KSDK-based Modbus RTU Packet Assembler

How to Implement a KSDK-based Modbus RTU Packet Assembler Running on MQX

I'll start off by disclosing a big mistake | had made when implementing Modbus RTU. Skip to the next paragraph if
you don't care to read about it. :) | took my existing knowledge of Modbus TCP and then only looked at the packet
structure differences between it and RTU. In other words, | had merely focused on the header differences and the
addition of the CRC word, but did not realize early on that there were timing requirements as well. My first Modbus
RTU design spoke to a single device only, so | was able to determine the packet structure on the fly by analyzing
each byte, figuring out how much data to expect, and then to only read the necessary bytes from the UART. It
actually worked great until | had to implement a second RTU device on the same node. Herein lies the big problem -
- when Slave 1 responds to the Master, it sends data back that does not contain any packet size information! This
very packet is also simultaneously being send to Slave 2, who will be completely unable to determine anything about
the incoming data. So the question at this point was, how in the world do | know when a packet is complete?

The Modbus RTU reference site | used (not the specification document) actually specifies very clearly (after the
packet information) that there are timing requirements that have to be strictly adhered to. One is the intercharacter
delay, which is 750us for baud rates >= 19200, and the interpacket delay, which is 1750us for baud rates >= 19200.
For slower rates, these delays are referred to as 1.5T and 3.5T, respectively, because they are measured as 1.5 x
(character time) and 3.5 x (character time). I'm not interested in anything slower than 115200 baud, so this
document is only going to explain how to deal with the fixed timing delays.

Sometimes gradually building on top of an old implementation causes more pain than it's worth. | tried the following
approaches, with unsuccessful results:

1. MQX task polls for 1 byte at time and keeps track of timing with the various KSDK timer functions that have
microsecond precision. Almost worked, but often ran into a possible problem with the KSDK UART read
function that doesn't like to read out 1 byte at a time.

2. MQX task runs as a FSM based on the Modbus RTU spec. This was very easy to follow and also very easy
to track the intercharacter and interpacket delay requirements. It was less successful than attempt #1. The
microsecond time function in KSDK maxes out at 5000, so the timer should *never* rollover when looking for
a 750us or 1750us timeout. However, because the FSM advances only once each time the task executes,
and because MQX has a 5ms OS tick, packets would "fail" because the rollover would screw up the
calculation. Clearly, MQX cannot handle things down at the protocol level.

The working solution took a little bit of effort, but the idea behind it is based off of Mark Butcher's uTasker Modbus

RTU code. The implementation comes down to a RX callback function, two PITs, and a message queue to share the
packet with your MQX task. | will go into those details next.

First, obviously you have to have a fsl_uart component added. Here are my settings:

Properties . Methods Events]

Component name rs485_0_comp

Device UARTO -

Component version 1.2.0

Component mode | Interrupt mode ~

Configurations . Pins/Signals Initializatiorﬂ Shared components | Inherited components]

Configurations

UART configurations
Configurations list 1 B 5
3 Configuration Mame Type Read only configuration Baud rate Parity mode Stop bits Bits per char
a rs485_0_comp_InitConfigd uart_user_config t 115200 baud Disabled 1 8

P
Configurations | Pins/Signals . Initialization | Shared componet

Receiver

RxD | PTB16/SPIL_SOUT/UARTO_RX/FTM_CLEIMO/EWR_ - |
Transmitter

TxD | PTBEL17/5PIL_SIN/UARTO_TR/FTM_CLEIMNL/EWM_OL = |

-
Configurations (Pinsfﬁignals (Initializatiun Shared components | Inherited cor

Aute initialization

Init cenfiguration | rs485_0_comp_InitConfigd - |

State structure narme rs485_0_comp_State

P
Rx callback . Tx callba ckw Interruptq
Fx callback

Mame rs485_0_comp_RxCallback
User parameter

Marne of user pararmeter

External declaration of user pararmeter

Rx Buffer

Mame of Fx buffer ni_callback_buff

External declaration of Rx buffer extern uinté_t no_callback_buff[256]
Always enable Rx interrupt

Configurations | Pins/Signals | Initialization . Shared compom

Auto initialization
Init configuration rsd85_0_comp_InitConfigd -

State structure name rsd85_0_comp_State

Rx callback | Tx callback ™. Interrupts
[Tx callback

User pararmeter

Tx Buffer

Configurations | Pins/Signals | Initialization . Shared comg

Auto initialization
Init configuration re485_0_comp_InitConfigd -

State structure name rs485_0_comp_State
Fx callback | Tx callback | Interrupts

Commaon Rx/Tx interrupt
Interrupt INT_UARTO_RX_TX
[Interrupt priority

medium pricrity -

Install interrupt
I5R name rs485_0_comp_IRQHandler

Leave everything else at their default values.
With this configuration, every time a byte comes in, the ISR rs485_0_comp_IRQHandler will get called. This in turn

will call your RX handler rs485_0_comp_RxCallback. You have to have the Rx buffer defined, or the callback
function will not get called.

Next, add 2 PITs. | called mine pit_interpacket and pit_interbyte.

Component name

pit_interpacket

Device PIT
Counter PIT_CWVALD
Counter type Down counter

Component version 1.2.0

P
Configurations ™. Initialization | Shared components | Inherited componentq

Configurations

PIT configurations
Configurations list

Configuration

Mame

Type Read only configuration Interrupt Pericd
] pit_interpacket_InitConfigd pit_user_config_t 1750 ps
-
Configurations |Initia|ization Shared components | Inherite:
Auto intialization
Driver init. configuration | pit_interpacket_InitConfigd -
Run in debug
Start PIT tirmer [l
Interrupts
Interrupt IMT_PITO
[|Interrupt pricrity
Priority walue | medium priority -
Install interrupts
Properties . Methods Eventq
Component narme pit_interbyte
Device PIT -
Counter PIT_Cvall -
Counter type Down counter
Component version 120
P
Configurations . Initialization | Shared components | Inherited compon entq
Configurations
PIT cenfigurations
Configurations list _ 1 -
Configuration Mame Type Read only configuration Interrupt Pericd
B 0 pit_interbyte_InitConfigd pit_user_config_t 750 ps

Configurations | Initialization ™. Shared components | Inheri

+ | Auto initialization

Drriver init. configuration | pit_interbyte_InitConfigd -

Fun in debug J
Start PIT tirmer

Interrupts

Interrupt IMNT_PIT1

Interrupt pricrity
medium pricrity -

Install interrupts |V

It is critical that you uncheck the "Start PIT timer" checkboxes in both PITs. The reason for this is that these are
periodic timers. They would otherwise start counting immediately, and you'll probably never be able to assemble a
full packet.

One more thing, | also manually configured my RX FIFO to be 1 byte deep since the ISR is fast enough to keep up,
and I'm a little nervous about some FIFO things I've seen in the past. I'd rather have an occasional missed packet
than to be stuck in an endless loop where | can never assemble one.

The ISRs will deal with the starting and stopping of each timer. The overall idea is very simple -- when a byte is
received (rx callback is called), append the byte to the packet and then reset (stop, then start) the intercharacter
timer. In the intercharacter ISR, start the interpacket timer and set the packet state to CharacterTerminating, which
is a flag that says if another byte arrives, it is invalid. If the rx callback gets called again and this flag is set, then
mark the packet as FrameNotOk and stop the intercharacter timer. In the interpacket ISR, stop the intercharacter
timer and the interpacket timer. If the packet is marked FrameNotOk, then clear the buffer index, reset the packet
state to Idle, and flush the UART. Otherwise, the packet is marked FrameOk and is copied to the message queue.

Here is the code:

“wvoid WHaskerModbusImpl{ uint32_t instance, void * uartState)

1

uart_state_t* uart = (uart_state_t*)uartState;

if({ g_modbus_state == CharacterTerminating) {
g_modbus_state = FrameNotOk;
PIT HAL StopTimer(g pitBase[FSL_PIT INTERBYTE], FSL_PIT INTERBYTE CHANNEL);

return;

g_rxbuff[index++] = uvart-rrxBuff[e];

/f start the timer over for T1.5 since we received a character 0K

PIT HAL StopTimer(g_pitBase[FSL_PIT INTERBYTE], FSL_PIT INTERBYTE_ CHANNEL);

PIT HAL StopTimer(g_pitBase[FSL_PIT INTERPACKET], FSL_PIT INTERPACKET CHANNEL);
PIT HAL StartTimer(g pitBase[FSL_PIT_INTERBYTE], FSL_PIT_INTERBYTE_ CHANNEL);

¥

“wvoid rs485 0@ comp RxCallback{uint32_t instance, woid * uartState)
1
/* Write your code here ... */
/f5lightly0lderModbusImpl(instance, uartState);
UtaskerModbusImpl(instance, uartState);

¥

vold pit_interpacket_IRQHandler(void)
1
/* Clear interrupt flag.*/
PIT HAL ClearIntFlag(g pitBase[FSL_PIT_INTERPACKET], FSL_PIT INTERPACKET CHANNEL);
/* Write your code here ... */
// stop all timers
PIT HAL StopTimer(g pitBase[FSL_PIT INTERBYTE], FSL_PIT_INTERBYTE_ CHANNEL);
PIT HAL StopTimer(g _pitBase[FSL_PIT_ INTERPACKET], FSL_PIT INTERPACKET CHANNEL);

if({ g _modbus_state != FrameNotOk) {
g_modbus_state = FrameQk;
!/ copy message to queue
_lwmsgq_send((woid*)packet_queue, (_mgx_max_type_ptr)g_rxbuff, 8);//LWM560 _SEND _BLOCK _OM_FULL);

}

/f get ready to receive a new packet after success or even failure
index = @;

g _modbus_state = Idle;|

FlushUartRx(FSL_R5485 @ COMP);

¥

-~ wvoid pit_interbyte_ IRQHandler{void)
1
/* Clear interrupt flag.*/
PIT HAL ClearIntFlag(g pitBase[FSL_PIT INTERBYTE], FSL_PIT INTERBYTE_CHANNEL);
/* Write your code here ... */
g_modbus_state = CharacterTerminating;
PIT HAL StartTimer(g_pitBase[FSL_PIT INTERPACKET], FSL_PIT INTERPACKET CHANNEL);

Now, on to the message queue, which is how the interpacket ISR is going to share the packet with your MQX task.
The sending code is shown above, but first you have to initialize the message queue. | did that in my MQX task that

is going to process the Modbus packet.

- void ModbusRtuCommandDispatcher::Listen()

1
_mgx_uint msg[e4]; // max number of messages we'll support in message queue is 1 command packet
_mgx_uint result;

// disable RX FIFQ so ISR handles only cone byte at a time

DisableFifo(rs485 instance);

0SA TimeDelay(1@88); // this is due to a possible bug in KSDK / MQX found by David Seymour
FlushUartRx{ _rs485 instance);

result = lwmsgq init((void*)packet_gqueue, 1 /* number of message */, 64 /* mbssage size */);

if(MQX_oK != result) {
assert(!"what should we do about this?");
¥

while (1) {
0SA_TimeDelay(1@);
// get packet from message gqueue
_lwmsgq_receive((void*)packet_gueue, msg, LWMSG) RECEIVE_BLOCK _ONM_EMPTY, @&, 8);

/{ make it easier to deal with bytes of data instead of uint32_t

and packet queue is just this:

#define MAX_MODBUS_BUFFER 25¢|

#define MODBUS_SEND_TIMEOUT 160

#define MODBUS_RECEIVE_WAITFOREVER -1

#define MODBUS_MESSAGE_SIZE (MAX_MODBUS_BUFFER / sizeof(_mgx_))

uint32_t packet_queue[sizeof(LWMSGQ_STRUCT)/sizeof(uint32_t) + 1 * (MAX_MODBUS_BUFFER / sizeof(_mgx_uint)})];
uintd t rx_callback buff[256]; // required for RX callback function to work (or ISR will crash)

This should be just about all you need to make it work. Please let me know if | have missed anything, or if this
doesn't work for you. Maybe I'll be able to help you figure it out.

	KSDK-based Modbus RTU Packet Assembler

