Freescale Semiconductor

Interrupt handling with KSDK

and Kinetis Design Studio

By: Jorge Gonzalez / Technical Information Center

L -

> freescale

semiconductor

Freescale Semiconductor

About this document

The Kinetis Software Development Kit (KSDK) is intended for rapid evaluation and development with
Kinetis family MCUs. Besides of the peripheral drivers, the hardware abstraction layer and middleware
stacks, the platform provides a robust interrupt handling mechanism.

This document explains the implementation and handling of interrupts when using KSDK in baremetal
mode and when using MQX RTOS. Kinetis Design Studio IDE was used as reference, but the concepts
should apply for any particular IDE supported by KSDK.

Software versions

The contents of this document are valid for the latest versions of Kinetis SDK and Kinetis Design Studio
by the time of writing, listed below:

= KSDKv1.2.0
= KDSv3.0.0

Content

1. GLOSSARY
2. CONCEPTS AND OVERVIEW
2.1 Interrupt Manager
2.2 Vector table location
2.3 Interrupt priorities
3. KSDK INTERRUPT HANDLING
3.1 Baremetal interrupt handling
3.2 MQX RTOS interrupt handling
3.3 Operating System Abstraction layer (OSA)
4. KDS AND PROCESSOR EXPERT CONSIDERATIONS
4.1 KSDK baremetal
4.2 KSDK baremetal + Processor Expert
4.3 MQX for KSDK
4.4 MQX for KSDK + Processor Expert
5. REFERENCES

Interrupt handling with KSDK and Kinetis Design Studio
2 Freescale Semiconductor

Freescale Semiconductor

1. GLOSSARY

KSDK

KDS

API

ISR

NVIC

CMSIS

Kinetis Software Development Kit: Set of peripheral drivers, stacks and middleware layers for
Kinetis microcontrollers.

Kinetis Design Studio: Integrated Development Environment (IDE) software for Kinetis MCUs.

Application Programming Interface: Refers to the set of functions, methods and macros
provided by the different layers of the KSDK platform.

Interrupt Service Routine: Also called “Interrupt Handler Routine” or simply “Interrupt
Handler”, is a code routine in charge of taking action when a determined interrupt is triggered.

Nested Vector Interrupt Controller: Standard module of ARM® Cortex® cores which is in charge
of handling interrupts and exceptions at the hardware level by enabling/disabling interrupts,
assigning priorities, nesting interrupts among other functions.

Cortex Microcontroller Software Interface Standard: Standard interface for ARM® Cortex®
based MCUs. This hardware layer provides a set of functions and methods to interface directly
to the MCU core.

VECTOR NUMBER Number assigned to an interrupt in relation to the core. This number considers

the ARM® Cortex® system interrupts, which are 16 in total. In Kinetis Reference
Manuals, the vector numbers are listed in the Vector Assignment Table under
the Vector column.

IRQ NUMBER Assigned non-core interrupt number. This number only considers the peripheral

modules interrupts, which are seen as ‘external’ by the NVIC module. In Kinetis
Reference Manuals, the IRQ Numbers are listed in the Vector Assignment Table
under the IRQ column and are equal to (VECTOR NUMBER — 16).

Address Vector IRQ NVIC NVIC Source module Source description
non-IPR IPR
ARM Core System Handler Vectors
0x0000_0000 0 — - - ABM core Initial Stack Pointer
0x0000_ 0004 1 - - - ARM core Initial Program Counter
(PendableSrvReq)
0x0000_003C 15 - - - ARM core System fick timer (SysTick)
Non-Core Vectors
0x0000_0040 |1s |0 |o |o |DMA |DMA channel 0 transfer complete
[.= [T~ I~ | —_— | I—— - ..

Figure 1.1- Interrupt vector assignments table example

Interrupt handling with KSDK and Kinetis Design Studio

Freescale Semiconductor

Freescale Semiconductor

2. CONCEPTS AND OVERVIEW

This section provides general information and concepts about KSDK interrupt handling system.

2.1 Interrupt Manager

The KSDK Interrupt Manager provides APIs to enable and disable individual interrupts or enable/disable
them in a global way. In addition it allows registration of interrupt handlers defined by the user
application. The interrupt manager is used by the peripheral drivers for enabling or disabling particular
interrupts, but it can also be used directly by the application using the APIs provided.

The interrupt manager consists of two files: “fsl_interrupt_manager.c” and “fsl_interrupt_manager.h”.

fsl_interrupt_manager.c: This source file is built as part of KSDK platform library and it provides the
definition of the next APIs:

- INT_SYS_InstallHandler (irgNumber, handler): Allows the application to replace or install an
interrupt handler for the specified IRQ number. This function requires the vectors to be located
in RAM since the ISR is installed directly to the vector table.

- INT_SYS_EnablelRQGlobal (void): Enables the global interrupt by calling the __enable_irq() API
from the CMSIS file core_cmFunc.h.

- INT_SYS_DisablelRQGlobal (void): Disables the global interrupt by calling the __disable_irq()
API from the CMSIS file core_cmFunc.h.

fsl_interrupt_manager.h: This file has to be included to call any of the functions defined in
“fsl_interrupt_manager.c”. It also defines 2 relevant APIs:

- INT_SYS_EnablelRQ, (irgNumber): Enables the interrupt for the specified IRQ number by calling
the APl NVIC_EnablelRQ () from the CMSIS core header file!®,

- INT_SYS_DisablelRQ, (irqNumber): Disables the interrupt for the specified IRQ number by
calling the APl NVIC_DisablelRQ() from the CMSIS core header filel).

(1) NVIC related APIs are defined in the CMSS Core Peripheral Access Layer Header FHle:
core_cm4.h or core_cmOplus.h depending on the Kinetis family.

Interrupt handling with KSDK and Kinetis Design Studio
4 Freescale Semiconductor

Freescale Semiconductor

2.2 Vector table location

The interrupt vector table is located by default in Flash memory at compile time, by pointing either to
the weak handlers found in the CMSIS startup code file or the Peripheral Drivers ISR entry functions
defined throughout the project source files.

The KSDK delivered linker files are prepared to relocate vector table to RAM, by defining the argument
__ram_vector_table__ =1 and passing it to the linker, which is explained in Chapter 4 for KDS IDE. With
this symbol defined, the vector table will be copied from Flash to RAM during startup inside of the
function init_data_bss() from file startup.c:

extern uint32_t _ VECTOR_TABLE[];
extern uint32_t _ VECTOR_RAM[]; Symbols defined in linker file
extern uint32 t _ RAM VECTOR TABLE SIZE BYTES[];
uint32 t RAM VECTOR TABLE SIZE = (uint32 t)(_ RAM VECTOR TABLE SIZE BYTES);
#endif
if (_ VECTOR_RAM != _ VECTOR TABLE)
1
/* Copy the vecter table from ROM to RAM */
for (n = 8; n < ({uint32 t) RAM VECTOR TABLE SIZE)/sizeof(uint32 t); n++)
1
__VECTOR_RAM[n] = _ VECTOR TABLE[n];
¥
/* Point the WTOR to the position of wector table */
SCB->VTOR = (uint32_t)_ VECTOR_RAM;
¥
else
1
/* Point the VTOR to the position of vector table */
SCB->VTOR = (uint32 t) VECTOR TABLE;

Figure 2.1 - Copy of vector table to RAM at startup

NOTE

The __ram_vector_table__ symbol is not required for Processor
Expert projects. The location of vectors in Flash/RAM is handled
by the generated linker file, which is controlled by the CPU
component build options as explained in Chapter 4.

Interrupt handling with KSDK and Kinetis Design Studio
5 Freescale Semiconductor

Freescale Semiconductor

2.3 Interrupt priorities

The interrupt priorities are determined by the application requirements and can be configured by using
the APl NVIC_SetPriority (IRQn, priority)) \yith the IRQ Number and the desired priority.

It is important to check how many priority levels are supported by the specific device from the
Reference Manual or by checking the macro “__NVIC_PRIO_BITS” in the device header file (<device>.h).
Furthermore there are some considerations for setting interrupt priorities listed below:

- In baremetal projects (No RTOS) there are no restrictions on configuring priorities as desired.

- For MQX RTOS projects, the scheduler limits the usage of interrupt priorities. The priority levels should
comply with the next conditions:

1) Priority level should be an even number.

2) Priority level should be equal or higher than 2 times the value of
MQX_HARDWARE_INTERRUPT_LEVEL_MAX value input in mgx_init structure if you want to use
the MQX RTOS services in the interrupt service handler.

Interrupt handling with KSDK and Kinetis Design Studio
6 Freescale Semiconductor

Ayaaerary [en

Freescale Semiconductor

3. KSDKINTERRUPT HANDLING

This chapter contains a detailed explanation about interrupt handling with KSDK platform, when used
for baremetal projects and MQX RTOS based projects.

3.1 Baremetal interrupt handling

In baremetal mode the application has full control of the interrupts logic by defining ISR functions or
using the ones provided by the Peripheral Drivers.

3.1.1 Peripheral Driver interrupts

With KSDK Peripheral Drivers we have three separate functions involved with interrupt handling:

- These functions have names of the type “<peripheral>_IRQHandler”
(e.g. 12C0_IRQHandler) or “<peripheral>_<irq>_IRQHandler” (e.g.
UARTO_RX_TX_IRQHandler). These are the valid entry points of the
interrupt vector table. The names of these functions match those

declared in the CMSIS startup assembly file (startup_<device>.S).
ISR entry functions

- The weak handlers defined in CMSIS startup file are replaced by
these functions.

- ISR entry functions are defined in the files named
“fsl_<peripheral>_irg.c”, which can be found in the particular driver
folders in KSDK installation.

- These functions are driver defined and named
“<peripheral>_DRV_IRQHandler>". They are invoked by the ISR entry
functions. The purpose of Driver IRQ functions is to take action for
Driver IRQ functions | the triggered interrupt based on common use cases.

- Driver IRQ functions are defined in the driver implementation
source files, which are part of the KSDK platform library build process.

- Some Peripheral Drivers (e.g. UART driver) allow the installation of
callback functions. These functions may be called either by the ISR
entry functions or the Driver IRQ functions when determined events
Callbacks occur. Callbacks are intended to execute user defined code apart
from the common actions taken by the Driver IRQ routine.

- Callbacks are installed by Driver APIs of the type
“<peripheral>_DRV_InstallCalback()”.

Interrupt handling with KSDK and Kinetis Design Studio
7 Freescale Semiconductor

Freescale Semiconductor

IMPORTANT NOTE

The “fsl_<peripheral>_irg.c” files are not part of KSDK
platform library build, so these files have to be added and
built together with the application project, except when
using Processor Expert, which generates ISR entry functions.

3.1.2 Bypass Peripheral Driver interrupt handlers

Although not a common practice, the user may want to bypass the default interrupt routine code for a
particular Peripheral Driver and define a custom handler, for example to create a custom high level
driver. This can be accomplished in two ways:

- At compile time: Define the custom ISR function with the same name as the one in CMSIS
startup code assembly file. The corresponding file “fsl_<peripheral>_irg.c” has to be removed
from the project, otherwise the linker may throw a Multiple Definition Error.

- Atruntime: If the vector table is relocated to RAM, the user can install a custom ISR by calling
the Interrupt Manager API INT_SYS_InstallHandler (irqgNumber, handler) with the
corresponding IRQ number and the name of the new ISR function.

Interrupt handling with KSDK and Kinetis Design Studio
8 Freescale Semiconductor

Freescale Semiconductor

3.2 MQX RTOS interrupt handling

The MQX RTOS kernel takes ownership of the hardware interrupts and exceptions by having its own
interrupt handling mechanism. By default all interrupts (except for some of the ARM® core interrupts)
are mapped to a kernel ISR which takes action so that the scheduler and task context are not affected.
Ultimately the kernel ISR calls a user registered ISR or a default ISR. Therefore MQX RTOS kernel creates

|”

its own “virtual” or separate vector table which has an entry for each interrupt number.

3.2.1 MQX interrupt installing

MQX RTOS delivers a set of interrupt related functions and macros. Only the most relevant functions for
the scope of this document are described.

In MQX RTOS there are two main APIs for the installation of interrupt handling functions:

- _int_install_isr (vector, isr_ptr, isr_data): This API installs an application-defined, interrupt-
specific ISR, which MQX RTOS calls when the interrupt occurs. The ISR is installed to MQX RTOS
owned ISR table. isr_ptr is the name of the ISR to install. isr_data is an optional parameter
which is passed to the ISR function when called.

- _int_install_kernel_isr(vector, isr_ptr): Installs an ISR handler for the specified interrupt
directly to the hardware vector table, hence bypassing MQX RTOS and replacing the kernel ISR.
isr_ptr is the name of the ISR function to install. This MQX RTOS API is only valid when vector
table is located in RAM.

IMPORTANT NOTE

Both functions expect a “vector” parameter. The
passed parameter must be the IRQ number of the
corresponding interrupt and NOT the vector number.

Interrupt handling with KSDK and Kinetis Design Studio
9 Freescale Semiconductor

Freescale Semiconductor

3.2.2 MQX interrupt functions

The next table provides a description of the different functions involved with interrupt handling in MQX
for KSDK:

- This is the default interrupt function installed to the hardware
vector table. All interrupts are intercepted by this function before
_int_kernel_isr() calling the application defined ISR entry. The exception to this is when
an interrupt ISR is installed directly to the hardware vector table,
bypassing MQX.

- This ISR function is called from the _int_kernel_isr() whenever an
interrupt is triggered for which there is no registered ISR entry
_int_default_isr() | function. During initialization, MQX RTOS points all of the interrupts
to this default ISR and the application is responsible for installing its
own ISR entries.

- This is an application defined ISR entry. This type of ISR needs to be
installed with the MQX API _int_install_isr(), so it can be called by the
kernel ISR. This entry replaces the _int_default_isr() for the specific

Application .
interrupt number.

ISR entry

- Typically, these ISR entry functions are named
“MQX_<peripheral>_IRQHandler” (e.g. MQX_I2C0_IRQHandler).

- Driver defined functions named “<peripheral>_DRV_IRQHandler>".
These functions are invoked by the ISR entries and are designed to
take action for the triggered interrupt according to common driver
Driver IRQ functions | use cases.

- Driver IRQ functions are defined inside of Driver specific source files,
which are part of the KSDK platform library build.

- Callbacks are functions that get called either by an application ISR

entry or from the Driver IRQ functions. Callbacks allow the application
to take action outside of the Driver IRQ flow.

Callbacks

- To install callbacks the drivers provide APIs of the type
“<peripheral>_DRV_InstallCalback()”.

Interrupt handling with KSDK and Kinetis Design Studio
10 Freescale Semiconductor

Freescale Semiconductor

IMPORTANT NOTES

1- Due to the MQX RTOS interrupt handling mechanism, the names of the
ISR entry functions must be different than those in the CMSIS startup code
file (startup_<device>.S), otherwise the kernel ISR is not called when the
corresponding interrupt triggers.

2- Avalid approach is to copy the corresponding “fsl_<peripheral>_irq.c”
file to the application and renaming the ISR entry functions by adding
“MQX” at the beginning (e.g. MQX_I2C0_IRQHandler).

3.3 Operating System Abstraction layer (0OSA)

As the name indicates, the OSA provides a level of abstraction to ease portability between Real Time
Operating Systems or baremetal projects.

The OSA layer provides the next function related to interrupt handling:

- OSA_InstallintHandler (IRQNumber , handler): This API installs an ISR function for the
specified IRQ number. The second parameter is a pointer to the desired interrupt handler
function. The action taken by this APl depends on the specific OSA type, as explained next.

Baremetal OSA:

fsl_os_abstraction_bm -> OSA_InstallintHandler(): Installs the ISR for the specified IRQ number by
calling the API INT_SYS_InstallHandler() from the
Interrupt Manager.

MQX RTOS OSA:

fsl_os_abstraction_maqx -> OSA_InstallintHandler(): Registers the ISR to the MQX RTOS interrupt
handler, by calling the APl _int_install_isr() from
MQX RTOS kernel.

Interrupt handling with KSDK and Kinetis Design Studio
11 Freescale Semiconductor

Freescale Semiconductor

4. KDS AND PROCESSOR EXPERT CONSIDERATIONS

This chapter shows some instructions and points to consider when applying the concepts of the previous
sections for interrupt handling, when working in Kinetis Design Studio with one of 4 types of projects:

1) Baremetal KSDK projects

2) Baremetal + Processor Expert KSDK projects
3) MQX for KSDK projects

4) MQX for KSDK + Processor Expert projects

4.1 KSDK baremetal

Copy or link driver’s IRQ file

1) Navigate to C:\Freescale\KSDK_1.2.0\platform\drivers\src\<peripheral>. Drag and drop the
fsl_<peripheral>_irq.c file to any of your project source folders in KDS. In the figure below the PIT file is
dragged to a folder called “DRIVER_IRQ”.

=

|.T"_‘, Project Explorer 23 =]
L KR4 _BM_IR
‘ b_j/‘ﬁp E!ina;iesqs @(}v| ot KSDK 1.2.0 » platform » drivers » src b pit
s Iﬂ]-' Includes]
» = Board Organize = ' Open = Burn Mew folder
& Debug [Favorites Name
= DRIVER_IRQ Ca
2= Project_Settings ﬁ fsl_pit_common.c
> = 50K & Down B £<1_pit_driver.c
» = Sources :}__l Recent Places | E fsl_pit_irg.c

Figure 4.1 — Dragging IRQ file to project

2) KDS will ask if you want to link or copy the file to your project. The “Link” option creates a link to the
original file in KSDK installation, while the “Copy” option creates a physical new copy of the file. Select
according to your needs and click “OK”".

Interrupt handling with KSDK and Kinetis Design Studio
12 Freescale Semiconductor

Freescale Semiconductor

¥ File Operation

Select how files should be imported into the project:

]

(71 Link to files

Create link locations relative to: | PROJECT_LOC

Configure Drag and Drop 5ettings...

@ [ok || cancel

Figure 4.2 — Copy or link file

3) Finally KDS asks about adding new search paths. Just click on “Yes”.

% SDK module(s) added to the project

Do you want to configure the compiler search paths for newly added files? These
WY include paths should be added:

"S{PROJECT_KSDK_PATH} platform/drivers/inc"

"SIPROJECT_KSDE_PATH} platform,/drivers/src/pit"

[] Don't ask again

-

Figure 4.3 — Adding KSDK search paths

Using callbacks
The overall procedure to use driver callback functions involves 3 steps:

1) Define the callback function.
2) Initialize the Peripheral Driver.
3) Install callback with the corresponding driver API.

Example:

void lptmr_callback(void)
{

}

// .. User defined code

Interrupt handling with KSDK and Kinetis Design Studio
13 Freescale Semiconductor

Freescale Semiconductor

int main(void)

{
lptmr_state_t lptmrState;

lptmr_user_config t lptmrUserConfig =

{

.timerMode = RLptmrTimerModeTimeCounter, /*! Use LPTMR in Time Counter mode */
.freeRunningEnable = false, /*! When hit compare value, set counter back to zero */

.prescalerkEnable = false, /*! bypass prescaler */

.prescalerClockSource = kClockLptmrSrcLpoClLk, /*! use 1kHz Low Power Clock */
.isInterruptEnabled = true

}s

//...

LPTMR_DRV_Init(LPTMR_INSTANCE, &lptmrState, &lptmrUserConfig);
LPTMR_DRV_SetTimerPeriodUs (LPTMR_INSTANCE,1000000);
LPTMR_DRV_InstallCallback(LPTMR_INSTANCE, lptmr_isr_callback);

LPTMR_DRV_Start(LPTMR_INSTANCE);

Relocating vectors to RAM

By default in a KSDK project (without Processor Expert) the vector table is not copied from Flash to RAM.
The user can instruct the startup code to copy vectors to RAM by adding a linker symbol.

1) From KDS go to Project -> Properties -> C/C++ Build -> Settings -> Cross ARM C++ Linker ->
Miscellaneous. In “Other linker flags” add the options: -Xlinker --defsym=__ram_vector_table__=1

Interrupt handling with KSDK and Kinetis Design Studio
14 Freescale Semiconductor

Freescale Semiconductor

|typefiltertext Settings I =
|- Resource =
Builders @Target Processor Other objects ISR ARE] Iﬁl |&| -
4 C/C++ Build gaptham"
Build Variables arnngs
(2 Debugging

Envi t
nvironmen 4 13y Cross ARM GNU Assembler

Loaai

ogslng (2 Preprocessor
Settings (22 Includes
Tool Chain Editor

it s g | ol BV sk [ettt 4

& Wa. . ngs
(# Miscellaneous
4 18y Cross ARM C++ Linker

@ General
@ Libraries
@ Miscellaneous Generate map "${BuildArtifactFileBaseName}.map"
Cross reference (-Xlinker --cref)
Print link map (-Xlinker --print-map)
[Verbose (-v) /

] m |

=

Other linker flags |-r|a nolibe -Xlinker --defsyrm=__ram_vector_table_=1

[Restore Defaults l [Apply] -

@ [ok][cancel |

Figure 4.4 — Linker options to relocate vector table to RAM

2- Clean and build the project. Vectors should be copied to RAM during startup.

Interrupt handling with KSDK and Kinetis Design Studio
15 Freescale Semiconductor

Freescale Semiconductor

4.2 KSDK baremetal + Processor Expert

Generating ISR entry functions

With Processor Expert there is no need to copy or link any peripheral IRQ file from KSDK installation,
since Processor Expert generates all the required ISR entry functions automatically.

Depending on the specific peripheral component, if the IRQ handler is listed under the Events
configuration tab, then the ISR entry is generated in the file “Events.c”, so it can be modified by the
user. Otherwise only callback functions will be available in “Events.c” to add custom code, as long as the
callback is enabled in the Properties tab of the component.

% iComponent Inspector - gpiol: i3 % Compenents Library

Properties (Meth ods@@\

Events
Itermn generate code/don't generate code Event procedure name
PORTAIRQ handler | don't generate code ROBTA IROHandler
PORTE IRQ handler | don't generate code POBTE IRQHand er
. PORTC IRQ handler | generate code PORTC_IRQHandler
PORTD IRQ handler | don't generate code ROBTD IROHandler
PORTEIRQ handler | don't generate code POBTEIROHandler

Figure 4.5 — IRQ handlers in the Events tab of “fsl_gpio” component

[£] Events.c 3

- void PORTC_IRQHandler(void)

1
PORT_HAL_ClearPortIntFlag({PORTC_BASE);

/* Write your code here ... */

b

Figure 4.6 — ISR entry generated in “Events.c”

Interrupt handling with KSDK and Kinetis Design Studio
16 Freescale Semiconductor

Freescale Semiconductor

% Component Inspector - uartComl 53 % Components Library

Properties (M ethods @@\

Events
Itern RxCallback Callback name
RxCallback I generate code I uartComl_RxCallback

Figure 4.7 — Callback function in the Events tab of “fsl_uart” component

[£] Events.c &2
—wvoid wartComl_RxCallback({uint32_t instance, wvoid * param)
1
/* Write your code here ... */
¥

Figure 4.8 — Callback function generated in “Events.c”

Installing callbacks

For the peripheral components supporting callbacks, there is one or more checkboxes under the
Properties configuration tab to enable/disable callbacks, as well as custom name fields. The settings are
reflected in the Events tab of the component and therefore in the generated code.

% Component Inspector - saiComl i3 % Components Library % Compenent Inspector - saiComl &3 % Components Library
r;pertiesix Methods Events) Propertie? N Methodq EVE”tq
Component name sailComl Component name saiComl
i
,'.""'."',I VW VW W
48) = - rInit « snfig Lratic.. sait. .nl_w .oCor. g0
Tx driver state structure name saiComl_Tx5tate .) -
. Rux driver state structure name saiComl_RxState
Tx interrupts Bi
[V« Callback function interrupts

Callback Mame saiComl_TxCallback

[Tl lcer narameter

Callback Mame | saiComl_RxCallback

% Component Inspector - saiComl 23 % Components Library

Properties (M ethods@\

Events

Item generate code/don't generate code Event procedure name
TransmitCallback generate code i{, saiComl_TxCallback
ReceiveCallback don't generate code x_’x caiComl FxCallback

Figure 4.9 — Enabling/disabling callback functions. Pictures are for “fsl_sai” component

Interrupt handling with KSDK and Kinetis Design Studio

17 Freescale Semiconductor

Freescale Semiconductor

Avoiding vector table relocation to RAM

By default in KSDK + Processor Expert projects, the generated linker file causes the vector table to be
relocated to RAM. Sometimes to save space in RAM memory it is a good idea not to copy the interrupt
vector table to RAM, especially if the application does not require dynamically installing new ISRs or
updating the vector table.

1) From KDS in the Components view select the Cpu component and then in the Component Inspector
view go to Build Options -> Generate linker file.

5. Compenents - K64_PEx_tests 2 = O

E®a - .
(= Generator_Configurations % Component Inspector - Cpu &3 % Compeonents Library

4 [05 Properties (Methods (Events Build options ™. Resocurces

[EJ osal:fsl_os_abstraction
4 (= Processors Compiler | GMNU C Compiler = e

b 4 Cpu:MKE4FNIMOVLLL2) o
4 (= Components

[» (= Referenced_Components Generate linker file

[@J clockManl:fsl_clock_manager

i Ui pin_init:PinSettings

Generate linker file

Figure 4.10 — CPU build options -> Generate linker file tab

2) Uncheck the option Vector table copy in RAM.

Properties (Methods (Events (Euild cpticns Resourceq

Stack size (00400

Heap size 00000

Set memory segments to default

Vector table copy in RAM (E

Default memory for interrupts INTERNAL FLASH -
” Default memory for code IMTERMAL FLASH -

Default memory for data INTERMAL RAM -

Figure 4.11 — Disabling vector table copy to RAM

Interrupt handling with KSDK and Kinetis Design Studio
18 Freescale Semiconductor

Freescale Semiconductor

3) Processor Expert will ask if you want to adjust the memory ranges according to your new vector

settings. Click on “Yes”

i

Question

. Do you really want to set all the RAM/ROM areas to the default according to the new settings?

- WARNIMG: This command does not preserve any user ROM/RAM areas settings.

-

=S

Figure 4.12 — Setting RAM/ROM memory ranges

NOTE

to reconfigure the segments as required.

As indicated by the WARNING, user configured memory areas will not be preserved,
so if you had custom memory segments or ranges (e.g. for a bootloader) make sure

The picture below shows an example of how disabling the vector copy in RAM would

automatically modify the memory areas for a MK64FN1MO device:

ROM/RAM Areas

#
0
1
2
3
4

ROM/EAM Area

EEEEE

5 (=]
Mame
r_interrupts
m_interrupts_ram
m_text
m_data
rm_data_2

ROM/RAM Areas EJ @ EJ

#
]
1
2
3

ROM/RAM Lrea

EEEE

Marme
m_interrupts
m_text
m_data
rm_data_2

Size
0400
0400
0xFFBFQ

0xFCO0 |

(020000

Size
000
OxFFBFO

010000 |

Qualifier Address
RX 00

RW 0:1 FFFO000
RX 0x410

RW | 0:1 FFFO400
RW 0x20000000
Qualifier Address
RX 00

RX 0x410

RW | 0L FFFO000
RW 020000000

(020000

Figure 4.13 — Automatic changes in memory areas after disabling vectors copy

Interrupt handling with KSDK and Kinetis Design Studio

19

Freescale Semiconductor

Freescale Semiconductor

4.3 MQX for KSDK

Copying and modifying IRQ files
The ISR entries in the KSDK IRQ files need to be modified so the names do not conflict with MQX.

1) Navigate to C:\Freescale\KSDK_1.2.0\platform\drivers\src\<peripheral>. Drag and drop the
fsl_<peripheral>_irq.c file to a folder in your KDS project.

P

|._|>_=|F' et Expl 52 = @-\u" o= KSDK 1,20 » platform » drivers » src b pit
roject Explorer

4 '[DC- Kod_MQX_IRQs
b [l Includes

b (& Debug i Favorites Mame

Organize = Include in library = Share with - Burn

-~

[z= DRIVER_IRQ @ .
I = Project_Settings fsl_pit_common.c
b = SDK B £<1_pit_driver.c
[[Sources = Recent Places | fsl_pit_irq.c

Figure 4.14 — Dragging peripheral IRQ file to MQX for KSDK project

2) A window will arise asking if you want to “Copy” or “Link” the file. Make sure to select the Copy
option, so you can make proper changes and do not affect the original file.

% File Operation

Select how files should be imported into the project:

@ Copy files @

(7 Link to files
Create link locations relative to: | PROJECT_LOC

Configure Drag and Drop Settings...

@ [ok][cance

Figure 4.15 — Select “Copy files”

3) The last pop-up window will ask about adding search paths to the project. Just click on “Yes”.

Interrupt handling with KSDK and Kinetis Design Studio
20 Freescale Semiconductor

Freescale Semiconductor

‘tﬁ': SDK module(s) added to the project
@y Do you want to configure the compiler search paths for newly added files? These
WY include paths should be added:
"S{PROJECT_KSDE_PATH} platform/drivers/inc”
"S{PROJECT_KSDK_PATH} platform/drivers/src/pit"

[7] Don't ask again

Figure 4.16 — Adding KSDK search paths

4) Open the IRQ file in KDS editor by double clicking on the file from the “Project Explorer”. You need to
change the IRQ entry names by adding MQX_ to each of the valid interrupts. Below an example for the
file “fsl_pit_irq.c”:

wvoid PIT@_IRQHandler(void) é void MQX_PIT® IRQHandler(void)
1 1

/* Clear interrupt flag.*/ /* Clear interrupt flag.*/
PIT_HAL ClearIntFlag(g_pitBaseAddr[@], eU); PIT HAL ClearIntFlag(g pitBaseAddr[@], 8U);

Figure 4.17 — Adding “MQX_" prefix to peripheral ISR entry function name

Installing IRQ entries

Once the IRQ entry functions are defined as explained in the previous section, the user needs to call the
function OSA_InstallintHandler from the MQX application:

OSA_InstallIntHandler(PITO_IRQn, MQX_PITO_IRQHandler);

Using driver callbacks

To use driver callbacks in MQX the steps are the same as in baremetal projects. Please refer to section
“Using callbacks” in Chapter 4.1.

Interrupt handling with KSDK and Kinetis Design Studio
21 Freescale Semiconductor

Freescale Semiconductor

Installing vectors in RAM

With MQX for KSDK applications, the procedure to install the interrupt vector table in RAM is the same
as for Baremetal applications. Please refer to Section “Relocating vectors to RAM” in Chapter 4.1.

4.4 MQX for KSDK + Processor Expert

Installing interrupts

MQX for KSDK requires the driver’s interrupts to be installed. When working with MQX for KSDK and
Processor Expert, there are two critical steps required:

1- Check the box for “Install interrupt”.
2- Make sure the IRQ entry names have the MQX_ prefix.

1) From every peripheral component added to the project, make sure that the “Install Interrupt” check
box is marked. Below an example for fsl_i2c component:

| Master mode (Slave mode (PinsfSignaIs ﬁnitialization

Auto initialization

Frion., ™=te | medi.

Install interrupt

Figure 4.18 — Marking the “Install interrupt” checkbox

2) Make sure that the IRQ entry name is not the same as the one in startup assembly file, by adding the
MQX_ prefix to the name. For some peripheral components you will find such names in the Properties
tab together with the “Install Interrupt” checkbox, while in other you will find the name under the
Events tab. See the next examples:

Properties (Methnd@

Events

Itemn generate code/don't generate code ISR name

[2C IRQ Handler generate code MQX_12C0_IRQHandler
I2C slave callback © don't generate code M/

Figure 4.19 — IRQ entry name in the Events tab. This case is for “fsl_i2c” component

Interrupt handling with KSDK and Kinetis Design Studio
22 Freescale Semiconductor

Freescale Semiconductor

% *Component Inspector - uartComl &3 % Components L

@operties Methods Eventq

'| "Error interrupt
o gl

Sriarity va aedium -
Install interrupt
I5R name MQX_UARTL_RX_TX_IRQHand

Figure 4.20 — IRQ entry name in the Properties tab. This case is for “fs|_uart” component

Using driver callbacks

The steps to install and use callbacks in a MQX for KSDK project with Processor Expert is the same as
explained in section “Installing callbacks” in Chapter 4.2.

Interrupt handling with KSDK and Kinetis Design Studio
23 Freescale Semiconductor

Freescale Semiconductor

5. REFERENCES

3- KSDK webpage: www.freescale.com/ksdk

4- KSDK documents: C:\Freescale\KSDK_1.2.0\doc

5- KSDK demo and example projects: C:\Freescale\KSDK_1.2.0\examples

6- MQX for KSDK RTOS documents: C:\Freescale\KSDK_1.2.0\doc\rtos\maqx

7- MQX for KSDK demo applications: C:\Freescale\KSDK_1.2.0\rtos\mgx\magx\examples

8- How to create a baremetal KSDK project in KDS:
https://community.freescale.com/docs/DOC-103288

9- How to create a baremetal + PEx KSDK project in KDS:
https://community.freescale.com/docs/DOC-104318

10- How to create a MQX for KSDK project in KDS:
https://community.freescale.com/docs/DOC-103405

11- How to create a MQX for KSDK + PEx project in KDS:
https://community.freescale.com/docs/DOC-103429

Interrupt handling with KSDK and Kinetis Design Studio
24 Freescale Semiconductor

http://www.freescale.com/ksdk
https://community.freescale.com/docs/DOC-103288
https://community.freescale.com/docs/DOC-104318
https://community.freescale.com/docs/DOC-103405
https://community.freescale.com/docs/DOC-103429

