointer to return failing data. Some derivatives do not include
failed data as part of the FCCOBx registers. In this instance,
0x00s are returned upon failure.

Table 9-22. Possible status response

Value Contants Description

4 kStatus_InvalidArgument Driver or expectedData is NULL.

101 kStatus_FlashAlignmentError Start or lengthInBytes is not longword
aligned.

102 kStatus_FlashAddressError The range to be verified is invalid.

103 kStatus_FlashAccessError The following situation causes this
response:

1. Command is not available under
current mode/security.

2. An invalid margin code is supplied.

105 kStatus_FlashCommandFailure Either of the margin reads doesn’t match
the expected data.

0 kStatus_Success This function is successfully performed.

Example:

Assume that flash region from 0x800 to 0x807 is successfully programmed with:

0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef.

uint8_t expectedData[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef };
status_t status = flash_verify_program (&flashInstance, 0x800, 8,
 &expectedData[0], kFlashMargin_User, NULL, NULL);

NOTE
For the choice of margin, see the FTFA chapter in the reference
manual for detailed information.

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 93

9.3.11 flash_get_property

This functions returns the desired flash property. This includes base address, sector size,
and other options.

Prototype:

status_t flash_get_property(flash_driver_t * driver, flash_property_t whichProperty, uint32_t

* value);

Table 9-23. Parameters

Parameter Description

Driver Driver Pointer to storage for the driver runtime state.

whichProperty The desired property from the list of properties.

Table 9-24. Properties

Definition Value Description

kFlashProperty_SectorSize 0 Get Flash Sector size.

kFlashProperty_TotalFlashS
ize

1 Get total flash size.

kFlashProperty_BlockCount 3 Get block count.

kFlashProperty_FlashBlock
BaseAddr

4 Get flash base address.

kFlashProperty_FlashFacSu
pport

5 Get FAC support status.

kFlashProperty_FlashAcces
sSegmentSize

6 Get FAC segment size.

kFlashProperty_FlashAcces
sSegmentCount

7 Get FAC segment count.

kFlashProperty_Version 8 Get version of Flash Driver
API.

Value Pointer to the value returned for the desired flash property.

Table 9-25. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or value is invalid.

106 kStatus_FlashUnknownProperty Invalid property is supplied.

0 kStatus_Success This function is successfully performed.

Example:

uint32_t propertyValue;
status_t status = flash_get_property (&flashInstance, kFlashProperty_SectorSize,
&propertyValue);

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

94 Freescale Semiconductor, Inc.

9.3.12 flash_program_once

This API programs certain the Program Once Field with expected data for a given IFR
region determined by the index and length.

For each Program Once Field, the API is only allowed to be called once. Otherwise, an
error code is returned.

For targets which don’t support this API, the value this API pointer is 0.

Prototype

status_t flash_program_once (flash_driver_t * driver, uint32_t index, uint32_t *src,

uint32_t lengthInBytes);

Table 9-26. Parameters

Parameter Description

Driver Driver pointer to storage for the driver runtime state.

Index Index for a certain Program Once Field.

src Pointer to the source buffer of data that is to be programmed
into the Program Once Field.

Lengthinbytes The length, in bytes (not words or long words) to be
programmed. Must be word-aligned.

Table 9-27. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or src is NULL.

101 kStatus_FlashAlignmentError index or lengthInBytes is invalid.

103 kStatus_FlashAccessError The following situation causes this
response:

1. Command is not available under
current mode/security.

2. An invalid index is supplied.
3. The requested Program Once field

has already been programmed to
non-FFFF value.

4. The requested sector crosses a
Flash block boundary.

115 kStatus_FlashApiNotSupported This API is not supported.

0 kStatus_Success This function is successfully performed.

Example:

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 95

Assume the Program Once Field has not been programmed before.

uint32_t expectedData = 0x78563412;

status_t status = flash_program_once(&flashInstance, 0, &expectedData, 4);

NOTE
For the choice of index and length, see the FTFA chapter in RM
for detailed information.

9.3.13 flash_read_once

This API reads certain flash Program Once Field according to parameters passed by
index and length.

For targets that do not support this API, the value of this API pointer is 0.

Prototype:

status_t flash_read_once (flash_driver_t * driver, uint32_t index, uint32_t *dst, uint32_t

lengthInBytes);

Table 9-28. Parameters

Parameter Description

Driver Driver pointer to storage for the driver runtime state.

Index Index for a certain Program Once Field.

dst Pointer to the destination buffer of data that stores data reads
from the Program Once Field.

Lengthinbytes The length, in bytes (not words or long words) to be read.
Must be word-aligned.

Table 9-29. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or dst is NULL.

101 kStatus_FlashAlignmentError Index or lengthInBytes is invalid.

103 kStatus_FlashAccessError The following situation causes this
response:

1. Command is not available under
current mode/security.

2. An invalid index is supplied.

115 kStatus_FlashApiNotSupported This API is not supported.

0 kStatus_Success This function is successfully performed.

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

96 Freescale Semiconductor, Inc.

Example:

uint32_t temp;
 status_t status = flash_read_once(&flashInstance, 0, &temp, 4);

NOTE
For the choice of index and length, see the FTFA chapter in RM
for detailed information.

9.3.14 flash_read_resource

This API reads certain regions of IFR determined by the start address, length, and option.

For targets that do not support this API, the value this API pointers to is 0.

Prototype:

status_t flash_read_resource(flash_driver_t * driver, uint32_t start, uint32_t *dst,
 uint32_t lengthInBytes, flash_read_resource_option_t option);

Table 9-30. Parameters

Parameter Description

Driver Driver pointer to storage for the driver runtime state.

Start Index for a certain Program Once Field.

dst Pointer to the destination buffer of data that stores data reads
from IFR.

Lengthinbytes The length, in bytes (not words or long words), to be read.
Must be word-aligned.

Option The resource option which indicates the area that needs be
read back.

• 0 IFR

• 1 Version ID of the flash module

Table 9-31. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or dst is NULL.

101 kStatus_FlashAlignmentError Start, lengthInBytes, or option is invalid.

103 kStatus_FlashAccessError The following situation causes this
response:

1. Command is not available under
current mode/security.

2. An invalid index is supplied.
3. An invalid resource option.

Table continues on the next page...

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 97

Table 9-31. Possible status response (continued)

Value Constant Description

4. Address is out-of-rage for the
targeted resource.

5. Address is not long word aligned.

115 kStatus_FlashApiNotSupported This API is not supported.

0 kStatus_Success This function is successfully performed.

Example:

uint32_t temp[256];
status_t status = tree->flashDriver-> flash_read_resource(&flashInstance, 0, &temp[0], 256,
0);

NOTE
See the FTFA chapter in RM for detailed information regarding
the start, length, and option choices.

9.3.15 flash_register_callback

This API registers expected callback function into flash driver, such as function for
servicing watchdog.

Prototype:

status_t flash_register_callback(flash_driver_t * driver, flash_callback_t callback);

Table 9-32. Parameters

Parameter Description

Driver Driver pointer to storage for the driver runtime state.

Callback A pointer points to a function which is called during erasure.

A usage for this function is to service watch dog during erase
operation.

Table 9-33. Possible status response

Value Constant Description

4 kStatus_InvalidArgument Driver or dst is NULL.

115 kStatus_FlashApiNotSupported This API is not supported.

0 kStatus_Success This function is successfully performed.

Example:

Assume there is a function.

Flash driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

98 Freescale Semiconductor, Inc.

void led_toggle(void).
status_t status = flash_register_callback (&flashInstance, led_toggle);

9.4 Integrate Wrapped Flash Driver API to actual projects

There are three steps required to integrate Wrapped Flash Driver API (WFDA) to actual
projects.

9.4.1 Add flash.h and flash_api_tree.c to corresponding project

The directory which contains flash.h should be added to include path. This image
provides an example.

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 99

Figure 9-1. Include flash.h path

Flash_driver_api.c. should be added to the project as well. This image provides an
example.

Integrate Wrapped Flash Driver API to actual projects

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

100 Freescale Semiconductor, Inc.

Figure 9-2. Add flash_drive_api.c to project

9.4.2 Include flash.h to corresponding files before calling WFDI

For detailed information, see the demos for KL03, KL43, and KL27. Both flash.h and
flash_api_tree.c are attached in the demos.

Chapter 9 Kinetis Flash Driver API

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 101

Chapter 10
Kinetis bootloader porting

10.1 Introduction

This chapter discusses the steps required to port the Kinetis bootloader to an unsupported
Kinetis MCU. Freescale is working to bring bootloader support to the entire Kinetis
portfolio, but some devices still require user porting until all legacy device ports are
complete. Each step of the porting process is discussed in detail in the following sections.

10.2 Choosing a starting point

The first step is to download the latest bootloader release. Freescale releases updates for
the bootloader multiple times per year, so having the latest package is important for
finding the best starting point for your port. To find the most recent bootloader release,
freescale.com/KBOOT .

The easiest way to port the bootloader is to choose a supported target that is the closest
match to the desired target MCU.

NOTE
Just because a supported device has a similar part number to the
desired target MCU, it may not necessarily be the best starting
point. To determine the best match, reference the data sheet and
reference manual for all of the supported Kinetis devices.

10.3 Preliminary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 103

http://www.freescale.com/KBOOT

All references to paths in the rest of this chapter are relative to the root of the extracted
Kinetis bootloader package. The container folder is named
FSL_Kinetis_Bootloader_<version>. Before modifying source code, the following tasks
should be performed.

10.3.1 Download device header files

The most manual process in porting the bootloader to a new target is editing the device
header files. This process is very time consuming and error prone, so Freescale provides
CMSIS-compatible packages for all Kinetis devices that contain bootloader-compatible
device header files. These packages can be found on the product page for the MCU.

NOTE
It is not recommended to proceed with a port if a package does
not yet exist for the desired target MCU.

In the downloaded package, locate the folder with the header files. The folder is named
after the MCU (for example, “MK64F12”) and contains a unique header file for each
peripheral in addition to regs.h and system_<device>.h files. Copy the entire folder into
the /src/include/device folder of the bootloader tree.

10.3.2 Copy the closest match

Copy the folder of the MCU that most closely matches the target MCU in the /targets
folder of the bootloader source tree. Rename it to coincide with the target MCU part
number.

Once the files are copied, browse the newly created folder. Rename all files that have
reference to the device from which they were copied. The following files need to be
renamed:

• clock_config_<old_device>.c —> clock_config_<new_device>.c
• hardware_init_<old_device>.c —> hardware_init _<new_device>.c
• memory_map_<old_device>.c —> memory_map _<new_device>.c
• peripherals_<old_device>.c —> peripherals _<new_device>.c
• startup_<old_device>.c —> startup _<new_device>.c

10.3.3 Provide device startup file (vector table)

Preliminary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

104 Freescale Semiconductor, Inc.

A device-specific startup file is a key piece to the port. The bootloader may not function
correctly without the correct vector table. A startup file from the closest match MCU can
be used as a template, but it is strongly recommended that the file be thoroughly checked
before using it in the port due to differences in interrupt vector mappings between Kinetis
devices.

The startup file should be created and placed into a folder that references the target MCU
and toolchain in the /src/startup folder of the bootloader source tree. Startup files are
always assembly (*.s) and are named startup_<device>.s.

10.3.4 Clean up the IAR project

This example uses the IAR tool chain for the new project. Other supported tool chains
can be used in a similar manner.

The folder copy performed in step 1.2.2 copies more than just source code files. Inside of
the newly created /targets/<device> folder, locate the IAR workspace file
(bootloader.eww) and open it. This image shows an example of what a workspace looks
like and the files that need to be touched.

Figure 10-1. IAR workspace

Chapter 10 Kinetis bootloader porting

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 105

Once changes have been made, update the project to reference the target MCU. This can
be found in the project options.

Figure 10-2. Project options

10.3.5 Bootloader peripherals

There is a C/C++ preprocessor define that is used by the bootloader source to configure
the bootloader based on the target MCU. This define must be updated to reference the
correct set of device-specific header files.

Preliminary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

106 Freescale Semiconductor, Inc.

Figure 10-3. Options for node "freedom_bootloader"

The linker file needs to be replaced if the memory configuration of the target MCU
differs from the closest match. This is done in the linker settings, which is also part of the
project options.

Chapter 10 Kinetis bootloader porting

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 107

Figure 10-4. Porting guide change linker file

10.4 Primary porting tasks

Actual porting work can begin when the basic file structure and source files are in place.
This section describes which files need to be modified and how to modify them.

10.4.1 Header file modification

In section 1.2.1, the Freescale-provided CMSIS header files were downloaded and copied
to the bootloader tree. For these header files to be used by the bootloader, the
fsl_device_registers.h file in /src/include/device/src needs to be modified.

Primary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

108 Freescale Semiconductor, Inc.

The file is organized by MCU family and points the bootloader to the device-specific
header files. A new #elif use case needs to be added to the bottom of the list (before the
#else that indicates error) that references the target MCU. Note the define used to identify
the target MCU must match the define added in section 1.2.5, in Figure 3. With the new
section in place, reference the content used for other devices to determine what needs to
be added to the new section.

10.4.2 Bootloader peripherals

There are two steps required to enable and configure the desired peripherals on the target
MCU:

• Choosing which peripherals can be used by the bootloader.
• Configuring the hardware at a low level to enable access to those peripherals.

10.4.2.1 Supported peripherals

The bootloader uses the peripherals_<device>.c file to define which peripheral interfaces
are active in the bootloader. The source file itself includes a single table, g_peripherals[],
that contains active peripheral information and pointers to configuration structures. This
file is found in /targets/<device>/src.

It’s important to only place configurations for peripherals that are present on the target
MCU. Otherwise, the processor generates fault conditions when trying to initialize a
peripheral that is not physically present.

In terms of the content of each entry in the g_peripherals[] table, it is recommended to
reuse existing entries and only modify the .instance member. For example, starting with
the following UART0 member, it can be changed to UART1 by simply
changing .instance from “0” to “1”.

{
 .typeMask = kPeripheralType_UART,
 .instance = 0,
 .pinmuxConfig = uart_pinmux_config,
 .controlInterface = &g_scuartControlInterface;
 .byteInterface = &g_scuartByteInterfacek;
 .packetInterface = &g_framingPacketInterface;
 }

When the table has all required entries, it must be terminated with a null { 0 } entry.

10.4.2.2 Peripheral initialization

Chapter 10 Kinetis bootloader porting

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 109

Once the desired peripheral configuration has been selected, the low level initialization
must be accounted for. The bootloader automatically enables the clock and configures the
peripheral, so the only thing required for the port is to tell the bootloader which pins to
use for each peripheral. This is handled in the hardware_init_<device>.c file in /targets/
<device>/src. The hardware_init_<device>.c file also selects the boot pin used by the
bootloader, which may need to be changed for the new target MCU.

This file most likely requires significant changes to account for the differences between
devices when it comes to pin routing. Each function should be checked for correctness
and modified as needed.

10.4.2.3 Clock initialization

The Kinetis bootloader typically uses the MCU’s default clock configuration. This is
done to avoid dependencies on external components and simplify use. In some situations,
the default clock configuration cannot be used due to accuracy requirements of supported
peripherals. On devices that have on-chip USB and CAN, the default system
configuration is not suficient and the bootloader configures the device to run from the
high-precision internal reference clock (IRC) if available. Otherwise, it depends on the
external oscillator supply.

The bootloader uses the clock_config_<device>.c file in /targets/<device> to override the
default clock behavior. If the target MCU of the port supports USB, this file can be used.
If not, the functions within clock_config_<device>.c can be stubbed out or set to
whatever the port requires.

10.4.3 Bootloader configuration

The bootloader must be configured in terms of the features it supports and the specific
memory map for the target device. Features can be turned on or off by using #define
statements in the bootloader_config.h file in /targets/<device>/src. The supported features
can be seen in command.c (g_commandHandlerTable[] table) in the /src/bootloader/src
folder. All checks that reference a BL_* feature can be turned on or off. Examples of
these features are BL_MIN_PROFILE, BL_HAS_MASS_ERASE and
BL_FEATURE_READ_MEMORY.

One of the most important bootloader configuration choices is where to set the start
address (vector table) of the user application. This is determined by the
BL_APP_VECTOR_TABLE_ADDRESS define in bootloader_config.h. Most

Primary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

110 Freescale Semiconductor, Inc.

bootloader configurations choose to place the user application at address 0xA000 since
that accommodates the full featured bootloader image. It’s possible to move this start
address if the resulting port reduces features (and thus, code size) of the bootloader.

10.4.4 Bootloader memory map configuration

The MCU device memory map and flash configuration must be defined for proper
operation of the bootloader. The device memory map is defined in the g_memoryMap[]
structure of the memory_map_<device>.c file, which can be found in /targets/<device>/
src. An example memory map configuration is shown.

memory_map_entry_t g_memoryMap[] =
{
 // Flash array (1024KB)
 { 0x00000000, 0x000fffff, &g_flashMemoryInterface },
 // SRAM (256KB)
 { 0x1fff0000, 0x2002ffff, &g_normalMemoryInterface },
 // AIPS peripherals
 { 0x40000000, 0x4007ffff, &g_deviceMemoryInterface },
 // GPIO
 { 0x400ff000, 0x400fffff, &g_deviceMemoryInterface },
 // ARM® Cortex®-M4 private peripherals
 { 0xe0000000, 0xe00fffff, &g_deviceMemoryInterface },
 // Terminator
 { 0 }
};

In addition to the device memory map, the bootloader needs information about the
specific flash configuration of the target MCU. This includes things such as sector size,
features, and FlexRAM.

The fsl_flash_features.h file needs to be modified to provide the bootloader with this
information. This file is located in /src/drivers/flash/src. To determine which features the
flash on the target MCU supports, utilize the device’s reference manual. Many Kinetis
devices share similar flash configurations so it may be possible to use an existing flash
configuration for the port’s target MCU. Use the same CPU define referenced in sections
1.2.5 and 1.3.1 to enable a flash configuration.

The correct flash density and SRAM initialization files must be selected according to the
target device. Both of these files are split based on Cortex®-M4 and Cortex-M0+ based
devices, so the likelihood of having to change them is low. However, if required, the files
highlighted in this figure can be replaced with their alternatives.

The flash_densities_k_series.c file is located in /src/drivers/flash/src and its alternative is
flash_densities_kl_series.c, which corresponds to devices with a Cortex-M0+ core.

The sram_init_cm4.c file is located in /src/memory/src and its alternative is
sram_init_cm0plus.c.

Chapter 10 Kinetis bootloader porting

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 111

Figure 10-5. Memory map configuration

Primary porting tasks

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

112 Freescale Semiconductor, Inc.

Chapter 11
Creating a custom flash-resident bootloader

11.1 Introduction

In some situations the ROM-based or full-featured flash-resident bootloader cannot meet
the requirements of a use application. Examples of such situations include special
signaling requirements on IO, peripherals not supported by the bootloader, or the more
basic need to have as small of a code footprint as possible (for the flash-resident
bootloader). This section discusses how to customize the flash-resident bootloader for a
specific use case. The IAR tool chain is used for this example. Other supported tool
chains can be similarly configured.

11.2 Where to start

The Kinetis bootloader package comes with various preconfigured projects, including
configurations for a flashloader (if applicable for the device) and a flash-resident
bootloader. These projects enable all supported features by default, but can easily be
modified to suit the needs of a custom application.

The IAR workspace containing these preconfigured options is located in the
<install_dir>/targets/<mcu> folder, where <install_dir> is the folder name of the Kinetis
bootloader package once extracted (typically FSL_Kinetis_Bootloader_<version>) and
<mcu> is the family of the MCU target. Inside of this folder there is a bootloader.eww file,
which is the IAR workspace. The example shows the projects available in the workspace
for the K22F512 MCU family. There are configurations for both Tower System and
Freescale Freedom platforms, assuming the boards exist for the specific MCU family.

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 113

Figure 11-1. Projects available in workspace

Each of the projects in the workspace is configured to support all features of the
bootloader. This means every peripheral interface that the MCU supports is enabled. This
makes the bootloader very rich in features, but it also has the largest code footprint,
which can be considerable on MCUs with smaller flash configurations.

11.3 Flash-resident bootloader source tree

It is important to understand the source tree to understand where modifications are
possible. Here is an example of a source tree for one of the bootloader configurations.

Flash-resident bootloader source tree

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

114 Freescale Semiconductor, Inc.

Figure 11-2. Source tree for bootloader configuration

There are two folders in each bootloader project: a MCU-specific folder and a “src”
folder. All files in the MCU-specific folder are located in the <install_dir>/targets/
<mcu>/src folder, and are very specific to the target MCU. The “src” folder is located at the
top level of the bootloader tree, and the subfolders in the project correspond to the real
folder/file structure on the PC. The files in the “src” folder are the core files of the
bootloader, and include everything from peripheral drivers to individual commands.

Chapter 11 Creating a custom flash-resident bootloader

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 115

The bootloader source is separated in a way that creates a clear line between what a user
needs to modify and what they do not. Among other things, the files in the MCU-specific
folder allow the application to select which peripherals are active as well as how to
configure the clock, and are intended to be modified by the user. The files in the “src”
folder can be modified, but should only require modification where very specific
customization is needed in the bootloader.

11.4 Modifying source files

The files that cover the majority of the customization options needed by applications are
located in the MCU-specific folder. These files allow modification to the basic
configuration elements of the bootloader application, and are not associated with the core
functionality of the bootloader.

In the MCU-specific folder, the source files contain this information:

• bootloader_config.h – Bootloader configuration options such as encryption,
timeouts, CRC checking, the UART module number and baud rate, and most
importantly, the vector table offset for the user application.

• clock_config_<mcu>.c – Configures the clock for the MCU. This includes system,
bus, etc.

• hardware_init_<mcu>.c – Enables and configures peripherals used by the
application. This includes pin muxing, peripheral initialization, and the pin used as a
bootloader re-entry (bootstrap) mechanism.

• memory_map_<mcu>.c – Contains a table that stores the memory map information
for the targeted MCU.

• peripherals_<mcu>.c – Contains the table used by the bootloader to check which
peripheral interfaces are enabled. This is the file used to disable any unwanted or
unused peripheral interfaces.

11.5 Example

One of the most common customizations performed on the Kinetis bootloader is
removing unused or unwanted peripheral interfaces. The default configuration of the
bootloader enables multiple interfaces, including UART, SPI, I2C and (on some devices)
USB and CAN. This example will describe how to modify the provided bootloader
projects remove the SPI0 interface. The same methodology can be used to select any of
the supported interfaces.

Modifying source files

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

116 Freescale Semiconductor, Inc.

11.6 Modifying a peripheral configuration macro

The bootloader _confg.h file is located in <install_dir>/targets/<mcu>/src. It contains
macros such as:

#if !defined(BL_CONFIG_SPI0)

#define BL_CONFIG_SPI0 (1)

#endif

To remove an interface, either modify this file to set the macro to (0), or pass the macro
define to the toolchain compiler in the project settings. For example:

BL_CONFIG_SPI0=0

Setting this macro to zero removes the interface from the g_peripherals table and
prevents related code from linking into the bootloader image.

Chapter 11 Creating a custom flash-resident bootloader

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 117

Chapter 12
Appendix A: status and error codes

Status and error codes are grouped by component. Each component that defines errors
has a group number. This expression is used to construct a status code value.

status_code = -((group * 100) + code)

Component group numbers are listed in this table.

Table 12-1. Component group numbers

Group Component

0 Generic errors

1 Flash driver

2 I2C driver

3 SPI driver

100 Bootloader

101 SB loader

102 Memory interface

103 Property store

The following table lists all of the error and status codes.

Table 12-2. Error and status codes

Name Value Description

kStatus_Success 0 Operation succeeded without error.

kStatus_Fail 1 Operation failed with a generic error.

kStatus_ReadOnly 2 Property cannot be changed because it
is read-only.

kStatus_OutOfRange 3 Requested value is out of range.

kStatus_InvalidArgument 4 The requested command's argument is
undefined.

kStatus_Timeout 5 A timeout occurred.

kStatus_FlashSizeError 100 Not used.

Table continues on the next page...

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 119

Table 12-2. Error and status codes (continued)

Name Value Description

kStatus_FlashAlignmentError 101 Address or length does not meet
required alignment.

kStatus_FlashAddressError 102 Address or length is outside addressable
memory.

kStatus_FlashAccessError 103 The FTFA_FSTAT[ACCERR] bit is set.

kStatus_FlashProtectionViolation 104 The FTFA_FSTAT[FPVIOL] bit is set.

kStatus_FlashCommandFailure 105 The FTFA_FSTAT[MGSTAT0] bit is set.

kStatus_FlashUnknownProperty 106 Unknown Flash property.

kStatus_I2C_SlaveTxUnderrun 200 I2C Slave TX Underrun error.

kStatus_I2C_SlaveRxOverrun 201 I2C Slave RX Overrun error.

kStatus_I2C_AribtrationLost 202 I2C Arbitration Lost error.

kStatus_SPI_SlaveTxUnderrun 300 SPI Slave TX Underrun error.

kStatus_SPI_SlaveRxOverrun 301 SPI Slave RX Overrun error.

kStatus_UnknownCommand 10000 The requested command value is
undefined.

kStatus_SecurityViolation 10001 Command is disallowed because flash
security is enabled.

kStatus_AbortDataPhase 10002 Abort the data phase early.

kStatus_Ping 10003 Internal: Received ping during command
phase.

kStatusMemoryRangeInvalid 10200 Memory range conflicts with a protected
region.

kStatus_UnknownProperty 10300 The requested property value is
undefined.

kStatus_ReadOnlyProperty 10301 The requested property value cannot be
written.

kStatus_InvalidPropertyValue 10302 The specified property value is invalid.

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

120 Freescale Semiconductor, Inc.

Chapter 13
Appendix B: GetProperty and SetProperty
commands

Properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. Properties may be read-only or read-write. All read-write
properties are 32-bit integers, so they can easily be carried in a command parameter. Not
all properties are available on all platforms. If a property is not available, GetProperty
and SetProperty return kStatus_UnknownProperty.

The tag values shown in the table below are used with the GetProperty and SetProperty
commands to query information about the bootloader.

Table 13-1. Tag values GetProperty and SetProperty

Name Writable Tag value Size Description

CurrentVersion no 0x01 4 The current bootloader
version.

AvailablePeripherals no 0x02 4 The set of peripherals
supported on this chip.

FlashStartAddress no 0x03 4 Start address of
program flash.

FlashSizeInBytes no 0x04 4 Size in bytes of
program flash.

FlashSectorSize no 0x05 4 The size in bytes of
one sector of program
flash. This is the
minimum erase size.

FlashBlockCount no 0x06 4 Number of blocks in
the flash array.

AvailableCommands no 0x07 4 The set of commands
supported by the
bootloader.

CRCCheckStatus no 0x08 4 The status of the
application CRC check.

Reserved n/a 0x09 n/a

Table continues on the next page...

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 121

Table 13-1. Tag values GetProperty and SetProperty (continued)

Name Writable Tag value Size Description

VerifyWrites yes 0x0a 4 Controls whether the
bootloader verifies
writes to flash. The
VerifyWrites feature is
enabled by default.

0 - No verification is
done

1 - Enable verification

MaxPacketSize no 0x0b 4 Maximum supported
packet size for the
currently active
peripheral interface.

ReservedRegions no 0x0c n List of memory regions
reserved by the
bootloader. Returned
as value pairs (<start-
address-of-
region>,<end-address-
of-region>).

• If HasDataPhase
flag is not set,
then the
Response packet
parameter count
indicates number
of pairs.

• If HasDataPhase
flag is set, then
the second
parameter is the
number of bytes
in the data
phase.

RAMStartAddress no 0x0e 4 Start address of RAM.

RAMSizeInBytes no 0x0f 4 Size in bytes of RAM.

SystemDeviceId no 0x10 4 Value of the Kinetis
System Device
Identification register.

FlashSecurityState no 0x11 4 Indicates whether
Flash security is
enabled.

0 - Flash security is
disabled

1 - Flash security is
enabled

UniqueDeviceId no 0x12 n Unique device
identification, value of
Kinetis Unique
Identification registers

Table continues on the next page...

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

122 Freescale Semiconductor, Inc.

Table 13-1. Tag values GetProperty and SetProperty (continued)

Name Writable Tag value Size Description

(16 for K series
devices, 12 for KL
series devices)

FlashFacSupport no 0x13 4 FAC (Flash Access
Control) support flag

0 - FAC not supported

1 - FAC supported

FlashAccessSegmentSi
ze

no 0x14 4 The size in bytes of 1
segment of flash.

FlashAccessSegmentC
ount

no 0x15 4 FAC segment count
(The count of flash
access segments
within the flash model.)

FlashReadMargin yes 0x16 4 The margin level
setting for flash erase
and program verify
commands.

0=Normal

1=User

2=Factory

QspiInitStatus no 0x17 4 The result of the QSPI
or OTFAD initialization
process.

405 - QSPI is not
initialized

0 - QSPI is initialized

TargetVersion no 0x18 4 Target build version
number.

ExternalMemoryAttribut
es

no 0x19 24 List of attributes
supported by the
specified memory Id
(0=Internal Flash,
1=QuadSpi0). See
description for the
return value in the
section
ExternalMemoryAttribut
es Property.

Chapter 13 Appendix B: GetProperty and SetProperty commands

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 123

Chapter 14
Revision history

14.1 Revision History
This table shows the revision history of the document.

Table 14-1. Revision history

Revision number Date Substantive changes

0 07/2015 Kinetis Bootloader 1.2.0 initial release

Kinetis Bootloader v1.2.0 Reference Manual, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 125

Document Number: KBTLDR120RM
Rev. 0
07/2015

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale

Semiconductor. All other product or service names are the property of their respective

owners. ARM, ARM Powered Logo, and Cortex are registered trademarks of ARM

limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

	Kinetis Bootloader v1.2.0 ReferenceManual
	Chapter 1: Introduction
	Introduction
	Terminology
	Block diagram
	Features supported
	Components supported

	Chapter 2: Functional description
	Introduction
	Memory map
	The Kinetis Bootloader Configuration Area (BCA)
	Start-up process
	Clock configuration
	Bootloader entry point
	CRC-32 Check on application data

	Chapter 3: Kinetis bootloader protocol
	Introduction
	Command with no data phase
	Command with incoming data phase
	Command with outgoing data phase

	Chapter 4: Bootloader packet types
	Introduction
	Ping packet
	Ping response packet
	Framing packet
	CRC16 algorithm
	Command packet
	Response packet

	Chapter 5: Kinetis bootloader command API
	Introduction
	GetProperty command
	SetProperty command
	FlashEraseAll command
	FlashEraseRegion command
	FlashEraseAllUnsecure command
	ReadMemory command
	WriteMemory command
	FillMemory command
	FlashSecurityDisable command
	Execute command
	Call command
	Reset command
	FlashProgramOnce command
	FlashReadOnce command
	FlashReadResource command

	Chapter 6: Supported peripherals
	Introduction
	I2C Peripheral
	SPI Peripheral
	UART Peripheral
	USB HID Peripheral
	FlexCAN Peripheral

	Chapter 7: Peripheral interfaces
	Introduction
	Abstract control interface
	Abstract byte interface
	Abstract packet interface
	Framing packetizer
	USB HID packetizer
	Command/data processor

	Chapter 8: Memory interface
	Abstract interface
	Flash driver interface
	Low level flash driver

	Chapter 9: Kinetis Flash Driver API
	Introduction
	Flash driver data structures
	flash_driver_t

	Flash driver API
	flash_init
	flash_erase_all
	flash_erase_all_unsecure
	flash_erase
	flash_program
	flash_get_security_state
	flash_security_bypass
	flash_verify_erase_all
	flash_verify_erase
	flash_verify_program
	flash_get_property
	flash_program_once
	flash_read_once
	flash_read_resource
	flash_register_callback

	Integrate Wrapped Flash Driver API to actual projects
	Add flash.h and flash_api_tree.c to corresponding project
	Include flash.h to corresponding files before calling WFDI

	Chapter 10: Kinetis bootloader porting
	Introduction
	Choosing a starting point
	Preliminary porting tasks
	Download device header files
	Copy the closest match
	Provide device startup file (vector table)
	Clean up the IAR project
	Bootloader peripherals

	Primary porting tasks
	Header file modification
	Bootloader peripherals
	Supported peripherals
	Peripheral initialization
	Clock initialization

	Bootloader configuration
	Bootloader memory map configuration

	Chapter 11: Creating a custom flash-resident bootloader
	Introduction
	Where to start
	Flash-resident bootloader source tree
	Modifying source files
	Example
	Modifying a peripheral configuration macro

	Chapter 12: Appendix A: status and error codes
	Chapter 13: Appendix B: GetProperty and SetProperty commands
	Chapter 14: Revision history
	Revision History

