
© Freescale Semiconductor, Inc., 2010. All rights reserved.

Freescale Semiconductor
Users Guide

KQRUG
Rev. 0, 11/2010

This collection of code examples, useful tips, and quick
reference material has been created to help you speed the
development of your applications. Most chapters in this
document contain examples that can be modified to work
with Kinetis MCU Family members. When you’re
developing your application, consult your device data
sheet and reference manual for part-specific information,
such as which features are supported on your device.

Sample code can be found at KINETIS512_SC.zip,
available from http://freescale.com

Information about the ARM core can be found in the help
center at http://ARM.com

The most up-to-date revisions of our documents are on
the Web. Your printed copy may be an earlier revision.
To verify that you have the latest information available,
refer to http://freescale.com

Kinetis Peripheral Module
Quick Reference
A Compilation of Demonstration Software for Kinetis Modules

Kinetis Peripheral Module Quick Reference, Rev. 0

Freescale Semiconductor2

Revision History

Date
Revision

Level
Description

Page
Number(s)

11/2010 0 Initial release N/A

Contents

Section Number Title Page

Chapter 1
General System Setup (Software Considerations)

1.1 Overview...13

1.2 Code execution..13

1.3 Reset and booting..13

1.3.1 Device state during reset..14

1.3.2 Device state after reset...14

1.4 Typical system initialization ..14

1.4.1 Lowest level assembly routines...14

1.4.1.1 Initialize general purpose registers..14

1.4.1.1.1 Unmask interrupts at ARM core ..15

1.4.1.1.2 Branch to start of C initialization code...15

1.4.2 Startup routines..15

1.4.2.1 Disable watchdog...15

1.4.2.2 Initialize RAM...15

1.4.2.3 Enable port clocks..16

1.4.2.4 Ramp system clock to selected frequency...16

1.4.2.5 Enable pin interrupt..16

1.4.2.6 Enable UART for terminal communication...17

1.4.2.7 Jump to start of main function for application...17

Chapter 2
General System Setup (Hardware Considerations)

2.1 Overview...19

2.2 Floorplan...19

2.2.1 Connectors...19

2.2.2 Power domains...20

2.3 PCB routing considerations..21

2.3.1 Power supply routing...21

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 3

Section Number Title Page

2.3.2 Power supply decoupling and filtering..21

2.3.3 Oscillators..23

2.3.3.1 RTC oscillator..23

2.3.3.2 MCG oscillator...24

2.3.4 General filtering...27

2.3.4.1 RESET_b and NMI_b..27

2.3.4.2 General purpose I/O...28

2.3.4.3 Analog inputs...28

2.4 PCB layer stack-up...29

2.5 Other module hardware considerations..31

2.5.1 VBAT...31

2.5.2 Voltage reference module..32

2.5.3 Debug interface..32

Chapter 3
Nested Vector Interrupt Controller (NVIC)

3.1 Overview...35

3.1.1 Introduction ...35

3.1.2 Features ...35

3.2 Configuration examples..36

3.2.1 Configuring the NVIC...36

3.2.1.1 Code example and explanation..36

3.2.2 Relocating the vector table...38

3.2.2.1 Code example and explanation..38

3.2.3 Disabling priorities...39

3.2.3.1 Code example and explanation..39

Chapter 4
Clocking System

4.1 Overview...41

4.2 Features...41

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

4 Freescale Semiconductor

Section Number Title Page

4.3 Configuration examples..43

4.3.1 Transitioning to PLL engaged external mode..44

4.3.1.1 Code example and explanation..44

4.3.2 Transitioning between PLL engaged external mode and bypassed low power internal mode..........................45

4.3.2.1 Code example and explanation..45

4.3.3 Configuring the FLL with the RTC oscillator as a reference..46

4.3.3.1 Code example and explanation..47

4.4 Clocking system device hardware implementation..47

4.5 Layout guidelines for general routing and placement...48

4.6 References...49

Chapter 5
Power Management Controller (PMC/MODECTL)

5.1 Using the power management controller..51

5.1.1 Overview..51

5.1.1.1 Introduction..51

5.1.2 Using the low voltage detection system...51

5.1.2.1 Features..51

5.1.2.2 Configuration examples...52

5.1.2.3 Interrupt code example and explanation..53

5.1.2.4 Hardware implementation..53

5.2 Using the mode controller...54

5.2.1 Overview..54

5.2.1.1 Introduction..54

5.2.1.2 Features..55

5.2.2 Configuration examples...55

5.2.2.1 MC code example and explanation..56

5.2.2.2 Entering low leakage stop (LLS) mode...56

5.2.2.3 Entering wait mode..57

5.2.2.4 Exiting low power modes..57

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 5

Section Number Title Page

5.3 Using the low leakage wakeup unit..58

5.3.1 Overview..58

5.3.1.1 Mode transitions ..58

5.3.1.2 Wakeup sources ..58

5.3.2 Configuration examples...58

5.3.2.1 Module wakeup..58

5.3.2.2 Pin wakeup...59

5.3.2.3 LLWU port and module interrupts...59

5.3.2.4 Wakeup sequence...60

5.4 Module operation in low power modes..61

5.5 Mode transition requirements...63

5.6 Source of wakeup, pins and modules..64

Chapter 6
Memory Protection Unit (MPU)

6.1 Using the memory protection unit module...67

6.1.1 Overview..67

6.1.2 Introduction..67

6.1.3 Features..67

6.1.4 Configuration examples...68

6.1.4.1 Region descriptors setup..68

Chapter 7
Enhanced Direct Memory Access (eDMA) Controller

7.1 Overview...69

7.1.1 Introduction ...69

7.2 eDMA trigger..71

7.2.1 DMA multiplexer...71

7.2.2 Trigger mode..72

7.2.3 Multiple transfer requests...73

7.3 Transfer process—major and minor transfer loop..74

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

6 Freescale Semiconductor

Section Number Title Page

7.4 Configuration steps ..75

7.5 Example—PIT-gated DMA requests ...76

7.5.1 Requirements...76

7.5.2 Module configuration...76

Chapter 8
Using the FlexMemory

8.1 Using the FlexNVM ...79

8.1.1 Overview..79

8.1.1.1 Introduction ...79

8.1.1.2 Features..79

8.1.2 Configuration examples ..80

8.1.2.1 Basic data flash..80

8.1.2.1.1 Code example and explanation...80

8.1.2.2 EEPROM flash records..80

8.1.2.2.1 Code Example and Explanation..81

8.1.2.3 Combination...81

8.1.2.3.1 Code example and explanation...82

8.1.3 Endurance...82

Chapter 9
EzPort Module

9.1 Using the EzPort module ...85

9.1.1 Overview..85

9.1.1.1 Introduction ...85

9.1.1.2 Features ...85

9.1.1.3 Command description..86

9.1.1.3.1 Command format..86

9.1.1.3.2 Command timing..87

9.1.1.4 Status register...88

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 7

Section Number Title Page

9.1.2 Configuration examples ..88

9.1.2.1 Hardware connections..88

9.1.2.2 Write enable and disable..90

9.1.2.3 Sector erase and program...90

9.1.2.4 Write and read FCCOB registers...91

9.1.2.5 Write and read FlexRAM...92

Chapter 10
Flexbus Module

10.1 Using the Flexbus module ...93

10.1.1 Overview..93

10.1.1.1 Introduction..93

10.1.1.2 Features ...93

10.1.1.2.1 Signal descriptions..93

10.1.1.2.2 Address and data bus multiplexing ..94

10.1.1.2.3 Modes of Operation..95

10.1.1.2.4 Burst cycles...96

10.1.1.2.5 Data Byte Alignment and Physical Connections ...96

10.1.1.2.6 Memory map...97

10.1.1.2.7 Reference clock...97

10.1.1.3 Configuration examples ..98

10.1.1.3.1 Code example and explanation...98

10.1.1.4 Hardware implementation..99

10.1.2 PCB design recommendations...100

10.1.2.1 Layout guidelines...100

Chapter 11
Universal Asynchronous Receiver and Transmitter (UART) Module

11.1 Overview...101

11.2 Features...101

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

8 Freescale Semiconductor

Section Number Title Page

11.3 Configuration example..102

11.3.1 UART initialization example...102

11.3.2 UART receive example..103

11.3.3 UART transmit example..104

11.3.4 UART configuration for interrupts or DMA requests...104

11.4 UART RS-232 hardware implementation..105

Chapter 12
ENET Module

12.1 Overview...107

12.1.1 Introduction..107

12.1.2 Features..108

12.2 Configuration examples..109

12.2.1 Basic MAC-ENET initialization for a generic TCP/IP stack..109

12.2.1.1 Code example and explanation..109

12.3 PHY management interface..113

12.3.1 Code example and explanation..114

12.4 MII mode..115

12.4.1 Code example and explanation..115

12.4.1.1 Hardware implementation..116

12.5 RMII mode..117

12.5.1 Code example and explanation..117

12.5.1.1 Hardware implementation..118

12.6 PCB Design Recommendations..119

12.6.1 Layout Guidelines..119

12.6.1.1 General Routing and Placement...119

Chapter 13
USB Device Charger Detection (USBDCD) Module

13.1 Overview...121

13.1.1 Introduction..121

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 9

B45511
Highlight

Section Number Title Page

13.1.2 Features..121

13.1.3 Battery charger specification...122

13.2 Module Configuration...122

13.2.1 Module dependencies...122

13.3 DCD hardware implementation..123

13.4 Example code..124

Chapter 14
Universal Serial Bus OTG Module

14.1 Introduction...127

14.2 Features...127

14.3 USB operation modes...127

14.4 Voltage regulator operation modes...128

14.5 Module configuration..130

14.5.1 Module dependencies...130

14.5.2 USB initialization process..130

14.5.3 Voltage regulator initialization..132

14.6 Hardware implementation...132

14.6.1 Connection diagram...132

14.6.2 Components and placement suggestions..134

14.6.3 Layout recommendations...135

14.7 Example code..136

14.7.1 Device code..136

14.7.2 Host code..137

Chapter 15
FlexCAN Module

15.1 Overview...141

15.1.1 Introduction..141

15.1.2 Features..142

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

10 Freescale Semiconductor

Section Number Title Page

15.2 Configuration examples..142

15.2.1 FlexCAN initialization...143

15.2.1.1 Code example and explanation..143

15.2.2 Receive process..145

15.2.2.1 Code example and explanation..145

15.2.3 Transmit process..145

15.2.3.1 Code example and explanation..145

15.2.4 Read message...146

15.2.4.1 Code example and explanation..146

15.2.5 Configuration of Rx FIFO ID filter table elements..147

15.2.5.1 Code example and explanation..147

Chapter 16
Segment LCD Controller

16.1 Overview...149

16.1.1 Introduction..149

16.2 Power supply...150

16.3 Low power modes...151

16.4 Clock source..151

16.5 Hardware considerations...152

16.5.1 General routing and placement..152

16.6 EMC and ESD considerations..152

16.6.1 Code example and explanation..152

16.7 Demonstration code..154

Chapter 17
Touch Sense Input (TSI) Module

17.1 Overview...157

17.2 Introduction...157

17.3 Features...159

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 11

Section Number Title Page

17.4 TSI configuration..160

17.4.1 Configuration Example..162

17.4.1.1 Code Example and Explanation...163

17.5 TSI hardware implementation...165

17.5.1 PCB Routing and Placement..166

Chapter 18
Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions

18.1 Overview...167

18.1.1 Introduction..167

18.1.2 Features..168

18.2 Configuration example..169

18.2.1 PDB-triggered single-ended ADC conversions...169

18.2.1.1 Turn on ADC and PDB clocks...170

18.2.1.2 Configure System Integration module for ADC defaults..170

18.2.1.3 Configure Peripheral Delay Block (PDB)...170

18.2.1.4 Determine ADC configuration...171

18.2.1.5 Using ADC driver..172

18.2.1.6 Calibrate ADCs..172

18.2.1.7 Enable ADC and PDB interrupts...172

18.2.1.8 Software triggering of PDB...172

18.2.1.9 Handle ADC and PDB interrupts...173

18.2.2 ADC device hardware implementation..174

18.2.3 PDB device hardware implementation..174

18.3 PCB design recommendations..174

18.3.1 Layout guidelines...174

18.3.1.1 General routing and placement..174

18.3.2 ESD/EMI considerations ...175

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

12 Freescale Semiconductor

Chapter 1
General System Setup (Software Considerations)

1.1 Overview
This chapter provides a quick look at some of the general characteristics of the Kinetis
family of MCUs. This is a brief introduction of the operation of the devices and typical
software initialization.

For more information see the device-specific reference manual and data sheet.

1.2 Code execution
The Kinetis family features embedded Flash and SRAM memory for data storage and
program execution. Additionally, external memory can be accessed over the FlexBus
external bus interface. Code can also be executed over the FlexBus. For maximum
performance, executing from internal memory is recommended.

1.3 Reset and booting
When the processor exits reset, it fetches the initial stack pointer (SP) from vector table
offset 0 and the program counter (PC) from vector table offset 4. The initial vector table
must be located in the flash memory at the base address (0x0000_0000). However, the
vector table can be relocated to SRAM after the boot-up sequence if desired. Kinetis
devices only support booting from internal flash. Any secondary boot must first go
through an initialization sequence in flash.

After fetching the stack pointer and program counter, the processor branches to the PC
address and begins executing instructions.

For more information, see the Reset and Boot chapter of the device-specific reference
manual.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 13

B31614
高亮

1.3.1 Device state during reset

With the exception of the JTAG pins, during reset the digital I/O pins go to a disabled
(high impedance) state with internal pullups/pulldowns disabled. Pins with analog
functionality will default to their analog functions.

1.3.2 Device state after reset

After reset the digital I/O pins remain disabled until enabled by software. Also, interrupts
are disabled and the clocks to most of the modules are off. The default clock mode after
reset is FLL Engaged Internal (FEI) mode. In this mode the system is clocked by the
frequency-locked loop (FLL) using the slow internal reference clock as its reference. The
watchdog timer is active; therefore it will need to be serviced (or disabled if debugging).
The core clock, system clock, and flash clock are enabled after reset to support booting.
Also, the flash memory controller cache and prefetch buffers are enabled.

1.4 Typical system initialization
The following is a summary of typical software initialization. The code snippets are taken
from a "hello_world" project written in IAR Embedded Workbench. This project is
available in the Kinetis sample code found in the file KINETIS512_SC.zip which
accompanies this users guide.

1.4.1 Lowest level assembly routines

These routines are assembly source code found in the file crt0.s. The address of the start
of this code is placed in the vector table offset 4 (initial program counter) so that it is
executed first when the processor starts up. This is accomplished by labeling this section,
exporting the label, and placing the label in the vector table. The vector table can be
found in vectors.h. In this example the label used is __startup.

1.4.1.1 Initialize general purpose registers

As a general rule, it is recommended to initialize the processor general purpose registers
(R0-R12) to zero. This is done with the move instruction.

Typical system initialization

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

14 Freescale Semiconductor

MOV r0,#0 ; Initialize the GPRs
MOV r1,#0
MOV r2,#0
MOV r3,#0
MOV r4,#0
MOV r5,#0
MOV r6,#0
MOV r7,#0
MOV r8,#0
MOV r9,#0
MOV r10,#0
MOV r11,#0
MOV r12,#0

1.4.1.1.1 Unmask interrupts at ARM core

CPSIE i ; Unmask interrupts

1.4.1.1.2 Branch to start of C initialization code

import start
 BL start ; call the C code

1.4.2 Startup routines

These routines are C source code found in the files start.c and sysinit.c. This code
provides general system initialization that may be adapted depending on the application.

1.4.2.1 Disable watchdog

For code development and debugging, it is best to disable the watchdog. This requires
unlocking the watchdog first. Keep in mind that there are timing requirements for the
execution of the unlock steps. The two step unlock sequences must execute within 20
clock cycles of each other. Therefore interrupts must be disabled and single-step
debugging cannot be done during this section.

/* disable all interrupts */
asm(" CPSID i");

/* Write 0xC520 to the unlock register */
WDOG_UNLOCK = 0xC520;

/* Followed by 0xD928 to complete the unlock */
WDOG_UNLOCK = 0xD928;

/* enable all interrupts */
asm(" CPSIE i");

/* Clear the WDOGEN bit to disable the watchdog */
WDOG_STCTRLH &= ~WDOG_STCTRLH_WDOGEN_MASK;

Chapter 1 General System Setup (Software Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 15

1.4.2.2 Initialize RAM

Depending on the application, the next steps may be required. First, copy the vector table
from flash to RAM, copy initialized data from flash to RAM, clear the zero-initialized
data section, and copy functions from flash to RAM.

1.4.2.3 Enable port clocks

To configure the I/O pin muxing options, the port clocks must first be enabled. This
allows the pin functions to later be changed to the desired function for the application.

SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK
 | SIM_SCGC5_PORTB_MASK
 | SIM_SCGC5_PORTC_MASK
 | SIM_SCGC5_PORTD_MASK
 | SIM_SCGC5_PORTE_MASK);

1.4.2.4 Ramp system clock to selected frequency

The Multipurpose Clock Generator (MCG) provides several options for clocking the
system. Configure the MCG mode, reference source, and selected frequency output based
on the needs of the system.

1.4.2.5 Enable pin interrupt

In this example, pin PTA4 is connected to a push button. An interrupt is generated when
the button is pressed. A GPIO interrupt is used instead of an NMI interrupt because an
edge-sensitive interrupt is preferred versus a level-sensitive interrupt. This ensures that
one interrupt will occur per button press. Interrupts need to be enabled in the ARM core,
as described in the NVIC chapter.

 /* Configure the PTA4 pin for its GPIO function */
 PORTA_PCR4 = PORT_PCR_MUX(0x1); // GPIO is alt1 function for this pin

 /* Configure the PTA4 pin for rising edge interrupts */
 PORTA_PCR4 |= PORT_PCR_IRQC(0x9);

 /* Initialize the NVIC to enable the specified IRQ */
 enable_irq(87);

NOTE
To save space, the enable_irq() function is not shown. See the
interrupts section for details on how to enable the IRQ. Also, to
save space the interrupt service routine is not shown.

Typical system initialization

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

16 Freescale Semiconductor

1.4.2.6 Enable UART for terminal communication

See in this document chapter 11, "Universal Asynchronous Receiver and Transmitter
(UART) Module."

1.4.2.7 Jump to start of main function for application
/* Jump to main process */
main();

Chapter 1 General System Setup (Software Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 17

Typical system initialization

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

18 Freescale Semiconductor

Chapter 2
General System Setup (Hardware Considerations)

2.1 Overview
This chapter will outline the best practices for hardware design when using the Kinetis
MCUs. The designer must consider numerous aspects when creating the system so that
performance, cost, and quality meet the end-user expectations. Performance usually
implies high speed digital signalling, but it also applies to accurate sampling of analog
signals. Cost is influenced by component selection, of which the PCB may be the most
expensive element. Quality involves manufacturability, reliability, and conformance to
industry or governmental standards.

The Freescale Tower Systems are great for evaluating the operation and performance of
the many features of Freescale MCUs. However, evaluation systems are not ideal
examples for implementation of robust system design techniques. This document will
mention some of the hardware techniques found on the Freescale Tower Systems, and
will give recommendations that are more appropriate to conventional systems that are not
required to implement all of the feature options.

2.2 Floorplan
The organization of the printed circuit board (PCB) depends on many factors. Typically,
there are connectors, mechanical components, high speed signals, low speed signals,
switches, and power domains, among others, that need to be considered. While placement
of connectors and some mechanical components (switches, relays, etc) is critical to the
end product’s form, there are some basic recommendations that can significantly affect
the electrical performance and electromagnetic compatibility (EMC) of the PCB
assembly.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 19

2.2.1 Connectors

The PCB should be organized so that all the connectors are along one edge of the board
and away from the MCU. The concept here is to prevent placing the MCU in-between
connectors that can become effective radiators when cables are attached. This also keeps
the MCU from being in the path of high energy transients that can shoot across the board
from one connector to another. Connectors may be placed on adjacent edges of the PCB
if necessary, as long as the MCU is not in a direct path between the connectors.

Connector locations should allow for placement of filter components. Noise must be
suppressed at the connector, before it can propagate onto the PCB. There will be more
information on this topic in the input filtering section.

2.2.2 Power domains

While many systems have only one power supply voltage, they typically have “clean”
and “noisy” sections. The definitions of “clean” and “noisy” are not important – the
concept is that noise from one section should not interfere with another. In general, AC
power should be separated from DC power and digital should be separated from analog.

Power domain isolation is described in more detail in Freescale application note AN2764,
"Improving the Transient Immunity Performance of Microcontroller-Based
Applications." The basic concept is to isolate or place a low pass filter between power
domains. The AC power domain should be physically isolated from the DC domains.
Physical separation or decoupling filters (Figure 2-1) should be used to separate different
DC functional blocks (power domains) when necessary. Note that the Tower System
boards have multiple decoupling filters to separate digital and analog domains. Also note
that decoupling may not be needed in many applications – physical separation of domains
may be sufficient.

Figure 2-1. Generic decoupling filter

Floorplan

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

20 Freescale Semiconductor

In general, the decoupling network series elements are small inductors or ferrite beads
that have a small impedance (about 100 Ω at 100 MHz). The capacitors are generally
10nF to 1uF and do not have to be the same value on both sides of the filter – select a
lower value for the side that has the higher frequency content.

2.3 PCB routing considerations
This section covers critical power and filtering aspects of PCB layout.

2.3.1 Power supply routing

Routing of power and ground to digital systems is a topic that is discussed and debated in
many textbooks and references. The basic concept is to ensure that the MCU and other
digital components have a low impedance path to the power supply. The typical guidance
that was given for one and two layer PCBs was to use wide traces and few layer
transitions. The recommendations for today’s high speed MCUs follow those given for
high speed microprocessor systems – specifically, use planes for power and ground. This
may raise the PCB cost, but the benefits of crosstalk reduction, reduction of RF
emissions, and improved transient immunity can be realized with lower overall
production and maintenance costs.

In general, the ground routing should take precedence over any other routing. Ground
planes or traces should never be broken by signals. For packages with leads, like the
LQFP, a ground plane directly below the MCU package is recommended to reduce RF
emissions and improve transient immunity. All of the VSS pins of the MCU should be
tied to a ground plane. Ground traces (from a plane) should be kept as short as possible as
they are routed to circuitry on signal layers (top and bottom). Power planes may be
broken to supply different voltages. All of the VDD pins of the MCU should be tied to
the proper power plane. Power traces (from the planes) should be kept as short as
possible as they are routed to circuitry (pullups, filters, other logic & drivers) on the top
and bottom layers. More information is given in the PCB Layer Stack-up section below.

2.3.2 Power supply decoupling and filtering

As mentioned in the power domains section, decoupling networks are used to separate
domains. Bypass capacitors, while also called decoupling capacitors, are the storage
elements that provide the instantaneous energy demanded by the high speed digital
circuits.

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 21

Power supply bypass capacitors must be placed close to the MCU supply pins. The basic
concept is that the bypass capacitor provides the instantaneous current for every logic
transition within the MCU. Fortunately, each Kinetis MCU has a low voltage internal
regulator for the MCU core logic, so the abrupt current demands of the internal high
speed logic are not as critical. However, external signals demand energy from the power
rails when they transition from one logic level to the other. The bypass capacitors provide
the local filtering so that the effects of the external pin transitions are not reflected back
to the power supply, which causes RF emissions.

The basic rule of placing bypass capacitors as close as possible to the MCU is still
appropriate. The idea is to minimize the loop created by the capacitor between the VDD
and VSS pins. The implementation of this rule depends on the number of mounting
layers, how the supplies are routed, and the physical size of the capacitors:

• Number of mounting layers – PCBs with components mounted on the top side only
will have a significant limitation on how close the bypass caps can be located due to
the number of components that require space. PCBs that have components mounted
on both sides of the PCB allow closer placement of the bypass capacitors.

• Supply routing – With the Ball Grid Array (BGA) package, all of the VDD/VSS
pairs are routed to other layers under the package. This allows easier attachment of
the VDD and VSS pins to the power and ground planes within those layers. The
bypass capacitors can be placed in the area below the MCU, with connections very
close to the power pins. See Figure 2-2.

PCB routing considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

22 Freescale Semiconductor

Figure 2-2. K60 TWR board top layer BGA pad arrangement
• Supply routing – For Quad Flat Pack (QFP) packages, the power supply pins may be

supplied radially to the MCU using traces rather than from planes. While it is
adequate to place the bypass capacitors close to the VDD and VSS pins on the traces
leading to the MCU, it is better to have the ground side of the bypass capacitor tied to
the ground plane (through a via and short trace) close to the VSS pin and the VDD
side tied to the power plane (through a via and short trace) close to the VDD pin.

2.3.3 Oscillators

The Kinetis MCU starts up with an internal digitally controlled oscillator (DCO) to
control the bus clocking, and then software is used to enable one or two external
oscillators if desired. The external oscillator for the Multipurpose Clock Generator
(MCG) module can range from a 32.768kHz crystal up to a 32MHz crystal or ceramic
resonator. The external oscillator for the Real Time Clock (RTC) module is a 32.768kHz
crystal.

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 23

2.3.3.1 RTC oscillator

The RTC oscillator connected to the EXTAL32 and XTAL32 pins is the simplest to
route. Both pins are located on outside ring pads on the BGA package, so the crystal can
be placed on the top layer of the PCB, close to the MCU. Since this oscillator does not
require any other external components the routing is straight from the crystal to the MCU
pins.

While the 32.768kHz crystal is available in leaded cylindrical and surface mount
packaging, we recommend using the cylindrical package to simplify placement and
routing. The EXTAL32 and XTAL32 pins can be brought out directly from the MCU and
the crystal can be placed as close as possible to the MCU, which improves noise
immunity. Surface mount crystals may have pad spacing that is further apart than the
leaded crystals, making the routing and placement more complex.

2.3.3.2 MCG oscillator

While the RTC oscillator can also be used as a source for the MCG module, it is limited
to 32 kHz. The high speed oscillator that can be used to source the MCG module is very
versatile. The component choices for this oscillator are detailed in the device-specific
reference manual. The placement of this crystal or resonator is described here.

The EXTAL and XTAL pins are located on the outside pad ring of the BGA package and
on corner pins of the QFP package. This allows room for placement and routing of the
crystal or resonator on the top layer, close to the MCU. The feedback resistor and load
capacitors, if needed, can be placed on the top layer as well. See Figure 2-3 , Figure 2-4 ,
and Figure 2-5.

Note that the low power modes of this oscillator do not require a feedback resistor, and
may not require external load capacitors. (Check the device-specific reference manual for
details.) This makes it as simple as possible since only one component has to be placed
and routed. Low power oscillators are more susceptible to interference by system
generated noise, so the guidelines for crystal routing are important.

The crystal or resonator should be located close to the MCU. No signals of any kind
should be routed on the layer directly below the crystal. A ground plane on the layer
directly below the crystal is recommended. A guard ring should be placed around the
crystal and its load components to protect it from crosstalk from adjacent signals on the
mounting layer. This guard ring can originate from the VSS pin adjacent to the crystal
pins. Note that the guard ring (and load capacitors) is connected to the ground plane in
Figure 2-4 and Figure 2-5.

PCB routing considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

24 Freescale Semiconductor

Figure 2-3. Typical crystal circuit

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 25

Figure 2-4. Potential crystal layout for BGA

PCB routing considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

26 Freescale Semiconductor

Figure 2-5. Potential crystal layout for LQFP

2.3.4 General filtering

General purpose I/O pins should have adequate isolation and filtering from transients.

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 27

2.3.4.1 RESET_b and NMI_b

Critical input pins, like RESET_b and NMI_b should have 100nF capacitors close to the
MCU for transient protection. Each pin has a weak internal pullup, but an external 4.7kΩ
to 10kΩ pullup is recommended. As with power pin filtering, it is recommended to
minimize the ground loop for the capacitor and the VDD loop for the pullup resistor for
these pins.

The RESET_b pin also has a configurable digital filter to reject potential noise on this
input after power-up. The configuration bits are located in the SIM_SOPT6 register.
While use of this filter may negate the need for the pullup and capacitor mentioned
above, it is still recommended to use external filtering in electrically noisy environments.

2.3.4.2 General purpose I/O

General purpose inputs, such as low speed inputs, timer inputs, and signals from off-
board should have low pass filters (series resistor and capacitor to ground) to prevent data
corruption due to crosstalk or transients. The filter capacitor should be placed close to the
MCU pin, while the resistor can be placed closer to the source.

Inputs that come from connectors should have low pass filtering at the connector to
prevent noise from propagating onto the PCB. This requires a robust ground structure
around the connector. Series resistors for signals that come from off-board should be
placed as close to the connector as possible. A filter cap closer to the MCU input pin may
be required if the signal trace length is very long and can pick up noise from other
circuits.

Output pins should not have any significant capacitance placed close to the MCU. These
signals can have capacitors at the load or connector to minimize radiated emissions if
necessary.

2.3.4.3 Analog inputs

Analog inputs should have low pass filters as well. The challenge with analog inputs,
especially for high resolution analog-to-digital conversions, is that the filter design needs
to consider the source impedance and sample time rather than a simple cutoff frequency.
This topic cannot be discussed in detail here, but the general concept is that fast sample
times will require smaller capacitor values and source impedances than slow sample
times. Higher resolution inputs may require smaller capacitor values and source
impedances than lower resolution inputs.

PCB routing considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

28 Freescale Semiconductor

In general, capacitor values can range from 10pF for high speed conversions to 1uF for
low speed conversions. Series resistors can range from a few hundred Ohms to 10k Ω.

2.4 PCB layer stack-up
The Kinetis MCUs are high speed integrated circuits. Care must be taken in the PCB
design to ensure that fast signal transitions (rise/fall times and continuous frequencies) do
not cause RF emissions. Likewise, transient energy that enters the system needs to be
suppressed before it can affect the system operation (compatibility). The guidance from
high speed PCB designers is to have all signals routed within one dielectric (core or
prepreg) of a return path, which usually is a ground plane. This allows return currents to
predictably flow back to the source without affecting other circuits, which is the primary
cause of radiated emissions in electronic systems. This approach requires full planes
within the PCB layer stack and partial planes (copper pours) on signal layers where
possible. All ground planes and ground pours must be connected with plenty of vias.
Likewise, all “like” power planes and power pours must be connected with plenty of vias.

Recommended layer stackups:

4-Layer PCB A:
Layer 1 (top – MCU location)—Ground plane and pads for top mounted
components, no signals
Layer 2 (inner)—signals and power plane
Thick core
Layer 3 (inner)—signals and power plane
Layer 4 (bottom)—ground plane and pads for bottom mounted components, no
signals

4-Layer PCB B:
Layer 1 (top – MCU location)—signals and poured power
Layer 2 (inner)—ground plane
Thick core
Layer 3 (inner)—ground plane
Layer 4 (bottom)—signals and poured power

6-Layer PCB A:
Layer 1 (top – MCU)—power plane and pads for top mounted components, no
signals
Layer 2 (inner)—signals and ground plane
Layer 3 (inner)—power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—signals and power plane

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 29

Layer 6 (bottom)—ground plane and pads for bottom mounted components, no
signals

6-Layer PCB B:
Layer 1 (top – MCU)—signals and power plane
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals and power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—power plane
Layer 6 (bottom)—signals and ground plane

6-Layer PCB C:
Layer 1 (top – MCU)—signals and power plane
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals and power plane
Layer 4 (inner)—signals and ground plane
Layer 5 (inner)—power plane
Layer 6 (bottom)—signals and ground plane

8-Layer PCB A:
Layer 1 (top – MCU)—signals
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals
Layer 4 (inner)—power plane
Layer 5 (inner)—ground plane
Layer 6 (inner)—signals
Layer 7 (inner)—ground plane
Layer 8 (bottom)—signals

8-Layer PCB B:
Layer 1 (top – MCU)—signals and power plane
Layer 2 (inner)—ground plane
Layer 3 (inner)—signals and power plane
Layer 4 (inner)—ground plane
Layer 5 (inner)—power plane
Layer 6 (inner)—signals and ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

8-Layer PCB C:
Layer 1 (top – MCU)—signals and ground plane
Layer 2 (inner)—power plane
Layer 3 (inner)—ground plane

PCB layer stack-up

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

30 Freescale Semiconductor

Layer 4 (inner)—signals
Thick core
Layer 5 (inner)—signals
Layer 6 (inner)—ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

8-Layer PCB D:
Layer 1 (top – MCU)—signals and ground plane
Layer 2 (inner)—power plane
Layer 3 (inner)—ground plane
Layer 4 (inner)—signals and power plane
Thick core
Layer 5 (inner)—signals and power plane
Layer 6 (inner)—ground plane
Layer 7 (inner)—power plane
Layer 8 (bottom)—signals and ground plane

In general, avoid placing one signal layer adjacent to another signal layer.

Other module hardware considerations

2.5.1 VBAT

The VBAT input supplies power to the RTC and a 32-byte register file during
powerdown and low power modes. This pin can be sourced from the VDD supply or
from a dedicated back-up battery cell. A simple battery isolator consists of a dual
Schottky array with common cathodes. The TWR board example below (Figure 2-6)
uses the BAT54C device to provide battery back-up when the main system power is off.
A 100nF bypass capacitor, placed as near as possible to the MCU, is recommended to
minimize the effects of supply switching events.

2.5

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 31

Figure 2-6. VBAT connection example

2.5.2 Voltage reference module

If the output from the Voltage Reference Module is used in tight-regulation buffer mode
a 100nF capacitor must be connected between the VREF_OUT pin and ground.

2.5.3 Debug interface

The Kinetis MCUs use the Cortex Debug interfaces for debugging and programming.
The 19-pin Cortex Debug+ETM interface provides connections for JTAG and Serial
Wire debugging, as well as target power. The 9-pin Cortex Debug interface provides
connections for JTAG and Serial Wire debugging. Figure 2-7 shows the 20-pin header
implementation (19 pins populated) as used on the TWR system boards. Figure 2-8
shows the 10-pin header implementation (9 pins populated).

Other module hardware considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

32 Freescale Semiconductor

Figure 2-7. 20-pin debug interface

Figure 2-8. 10-pin debug interface

The debug signals are multiplexed with general purpose I/O pins, so some signals will
require proper biasing to select the operating mode. The JTAG_TMS signal on PTA3
requires a strong pullup resistor for mode selection. The Cortex Debug specification
recommends that the JTAG_TCLK and JTAG_TDI pins (on PTA0 and PTA1) have pull
resistors (high or low) to force a known state on these debug input pins. Note that the
RESET_b signal in the debug interface is the MCU’s reset pin and not the JTAG_TRST
signal. The connectors for this interface are keyed dual row 0.050” centered headers.
When implementing either of these headers on a target system, pin 7 must be depopulated
to use the 19-pin or 9-pin adapters from the debug tool. The Samtec part numbers for
these connectors are:

• FTSH-110-01-L-DV-K – 20-pin keyed connector
• FTSH-105-01-L-DV-K – 10-pin keyed connector

Chapter 2 General System Setup (Hardware Considerations)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 33

• FTSH-110-01-L-DV – 20-pin connector, no key
• FTSH-105-01-L-DV – 10-pin connector, no key

This interface is useful during the development phase of a project. The header may not
need to be populated in the production phase of the project, but the PCB pads should be
kept available for future debugging purposes.

Other module hardware considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

34 Freescale Semiconductor

Chapter 3
Nested Vector Interrupt Controller (NVIC)

3.1 Overview
This chapter shows how the NVIC is integrated into the Kinetis MCUs and how to
configure it and set-up module interrupts. It also demonstrates the steps to set the
interrupts for the desired peripheral and how to locate the vector table from flash to
RAM.

3.1.1 Introduction

The NVIC is a standard module on the ARM Cortex M series. This module is closely
integrated with the core and provides a very low latency for entering an interrupt service
routine ISR (12 cycles) and exiting an ISR (12 cycles).

The NVIC provides 16 different interrupt priorities. Priority 0 is the highest and the
lowest is15. This can be used to control which interrupt must be serviced. For example,
on a motor-control application if a UART and a timer interrupt occur at the same time,
serving the timer interrupt that moves the motor is more critical than the UART interrupt
that just received a character. In this case, the timer priority must be set higher than the
UART.

3.1.2 Features

On Kinetis MCUs the NVIC provides up to 120 interrupt sources including 16 that are
core specific. It also implements up to 16 priority levels that are fully programmable. The
NVIC uses a vector table to manage the interrupts. This vector table can be stored in
either flash or RAM, depending on the application.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 35

Table 3-1. Core exceptions

Address Vector IRQ Source module Source description

ARM Core System Handler Vectors

0x0000_0000 0 — ARM core Initial stack pointer

1 — ARM core Initial program Counter

2 — ARM core NMI

3 — ARM core Hard fault

4 — ARM core Memory manage fault

5 — ARM core Bus fault

6 — ARM core Usage fault

11 — ARM core SVCall

12 — ARM core Debug monitor

14 — ARM core Pendable request for system service

15 — ARM core System tick timer

3.2 Configuration examples
The NVIC is easy to configure. Two examples are shown in this section. The first
example shows how to configure the NVIC for a module. The low power timer (LPTMR)
is used as the base for this example. The second example shows how to locate the vector
table from the flash to RAM.

3.2.1 Configuring the NVIC

Configuring the NVIC for the specific module involves writing three registers:
NVICSERx (NVIC Set Enable Register), NVICCPRx (NVIC Clear Pending Register),
and NVICIPxx (NVIC Interrupt Priority). After the NVIC is configured and the desired
peripheral has its interrupts enabled, the NVIC serves any pending request from that
module by going to the module's ISR.

3.2.1.1 Code example and explanation

This example shows how to set up the NVIC for a specific module. In this case the
LPTMR is used.

The steps to configure the NVIC for this module are:

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

36 Freescale Semiconductor

1. Identify the vector number and the IRQ number of the module from the vector table
in the device-specific reference manual in the section Interrupt Channel
Assignments. For the LPTMR the vector is 101.

Table 3-2. LPTMR
vector

Address Vector IRQ Source Module Source Descrip‐
tion

0x0000_018C 99 83 TSI Single interrupt
Source

0x0000_0190 100 84 MCG

0x0000_0194 101 85 LPTMR

2. Determine which NVICSERx register contains the IRQ. Each NVICSERx register
contains 32 IRQs. Therefore, the NVICSER0 can enable from IRQ 0 to IRQ 31, the
NVICSER1 from IRQ 32 to IRQ 63, and NVICSER2 from IRQ 64 to IRQ 95. For
this example, the NVICSER2 is used because the LPTMR IRQ is 85. The
NVICCPRx takes on the same number, in this case NVICCPR2.

3. To know which bit to set perform a modulo operation to obtain the remainder by 32
of the IRQ number. This number is used to enable the interrupt on NVICSER2 and to
clear the pending interrupts from NVICCPR2.

Example:

LPTMR BIT = 85 mod 32

LPTMR BIT = 21

4. At this point, the interrupt for the LPTMR can be configured:

NVICICPR2|=(1<<21); //Clear any pending interrupts on LPTMR
NVICISER2|=(1<<21); //Enable interrupts from LPTMR module

5. Next, set the interrupt priority level. This is application dependent. On Kinetis MCUs
there are 16 different priority levels. To set the priority, write to the NVICIPxx
register, the “xx” represents the IRQ number, in this example, NVICIP85. Note the
most significant nibble is used to set-up the priority, the lower nibble is reserved and
reads as zero. The LPTMR example sets the priority to 3:

NVICIP85 = 0x30; //Set Priority 3 to the LPTMR module

6. After the NVIC registers are set-up, finish the peripheral configuration that must
enable the interrupt.

7. In the ISR, clear the peripheral interrupt flag to avoid re-entrance. For this example:

Chapter 3 Nested Vector Interrupt Controller (NVIC)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 37

void vfnLPTMR_ISR (void)
{
 LPTMR0_CSR|=LPTMR_CSR_TCF_MASK; //Clear LPTMR Compare flag
 /*ISR code goes here*/
}

3.2.2 Relocating the vector table

Some applications need the vector table to be located in RAM. For example in an RTOS
implementation, the vector table needs to be in RAM, this allows the Kernel to install
ISRs by modifying the vector table during runtime.

The NVIC provides a simple way to reallocate the vector table, for this purpose the user
needs to set up the Vector Table Offset Register (VTOR) with the address offset for the
new position. Use the bit TBLBASE[29] to indicate the table is either on RAM with 1 or
flash with 0 and the TBLOFF[28:7] to indicate the address offset for the table.

The Cortex-M4 assumes the RAM starts at 0x20000000 and expects the vector table to be
stored in that address if the VTOR TBLBASE[29] bit is set. Because the Kinetis MCU
family RAM starts at 0x1fff0000, this bit must be cleared.

If the vector table is planned to be stored in RAM, you must the table copy from the flash
to RAM. Also note that in some low power modes, a portion of the RAM will not be
powered, which can lead to a vector table corruption. In this case, locate the vector table
in the flash prior to entering a low power mode.

3.2.2.1 Code example and explanation
The vector table is usually in flash after reset, This indicates that moving the table from
flash to RAM is the most common action. To achieve this, two steps must be performed:

1. Copy from flash to RAM the entire vector table. The linker command file labels are
useful in this step. This is what the code looks like:

/*Address for VECTOR_TABLE and VECTOR_RAM come from the linker file*/

 extern uint32 __VECTOR_TABLE[];
 extern uint32 __VECTOR_RAM[];

 /* Copy the vector table to RAM */
 if (__VECTOR_RAM != __VECTOR_TABLE)
 {
for (n = 0; n < 0x410; n++)
__VECTOR_RAM[n] = __VECTOR_TABLE[n];
 }

2. After the table has been copied, set the proper offset for the VTOR register:

/* Set the VTOR to be on RAM */
SCB_VTOR = __VECTOR_RAM;

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

38 Freescale Semiconductor

It is important to follow the above mentioned steps in the order indicated. This ensures
there is always a valid vector table.

3.2.3 Disabling priorities

There are applications with important code where just certain interrupt priorities are
allowed to interrupt, this is because these interrupts are more critical to the application. In
other cases, all the interrupts need to be disabled to ensure the code is atomic, for
example, a context switch on Operating Systems. The Cortex M4 provides the BASEPRI
register that allows disabling lower interrupt priorities from any priority you choose or
the option of disabling them all.

The BASEPRI is used as the NVICIPxx register. Therefore, 16 interrupt priorities can be
masked and only the most significant nibble is used.

Please note that BASEPRI does not disable any of the fixed priority exceptions as Reset
(priority -3), a non-maskable interrupt (NMI) (priority -2), and Hard Fault (priority -1).

BASEPRI can be set only in privilege mode. The reset value is 0x00, therefore all
interrupts are enabled.

3.2.3.1 Code example and explanation
To set up BASEPRI a function from your development tools can be used. For example in
IAR tools, the function is called __set_BASEPRI.

1. For disabling lower interrupt priorities set the lowest priority level that the
application allows. For example, priority 5 – 0 are allowed. BASEPRI must take the
priority 5.

/* Disable interrupts priorities from 0x06 – 0x0F */
__set_BASEPRI(0x50);

2. For disabling all priorities to ensure atomic code, the BASEPRI must take the
maximum priority value available, for Kinetis MCUs which is priority 15

/* Disable all interrupt priorities */
__set_BASEPRI(0xF0);

Chapter 3 Nested Vector Interrupt Controller (NVIC)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 39

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

40 Freescale Semiconductor

Chapter 4
Clocking System

4.1 Overview
This chapter will demonstrate how to configure the Clocking System and the
Multipurpose Clock Generator (MCG) module in various modes that a typical application
may require. The examples will show how to enable the on-chip PLL for high-speed
operation and how to move backwards and forwards between using the PLL and a low
power/low speed mode for entering very low power run mode (VLPR). Also, an example
is provided of how to configure the frequency-locked loop (FLL) as the main system
clock source, using the RTC oscillator as the reference clock.

4.2 Features
The clocking system is summarized in Figure 4-1.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 41

Slow IRC

PLL

FLL

MCGOUTCLK

MCGPLLCLK

MCG

MCGFLLCLK

OUTDIV1 Core / system clocks

Fast IRC

OUTDIV4 Flash clock

Real-time clock

OUTDIV2 Bus clock

RTC oscillator
EXTAL32

XTAL32

EXTAL

XTAL

System oscillator

SIM

FRDIV

MCGIRCLK

ERCLK32KOSC32KCLK

XTAL_CLK

÷2
MCGFFCLK

OSCERCLK
OSC
logic

OSC logic

C
lo

ck
 o

pt
io

ns
 fo

r
so

m
e

pe
rip

he
ra

ls

Clock options for
some peripherals

MCGFLLCLK
MCGPLLCLK/

PMC logic

PMC
LPO

OSCCLK

CG

CG

CG

CG

CG

CG — Clock gate

OUTDIV3 FlexBus clockCG

Figure 4-1. Clock distribution diagram

The system level clocks are provided by the MCG. The MCG consists of:
• Two individually trimable internal reference clocks (IRC), a slow IRC with a

frequency of ~32 kHz and a fast IRC with a frequency of ~4 MHz (with a fixed
divide by 2).

• Frequency locked loop (FLL) using the slow IRC or an external source as the
reference clock.

• Phase locked loop (PLL) using an external source as the reference clock.
• Auto trim machine (ATM) to allow both of the IRCs to be trimmed to a custom

frequency using an externally-generated reference clock.

The clocks provided by the MCG are summarized as follows:
• MCGOUTCLK – this is the main system clock used to generate the core, bus, and

memory clocks. It can be generated from one of the on-chip reference oscillators, the
on-chip crystal/resonator oscillator, an externally generated square wave clock, the
FLL, or the PLL.

• MCGFLLCLK – this is the output of the FLL and is available any time the FLL is
enabled.

Features

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

42 Freescale Semiconductor

• MCGPLLCLK – this is the output of the PLL and is available any time the PLL is
enabled.

• MCGIRCLK – this is the output of the selected IRC. The selected IRC will be
enabled whenever this clock is selected.

• MCGFFCLK – this is either the slow IRC or the external clock source divided by the
FLL external reference divider (FRDIV). This clock is available in all modes except
FLL bypassed internal (FBI) and bypassed low power internal (BLPI) when the slow
IRC is selected. The source of this clock is selected by the value of the internal
reference select bit (IREFS).

In addition to the clocks provided by the MCG, there are three other system level clock
sources available for use by various peripheral modules:

• OSCERCLK – this is the clock provided by the system oscillator and is the output of
the oscillator or the external square wave clock source.

• ERCLK32K – this is the output of the RTC oscillator or the system oscillator if it is
set to provide a 32 kHz clock in low power mode.

• LPO – this is the output of the low power oscillator. It is an on-chip, very low power
oscillator with an output of approximately 1 kHz that is available in all run and low
power modes.

4.3 Configuration examples
The MCG can be configured in one of several modes to provide a flexible means of
providing clocks to the system for a wide range of applications. Some of the more
commonly used modes are described in the following configuration examples.

After exiting reset, or recovering from a very low leakage state, the MCG will be in FLL
engaged internal (FEI) mode with MCGCLKOUT at 20.97 MHz, assuming a factory
trimmed slow IRC frequency of 32.768 kHz. If a different MCG mode is required, the
MCG can be transitioned to that mode under software control.

Although not included in the sample code, you should include a “timeout” mechanism
when checking the status bits within the MCG. After making changes to clock selection
bits, enabling the oscillator or the PLL, the appropriate status bits should be verified
before continuing. If for some reason the bit being checked does not update, the “while
loop” will never exit unless a timeout mechanism is used. A timeout counter should be
started before checking the status bits. This counter must then be stopped and reset after
the loop exits. If a timeout is generated, a decision can be made about what to do
depending on the status bits that failed to update. For example, if the oscillator does not

Chapter 4 Clocking System

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 43

start due to a damaged PCB trace, the decision to continue with an internal-only clocking
mode can be made with an appropriate indication to the user or a central monitoring
station.

4.3.1 Transitioning to PLL engaged external mode

PLL engaged external mode uses an external clock, from either the crystal oscillator or an
externally generated square wave, as the reference for the on-chip PLL. An on-chip
divider allows an external clock to provide the reference clock to the PLL within the
required range of 2–4 MHz. The PLL provides the most accurate clock source for
frequencies greater than can be generated by an external source. In this example, an 8
MHz crystal is used to generate a 96 MHz system clock. The system clock dividers are
set to allow the maximum system performance with this clock source. The PLL
frequency can be divided down to provide the USB clock of 48 MHz. The MCG is
configured to minimize PLL jitter (maximum PLL frequency with the minimum
multiplication factor).

4.3.1.1 Code example and explanation
// If the internal load capacitors are being used, they should be selected
// before enabling the oscillator. Application specific. 16pF and 8pF selected
// in this example
 OSC_CR = OSC_CR_SC16P_MASK | OSC_CR_SC8P_MASK;
// Enabling the oscillator for 8 MHz crystal
// RANGE=1, should be set to match the frequency of the crystal being used
// HGO=1, high gain is selected, provides better noise immunity but does draw
// higher current
// EREFS=1, enable the external oscillator
// LP=0, low power mode not selected (not actually part of osc setup)
// IRCS=0, slow internal ref clock selected (not actually part of osc setup)
 MCG_C2 = MCG_C2_RANGE(1) | MCG_C2_HGO_MASK | MCG_C2_EREFS_MASK;

// Select ext oscillator, reference divider and clear IREFS to start ext osc
// CLKS=2, select the external clock source
// FRDIV=3, set the FLL ref divider to keep the ref clock in range
// (even if FLL is not being used) 8 MHz / 256 = 31.25 kHz
// IREFS=0, select the external clock
// IRCLKEN=0, disable IRCLK (can enable it if desired)
// IREFSTEN=0, disable IRC in stop mode (can keep it enabled in stop if desired)
 MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);

// wait for oscillator to initialize
 while (!(MCG_S & MCG_S_OSCINIT_MASK)){}

// wait for Reference clock to switch to external reference
 while (MCG_S & MCG_S_IREFST_MASK){}

// Wait for MCGOUT to switch over to the external reference clock
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}

// Now configure the PLL and move to PBE mode
// set the PRDIV field to generate a 4MHz reference clock (8MHz /2)
 MCG_C5 = MCG_C5_PRDIV(1); // PRDIV=1 selects a divide by 2

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

44 Freescale Semiconductor

// set the VDIV field to 0, which is x24, giving 4 x 24 = 96 MHz
// the PLLS bit is set to enable the PLL
// the clock monitor is enabled, CME=1 to cause a reset if crystal fails
// LOLIE can be optionally set to enable the loss of lock interrupt

 MCG_C6 = MCG_C6_CME_MASK | MCG_C6_PLLS_MASK;

// wait until the source of the PLLS clock has switched to the PLL
 while (!(MCG_S & MCG_S_PLLST_MASK)){}
// wait until the PLL has achieved lock
 while (!(MCG_S & MCG_S_LOCK_MASK)){}
// set up the SIM clock dividers BEFORE switching to the PLL to ensure the
// system clock speeds are in spec.
// core = PLL (96MHz), bus = PLL/2 (48MHz), flexbus = PLL/2 (48MHz), flash = PLL/4 (24MHz)
 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1)
 | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(3);

// Transition into PEE by setting CLKS to 0
// previous MCG_C1 settings remain the same, just need to set CLKS to 0
 MCG_C1 &= ~MCG_C1_CLKS_MASK;

// Wait for MCGOUT to switch over to the PLL
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){}

// The USB clock divider in the System Clock Divider Register 2 (SIM_CLKDIV2)
// should be configured to generate the 48 MHz USB clock before configuring
// the USB module.

 SIM_CLKDIV2 |= SIM_CLKDIV2_USBDIV(1); // sets USB divider to /2 assuming reset
 // state of the SIM_CLKDIV2 register

4.3.2 Transitioning between PLL engaged external mode and
bypassed low power internal mode

To be able to move the MCU into the VLPR (or wait) mode, the MCG must be set in a
low-power, low-frequency mode with MCGCLKOUT <= 2 MHz. This mode is provided
by means of selecting the fast IRC when the MCG is set in BLPI mode. This example
shows how to move to this clock mode from PLL engaged external mode before entering
VLPR and then returns to that mode after VLPR is exited. In VLPR mode, the system
clock dividers cannot be changed. These dividers should be configured when the MCG is
in BLPI mode before the MCU power mode is changed to VLPR.

4.3.2.1 Code example and explanation
// Moving from PEE to BLPI
// first move from PEE to PBE
 MCG_C1 |= MCG_C1_CLKS(2); // select external reference clock as MCG_OUT
// Wait for clock status bits to update indicating clock has switched
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}
// now move to FBE mode
// make sure the FRDIV is configured to keep the FLL reference within spec.
 MCG_C1 &= ~MCG_C1_FRDIV_MASK; // clear FRDIV field
 MCG_C1 |= MCG_C1_FRDIV(3); // set FLL ref divider to 256

 MCG_C6 &= ~MCG_C6_PLLS_MASK; // clear PLLS to select the FLL

 while (MCG_S & MCG_S_PLLST_MASK){} // Wait for PLLST status bit to clear to

Chapter 4 Clocking System

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 45

 // indicate switch to FLL output
// now move to FBI mode
 MCG_C2 |= MCG_C2_IRCS_MASK; // set the IRCS bit to select the fast IRC
// set CLKS to 1 to select the internal reference clock
// keep FRDIV at existing value to keep FLL ref clock in spec.
// set IREFS to 1 to select internal reference clock
 MCG_C1 = MCG_C1_CLKS(1) | MCG_C1_FRDIV(3) | MCG_C1_IREFS_MASK;
// wait for internal reference to be selected
 while (!(MCG_S & MCG_S_IREFST_MASK)){}
// wait for fast internal reference to be selected
 while (!(MCG_S & MCG_S_IRCST_MASK)){}
// wait for clock to switch to IRC
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x1){}
// now move to BLPI
 MCG_C2 |= MCG_C2_LP_MASK; // set the LP bit to enter BLPI

// set up the SIM clock dividers BEFORE switching to VLPR to ensure the
// system clock speeds are in spec. MCGCLKOUT = 2 MHz in BLPI mode
// core = 2 MHz, bus = 2 MHz, flexbus = 2 MHz, flash = 1 MHz
 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0)
 | SIM_CLKDIV1_OUTDIV3(0) | SIM_CLKDIV1_OUTDIV4(1);

Now that MCGCLKOUT is at 2 MHz, the MCU VLPR power mode may be selected.
Refer to the power management controller for details on this. When the MCU transitions
back to normal run mode, the MCG will still be configured in BLPI mode. The MCG is
then configured in PLL engaged external mode by means of software as follows:

// Moving from BLPI to PEE
// first move to FBI
 MCG_C2 &= ~MCG_C2_LP_MASK; // clear the LP bit to exit BLPI
// move to FBE
// clear IREFS to select the external ref clock
// set CLKS = 2 to select the ext ref clock as clk source
// it is assumed the oscillator parameters in MCG_C2 have not been changed
 MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);
// wait for the oscillator to initialize again
 while (!(MCG_S & MCG_S_OSCINIT_MASK)){}
// wait for Reference clock to switch to external reference
 while (MCG_S & MCG_S_IREFST_MASK){}
// wait for MCGOUT to switch over to the external reference clock
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}
//configure PLL and system clock dividers as FEI to PEE example
 MCG_C5 = MCG_C5_PRDIV(1);
 MCG_C6 = MCG_C6_PLLS_MASK;
 while (!(MCG_S & MCG_S_PLLST_MASK)){}
 while (!(MCG_S & MCG_S_LOCK_MASK)){}
// configure the clock dividers back again before switching to the PLL to ensure the system
// clock speeds are in spec.
// core = PLL (96MHz), bus = PLL/2 (48MHz), flexbus = PLL/2 (48MHz), flash = PLL/4 (24MHz)
 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1)
 | SIM_CLKDIV1_OUTDIV3(1) | SIM_CLKDIV1_OUTDIV4(3);
 MCG_C1 &= ~MCG_C1_CLKS_MASK;
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){}

4.3.3 Configuring the FLL with the RTC oscillator as a reference

The MCG can generate all the system clocks using the FLL with the RTC oscillator being
used as the reference for it. This has the benefit that an accurate reference clock can be
used without the cost of additional external components in an application where the RTC
is already being used.

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

46 Freescale Semiconductor

4.3.3.1 Code example and explanation
// Using the RTC OSC as Ref Clk
// Configure and enable the RTC OSC
// select the load caps (application dependent) and the oscillator enable bit
// note that other bits in this register may need to be set depending on the intended use of
the RTC
 RTC_CR |= RTC_CR_SC16P_MASK | RTC_CR_SC8P_MASK | RTC_CR_OSCE_MASK;

 time_delay_ms(1000); // wait for the RTC oscillator to initialize
// select the RTC oscillator as the MCG reference clock
 SIM_SOPT2 |= SIM_SOPT2_MCGCLKSEL_MASK;

// ensure MCG_C2 is in the reset state, key item is RANGE = 0 to select the correct FRDIV
factor
 MCG_C2 = 0x0;

// Select the Reference Divider and clear IREFS to select the osc
// CLKS=0, select the FLL as the clock source for MCGOUTCLK
// FRDIV=0, set the FLL ref divider to divide by 1
// IREFS=0, select the external clock
// IRCLKEN=0, disable IRCLK (can enable if desired)
// IREFSTEN=0, disable IRC in stop mode (can keep it enabled in stop if desired)
 MCG_C1 = 0x0;
// wait for Reference clock to switch to external reference
 while (MCG_S & MCG_S_IREFST_MASK){}
// Wait for clock status bits to update
 while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x0){}

// Can select the FLL operating range/freq by means of the DRS and DMX32 bits
// Must first ensure the system clock dividers are set to keep the core and
// bus clocks within spec.
// core = FLL (48 MHz), bus = FLL (48 MHz), flexbus = PLL (48 MHz), flash = PLL/2 (24 MHz)

 SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0)
 | SIM_CLKDIV1_OUTDIV3(0) | SIM_CLKDIV1_OUTDIV4(1);
// In this example DMX32 is set and DRS is set to 1 = 48 MHz from a 32.768 kHz
// crystal
 MCG_C4 |= MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(1);

4.4 Clocking system device hardware implementation
It is possible to provide all the system level clocks from internal sources. However, if the
PLL is to be used or an accurate reference clock is required, an external clock must be
provided. This can be from an externally generated clock source that provides a square
wave clock or it can be from an internal oscillator using an external crystal or resonator.

There are two independent on-chip crystal oscillators, one for the RTC and one to
provide a reference for the main system clocks.

The RTC clock source comes only from the dedicated RTC oscillator. In many cases, the
RTC oscillator will require only an external 32 kHz crystal. The oscillator feedback
resistor is integrated within the device along with selectable internal load capacitors.

Chapter 4 Clocking System

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 47

The main system oscillator can be configured in various ways depending on the crystal
frequency and mode being used. Refer to the device-specific reference manual for details.
The main oscillator also has programmable internal load capacitors. When the main
oscillator is configured for low power an integrated oscillator feedback resistor is
provided.

The internal crystal load capacitors in both oscillators are selectable in software to
provide up to 30 pF, in 2 pF increments, for each of the EXTAL and XTAL pins. This
provides an effective series capacitive load of up to 15 pF. The parasitic capacitance of
the PCB should also be included in the calculation of the total crystal load. The
combination of these two values will often mean that no external load capacitors are
required.

If either of the main oscillator pins are not being used, they may be left unconnected in
their default reset configuration or may be used as general-purpose outputs (not inputs).

4.5 Layout guidelines for general routing and placement
Use the following general routing and placement guidelines when laying out a new
design. These guidelines will help to minimize electromagnetic compatibility (EMC)
problems.

• To minimize parasitic elements, surface mount components should be used where
possible

• All components should be placed as close to the MCU as possible.
• If external load capacitors are required, they should use a common ground

connection shared in the center
• If the crystal, or resonator, has a ground connection, it should be connected to the

common ground of the load capacitors
• Where possible:

• keep high-speed IO signals as far from the EXTAL and XTAL signals as
possible

• do not route signals under oscillator components - on same layer or layer below
• select the functions of pins close to EXTAL and XTAL to have minimal

switching to reduce injected noise

Layout guidelines for general routing and placement

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

48 Freescale Semiconductor

4.6 References
The following list of application notes associated with crystal oscillators are available on
the Freescale website at www.freescale.com. They discuss common oscillator
characteristics, potential problems and troubleshooting guidelines.

• AN1706: Microcontroller Oscillator Circuit Design Considerations
• AN1783: Determining MCU Oscillator Start-Up Parameters
• AN2606: Practical Considerations for Working With Low-Frequency Oscillators
• AN3208: Crystal Oscillator Troubleshooting Guide

Chapter 4 Clocking System

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 49

References

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

50 Freescale Semiconductor

Chapter 5
Power Management Controller (PMC/MODECTL)

Using the power management controller

5.1.1 Overview

This section will demonstrate how to use the Power Management Controller (PMC)
module to protect the MCU from unexpected low VDD events. References to other
protection options will also be made.

5.1.1.1 Introduction

This chapter is a brief description of the power management features of the Kinetis 32-bit
MCU.

There are three modules covered in this chapter:

• Power Management Controller (PMC)
• Mode Controller (MC)
• Low Leakage Wakeup Unit (LLWU)

Using the low voltage detection system

5.1.2.1 Features

The LVD features includes the protection of memory contents from brown out conditions
and the operation of the MCU below the specified VDD levels. The user has full control
over the trip voltages of two detection circuits. The first is a warning detect circuit and
the second is reset detect circuit.

5.1

5.1.2

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 51

As voltage falls below the warning level the LVW circuit flags the warning event and can
cause an interrupt. If the voltage continues to fall, the LVD circuit flags the detect event
and can either cause a reset or an interrupt. The user can choose what action to take in the
interrupt service routine. If a detect is selected to drive reset, the LVD circuit holds the
MCU in reset until the supply voltage rises above the detect threshold.

There are two independent POR circuits for the MCU, one for VDD and another for
VBAT. The POR circuit for the MCU will hold the MCU in reset based upon the VDD
voltage. The POR circuit for VBAT will reset both the RTC and OSC2 modules, but will
not reset the MCU. If VBAT supply is not present, then accesses to the RTC registers
may not occur and could result in a core-lockup type reset in the MCU.

5.1.2.2 Configuration examples

LVD and LVW initialization code is given below: Notice the comments describing the
chosen settings. You should select the statement options for your application. The NVIC
vector flag may be set and should be cleared. The Interrupt is enabled in the NVIC in this
initialization.

void LVD_Init(void)
{ /* setup LVD
 Low-Voltage Detect Voltage Select
 Selects the LVD trip point voltage (VLVD).
 00 Low trip point selected (VLVD = VLVDL)
 01 High trip point selected (VLVD = VLVDH)
 10 Reserved
 11 Reserved
 */
/* Choose one of the following statements */
PMC_LVDSC1 |= PMC_LVDSC1_LVDRE_MASK ; //Enable LVD Reset
// PMC_LVDSC1 &= ~PMC_LVDSC1_LVDRE_MASK ; //Disable LVD Reset

/* Choose one of the following statements */
//PMC_LVDSC1 |= PMC_LVDSC1_LVDV_MASK & 0x01; //High Trip point 2.48V
PMC_LVDSC1 &= PMC_LVDSC1_LVDV_MASK & 0x00; //Low Trip point 1.54 V

/* Choose one of the following statements */
PMC_LVDSC2 = PMC_LVDSC2_LVWACK_MASK | PMC_LVDSC2_LVWV(0);
 //0b00 low trip point LVWV
//PMC_LVDSC2 = PMC_LVDSC2_LVWACK_MASK | PMC_LVDSC2_LVWV(1);
 //0b01 mid1 trip point LVWV
//PMC_LVDSC2 = PMC_LVDSC2_LVWACK_MASK | PMC_LVDSC2_LVWV(2);
 //0b01000010 mid2 trip point LVWV
//PMC_LVDSC2 = PMC_LVDSC2_LVWACK_MASK | PMC_LVDSC2_LVWV(3);
 //0b01000011 high trip point LVWV
// ack to clear initial flags
PMC_LVDSC1 |= PMC_LVDSC1_LVDACK_MASK; // clear detect flag if present
PMC_LVDSC2 |= PMC_LVDSC2_LVWACK_MASK; // clear warning flag if present

/*
LVWV if LVDV high range selected
 Low trip point selected (VLVW = VLVW1) - 2.62
 Mid 1 trip point selected (VLVW = VLVW2) - 2.72
 Mid 2 trip point selected (VLVW = VLVW3) - 2.82
 High trip point selected (VLVW = VLV4) - 2.92
LVWV if LVDV low range selected
 Low trip point selected (VLVW = VLVW1) - 1.74

Using the low voltage detection system

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

52 Freescale Semiconductor

 Mid 1 trip point selected (VLVW = VLVW2) - 1.84
 Mid 2 trip point selected (VLVW = VLVW3) - 1.94
 High trip point selected (VLVW = VLV4) - 2.04
*/
NVICICPR0|=(1<<20); //Clear any pending interrupts on LVD
NVICISER0|=(1<<20); //Enable interrupts from LVD module
}

5.1.2.3 Interrupt code example and explanation

The LVD circuitry can be programmed to cause an interrupt. You should create a service
routine to clear the flags and react appropriately. An example of such an interrupt service
routine is given. Notice the NVIC module references. This clearing is redundant if the
module clearing is done correctly.

void pmc_lvd_isr(void){
 printf("\rPMC_LVD ISR entered** ");
 if (PMC_LVDSC2 & PMC_LVDSC2_LVWF_MASK)
 PMC_LVDSC2 |= PMC_LVDSC2_LVWACK_MASK;
 if (PMC_LVDSC1 & PMC_LVDSC1_LVDF_MASK)
 PMC_LVDSC1 |= PMC_LVDSC1_LVDACK_MASK;
 NVICICPR0|=(1<<20); //Clear any pending interrupts on LVD
}

5.1.2.4 Hardware implementation

RESET PIN: The reset pin is driven out if the internal circuitry detects a reset. This is
true for all resets, including a reset that causes a recovery from the VLLSx modes. Since
these could be warm starts, customers who do want not their external circuitry reset do
not want to connect external circuitry to the MC reset pin.

VDD: The Vdd supply pins can be driven between 1.71 V and 3.6 V DC.

VBAT: The VBAT supply pins can be driven independently from VDD but should be
powered up to at least VBATmin. Since there is no equivalent LVD circuitry for the
VBAT supply, the VBAT minimum is the POR release point [POR max = 1.5 V].
External bypass capacitors should be supplied.

XTAL32 and EXTAL32: Connected to a secondary watch crystal for supplying clock to
the RTC module. No load capacitors or bias resistor is required as these are supplied
internally.

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 53

Using the mode controller

5.2.1 Overview

This section will demonstrate how to use the Mode Controller (MC). The MC is
responsible for controlling the entry and exit from all of the run, wait and stop modes of
the MCU. This module works in conjunction with the PMC and the LLWU to wakeup the
MCU and move between power modes.

5.2.1.1 Introduction

There are 10 power modes. They are described below.

1. Run — Default Operation of the MCU out of Reset, On-chip voltage regulator is On,
full capability.

2. Wait — ARM core enters Sleep Mode, NVIC remains sensitive to interrupts,
Peripherals Continue to be clocked.

3. Stop — ARM core enters DeepSleep Mode, NVIC is disabled, WIC is used to wake
up from interrupt, peripheral clocks are stopped.

4. Very Low Power Run(VLPR) — On chip voltage regulator is in a mode that supplies
only enough power to run the MCU in a reduced frequency. Core and Bus frequency
limited to 2MHz.

5. Very Low Power Wait(VLPW) — ARM core enters Sleep Mode, NVIC remains
sensitive to interrupts (FCLK = ON), On chip voltage regulator is in a mode that
supplies only enough power to run the MCU at a reduced frequency.

6. Very Low Power Stop(VLPS) — ARM core enters DeepSleep Mode, NVIC is
disabled (FCLK = OFF), WIC is used to wake up from interrupt, peripheral clocks
are stopped, On chip voltage regulator is in a mode that supplies only enough power
to run the MCU at a reduced frequency, all SRAM is operating (content retained and
I/O states held).

7. Low leakage stop(LLS) — ARM core enters DeepSleep Mode, NVIC is disabled,
LLWU is used to wake up, peripheral clocks are stopped, all SRAM is operating
(content retained and I/O states held), most of peripheral are in state retention mode
(cannot operate).

8. Very low leakage stop3(VLLS3) — ARM core enters SleepDeep Mode, NVIC is
disabled, LLWU is used to wake up, peripheral clocks are stopped, all SRAM is
operating (content retained and I/O states held), most modules are disabled.

5.2

Using the mode controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

54 Freescale Semiconductor

9. Very low leakage stop 2(VLLS2) — ARM core enters SleepDeep Mode, NVIC is
disabled, LLWU is used to wake up, peripheral clocks are stopped, Only portion of
SRAM is operating (content retained and I/O states held), most modules are disabled.

10. Very low leakage stop 1(VLLS1) — Lowest Power Mode ARM core enters
SleepDeep Mode, NVIC is disabled, LLWU is used to wake up, peripheral clocks are
stopped, All SRAM is powered down and I/O states held), most modules are
disabled, only two 32byte register file modules retained and I/O states held.

The modules available in each of the power modes is a described in a table. Please see
Module operation in low power modes for the details of the module operations in the
each of the low power modes.

5.2.1.2 Features

Mode Control controls entry into and exit from each of the power modes.

5.2.2 Configuration examples

How you decide which modes to use in your solution is an exercise in matching the
requirements of your system, and selecting which modules are needed during each mode
of the operation for your application. The best way to explain would be to work through
an example.

For example, consider the case of a battery-operated human interface device that requires
a real-time clock timebase. It will wake up every second, update the time of day, and
check the conditions of several sensors. Then it will take action based upon the state and,
when requested, perform high levels of computation to control the operation of a device.
After reviewing the power modes table in Module operation in low power modes , you
should be able to identify which of the modules are functioning in each of the low power
modes.

At this point in this example, notice that the RTC, the segment LCD, the TSI and the
comparator are among a few modules that are fully functional in several of the lowest
power modules.

In this example system, the MCU would spend most of the time in one of the lowest
power modes waking up every second to update the time of day variables and update the
display, plus other house-keeping tasks.

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 55

The MCU could also wakeup from a user input. This could be hitting a button, a touch of
a capacitive sensor, the rise or fall of an analog signal from a sensor feeding the
comparator. To enable these sources please refer to the LLWU section 3 for configuration
details.

The example codes for MC are available from the Freescale Web site
www.freescale.com.

5.2.2.1 MC code example and explanation

There are two registers in the mode controller: the PMPROT register and the Power
Management Protection register. This is a write once register after a reset. This means
that once written all subsequent writes are ignored. In our example system above, our two
basic modes of operation are run mode and LLS mode. If we do not want the MCU to be
in any other low power mode we would want to write the ALLS bit in the PMPROT
register.

MC_PMPROT = MC_PMPROT_ALLS_MASK;

This write allows the MCU to enter LLS only. It is then no longer possible to enter any
other low power mode.

Once the PMPROT register has been written, the write to the PMCTRL control register
sets the mode entry and exit selection. For our example, entry into LLS mode would be
enabled with this write.

MC_PMCTRL = MC_PMCTRL_LPLLSM(0x3)); // set LPLLSM = 0b11

5.2.2.2 Entering low leakage stop (LLS) mode

Once the previous two setup steps have been done the low power stop mode would be
entered with a write to the SCR register in the core control logic to set the SLEEPDEEP
bit.

 SCB_SCR |= SCB_SCR_SLEEPDEEP_MASK;

When the WFI instruction is executed the mode controller will step through the low
power entry state machine making sure all of the modules are ready to enter the low
power mode. If, for instance the UART is finishing a serial transmission it would hold off
the entry into the LLS until the transmission was completed. In C the syntax to execute
the core instruction WFI is:

asm("WFI");

Using the mode controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

56 Freescale Semiconductor

This statement can be placed anywhere in the code and once execute the MCU will enter
the selected low power mode. It takes approximately 1 microsecond to enter the low
power mode.

5.2.2.3 Entering wait mode

If you want to use WAIT mode, then the SLEEPDEEP bit needs to be cleared before
executing the WFI instruction.

SCB_SCR &= ~SCB_SCR_SLEEPDEEP_MASK;

5.2.2.4 Exiting low power modes

Each of the power modes has a specific list of exit methods. In general an enabled
interrupt from a pin, an enabled module trigger, or a reset will exit the low power modes
and return to RUN or VLPR mode. These exit methods are discussed in Section 3 on the
LLWU.

Recovery from VLLSx is through the wakeup reset event. The MCU will wake from
VLLSx by means of reset, an enabled pin, or an enabled module. See table 3-12, "LLWU
inputs," in the LLWU configuration section for a list of the sources. The wakeup flow
from VLLS1, 2, and 3 is through reset. The wakeup bit in the SRS registers is set,
indicating that the MCU is recovering from a low power mode. Code execution begins
but the I/O are held in the pre-low-power mode entry state and the oscillator is disabled
(even if EREFSTEN had been set before entering VLLSx). The user is required to clear
this hold by writing to the ACKISO bit in the LLWU_CS register.

Prior to releasing the hold the user must re-initialize the I/O to the pre-low-power mode
entry state, so that unwanted transitions on the I/O do not occur when the hold is released.
The oscillator cannot be re-enabled before the ACKISO bit is cleared and must be
reconfigured after the acknowledge write has been done.

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 57

Using the low leakage wakeup unit

5.3.1 Overview

This section will demonstrate how to use the Low Leakage Wakeup Unit (LLWU). The
LLWU is responsible for selecting and enabling the sources of exit from all of the low
power modes of the MCU. This module works in conjunction with the PMC and the
MCU to wake the MCU up.

5.3.1.1 Mode transitions

There are particular requirements for exiting form each of the 10 power modes. Please
see Mode transition requirements for a table of the transition requirements for each of the
modes of operation.

5.3.1.2 Wakeup sources

There are a possible 16 pin sources and up to 7 modules available as sources of wakeup.
Please see Source of wakeup, pins and modules for a table of external pin wakeup and
module wakeup sources.

5.3.2 Configuration examples

There are five 8-bit wakeup source enable registers for the pin and module source
selection, Three 8-bit wakeup flag registers to indicate which wakeup source was
triggered, and one 8-bit status and control register to control the digital filter enable for
external pins, and an acknowledge bit to allow certain peripherals and pads to release
their held low leakage state.

5.3.2.1 Module wakeup

To configure a module to wakeup the MCU from one of the low power modes requires a
study in the control and function of each of the modules capable of waking the MCU.
Since the RTC can be on in all low power mode we can configure the RTC to wake up

5.3

Using the low leakage wakeup unit

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

58 Freescale Semiconductor

the system when its interrupt flag is set. To do this we need to enable the RTC module to
cause an interrupt and then allow that interrupt to cause a wakeup. To enable the RTC to
cause a wakeup the corresponding module wakeup bits must be set.

LLWU_ME = LLWU_ME_WUME5_MASK;
 // enable the RTC to wake up from low power modes

Other modules have to be enabled in the same way. The table in Mode transition
requirements identifies the wakeup enable bit that must be set for each module by the
number of the bit.

5.3.2.2 Pin wakeup

To configure a pin to wakeup the MCU from the low power modes requires a study of the
port configuration register controls and the GPIO functionality.

The PCR registers select the multiplex selection, the pull enable function, and the
interrupt edge selection. If we want to initialize the first wakeup pin, PTE1, as an LLWU
wakeup enabled pin we need to

1. Initialize the PCR for PTE1.
2. Make sure the pin is an input.
3. Enable PTE1 as a valid wakeup source in the LLWU.

The code for this is below. This would need to be done for each of the pins you want to
enable as wakeup sources.

PORTE_PCR1 = (PORT_PCR_ISF_MASK | // clear Flag if there
 PORT_PCR_MUX(01) | // GPIO
 PORT_PCR_IRQC(0x0A) | // falling edge enable
 PORT_PCR_PE_MASK | // Pull enable
 PORT_PCR_PS_MASK); // pull up enable
GPIOE_POER &= 0xFFFFFFFD; // set Port E1 as input
LLWU_PE1 = LLWU_PE1_WUPE0(0x02); // defining PORT E1 as a wakeup source for LLWU

5.3.2.3 LLWU port and module interrupts

In the low power modes the ARM core is off, the NVIC is off some of the time and the
WIC is kept alive allowing an interrupt from the pin or module to propagate to the mode
controller to indicate a wakeup request. To enable the LLWU interrupt we would replace
the default vector in the interrupt vector table with the appropriate LLWU interrupt
handler with the following sequence.

// Enable LLWU Interrupt in NVIC
__VECTOR_RAM[37] = (uint32)llwu_handle; // Replace ISR
NVICICPR0|=(1<<21); //Clear any pending interrupts on LLWU
NVICISER0|=(1<<21); //Enable interrupts from LLWU module

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 59

For our example we allow the processing of the pin PTE1 we add this initialization code:

__VECTOR_RAM[107] = (uint32)porte_isr; // Replace ISR
NVICICPR2|=(1<<27); //Clear pending interrputs on Port E
NVICISER2|=(1<<27); //Enable interrupts from Port E

Then there is a need for an interrupt service routine for the LLWU and one for the port
enabled as a wakeup source.

5.3.2.4 Wakeup sequence

The wakeup sequence is not obvious for some of the modes. For most of the wait and
stop modes code execution follows a predictable flow. For LLS mode which requires the
LLWU, the LLWU vector is fetched and taken right after the wakeup event. If the
wakeup source’s interrupt flag is not cleared by the LLWU interrupt handler, then the
next interrupt vector for the wakeup source is taken and the flag in the port or module can
be cleared. Code execution then continues with the instruction following the WFI
instruction that sent the MCU into the low power mode.

For VLLS1, VLLS2, or VLLS3, the exit is always through the reset vector and then
through the interrupt vector of the LLWU. There is a WAKEUP bit in the SRS register
that allows the user to tell if the reset was due to an LLWU wakeup event.

An example of wakeup test code is shown here.

if (MC_SRSL & MC_SRSL_WAKEUP_MASK){
printf("[outSRS]Pin Reset wakeup from low power modes\n");
 //The state of PMCTRL[LPLLSM] prior to clearing due to update
 // of PMPROT indicates which power mode was exited and should be
 // used by initialization software for proper power mode recovery.
 if ((MC_PMCTRL & MC_PMCTRL_LPLLSM_MASK) == 0)
 printf("[outSRS]Pin Reset wakeup from Normal Stop\n");
 if ((MC_PMCTRL & MC_PMCTRL_LPLLSM_MASK) == 2)
 printf("[outSRS]Pin Reset wakeup from Very Low PowerStop(VLPS)\n");
 if ((MC_PMCTRL & MC_PMCTRL_LPLLSM_MASK) == 3)
 printf("[outSRS]Pin Reset wakeup from Low Leakage Stop (LLS)\n"); }

The I/O states and the oscillator setup are held if the wakeup event is from VLLS1,
VLLS2, or VLLS3. The user is required to clear this hold by writing to the ACKISO bit
in the LLWU_CS register. Prior to releasing the hold the user must re-initialize the I/O to
the pre-low-power mode entry state, so that unwanted transitions on the I/O do not occur
when the hold is released.

if ((LLWU_CS & LLWU_CS_ACKISO_MASK) == 1) {
 // RE-INITIALIZE MODULES and PORT OUTPUTS HERE
 LLWU_CS != LLWU_CS_ACKISO_MASK; }

The RTC may be powered by a separate power source and therefore would not need to
re-initialized. A simple check of the state of the RTC registers to see if they are already
enabled would work.

Using the low leakage wakeup unit

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

60 Freescale Semiconductor

5.4 Module operation in low power modes
Table 5-1. Module operation in low power modes

Module STOP VLPR VLPW VLPS LLS VLLSx

EzPort Disabled Disabled Disabled Disabled Disabled Disabled

SDHC Wakeup FF FF Wakeup Static OFF

GPIO Wakeup FF FF Wakeup Static, pins
Latched

OFF, Pins
Latched

FlexBus Static FF FF Static Static OFF

CRC Static FF FF Static Static OFF

RNGB Static FF Static Static Static OFF

CMT Static FF FF Static Static OFF

NVIC Static FF FF Static Static OFF

Mode Controller FF FF FF FF FF FF

LLWU Static Static Static Static FF FF

Regulator ON Low Pwr Low Pwr Low Pwr Low Pwr Low Pwr

LVD ON Disabled Disabled Disabled Disabled Disabled

LPO(KHz) ON ON ON ON ON ON

Sys OSC ERCLK optional ERCLK <4MHz ERCLK <4MHz ERCLK <4MHz Limited to low
range

Limited to low
range

MCG Static IRCLK
optional PLL
possible

2MHz IRC 2MHz IRC Static-no clock Static-no clock OFF

CORE CLK OFF 2MHz max OFF OFF OFF OFF

Sys CLK OFF 2MHz max 2MHz max OFF OFF OFF

Bus CLK OFF 2MHz max 2MHz max OFF OFF OFF

FLASH Powered 1MHz max no
pgm/erase

Low Power Low Power OFF OFF

Portion of
SRAM_U

Powered Powered Powered Powered Powered Powered in
VLLS3 & 2

Remaining
SRAM_U and
SRAML

Powered Powered Powered Powered Powered Powered in
VLLS3 & 2

FlexMemory Powered Powered Powered Powered Powered Powered in
VLLS3

Sys Reg File Powered Powered Powered Powered Powered Powered

VBAT Reg File VBAT Powered VBAT Powered VBAT Powered MODULES VBAT Powered VBAT Powered

DMA Static FF FF Static Static OFF

UART Static, WU 125 kbps 125 kbps Static WU Static OFF

Table continues on the next page...

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 61

Table 5-1. Module operation in low power modes (continued)

Module STOP VLPR VLPW VLPS LLS VLLSx

SPI Static 1Mbps 1Mbps Static Static OFF

I2C Static, address
WU

100 kbps 100 kbps Static, address
WU

Static OFF

CAN Wakeup FF FF Wakeup Static OFF

I2S Static FF FF Static Static OFF

Segment LCD FF FF FF FF FF-RTC clk FF-RTC clk

TSI Wakeup FF FF Wakeup Wakeup -One
pin

Wakeup - One
pin

FTM Static FF FF Static Static OFF

PIT Static FF FF Static Static OFF

PDB Static FF FF Static Static OFF

LPT FF FF FF FF FF FF

Watchdog FF FF FF FF Static OFF

EWM Static FF Static Static Static OFF

16-bit ADC ADC internal
Clk

FF FF ADC internal
Clk

Static OFF

CAN Wakeup FF FF Wakeup Static OFF

CMP HS or LS FF FF HS or LS LS LS

6-bit DAC Static FF FF Static Static Static

VREF FF FF FF FF Static OFF

OPAMP FF FF FF FF Static OFF

TRIAMP FF FF FF FF Static OFF

12-bit DAC Static FF FF Static Static Static

USB-FS/LS Static Static Static Static Static OFF

USB DCD Static FF FF Static Static OFF

USB DCD Static FF FF Static Static OFF

USB Regulator Optional Optional Optional Optional Optional Optional

Ethernet Wakeup Static Static Static Static OFF

RTC-Ext OSC2 FF FF FF FF FF FF

CMP HS or LS FF FF HS or LS LS LS

6-bit DAC Static FF FF Static Static Static

VREF FF FF FF FF Static OFF

Module operation in low power modes

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

62 Freescale Semiconductor

5.5 Mode transition requirements
Table 5-2. Mode transition requirements

Trans# From To Trigger Conditions

1 RUN WAIT Execute WAIT(); - This
means that sleep-now or
sleep-on-exit modes entered
with SLEEPDEEP clear

WAIT RUN Interrupt or Reset

2 RUN STOP Execute STOP(); This means
that sleep-now or sleep-on-
exit modes entered with
SLEEPDEEP set

STOP RUN Interrupt or Reset – Interrupt
goes to ISR (no LLWU)

3 RUN VLPR* Reduce system bus and
core frequency to 2MHz
or less
Flash access frequency
limited to 1 MHz,
AVLP = 1
Set RUNM = 10
Note: Poll VLPRS bit be‐
fore executing VLPR spe‐
cific code
(You also could wait ~5
us instead of waiting for
VLPRS)

VLPR* RUN Set RUNM = 00 or Inter‐
rupt with LPWUI = 1 or
Reset
Note: Poll REGONS bit
before increasing frequen‐
cy.

4 VLPR* VLPW Execute WAIT();

VLPW VLPR* Interrupt with LPWUI = 0

5 VLPW RUN Interrupt with LPWUI = 1 or
Reset

6 VLPR* VLPS LPLLSM = 000 or 010, exe‐
cute STOP();

VLPS VLPR* Interrupt with LPWUI = 0

7 RUN VLPS AVLP=1, LPLLSM =010, exe‐
cute STOP();

VLPS RUN Interrupt with LPWUI= 1 or
Reset

Table continues on the next page...

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 63

Table 5-2. Mode transition requirements (continued)

Trans# From To Trigger Conditions

8 RUN LLS Set ALLS in PMPROT,
LPLLSM = 011, Execute
STOP();

LLS RUN Wakeup from enabled LLWU
pin or module source or Re‐
set pin

9 VLPR LLS Set ALLS in PMPROT,
LPLLSM = 011, Execute
STOP();

10 RUN VLLS (3,2,1) Set AVLLSx in PMPROT,
LPLLSM = 101 for VLLS3,
110 for VLLS2, 111 for
VLLS1, Execute STOP();

VLLS (3,2,1) RUN Wakeup from enabled LLWU
input source or Reset. All
wakeup goes through Reset
sequence. Check SRS for
source of wakeup. Check
LPLLSM for mode

11 VLPR VLLS (3,2,1) Set AVLLSx in PMPROT,
LPLLSM = 101 for VLLS3,
110 for VLLS2, 111 for
VLLS1, Execute STOP();

5.6 Source of wakeup, pins and modules
Table 5-3. Source of wakeup, pins and modules

LLWU Pin function

LLWU_P0 LLWU_M0IF

LLWU_P1 PTE2/DSPI1_SCK/SDHC0_DCLK

LLWU_P2 PTE4/DSPI1_PCS0/SDHC0_D3

LLWU_P3 PTA4/FTM0_CH1/NMI

LLWU_P4 PTA13/CAN0_RX/FTM1_CH1 /FTM1_QD_PHB

LLWU_P5 PTB0/I2C0_SCL/FTM1_CH0 /FTM1_QD_PHA

LLWU_P6 PTC1/SCI1_RTS/FTM0_CH0

LLWU_P7 PTC3/SCI1_RX/FTM0_CH2

LLWU_P8 PTC4/DSPI0_PCS0/FTM0_CH3

LLWU_P9 PTC5/DSPI0_SCK

LLWU_P10 PTC6/PDB0_EXTRG

LLWU_P11 PTC11/SSI0_RXD

Table continues on the next page...

Source of wakeup, pins and modules

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

64 Freescale Semiconductor

Table 5-3. Source of wakeup, pins and modules (continued)

LLWU Pin function

LLWU_P12 PTD0/DSPI0_PCS0/SCI2_RTS

LLWU_P13 PTD2/SCI2_RX

LLWU_P14 PTD4/SCI0_RTS/FTM0_CH4/EWM_IN

LLWU_P15 PTD6/SCI0_RX/FTM0_CH6/FTM0_FLT0

LLWU_M0IF LPT1

LLWU_M1IF CMP0

LLWU_M2IF CMP1

LLWU_M3IF CMP2

LLWU_M4IF TSI

LLWU_M5IF RTC

LLWU_M6IF Reserved

LLWU_M7IF Error Detect - wake-up source unknown

Chapter 5 Power Management Controller (PMC/MODECTL)

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 65

Source of wakeup, pins and modules

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

66 Freescale Semiconductor

Chapter 6
Memory Protection Unit (MPU)

Using the memory protection unit module

6.1.1 Overview

This chapter demonstrates how to use the MPU module, which concurrently monitors
system BUS activities and its access privileges on internal RAM. The following example
shows how to program the region descriptors that define internal RAM memory spaces
and their access rights.

6.1.2 Introduction

The MPU is a Freescale Kinetis module for memory protection. This module should not
be confused with ARM’s MPU. ARM’s MPU is not integrated in Kinetis MCUs.
However, both Freescale and ARM MPU shared the same purposes – regions protection,
access permissions, and overlapping regions protection. In addition, the Freescale MPU
provides access error detection and multiple bus masters monitor.

6.1.3 Features

A Memory Management Unit (MMU) is designed for complex memory management and
memory protection in microprocessors with Translation Look-aside Buffer (TLB),
paging, dynamic allocation, access protection, and virtual memory. This MMU
implementation will be costly for the overall system – it will have a large memory
footprint, higher power consumption, paging segmentation, and larger die size for Kinetis
MCUs.

6.1

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 67

The MPU module is designed for less complex memory management without TLB,
paging, dynamic allocation, and virtual memory. It provides lower power consumption
and no paging segmentation; therefore, an MPU is better suited for MCUs.

Configuration examples

6.1.4.1 Region descriptors setup

Example code:

#define TCML_BASE 0x20000000// Upper SRAM bitband region
#define TCML_SIZE 0x00010000

/* MPU Configuration */
MPU_RGD0_WORD2 = 0;// Disable RGD0

// Set RGD1
MPU_RGD1_WORD0 = 0;// Start address
MPU_RGD1_WORD1 = (TCML_BASE + TCML_SIZE);// End Address
MPU_RGD1_WORD2 = 0x0061F7DF;(No magic #’s)// Bus master 3: SM all access (List what the Bus
masters are in addition to #’s)
// Bus master 2: SM all access
// Bus master 2: UM all access
// Bus master 1: SM all access
// Bus master 1: UM all access
// Bus master 0: SM all access
// Bus master 0: UM all access
MPU_RGD1_WORD3 = 0x00000001;// region is valid

// Set RGD2
MPU_RGD2_WORD0 = (TCML_BASE + TCML_SIZE + 0x40);
MPU_RGD2_WORD1 = 0xFFFFFFFF;// End Address
MPU_RGD2_WORD2 = 0x0061F7DF;
MPU_RGD2_WORD3 = 0x00000001;// region is valid

// Enable MPU function
MPU_CESR = 0x00000001;

6.1.4

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

68 Freescale Semiconductor

Chapter 7
Enhanced Direct Memory Access (eDMA) Controller

7.1 Overview
This chapter is a compilation of code examples and quick reference materials that have
been created to help you speed up the development of your applications with the eDMA
module of the Kinetis family. Consult the device-specific reference manual for specific
part information.

This chapter demonstrates how to configure and use the eDMA module to create data
movement between different memory and peripheral spaces without the CPU’s
intervention.

7.1.1 Introduction

The DMA controller provides the ability to move data from one memory mapped
location to another. After it is configured and initiated, the DMA controller operates in
parallel to the core, performing data transfers that would otherwise have been handled by
the CPU. This results in reduced CPU loading and a corresponding increase in system
performance. Figure 7-1 illustrates the functionality provided by a DMA controller.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 69

Figure 7-1. DMA operational overview

The Kinetis family features an enhanced Direct Memory Access (eDMA) controller for
data movement. The eDMA controller of the Kinetis family contains a 16-bit data buffer
as temporary storage, see Figure 7-1. Because Kinetis is a crossbar based architecture, the
CPU is the primary bus master hooked on the M0 and M1 master port. The eDMA is
connected to the M2 master port of the crossbar switch. Therefore the CPU and eDMA
can access different slave ports simultaneously. With this multi-master architecture, the
system can make the maximum usage of the eDMA feature. Figure 7-2 shows the basic
architecture of the Kinetis family. A specialized device may have differences — refer to
the device-specific reference manual for details.

Overview

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

70 Freescale Semiconductor

Figure 7-2. Crossbar switch configuration

The crossbar switch forms the heart of this multi-master architecture. It links each master
to the required slave device. If both masters attempt joint access to the same slave, an
arbitration scheme commences eliminating the bus contention. Both fixed priority and
round robin arbitration schemes are available. If both masters attempt to access different
slaves, an arbitration scheme works for the judgement.

7.2 eDMA trigger
Each channel of the Kinetis eDMA module can be triggered to start DMA transfer of
multiple sources from peripherals or software. The eDMA module integrates the DMA
Mux to route a different trigger source to the 16 channels. With the DMA Mux, up to 63
events occurring within other peripheral modules can activate an eDMA transfer. In
many modules, event flags can be asserted as either eDMA or Interrupt requests. These
sources can be selected through DMAMUX_CHCFGn[SOURCE] registers. But different
devices may have different peripheral source configurations. Refer to the device-specific
reference manual for details.

Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 71

7.2.1 DMA multiplexer

The DMA channel Mux helps to configure the eDMA source. 52 peripheral slots and 10
always-on slots can be routed to 16 channels. The first four channels additionally provide
periodic trigger functionality. And each channel router can be assigned to one of the 52
possible peripheral DMA slots or to one of the 10 always-on slots. The logic structure of
the DMA Mux is illustrated in Figure 7-3.

Figure 7-3. DMA Mux block diagram

7.2.2 Trigger mode
The DMA Mux supports three different options for triggering DMA transfer requests.

• Disabled Mode—No request signal is routed to the channel and the channel is
disabled. This is the reset state of a channel in DMA Mux. Disabled mode can also
be used to suspend an eDMA channel while it is reconfigured or not required.

• Normal Mode—A DMA request is routed directly to the specified eDMA channel.
• Periodic Trigger Mode—This mode is only available on eDMA channel 0~3. In this

mode, a PIT request is working as a strobe for the channel’s DMA request source,
which means the DMA source may only request a DMA transfer periodically. The
transfer may be started only when both the DMA request source and the period

eDMA trigger

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

72 Freescale Semiconductor

trigger are active. This provides a means to gate or throttle transfer requests using the
PIT. This is normally used for periodically polling the peripheral source status to
control the transfer schedule or for periodical transferring.

Figure 7-4 shows the relationship between the PIT periodic trigger, peripheral transfer
source request, and the transfer activation.

Figure 7-4. PIT gated transfer activation

The hardware provides ten “ always enabled request ” sources that can be used in
periodic trigger mode. These permit transfers to be initiated based only on the PIT. This
is shown in Figure 7-5.

Figure 7-5. PIT-only transfer activation

7.2.3 Multiple transfer requests

Only one channel can actively perform a transfer. To manage multiple pending transfer
requests, the eDMA controller offers channel prioritization. Fixed priority or round robin
priority can be selected.

In the fixed priority scheme each channel is assigned a priority level. When multiple
requests are pending, the channel with the highest priority level performs its transfer first.
By default, fixed priority arbitration is implemented with each channel being assigned a
priority level equal to its channel number. Higher priority channels can preempt lower
priority channels. Preemption occurs when a channel is performing a transfer while a

Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 73

transfer request is asserted to a channel of a higher priority. The lower priority channel
halts its transfer on completion of the current read/write operation and allows the channel
of higher priority to work.

In round robin mode, the eDMA cycles through the channels from the highest to the
lowest, checking for a pending request. When a channel with a pending request is
reached, it is allowed to perform its transfer. After the transfer has been completed, the
eDMA continues to cycle through the channels looking for the next pending request.

7.3 Transfer process—major and minor transfer loop
Each channel requires a 32-byte transfer control descriptor (TCD) for defining the desired
data movement operation. The channel descriptors are stored in the eDMA local memory
in sequential order.

Each time a channel is activated and executes, n bytes are transferred from the source to
the destination. This is referred to as a minor transfer loop. A major transfer loop consists
of a number of minor transfer loops, and this number is specified within the TCD. As
iterations of the minor loop are completed, the current iteration (CITER) TCD field is
decremented. When the current iteration field has been exhausted, the channel has
completed a major transfer loop. Figure 7-6 shows the relationship between major and
minor loops. In this example a channel is configured so that a major loop consists of three
iterations of a minor loop. The minor loop is configured as a transfer of 4 bytes.

Transfer process—major and minor transfer loop

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

74 Freescale Semiconductor

Figure 7-6. Major and minor transfer loops

7.4 Configuration steps
To configure the eDMA the following initialization steps must be followed:

1. Write the eDMA control register (only necessary if the configuration of another than
the default is required)

2. Configure channel priority registers in the DCHPRIn (if necessary)
3. Enable error interrupts using either the DMAEEI or DMASEEI register (if

necessary)
4. Write the transfer control descriptors for channels that will be used
5. Configure the appropriate peripheral module and configure the eDMA MUX to route

the activation signal to the appropriate channel

All transfer attributes for a channel are defined in the unique TCD for the channel. Each
32-bit TCD is stored in the eDMA controller module. Only the DONE, ACTIVE and
STATUS fields are initialized at reset. All other TCD fields are undefined at reset and
must be initialized by the software before the channel is activated. Failure to do this
results in unpredictable behavior. Refer to the device-specific reference manual for the
TCD detail description.

Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 75

7.5 Example—PIT-gated DMA requests
In this example, the eDMA is used to supply the analog-to-digital converter with a
command word and move the result of AD to a location in the internal SRAM. The AD
command word stores all the information that the AD module requires for a conversion,
so by using the DMA to provide the command words, the module can be instructed to
perform conversions without any CPU intervention. After the result is transferred by the
eDMA to internal SRAM, the application can make further analysis on the data.

7.5.1 Requirements

The input to the ADC0 must be sampled every 1 ms. To achieve this, a 32-bit AD
command word must be supplied to the ADC0_SC1A (0x4003B000) every 1 ms, when
the module is able to accept the command. The command word is located in the internal
SRAM. This example only requires a single command word to be provided to the AD. It
is stored in a variable labeled "command." After the AD has completed the conversion,
the result is moved from the AD result register ADC0_RA, located at 0x4003B010, to
address 0x1FFF9000 in internal SRAM. Figure 7-7 illustrates the functionality of this
example.

Figure 7-7. Example 2 overview

Example—PIT-gated DMA requests

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

76 Freescale Semiconductor

7.5.2 Module configuration

To implement this example two eDMA channels are required: one to transfer the
command word and the other to transfer the result. The command transfer request
requires a 1 ms PIT trigger, and an always-on trigger. The DMA MUX must be
configured for PIT gated channel activation. Channel 1 is configured to perform this
transfer.

Channel 0 is used to transfer the AD result to RAM. This transfer is activated when the
AD result ready flag is asserted. The default channel arbitration gives channel 1 priority
over channel 0. This configuration ensures that the AD receives a command word every 1
ms. It could however cause results to be overwritten in the result register before they have
been moved by the eDMA, as the channel reading the results does not have priority. The
setup can be changed to ensure every result is captured to give the channel reading the
results higher priority. The DMA MUX configuration for channels 0 and 1 is:

/* Configure DMAMux for Channel 0 */
DMAMUX_CHCONFIG0 = (0
| DMAMUX_ENABLE /* Enable routing of DMA request */
| DMAMUX_SOURCE(40)); /* Channel Activation Source: AD_A Result */
/* Configure DMAMux for Channel 1 */
DMAMUX_CHCONFIG1 = (0
| DMAMUX_ENABLE /* Enable routing of DMA request */
| DMAMUX_TRIG /* Trigger Mode: Periodic */
| DMAMUX_SOURCE(54)); /* Channel Activation Source: AD_A Command */

Channel 1 is configured to use a periodic trigger ― PIT1. The PIT1 module must be
enabled and configured for the desired time interval.

The command data of the AD module must be prepared according to the definition of the
AD command register before starting the DMA transfer (enable PIT1). Each channel in
this example transfers data to or from the static-address, 32-bit wide command or result
register, respectively. Therefore, it is necessary to restore the address pointers in the TCD
when the major or minor transfer loop is complete. This example has no table of data to
transfer, making only a single minor loop necessary to complete a major loop. The source
and destination addresses are therefore restored on completion of the major loop. The
TCD configuration for channels 0 and 1 is:

/* Configure DMA Channel 0 TCD */
EDMAC_TCD0_W0 = EDMAC_SADDR(0x4003B010);/* Source Address = AD Result Register
EDMAC_TCD0_W1 = (0
| EDMAC_SMOD(0x0) /* Source Modulo, feature disabled */
| EDMAC_SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */
| EDMAC_SOFF(0x0)); /* Source addr offset = 0x0, do not increment */
EDMAC_TCD0_W2 = EDMAC_NBYTES(0x4); /* Transfer 4 bytes per channel activation */
EDMAC_TCD0_W3 = EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCD0_W4 = EDMAC_DADDR(0x1FFF9000); /* Destination Address = 0x500, Ext RAM */
EDMAC_TCD0_W5 = (0
/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */
| EDMAC_DOFF(0x0)); /* Destination addr offset = 0x0, no increment */
EDMAC_TCD0_W6 = EDMAC_DLAST(0x0); /* Do not adjust DADDR upon channel completion */

Chapter 7 Enhanced Direct Memory Access (eDMA) Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 77

EDMAC_TCD0_W7 = (0
| EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */

/* Configure DMA Channel 1 TCD */
EDMAC_TCD1_W0 = EDMAC_SADDR((uint32)&command);/* Source Addr = address of command var */
EDMAC_TCD1_W1 = (0
| EDMAC_SMOD(0x0) /* Source Modulo, feature disabled */
| EDMAC_SSIZE(0x2) /* Source Size = 0x2 -> 32-bit transfers */
| EDMAC_DMOD(0x0) /* Destination Modulo, feature disabled */
| EDMAC_DSIZE(0x2) /* Destination Size = 0x2 -> 32-bit transfers */
| EDMAC_SOFF(0x0)); /* Source addr offset = 0x0, do not increment */
EDMAC_TCD1_W2 = EDMAC_NBYTES(0x4); /* Transfer 4 bytes per channel activation */
EDMAC_TCD1_W3 = EDMAC_SLAST(0x0); /* Do not adjust SADDR upon channel completion */
EDMAC_TCD1_W4 = EDMAC_DADDR(0x4003B000);/* Dest Addr = ATD Command Word Register */
EDMAC_TCD1_W5 = (0
/*| EDMAC_CITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_CITER(0x1) /* Current Iter Count -> 1 "NBYTES" transfer */
| EDMAC_DOFF(0x0)); /* Destination addr offset = 0x0, no increment */
EDMAC_TCD1_W6 = EDMAC_DLAST(0x0); /* Do not adjust DADDR upon channel completion */
EDMAC_TCD1_W7 = (0
/*| EDMAC_BITER_E_LINK /* Do not set ELINK bit, no channel linking */
| EDMAC_BITER(0x1) /* Beginning Iteration Count = 1 = CITER */
| EDMAC_BWC(0x0) /* Bandwidth control = 0 -> No eDMA stalls */
| EDMAC_MAJOR_LINKCH(0x0)); /* Ignored, no channel linking */

Using these configurations produces the required eDMA functionality for this example.
Refer to the full source code for this example in the ZIP file.

Example—PIT-gated DMA requests

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

78 Freescale Semiconductor

Chapter 8
Using the FlexMemory

Using the FlexNVM

8.1.1 Overview

This quick start guide demonstrates how to configure devices that offer the FlexMemory.

8.1.1.1 Introduction
The flash memory module (FTFL) includes several accessible memory regions depending
on the device configuration.

• Program flash—Non-volatile flash memory that can store program code and data
• FlexNVM—Non-volatile flash memory that can store program code, store data, and

backup EEPROM data
• FlexRAM—Byte-writeable RAM memory that can be used as traditional RAM or as

high-endurance EEPROM storage.

Program flash only devices have two blocks of flash with 2 KB sectors and offer swap
capability. FlexMemory enabled devices have one block of program flash with 2 KB
sectors, one block of FlexNVM with 2 KB sectors, and one block of FlexRAM, but do
not offer swap capability.

8.1.1.2 Features

By default there is no need for the user to configure the FTFL. The configuration default
allows for the flash memory controller (FMC) to accelerate flash transfers. For
FlexMemory enabled devices, FlexNVM is configured as program/data flash and the

8.1

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 79

FlexRAM is configured as a general purpose RAM. Security is disabled, and because the
flash is in an erased state, the program flash, data flash, and EEPROM protections are
disabled so the regions can be programmed or erased.

8.1.2 Configuration examples
The user can configure FlexMemory enabled devices as either:

• FlexNVM as data flash and FlexRAM as traditional RAM
• FlexNVM as EEPROM flash records to support the built-in EEPROM feature and

FlexRAM as EEPROM
• Or a combination of both

8.1.2.1 Basic data flash

In this particular configuration, the FlexNVM can be used as non-volatile flash memory
that can execute program code or store data. The FlexRAM can be used as traditional
RAM. This is the default configuration prior to execution of the “Program Partition
Command”.

8.1.2.1.1 Code example and explanation

This is the default configuration for devices with FlexMemory. There is no need for
partitioning the device in this implementation.

8.1.2.2 EEPROM flash records

In this particular configuration the FlexNVM is used exclusively for EEPROM backup
space. To configure the part the user must use the Flash Common Command Object
(FCCOB) registers to pass the “Program Partition Command” and associated parameters
to the memory controller in the FTFL module. The FCCOB requirements for execution of
this command are below:

Table 8-1. Program partition command FCCOB requirements

FCCOB Number FCCOB Contents [7:0]

0 0x80 (PGMART)

1 Not used

2 Not used

Table continues on the next page...

Using the FlexNVM

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

80 Freescale Semiconductor

Table 8-1. Program partition command FCCOB requirements (continued)

FCCOB Number FCCOB Contents [7:0]

3 Not used

4 EEPROM data size code

5 FlexNVM partition code

8.1.2.2.1 Code Example and Explanation

The following example uses a device with 256KB of FlexNVM and 4KB of FlexRAM.

This example assumes the part is erased and that the flash memory clock gate control is
enabled in the system integration module (SIM). The default state in the SIM is flash
memory clock enabled.

For a complete list of EEPROM data size codes and FlexNVM Partition codes, please see
the device-specific reference manual.

In this example, the FlexNVM is configured to use all 256KB of available memory as
EEPROM backup memory. The available 4KB of FlexRAM are configured as EEPROM.
When configuring the FlexRAM for EEPROM 2 subsystems are created and any
FlexRAM not configured as EEPROM is unusable. The EEPROM data size code being
used is 0x32 which selects a size of subsystem A = subsystem B = 2 KB. The FlexNVM
partition code used is 0x08, representing the size of our data partition as 0 KB and the
size of the EEPROM backup memory as 256 KB. This creates 2 EEPROM subsystems
2KB in size with each subsystem being backed up by 128KB of EEPROM backup
memory.

Example Code:

/* Write the FCCOB registers */
FTFL_FCCOB0 = FTFL_FCCOB0_CCOBn(0x80); // Selects the PGMPART command
FTFL_FCCOB1 = 0x00;
FTFL_FCCOB2 = 0x00;
FTFL_FCCOB3 = 0x00;
FTFL_FCCOB4 = 0x32; // Subsystem A and B are both 2 KB
FTFL_FCCOB5 = 0x08; // Data flash size = 0 KB
 // EEPROM backup size = 256 KB
FTFL_FSTAT = FTFL_FSTAT_CCIF_MASK; // Launch command sequence

while(!(FTFL_FSTAT & FTFL_FSTAT_CCIF_MASK)) // Wait for command completion

Chapter 8 Using the FlexMemory

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 81

8.1.2.3 Combination

In this configuration the FlexNVM is partitioned to use part of the available memory as
data flash and part as EEPROM backup space. The FlexRAM partitioned for EEPROM
can range from a minimum of 32 bytes to the maximum size of FlexRAM, 0 bytes selects
a configuration with no EEPROM. The size of the EEPROM backup space must be at
least 16KB in size.

8.1.2.3.1 Code example and explanation

The following example uses a device with 256KB of FlexNVM and 4KB of FlexRAM.

This example assumes the part is erased and that the flash memory clock gate control is
enabled in the system integration module (SIM). The default state in the SIM is flash
memory clock enabled.

In this example, the EEPROM data size code being used is 0x32 which selects a size of
subsystem A = subsystem B = 2 KB. The FlexNVM partition code use is 0x05,
representing the size of our data partition as 128 KB and the size of the EEPROM backup
memory as 128 KB. The system created has 128KB of program/data flash and two 2KB
EEPROM subsystems each backed up by 64KB of EEPROM backup memory.

Example Code:

/* Write the FCCOB registers */
FTFL_FCCOB0 = FTFL_FCCOB0_CCOBn(0x80); // Selects the PGMPART command
FTFL_FCCOB1 = 0x00;
FTFL_FCCOB2 = 0x00;
FTFL_FCCOB3 = 0x00;
FTFL_FCCOB4 = 0x32; // Subsystem A and B are both 2 KB
FTFL_FCCOB5 = 0x05; // Data flash size = 128 KB
// EEPROM backup size = 128 KB
FTFL_FSTAT = FTFL_FSTAT_CCIF_MASK; // Launch command sequence

while(!(FTFL_FSTAT & FTFL_FSTAT_CCIF_MASK)) // Wait for command completion

8.1.3 Endurance

While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM Partition Code and EEPROM Data Set Size will be used
throughout the entire lifetime of a given application. The FlexNVM partition choices
affect the endurance and data retention characteristics of the device.

Using the FlexNVM

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

82 Freescale Semiconductor

The bytes not assigned to data flash via the FlexNVM Partition Code are used by the
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.

The endurance factor of a subsystem can be calculated for a partitioned device using the
formula:

Endurance_Subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/
(EEESPLIT*EEESIZE)) *Record_Efficiency*Endurance_Factor

Where:

Endurance_Subsystem = Maximum writes to EERAM for a given subsystem

E-Flash = allocated EEPROM backup for each subsystem (min 16KB, max 128KB)

EEESPLIT = Split factor for subsystem (A/B=0.5/0.5 or 0.25/0.75 or 0.125/0.875)

EEESIZE = allocated RAM for EEE (min 32B, max 4KB)

Record_Efficiency = 0.5 for 16-bit and 32-bit writes, 0.25 for 8-bit writes

Endurance_Factor = 10000 native cycles

Example 1:

A Kinetis device configured as in example 2 with 2 subsystems of 2KB of EERAM
backed up by 128 KB of E-Flash, provides 310K cycles with 16-bit or 32-bit writes for
each subsystem.

Endurance_subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/(EEESPLIT*EEESIZE)) *
Record_Efficiency*Endurance_Factor

Endurance_subsystem = ((128K-2(.5)(4KB))/(.5(4KB))*.5*10,000

Endurance_subsystem = ((124KB)/2KB)*5000

Endurance_subsystem = (62*5000)

Endurance_subsystem = 310,000

Example 2:

A Kinetis device configured as in example 3 with a subsystem of 2KB of EE backed up
by 64 KB of E-Flash, provides 150K cycles with 16-bit or 32-bit writes.

Endurance_subsystem = ((E-Flash-2*EEESPLIT*EEESIZE)/(EEESPLIT*EEESIZE)) *
Record_Efficiency*Endurance_Factor

Chapter 8 Using the FlexMemory

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 83

Endurance_subsystem = ((64KB-2(.5)(4KB))/(.5(4KB))*.5*10,000

Endurance_subsystem = ((60KB)/2KB)*5000

Endurance_subsystem = (30*5000)

Endurance_subsystem = 150000

Using the FlexNVM

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

84 Freescale Semiconductor

Chapter 9
EzPort Module

Using the EzPort module

9.1.1 Overview

This section demonstrates how to use the Ezport module for in-system programming
(ISP) of Kinetis on-chip flash memory.

9.1.1.1 Introduction

The Ezport module provides a serial programming interface that allows reading, erasing,
and programming Kinetis on-chip flash memory in a compatible format with many stand-
alone flash memory chips. Kinetis has two functional modes – single-chip mode (default)
and Ezport mode (for ISP programming). The mode entered depends on both the EZPCS
state during reset and the Ezport disable bit in FOPT register as shown in Table 1.

Table 9-1. Mode selection during reset

External conditions during reset Mode entered

/EZPCS = 1 Single-chip mode

/EZPCS = 0 && FOPT[EZPORT_DIS] = 0 Single-chip mode

/EZPCS = 0 && FOPT[EZPORT_DIS] = 1 Ezport mode

9.1.1.2 Features
The Ezport module has these features:

• Implements a subset of SPI format, supporting either of the following two modes:
CPOL=0, CPHA=0 or CPOL=1, CPHA=1

• Able to read, erase, and program on-chip flash memory
• Able to reset Kinetis, allowing it to boot from flash memory after firmware updated

9.1

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 85

9.1.1.3 Command description

When in Ezport mode, Kinetis operates as a SPI slave and receives commands from an
external SPI master and translates those commands to flash memory accesses. Table 9-2
is a complete list of commands supported by the Ezport module.

Table 9-2. Ezport commands

Command Description Code Address
bytes

Dummy
byte

Data bytes

WREN Write enable 0x06 0 0 0

WRDI Write disable 0x04 0 0 0

RDSR Read status register 0x05 0 0 1

READ Flash read data 0x03 3 0 1+

FAST_READ Flash read data at high speed 0x0b 3 1 1+

SP Flash sector program 0x02 3 0 8–section

SE Flash sector erase 0xd8 3 0 0

BE Flash bulk erase 0xc7 0 0 0

RESET Reset chip 0xb9 0 0 0

WRFCCOB Write FCCOB registers 0xba 0 0 12

FAST_RDFCCOB Read FCCOB registers at high
speed

0xbb 0 1 1–12

WRFLEXRAM Write FlexRAM 0xbc 3 0 4

RDFLEXRAM Read FlexRAM 0xbd 3 0 1+

FAST_RDFLEXRAM Read FlexRAM at high speed 0xbe 3 1 1+

NOTE
The ‘1+’ in the data bytes column means the SPI master could
read data continuously from the Ezport module. Starting from
one byte, the reading address will increment automatically
while reading. In this way, the whole flash memory could be
read with one single command.

9.1.1.3.1 Command format

As shown in , each command the Ezport module recognizes should start with a command
byte that is mandatory and be followed by an optional address byte, dummy byte, or data
byte. This is shown below. The bracketed items are optional.

Command [address] [dummy byte] [read or write data byte]

Using the EzPort module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

86 Freescale Semiconductor

For example, some commands like WREN and WRDI need to send only the command
byte, while the other commands may have optional items. The dummy byte is used to
differentiate normal speed and fast speed read operations. For fast speed operations, the
external master should shift in one dummy byte before valid data is shifted out.
FAST_READ and FAST_RDFCCOB commands are examples that need to send the
dummy byte.

9.1.1.3.2 Command timing

Figure 9-1 and Figure 9-2 are the command timing for the READ and FAST READ
commands. Here it assumes CPOL=1 and CPHA=1.

Figure 9-1. READ command timing

Chapter 9 EzPort Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 87

Figure 9-2. FAST READ command timing

9.1.1.4 Status register

The Ezport module provides a status register to reflect some reset out flash status and
also write progress flags. The FS, FLEXRAM, and BEDIS bits reflect flash security,
FlexRAM configurations, and whether bulk erase is supported under secure mode,
respectively. The status register can be read with the RDSR command to check reset out
status and whether a write command has completed.

Table 9-3. Ezport status register

7 6 5 4 3 2 1 0

FS WEF FLEXRAM BEDIS WEN WIP

9.1.2 Configuration examples

Using the EzPort module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

88 Freescale Semiconductor

9.1.2.1 Hardware connections

Any SPI master could be used to connect to the Ezport module for flash programming.
Either QSPI or DSPI module on existing Coldfire devices could be used in this case.
Figure 9-3 shows the connection between the QSPI module on MCF5282 and Kinetis.
Here QSPI_CS1 and QSPI_CS2 are used as GPIO to control the timing between manual
reset of Kinetis and sampling of /EZPCS.

Figure 9-3. Connection between MCF5282 and Kinetis

Example code for set_to_ezp_mode:

// Configure as GPIO pins to monitor RSTOUT pins and assert RCON
MCF5282_GPIO_PQSPAR = 0x0; // GPIO function
MCF5282_GPIO_DDRQS = 0x08; // CS0 as output
MCF5282_GPIO_PORTQS = 0x08; // Drive CS0 HIGH

/* set up wrap register for a single 8-bit transfer */
MCF5282_QSPI_QWR = MCF5282_QSPI_QWR_CSIV;
/* Enable QSPI Pins */
MCF5282_GPIO_PQSPAR |= 0x7F;

// Configure as GPIO pins to monitor RSTOUT pins and assert RCON
MCF5282_GPIO_PQSPAR = 0x0; // GPIO function
MCF5282_GPIO_DDRQS = 0x28; // CS0 and CS2 as output
MCF5282_GPIO_PORTQS = 0x28; // Drive RCON HIGH & RSTIN HIGH

MCF5282_GPIO_PORTQS = 0x08; // Drive RCON HIGH & RSTIN LOW

while ((data_in & 0x10))//wait till RSTOUT LOW
{
data_in = MCF5282_GPIO_PORTQSP;
}

MCF5282_GPIO_PORTQS = 0x20; // Drive RCON LOW & RSTIN HIGH

while (!(data_in & 0x10))//wait till RSTOUT HIGH
{
data_in = MCF5282_GPIO_PORTQSP;
}

//Exiting reset and entering EZPORT mode
MCF5282_GPIO_PORTQS = 0x28; // Drive RCON HIGH again

Chapter 9 EzPort Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 89

9.1.2.2 Write enable and disable

Before issuing a write command (SP, SE, BE, WRFCCOB, or WRFLEXRAM) in the
Ezport module, first enable the WEN bit in the status register with the WREN command.
After those commands are completed, the WEN bit will automatically clear so next time
you issue another write command, the WREN command should be issued again.

Example code:

//ezp_wren_cmd
ezp_write_byte(EZPORT_WREN);
while (!(MCF5282_QSPI_QIR & MCF5282_QSPI_QIR_SPIF));
//ezp_wrdi_cmd
ezp_write_byte(EZPORT_WRDI);
while (!(MCF5282_QSPI_QIR & MCF5282_QSPI_QIR_SPIF));

NOTE
The code above assumes lower level byte sending with QSPI
has been implemented with ezp_write_byte. You could easily
implement this and port it to other SPI modules like DSPI.

9.1.2.3 Sector erase and program

The SP command programs up to one section of flash memory that has previously been
erased by an SE command. The starting address of both commands should be 64-bit
aligned (three LSBs being zero). The Ezport module buffer will receive program data in
FlexRAM/programming acceleration RAM before executing the SP command, so the
number of bytes to be programmed should be a multiple of eight and up to one section
size at a time.

Example code:

set_to_ezp_mode();
ezp_spi_init(0,6,0,0); /* max permitted clock speed for read */

// 1. Boot-up from reset with EZPORT enabled.
ezp_wren_cmd();

// 2. Verify WEN flag is set.
sr = ezp_rdsr_cmd();
 if (sr != EP_SR_WEN)
{
 printf("Failure in SR value: WEN not set\n");
error_count++;
}

//3. Sector erase
ezp_se_cmd(sector_addr);
 //Loop till command has completed
 sr = EP_SR_WIP;
// Poll SR until WIP goes low
 while ((sr & EP_SR_WIP) == EP_SR_WIP)

Using the EzPort module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

90 Freescale Semiconductor

sr = ezp_rdsr_cmd();

ezp_wren_cmd();
//4. Sector program
 ezp_pp_cmd(sector_addr,64, pg_buffer);
 //Loop till command has completed
 sr = EP_SR_WIP;
// Poll SR until WIP goes low
 while ((sr & EP_SR_WIP) == EP_SR_WIP)
sr = ezp_rdsr_cmd();

9.1.2.4 Write and read FCCOB registers

The flash command object registers consist of a group of 12 registers, each 1 byte wide.
These are used for sending command codes and data to the memory controller.

FCCOB number Command parameter contents

0 FCMD (code which defines the FTFL command)

1~3 Flash address [23:0]

4~B Data byte [0:7]

The WRFCCOB command allows you to write to the flash common command object
registers via the Ezport module and execute any command allowed by flash. After
receiving 12 bytes of data, Ezport writes the data to FCCOB registers and then
automatically launches the command within flash.

While the FAST_RDFCCOB command allows user to read the contents of flash common
command object registers.

NOTE
If more than or fewer than 12 bytes of data are received by the
WRFCCOB command, the result will be unexpected. Also
because in Ezport mode the flash is in an NVM special mode,
commands that can be executed under secure mode are
restricted.

Example code:

ezp_wren_cmd();
fccob[0] = 0x06;//program longword command
 fccob[1] = 0x00;//flash address is 0x00040c
 fccob[2] = 0x04;
 fccob[3] = 0x0c;
 fccob[4] = 0xff;//program data is 0xfffffffe
 fccob[5] = 0xff;
 fccob[6] = 0xff;
 fccob[7] = 0xfe;
ezp_wrfccob_cmd(fccob);
//Loop until command has completed
 sr = EP_SR_WIP;

Chapter 9 EzPort Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 91

// Poll SR until WIP goes low
 while ((sr & EP_SR_WIP) == EP_SR_WIP)
sr = ezp_rdsr_cmd();

9.1.2.5 Write and read FlexRAM

The WRFLEXRAM command allows you to write four bytes of data to the FlexRAM. If
the FlexRAM is configured for EEPROM configuration, the WRFLEXRAM command
can effectively be used to create data records in EEPROM-flash memory. The address of
the FlexRAM location should be 32-bit aligned. If more than or fewer than four bytes of
data is received, this command has unexpected results.

RDFLEXRAM command returns data from FlexRAM. It also has a fast speed version
command FAST_RDFLEXRAM, which includes the dummy byte and runs at up to half
of internal system clock frequency.

Example code:

ezp_wren_cmd();
ezp_wrflexram_cmd(address, buffer);
//Loop till command has completed
 sr = EP_SR_WIP;
// Poll SR until WIP goes low
 while ((sr & EP_SR_WIP) == EP_SR_WIP)
sr = ezp_rdsr_cmd();

Using the EzPort module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

92 Freescale Semiconductor

Chapter 10
Flexbus Module

Using the Flexbus module

10.1.1 Overview

A multi-function external bus interface called the FlexBus interface controller is provided
with a basic functionality of interfacing to slave-only devices. It can be directly
connected to the following asynchronous or synchronous devices with little or no
additional circuitry, external ROMs, flash memories, programmable logic devices, or
other simple target (slave) devices.

10.1.1.1 Introduction

The FlexBus has up to six independent user-programmable chip-select signals
(FB_CS[5:0]) 8-bit, 16-bit, and 32-bit port sizes with configuration for multiplexed or
non-multiplexed address and data buses. Size configurable transfers (8-bit, 16-bit, 32-bit).

Programmable burst- and burst-inhibited, address-setup time with respect to the assertion
of chip select, address-hold time with respect to the negation of chip select and transfer
direction.

Extended address latch enables option help with glueless connections to synchronous and
asynchronous memory devices.

10.1.1.2 Features

10.1.1.2.1 Signal descriptions

FB_A[31:0] — In a non-multiplexed configuration, this is the address bus.

10.1

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 93

FB_AD[31:0] — In a non-multiplexed mode, this is the data bus. In a multiplexed mode,
the FB_AD[31:0] bus carries the address and the data. The number of byte lanes carrying
the data is determined by the port size.

FB_CS [5:0] — The chip-select signal indicates what device is selected. A particular
chip-select asserts when the transfer address is within the device’s address space. The
next two tables show how the number of chip selects available depend on the pin
configuration.

FB_BE/BWE[3:0] — When driven low, these outputs indicate the data latched or driven
onto a specific lane of the data bus.

FB_OE — The output enable signal is sent to the interfacing memory to enable a read
transfer. FB_OE is asserted only during a read access when a chip select matches the
current address decode.

FB_R/W — The processor drives this signal to indicate the current bus operation, 1
during read bus cycles and 0 during write bus cycles.

FB_ALE — The assertion of this signal indicates that the device has started a bus
transaction and the address and attributes are valid.

FB_TSIZ[1:0] — These signals along with FB_TBST indicate the data transfer size of
the current bus operation.

FB_TBST— Transfer burst indicates that a burst transfer is in progress and driven by the
device.

FB_TA — This input signal indicates that the external data transfer is complete. When
the processor recognizes FB_TA during a read cycle, it latches the data and then
terminates the bus cycle.

FB_CLK — FlexBus clock, the system provides a dedicated clock source to the FlexBus
module's external FB_CLK. Its clock frequency is derived from a divider
(SIM_CLKDIV1[OUTDIV3]) of the MCGOUTCLK.

10.1.1.2.2 Address and data bus multiplexing

Figure 10-1 shows the supported combinations of address and data bus widths. The bus
sends the address at the first stage (light blue), and the data at the second stage (green).

Using the Flexbus module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

94 Freescale Semiconductor

Figure 10-1. FlexBus multiplexed operating modes

10.1.1.2.3 Modes of Operation

Table 10-1 and Table 10-2 show the assignment of FlexBus signals available for the
Kinetis MCUs, depending on the package. Non-LCD devices are those without a segment
LCD peripheral.

Table 10-1. FlexBus signals on non-LCD devices

Pack‐
age

144-pin 104-pin 100-pin 81-pin 60-pin 64-pin 48-
pin

32-
pin

Sig‐
nals

A[29:16]
AD[31:0] CS[5:
0]

AD[31:0]
CS[5:0]

AD[31:24, 5
CS

AD[19: 0] 4 CS AD[19:0] 2 CS AD[17:0] 2 CS N/A N/A

Muxed
mode

Up to 32 ad‐
dress Up to 32
data lines =
AD[31:0]

Up to 32 ad‐
dress Up to 32
data lines =
AD[31:0]]

Up to 21 ad‐
dress Up to 16
data lines =
AD[15:0]

Up to 20 ad‐
dress Up to 16
data lines =
AD[15:0]

Up to 20 ad‐
dress Up to 16
data lines =
AD[15:0]

Up to 18 ad‐
dress Up to 16
data lines =
AD[15:0]

N/A N/A

Non-
muxed
mode

Up to 30 ad‐
dress =
A[29:16] +
AD[15:0] Up to
16 data lines =
AD[31:16]

Up to 24 ad‐
dress =
AD[23:0] Up to
8 data lines =
AD[31:24] Up
to 16 address
= AD[15:0] Up
to16 data lines
= AD[31:16]

Up to 21 ad‐
dress =
AD[20:0] Up to
8 data lines =
AD[31:24]

N/A N/A N/A N/A N/A

Chapter 10 Flexbus Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 95

Table 10-2. FlexBus signals on LCD devices

Package 144 pin 104 pin 100 pin 81 pin 60 pin 64 pin 48 pin 32 pin

Signals AD[31:0]
CS[5:0]

N/A N/A N/A N/A N/A N/A N/A

Muxed
mode

Up to 32
address Up
to 32 data

lines =
AD[31:0]

N/A N/A N/A N/A N/A N/A N/A

Non-muxed
mode

Up to 24
address =

AD[23:0] Up
to 8 data
lines =

AD[31:24]
Up to 16

address =
AD[15:0] Up

to16 data
lines =

AD[31:16]

N/A N/A N/A N/A N/A N/A N/A

LCD mode Up to 16
data lines =
AD[15:0] or
= AD[31:16]

N/A N/A N/A N/A N/A N/A N/A

10.1.1.2.4 Burst cycles

The device can be programmed to initiate burst cycles if its transfer size exceeds the port
size of the selected destination. The initiation of a burst cycle is encoded on the size pins.
For burst transfers to smaller port sizes, FB_TSIZ[1:0] indicates the size of the entire
transfer.

10.1.1.2.5 Data Byte Alignment and Physical Connections

The device aligns data transfers in FlexBus byte lanes with the number of lanes
depending on the data port width.

Figure 10-2 shows the byte lanes that external memory connects to, and the sequential
transfers of a 32-bit transfer for the supported port sizes when byte lane shift is disabled
or enabled.

Using the Flexbus module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

96 Freescale Semiconductor

Figure 10-2. Sequential 32-bit transfers, byte lane shift differences

10.1.1.2.6 Memory map

Typical memory mapping as shown in Figure 10-3 0x6000_000 - 0xA000_0000 is the
FlexBus space used for execution, 0xA000_0000 - 0xE000_0000 can only be used for
data.

Figure 10-3. FlexBus memory range

10.1.1.2.7 Reference clock

Figure 10-4 shows a high-level diagram for the FlexBus reference clock. The maximum
FlexBus clock frequency in run mode is up to 50 MHz.

Chapter 10 Flexbus Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 97

Figure 10-4. Clocking diagram

10.1.1.3 Configuration examples

In this example the FlexBus is connected to the MRAM memory of the TWR-MEM
board.

10.1.1.3.1 Code example and explanation

Figure 10-4 shows the FlexBus reference clock derived from the MCGOUTCLK. The
software needs to configure a stable clock. This example configures 96 MHz of core
frequency.

Example code:

/* Code Snippet */
int MRAM_START_ADDRESS = 0x60000000;
 uint8 wdata8 = 0x00;
 uint8 rdata8 = 0x00;
 uint16 wdata16 = 0x00;
 uint16 rdata16 = 0x00;
 uint32 wdata32 = 0x00;
 uint32 rdata32 = 0x00;

/* Set Base address */
 FB_CSAR0 = MRAM_START_ADDRESS ;

/* Enable CS signal */
 FB_CSMR0 |= FB_CSMR_V_MASK;

 FB_CSCR0 |= FB_CSCR_BLS_MASK // right justified mode

Using the Flexbus module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

98 Freescale Semiconductor

 | FB_CSCR_PS(1) // 8-bit port
 | FB_CSCR_AA_MASK // auto-acknowledge
 | FB_CSCR_ASET(0x1) // assert chip select on second clock edge after address
is asserted
 // | FB_CSCR_WS(0x1) // 1 wait state - may need a wait state depending on the
bus speed
 ;

/* Set base address mask for 512K address space */
 FB_CSMR0 |= FB_CSMR_BAM(0x7);

 /* Set BE0/1 to MRAM */
 FB_CSPMCR |= 0x02200000;

/* Reference clock divided by 3 */
SIM_CLKDIV1 &= ~SIM_CLKDIV1_OUTDIV3(0xF);
SIM_CLKDIV1 |= SIM_CLKDIV1_OUTDIV3(0x3);

 /* Configure the pins needed to FlexBus Function (Alt 5) */
 /* this example uses low drive strength settings */
 //address/Data
 PORTA_PCR7=PORT_PCR_MUX(5); //fb_ad[18]
 PORTA_PCR8=PORT_PCR_MUX(5); //fb_ad[17]
 PORTA_PCR9=PORT_PCR_MUX(5); //fb_ad[16]
 PORTA_PCR10=PORT_PCR_MUX(5); //fb_ad[15]
 PORTA_PCR24=PORT_PCR_MUX(5); //fb_ad[14]
 PORTA_PCR25=PORT_PCR_MUX(5); //fb_ad[13]
 PORTA_PCR26=PORT_PCR_MUX(5); //fb_ad[12]
 PORTA_PCR27=PORT_PCR_MUX(5); //fb_ad[11]
 PORTA_PCR28=PORT_PCR_MUX(5); //fb_ad[10]
 PORTD_PCR10=PORT_PCR_MUX(5); //fb_ad[9]
 PORTD_PCR11=PORT_PCR_MUX(5); //fb_ad[8]
 PORTD_PCR12=PORT_PCR_MUX(5); //fb_ad[7]
 PORTD_PCR13=PORT_PCR_MUX(5); //fb_ad[6]
 PORTD_PCR14=PORT_PCR_MUX(5); //fb_ad[5]
 PORTE_PCR8=PORT_PCR_MUX(5); //fb_ad[4]
 PORTE_PCR9=PORT_PCR_MUX(5); //fb_ad[3]
 PORTE_PCR10=PORT_PCR_MUX(5); //fb_ad[2]
 PORTE_PCR11=PORT_PCR_MUX(5); //fb_ad[1]
 PORTE_PCR12=PORT_PCR_MUX(5); //fb_ad[0]
 //control signals
 PORTA_PCR11=PORT_PCR_MUX(5); //fb_oe_b
 PORTD_PCR15=PORT_PCR_MUX(5); //fb_rw_b
 PORTE_PCR7=PORT_PCR_MUX(5); //fb_cs0_b
 PORTE_PCR6=PORT_PCR_MUX(5); //fb_ale

/* 8 bit write */
(vuint8)(MRAM_START_ADDRESS + n) = 0xAC; // n=offset
/* 8 bit read */
rdata8=(*(vuint8*)(&MRAM_START_ADDRESS + n)); // n = offset

/* 16 bit write */
(vuint16)(MRAM_START_ADDRESS + n) = 0x1234; // n=offset
/* 16 bit read */
rdata16=(*(vuint16*)(&MRAM_START_ADDRESS + n)); // n = offset

/* 32 bit write */
(vuint32)(MRAM_START_ADDRESS + n) = 0x87654321; // n = offset
/* 32 bit read */
rdata32=(*(vuint32*)(&MRAM_START_ADDRESS + n)); // n = offset

Chapter 10 Flexbus Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 99

10.1.1.4 Hardware implementation

Eight data lines FB_D[7:0] and twenty four address lines FB_A[23:0] from the FlexBus
module are connected to the MRAM memory in an non-multiplexed mode.

Figure 10-5. FlexBus device external connections

PCB design recommendations

10.1.2.1 Layout guidelines

Due to the critical timing required while driving external memories, there are a number of
considerations that must be taken into account during PCB layout.

• Each group of signals traces must have identical loading and similar routing, in order
to maintain timing and signal integrity

• Control and clock signals are routed point-to-point.
• Components could and should be placed as close as possible to the MCU.
• To avoid crosstalk, keep address and command signals separate (that is, a different

routing layer) from the data and data strobes.

10.1.2

PCB design recommendations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

100 Freescale Semiconductor

Chapter 11
Universal Asynchronous Receiver and Transmitter
(UART) Module

11.1 Overview
The UART module on the Kinetis family devices supports asynchronous, full-duplex
serial communications with peripheral devices or other CPUs. The UART module has
three main modes of operation -- UART, IrDA, and ISO-7816 mode.

The following sections will discuss the features and use of the UART in UART mode. In
particular the use of the UART as an RS-232 serial communication port will be
described. For full details on the UART module, including all of its features and modes
of operation, please refer to the device-specific reference manual.

11.2 Features
The feature set available on UARTs can vary from UART to UART. Basic UART
functionality is available on all UARTs, but the clock source for the module and the
transmit and receive FIFO sizes can vary. The table below lists the UART features that
vary based on UART module instantiation.

Table 11-1. UART instantiations on Kinetis

UART instance ISO-7816 supported? FIFOs Module clock

UART0 Yes 8 entry TxFIFO, 8 entry RxFI‐
FO

Core Clock

UART1 No 8 entry TxFIFO, 8 entry RxFI‐
FO

Core Clock

UART2 - UARTn No No FIFOs (double buffered
operation)

Peripheral Clock

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 101

NOTE
The table above describes the UART instantiations on the
Kinetis family devices available as of the writing of this
document. As new Kinetis devices become available the UART
instantiations could change. Please refer to the "Chip
Configuration" chapter of the device-specific reference manual
to verify the UART instantiation information for your device.

11.3 Configuration example
The following sections give a software example for using a UART as an RS-232
communication port to an 8-N-1 PC terminal. The software is broken up into
initialization, transmit, and receive sections. The example uses the UART in a simple
polled configuration, but a description is provided to discuss how the UART could be
used in interrupt mode or in conjunction with the DMA to help decrease CPU loading.

11.3.1 UART initialization example

The initialization code below can be used to configure the UART for 8-N-1 operation
(eight data bits, no parity, and one stop bit) with interrupts and hardware flow-control
disabled. The parameters passed in to this function are the UART channel to initialize
(uartch), the module clock frequency for the UART in kHz (sysclk), and the desired baud
rate for communication (baud).

NOTE
The UART modules are pinned out in multiple locations, so the
initialization function below doesn't know which UART pins to
enable. The desired UART pins should be enabled before
calling this initialization function.

void uart_init (UART_MemMapPtr uartch, int sysclk, int baud)
{
 register uint16 ubd, brfa;
 uint8 temp;

 /* Enable the clock to the selected UART */
 if(uartch == UART0_BASE_PTR)
 SIM_SCGC4 |= SIM_SCGC4_UART0_MASK;
 else
 if (uartch == UART1_BASE_PTR)
 SIM_SCGC4 |= SIM_SCGC4_UART1_MASK;
 else
 if (uartch == UART2_BASE_PTR)
 SIM_SCGC4 |= SIM_SCGC4_UART2_MASK;
 else
 if(uartch == UART3_BASE_PTR)
 SIM_SCGC4 |= SIM_SCGC4_UART3_MASK;

Configuration example

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

102 Freescale Semiconductor

 else
 if(uartch == UART4_BASE_PTR)
 SIM_SCGC1 |= SIM_SCGC1_UART4_MASK;
 else
 SIM_SCGC1 |= SIM_SCGC1_UART5_MASK;

 /* Make sure that the transmitter and receiver are disabled while we
 * change settings.
 */
 UART_C2_REG(uartch) &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK);

 /* Configure the UART for 8-bit mode, no parity */
 /* We need all default settings, so entire register is cleared */
 UART_C1_REG(uartch) = 0;

 /* Calculate baud settings */
 ubd = (uint16)((sysclk*1000)/(baud * 16));

 /* Save off the current value of the UARTx_BDH except for the SBR */
 temp = UART_BDH_REG(uartch) & ~(UART_BDH_SBR(0x1F));

 UART_BDH_REG(uartch) = temp | UART_BDH_SBR(((ubd & 0x1F00) >> 8));
 UART_BDL_REG(uartch) = (uint8)(ubd & UART_BDL_SBR_MASK);

 /* Determine if a fractional divider is needed to get closer to the baud rate */
 brfa = (((sysclk*32000)/(baud * 16)) - (ubd * 32));

 /* Save off the current value of the UARTx_C4 register except for the BRFA */
 temp = UART_C4_REG(uartch) & ~(UART_C4_BRFA(0x1F));

 UART_C4_REG(uartch) = temp | UART_C4_BRFA(brfa);

 /* Enable receiver and transmitter */
 UART_C2_REG(uartch) |= (UART_C2_TE_MASK | UART_C2_RE_MASK);
}

The initialization above can be simplified to the following steps:

1. Enable the UART pins by configuring the appropriate PORTx_PCRn registers (not
shown in the code example).

2. Enable the clock to the UART module.
3. Disable the transmitter and receiver. This step is included to make sure that the

UART is not active while it is being configured. This step is not needed if the
uart_init function is always called while the UART is already in a disabled state (the
UART is disabled after reset by default).

4. Configure the UART control registers for the desired format. For 8-N-1 operation no
UART registers actually need to be configured (the default register settings configure
the UART for 8-N-1 operation).

5. Calculate the baud rate dividers. This includes calculating the 13-bit whole number
baud rate divider, the SBR field stored in the UARTx_BDH and UARTx_BDL
registers, and the 5-bit fractional baud rate divider, the UARTx_C4[BRFA] field.

6. Enable the transmitter and receiver to start the UART.

Chapter 11 Universal Asynchronous Receiver and Transmitter (UART) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 103

11.3.2 UART receive example

The function below shows an implementation for a simple polled UART receive
function. The parameter passed in to this function is the UART channel to receive a
character (uartch). The function returns the character that is received.

char uart_getchar (UART_MemMapPtr channel)
{
 /* Wait until character has been received */
 while (!(UART_S1_REG(channel) & UART_S1_RDRF_MASK));

 /* Return the 8-bit data from the receiver */
 return UART_D_REG(channel);
}

Since this is a polled implementation, the function will wait until a character is received.
If no character is received, then the code will remain in the while loop indefinitely. In
order to avoid code getting "stuck" when no traffic is being received, it is a good idea to
include a function to test if a character is present or not. The uart_getchar_present
function can be called prior to calling the uart_getchar function in cases where UART
receive traffic is not guaranteed or required before moving on with program execution.

int uart_getchar_present (UART_MemMapPtr channel)
{
 return (UART_S1_REG(channel) & UART_S1_RDRF_MASK);
}

11.3.3 UART transmit example

The function below shows an implementation for a simple polled UART transmit
function. The parameters passed in to this function are the UART channel that will be
used to transmit (uartch) and the character to be sent (ch).

void uart_putchar (UART_MemMapPtr channel, char ch)
{
 /* Wait until space is available in the FIFO */
 while(!(UART_S1_REG(channel) & UART_S1_TDRE_MASK));

 /* Send the character */
 UART_D_REG(channel) = (uint8)ch;
 }

11.3.4 UART configuration for interrupts or DMA requests

The examples included here poll UART status flags to determine when receive data is
available or when transmit data can be written into the FIFO. This approach is the most
CPU intensive, but it is often the most practical approach when handling small messages.
As message sizes increase it might be useful to use interrupts or the DMA to decrease the

Configuration example

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

104 Freescale Semiconductor

CPU loading. However, the overhead required to set up the interrupts or DMA should be
taken into account. If the additional overhead outweighs the reduction in CPU loading,
then polling is the best approach.

Using the UART interrupts to signal the CPU that data can be read from or written to the
UART will help to decrease the CPU loading. The UART has a number of status and
error interrupt flags that can be used, but for typical receive and transmit operations the
receive data register full flag (UARTx_S1[RDRF]) and transmit data register empty flag
(UARTx_S1[TDRE]) would be enabled using the UARTx_C2[TIE, RIE] bits. The names
of these flags are a bit misleading, since they don't always indicate a full or empty
condition. For UARTs that include a FIFO, the full or empty condition is determined
based on the amount of data in the FIFO compared to a programmable watermark. If both
the RDRF and TDRE interrupt requests are enabled, then the UART interrupt handler
would need to read the S1 register to determine which condition is true then read and/or
write to the UART data register (UARTx_D) to clear the flags. Since the CPU is still
responsible for moving data there is CPU loading associated with an interrupt-driven
software approach.

Using the DMA to move data can help to decrease the CPU loading even more than using
the UART interrupts. The UART's same RDRF and TDRE flags used for an interrupt-
driven software approach can be re-routed to the DMA controller instead. This is done by
setting the UARTx_C5[TDMAS, RDMAS] bits. Each of these requests would be routed
to a different DMA channel (the specific DMA channels would be selected by
programming the DMA channel mux). One DMA channel would be responsible for
handling receive traffic, so it would read one or more bytes from the UART for each
request. The second DMA channel would be responsible for handling the transmit traffic,
so it would write one or more bytes to the UART for each request. When the entire
transmit or receive DMA movement is complete the DMA can interrupt the core to notify
it of the completion. In this approach the CPU has no loading associated with the actual
data movement. All of the CPU loading is the result of the initial configuration of both
the UART and DMA modules and then any processing of data that is required to prepare
it for transmission or interpret it after reception.

11.4 UART RS-232 hardware implementation
The diagram below shows a block diagram of the hardware connections for an RS-232
implementation. The diagram shows the optional hardware flow control signals, but only
the RX and TX data connections are required.

Chapter 11 Universal Asynchronous Receiver and Transmitter (UART) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 105

Figure 11-1. UART RS-232 hardware connections block diagram

UART RS-232 hardware implementation

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

106 Freescale Semiconductor

Chapter 12
ENET Module

12.1 Overview
The following chapter demonstrates how to use the media access controller (MAC) called
ENET to connect to a generic external Ethernet physical transceiver (also called PHY).
The following examples show how they connect to each other (hardware) and the
registers (software) that link up to a network.

12.1.1 Introduction

The MAC-NET controller is one of the communication interfaces included with the
Kinetis family. The following block diagram represents how the MAC-NET fits in the
system to connect to a local area network.

Figure 12-1. MAC-NET block diagram

The MAC-NET controller has three main components:
• MAC Controller—Controls the buffers and registers. Controls the MII /RMII

Interface, and IEEE15888 controller.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 107

• MII/RMII Interface— Interacts with the ETH PHY. It works in two modes. MII and
RMII.

• IEEE1588 Controller—Adds time stamping and enhanced timer support for Ethernet
controller.

The following figure represents how the MAC-NET interfaces with internal SoC
connections. Each component has its own clock.

Figure 12-2. MAC-NET interfaces

The following sections describes some modes of operations and how the module needs to
be configured.

12.1.2 Features
The MAC-NET key value-add components are as follows:

• The MAC-NET controller is compatible with the FEC controller present in previous
ColdFire MCUs and MPUs and low-end PPC like the MPC5553/4.

• The hardware acceleration block helps software implementation with:
• IPv4 and IPv6 support
• IP, TCP, UDP, and ICMP checksum generation and checking
• Configurable discard of erroneous frames
• Configurable Ethernet payload alignment to allow for 32-bit word aligned header

and payload processing

Overview

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

108 Freescale Semiconductor

• Industrial communication can require the use of time synchronization between
distributed nodes. The MAC-NET provides support for the IEEE1588 standard to
overcome one of the drawbacks of Ethernet.

12.2 Configuration examples
When using the MAC-NET interface, most of the time it runs over an RTOS. Regardless
of the type of RTOS, some generic modes need to be defined and followed before
integrating to an existing software. The main 4 modes of operations are as follows:

• Basic Initialization—basic steps needed to run the MAC-NET.
• PHY Management Interface—configuration needed to get/set PHY configurations
• MII—media independent interface to the PHY
• RMII—reduced media independent interface to the PHY

12.2.1 Basic MAC-ENET initialization for a generic TCP/IP stack

Basic initialization is needed when configuring the MAC-NET controller.

12.2.1.1 Code example and explanation
The following list is a sequence of steps needed to correctly configure the ENET
interface.

1. Enable ENET clock and disable the MPU
2. Configure buffer descriptions (BD) in little endian
3. Reset MAC controller
4. Configure pins MII or RMII mode
5. Clear and unmask ENET xmit, rx, and error interrupts. Set interrupt level and priority
6. Take network speed and duplex from PHY, then configure ENET accordingly
7. Configure MAC address with hash support
8. Point MAC-ENET to xmit and Rx BD. Configure maximum packet size
9. Start MAC-ENET controller

10. Set ENET ready to receive

Example code:

/* Buffer Descriptor Format */
#ifdef ENHANCED_BD
 typedef struct
 {
 uint16_t status; /* control and status */
 uint16_t length; /* transfer length */
 uint8_t *data; /* buffer address */
 uint32_t ebd_status;

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 109

 uint16_t length_proto_type;
 uint16_t payload_checksum;
 uint32_t bdu;
 uint32_t timestamp;
 uint32_t reserverd_word1;
 uint32_t reserverd_word2;
 } NBUF;
#else
 typedef struct
 {
 uint16_t status; /* control and status */
 uint16_t length; /* transfer length */
 uint8_t *data; /* buffer address */
 } NBUF;
#endif /* ENHANCED_BD */

static void enet_init()
{
int usData;
const unsigned portCHAR ucMACAddress[6] =
{
 configMAC_ADDR0,
configMAC_ADDR1,configMAC_ADDR2,configMAC_ADDR3,configMAC_ADDR4,configMAC_ADDR5
};

 /* Enable the ENET clock. */
 SIM_SCGC2 |= SIM_SCGC2_ENET_MASK;

 /*FSL: allow concurrent access to MPU controller. Example: ENET uDMA to SRAM, otherwise
bus error*/
 MPU_CESR = 0;

 prvInitialiseENETBuffers();

 /* Set the Reset bit and clear the Enable bit */
 ENET_ECR = ENET_ECR_RESET_MASK;

 /* Wait at least 8 clock cycles */
 for(usData = 0; usData < 10; usData++)
 {
 asm("NOP");
 }

 /*FSL: start MII interface*/
 mii_init(0, periph_clk_khz/1000/*MHz*/);

 //enet_interrupt_routine
 set_irq_priority (76, 6);
 enable_irq(76);//ENET xmit interrupt
 //enet_interrupt_routine
 set_irq_priority (77, 6);
 enable_irq(77);//ENET rx interrupt
 //enet_interrupt_routine
 set_irq_priority (78, 6);
 enable_irq(78);//ENET error and misc interrupts

 /*
 * Make sure the external interface signals are enabled
 */
 PORTB_PCR0 = PORT_PCR_MUX(4);//GPIO;//RMII0_MDIO/MII0_MDIO
 PORTB_PCR1 = PORT_PCR_MUX(4);//GPIO;//RMII0_MDC/MII0_MDC

#if configUSE_MII_MODE
 PORTA_PCR14 = PORT_PCR_MUX(4);//RMII0_CRS_DV/MII0_RXDV
 PORTA_PCR5 = PORT_PCR_MUX(4);//RMII0_RXER/MII0_RXER
 PORTA_PCR12 = PORT_PCR_MUX(4);//RMII0_RXD1/MII0_RXD1
 PORTA_PCR13 = PORT_PCR_MUX(4);//RMII0_RXD0/MII0_RXD0
 PORTA_PCR15 = PORT_PCR_MUX(4);//RMII0_TXEN/MII0_TXEN
 PORTA_PCR16 = PORT_PCR_MUX(4);//RMII0_TXD0/MII0_TXD0
 PORTA_PCR17 = PORT_PCR_MUX(4);//RMII0_TXD1/MII0_TXD1

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

110 Freescale Semiconductor

 PORTA_PCR11 = PORT_PCR_MUX(4);//MII0_RXCLK
 PORTA_PCR25 = PORT_PCR_MUX(4);//MII0_TXCLK
 PORTA_PCR9 = PORT_PCR_MUX(4);//MII0_RXD3
 PORTA_PCR10 = PORT_PCR_MUX(4);//MII0_RXD2
 PORTA_PCR28 = PORT_PCR_MUX(4);//MII0_TXER
 PORTA_PCR24 = PORT_PCR_MUX(4);//MII0_TXD2
 PORTA_PCR26 = PORT_PCR_MUX(4);//MII0_TXD3
 PORTA_PCR27 = PORT_PCR_MUX(4);//MII0_CRS
 PORTA_PCR29 = PORT_PCR_MUX(4);//MII0_COL
#else
 PORTA_PCR14 = PORT_PCR_MUX(4);//RMII0_CRS_DV/MII0_RXDV
 PORTA_PCR5 = PORT_PCR_MUX(4);//RMII0_RXER/MII0_RXER
 PORTA_PCR12 = PORT_PCR_MUX(4);//RMII0_RXD1/MII0_RXD1
 PORTA_PCR13 = PORT_PCR_MUX(4);//RMII0_RXD0/MII0_RXD0
 PORTA_PCR15 = PORT_PCR_MUX(4);//RMII0_TXEN/MII0_TXEN
 PORTA_PCR16 = PORT_PCR_MUX(4);//RMII0_TXD0/MII0_TXD0
 PORTA_PCR17 = PORT_PCR_MUX(4);//RMII0_TXD1/MII0_TXD1
#endif

 /* Can we talk to the PHY? */
 do
 {
 RTOS_DELAY(netifLINK_DELAY);
 usData = 0xffff;
 mii_read(0, configPHY_ADDRESS, PHY_PHYIDR1, &usData);

 } while(usData == 0xffff);

 /* Start auto negotiate. */
 mii_write(0, configPHY_ADDRESS, PHY_BMCR, (PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE));

 /* Wait for auto negotiate to complete. */
 do
 {
 RTOS_DELAY(netifLINK_DELAY);
 mii_read(0, configPHY_ADDRESS, PHY_BMSR, &usData);

 } while(!(usData & PHY_BMSR_AN_COMPLETE));

 /* When we get here we have a link - find out what has been negotiated. */
 usData = 0;
 mii_read(0, configPHY_ADDRESS, PHY_STATUS, &usData);

 /* Clear the Individual and Group Address Hash registers */
 ENET_IALR = 0;
 ENET_IAUR = 0;
 ENET_GALR = 0;
 ENET_GAUR = 0;

 /* Set the Physical Address for the selected ENET */
 enet_set_address(0, ucMACAddress);

#if configUSE_MII_MODE
 /* Various mode/status setup. */
 ENET_RCR = ENET_RCR_MAX_FL(configENET_RX_BUFFER_SIZE) | ENET_RCR_MII_MODE_MASK |
ENET_RCR_CRCFWD_MASK;
#else
 ENET_RCR = ENET_RCR_MAX_FL(configENET_RX_BUFFER_SIZE) | ENET_RCR_MII_MODE_MASK |
ENET_RCR_CRCFWD_MASK | ENET_RCR_RMII_MODE_MASK;
#endif

 /*FSL: clear rx/tx control registers*/
 ENET_TCR = 0;

 /* Setup half or full duplex. */
 if(usData & PHY_DUPLEX_STATUS)
 {
 /*Full duplex*/
 ENET_RCR &= (unsigned portLONG)~ENET_RCR_DRT_MASK;
 ENET_TCR |= ENET_TCR_FDEN_MASK;

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 111

 }
 else
 {
 /*half duplex*/
 ENET_RCR |= ENET_RCR_DRT_MASK;
 ENET_TCR &= (unsigned portLONG)~ENET_TCR_FDEN_MASK;
 }
 /* Setup speed */
 if(usData & PHY_SPEED_STATUS)
 {
 /*10Mbps*/
 ENET_RCR |= ENET_RCR_RMII_10T_MASK;
 }

 #if(configUSE_PROMISCUOUS_MODE == 1)
 {
 ENET_RCR |= ENET_RCR_PROM_MASK;
 }
 #endif

 #ifdef ENHANCED_BD
 ENET_ECR = ENET_ECR_EN1588_MASK;
 #else
 ENET_ECR = 0;
 #endif

 /* Set Rx Buffer Size */
 ENET_MRBR = (unsigned portSHORT) configENET_RX_BUFFER_SIZE;

 /* Point to the start of the circular Rx buffer descriptor queue */
 ENET_RDSR = (unsigned portLONG) &(xENETRxDescriptors[0]);

 /* Point to the start of the circular Tx buffer descriptor queue */
 ENET_TDSR = (unsigned portLONG) xENETTxDescriptors;

 /* Clear all ENET interrupt events */
 ENET_EIR = (unsigned portLONG) -1;

 /* Enable interrupts */
 ENET_EIMR = ENET_EIR_TXF_MASK | ENET_EIMR_RXF_MASK | ENET_EIMR_RXB_MASK |
ENET_EIMR_UN_MASK | ENET_EIMR_RL_MASK | ENET_EIMR_LC_MASK | ENET_EIMR_BABT_MASK |
ENET_EIMR_BABR_MASK | ENET_EIMR_EBERR_MASK;

 /* Create the task that handles the MAC ENET RX */
 /* RTOS + TCP/IP stack dependent */

 /* Enable the MAC itself. */
 ENET_ECR |= ENET_ECR_ETHEREN_MASK;

 /* Indicate that there have been empty receive buffers produced */
 ENET_RDAR = ENET_RDAR_RDAR_MASK;
}
static void prvInitialiseENETBuffers(void)
{
unsigned portBASE_TYPE ux;
unsigned char *pcBufPointer;

 pcBufPointer = &(xENETTxDescriptors_unaligned[0]);
 while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
 {
 pcBufPointer++;
 }

 xENETTxDescriptors = (NBUF *) pcBufPointer;

 pcBufPointer = &(xENETRxDescriptors_unaligned[0]);
 while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
 {
 pcBufPointer++;
 }

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

112 Freescale Semiconductor

 xENETRxDescriptors = (NBUF *) pcBufPointer;

 /* Setup the buffers and descriptors. */
 pcBufPointer = &(ucENETTxBuffers[0]);
 while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
 {
 pcBufPointer++;
 }

 for(ux = 0; ux < configNUM_ENET_TX_BUFFERS; ux++)
 {
 xENETTxDescriptors[ux].status = TX_BD_TC;
 #ifdef NBUF_LITTLE_ENDIAN
 xENETTxDescriptors[ux].data = (uint8_t *)__REV((uint32_t)pcBufPointer);
 #else
 xENETTxDescriptors[ux].data = pcBufPointer;
 #endif
 pcBufPointer += configENET_TX_BUFFER_SIZE;
 xENETTxDescriptors[ux].length = 0;
 #ifdef ENHANCED_BD
 xENETTxDescriptors[ux].ebd_status = TX_BD_IINS | TX_BD_PINS;
 #endif
 }

 pcBufPointer = &(ucENETRxBuffers[0]);
 while(((unsigned long) pcBufPointer & 0x0fUL) != 0)
 {
 pcBufPointer++;
 }

 for(ux = 0; ux < configNUM_ENET_RX_BUFFERS; ux++)
 {
 xENETRxDescriptors[ux].status = RX_BD_E;
 xENETRxDescriptors[ux].length = 0;
 #ifdef NBUF_LITTLE_ENDIAN
 xENETRxDescriptors[ux].data = (uint8_t *)__REV((uint32_t)pcBufPointer);
 #else
 xENETRxDescriptors[ux].data = pcBufPointer;
 #endif
 pcBufPointer += configENET_RX_BUFFER_SIZE;
 #ifdef ENHANCED_BD
 xENETRxDescriptors[ux].bdu = 0x00000000;
 xENETRxDescriptors[ux].ebd_status = RX_BD_INT;
 #endif
 }

 /* Set the wrap bit in the last descriptors to form a ring. */
 xENETTxDescriptors[configNUM_ENET_TX_BUFFERS - 1].status |= TX_BD_W;
 xENETRxDescriptors[configNUM_ENET_RX_BUFFERS - 1].status |= RX_BD_W;

 uxNextRxBuffer = 0;
 uxNextTxBuffer = 0;
}

12.3 PHY management interface
The PHY management interface is the path to communicate to the PHY control/status
registers which describes the network. Communication between the MAC-NET and the
PHY is made by 2 signals:

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 113

• One clock generated from the ENET interface for the PHY. Clock cannot be greater
than 2.5MHz and is controlled by register ENET_MSCR[MII_SPEED] divider
which uses peripheral clock as reference.

• One bidirectional signals which sends/receives data to/from the PHY.

12.3.1 Code example and explanation

The following example code starts the PHY management interface that starts the auto-
negotiation process from the PHY to the network.

Example code:

void
enet_start_mii(void)
{
 PORTB_PCR0 = PORT_PCR_MUX(4);//GPIO;//RMII0_MDIO/MII0_MDIO
 PORTB_PCR1 = PORT_PCR_MUX(4);//GPIO;//RMII0_MDC/MII0_MDC

/*FSL: start MII interface*/
 mii_init(0, periph_clk_khz/1000/*MHz*/);

 /* Can we talk to the PHY? */
 do
 {
 vTaskDelay(netifLINK_DELAY);
 usData = 0xffff;
 mii_read(0, configPHY_ADDRESS, PHY_PHYIDR1, &usData);

 } while(usData == 0xffff);

 /* Start auto negotiate. */
 mii_write(0, configPHY_ADDRESS, PHY_BMCR, (PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE));
}

void
mii_init(int ch, int sys_clk_mhz)
{
 ENET_MSCR/*(ch)*/ = 0
#ifdef TSIEVB/*TSI EVB requires a longer hold time than default 10 ns*/
 | ENET_MSCR_HOLDTIME(2)
#endif
 | ENET_MSCR_MII_SPEED((2*sys_clk_mhz/5)+1)
 ;
}

int
mii_write(int ch, int phy_addr, int reg_addr, int data)
{
int timeout;

/* Clear the MII interrupt bit */
ENET_EIR/*(ch)*/ = ENET_EIR_MII_MASK;

/* Initiatate the MII Management write */
ENET_MMFR/*(ch)*/ = 0
| ENET_MMFR_ST(0x01)
| ENET_MMFR_OP(0x01)
| ENET_MMFR_PA(phy_addr)
| ENET_MMFR_RA(reg_addr)
| ENET_MMFR_TA(0x02)
| ENET_MMFR_DATA(data);

PHY management interface

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

114 Freescale Semiconductor

/* Poll for the MII interrupt (interrupt should be masked) */
 for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (ENET_EIR/*(ch)*/ & ENET_EIR_MII_MASK)
break;
}

if(timeout == MII_TIMEOUT)
return 1;

/* Clear the MII interrupt bit */
ENET_EIR/*(ch)*/ = ENET_EIR_MII_MASK;

return 0;
}
/**/
int
mii_read(int ch, int phy_addr, int reg_addr, int *data)
{
int timeout;

/* Clear the MII interrupt bit */
ENET_EIR/*(ch)*/ = ENET_EIR_MII_MASK;

/* Initiatate the MII Management read */
ENET_MMFR/*(ch)*/ = 0
| ENET_MMFR_ST(0x01)
| ENET_MMFR_OP(0x2)
| ENET_MMFR_PA(phy_addr)
| ENET_MMFR_RA(reg_addr)
| ENET_MMFR_TA(0x02);

/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (ENET_EIR/*(ch)*/ & ENET_EIR_MII_MASK)
break;
}

if(timeout == MII_TIMEOUT)
return 1;

/* Clear the MII interrupt bit */
ENET_EIR/*(ch)*/ = ENET_EIR_MII_MASK;

data = ENET_MMFR/(ch)*/ & 0x0000FFFF;

return 0;
}

12.4 MII mode
The media independent interface (MII) is a configuration mode that requires 18 signals to
communicate to a generic PHY. The MII operates at 25 MHz. The synchronization
signals are part of the MII external signals provided by the Ethernet PHY.

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 115

12.4.1 Code example and explanation

The following example code shows the registers needed to configure the MAC-NET
controller in MII mode.

PORTA_PCR14 = PORT_PCR_MUX(4);//RMII0_CRS_DV/MII0_RXDV
 PORTA_PCR5 = PORT_PCR_MUX(4);//RMII0_RXER/MII0_RXER
 PORTA_PCR12 = PORT_PCR_MUX(4);//RMII0_RXD1/MII0_RXD1
 PORTA_PCR13 = PORT_PCR_MUX(4);//RMII0_RXD0/MII0_RXD0
 PORTA_PCR15 = PORT_PCR_MUX(4);//RMII0_TXEN/MII0_TXEN
 PORTA_PCR16 = PORT_PCR_MUX(4);//RMII0_TXD0/MII0_TXD0
 PORTA_PCR17 = PORT_PCR_MUX(4);//RMII0_TXD1/MII0_TXD1
 PORTA_PCR11 = PORT_PCR_MUX(4);//MII0_RXCLK
 PORTA_PCR25 = PORT_PCR_MUX(4);//MII0_TXCLK
 PORTA_PCR9 = PORT_PCR_MUX(4);//MII0_RXD3
 PORTA_PCR10 = PORT_PCR_MUX(4);//MII0_RXD2
 PORTA_PCR28 = PORT_PCR_MUX(4);//MII0_TXER
 PORTA_PCR24 = PORT_PCR_MUX(4);//MII0_TXD2
 PORTA_PCR26 = PORT_PCR_MUX(4);//MII0_TXD3
 PORTA_PCR27 = PORT_PCR_MUX(4);//MII0_CRS
 PORTA_PCR29 = PORT_PCR_MUX(4);//MII0_COL

 ENET_RCR = ENET_RCR_MAX_FL(configENET_RX_BUFFER_SIZE) | ENET_RCR_MII_MODE_MASK |
ENET_RCR_CRCFWD_MASK;

12.4.1.1 Hardware implementation

The following figure shows the connection needed from the MAC-NET pins to a generic
Ethernet PHY in MII mode.

In MII mode, Rx and Tx are synchronous to MII0_RXCLK and MII0_TXCLK
respectively. There is no additional requirement from the MAC-NET to synch from the
PHY to the MII/RMII interface. The PHY data sheet must be followed for all electrical
requirements.

MII mode

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

116 Freescale Semiconductor

Figure 12-3. MII connection

NOTE
The “ * ” indicates special precautions that must be taken for a
each specific Ethernet PHY manufacturer. The CRSDV
function may be located in either pin.

NOTE
The TXER signal is not required for this example, this is why
there are 17 signals and not 18.

12.5 RMII mode
The reduced media independent interface (RMII) is a configuration mode that requires
nine signals to communicate to a generic PHY. The RMII operates at 50 MHz and
requires synchronization between the PHY and the ENET RMII interface clock input
(EXTAL). Depending on the PHY specifications, the clock options used by the MCU can
be:

• PHY clock input
• PHY clock output if provided

12.5.1 Code example and explanation

The following example code shows the registers needed to configure the MAC-NET
controller in RMII mode.

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 117

Example code:

 PORTA_PCR14 = PORT_PCR_MUX(4);//RMII0_CRS_DV/MII0_RXDV
 PORTA_PCR5 = PORT_PCR_MUX(4);//RMII0_RXER/MII0_RXER
 PORTA_PCR12 = PORT_PCR_MUX(4);//RMII0_RXD1/MII0_RXD1
 PORTA_PCR13 = PORT_PCR_MUX(4);//RMII0_RXD0/MII0_RXD0
 PORTA_PCR15 = PORT_PCR_MUX(4);//RMII0_TXEN/MII0_TXEN
 PORTA_PCR16 = PORT_PCR_MUX(4);//RMII0_TXD0/MII0_TXD0
 PORTA_PCR17 = PORT_PCR_MUX(4);//RMII0_TXD1/MII0_TXD1

 ENET_RCR = ENET_RCR_MAX_FL(configENET_RX_BUFFER_SIZE) | ENET_RCR_MII_MODE_MASK |
ENET_RCR_CRCFWD_MASK | ENET_RCR_RMII_MODE_MASK;

12.5.1.1 Hardware implementation

The following two figures show the connection needed from the MAC-NET pins to any
generic Ethernet PHYs in RMII mode.

The connection from the RMII0_CRS_DV is dependent on the PHY implementation. In
the first figure, the RMII0_CRS_DV signal is connected to the RXDV/CRSDV pin.

Figure 12-4. RMII mode connection example 1

The RMII0_RCR_DV is connected to the CRS/CRSDV. Hardware designs need to be
taken into consideration depending on the specific PHY used.

RMII mode

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

118 Freescale Semiconductor

Figure 12-5. RMII mode connection example 2

NOTE
The “ * ” indicates special precautions that must be taken for a
each specific Ethernet PHY manufacturer. The CRSDV
function may be located in either pin.

The hardware considerations from the PHY to the Ethernet Magnetics or the RJ45
connector are supplied from the PHY manufacturer.

12.6 PCB Design Recommendations
ENET interface signals function at 25 or 50 MHz. Design guidelines must be followed.

12.6.1 Layout Guidelines

Each vendor implementation guide must be closely followed. The quality of the Ethernet
connection is many times dependent on board routing, magnetics quality, and the
configured mode of operation for the PHY.

12.6.1.1 General Routing and Placement

Use the following general routing and placement guidelines when laying out a new
design for the ENET.

Chapter 12 ENET Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 119

• Series termination guidelines must be placed as close as possible to the origin of the
signal. This must be followed by PHY and ENET outputs.

• When working in RMII mode, a 50 MHz external reference must be connected to the
EXTAL pin. Then the MII/RMII interface is able to communicate with the PHY,
which uses the same clock. If your PHY clock presents an output delay (compared to
the input clock), this delay must be properly matched (frequency and phase) to the
EXTAL pin, or data corruption occurs. Some PHYs output a 50 MHz clock which
must be used for the MCU EXTAL pin. Follow your PHY specifications and
considerations for the RMII mode.

PCB Design Recommendations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

120 Freescale Semiconductor

Chapter 13
USB Device Charger Detection (USBDCD) Module

13.1 Overview
This chapter intends to show the general configuration sequence and the service routines
needed to be able to detect the host type and charger that is connected to the USB
module.

13.1.1 Introduction

The USB battery charger specification defines limits, detection, control, and reporting
mechanisms that permit devices to draw current in excess of the USB 2.0 specification
for charging or powering up from dedicated chargers, hosts, and hubs, and for charging
downstream ports. These mechanisms are backward-compatible with USB 2.0 compliant
hosts and peripherals. The USB ports on personal computers are convenient places for
portable devices to draw current for charging their batteries. This convenience has led to
the creation of USB chargers that expose a USB standard-A receptacle. This allows
portable devices to use the same USB cable to charge from either a PC or from a USB
charger. Freescale Kinetis microprocessors include a device charger detection (DCD)
module capable of identifying if the device is connected to a PC host or to a USB
dedicated charger.

13.1.2 Features
The USBDCD module works with the USB transceiver to detect if the USB device is
attached to a charging port (either a dedicated charging port or a charging host). The
system software coordinates the detection activities of the module and controls an off-
chip integrated circuit that performs the battery charging. The main features of the DCD
module are the following:

• USB battery charger specification compliant (rev 1.1)
• Programmable timing parameters

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 121

• Uses the same D+ and D- signals as the USB module
• Enables rechargeable batteries usage
• Low power operation

13.1.3 Battery charger specification

The USB battery charger specification establishes three different types of downstream
ports:

• Standard Downstream Port

Refers to a downstream port on a device that complies with the USB 2.0 definition of
a host or hub. A standard downstream port expects a downstream device to draw:

• less than a 2.5 mA average when disconnected or suspended
• up to 100 mA maximum when connected and not suspended
• up to 500 mA maximum if configured and not suspended

• Charging Downstream Port

A charging downstream port is a downstream port on a device that complies with the
USB 2.0 definition of a host or a hub. It can supply a maximum of 1.5 A to a low/full
speed port and 900 mA to a high speed port.

• Dedicated Charger

A dedicated charging port is a downstream port on a device that outputs power
through a USB connector, but is not capable of enumerating a downstream device. A
dedicated charging port is able to supply a maximum of 1.8 A. A dedicated charging
port is required to short the D+ line to the D- line.

In other words, the amount of current that the device is able to draw to charge the system
batteries depends on the type of downstream port it is connected to.

Module Configuration

13.2.1 Module dependencies

The DCD module depends on other modules to operate correctly:

Clock Source

13.2

Module Configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

122 Freescale Semiconductor

The DCD module needs a 48 Mhz clock. This clock is the same as that applied to the
USB module, but the DCD has its own clock gating bit in the SIM_SCGC6 register.
Make sure that the USBDCD bit is set to enable the clock source to the DCD module.

I/O Signal

The DCD module needs to know when the USB connector is plugged in. This can be
made using an I/O signal measuring the status of the VBUS line of the USB connector.
When the VBUS line becomes high, the software must call the start sequence routine of
the DCD module. (see I/O section for more details of the pin configuration).

USB Module

The host detection sequence ends after the pullup resistor is enabled in the D+ signal.
Only the USB module can enable this pullup. The USB module needs to be pre-
initialized to enable the pullup (when needed) and start the USB enumeration process if
required (only if detection results on a standard host or charging host type).

Voltage Regulator

The USB transceiver power line comes directly from the VOUT33 (voltage regulator
output). Therefore the regulator must be enabled to make sure that the pull-up is present
when needed.

13.3 DCD hardware implementation
The basic connection to use the DCD module is the differential lines routed to the USB
connector, with the proper coupling resistors and an I/O signal sensing the VBUS pin.
Remember that the Kinetis family has 5 V tolerant pins, meaning that there is no need to
add a level shifter or resistor divider to sense the VBUS line.

Figure 13-1. DCD hardware diagram

Chapter 13 USB Device Charger Detection (USBDCD) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 123

13.4 Example code
The DCD example code sends a message to a terminal showing what type of host is
attached to the USB module. To be able to test the three different types of hosts it is
necessary to have a special tool. Because the standard is new only a few companies have
support for this. The tool that Freescale uses is the Allion USB battery Charging Test
feature. Using this tool and a regular PC is enough to emulate any host and test the DCD
module. For more information about the Allion USB battery Charging Test feature, go to:
http://www.allion.com/TestTool/USB_Charging.pdf

The code waits until the USB cable is attached, sending 5 V to PTB0. After the software
detects the rising edge in the VBUS signal, starts the DCD detection sequence, and waits
until the sequence is completed or the module sends an error notification.

The next three windows show the result of each host type.

Figure 13-2. DCD demo results

Software Explanation—The software is simple. This section will explain in detail how to
set the clocks, USB, and I/O pins to run the DCD example.

1. First, configure one I/O pin as input. In this example PTB0 is used for the VBUS
detection.

 FLAG_SET(SIM_SCGC5_PORTB_SHIFT,SIM_SCGC5);// Enable clock for PTB
 PORTB_PCR0=(0|PORT_PCR_MUX(1));// configure PTB0 as I/O pin

Example code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

124 Freescale Semiconductor

http://www.allion.com/TestTool/USB_Charging.pdf

2. Next, enable the USB and the DCD clock gating bits in the SIM.

 /* SIM Configuration */
 SIM_SCGC4|=(SIM_SCGC4_USBOTG_MASK); // USB Clock Gating
 SIM_SCGC6|=(SIM_SCGC6_USBDCD_MASK); // USB Clock Gating

3. Pre-initialize the USB. This is required to enable the pullup resistor that is controlled
by the USB module.

 // USB pre-initialization
 USBOTG_USBTRC0|=USBOTG_USBTRC0_USBRESET_MASK;
 while(FLAG_CHK(USBOTG_USBTRC0_USBRESET_SHIFT,USBOTG_USBTRC0)){};
 FLAG_SET(USBOTG_ISTAT_USBRST_MASK,USBOTG_ISTAT);

 // Enable USB Reset Interrupt
 FLAG_SET(USBOTG_INTEN_USBRSTEN_SHIFT,USBOTG_INTEN);
 USBOTG_USBCTRL=0x00;
 USBOTG_USBTRC0|=0x40;
 USBOTG_CTL|=0x01;

4. Configure the DCD clock register.

 USBDCD_CLOCK=(DCD_TIME_BASE<<2)|1;

5. At this point the application is polling the PTB0 pin for VBUS detection, but a port
interrupt can also be used to avoid polling method.

 // Waiting for VBUS
 if(FLAG_CHK(0,GPIOB_PDIR) && !FLAG_CHK(VBUS_Flag,gu8InterruptFlags))
 {
 USBDCD_CONTROL=USBDCD_CONTROL_IE_MASK | USBDCD_CONTROL_IACK_MASK;
 FLAG_SET(USBDCD_CONTROL_START_SHIFT,USBDCD_CONTROL);
 FLAG_SET(VBUS_Flag,gu8InterruptFlags);
 }

6. Finally, when the detection sequence is completed the application needs to read the
results in the DCD registers and send them to the terminal.

 // DCD results
 if(FLAG_CHK(DCD_Flag,gu8InterruptFlags))
 {
 u8Error=DCD_GetChargerType();

 if((u8Error&0xF0))
 printf("Oooooops DCD Error");
 else
 {
 if((u8Error&0x0F)==STANDARD_HOST)
 printf("Connected to a Standard Host");
 if((u8Error&0x0F)==CHARGING_HOST)
 printf("Connected to a Charging Host");
 if((u8Error&0x0F)==DEDICATED_CHARGER)
 printf("Connected to a Dedicated Charger");
 }

The function that returns the charger type result is:

UINT8 DCD_GetChargerType(void)
{
 UINT8 u8ChargerType;
 u8ChargerType = (UINT8)((USBDCD_STATUS & USBDCD_STATUS_SEQ_RES_MASK)>>16);
 u8ChargerType|= (UINT8)((USBDCD_STATUS & USBDCD_STATUS_FLAGS_MASK)>>16);
 return(u8ChargerType);
}

The DCD interrupt service routine:

Chapter 13 USB Device Charger Detection (USBDCD) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 125

void DCD_ISR(void)
{
 USBDCD_CONTROL|= USBDCD_CONTROL_IACK_MASK; // ackowledge

 if((USBDCD_STATUS&0x000C0000) == 0x00080000)
 FLAG_SET(USBOTG_CONTROL_DPPULLUPNONOTG_SHIFT,USBOTG_CONTROL); // enable pullup

 if((!(USBDCD_STATUS & 0x00400000)) || (USBDCD_STATUS & 0x00300000))
 FLAG_SET(DCD_Flag,gu8InterruptFlags); // charger detection completed
}

Example code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

126 Freescale Semiconductor

Chapter 14
Universal Serial Bus OTG Module

14.1 Introduction
The Universal Serial Bus (USB) is a serial bus standard for communicating between a
host controller and different types of devices. USB has become the standard connection
method for PCs, PDAs, and video games, and more recently has been used on power
cords. This is because USB can connect printers, keyboards, mice, game devices,
communication devices, storage devices, and custom devices. USB 2.0 full-speed allows
12-Mbps communication between the host controller and the device.

14.2 Features
• USB Full Speed 2.0 compliant (12 Mbps)
• Dual role operation
• 16 double-buffered bidirectional endpoints
• On-chip USB full-speed PHY
• Integration with device charger detection (DCD) module
• 120 mA on-chip regulator for MCU and external components

14.3 USB operation modes
Device Mode

The USB is configured to respond to external host requests. In this mode the MCU has no
control of the USB bus. All the transfers are started by the Host controller that is also
providing the VBUS voltage. The DCD was designed to run together with this USB
mode. First, the DCD detects the host type and after the USB takes the control of the D+
and D- signals.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 127

Figure 14-1. USB device mode

Host Mode

In this mode the module works as the USB master having the entire control of the USB
bus. The Serial interface engine takes care of the timing and the frames. The software
stack takes care of the transfer management of the bus. The host also needs to provide the
5 v (VBUS) power line to supply the remote devices (in case its needed).

Figure 14-2. USB host mode

14.4 Voltage regulator operation modes
The voltage regulator is composed of two different regulators, the standby regulator and
the run regulator. You can select which regulator will be used by using the standby bit in
the system integration module. The input pin for the regulator is called VREGIN and the
output pin is VOUT33.

Run Mode

Voltage regulator operation modes

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

128 Freescale Semiconductor

The regulating loop of the RUN regulator and the STANDBY regulator are active, but
the switch connecting the STANDBY regulator output to the external pin is open.

Standby Mode

The regulating loop of the RUN regulator is disabled and the standby regulator is active.
The switch connecting the STANDBY regulator output to the external pin is closed.

Shutdown

The module is disabled.

Figure 14-3. Voltage regulator block diagram

When the input power supply is below 3.6 V, the regulator goes to pass-through mode.
The following figure shows the ideal relation between the regulator output and input
power supply.

Figure 14-4. Regulator output

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 129

Module configuration

14.5.1 Module dependencies

Clock Source

The USB module needs a 48 Mhz clock to operate. There are three possible sources for
the USB clock: PLL, FLL, and an external pin called USB_CLKIN. With PLL or FLL,
there is a fractional divider after the MUX. It divides the frequency of the PLL or FLL to
enable the MCU to operate at higher frequencies than 48 Mhz. The output of the
fractional divider goes to a MUX, and then a choice is made between this signal and the
USB_CLKIN pin. The fractional divider value can be configured in the SIM_CLKDIV2
register inside the system integration module (SIM).

Figure 14-5. USB clock diagram

Voltage Regulator

The USB transceiver power supply comes directly from VOUT33 (voltage regulator
output). Therefore, the regulator must be enabled to supply 3.3 V to the transceiver.

14.5.2 USB initialization process

The USB module can work in either device or host mode. During initialization the two
modes are similar, but there are minor differences between the two.

Device Mode Initialization

In device mode the USB module activates the pullup resistor after initialization is
complete, to be detected by the remote host.

14.5

Module configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

130 Freescale Semiconductor

Figure 14-6. Device mode initialization flow

Host Mode Initialization

To enable host support, one bit needs to be set. This enables 1-ms SOF (start of frame)
generation in the USB module. When a pullup is detected in the D+ or D- signal, the
module generates the attached interrupt, which indicates that one device is attached to the
bus and the enumeration process must start.

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 131

Figure 14-7. Host mode initialization flow

14.5.3 Voltage regulator initialization

The USB regulator is enabled by default; therefore, no initialization is required unless the
regulator was previously disabled by the software after the last POR.

Hardware implementation

14.6.1 Connection diagram

The USB 2.0 requests the D+ and D- signals, VBUS (5 V power line), ground, and in
some cases the ID pin. This ID pin is included in the OTG specification and is used when
one device can act as a host or as a device, depending on which plug is connected into the
board connector. The mini-A plug, which indicates that this part is a host, has the ID pin
grounded, while the ID in the mini-B plug is floating, indicating that this part will act as a
device.

14.6

Hardware implementation

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

132 Freescale Semiconductor

Host Only

If the application supports only host mode, it is not necessary to include the ID line in the
hardware. However, because it is a host the hardware must provide 5 V with enough
current to supply the device side (when plugged). This voltage is typically provided by an
external IC controlled by the MCU.

Figure 14-8. Host only diagram

Device Only

In many cases the application just needs to communicate with an application running on a
PC. In this case, the application running on the MCU supports only device mode. This
application can be self-powered, using an external power supply, or bus-powered
(powered from the 5 V coming from the host). In both cases, the USB regulator must be
enabled to supply the USB transceiver. Also, the ID line is not needed in this scenario.

Figure 14-9. Device only diagram

Dual Role

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 133

This mode is used when the application can be connected to a PC or is able to handle
external USB devices, such as fingerprint readers, mice, USB flash drives, and so on. The
application running on the MCU will be configured in device mode (not applying 5 V to
the VBUS line) until the ID signals become low. This indicates that a host mode
reconfiguration is needed, and 5 V is then applied to the VBUS signal using the external
IC.

Figure 14-10. Dual role diagram

14.6.2 Components and placement suggestions
• The MCU does not include a signal for supplying the 5 V VBUS power for the USB.

An external power management chip or discrete logic for enabling VBUS is required
for the host operation.

• The power distribution circuit must have over-current detection capability to be
compliant with the USB standard.

• The 33 Ω series termination resistors are recommended for the FS and LS USB
transceiver. These series termination resistors must be placed as close as possible to
the transceiver to maximize the eye diagram for the data lines.

Hardware implementation

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

134 Freescale Semiconductor

Figure 14-11. Components and placement

14.6.3 Layout recommendations
• Route the USB D+ and D- signals as parallel 90 Ω differential pairs.
• Match the trace lengths as closely as possible. Matching within 150 mils is a good

guideline
• Try to maintain short trace lengths, not longer than 15 cm
• Avoid placing USB differential pairs near signals, such as clocks, periodic signals,

and I/O connectors, that might cause interference.
• Minimize vias and corners.
• Route differential pairs on a signal layer, next to the ground plane.
• Avoid signal stubs

Figure 14-12. USB layout recommendations

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 135

Example code

14.7.1 Device code

This demo is a simple echo terminal using the communication device class. The USB is
recognized as a standard COM port that can be used for the HyperTerminal or any
program that uses a serial port.

To run this demo it is necessary to have a 48 MHz frequency out of the USB clock. After
the board is connected the PC requests a driver. Point to the
Freescale_CDC_Driver_kinetis.inf file to install the device on your computer. In the
Device Manager window a Freescale CDC device will be found after the enumeration
process is completed.

Figure 14-13. Windows device manager

Then open HyperTerminal pointing to the COMx device (in this case COM4) with 8-bit
size, 1 stop bit, no flow control, 9600 baudrate, and begin typing in the terminal. The
software running in the MCU returns the same characters.

14.7

Example code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

136 Freescale Semiconductor

Figure 14-14. HyperTerminal window

14.7.2 Host code

Host operation is more complex than the device in terms of software stack and task
handling. However, it is less time-dependent because the application running in the MCU
has control of the entire bus.

This example code basically enumerates an HID USB mouse and sends that information
to a terminal using the serial port. It also reports all movements and button changes
directly in the terminal.

To run this demo:

1. Connect one serial cable between the board and the PC.
2. Open a terminal console (8-bit, 1 stop bit, no flow control, 115200 baudrate).
3. Make sure that the jumper configuration is appropriate to supply 5 V through the

USB port.
4. Run the application.

The application will send a message that it is waiting for an HID USB mouse to be
attached.

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 137

Figure 14-15. Host state before connecting USB mouse

After this message appears, connect a USB mouse to the connector. Automatically a
message will appear stating that a single device was connected and the type of device.

Figure 14-16. USB mouse successfully enumerated

Finally, move the mouse (or other pointing device) or press any button, and the status
will be displayed in the terminal screen.

Example code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

138 Freescale Semiconductor

Figure 14-17. Mouse events

Code explanation

For USB host support the application needs to schedule BUS space for all the available
devices on the USB bus. The code is a little complex to explain in this document, but this
example code is based on the Freescale USB stack with Personal Healthcare Device
Class (PHDC) support.

Documentation and API information is available on the Freescale website. the stack is
free and is MQX (Freescale Real time operating system) compatible.

For more information regarding this demo, please visit: www.freescale.com/medicalusb .

Chapter 14 Universal Serial Bus OTG Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 139

Example code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

140 Freescale Semiconductor

Chapter 15
FlexCAN Module

15.1 Overview
This chapter will describe how to execute a quick start of the FlexCAN module for
Kinetis MCUs.

15.1.1 Introduction

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial
data bus, meeting the specific requirements of this field:

• Real-time processing
• Reliable operation in the EMI environment of a vehicle
• Cost-effectiveness
• Required bandwidth

The FlexCAN module is an advanced CAN protocol controller which is fully compliant
with the CAN 2.0B specification. It also provides:

• Enhanced powerful message filtering mechanism
• Flexible message storage and transmission scheme
• Automatic response to remote frames
• Flexible transmit priority scheme
• Global timer synchronization
• Rich error indication
• Different low power modes
• Remote wakeup capability

It enables real-time communication over the CAN bus while minimizing processor
intervention.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 141

15.1.2 Features

In the FlexCAN module, each Mailbox (MB) is configurable as Rx or Tx, supporting
standard and extended messages. Configuration of an MB begins the Transmit Process
for a Tx MB or Receive Process for an Rx MB.

The Rx FIFO with six levels of MBs can be enabled when the CPU has slow response
time to each received message. The ID filter table element can be configured for the Rx
FIFO to accept only wanted messages.

FlexCAN also supports Individual Rx Mask configured per Mailbox or per Rx FIFO ID
filter table element. With timer SYNC feature enabled, global network time can be
synchronized by a specific message. When multiple messages are pending for
transmission, the highest priority message is selected to be transmitted first. There are
three types of transmission priority scheme suitable for all application needs:

• Lowest ID
• Lowest buffer number
• Highest local priority

Transmission of messages can be aborted per request in order to transmit a higher priority
message. Remote request frames may be handled automatically by FlexCAN or by
software. Low power modes are also supported. Other additional features are available —
please refer to the device-specific reference manual.

15.2 Configuration examples
The SCI2CAN demo shows how to:

• Initialize the FlexCAN module
• Configure a message buffer for transmit and/or receive
• Read messages received in the interrupt service routine

The demo codes are SCI2CAN bridge demo and Rx FIFO demo. The bridge demo in the
local node will send the character entered in the local HyperTerminal to the CAN loop-
back node, which echoes it to the local node. The Rx FIFO demo will configure Rx FIFO
ID filter table elements in format A to receive eight messages with specified identifiers,
configure one MB as Rx MB, and send nine messages to the CAN loop-back node. The
local node will print received messages as well as the recipient information on the
HyperTerminal. The CAN loop-back node by default is the local node itself and can be
configured as the remote node via macros. The CAN bit rate is 83.33k by default.

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

142 Freescale Semiconductor

UART3 is used as the serial port to interface to HyperTerminal, and CAN1 is used to
interface to the CAN bus. The HyperTerminal communication setup is:

• Baud rate: 115200
• Data: 8 bit
• Parity: None
• Stop: 1 bit
• Flow control: none

The example codes for SCI2CAN are available from the Freescale Web site
www.freescale.com.

15.2.1 FlexCAN initialization

Enable the clock to the FlexCAN module before accessing its registers.

The following steps are performed before initializing the FlexCAN module:
1. Initialize MCG and OSC to enable PLL and ERCLK.
2. Initialize the clock gating in SIM to enable clocks to the FlexCAN module(s) and the

corresponding ports whose pins are to function as FlexCAN pins.
3. Configure the corresponding port pins for FlexCAN through port control.

15.2.1.1 Code example and explanation

The following code snippet shows how to enable ERCLK clock:

// Must enable ERCLK
OSC_CR |= OSC_CR_ERCLKEN_MASK;

Clock gating code for all ports and FlexCAN:

// Enable clocks to all ports for pin muxing configuration later
SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK
 | SIM_SCGC5_PORTB_MASK
 | SIM_SCGC5_PORTC_MASK
 | SIM_SCGC5_PORTD_MASK
 | SIM_SCGC5_PORTE_MASK);
 if(isCAN0)
 {
 SIM_SCGC6 |= SIM_SCGC6_FLEXCAN0_MASK;
 }
 else
 {
 SIM_SCGC3 |= SIM_SCGC3_FLEXCAN1_MASK;
 }

Configure NVIC to enable corresponding interrupts for FlexCAN:

Chapter 15 FlexCAN Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 143

 // Configure NVIC to enable interrupts
if(isCAN0)
{
 NVICICPR0 = (NVICICPR0 & ~(0x07<<29)) | (0x07<<29); // Clear any pending
interrupts on FLEXCAN0
 NVICISER0 = (NVICISER0 & ~(0x07<<29)) | (0x07<<29); // Enable interrupts
for FLEXCAN0
 NVICICPR1 = (NVICICPR1 & ~(0x1F<<0)) | (0x1F); // Clear any pending
interrupts on FLEXCAN0
 NVICISER1 = (NVICISER1 & ~(0x1F<<0)) | (0x1F); // Enable interrupts
for FLEXCAN0
 }
 else
{
 NVICICPR1 = (NVICICPR1 & ~(0xFF<<5)) | (0xFF<<5); // Clear any pending
interrupts on FLEXCAN1
 NVICISER1 = (NVICISER1 & ~(0xFF<<5)) | (0xFF<<5); // Enable
interrupts for FLEXCAN1
 }

Now configure pins for FlexCAN:

// Configure CAN_RX/TX pins muxed with PTE24/25 for FlexCAN1
PORTE_PCR24 = PORT_PCR_MUX(2) | PORT_PCR_PE_MASK | PORT_PCR_PS_MASK; PORTE_PCR25 =
PORT_PCR_MUX(2) | PORT_PCR_PE_MASK | PORT_PCR_PS_MASK;

Now everything is ready, and it is time to initialize the FlexCAN step by step as shown
below:

1. Make sure FlexCAN module is disabled (after reset, it is disabled).
2. Select clock source for FlexCAN by setting/clearing CTRL1[CLK_SRC] bit.
3. Enable FlexCAN module by clearing MCR[MDIS] bit.
4. Wait until FlexCAN module is out of low power mode (MCR[LPM_ACK] = 0).
5. Wait until FlexCAN goes into freeze mode (MCR[FRZ_ACK] = 1).
6. Initialize other MCR bits as needed:

a. Enable the individual filtering per MB and reception queue features by setting
MCR[IRMQ] bit.

b. Enable the warning interrupts by setting the MCR[WRN_EN] bit.
c. Disable self reception by setting the MCR[SRX_DIS] bit.
d. Enable the RxFIFO by setting MCR[RFEN] bit.
e. Enable the abort mechanism by setting the MCR[AEN] bit.
f. Enable the local priority feature by setting the MCR[LPRIO_EN] bit.

7. Configure baud rate and initialize CTRL1 & CTRL2 bits as needed.
a. Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW.
b. Determine the bit rate by programming the PRESDIV field.
c. Determine the internal arbitration mode (LBUF bit).

8. Initialize the message buffers (MB) by executing transmit process for Tx MBs and
receive process for Rx MBs.

9. Initialize the ID filter table if Rx FIFO was enabled.
10. Initialize the Rx Individual Mask Registers (RXIMRn) if individual Rx masking and

queue is enabled (MCR[IRMQ]=1).

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

144 Freescale Semiconductor

11. Enable the corresponding interrupts by setting required interrupt mask bits in
IMASKn register (for all MB interrupts), CTRLn register (for Bus off & Error
interrupts), and MCR register (for wakeup interrupt).

12. Negate the MCR[HALT] bit.
13. Wait till FlexCAN is out of freeze mode (MCR[FRZ_ACK] = 0).

15.2.2 Receive process

FlexCAN requires three steps to configure an MB as an Rx MB to initiate a receive
process.

15.2.2.1 Code example and explanation

The receive process to prepare a Rx MB is:

 // Deactivate the rx MB for cpu write
 pFlexCANReg->MB[iMB].CS = LEXCAN_MB_CS_CODE(FLEXCAN_MB_CODE_RX_INACTIVE);
 // Write ID
 id2 = id & ~(CAN_MSG_IDE_MASK | CAN_MSG_TYPE_MASK);
 if(id & CAN_MSG_IDE_MASK)
 {
 pFlexCANReg->MB[iMB].ID = id2;
 }
 else
 {
 pFlexCANReg->MB[iMB].ID = id2<<FLEXCAN_MB_ID_STD_BIT_NO;
 }
 // Activate the MB for rx
 pFlexCANReg->MB[iMB].CS = FLEXCAN_MB_CS_CODE(FLEXCAN_MB_CODE_RX_EMPTY);

15.2.3 Transmit process

FlexCAN requires four steps to configure an MB as a Tx MB to initiate a transmit
process.

15.2.3.1 Code example and explanation

The transmit process to prepare and start a Tx MB is:

// Follow 4 steps for Transmit Process
pFlexCANReg->MB[iTxMBNo].CS = FLEXCAN_MB_CS_CODE(FLEXCAN_MB_CODE_TX_INACTIVE)
// write inactive code
 | (wno<<FLEXCAN_MB_CS_IDE_BIT_NO)
 | (bno<<FLEXCAN_MB_CS_RTR_BIT_NO)
 ;
pFlexCANReg->MB[iTxMBNo].ID = (prio << FLEXCAN_MB_ID_PRIO_BIT_NO)
 | ((msgID & ~(CAN_MSG_IDE_MASK|CAN_MSG_TYPE_MASK))<<i);
pFlexCANReg->MB[iTxMBNo].WORD0 = word[0];

Chapter 15 FlexCAN Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 145

pFlexCANReg->MB[iTxMBNo].WORD1 = word[1];
// Start transmit with specified tx code
pFlexCANReg->MB[iTxMBNo].CS = (pFlexCANReg->MB[iTxMBNo].CS
 & ~(FLEXCAN_MB_CS_CODE_MASK))
 | FLEXCAN_MB_CS_CODE(txCode) // write activate code
 | FLEXCAN_MB_CS_LENGTH(iNoBytes);

15.2.4 Read message

Before reading the message content, it is necessary to lock the Rx MB. After reading the
message content, unlock the Rx MB. Polling or interrupt method can be used to check an
Rx MB to see whether it has received a message.

15.2.4.1 Code example and explanation

Here is a code example for checking the IFLAG1[MB] and reading the message from the
Rx MB:

if(pFlexCANReg->IFLAG1 & (1<<iMB))
 {
 // Read the Message content information
 // clear flag
 pFlexCANReg->IFLAG1 = (1<<iMB);
 }

This code is used to read the message content:

 // Lock the MB
 code = FLEXCAN_get_code(pFlexCANReg->MB[iMB].CS);

length = FLEXCAN_get_length(pFlexCANReg->MB[iMB].CS);
 //
 format = (pFlexCANReg->MB[iMB].CS & FLEXCAN_MB_CS_IDE)? 1:0;
*id = (pFlexCANReg->MB[iMB].ID & FLEXCAN_MB_ID_EXT_MASK);
 if(!format)
 {
 // standard ID
 *id >>= FLEXCAN_MB_ID_STD_BIT_NO;
 }
 else
 {
 *id |= CAN_MSG_IDE_MASK; // flag extended ID
 }
 format = (pFlexCANReg->MB[iMB].CS & FLEXCAN_MB_CS_RTR)? 1:0;
 if(format)
 {
 *id |= CAN_MSG_TYPE_MASK; // flag Remote Frame type
 }
 // Read message bytes
 wno = (length-1)>>2;
 bno = length-1;
 if(wno>0)
 {
 //
 (*(uint32*)pBytes) = pFlexCANReg->MB[iMB].WORD0;
 swap_4bytes(pBytes);
 bno -= 4;
 pMBData = (uint8*)&pFlexCANReg->MB[iMB].WORD1+3;
 }

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

146 Freescale Semiconductor

 else
 {
 pMBData = (uint8*)&pFlexCANReg->MB[iMB].WORD0+3;
 }
for(i=0; i <= bno; i++)
{
 pBytes[i+(wno<<2)] = *pMBData--;
 }

 // Read time stamp
 *timeStamp = pFlexCANReg->MB[iMB].CS & FLEXCAN_MB_CS_TIMESTAMP_MASK ;

 // Unlock the MB
code = pFlexCANReg->TIMER;

15.2.5 Configuration of Rx FIFO ID filter table elements

The Rx FIFO ID tables or ID filter table elements are used as message acceptance filters
whose ID fields function as acceptance ID code. It is necessary to configure the Rx FIFO
ID filter table elements in freeze mode.

Kinetis supports up to 40 ID tables — therefore CTRL2[RFFN] = 4 at maximum. There
are three types of ID table structure formats:

15.2.5.1 Code example and explanation

Example code for configuring ID table in Format A:

if(bIsExtID)
{ // Format A with extended ID
 *pIDTabElement = (id<<1) | (bIsExtID<<30) | (bIsRTR<<31); //
 // single ID acceptance codes
}
else
{ // Format A with standard ID
 *pIDTabElement = (id<<19) | (bIsRTR<<31); // single ID
 // acceptance codes

Example code for configuring ID table in Format B:

Chapter 15 FlexCAN Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 147

// Format B two IDs
 *pIDTabElement = ((id & 0x03fff)<< (16+ (1-bIsExtID)*3))
 | (bIsExtID<<30) | (bIsRTR<<31); // RXIDB_0
 i++;
 if(i < nIDTab)
 {
 id = idList[i] & ~(CAN_MSG_IDE_MASK |CAN_MSG_TYPE_MASK);
 bIsExtID = (idList[i] &
 CAN_MSG_IDE_MASK)>>CAN_MSG_IDE_BIT_NO;
 bIsRTR = (idList[i] &
 CAN_MSG_TYPE_MASK)>>CAN_MSG_TYPE_BIT_NO;
 *pIDTabElement |= ((id & 0x03fff)<< ((1-bIsExtID)*3))
 | (bIsExtID<<14) | (bIsRTR<<15); // RXIDB_1
 i++;
 }

Example code for configuring ID table in Format C:

j = 0;
 *pIDTabElement = (id & 0x00ff) << (24-(j<<3));// RXIDC_0
 i++;j++;
 do{
 if(i < nIDTab)
 {
 id = idList[i] & ~(CAN_MSG_IDE_MASK |CAN_MSG_TYPE_MASK);
 bIsExtID = (idList[i] & CAN_MSG_IDE_MASK)>>CAN_MSG_IDE_BIT_NO;
 bIsRTR = (idList[i] & CAN_MSG_TYPE_MASK)>>CAN_MSG_TYPE_BIT_NO;
 *pIDTabElement |= ((id & 0x00ff) << (24-(j<<3)));
// RXIDC_1 .. RXIDC_3
 j++; i++;
 }
 Else
 {
 break;
 }
 }while(j<3);

Configuration examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

148 Freescale Semiconductor

Chapter 16
Segment LCD Controller

16.1 Overview
This document explains how to use the segment LCD controller (SLCD) for the Kinetis
family. It includes module initialization, power supply, clock source, load adjustment,
frame frequency interrupts, and the use of features as blinking, alternate display, segment
fault detection, and using the module on low power modes.

16.1.1 Introduction

The segment LCD module (SLCD) generates all the waveforms required for an LCD.
The SLCD module supports up to 64 pins. The K40 family implements up to 48 LCD
pins. Eight of them can be configured as COM or backplane allowing control of up to 8 x
40 = 320 segments.

The power supply for the LCD can be selected from different options depending on the
LCD panel voltage, the application environment, and the way the contrast control is
required. The SLCD has a charge pump that allows to control both 3 V and 5 V LCD
panels.

Automatic blinking and the capacity to display two messages in alternate mode without
refreshing the segments (when less than five backplanes are used) are available. These
features can be used to simplify the code and reduce power consumption in low power
modes.

Segment fault detection is now possible by measuring the capacitance in each pin of the
LCD. The module measures the capacitance of each pin including cables, connector, and
the LCD panel. A reference capacitance must be determined when the LCD is operating
correctly and stored in the memory. While the product is operating, the capacitance can
be compared periodically to verify if there’s an open connection, short circuit, or a
substantial change in the reference capacitance that indicates a fault.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 149

16.2 Power supply
Table 16-1 shows power supply modes and suggests the use according to the
environment and contrast control required.

Table 16-1. SLCD power supply options

Configu‐
ration

LCD Power Supply
mode

LCD
Nominal
Voltage

Noisy En‐
viron‐
ment

Contrast
Control

Advantages Disadvantages

0 VLL1 to VIREG Volt‐
age internal regulator
(VIREG = 1.0 V)
HREFSEL=0. Charge
pump generates VLL2
and VLL3

3 V Not rec‐
ommen‐
ded

Most rec‐
ommen‐
ded

VLLx voltages are fixed
over a width range of
VDD input voltage. The
regulator voltage can
be trimmed [RVTRIM]
for software contrast
control

Not recommend for
noisy applications

1 VLL1 to VIREG HREF‐
SEL=1 VIREG = 1.67V.
Charge pump gener‐
ates VLL2 and VLL3

5 V Not rec‐
ommen‐
ded

Most rec‐
ommen‐
ded

VLLx voltages are fixed
over a width range of
VDD input voltage. The
regulator voltage can
be trimmed [RVTRIM]
for software contrast
control

Not recommend for
noisy applications

2 VLL3 to VDD (internal
connection). Charge
pump generates VLL2
and VLL1

3 V Most rec‐
ommen‐
ded

Not rec‐
ommen‐
ded

This configuration can
be suitable for noisy
application

Contrast Control is not
possible

3 VLL3 driven externally
(charge pump ena‐
bled). Charge pump
generates VLL2 and
VLL1, VDD must be 3V

3 V Most rec‐
ommen‐
ded

Recom‐
mended

Allows external con‐
trast control

This configuration is
not suitable for 5 V
LCD

4 VLL3 driven externally
(voltage divider ena‐
bled). Resistor bias
network generates
VLL2 and VLL1. VLL3
connected to external
voltage=3 V. Charge
pump is disabled.

3 V Most rec‐
ommen‐
ded

Recom‐
mended

Allows external con‐
trast control. Because
the Charge Pump is
disabled, power con‐
sumption is reduced

Requires an external
power supply, and it
must be a variable.
Contrast control is re‐
quired. Not suitable for
5 V LCD

5 VLL2 to VDD (internal
connection) VDD=2.0
V. Charge pump gener‐
ates VLL3 and VLL1

3 V Not rec‐
ommen‐
ded

VDD voltage must be
in an appropriate range
for a 3 V LCD

6 VLL2 to VDD (internal
connection) VDD= 3.33
V. Charge pump gener‐
ates VLL3 and VLL1

5 V Not rec‐
ommen‐
ded

VDD voltage must be
in an appropriate range
for a 5 V LCD

Power supply

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

150 Freescale Semiconductor

16.3 Low power modes
The SLCD module can function in any low power mode available in the Kinetis family.

RUN, VLPR, STOP, VLPW, VLPS, LLS*, VLLSx*

NOTE
* End of frame wakeup is not supported in the LLS and VLLSx
modes.

16.4 Clock source
The SLCD module supports four different clock sources. See the Table 16-2 and Figure
16-1Figure 16-1 below.

Figure 16-1. SLCD clock source options on the K40 family

Chapter 16 Segment LCD Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 151

Table 16-2. LCD clock source options on the K40 family

LCD Clock Source LCD and System Configuration Notes

32 kHz Internal Reference SOURCE=1 ALTDIV=0 (%1)
MCG_C1_IRCLKEN=1
MCG_C2_IRCS=0 MCG_IREFSTEN =
1* MCG_C3_SCTRIM

Slow internal reference clock selected.
See the Multipurpose Clock Generator
(MCG) for more details.

2 MHz Internal Reference SOURCE =1 ALTDIV = 2(2MHz%64)
MCG_C1_IRCLKEN=1
MCG_C2_IRCS=1 MCG_IREFSTEN =
1* MCG_C4_FCTRIM

Fast internal reference clock selected.
See Multipurpose Clock Generator
(MCG) for more details.

System Clock SOURCE=0 SOPT1[OSC32KSEL] = 0; Crystal must be in the 32 KHz range.
The system oscillator drives a 32 kHz
clock to the SLCD, TSI, and LPT.

RTC oscillator / clock SOURCE=0 SOPT1 [OSC32KSEL] = 1.
RTC_CR_OSCE = 1; RTC_CR_CLKO =
1;

RTC oscillator drives a 32 kHz clock to
the SLCD, TSI, and LPT. See RTC Os‐
cillator Chapter and the RTC Clock
Module.

Hardware considerations

16.5.1 General routing and placement

Minimize the trace length. Take advantage of any LCD pin that can be configured as FP
or BP to reduce trace lengths, and routing of the LCD. Place the capacitors for the charge
pump, VLL1, VLL2, and VLL3 as close as possible to the MCU.

16.6 EMC and ESD considerations
The charge pump can be sensitive in a noisy environment. Therefore, use the external
voltage for the LCD reference (VLL3 to EXT V).

When the VLL3 is connected to 3.3 V either the charge pump or the bias resistor network
can generate VLL1, and VLL2.

16.6.1 Code example and explanation
For LCD initialization and use of the SLCD module these steps must be followed:

1. Enable the SCLD clock gate SCGC3[SLCD] = 1 LCD clock gate enable
2. LCD analog operation for all used LCD pins, PORTx_PCRn[MUX] = 0
3. Prepare and ensure that the LCD clock source is available.

16.5

Hardware considerations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

152 Freescale Semiconductor

4. Configure the NVIC. The SLCD interrupt vector in K40 is 102, the NVIC must be
configured as follows:

NVICISER2 |= (1<<22);
NVICICPR2|= (1<<22);

5. LCD General Control Register (GCR)
a. Configure the LCD clock source (SOURCE bit).
b. Select 1.0 V or 1.67 V for 3 V or 5 V glass (HREFSEL).
c. Enable regulated voltage (RVEN).
d. Trim the regulated voltage (RVTRIM).
e. Enable charge pump (CPSEL bit).
f. Configure charge pump clock (LADJ[1:0]).
g. Configure LCD power supply (VSUPPLY[1:0]).
h. Configure LCD frame frequency interrupt (LCDIEN bit).
i. Configure LCD behavior in low power mode (LCDWAIT and LCDSTP bits).
j. Configure LCD duty cycle (DUTY[2:0]).
k. Select and configure LCD frame frequency (LCLK[2:0]).

6. Enable pins to be used:
LCD_PENH, LCD_PENL

7. Enable LCD pins to be used as BackPlanes:
LCD_BPENH, LCD_BPENL

8. Configure the phase of the backplanes:
LCD_WFxTOy (used as backplanes)

9. Configre the AR register
10. Enable the LCD module

This is the code snippet for the SLCD intialization:

/* Code Snippet SLCD Initialization */
 //enable clock gate for Ports
SIM_SCGC5 |= (!SIM_SCGC5_LPTIMER_MASK
 | !SIM_SCGC5_REGFILE_MASK
 | !SIM_SCGC5_TSI_MASK
 | SIM_SCGC5_PORTA_MASK
 | SIM_SCGC5_PORTB_MASK
 | SIM_SCGC5_PORTC_MASK
 | SIM_SCGC5_PORTD_MASK
 | SIM_SCGC5_PORTE_MASK
);

 //Master General Purpose Control Register - Set mux to LCD analog operation.
 // After RESET these register are configured as 0 but indicated here for reference
 PORTB_PCR0 = PORT_PCR_MUX(0); //LCD_P0
 PORTB_PCR1 = PORT_PCR_MUX(0); //LCD_P1
 PORTB_PCR2 = PORT_PCR_MUX(0); //LCD_P2
// Complete for all used pins

Chapter 16 Segment LCD Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 153

 // Configure NVIC for SLCD interrupt SLCD interrupt vector = 102
 NVICICPR2|=(1<<22); //Clear any pending interrupts on LCD
 NVICISER2|=(1<<22); //Enable interrupts from LCD interrupt

 // SLCD clock gate on
 SIM_SCGC3 |= SIM_SCGC3_SLCD_MASK;

// Disable LCD
 LCD_GCR&= ~LCD_GCR_LCDEN_MASK;

// Configure LCD Control Register

 LCD_GCR = (!LCD_GCR_RVEN_MASK
 |LCD_GCR_RVTRIM(8) //0-15
 | LCD_GCR_CPSEL_MASK
 | !LCD_GCR_HREFSEL_MASK
 | LCD_GCR_LADJ(3) //0-3
 | mBIT18
 | LCD_GCR_VSUPPLY(1) //0-3
 | LCD_GCR_LCDIEN_MASK
 |!LCD_GCR_FDCIEN_MASK
 | LCD_GCR_ALTDIV(0) //0-3
 |!LCD_GCR_LCDWAIT_MASK
 |!LCD_GCR_LCDSTP_MASK
 |!LCD_GCR_LCDEN_MASK
 | LCD_GCR_SOURCE_MASK
 | LCD_GCR_LCLK(3) //0-3
 | LCD_GCR_DUTY(7) //0-3
);

 // Enable LCD pins 0-32
 LCD_PENH = 0x00000001;
 LCD_PENL = 0xFFFFFFFF;

 // Enable LCD pins used as Backplanes 0-7
 LCD_BPENH = 0x00000000;
 LCD_BPENL = 0x000000FF;

// Configure backplane phase
 LCD_WF3TO0 = 0x08040201;
 LCD_WF7TO4 = 0x80402010;

// Fill information on what segments are going to be turned on. Front Plane information
 LCD_WF11TO8 = 0xFFFFFFFF;
 LCD_WF15TO12= 0xFFFFFFFF;
 // Complete information of all Front planes

// Enable LCD module
 LCD_GCR|= LCD_GCR_LCDEN_MASK;

16.7 Demonstration code
The demo code allows the user to experiment with the SLCD module in real time, write
your own messages, control contrast, blinking, vertical scroll, experiment with the new
LCD segment feature (fault detection), select the clock source for the module, work on
LCD low power modes, change the frequency of operation, and so on.

Demonstration code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

154 Freescale Semiconductor

The demonstration code is prepared for the TWR-K40, TWRPI-SLCD, and the
communication board.

Figure 16-2. Tower system with TWR-K40x256 and the TWRPI_SLCD

The segment LCD included in the TWRPI-SLCD has 3–7 segment characters, 7 special
symbols, and uses 4 backplanes and 7 frontplanes.

To use this demo the TWR must be connected to a serial port with a terminal program
configured to 115200,n,8,1. Commands are ASCII characters. The following table shows
the commands and syntax.

Table 16-3. List of commands

Command Description Syntax

print Print a message in the LCD <message>

msgmode Select the message mode: user, coun‐
ter, time, temperature, and percentage

<cmd> user/counter/time/per‐
centage

vScroll Enable vertical scroll <val> 0=Normal, +N=scroll
down, –N=Scroll up (N=1–
5);Not functional with a 7–
seg Panel

symbol Turn on and off “ x ” symbol <val>:1(FSL) 2(:) 3(°) 4(%)
5(AM) 6(PM) <cmd>: =on/off

segtest Send a predefined pattern to the LCD <>

faultDetect Enable and disable LCD fault detection <cmd> enable/disable/setref/
status/measureall

trim Read and set the regulator voltage trim
value

<val> 0–15

Table continues on the next page...

Chapter 16 Segment LCD Controller

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 155

Table 16-3. List of commands (continued)

Command Description Syntax

blink Turn on and off the blink. Enable alter‐
nate mode.

<cmd> on/off/alt/norm

blinkrate Read and set blink rate <val> 0–6

ladj LCD load adjustment <val> 0–3

lclk Change LCD clock prescaler <val> 0–7 (resulting frequen‐
cy must be in 28–58 Hz range)

pinmux Select MUX 0(analog) and 7(Port PAD
enable)

<val> 0, 7

PowerMode Select power mode operation <val> 0 Run, 1 wait, 2 stop

ClockSource set LCD clock source <val> 0=System Osc, 1=Def.
RTC, 2 =ALT Int(32kHz), 3=
Int(2MHz)

powersel LCD power supply selection <mode> VLL1_VIREG_HREF0,
VLL1_VIREG_HREF1, VLL3_VDD,
VLL3_EXT_CP, VLL3_EXT_BR,
VLL2_VDD

help Display the available commands and
their syntax.

<>

Fault detection example

To enable the Fault detection type in the following commands:
1. faultDetect setref
2. faultDetect enable
3. To generate a fault in any LCD pin, use a wire jumper from ground to the LCD pin
4. When a fault is detected it reports into the terminal.

Alternate example:

To enable the alternate function type in the following commands:
1. printalt 1234
2. print 1789
3. blink on
4. blink alt

Demonstration code

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

156 Freescale Semiconductor

Chapter 17
Touch Sense Input (TSI) Module

17.1 Overview
The Touch Sensing Input (TSI) module is designed to interface the MCU with capacitive
touch sensing electrodes to easily implement advanced user input controls. The TSI
module includes hardware that is able to drive touch sensing electrodes (or capacitors,
created by flat conductive areas) providing robustness above traditional GPIO-based RC
measurements and logic that automatically scans up to 16 electrodes, measures and
outputs the results, and generates interrupt signals to the CPU.

17.2 Introduction
Capacitive touch sensing has become one of the de-facto input technologies for user input
in Human-Machine Interfaces (HMI). It now has a place in all types of markets, from
industrial control panels to portable consumer devices. Though capacitive touch sensing
is not the only touch sensing method, it is one of the most common and most practical to
implement.

The basic element in capacitive touch sensing is the electrode. In this case, the electrode
is a an area of conductive material with dielectric material on the top, usually plastic or
glass. This is what the user touches. This conductive area plus the dielectric material
effectively creates a capacitor referenced to the system ground. By touching the dielectric
on top of the electrode, the user effectively changes the electrode capacitance both by
adding a second conductive area that is grounded (the conductive part of the finger) and
by increasing the dielectric of the original capacitor. The sensor (in this case, the TSI
module) uses a capacitive sensing method to measure changes in the electrode
capacitance.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 157

Figure 17-1. Capacitive touch sensing electrode model

A common measurement method for capacitive touch sensing is the RC method. In this
method a large pullup resistor (approximately 1 MΩ) is connected to each electrode. The
processor or sensing ASIC measures the time it takes the electrode (or capacitor) to
become charged, when a finger approaches the electrode, the capacitance increases and
so does the charging time, this charge time change is considered a touch. The problem
with this method is the pullup. It is a weak pullup, and thus susceptible to external noise.

The TSI uses a different measurement method. It has two constant current sources, one
for charging and the other for discharging the electrode. This creates a triangular wave.
This wave has a configurable peak to peak voltage or delta voltage. Observe Figure 17-2.
It shows the electrode current source oscillator structure.

Figure 17-2. TSI Electrode current source oscillator

Introduction

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

158 Freescale Semiconductor

The time the electrode takes to charge is directly proportional to the current source output
and the size of the capacitor per the following formula:

Figure 17-3. TSI electrode frequency formula

The TSI measures the length of the charging time with a reference oscillator. To increase
the robustness of the measurement, the TSI relies on an internal oscillator similar to the
one shown above, but with an internal capacitor instead of an external electrode. The
reason to do this (as opposed to counting bus clock cycles) is that the current sources in
the internal oscillator are part of the same silicon as the external electrode oscillator.
When the output drifts because of temperature or voltage changes, both oscillators
change, making the final touch detection compensated. When configuring, TSI users
must make sure to have the reference oscillator oscillate faster than the external
oscillator, this causes more reference counts per electrode oscillation. More counts (or
more resolution) allow more headroom for touch detection and noise rejection. Figure
17-4 shows the relationship between internal and external oscillations with or without
touch.

Figure 17-4. Internal reference oscillations vs. external reference oscillations

Notice how the frequency becomes slower when a finger touches the electrode and how
more reference oscillations (blue) fit into one electrode (black) oscillation.

17.3 Features
The TSI module includes several features designed to simplify touch sensing as well as
add versatility and performance:

• Capacitive touch sensing detection across all low power modes
• Automatic periodic scan or software triggered single scan.
• Low power mode current adder can be <1uA.

Chapter 17 Touch Sense Input (TSI) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 159

• 16 input capacitive touch sensing pins, each with individual result registers
• Automatic detection of electrode capacitance changes with programmable upper and

lower threshold (for each electrode).
• TSI interrupt end of scan—Interrupt after scanning all electrodes once.
• Electrode short—Detects when electrode is shorted to VDD or VSS.
• Conversion overrun—If the conversion time of electrodes goes above scan period.

NOTE
This feature will be available in the second mask of the TSI.

These features enable the following special characteristics:
• No external components needed, the pin can be directly connected to an electrode (a

series resistor can be used to limit the current that might flow into the pin in case of
an ESD event, but it is not necessary).

• Single pin-per-electrode architecture.
• Operation of 16 electrodes on run modes and 1 wake-up electrode in all low power

modes
• Automatic touch event interrupt from any of the electrodes.
• External and reference oscillator subject to the same temperature variation so

calibration thresholds are compensated, no touch detection variations over
temperature range.

• Number of scan can be configured for faster response time or for higher resolution.
• Current sources are far more robust than external weak pull-ups used in traditional

GPIO measurement methods.

17.4 TSI configuration
All use cases for the TSI module refer to using capacitive electrodes as touch sensors. For
further information on using touch sensors and HMI see application notes titled How to
Implement a Human Machine Interface Using the Touch Sensing Software Library
(document number AN3934) and Designing Touch Sensing Electrodes (document
number AN3863) at the Freescale webpage www.freescale.com/touchsensing.

There are three modes of operation that must be considered when configuring the TSI.
The three modes are used in most applications:

• Continuous active mode
• All enabled electrodes are scanned continuously
• Scanning period is determined by SMOD register
• Ideal for scanning once the application is in run mode

• Software triggered active mode

TSI configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

160 Freescale Semiconductor

http://www.freescale.com/touchsensing

• All enabled electrodes are scanned once
• No scanning period as scan is run only once
• Ideal for scanning initially. For example, when the initial baseline values for the

electrodes are determined

• Continuous low power mode
• Only one electrode is continuously scanned.
• Single enabled electrode can be used to wake-up the system from low power

mode.
• Scanning period is independent from the active mode scanning period.
• Enabled when the MCU goes into low power mode if the STPE bit is set.
• Usually a much slower scanning period is used in low power mode, this further

reduces power consumption.

Configuration tips:

• Enable the TSI clock gate before reading or writing TSI registers.
• Initialize with the module disabled (TSIEN = 0).
• When a configuration change is needed make sure the module is not scanning

(SCNIP = 0). It is not necessary to disable the module, go into software triggered
mode and wait for the current scan to finish.

• Clear any pending flags (error, overrun, out of range, or end of scan) before enabling
interrupts.

The following is a typical TSI initialization:

 //Enable clock gates
 SIM_SCGC5 |= (SIM_SCGC5_TSI_MASK);
 SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK);
 PORTA_PCR4 = PORT_PCR_MUX(0); //Enable ALT0 for portA4

 //Configure the number of scans and enable the interrupt
 TSI_GENCS |= ((TSI_GENCS_NSCN(10))|(TSI_GENCS_TSIIE_MASK)|(TSI_GENCS_PS(3)));
 TSI_SCANC |= ((TSI_SCANC_EXTCHRG(3))|(TSI_SCANC_REFCHRG(31))|
 (TSI_SCANC_DELVOL(7))|(TSI_SCANC_SMOD(0))|(TSI_SCANC_AMPSC(0)));

 //Enable the channels desired
 TSI_PEN |= (TSI_PEN_PEN5_MASK|TSI_PEN_PEN7_MASK|
 TSI_PEN_PEN8_MASK|TSI_PEN_PEN9_MASK);
 TSI_THRESHLD5 = (uint32)((TSI_CHAN5_OFFSET));
 TSI_THRESHLD7 = (uint32)((TSI_CHAN7_OFFSET));
 TSI_THRESHLD8 = (uint32)((TSI_CHAN8_OFFSET));
 TSI_THRESHLD9 = (uint32)((TSI_CHAN9_OFFSET));

 //Enable TSI module
 TSI_GENCS |= (TSI_GENCS_TSIEN_MASK); //Enables TSI

Steps taken to enable the module:

1. Enable clock gates—Both the TSI and the PORTA clock gates are enabled. PORTA
clock gate is enabled because TSI channel 5 is shared with PORTA 4. This pin does
not have the TSI as a primary function. It is necessary to change the pin function to

Chapter 17 Touch Sense Input (TSI) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 161

the TSI with the multiplexing bits in the PORTA pin control register (PCR). All
other TSI pins are enabled by default.

2. Configure the general control and status register (GENCS)—Configure the number
of scans, prescaler (which is a multiplier for the number of scans). Additionally, it is
possible to enable the continuous scan mode (STM bit) as well as TSI interrupts,
error detection, low power mode and whether the end of scan or out of range
interrupts are requested. When using low power modes it is also important to define
what low power reference clock is used (LPCLKS) and the scanning interval for low
power mode (LPSCNITV).

3. Configure the scan control register (SCANC)—Allows you to define the current that
charges the electrodes and the internal reference (EXTCHRG and REFCHRG) as
well as the delta voltage (DELVOL) that is applied to both. The other critical
configuration for SCANC is the scanning period, which is dependent on the active
mode clock (AMCLKCS), the clock prescaler (AMPSC), and the clock modulo
(SMOD). An internal counter counts the number of reference clock cycles as they are
output from the prescaler to the SMOD value. If SMOD is configured as zero, the
module scans continuously without stopping after an end of scan.

4. Configure the pin enable register (PEN)—The 16 lowest bits of this 32-bit register
enables each of the electrodes in active mode. The low power mode scanning
electrode is configured with bits 16 to 19.

5. Configure the thresholds (THRESHLDx)—These registers configure each the low
and high 16-bit thresholds for the 16 electrodes. The low 16 bits configure the high
threshold, and the high 16 bits configure the low threshold. The high threshold sets
the OUTRGF bit when the capacitance measurement goes above that value and the
low threshold sets it when the capacitance goes below that value. The most common
use case is to use these as an alarm for drastic changes to the capacitance or to wake-
up the module from low power mode.

6. Enable the TSI module (TSIEN)—Enabling the module is relinquished to the end of
the configuration, after everything else is set.

17.4.1 Configuration Example

The following example uses the four electrodes from the Kinetis Tower board. The
application detects touches. These touches turn on and off the LEDs below the electrodes.
Baseline is not tracked but measured initially and assumed to be constant. Baseline
tracking is critical in applications where the environment is susceptible to change.
Because this example is intended to be simple, baseline tracking has not been
implemented.

TSI configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

162 Freescale Semiconductor

The most relevant part of initialization is enabling the module after configuration. In this
application, after initial configuration the TSI_SelfCalibration() is called. This function
performs a single scan at the beginning of the program to determine a baseline or
"untouched" value for the electrodes. In this application the baseline value and the touch
value are stored in separate data arrays. The touch value is equal to the baseline value of
each electrode plus a delta value. This delta value must be below the touch value, but
above the noise level of the untouched electrode. By debugging, an ideal delta value is
determined. It is always best to keep this delta value as high as possible, but low enough
that all touches are detected.

Notice that the TSI_SelfCalibration() function performs a single scan and waits for the
scan to finish and the values to be updated in the registers. The calibration function also
disables the TSI module afterwards, so that the following code enables the module as
needed. During application time, the TSI is interrupt driven. See Figure 17-5 :

Figure 17-5. Application start-up procedure

TSI Initialization

TSI Self calibration

Start continuous
scanning

Enable end of
scan interrupt

Enable TSI
module

This application is specifically designed to show the small amount of code and CPU
resources that are required to track touches with the TSI. For advanced HMI functionality
Freescale provides the Touch Sensing Software (TSS) library free of charge. This library
provides, basic touch sensing, and advanced API for HMI functions like multiple key
detection, grouping of controls like keypads, sliders, and rotaries. It also implements
advanced filtering and automatic baseline tracking, providing further robustness to the
measurements. Also, included is the standard GPIO-based sensing method, if 16
electrodes are not enough, GPIO pins can be used to provide even more touch sensors.
For more info on the TSS library and downloads visit www.freescale.com/touchsensing.

Chapter 17 Touch Sense Input (TSI) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 163

http://www.freescale.com/touchsensing

17.4.1.1 Code Example and Explanation

After initialization, in the TSI configuration the next step is to detect touches. As can be
seen in the figure, the end-of-scan interrupt is used. At each end of scan the interrupt
subroutine is called by the TSI module and all post processing is done in the ISR. There
is no baseline tracking, baseline is assumed to be constant and this way the main
algorithm to implement is debouncing. Debouncing is the process of validating that a
button push or in this case, a touch, is valid. Debouncing is something that needs to be
done even in standard mechanical keyboards or buttons. In mechanical buttons electrical
disturbances caused by the two metal contacts approaching may cause more than one
button press event to be logged or detected. In capacitive touch sensors, as the finger
approaches the electrode, capacitance varies, the same as with mechanical buttons.
Variations in capacitance due to finger approaching or moving away may falsely trigger
more than one touch.

Debouncing code can be read in the QRUG application code. Figure 17-6 shows a flow
diagram that explains the debouncing algorithm.

Figure 17-6. Debounce algorithm flowchart

Counter > touch
 threshold?

Next electrode
Set Touch flag

Debounce
count - 1

Initialize
debounce
counter

Yes

No
Clear Touch flag

Debounce = 0

Yes

No

Set Valid
Touch flag

Clear Touch flag

The interrupt subroutine is also in charge of checking if the "ValidTouch" flag was
enabled after debouncing for each of the four electrodes and toggling the appropriate
LED. The DBOUNCE_COUNTS macro can be found in the TSI.h file. This value

TSI configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

164 Freescale Semiconductor

defines how many scans with the capacitance above the touch threshold are needed for a
touch to be considered valid. This value can be modified to suit the specific needs of
different applications and electrode sizes.

17.5 TSI hardware implementation
The critical external component for the TSI is the electrode. Electrodes are flat
conductive areas that can be etched into a PCB or drawn with conductive inks on plastic
or crystal. With the GPIO measurement method an external pullup resistor is needed. In
the case of the TSI, the electrode charge is driven by the current sources, therefore there
is no need for an external pull-up resistor. In certain applications where conducted
emissions or ESD is a concern, external protective components can be added. The idea is
to use only a transient voltage suppression (TVS) diode designed for ESD suppression
and a low value (100 - 470 Ω) resistor as protection for current that might flow into the
MCU.

Figure 17-7.

For further information on designing electrodes and in-depth considerations on hardware
and electrode design, search for application notes Designing Touch Sensing Electrodes
(document AN3863) at www.freescale.com/touchsensing

Chapter 17 Touch Sense Input (TSI) Module

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 165

http://www.freescale.com/touchsensing

17.5.1 PCB Routing and Placement

The following list includes the most important things to consider when designing touch
sensing electrodes for the TSI:

1. Trace width—Keep the trace width as thin as possible. 5-7 mil traces are
recommended. The wider the traces the more base capacitance.

2. Clearance—Leave a minimum clearance of 10 mils. At the trace connection to the
MCU, the pitch is lower than 10 mils, therefore use bottleneck mode.

3. Keep trace length as short as possible. As traces becomes longer the baseline
capacitance increases and is also more susceptible to coupled noise.

4. Electrode traces must be routed in a different layer from the one containing the
electrodes.

5. Components and traces must not be placed directly underneath the electrodes area.
Good results can be obtained if the number of components behind the electrodes is
minimized and running as few traces as possible.

It is always important to consider ground planes. A ground plane below and around the
electrodes adds noise suppression and a reference ground for the electrodes. The problem
is that a continuous ground plane below the electrodes also increases the base
capacitance, causing the touch delta to be reduced. To work around this issue, an x-hatch
ground plane is recommended as in Figure 17-8. The x-hatch pattern helps with filtering
out noise. Because the area is smaller, it will not increase the base capacitance as much as
a continuous plane and thus does not affect sensitivity as much.

Figure 17-8. Recommended x-hatch ground plane pattern

TSI hardware implementation

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

166 Freescale Semiconductor

Chapter 18
Using Peripheral Delay Block (PDB) to Schedule
Analog to Digital Converter (ADC) Conversions

18.1 Overview
This chapter will demonstrate how to use the PDB module to schedule and perform ADC
conversions of the analog voltage available from the on-board demonstration
potentiometer. The application will sense the potentiometer control and report it over the
serial port.

The code example shows how to:
• Make a low-level driver for the ADC
• Configure the ADC for averaging a single-ended voltage conversion
• Use the bus clock to clock the ADC
• Use a simple exponential filter on the averaged results
• Have the ADC conversions scheduled at time intervals determined by the PDB

module

Calibration of the ADC is also illustrated.

18.1.1 Introduction

Timing of ADC conversions relative to system events is a key to applications, such as
motor control, and metering, requiring timing of ADC conversions for the best time to get
a noise-reduced reading.

When the Kinetis MCU is acting as a controller, it will output control changes from time
to time. Scheduling ADC conversions around these changes, which may make transient
disturbances in the system, is key.

Scheduling the ADC conversions at a time after the transient effects of the last control
change has been made can enable smooth operation of control loops. The PDB allows
simple scheduling of one or both of the ADC peripherals conversions.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 167

In this example, both ADC’s will be scheduled, but only the results from ADC1,
connected to the onboard potentiometer on channel 20, will be used to report the control
input.

For this demonstration the PDB timers are set to intervals long enough to easily observe
the timing on an onboard LED, after which a message summarizing the readings is
presented. The messages will be filtered such that if no significant change in the
potentiometer is made, no report will be issued.

18.1.2 Features

The ADC features demonstrated by the adc_demo example code include:

• Simple calibration of the ADC:

A simple driver for the ADC, which facilitates using both ADCs and their calibration
with minimal software, is included in the adc_demo example code. Prior to taking
the first measurement, during the initialization of the demo project the ADC will be
calibrated. The use of the driver of the ADC will simplify this. While the ADC can
be used prior to calibration for conversions, the calibration of the ADC enables it to
meet its specifications.

• Averaging by 1, 4, 8, 16, or 32:

The ADC’s ability to average up to thirty-two conversion values prior to ending the
conversion process and generating a result will be demonstrated. This feature reduces
CPU load; it also reduces the effect of a noise spike on any readings. It is a simple
arithmetic averaging of thirty-two (or less if so configured) ADC conversions. These
conversions are taken upon the PDB triggering the ADC.

• The ADC’s interrupts:

The interrupt feature of the ADC is also used in the example. In the Interrupt Service
Routine (ISR) for ADC1, a digital filter is placed. It filters the two inputs from
ADC1, both (see next section) connected to the POT, on every PDB cycle. This very
fast and simple exponential filter is included in the interrupt service routines of
ADC1 for illustration of how to smooth readings with minimal MCU cycle count. It
is implemented in only two lines of C code, with no looping. This filter is optional
and can be used with or without the averaging feature of the ADC itself. In the
example, both are used for increased smoothness of result.

• Hardware triggering of the ADC with the PDB:

Overview

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

168 Freescale Semiconductor

The ADC module works with the PDB to trigger the ADC’s conversions. The ADC
trigger to convert is based on configuration choices. In this case the ADC will be
configured to be triggered only by the PDB. The PDB will be triggered by the
application software using an instruction to start its timed sequence of conversions.
Once it does this, it will trigger each conversion in sequence based on its
configurable timers. It will repeat each time its counter wraps, starting another cycle
of conversions of both ADC0 and ADC1. Only the readings from ADC1 will be
filtered and displayed as POT.

• 16-bit resolution:

The conversion results in this example are 16 bit unsigned.

• Differential or single-ended:

Single-ended mode is illustrated in this example.

18.2 Configuration example
In this case the ADC is configured simply to read and average singled ended inputs. The
ADC0 inputs are not connected to anything of interest for this demo, but are just
demonstrated to function. ADC1, both when using the “A” registers, and when using the
“B” registers, is configured for channel 20 which matches with the onboard
potentiometer. This means that of the four conversions scheduled, two are for ADC1.
And, both of the ones for ADC1 are on channel 20, which is K2, which is the POT. The
ADCs are configured to be triggered by the PDB and the PDB is configured to output
four triggers each PDB cycle. ADC0 is activated in this case, but also not connected to
the POT. It is also triggered by the PDB; however, its readings do not contribute to the
digital filter resulting in the fifth output of the demonstration program, POT reading.

18.2.1 PDB-triggered single-ended ADC conversions
There are several steps taken in the course of the execution of this demo, involving
setting up the peripherals. These steps are further detailed with code from the adc_demo
project and explained in the sections that follow, numbered after the manner of the steps:

1. Turn on clocks to the ADC and PDB module using the SIM module.
2. Configure System Integration Module for defaults as far as ADC.
3. Configure the Peripheral Delay Block (PDB).
4. Determine the configuration the ADC using a structure to store the desired

configuration.
5. Use the ADC driver to send the desired configuration to the ADC’s.

Chapter 18 Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 169

6. Calibrate the ADCs in the configuration in which they will be used and then restore
the desired configuration.

7. Enable the ADC and PDB interrupts in NVIC.
8. Software trigger the PDB. The PDB will then start triggering the ADC as it times the

intervals.
9. Handle the PDB, ADC0, and ADC1 interrupts.

18.2.1.1 Turn on ADC and PDB clocks

Example Code from the adc_demo project:

Clocks need to be turned on to the ADC and PDB using the SIM module:

// Turn on the ADC0 and ADC1 clocks as well as the PDB clocks to test ADC triggered by PDB
 SIM_SCGC6 |= (SIM_SCGC6_ADC0_MASK);
 SIM_SCGC3 |= (SIM_SCGC3_ADC1_MASK);
 SIM_SCGC6 |= SIM_SCGC6_PDB_MASK ;

18.2.1.2 Configure System Integration module for ADC defaults
 SIM_SOPT7 &= ~(SIM_SOPT7_ADC1ALTTRGEN_MASK | // selects PDB not ALT trigger
 SIM_SOPT7_ADC1PRETRGSEL_MASK |
 SIM_SOPT7_ADC0ALTTRGEN_MASK | // selects PDB not ALT trigger
 SIM_SOPT7_ADC0ALTTRGEN_MASK) ;
 SIM_SOPT7 = SIM_SOPT7_ADC0TRGSEL(0); // applies only in case of ALT trigger, in which
case
 // PDB external pin input trigger for ADC
 SIM_SOPT7 = SIM_SOPT7_ADC1TRGSEL(0); // same for both ADCs

18.2.1.3 Configure Peripheral Delay Block (PDB)
// Configure the Peripheral Delay Block (PDB):
// enable PDB, pdb counter clock = busclock / 20 , continuous triggers, sw trigger , and use
prescaler too
 PDB_SC = PDB_SC_CONT_MASK // Continuous, rather than one-shot, mode
 | PDB_SC_PDBEN_MASK // PDB enabled
 | PDB_SC_PDBIE_MASK // PDB Interrupt Enable
 | PDB_SC_PRESCALER(0x5) // Slow down the period of the PDB for testing
 | PDB_SC_TRGSEL(0xf) // Trigger source is Software Trigger to be invoked in
this file
 | PDB_SC_MULT(2); // Multiplication factor 20 for the prescale divider for
the counter clock
 // the software trigger, PDB_SC_SWTRIG_MASK is not
triggered at this time.

 PDB_IDLY = 0x0000; // need to trigger interrupt every counter reset which happens when
modulus reached

 PDB_MOD = 0xffff; // largest period possible with the selections above, so slow you can
see each conversion.

// channel 0 pretrigger 0 and 1 enabled and delayed
 PDB_CH0C1 = PDB_CH0C1_EN(0x01)

Configuration example

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

170 Freescale Semiconductor

 | PDB_CH0C1_TOS(0x01)
 | PDB_CH0C1_EN(0x02)
 | PDB_CH0C1_TOS(0x02) ;

 PDB_CH0DLY0 = ADC0_DLYA ;
 PDB_CH0DLY1 = ADC0_DLYB ;

// channel 1 pretrigger 0 and 1 enabled and delayed
 PDB_CH1C1 = PDB_CH1C1_EN(0x01)
 | PDB_CH1C1_TOS(0x01)
 | PDB_CH1C1_EN(0x02)
 | PDB_CH1C1_TOS(0x02) ;

 PDB_CH1DLY0 = ADC1_DLYA ;
 PDB_CH1DLY1 = ADC1_DLYB ;

 PDB_SC = PDB_SC_CONT_MASK // Continuous, rather than one-shot, mode
 | PDB_SC_PDBEN_MASK // PDB enabled
 | PDB_SC_PDBIE_MASK // PDB Interrupt Enable
 | PDB_SC_PRESCALER(0x5) // Slow down the period of the PDB for testing
 | PDB_SC_TRGSEL(0xf) // Trigger source is Software Trigger to be invoked in
this file
 | PDB_SC_MULT(2) // Multiplication factor 20 for the prescale divider for
the counter clock
 | PDB_SC_LDOK_MASK; // Need to ok the loading or it will not load certain
registers!
 // the software trigger, PDB_SC_SWTRIG_MASK is not
triggered at this time.

18.2.1.4 Determine ADC configuration

Set up the initial ADC default configuration. This configuration is set into a structure
where it can be reused as required prior to and after calibration for either ADC.

 Master_Adc_Config.CONFIG1 = ADLPC_NORMAL
 | ADC_CFG1_ADIV(ADIV_4)
 | ADLSMP_LONG
 | ADC_CFG1_MODE(MODE_16)
 | ADC_CFG1_ADICLK(ADICLK_BUS);
 Master_Adc_Config.CONFIG2 = MUXSEL_ADCA
 | ADACKEN_DISABLED
 | ADHSC_HISPEED
 | ADC_CFG2_ADLSTS(ADLSTS_20) ;
 Master_Adc_Config.COMPARE1 = 0x1234u ; // can be anything
 Master_Adc_Config.COMPARE2 = 0x5678u ; // can be anything
 // since not using
 // compare feature
 Master_Adc_Config.STATUS2 = ADTRG_HW
 | ACFE_DISABLED
 | ACFGT_GREATER
 | ACREN_ENABLED
 | DMAEN_DISABLED
 | ADC_SC2_REFSEL(REFSEL_EXT);

 Master_Adc_Config.STATUS3 = CAL_OFF
 | ADCO_SINGLE
 | AVGE_ENABLED
 | ADC_SC3_AVGS(AVGS_32);

 Master_Adc_Config.PGA = PGAEN_DISABLED
 | PGACHP_NOCHOP
 | PGALP_NORMAL
 | ADC_PGA_PGAG(PGAG_64);
 Master_Adc_Config.STATUS1A = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);
 Master_Adc_Config.STATUS1B = AIEN_OFF | DIFF_SINGLE | ADC_SC1_ADCH(31);

Chapter 18 Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 171

18.2.1.5 Using ADC driver

Configure ADC as it will be used, but because ADC_SC1_ADCH is 31,the ADC will be
inactive. Channel 31 is just disable function.

There really is no channel 31.

 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config); // config ADC

18.2.1.6 Calibrate ADCs

Calibrate the ADCs in the configuration in which they will be used and then restore the
desired configuration:

 ADC_Cal(ADC0_BASE_PTR); // do the calibration

The structure still has the desired configuration. So restore it. Why restore it? The
calibration makes some adjustments to the configuration of the ADC. These are now
undone:

// config the ADC again to desired conditions
 ADC_Config_Alt(ADC0_BASE_PTR, &Master_Adc_Config);

Repeat this for both ADC's. However we will only 'use' the results from the ADC1, wired
to the Potentiometer on the Kinetis Tower Card.

// Repeating for ADC1:
 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config); // config ADC
 ADC_Cal(ADC1_BASE_PTR); // do the calibration

Configure the ADC again to default conditions

 ADC_Config_Alt(ADC1_BASE_PTR, &Master_Adc_Config);

18.2.1.7 Enable ADC and PDB interrupts

Enable the ADC and PDB interrupts in NVIC.

enable_irq(ADC0_irq_no) ; // ready for this interrupt.
enable_irq(ADC1_irq_no) ; // ready for this interrupt.
enable_irq(PDB_irq_no) ; // ready for this interrupt.

In case previous demo did not end with interrupts enabled, enable used ones.

EnableInterrupts ;

Configuration example

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

172 Freescale Semiconductor

18.2.1.8 Software triggering of PDB

Software trigger the PDB:

 PDB_SC |= PDB_SC_SWTRIG_MASK ; // kick off the PDB - just once

The system is now working. The PDB is continuously triggering ADC conversions. Now,
to display the results. The line above was the SOFTWARE TRIGGER...

18.2.1.9 Handle ADC and PDB interrupts

Interrupt servicing is simple; even the digital filter is only two lines of C code. It is placed
in both ADC1A and ADC1B portions of the ISR.

/**
* adc1_isr(void)
*
* use to signal ADC1 end of conversion
* In: n/a
* Out: exponentially filtered potentiometer reading!
* The ADC1 is used to sample the potentiometer on the A side and the B side:
* ping-pong. That reading is filtered for an aggregate of ADC1 readings:
exponentially_filtered_result1
* thus the filtered POT output is available for display.
**/
void adc1_isr(void)
{
 if ((ADC1_SC1A & ADC_SC1_COCO_MASK) == ADC_SC1_COCO_MASK) { // check which of the two
conversions just triggered
 PIN2_HIGH // do this asap
 result1A = ADC1_RA; // this will clear the COCO bit that is also the interrupt
flag

This is the exponential filter portion for ADC1A:

 // Begin exponential filter code for Potentiometer setting for demonstration of filter
effect
 exponentially_filtered_result1 += result1A;
 exponentially_filtered_result1 /= 2 ;
 // Spikes are attenuated 6dB, 12dB, 24dB, .. and so on until they die out.
 // End exponential filter code.. add f*sample, divide by (f+1).. f is 1 for this case.

These cycle flags are used to keep track of which results are available at the program
level.

 cycle_flags |= ADC1A_DONE ; // mark this step done
 }
 else if ((ADC1_SC1B & ADC_SC1_COCO_MASK) == ADC_SC1_COCO_MASK) {
 PIN2_LOW
 result1B = ADC1_RB;

This is the exponential filter portion for ADC1B:

 // Begin exponential filter code for Potentiometer setting for demonstration of filter
effect
 exponentially_filtered_result1 += result1B;
 exponentially_filtered_result1 /= 2 ;
 // Spikes are attenuated 6dB, 12dB, 18dB, .. and so on until they die out.
 // End exponential filter code.. add f*sample, divide by (f+1).. f is 1 for this case.

Chapter 18 Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 173

 cycle_flags |= ADC1B_DONE ;
 }
 return;
}

18.2.2 ADC device hardware implementation

The ADC input pins are generally configured with a small, inexpensive RC filter. The R
value is typically 100 Ohms and the C value is chosen to assure adequate roll-off of
frequencies above the Nyquist frequency, which is the sampling frequency divided by
two.

The advantage of a high sampling rate, made possible by the Kinetis ADC PDB
combination, is that smaller RC values may be used for the anti-aliasing filter.

18.2.3 PDB device hardware implementation

The PDB itself can be triggered by hardware. There are two ball locations that are
available for serving as external triggers for the PDB. No special considerations for these,
but it is advised to use only one (not both) of the two ball locations for the hardware
trigger of the PDB.

PCB design recommendations

Layout guidelines

18.3.1.1 General routing and placement

Use the following general routing and placement guidelines when laying out a new
design. These guidelines will help to minimize signal quality problems. The ADC
validation efforts focused on providing very stable voltage reference planes and ground
planes.

1. Use high quality RC components for the anti-aliasing filter. Place this RC filter as
close to the ADC input pins as possible where it can remove the most noise.

2. Provide very stable analog ground and voltage planes, both for analog power and
voltage references if full accuracy of the ADC is required.

3. Provide very stable analog ground and voltage planes, both for analog power and
voltage references if full accuracy of the ADC is required.

18.3

18.3.1

PCB design recommendations

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

174 Freescale Semiconductor

18.3.2 ESD/EMI considerations

The RC filter used for anti-aliasing is all that is required to enhance ESD protection. EMI
interference is also dealt with by the same inexpensive filter. Minimizing loop area for
any RF ranged signals is also essential.

Chapter 18 Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 175

Layout guidelines

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

176 Freescale Semiconductor

Appendix A
How to Load QRUG Examples

A.1 Overview
This chapter describes how to load and run the sample code described in other sections of
the Kinetis Quick Reference User Guide. It walks through the procedures used to make
sure your Tower system is connected properly, and explains how to load the example
projects.

A.2 Software configuration
First install the latest P&E Micro Kinetis Tower Toolkit as described in the Quick Start
Guide. It can be found online or on the DVD that came with your Tower board. This will
install the necessary drivers for downloading software to the Kinetis tower board via
OSJTAG, the virtual serial port drivers, and the P&E terminal program.

You will also need to install IAR for ARM 6.10 or later. It supports OSJTAG, which is
firmware located on your Kinetis tower board that enables you to flash and debug code
with only a mini-B USB cable.

A.3 Hardware configuration
You will need to put together your tower kit for examples using Ethernet, FlexCAN, or
USB. .The other examples can be ran with the Kinetis microcontroller module in stand-
alone mode.

To put together the tower system, plug-in the primary side of each tower board (most
modules will mark this side with a white stripe) into the primary elevator, which has the
white connectors. Then attach the other elevator board onto the other side of the modules.
The TWR-ELEV box will also have instructions for putting together the tower.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 177

Finally connect a USB cable to the mini-USB port on the Kinetis tower module. This will
be J16 on TWR-K40X256 and J13 on TWR-K60N512. When you plug-in the USB cable
to your board, you should see some LED’s on all the tower boards turn on. This will let
you know your tower was put together correctly.

A.4 Terminal configuration
The OSJTAG feature on the Kinetis Tower Board will create a virtual serial port that
communicates to your computer over the USB cable connected in the previous section.
This virtual serial port is connected to UART0 on the TWR-K40X256 and UART5 on
TWR-K60N512.

Next, open the Terminal Utility from the Start Menu by going to P&E Multilink
Embedded Toolkit->Utilities->Terminal Utility

Configure the terminal client to use USB COM, 115200 baud, 8 data bits, 1 stop bit, and
no parity. Then click Open Serial Port to start the connection.

A.5 Download sample code
1. Download the latest sample code repository for your Tower module from http://

freescale.com/twr-k40x256 and http://freescale.com/twr-k60n512.
2. Unzip the KINETIS512_SC.zip file into any directory.
3. Go to \kinetis-sc\build\iar\ to see all the different projects available.
4. The next section describes running the basic Hello World example, but the same

instructions can be used with other projects as well.

A.6 Running the "Hello World" demo
1. Open IAR and go to File -> Open -> Workspace in the menu bar.
2. Open the hello_world.eww workspace at \kinetis-sc\build\iar\hello_world\ .

Terminal configuration

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

178 Freescale Semiconductor

3. The workspace that opens up contains a “Hello World” project for both TWR-
K40X256 and TWR-K60N512.

4. There are many different RAM and flash combinations available in the Kinetis
family which this project supports. However, for the processor on your tower board
you should choose one of the targets below to maximize the memory space that the
linker makes available for your chip.
TWR-K40X256:

• RAM_64KB
• FLASH_256KB_PFLASH_256KB_DFLASH

TWR-K60N512:
• RAM_128KB
• FLASH_512KB_PFLASH

5. Select the project and configuration you would like to run by choosing the project
from the drop-down box that is circled in red. You may also right-click on a project
and select “Set as Active.” To start, select the flash target appropriate for your board
as listed in the previous step.

6. The selected project will appear in bold font.
7. To ensure a fresh start, clean the project first by right-clicking on the project name

and selecting “Clean.”

Appendix A How to Load QRUG Examples

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

Freescale Semiconductor 179

8. Compile the project by clicking the Make icon (or right-click on the project and
select “Make”).

9. In the build dialog box at the bottom, you will see any errors or warnings. If the
compilation was successful, you will see something like the image below, if there are
no errors (there may be some warnings depending on the code):

10. Now download the code to the board and start the debugger by pressing the
“Download and Debug” button.

11. The code will download (into RAM or flash, depending on the project settings) and
the debugger screen will appear and pause at the first instruction. Hit the “Go” button
to start running.

12. After you have selected “Go,” the software will print out some basic chip
information, and then write “Hello World” to the terminal. After that it will echo
anything typed into the terminal screen.

13. Hit the Break button to pause the debugger. You can then step line by line via the
Step Over button, and dive into function calls with the Step Into button.

14. Hit the Stop button to end the debugging session.

Kinetis Quick Reference User Guide, Rev. 0, 11/2010

180 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: KQRUG
Rev. 0, 11/2010

Information in this document is provided solely to enable system and sofware
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor.

	Getting Started
	Chapter 1: General System Setup (Software Considerations)
	Overview
	Code execution
	Reset and booting
	Device state during reset
	Device state after reset

	Typical system initialization
	Lowest level assembly routines
	Initialize general purpose registers
	Unmask interrupts at ARM core
	Branch to start of C initialization code

	Startup routines
	Disable watchdog
	Initialize RAM
	Enable port clocks
	Ramp system clock to selected frequency
	Enable pin interrupt
	Enable UART for terminal communication
	Jump to start of main function for application

	Chapter 2: General System Setup (Hardware Considerations)
	Overview
	Floorplan
	Connectors
	Power domains

	PCB routing considerations
	Power supply routing
	Power supply decoupling and filtering
	Oscillators
	RTC oscillator
	MCG oscillator

	General filtering
	RESET_b and NMI_b
	General purpose I/O
	Analog inputs

	PCB layer stack-up
	Other module hardware considerations
	VBAT
	Voltage reference module
	Debug interface

	Core Modules
	Chapter 3: Nested Vector Interrupt Controller (NVIC)
	Overview
	Introduction
	Features

	Configuration examples
	Configuring the NVIC
	Code example and explanation

	Relocating the vector table
	Code example and explanation

	Disabling priorities
	Code example and explanation

	System Modules
	Chapter 4: Clocking System
	Overview
	Features
	Configuration examples
	Transitioning to PLL engaged external mode
	Code example and explanation

	Transitioning between PLL engaged external mode and bypassed low power internal mode
	Code example and explanation

	Configuring the FLL with the RTC oscillator as a reference
	Code example and explanation

	Clocking system device hardware implementation
	Layout guidelines for general routing and placement
	References

	Chapter 5: Power Management Controller (PMC/MODECTL)
	Using the power management controller
	Overview
	Introduction

	Using the low voltage detection system
	Features
	Configuration examples
	Interrupt code example and explanation
	Hardware implementation

	Using the mode controller
	Overview
	Introduction
	Features

	Configuration examples
	MC code example and explanation
	Entering low leakage stop (LLS) mode
	Entering wait mode
	Exiting low power modes

	Using the low leakage wakeup unit
	Overview
	Mode transitions
	Wakeup sources

	Configuration examples
	Module wakeup
	Pin wakeup
	LLWU port and module interrupts
	Wakeup sequence

	Module operation in low power modes
	Mode transition requirements
	Source of wakeup, pins and modules

	Chapter 6: Memory Protection Unit (MPU)
	Using the memory protection unit module
	Overview
	Introduction
	Features
	Configuration examples
	Region descriptors setup

	Chapter 7: Enhanced Direct Memory Access (eDMA) Controller
	Overview
	Introduction

	eDMA trigger
	DMA multiplexer
	Trigger mode
	Multiple transfer requests

	Transfer process—major and minor transfer loop
	Configuration steps
	Example—PIT-gated DMA requests
	Requirements
	Module configuration

	Memories and Memory Interfaces
	Chapter 8: Using the FlexMemory
	Using the FlexNVM
	Overview
	Introduction
	Features

	Configuration examples
	Basic data flash
	Code example and explanation

	EEPROM flash records
	Code Example and Explanation

	Combination
	Code example and explanation

	Endurance

	Chapter 9: EzPort Module
	Using the EzPort module
	Overview
	Introduction
	Features
	Command description
	Command format
	Command timing

	Status register

	Configuration examples
	Hardware connections
	Write enable and disable
	Sector erase and program
	Write and read FCCOB registers
	Write and read FlexRAM

	Chapter 10: Flexbus Module
	Using the Flexbus module
	Overview
	Introduction
	Features
	Signal descriptions
	Address and data bus multiplexing
	Modes of Operation
	Burst cycles
	Data Byte Alignment and Physical Connections
	Memory map
	Reference clock

	Configuration examples
	Code example and explanation

	Hardware implementation

	PCB design recommendations
	Layout guidelines

	Communication Interfaces
	Chapter 11: Universal Asynchronous Receiver and Transmitter (UART) Module
	Overview
	Features
	Configuration example
	UART initialization example
	UART receive example
	UART transmit example
	UART configuration for interrupts or DMA requests

	UART RS-232 hardware implementation

	Chapter 12: ENET Module
	Overview
	Introduction
	Features

	Configuration examples
	Basic MAC-ENET initialization for a generic TCP/IP stack
	Code example and explanation

	PHY management interface
	Code example and explanation

	MII mode
	Code example and explanation
	Hardware implementation

	RMII mode
	Code example and explanation
	Hardware implementation

	PCB Design Recommendations
	Layout Guidelines
	General Routing and Placement

	Chapter 13: USB Device Charger Detection (USBDCD) Module
	Overview
	Introduction
	Features
	Battery charger specification

	Module Configuration
	Module dependencies

	DCD hardware implementation
	Example code

	Chapter 14: Universal Serial Bus OTG Module
	Introduction
	Features
	USB operation modes
	Voltage regulator operation modes
	Module configuration
	Module dependencies
	USB initialization process
	Voltage regulator initialization

	Hardware implementation
	Connection diagram
	Components and placement suggestions
	Layout recommendations

	Example code
	Device code
	Host code

	Chapter 15: FlexCAN Module
	Overview
	Introduction
	Features

	Configuration examples
	FlexCAN initialization
	Code example and explanation

	Receive process
	Code example and explanation

	Transmit process
	Code example and explanation

	Read message
	Code example and explanation

	Configuration of Rx FIFO ID filter table elements
	Code example and explanation

	Human-Machine Interfaces (HMI)
	Chapter 16: Segment LCD Controller
	Overview
	Introduction

	Power supply
	Low power modes
	Clock source
	Hardware considerations
	General routing and placement

	EMC and ESD considerations
	Code example and explanation

	Demonstration code

	Chapter 17: Touch Sense Input (TSI) Module
	Overview
	Introduction
	Features
	TSI configuration
	Configuration Example
	Code Example and Explanation

	TSI hardware implementation
	PCB Routing and Placement

	Analog
	Chapter 18: Using Peripheral Delay Block (PDB) to Schedule Analog to Digital Converter (ADC) Conversions
	Overview
	Introduction
	Features

	Configuration example
	PDB-triggered single-ended ADC conversions
	Turn on ADC and PDB clocks
	Configure System Integration module for ADC defaults
	Configure Peripheral Delay Block (PDB)
	Determine ADC configuration
	Using ADC driver
	Calibrate ADCs
	Enable ADC and PDB interrupts
	Software triggering of PDB
	Handle ADC and PDB interrupts

	ADC device hardware implementation
	PDB device hardware implementation

	PCB design recommendations
	Layout guidelines
	General routing and placement

	ESD/EMI considerations

	Appendix A: How to Load QRUG Examples
	Overview
	Software configuration
	Hardware configuration
	Terminal configuration
	Download sample code
	Running the "Hello World" demo

