Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor, Inc.

Document Number: KSDK12DEMOUG Rev. 0 Apr 2015

Contents

Chapter 1 Introduction

Chapter 2 ADC Hardware Trigger Demo

2.1	Overview
2.1.1	Trigger by PIT
2.1.2	Trigger by PDB
2.1.3	Trigger by LPTMR
2.1.4	Input signal for ADC
2.2	Supported Platforms
2.3	System Requirement
2.3.1	Hardware requirements
2.3.2	Toolchain requirements
2.3.3	Software requirements
2.4	Getting Started
2.4.1	Hardware configuration
2.4.2	Prepare the Demo
2.5	Run the demo
2.6	Customization Options
2.6.1	Default configurations
2.6.1.1	ADC configurations
2.6.1.2	Sample frequency
2.6.2	Configure the number of samples
2.6.3	Configure the signal frequency
2.6.4	Configure the ADC instance
2.6.5	Configure the ADC input pin

Section number

Title

Chapter 3 ADC Low Power Demo

3.1	Overview
3.2	Supported Platforms
3.3	System Requirement
3.3.1	Hardware requirements
3.3.2	Toolchain requirements
3.3.3	Software requirements
3.4	Getting Started
3.4.1	Prepare the Demo
3.4.2	$\mathbf{Run}^{T} \text{ the demo} \dots \dots \dots \dots \dots \dots \dots \dots \dots $

Chapter 4 BLDC Sensorless Demo

4.1	Overview
4.2	Supported Platforms
4.3	System Requirement
4.3.1	Hardware requirements
4.3.2	Toolchain requirements
4.3.3	Software requirements
4.4	Getting Started
4.4.1	Prepare the Demo
4.4.2	Run the demo

Chapter 5 Bubble Level Demo

5.1	Overview	17
5.2	Supported Platforms	17
5.3	System Requirement	17
5.3.1	Hardware requirements	17
5.3.2	Toolchain requirements	17

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Section number	r Title	Page
5.3.3	Software requirements	17
5.4	Getting Started	18
5.4.1	Hardware Settings	18
5.4.2	Prepare the Demo	18
5.5	Run the demo	18

Chapter 6 CyclicADC Hardware Trigger Demo

6.1	Overview
6.1.1	Trigger by PIT
6.1.2	Trigger by PDB
6.1.3	Trigger by LPTMR
6.1.4	Trigger by PWM
6.1.5	Input signal for ADC
6.2	Supported Platforms
6.3	System Requirement
6.3.1	Hardware requirements
6.3.2	Toolchain requirements
6.3.3	Software requirements
6.4	Getting Started
6.4.1	Prepare the Demo
6.5	Run the demo
6.6	Customization Options
6.6.1	Default configurations
6.6.1.1	CADC configurations
6.6.1.2	Sample frequency
6.6.2	Configure the number of samples
6.6.3	Configure the signal frequency
6.6.4	Configure the ADC input pin

Chapter 7 DAC ADC Demo

7.1	Dverview

Section num	ber Title Page
7.2	Supported Platforms
7.3	System Requirement
7.3.1	Hardware requirements
7.3.2	Toolchain requirements
7.3.3	Software requirements
7.4	Getting Started
7.4.1	Hardware configuration
7.4.2	Hardware Settings
7.4.3	Prepare the Demo
7.5	Run the demo
7.6	Key Functions

Chapter 8 DAC CADC Demo

8.1	Overview
8.2	Supported Platforms
8.3	System Requirement
8.3.1	Hardware requirements
8.3.2	Toolchain requirements
8.3.3	Software requirements
8.4	Getting Started
8.4.1	Hardware Settings
8.4.2	Prepare the Demo
8.5	Run the demo
8.6	Key Functions

Chapter 9 Quadrature Encoder Demo

9.1	System Requirement
9.1.1	Hardware requirements
9.1.2	Toolchain requirements
9.1.3	Software requirements
9.1.4	Prepare the Demo

Section number]	Гi	tle	e												Р	ag	ze
9.2	Run the demo																						3	38

Chapter 10 Flash Demo

10.1	Overview	1
10.2	Supported Platforms	1
10.3	System Requirement	2
10.3.1	Hardware requirements	2
10.3.2	Toolchain requirements	2
10.3.3	Software requirements	2
10.4	Getting Started	3
10.4.1	Prepare the Demo	3
10.5	Commands/Directions	3

Chapter 11 FTM PDB ADC Demo

11.1	Overview
11.2	Supported Platforms
11.3	System Requirement
11.3.1	Hardware requirements
11.3.2	Toolchain requirements
11.3.3	Software requirements
11.4	Getting Started
11.4.1	Hardware Settings
11.4.2	Prepare the Demo
11.4.3	Run the demo

Chapter 12 Hello World Demo

12.1	Overview	47
12.2	Supported Platforms	47

Section number Title	
12.3	System Requirement
12.3.1	Hardware requirements
12.3.2	Toolchain requirements
12.3.3	Software requirements
12.4	Getting Started
12.4.1	Hardware Settings
12.4.2	Prepare the Demo
12.5	Run the demo
12.6	Communication Interface Settings:

Chapter 13 Hardware Timer Demo

13.1	Overview
13.2	Supported Platforms
13.3	System Requirement
13.3.1	Hardware requirements
13.3.2	Toolchain requirements
13.3.3	Software requirements
13.4	Getting Started
13.4.1	Prepare the Demo
13.4.2	Run the demo
13.5	Customization Options
13.5.1	Configure the Hardware Timer Used
13.5.2	Configure which clock is used by the hardware timer
13.5.3	Configure which instance of the module is used
13.5.4	Hardware Timer Period

Chapter 14 I2C Communication Demo

14.1	Overview
14.2	Supported Platforms
14.3	System Requirement
14.3.1	Hardware requirements

Section numbe	r Title	Page
14.3.2	Toolchain requirements	. 58
14.3.3	Software requirements	. 58
14.4	Getting Started	. 58
14.4.1	Hardware configuration	. 58
14.4.2	Terminal configuration	. 63
14.4.3	Run the demo	. 63

Chapter 15 I2C Demo with RTOS

15.1	Overview
15.2	Supported RTOS
15.3	Supported Platforms
15.4	System Requirement
15.4.1	Hardware requirements
15.4.2	Toolchain requirements
15.4.3	Software requirements
15.5	Getting Started
15.5.1	Build with different RTOS support
15.5.2	Hardware configuration
15.5.3	Prepare the Demo
15.6	Run the demo

Chapter 16 HTTP Server Demo on lwIP TCP/IP Stack

16.1	Overview	7
16.2	Supported RTOS	7
16.3	Supported Hardware	7
16.4	System Requirement	7
16.4.1	Hardware requirements	7
16.4.2	Toolchain requirements	8
16.4.3	Software requirements	8
16.5	Getting Started	8

Section number	Title	Pa	ge
16.5.1	Prepare the Demo	•	78
16.5.2	Network Configuration	•	78
16.5.3	Run the demo	•	79

Chapter 17 Ping Demo on lwIP TCP/IP Stack

17.1	Overview
17.2	Supported RTOS
17.3	Supported Hardware
17.4	System Requirement
17.4.1	Hardware requirements
17.4.2	Toolchain requirements
17.4.3	Software requirements
17.5	Getting Started
17.5.1	Prepare the Demo
17.5.2	Network Configuration
17.6	Run the demo

Chapter 18 TCP Echo Demo on lwIP TCP/IP Stack

18.1	Overview
18.2	Supported RTOS
18.3	Supported Hardware
18.4	System Requirement
18.4.1	Hardware requirements
18.4.2	Toolchain requirements
18.4.3	Software requirements
18.5	Getting Started
18.5.1	Prepare the Demo
18.5.2	Network Configuration
18.6	Run the demo

Section number

Title

Page

Chapter 19 UDP Echo Demo on lwIP TCP/IP Stack

19.1	Overview
19.2	Supported RTOS
19.3	Supported Hardware
19.4	System Requirement
19.4.1	Hardware requirements
19.4.2	Toolchain requirements
19.4.3	Software requirements
19.5	Getting Started
19.5.1	Prepare the Demo
19.5.2	Network Configuration
19.6	Run the demo

Chapter 20 MMDVSQ Demo

20.1	Overview
20.2	Supported Platforms
20.3	System Requirement
20.3.1	Hardware requirements
20.3.2	Toolchain requirements
20.3.3	Software requirements
20.4	Getting Started
20.4.1	Prepare the Demo
20.5	Run the demo

Chapter 21 Power Manager HAL Demo

21.1	Overview	95
21.2	Supported Hardware	95

Section nu	mber Title Pa	ge
21.3	System Requirement	95
21.3.1	Hardware requirements	95
21.3.2	Toolchain requirements	96
21.3.3	Software requirements	96
21.4	Getting Started	96
21.4.1	Hardware Settings	96
21.4.2	Prepare the Demo	96
21.4.3	Run the demo	96
21.4.4	Supported Low Power Modes By Platform	98
21.5	Overview	99
21.6	Supported RTOS	99
21.7	Supported Hardware	00
21.8	System Requirements	01
21.8.1	Hardware requirements	01
21.8.2	Toolchain requirements	01
21.8.3	Software requirements	01
21.9	Getting Started	01
21.9.1	Hardware Settings	01
21.9.2	Prepare the Demo	01
21.9.3	Run the demo	02
21.9.4	Supported Low Power Modes By Platform	03

Chapter 22 EflexPWM Demo

22.1	System Requirement
22.1.1	Hardware requirements
22.1.2	Toolchain requirements
22.1.3	Software requirements
22.1.4	Prepare the Demo
22.2	Run the demo

Chapter 23 EflexPWM Fault Demo

23.1	System Requirement		. 107
------	--------------------	--	-------

Section number	Title	Page
23.1.1	Hardware requirements	107
23.1.2	Toolchain requirements	107
23.1.3	Software requirements	107
23.1.4	Prepare the Demo	. 108
23.2 R	un the demo	108

Chapter 24 RTC Function Demo

24.1	Overview
24.2	Supported Hardware
24.3	System Requirement
24.3.1	Hardware requirements
24.3.2	Toolchain requirements
24.3.3	Software requirements
24.4	Getting Started
24.4.1	Prepare the Demo
24.5	Run the demo

Chapter 25 SAI Demo

25.1	Overview
25.2	Supported Hardware
25.3	System Requirement
25.3.1	Hardware requirements
25.3.2	Toolchain requirements
25.3.3	Software requirements
25.4	Getting Started
25.4.1	GCC Compiler notes
25.4.2	Hardware Settings
25.4.3	Prepare the Demo
25.5	Run the demo
25.6	Key Functions

Title

Chapter 26 Thermistor Lab Demo

26.1	Overview
26.2	Supported Hardware
26.3	System Requirement
26.3.1	Hardware requirements
26.3.2	Toolchain requirements
26.3.3	Software requirements
26.4	Getting Started
26.4.1	Prepare the Demo
26.4.2	Demo Code Overview
26.4.2.1	ADC Differential Mode of Operation

Chapter 27 Thermistor Lab CADC Demo

27.1	Overview
27.2	Supported Hardware
27.3	System Requirement
27.3.1	Hardware requirements
27.3.2	Toolchain requirements
27.3.3	Software requirements
27.4	Getting Started
27.4.1	Prepare the Demo
27.4.2	Demo Code Overview
27.4.2.1	ADC Differential Mode of Operation

Chapter 28 Heating, Ventilating, and Air Conditioning on lwIP TCP/IP Stack

28.1	Overview	129
28.2	Supported RTOS	129

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Section numb	er Title	Page
28.3	Supported Hardware	. 129
28.4	System Requirement	. 129
28.4.1	Hardware requirements	. 129
28.4.2	Toolchain requirements	. 130
28.4.3	Software requirements	. 130
28.4.4	Software requirements	. 130
28.5	Getting Started	. 130
28.5.1	Prepare the Demo	. 130
28.5.2	Network Configuration	. 130
28.5.3	Run the demo	. 131

Chapter 29 XBAR and AOI Demo

29.1	System Requirement
29.1.1	Hardware requirements
29.1.2	Toolchain requirements
29.1.3	Software requirements
29.1.4	Prepare the Demo
29.2	Run the demo

Chapter 30 ADC16 Example

30.1	Overview
30.2	Supported Platforms
30.3	System Requirement
30.3.1	Hardware requirements
30.3.2	Toolchain requirements
30.3.3	Software requirements
30.4	Getting Started
30.4.1	Hardware settings
30.4.2	Prepare the example
30.4.3	Run the example

Section number

Title Chapter 31 CMP Example

31.1	Overview
31.2	Supported Platforms
31.3	System Requirement
31.3.1	Hardware requirements
31.3.2	Toolchain requirements
31.3.3	Software requirements
31.4	Getting Started
31.4.1	Hardware settings
31.4.2	Prepare the example
31.4.3	Run the example

Chapter 32 COP Example

32.1	Overview
32.2	Supported Platforms
32.3	System Requirement
32.3.1	Hardware requirements
32.3.2	Toolchain requirements
32.3.3	Software requirements
32.4	Getting Started
32.4.1	Hardware settings
32.4.2	Prepare the example
32.4.3	Run the example

Chapter 33 CRC Example

33.1	Overview	143
33.2	Supported Platforms	143
33.3	System Requirement	143

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Section number	Title	Page
33.3.1	Hardware requirements	. 143
33.3.2	Toolchain requirements	. 144
33.4	etting Started	. 144
33.4.1	Hardware settings	. 144
33.4.2	Prepare the example	. 144
33.4.3	Run the example	. 144

Chapter 34 DAC Example

34.1	Overview
34.2	Supported Platforms
34.3	System Requirement
34.3.1	Hardware requirements
34.3.2	Toolchain requirements
34.3.3	Software requirements
34.4	Getting Started
34.4.1	Hardware settings
34.4.2	Prepare the example
34.4.3	Run the example

Chapter 35 DMA Example

35.1	Overview
35.2	Supported Platforms
35.3	System Requirement
35.3.1	Hardware requirements
35.3.2	Toolchain requirements
35.3.3	Software requirements
35.4	Getting Started
35.4.1	Hardware settings
35.4.2	Prepare the example
35.4.3	Run the example

Title

Page

Chapter 36 DSPI Example with other methods

36.1	Overview
36.2	Supported Platforms
36.3	System Requirement
36.3.1	Hardware requirements
36.3.2	Toolchain requirements
36.3.3	Software requirements
36.4	Getting Started
36.4.1	Hardware settings
36.4.2	Prepare the example
36.4.3	Run the example

Chapter 37 EDMA Example

37.1	Overview
37.2	Supported Platforms
37.3	System Requirement
37.3.1	Hardware requirements
37.3.2	Toolchain requirements
37.3.3	Software requirements
37.4	Getting Started
37.4.1	Hardware settings
37.4.2	Prepare the example
37.4.3	Run the example

Chapter 38 EWM Example

38.1	Overview	169
38.2	Supported Platforms	169
38.3	System Requirement	169

Section numbe	r Title	Page
38.3.1	Hardware requirements	169
38.3.2	Toolchain requirements	169
38.3.3	Software requirements	170
38.4	Getting Started	170
38.4.1	Hardware settings	170
38.4.2	Prepare the example	170
38.4.3	Run the example	170

Chapter 39 FLASH Example

39.1	Overview
39.2	Supported Platforms
39.3	System Requirement
39.3.1	Hardware requirements
39.3.2	Toolchain requirements
39.3.3	Software requirements
39.4	Getting Started
39.4.1	Hardware settings
39.4.2	Prepare the example
39.4.3	Run the example

Chapter 40 FlexCAN Example

40.1	Overview
40.2	Supported Platforms
40.3	System Requirement
40.3.1	Hardware requirements
40.3.2	Toolchain requirements
40.3.3	Software requirements
40.4	Getting Started
40.4.1	Hardware settings
40.4.2	Prepare the example
40.4.3	Run the example
40.4.3.1	FlexCAN loopback

Section number		Title	Page
40.4.3.2	FlexCAN network		

Chapter 41 FlexIO simulated I2C Example with other methods

41.1	Overview
41.2	Supported Platforms
41.3	System Requirement
41.3.1	Hardware requirements
41.3.2	Toolchain requirements
41.3.3	Software requirements
41.4	Getting Started
41.4.1	Hardware settings
41.4.2	Prepare the example
41.4.3	Run the example

Chapter 42 Flexio I2S Example with other methods

42.1	Overview
42.2	Supported Platforms
42.3	System Requirement
42.3.1	Hardware requirements
42.3.2	Toolchain requirements
42.3.3	Software requirements
42.4	Getting Started
42.4.1	Hardware settings
42.4.2	Prepare the example
42.4.3	Run the example

Chapter 43 FlexIO simulated SPI Example with other methods

43.1	Overview	7
43.2	Supported Platforms	7

Section numbe	r Title	Page
43.3 8	System Requirement	. 187
43.3.1	Hardware requirements	. 187
43.3.2	Toolchain requirements	. 187
43.3.3	Software requirements	. 188
43.4	Getting Started	. 188
43.4.1	Hardware settings	. 188
43.4.2	Prepare the example	. 189
43.4.3	Run the example	. 190

Chapter 44 FlexIO simulated UART Example with other methods

44.1	Overview
44.2	Supported Platforms
44.3	System Requirement
44.3.1	Hardware requirements
44.3.2	Toolchain requirements
44.3.3	Software requirements
44.4	Getting Started
44.4.1	Hardware settings
44.4.2	Prepare the example
44.4.3	Run the example
44.4.3.1	FLEXIO_UART_DMA interrupt method
44.4.3.2	FLEXIO_UART_DMA interrupt method

Chapter 45 FTM Example

45.1	Overview
45.2	Supported Platforms
45.3	System Requirement
45.3.1	Hardware requirements
45.3.2	Toolchain requirements
45.3.3	Software requirements
45.4	Getting Started
45.4.1	Hardware settings

Section number	Title	age
45.4.2	Prepare the example	198
45.4.3	Run the example	198

Chapter 46 GPIO Example

46.1	Overview
46.2	Supported Platforms
46.3	System Requirement
46.3.1	Hardware requirements
46.3.2	Toolchain requirements
46.3.3	Software requirements
46.4	Getting Started
46.4.1	Hardware settings
46.4.2	Prepare the example
46.4.3	Run the example

Chapter 47 I2C Example with other methods

47.1	Overview
47.2	Supported Platforms
47.3	System Requirement
47.3.1	Hardware requirements
47.3.2	Toolchain requirements
47.3.3	Software requirements
47.4	Getting Started
47.4 47.4.1	Getting Started
47.4 47.4.1 47.4.2	Getting Started 204 Hardware settings 204 Prepare the example 208
47.4 47.4.1 47.4.2 47.4.3	Getting Started 204 Hardware settings 204 Prepare the example 208 Run the example 209
47.4 47.4.1 47.4.2 47.4.3 47.4.3.1	Getting Started204Hardware settings204Prepare the example208Run the example209I2C blocking209
47.4 47.4.1 47.4.2 47.4.3 47.4.3.1 47.4.3.2	Getting Started204Hardware settings204Prepare the example208Run the example209I2C blocking209I2C non-blocking210
47.4 47.4.1 47.4.2 47.4.3 47.4.3.1 47.4.3.2 47.4.3.3	Getting Started204Hardware settings204Prepare the example208Run the example209I2C blocking209I2C non-blocking210I2C callback210

Section number

Title

Page

Chapter 48 Low Power Serial Communication Interface (LPSCI) Example with Other Methods

48.1	Overview
48.2	Supported Platforms
48.3	System Requirement
48.3.1	Hardware requirements
48.3.2	Toolchain requirements
48.3.3	Software requirements
48.4	Getting Started
48.4.1	Hardware settings
48.4.2	Prepare the example
48.4.3	Run the example
48.4.3.1	LPSCI blocking
48.4.3.2	LPSCI non-blocking
48.4.3.3	LPSCI DMA blocking
48.4.3.4	LPSCI DMA non-blocking
48.4.3.5	LPSCI polling

Chapter 49 LPTMR Example

49.1	Overview
49.2	Supported Platforms
49.3	System Requirement
49.3.1	Hardware requirements
49.3.2	Toolchain requirements
49.3.3	Software requirements
49.4	Getting Started
49.4.1	Hardware settings
49.4.2	Prepare the example
49.4.3	Run the example

Section number

Title

Page

Chapter 50 Low Power Universal Asynchronous Receiver/Transmitter (LPUART) Example with other methods

50.1	Overview
50.2	Supported Platforms
50.3	System Requirement
50.3.1	Hardware requirements
50.3.2	Toolchain requirements
50.3.3	Software requirements
50.4	Getting Started
50.4.1	Hardware settings
50.4.2	Prepare the example
50.4.3	Run the example
50.4.3.1	FLEXIO_UART_DMA interrupt method
50.4.3.2	LPUART non-blocking
50.4.3.3	LPUART DMA blocking
50.4.3.4	LPUART DMA non-blocking
50.4.3.5	LPUART polling

Chapter 51 MPU Example

51.1	Overview
51.2	Supported Platforms
51.3	System Requirement
51.3.1	Hardware requirements
51.3.2	Toolchain requirements
51.3.3	Software requirements
51.4	Getting Started
51.4.1	Hardware settings
51.4.2	Prepare the example
51.4.3	Run the example

Title Chapter 52 PDB Example

52.1	Overview
52.2	Supported Platforms
52.3	System Requirement
52.3.1	Hardware requirements
52.3.2	Toolchain requirements
52.3.3	Software requirements
52.4	Getting Started
52.4.1	Hardware settings
52.4.2	Prepare the example
52.4.3	Run the example

Chapter 53 PIT Example

53.1	Overview
53.2	Supported Platforms
53.3	System Requirement
53.3.1	Hardware requirements
53.3.2	Toolchain requirements
53.3.3	Software requirements
53.4	Getting Started
53.4.1	Hardware settings
53.4.2	Prepare the example
53.4.3	Run the example

Chapter 54 RNGA Example

54.1	Overview	3
54.2	Supported Platforms	3
54.3	System Requirement	3

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Section numbe	r Title		
54.3.1	Hardware requirements	233	
54.3.2	Toolchain requirements	233	
54.3.3	Software requirements	234	
54.4	Getting Started	234	
54.4.1	Hardware settings	234	
54.4.2	Prepare the example	234	
54.4.3	Run the example	234	

Chapter 55 RTC Example

55.1	Overview
55.2	Supported Platforms
55.3	System Requirement
55.3.1	Hardware requirements
55.3.2	Toolchain requirements
55.3.3	Software requirements
55.4	Getting Started
55.4.1	Hardware settings
55.4.2	Prepare the example
55.4.3	Run the example

Chapter 56 SDHC SdCard Example

56.1	Overview
56.2	Supported Platforms
56.3	System Requirement
56.3.1	Hardware requirements
56.3.2	Toolchain requirements
56.3.3	Software requirements
56.4	Getting Started
56.4.1	Hardware settings
56.4.2	Prepare the example
56.4.3	Run the example

Section number

Title Chapter 57 SLCD Example

57.1	Overview
57.2	Supported Platforms
57.3	System Requirement
57.3.1	Hardware requirements
57.3.2	Toolchain requirements
57.3.3	Software requirements
57.4	Getting Started
57.4.1	Hardware settings
57.4.2	Prepare the example
57.4.3	Run the example

Chapter 58 SPI Example with Other Methods

Overview
Supported Platforms
System Requirement
Hardware requirements
Toolchain requirements
Software requirements
Getting Started
Hardware settings
Prepare the example
Run the example
SPI blocking Master - Slave
SPI non-blocking Master - Slave
SPI EDMA blocking Master - Slave
SPI EDMA non-blocking Master - Slave
SPI loopback

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Title

Chapter 59 SPI SdCard Example

59.1	Overview
59.2	Supported Platforms
59.3	System Requirement
59.3.1	Hardware requirements
59.3.2	Toolchain requirements
59.3.3	Software requirements
59.4	Getting Started
59.4.1	Hardware settings
59.4.2	Prepare the example
59.4.3	Run the example

Chapter 60 TPM Example

60.1	Overview
60.2	Supported Platforms
60.3	System Requirement
60.3.1	Hardware requirements
60.3.2	Toolchain requirements
60.3.3	Software requirements
60.4	Getting Started
60.4.1	Hardware settings
60.4.2	Prepare the example
60.4.3	Run the example

Chapter 61 TSI Example

61.1	Overview	53
61.2	Supported Platforms	53
61.3	System Requirement	53

Kinetis SDK v.1.2 Demo Applications User's Guide

Page

Section number	Title	Page
61.3.1	Hardware requirements	. 263
61.3.2	Toolchain requirements	. 263
61.3.3	Software requirements	. 263
61.4 G	etting Started	. 264
61.4.1	Hardware settings	. 264
61.4.2	Prepare the example	. 264
61.4.3	Run the example	. 264

Chapter 62 Universal Asynchronous Receiver/Transmitter (UART) Example with other methods

62.1	Overview
62.2	Supported Platforms
62.3	System Requirement
62.3.1	Hardware requirements
62.3.2	Toolchain requirements
62.3.3	Software requirements
62.4	Getting Started
62.4.1	Hardware settings
62.4.2	Prepare the example
62.4.3	Run the example
62.4.3.1	UART blocking
62.4.3.2	UART non-blocking
62.4.3.3	UART DMA blocking
62.4.3.4	UART DMA non-blocking
62.4.3.5	UART polling

Chapter 63 WDOG Example

63.1	Overview
63.2	Supported Platforms
63.3	System Requirement
63.3.1	Hardware requirements
63.3.2	Toolchain requirements
63.3.3	Software requirements

Section 1	number Title	Page
63.4	Getting Started	
63.4.1	Hardware settings	
63.4.2	Prepare the example	
63.4.3	Run the example	

Chapter 1 Introduction

Kinetis SDK (KSDK) includes applications which provide examples that show how to use KSDK drivers. This document describes the applications and provides instructions to configure each application (if available). The document also describes the required hardware setup and steps to run the applications.

For the latest version of this and other Kinetis SDK documents, see the Kinetis SDK homepage (www.-freescale.com/ksdk).

Chapter 2 ADC Hardware Trigger Demo

This demo application demonstrates how to use the ADC driver with various hardware triggers.

2.1 Overview

This is an ADC demo application which shows how to use different hardware trigger sources to handle the ADC hardware trigger function. These trigger sources are supported:

- PIT (Periodic Interrupt Timer)
- PDB (Programmable Delay Block)
- LPTMR (Low Power Timer)
- TPM (Timer PWM Module)

2.1.1 Trigger by PIT

The Periodic Interrupt Timer (PIT) is a period timer source and the ADC hardware trigger event. Because the PIT trigger event can only be used to trigger one of the ADC channels (mux A or B), this demo uses PIT as a trigger source for the ADCx channel 0. The PIT triggers the ADC in a fixed frequency and the demo gets the ADC conversion result in the ADC Conversion Complete (COCO) interrupt. TWR-KV10Z32 does not support PIT trigger, due to no PIT in KV10 silicon.

2.1.2 Trigger by PDB

The Programmable Delay Block (PDB) is a continuous trigger event for ADC. It uses the software trigger as the first trigger input event and turns on the PDB continuous mode to generate a period trigger source. Because the PDB can trigger different channels inside one ADC instance, this demo shows the Ping-Pong triggering which occurs by sampling the channel 0/1 with the PDB Pre-trigger A/B channel. FRDM-K-L26Z and MRB-KW01 does not support PDB trigger, because PDB is not present neither on KL26 nor on KW01 silicon.

2.1.3 Trigger by LPTMR

The Low Power Timer (LPTMR) is a period timer source and the ADC hardware trigger event. Because the LPTMR trigger event can only be used to trigger one of the ADC channels (channel 0 or 1), this demo uses the LPTMR as a trigger source for the ADCx channel 0. The LPTMR triggers the ADC in a fixed frequency and the demo gets the ADC conversion result in the ADC Conversion Complete (COCO) interrupt.

Supported Platforms

2.1.4 Input signal for ADC

Use the DAC module to generate a sine wave as the ADC input on the DAC0_OUT pin. Normally, the DAC0_OUT is internally connected to the ADC0_SE23 (DAC0_OUT is a source of ADC0_SE23), there is no need to connect any external signals for this demo.

Boards listed below need external sine wave connected either because of lack of the DAC hardware feature support or lack of the SoC/Board signal connection support.

- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-KL43Z48M
- TWR-KV10Z32

This demo samples the input digital signal from the ADC0_SE23 pin and records each sample point with the appropriate amplitude. After 2 period samples are complete, it prints out the rough shape of the signal wave on the debug console like a primitive oscilloscope.

2.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK ADC Hardware Trigger demo.

The adc_lptmr_trigger demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M

The adc_pdb_trigger demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M

The adc_pit_trigger demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV31F120M

The adc_tpm_trigger demo Supported Platforms:

- FRDM-KL03
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- MRB-KW01
- TWR-KL43Z48M

Getting Started

2.3 System Requirement

2.3.1 Hardware requirements

- J-Link ARM[®]
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

2.3.2 Toolchain requirements

- IAR embedded Workbench version 7.40.2
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.14
- Kinetis Design Studio IDE v.3.0.0
- Atollic TrueSTUDIO for ARM win32 v5.3

2.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/adc_hw_trigger/<hw_trigger>/<toolchain>.
- Library dependencies: ksdk_platform_lib

2.4 Getting Started

2.4.1 Hardware configuration

For the MRB-KW01: It is necessary to short jumpers J10 and J11 to connect the ADC references. If the A-DCO_SE23 or internal DAC connection is used it is necessary to disconnect J7 to open PTE30 connection with the RESET of the RADIO part. Also analog function for PTE30 - DAC output is necessary on the mrb-kw01 (default is GPIO for RADIO part reset).

2.4.2 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
Customization Options

- No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

2.5 Run the demo

- 1. Select and open one project from the four projects available: adc_pit_trigger, adc_lptmr_trigger and adc_pdb_trigger.
- 2. Open the UART console on a PC and adc_tpm_trigger.
- 3. Download and run the program on the target.
- 4. The signal waveform is displayed on the console.

2.6 Customization Options

This demo application is customizable to show different kinds of input signal waves.

2.6.1 Default configurations

The configuration macro is located in the adc_hw_trigger.h header file.

2.6.1.1 ADC configurations

- 1. Use ADC0 instance.
- 2. Use ADC_SE23 input pin as sample pin.
- 3. Use VREFH/L as reference voltage.

2.6.1.2 Sample frequency

The default sample rate is 1000 Hertz, which enables the demo application to get 100 samples per two periods. To change the sample rate, see the next section.

2.6.2 Configure the number of samples

Printing of the signal wave shape depends on the console size. A console can be 100x40. To get the best printing effect, align the number of samples to the console column numbers and convert the amplitude range to the [0, row - 1] range. The console column number should be same as sample numbers. Configuring the number of samples means configuring the console column size:

#define CHART_ROWS 30U // chart row for sampled data
#define CHART_COLS 100U // chart column for sampled data
#define NR_SAMPLES 100U // number of samples in one period

Customization Options

2.6.3 Configure the signal frequency

Change the following macro to configure the desired frequency in Hz units.

#define INPUT_SIGNAL_FREQ 20U // in Hz

2.6.4 Configure the ADC instance

Change the ADC_INST macro to configure the ADC instance you want to use.

#define ADC_INST 0U // ADC instance

2.6.5 Configure the ADC input pin

If you do not use the DAC0_OUT as a input signal, disable the macro in the project:

//#USE_DAC_OUT_AS_SOURCE

After disabling the DAC output, configure one ADC input source pin to get the signal:

#define ADC_INPUT_CHAN 23U // default input signal channel

Chapter 3 ADC Low Power Demo

This demo application demonstrates how to use the ADC drivers in low power modes.

3.1 Overview

The ADC Low Power Demo project is a demonstration program that uses the KSDK software. The microcontroller is set to a very low power stop (VLPS) mode, and every 500 ms an interrupt wakes up the ADC module and takes the current temperature of the microcontroller. While the temperature remains within boundaries, both LEDs are off. If the temperature is higher than average, a red LED comes on. If it is lower, a blue LED(orange LED for TWR-KV1) comes on. This demo provides an example to show how ADC works during a VLPS mode and a simple debugging, "golden" project.

3.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis SDK ADC Low Power demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KW24D512
- USB-KW24D512

Getting Started

3.3 System Requirement

3.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

3.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

3.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/adc_low_power/<toolchain>.
- Library dependencies: ksdk_platform_lib

3.4 Getting Started

The ADC Low Power project is designed to work with the Tower System or in a stand alone setting.

3.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

3.4.2 Run the demo

- 1. Set your target board in a place where the temperature is constant.
- 2. Press the reset button on your development board.
- 3. "ADC LOW POWER DEMO" message and some instructions should be displayed on the terminal.
- 4. Wait until the green or white LED light turns on.
- 5. Increment or decrement the temperature to see the changes.

Getting Started

Chapter 4 BLDC Sensorless Demo

This demo application demonstrates the software portion (hardware/chip independent) of the 16-bit implementation of a sensorless three phase brushless DC (BLDC) motor control application. The demo supports both IAR and KEIL versions.

4.1 Overview

The BLDC sensorless Control Demo project is a demonstration program that uses the KSDK software. The application software uses the concept of an isolated algorithm software and hardware. This software approach enables easy porting of an application to other devices or platforms. The application software is divided in two sections:

- BLDC motor control algorithm process input variables to output variables and flags.
- MKV10x hardware and microprocessor serves as a bridge between hardware peripheral modules and BLDC motor control software algorithm.

4.2 Supported Platforms

This Tower System module is supported by the Kinetis software development kit.

• TWR-KV10Z32

4.3 System Requirement

4.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

4.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

Getting Started

4.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/bldc_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

4.4 Getting Started

This table lists the FTM channels and MCU pins and corresponding LEDs for this demo application. This table also lists which connections should be made (if any) to ensure proper demo operation.

1. TWRMCLV3PH jumper settings

jumper	position
J2	1-2
J3	1-2
J10	2-3
J11	2-3
J12	2-3
J13	2-3
J14	1-2

2. TWR-KV10Z32 jumper settings

jumper	position	jumper	position	jumper	position
J1	2-3	J10	1-2	J21	3-4
J2	short	J11	open	J22	3-4
J3	2-3	J12	open	J25	open
J4	short	J13	open	J26	short
J5	short	J14	open	J27	short
J7	1-2	J18	2-3	J28	short
J8	1-2	J19	2-3	J29	1-2
J9	1-2	J20	1-2	_	_

1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.

Note that, because of board limitations, if the power is not supplied to OpenSDA, the KV10 reset pin is in low level.

4.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:

- 115200 baud rate
- 8 data bits
- No parity
- One stop bit
- No flow control
- 3. Download the program to the target board.
- 4. Connect three phases of the BLDC motor to J5 in the TWRMCLV3PH board.
- 5. Supply 24 V digital power to J1 in the TWRMCLV3PH board.
- 6. Either press the reset button on your board or launch the debugger in the IDE to start running the demo.

For detailed instructions, see the appropriate board User's Guide.

4.4.2 Run the demo

The application can be controlled using one interface:

- Up / Down buttons on the TWR-KV10Z32 board
 - 1. After the power supply is plugged into the TWR-MC-LV3PH, the motor is ready to run.
 - 2. Press the reset button on the development board.
 - 3. Pressing the Up button (SW1) increases the speed by 500 RPM. The motor starts rotating in the clockwise direction if it is not spinning, or decreases speed if the direction of the rotation is counter-clockwise.
 - 4. Pressing the Down button (SW2) decreases the speed by 500 RPM. The motor starts rotating in the counter-clockwise direction if it is not spinning, or decreases speed if the direction of the rotation is clockwise.
 - 5. Pressing the buttons beyond this point increases or decreases the required speed within the speed limit -5000 to 5000 RPM.
 - 6. If both buttons are pressed for more than 2 seconds, the demonstration mode is switched on (or demonstration mode is switched off if it is on)

Getting Started

Chapter 5 Bubble Level Demo

This demo application utilizes the on-board accelerometer to implement a bubble level.

5.1 Overview

The bubble level application demonstrates basic usage of the on-board accelerometer to implement a bubble level. A bubble level utilizes two axes to visually show deviation from a level plane (0 degrees) on a given access. This demo uses the FTM to modulate the duty cycle of two onboard LEDs to gradually increase LED intensity as the board deviates from a level state.

Optionally, if you would like to observe the raw accelerometer X-Y data, you can connect to the board's virtual COM port.

This application is loaded onto the board at the factory for supported hardware platforms.

5.2 Supported Platforms

• FRDM-K64F

5.3 System Requirement

5.3.1 Hardware requirements

- USB A to micro AB cable
- Personal Computer

5.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

5.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/bubble_level_ftm/<toolchain>.
- Library dependencies: ksdk_platform_lib

Run the demo

5.4 Getting Started

5.4.1 Hardware Settings

The bubble level application does not call for any special hardware configuration. Although not required, the recommendation is to leave the development board jumper settings and configurations in default state when running this demo.

5.4.2 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. (Optional) Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see the Getting Started with Kinetis SDK document.

5.5 Run the demo

When the board is programmed, simply tilt the board to see the RGB LED illuminate. One LED color indicates X-axis variation while another indicates Y-axis variation.

Chapter 6 CyclicADC Hardware Trigger Demo

This demo application demonstrates how to use the ADC drivers with different hardware triggers.

6.1 Overview

This is an CADC demo application which shows how to use different hardware trigger sources to handle the CADC hardware trigger function. These trigger sources are supported:

- PIT (Periodic Interrupt Timer)
- PDB (Programmable Delay Block)
- LPTMR (Low Power Timer)
- PWM (Pulse Width Modulator)

6.1.1 Trigger by PIT

The Periodic Interrupt Timer (PIT) is a period timer source and the CADC hardware trigger event. Because the PIT trigger event can only be used to trigger one of the CADC, this demo uses PIT as a trigger source for the CADCx channel 4. The PIT triggers the CADC in a fixed frequency and the demo gets the CADC conversion result in the CADC Conversion Complete (COCO) interrupt.

6.1.2 Trigger by PDB

The Programmable Delay Block (PDB) is a continuous trigger event for CADC. It uses the software trigger as the first trigger input event and turns on the PDB continuous mode to generate a period trigger source. Channel 4 is scanned at every PDB trigger.

6.1.3 Trigger by LPTMR

The Low Power Timer (LPTMR) is a period timer source and the CADC hardware trigger event. Because the LPTMR trigger event can only be used to trigger one of the CADC, this demo uses the LPTMR as a trigger source for the CADCx channel 4. The LPTMR triggers the CADC in a fixed frequency and the demo gets the CADC conversion result in the CADC Conversion Complete (COCO) interrupt.

6.1.4 Trigger by PWM

The Pulse Width Modulator (PWM) is a continuous trigger event for CADC. It uses the software start as the first trigger input event and turns on the PWM continuous mode to generate a trigger source in every

System Requirement

PWM period. Channel 4 is scanned at every PWM trigger.

6.1.5 Input signal for ADC

Use the DAC module to generate a sine wave as the CADC input on the DAC0_OUT pin. The DAC0_O-UT is taken on PTE30 and connected to the ADCA_CH4 through an on-board jumper.

This demo samples the input digital signal from the ADCA_CH4 pin and records each sample point with the appropriate amplitude. After 2 period samples are complete, it prints out the rough shape of the signal wave on the debug console like a primitive oscilloscope.

6.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK CADC Hardware Trigger demo.

• TWR-KV46F150M (Short pins 2 and 4 of J23)

6.3 System Requirement

6.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

6.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

6.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/cadc_hw_trigger/<hw_trigger>/<toolchain>.
- Library dependencies: ksdk_platform_lib

6.4 Getting Started

6.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

6.5 Run the demo

- 1. Select and open one project from the four projects available: cadc_pit_trigger, cadc_lptmr_trigger, cadc_pdb_trigger and cadc_pwm_trigger.
- 2. Open the UART console on a PC.
- 3. Download and run the program on the target.
- 4. The signal waveform is displayed on the console.

6.6 Customization Options

This demo application is customizable to show different kinds of input signal waves.

6.6.1 Default configurations

The configuration macro is located in the cadc_hw_trigger.h header file.

6.6.1.1 CADC configurations

- 1. Use ADCA instance.
- 2. Use ADCA_CH4 input pin as sample pin.
- 3. Use VREFH/L as reference voltage.

6.6.1.2 Sample frequency

The default sample rate is 20 Hz * 100 / 2, which enables the demo application to get 100 samples per two periods. To change the sample rate, see the next section.

Customization Options

6.6.2 Configure the number of samples

Printing of the signal wave shape depends on the console size. A console can be 100x40. To get the best printing effect, align the number of samples to the console column numbers and convert the amplitude range to the [0, row - 1] range. The console column number should be same as sample numbers. Configuring the number of samples means configuring the console column size:

#define CHART_ROWS 30U // chart row for sampled data
#define CHART_COLS 100U // chart column for sampled data
#define NR_SAMPLES 100U // number of samples in one period

6.6.3 Configure the signal frequency

Change the following macro to configure the desired frequency in Hz units.

```
#define INPUT_SIGNAL_FREQ 20U // in Hz
```

6.6.4 Configure the ADC input pin

If you do not use the DAC0_OUT as a input signal, disable the macro in the project:

//#USE_DAC_OUT_AS_SOURCE

After disabling the DAC output, configure one ADC input source pin to get the signal:

#define ADC_INPUT_CHAN 4U // default input signal channel

Chapter 7 DAC ADC Demo

This demo application demonstrates the DAC and ADC demo.

7.1 Overview

This application demonstrates how to configure the DAC and set the output on the DAC using software. It also demonstrates how to configure the ADC in 'Blocking Mode' and read ADC values.

7.2 Supported Platforms

This demo supports these Freescale Freedom development platforms and Tower System modules:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M

7.3 System Requirement

7.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

Getting Started

7.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

7.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/dac_adc_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

7.4 Getting Started

7.4.1 Hardware configuration

For the MRB-KW01 it is necessary: To short jumpers J10 and J11 to connect the ADC references. To disconnect J7 to open PTE30 connection with the RESET of the RADIO part. Also analog function for PTE30 - DAC output is necessary on the mrb-kw01 (default is GPIO for RADIO part reset). This is done in hardware_init() function.

7.4.2 Hardware Settings

This table shows the connections that are required for each of the supported platforms. Not mentioned platforms use the internal connection.

Platform	DAC Out		ADC In	
	Pin Name	Board Location	Pin Name	Board Location
FRDM-K22F	DAC0_OUT	J24-11	PTB0/ADC0_SE8	J24-2
FRDM-KL25Z	PTE30/DAC0_OU-	J10-11	PTE20/ADC0_SE0	J10-1
	Т			
FRDM-K64F	DAC0_OUT	J4-11	PTB2/ADC0_SE12	J4-2
FRDM-KL46Z	PTE30/DAC_OUT	J4-11	PTE20/DIFF_AD-	J4-1
			C0_DP	
TWR-K21D50M	DAC0_OUT	Primary Elevator -	PTB3/ADC0_SE13	Primary Elevator -
		A32		B30
TWR-K22F120M	DAC0_OUT	Primary Elevator -	PTB0/ADC0_SE8	Primary Elevator -
		A32		B27
TWR-K24F120M	DAC0_OUT	Primary Elevator -	ADC0_DP3	Primary Elevator -
		A32		A29

Run the demo

TWR-K60D100M	DAC0_OUT	Primary Elevator - A32	PTB4/ADC1_SE10	Primary Elevator - B30
TWR-K64F120M	DAC0_OUT	Primary Elevator - A32	PTB4/ADC1_SE10	Primary Elevator - B27
TWR-K65F180M	DAC0_OUT	Primary Elevator - A32	ADC1_SE16	J24-1
TWR-KV10Z32	DAC0_OUT	J16-11	PTE17/ADC0_SE5	J16-6
TWR-KV31F120- M	DAC0_OUT	Primary Elevator - A32	PTE2/ADC1_SE6a	Primary Elevator - B27
TWR-K21F120M	DAC0_OUT	Primary Elevator - A23	PTE2/ADC0_SE23	Primary Elevator - B23

7.4.3 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

7.5 Run the demo

This example shows how to run the demo:

```
DAC ADC Demo!
Please refer to Kinetis SDK Demo Applications User's Guide document,
Chapter DAC ADC demo, for pins configuration information.
Press space bar to start demo.
```

The user is prompted to enter a voltage to output on the DAC:

```
Select DAC output level:

1. 1.0 V

2. 1.5 V

3. 2.0 V

4. 2.5 V
```

Key Functions

->

```
5. 3.0 V
```

After entering a valid input, the ADC captures the voltage set by the DAC and displays the result in the terminal:

At this point, the user can test another DAC output value or terminate the demo.

This configuration exhibits up to 2% error when reading back voltage.

7.6 Key Functions

uint8_t demo_start(demo_state_t *prevState)

Prints out a welcome message and pins required by the demo.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by the user.

uint8_t device_config(demo_state_t *prevState)

Configures the DAC and the ADC. The DAC is configured for software updates. The ADC is set in 'Blocking Mode'.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns 0.

uint8_t dac_set(demo_state_t *prevState)

Sets output level on the DAC.

Parameters

**prevState* | Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by user.

uint8_t wait_state(demo_state_t *prevState)

Performs a wait and possible state change based on the *prevState.

Parameters

**prevState* | Pointer to previous state for state machine.

Returns

msg Returns 0.

uint8_t adc_get(demo_state_t *prevState)

Gets ADC values from a channel connected to the DAC output.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by the user.

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Key Functions

uint8_t device_deinit(demo_state_t *prevState)

Deinitializes the DAC and the ADC module following a user command to terminate the demo. Also frees allocated memory.

Parameters

**prevState* Pointer to previous state for the state machine.

Returns

msg Returns 0.

uint8_t demo_end(demo_state_t *prevState)

Indicates to the user that the demo has been terminated.

Parameters

**prevState* Pointer to previous state for the state machine.

Returns

msg Returns 0.

Key Functions

Chapter 8 DAC CADC Demo

This demo application demonstrates the DAC and CADC demo.

8.1 Overview

This application demonstrates how to configure the DAC and set the output on the DAC using software. It also demonstrates how to configure the ADC in 'Blocking Mode' and read ADC values.

8.2 Supported Platforms

This demo supports these Freescale Freedom development platforms and Tower System modules:

• TWR-KV46F150M

8.3 System Requirement

8.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

8.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

8.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/dac_cadc_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Kinetis SDK v.1.2 Demo Applications User's Guide

Run the demo

8.4 Getting Started

8.4.1 Hardware Settings

This table shows the connections that are required for each of the supported platforms:

Platform	DAC Out		ADC In	
	Pin Name	Board Location	Pin Name	Board Location
TWR-KV46F150- M	DAC0_OUT	J23-4	ADCA_CH4	J23-2

8.4.2 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

8.5 Run the demo

This example shows how to run the demo on TWR-KV46F150M:

DAC ADC Demo! Please refer to Kinetis SDK Demo Applications User's Guide document, Chapter DAC CADC demo, for pins configuration information. Press space bar to start demo.

The user is prompted to enter a voltage to output on the DAC:

Select DAC output level: 1. 1.0 V 2. 1.5 V 3. 2.0 V 4. 2.5 V 5. 3.0 V

->

After entering a valid input, the ADC captures the voltage set by the DAC and displays the result in the terminal:

At this point, the user can test another DAC output value or terminate the demo.

This configuration exhibits up to 2% error when reading back voltage.

8.6 Key Functions

uint8_t demo_start(demo_state_t *prevState)

Prints out a welcome message and pins required by the demo.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by the user.

uint8_t device_config(demo_state_t *prevState)

Configures the DAC and the ADC. The DAC is configured for software updates. The ADC is set in 'Blocking Mode'.

Key Functions

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns 0.

uint8_t dac_set(demo_state_t *prevState)

Sets output level on the DAC.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by user.

uint8_t wait_state(demo_state_t *prevState)

Performs a wait and possible state change based on the *prevState.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns 0.

uint8_t adc_get(demo_state_t *prevState)

Gets ADC values from a channel connected to the DAC output.

Parameters

**prevState* Pointer to previous state for state machine.

Returns

msg Returns the character entered into the terminal by the user.

uint8_t device_deinit(demo_state_t *prevState)

Deinitializes the DAC and the ADC module following a user command to terminate the demo. Also frees allocated memory.

Key Functions

Parameters

**prevState* Pointer to previous state for the state machine.

Returns

msg Returns 0.

uint8_t demo_end(demo_state_t *prevState)

Indicates to the user that the demo has been terminated.

Parameters

**prevState* Pointer to previous state for the state machine.

Returns

msg Returns 0.

Chapter 9 Quadrature Encoder Demo

This demo application demonstrates the Quadrature Encoder demo.

Overview

This application demonstrates the Quadrature Encoder decoder function. It decodes quadrature signals and outputs position on LEDs.

Supported Platforms

This Freescale Tower System development platform is supported by the Kinetis software development kit enc demo.

• TWR-KV46F150M

9.1 System Requirement

9.1.1 Hardware requirements

- J-Link ARM
- PE Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

9.1.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

9.1.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/enc_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Run the demo

Getting Started

Hardware configuration

For the Freescale TWR-KV46F150M board, connect encoder quadrature outputs to XBARA input pins.

Platform	Inputs			
	PHASE A	PHASE B	INDEX	HOME
TWR-KV46F150- M	J1-2	J1-4	J501-26	N/A

9.1.4 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

9.2 Run the demo

- 1. Terminal prints the message "Welcome to Quad ENC demo!"
- 2. Move encoder to detect INDEX pulse which starts to show shaft position on 6 LEDs and terminal prints "INDEX pulse detected!"
- 3. The LED on board switches on/off according to shaft position and direction of shaft move is shown, too.
- 4. One turn of the shaft is presented with 6 LED switching.

Simulate encoder

If there is not any real encoder, the source code below can be used to simulate an encoder. It was tested on TWR-K21D50M.

Platform	Outputs			
	PHASE A	PHASE B	INDEX	HOME
TWR-K21D50M	J15-1	J15-3	J15-5	N/A

```
// Includes
// SDK Included Files
#include "board.h"
```

```
#include "fsl_lptmr_driver.h"
#include "fsl_debug_console.h"
#define ENCODER_PULSES
                                 1024
#define PHASE_A_PORT
                                 PORTD
#define PHASE_A_GPIO
                                 GPIOD
#define PHASE_A_PORT_PIN
                                 4u
#define PHASE_A_PORT_INS
                                 PORTD_IDX
#define PHASE_B_PORT
                                 PORTD
#define PHASE_B_GPIO
                                 GPIOD
#define PHASE_B_PORT_PIN
                                 511
#define PHASE_B_PORT_INS
                                 PORTD_IDX
#define PHASE_INDEX_PORT
                                 PORTD
#define PHASE_INDEX_GPIO
                                 GPIOD
#define PHASE INDEX PORT PIN
                                 611
#define PHASE_INDEX_PORT_INS
                                PORTD_IDX
// Code
static void enable_squareWave(void)
{
    /* Enable clock for ports of Phase A, B and INDEX if necessary */
    CLOCK_SYS_EnablePortClock (PHASE_A_PORT_INS);
// CLOCK_SYS_EnablePortClock(PHASE_B_PORT_INS);
// CLOCK_SYS_EnablePortClock(PHASE_INDEX_PORT_INS);
    /* Create square wave for phase A*/
    PORT_HAL_SetMuxMode (PHASE_A_PORT, PHASE_A_PORT_PIN, kPortMuxAsGpio);
    GPIO_HAL_SetPinDir(PHASE_A_GPIO,PHASE_A_PORT_PIN,kGpioDigitalOutput);
    /* Create square wave for phase A*/
    PORT_HAL_SetMuxMode (PHASE_B_PORT, PHASE_B_PORT_PIN, kPortMuxAsGpio);
    GPIO_HAL_SetPinDir(PHASE_B_GPIO,PHASE_B_PORT_PIN,kGpioDigitalOutput);
    /* Create signal index for INDEX_pin*/
    PORT_HAL_SetMuxMode (PHASE_INDEX_PORT, PHASE_INDEX_PORT_PIN, kPortMuxAsGpio);
    GPIO_HAL_SetPinDir(PHASE_INDEX_GPIO,PHASE_INDEX_PORT_PIN,kGpioDigitalOutput);
}
int main (void)
{
    uint32_t i;
    hardware_init();
    OSA_Init();
    enable_squareWave();
    while(1)
    {
        for(i = 0; i < ENCODER_PULSES; i++)</pre>
        {
            GPIO_HAL_TogglePinOutput(PHASE_A_GPIO, 4u);
            OSA_TimeDelay(1);
            GPIO_HAL_TogglePinOutput (PHASE_B_GPIO, 5u);
            if(i == 0)
            {
                GPIO_HAL_SetPinOutput (PHASE_INDEX_GPIO, 6u);
                OSA_TimeDelay(1);
                GPIO_HAL_ClearPinOutput (PHASE_INDEX_GPIO, 6u);
            }
            else
            {
                OSA_TimeDelay(1);
            }
        }
    }
}
```

Run the demo

Chapter 10 Flash Demo

This demo application demonstrates how to use the Flash drivers.

10.1 Overview

The Flash demo project shows how to erase, program, and perform swap (if available) on the Flash module.

Note:

- 1. Target exists for Flash memory space. Since the demo will operate with two last sectors of lower half and the whole upper half of Program flash memory of the platforms with SWAP feature; six last sector of Program flash of the platforms without SWAP feature, the user should NOT store any program code or data in the above locations.
- 2. The flash swap demo will be failed if the tested board has already run swap command with swap indicator address different from the value defined in demo. To overcome the issue, erase all chip to un-initialize the swap system and re-run the demo.

features include:

- 3. Read to non-volatile information memory region
- 4. Flash Erase by block or sector, including margin read options
- 5. Programming region defined by user
- 6. Flash verify support
- 7. Flash Swap (if supported on device)
- 8. To ensure that other demos won't be affected, user need to erase all chip to ensure the successful execution of next demos.

10.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK Flash demo.

Platforms with SWAP feature:

- TWR-K21D50M
- TWR-K21F120M
- TWR-K24F120M
- TWR-K60D100M
- FRDM-K64F
- TWR-K64F120M
- TWR-K65F180M

Platforms without SWAP feature:

• FRDM-K22F

Kinetis SDK v.1.2 Demo Applications User's Guide

System Requirement

- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K22F120M
- TWR-K60D100M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

10.3 System Requirement

10.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

10.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

10.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/flash_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib
The Flash Demo example code shows how to erase and program the Flash content and use the swap feature if it is supported on the device.

10.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 (9600 for FRDM-KL03Z48M) for baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

10.5 Commands/Directions

- 1. Select the Debug target from within the IDE and build the project selected for the target hardware. The default Debug target runs from flash and demonstrates the Swap feature for devices that support Swap (e.g., TWR-K64F120M).
- 2. Connect one end of the USB cable to a PC host and the other end to the OpenSDA connector on the board.
- 3. Open Terminal program such as TeraTerm, Putty, or Hyperterminal.
- 4. Configure the Terminal program to select the OpenSDA COMx port for the board using
 - 115200 8N1: 115200 baud, 8 data bits, No parity, 1 Stop bit.
 - Or FRDM-KL03Z48M 9600 8N1: 9600 baud, 8 data bits, No parity, 1 Stop bit.
- 5. Connect to the board with the debugger (download & debug), run the program, and view the Terminal messages for Flash operations being performed.
- 6. For devices that support Swap, the Flash_Debug target copies (programs) the application that is running from the lower half to the upper half and then issues swap commands.
- 7. Flash memory blocks are swapped at the next reset. Disconnect debug session and hit the reset button on the board. Note: During swap, some memory locations depending on program flash size (e.g., for TWR-K64F120M: 0x7F100 & 0xFF100) are swapped and displayed on the terminal showing how the memory map changes.
- 8. For devices that do not support swap, view the terminal messages for Flash operations that are occurring for the demo.
- 9. Terminal displays the message "Flash Demo Complete!" when finished. Note: Callback functions are not currently supported during flash erase or program operations Note: For K22F and KV31, Flash erase and program operations are not allowed in High-Speed RUN modes. Therefore, the core clock speed is restricted to 80 MHz or less.

Commands/Directions

Chapter 11 FTM PDB ADC Demo

This demo application demonstrates how to use FTM external trigger to start ADC conversion via PDB.

11.1 Overview

This application demonstrates how to use the FTM external trigger to start the ADC conversion using the PDB. The FTM0 is configured as a complementary combined mode. Each channel output frequency is 16 KHz. The complementary channel dead time is 1 μ s. The PDB pre-trigger works in back-to-back mode. The ADC0 and ADC1 work in single-end mode. The ADC0 uses channel 1 and channel 5. ADC1 uses channel 1 and channel 7.

11.2 Supported Platforms

This Tower System module is supported by the KSDK FTM PDB ADC demo.

• TWR-KV10Z32

11.3 System Requirement

11.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

11.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

11.3.3 Software requirements

• The project files are in: <SDK_Install>/examples/<board>/demo_apps/ftm_pdb_adc/<toolchain>.

• Library dependencies: ksdk_platform_lib

11.4 Getting Started

11.4.1 Hardware Settings

Use default jumper settings on TWR-KV10Z32. Ensure that the J21(2 \sim 3 is short), J22(2 \sim 3 is short), J11(1 \sim 2 is short, 3 \sim 4 is short), J12(1 \sim 2 is short, 3 \sim 4 is short).

11.4.2 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on the board or launch the debugger in the IDE to begin running the demo.

For detailed instructions, see the appropriate board User's Guide.

11.4.3 Run the demo

- 1. Download and run the ftm_pdb_adc code on the board.
- 2. Terminal prints this message: "Run PDB trig ADC with FlexTimer demo." and "Input any character to start demo."
- 3. Input a character to the serial terminal, which has 256 lines of information for the ADC conversion result.
- 4. Input any character to the serial terminal. The process repeats again.

Chapter 12 Hello World Demo

This demo application demonstrates the Hello World demo.

12.1 Overview

The Hello World project is a simple demonstration program that uses the KSDK software. It prints the "Hello World" message to the terminal using the KSDK UART drivers. The purpose of this demo is to show how to use the UART and to provide a simple project for debugging and further development.

12.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK Hello World demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512
- USB-KW24D512

12.3 System Requirement

12.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

12.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

12.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/hello_world/<toolchain>.
- Library dependencies: ksdk_platform_lib

12.4 Getting Started

12.4.1 Hardware Settings

12.4.2 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see the appropriate board User's Guide.

12.5 Run the demo

This is an example how to run the demo.

Hello World!

12.6 Communication Interface Settings:

This part provides the information to customize the Hello World demo. The Hello World demo is configured to use these port pins for the platforms by default. If applicable for the board, jumpers are specified to select between serial output via OpenSDA and serial output via TWR-SER.

Platform	TX MCU Pin (Board Pin)	RX MCU Pin (Board Pin)	Module Instance
FRDM-K22F	PTE0 (N/A)	PTE1 (N/A)	UART1

Communication Interface Settings:

FRDM-K64F	PTB17 (N/A)	PTB16 (N/A)	UART0	
			FF	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			FF	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			FF	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			FF	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td -="" 1="" llowspan="" rr<="" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			FF	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			FE	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			<td <="" align="center" td=""></td>	
			MF	
			<td <="" align="center" td=""></td>	
	Kinetis SDK v.1.2 Demo	Applications User's Guide	<td <="" align="center" td=""></td>	
50			Freescale Semiconductor	

Communication Interface Settings:

Communication Interface Settings:

Chapter 13 Hardware Timer Demo

This demo application demonstrates using the hardware timer driver.

13.1 Overview

The Hardware Timer project is a demonstration program to show how to use the Hardware Timer driver. A Hardware Timer interrupt is created and fires multiple times until it reaches the requested number.

13.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis SDK Hardware Timer demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512
- USB-KW24D512

13.3 System Requirement

13.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

13.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

13.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/hwtimer_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

13.4 Getting Started

13.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with the following settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on the board or launch the debugger in the IDE to begin running the demo.

For detailed instructions, see the appropriate board User's Guide.

13.4.2 Run the demo

- 1. Press the reset button on your board.
- 2. "Hwtimer Example" message is displayed on the terminal.
- 3. A dot is printed when an Hwtimer interrupt occurs until the HWTIMER_DOTS_PER_LINE * H-WTIMER_LINES_COUNT (defined in hwtimer_demo.c) interrupts occur.
- 4. Finally, the "End" message is displayed.

```
Hwtimer Example
.....
End
```

13.5 Customization Options

This demo application is customizable to show different types of hardware timers.

13.5.1 Configure the Hardware Timer Used

Determine which timer the hardware timer driver uses. The ARM core Systick timer is used by default.

#define HWTIMER_LL_DEVIF kSystickDevif

13.5.2 Configure which clock is used by the hardware timer

Determine which clock source is used by the hardware timer.

#define HWTIMER_LL_SRCCLK kCoreClock

13.5.3 Configure which instance of the module is used

Determine which instance of the selected hardware module to use. For the Systick timer only '0' is valid. If the PIT is used, use this to select the PIT channel.

#define HWTIMER_LL_ID

13.5.4 Hardware Timer Period

Determine the timer period (in microseconds).

#define HWTIMER_PERIOD 100000

Customization Options

Chapter 14 I2C Communication Demo

This demo application demonstrates the I2C demo.

14.1 Overview

The I2C communication application demonstrates I2C data communication between two boards. It also features low power wakeup of the slave board by using I2C address matching. First, the I2C slave board enters the low power wait mode. An LED on the I2C slave board is on to indicate that the MCU is in sleep mode and no code is running. Then, the I2C slave board is woken up by the I2C address matching interrupt when the I2C master boards sends the proper address. The LED on the I2C slave board is toggled during the data communication. After power on, the I2C master starts reading data from the I2C slave data buffer. The I2C slave has "sub" addresses to access a specific byte of data on the slave board. The master prints this data out via the serial terminal. The master can then modify the data at a specific "sub" address on the slave board. When the data is received, the I2C slave changes the content at that requested "sub" address. This change is reflected when the master reads the slave data buffer again.

14.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK I2C Communication demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32

Kinetis SDK v.1.2 Demo Applications User's Guide

- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

14.3 System Requirement

14.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

14.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

14.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/i2c_comm/<mode>/<toolchain>. Where <mode> is either master or slave.
- Library dependencies: ksdk_platform_lib

14.4 Getting Started

14.4.1 Hardware configuration

This demo requires two separate boards. Make these connections between the two boards by using external wires:

FRDM-K22F:

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J24 Pin 12	->	I2C0_SCL	J24 Pin 12

I2C0_SDA	J24 Pin 10	->	I2C0_SDA	J24 Pin 10
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-K64F:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 20	->	I2C0_SCL	J2 Pin 20
I2C0_SDA	J2 Pin 18	->	I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KL02Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J7 Pin 10	->	I2C0_SCL	J7 Pin 10
I2C0_SDA	J7 Pin 9	->	I2C0_SDA	J7 Pin 9
GND	J7 Pin 7	->	GND	J7 Pin 7

FRDM-KL03Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 10	->	I2C0_SCL	J2 Pin 10
I2C0_SDA	J2 Pin 9	->	I2C0_SDA	J2 Pin 9
GND	J2 Pin 7	->	GND	J2 Pin 7

FRDM-KL25Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	J10 Pin 12	->	I2C1_SCL	J10 Pin 12
I2C1_SDA	J10 Pin 10	->	I2C1_SDA	J10 Pin 10
GND	J9 Pin 14	->	GND	J9 Pin 14

FRDM-KL26Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 20	->	I2C0_SCL	J2 Pin 20
I2C0_SDA	J2 Pin 18	->	I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KL27Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	J2 Pin 20	->	I2C1_SCL	J2 Pin 20
I2C1_SDA	J2 Pin 18	->	I2C1_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KL43Z, FRDM-KL46Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 20	->	I2C0_SCL	J2 Pin 20
I2C0_SDA	J2 Pin 18	->	I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KW24:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 20	->	I2C0_SCL	J2 Pin 20
I2C0_SDA	J2 Pin 18	->	I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

MRB-KW01:

Master	r Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location

I2C0_SCL	J15 Pin 12	->	I2C0_SCL	J15 Pin 12
I2C0_SDA	J14 Pin 8	->	I2C0_SDA	J14 Pin 8
GND	J14 Pin 18	->	GND	J14 Pin 18

TWR-K21D50M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator A7
I2C1_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator A8
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K22F120M, TWR-K24F120M, TWR-K60D100M & TWR-KV31F120M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C0_SCL	Primary Elevator A7
I2C0_SDA	Primary Elevator A8	->	I2C0_SDA	Primary Elevator A8
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K64F120M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	Primary Elevator A75	->	I2C1_SCL	Primary Elevator A75
I2C1_SDA	Primary Elevator A60	->	PTC11/I2C1_SDA	Primary Elevator A60
GND	Primary Elevator A65	->	GND	Primary Elevator A65

TWR-KL43Z48M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator A7
I2C1_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator A8
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-KV10Z32:

Note: Board is required to short J7 pin 2-3 and J9 pin 2-3 to enable pull up resistors on SDA0, SCL0.

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C0_SCL	Primary Elevator A7
I2C0_SDA	Primary Elevator A8	->	I2C0_SDA	Primary Elevator A8
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K65F180M, TWR-KV46F150M:

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C0_SCL	Primary Elevator - Pin A7
I2C0_SDA	Primary Elevator - Pin A8	->	I2C0_SDA	Primary Elevator - Pin A8
GND	Primary Elevator A65	->	GND	Primary Elevator A65

TWR-KW24D512:

Master Board	Connects To	Slave Board
--------------	-------------	-------------

Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C0_SCL	Primary Elevator A7
I2C0_SDA	Primary Elevator A8	->	I2C0_SDA	Primary Elevator A8
GND	Primary Elevator A81	->	GND	Primary Elevator A81

TWR-K21F120M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	Primary Elevator B50	->	I2C1_SCL	Primary Elevator B50
I2C1_SDA	Primary Elevator B51	->	I2C1_SDA	Primary Elevator B51
GND	Primary Elevator A65	->	GND	Primary Elevator A65

14.4.2 Terminal configuration

Configure the PC host serial console as shown:

- 115200 baud rate
- 8 data bits
- No parity
- One stop bit
- No flow control

14.4.3 Run the demo

- 1. Connect the I2C slave board to the master board using the connections listed above.
- 2. Power on the I2C slave board.
- 3. Download and run the i2c_comm_slave project to the I2C slave board.
- 4. The terminal of the I2C slave board prints out a "====== I2C Slave =====" message.
- 5. Power on the I2C master board.
- 6. Download and run the i2c_comm_mstr project to the I2C master board.
- 7. The terminal of the I2C master board prints out a "====== I2C Master ======" message and the data received from the I2C slave.
- 8. The I2C slave project creates some "sub" addresses to access a specific byte of data on the slave board. The master reads all these "sub" addresses and prints out the data.

Slave Sub Address	Character
[0]	Ι
[1]	2
[2]	С
[3]	-
[4]	С
[5]	0
[6]	М
[7]	М

9. To change the I2C slave sub address content, input a new character in the I2C master command line:

Input slave sub address and the new character. Slave Sub Address: 5 Input New Character: F

10. The master then displays the updated content on the terminal output.

Slave Sub Address	Character
[0]	Ι
[1]	2
[2]	С
[3]	-
[4]	С
[5]	F
[6]	М
[7]	М

Chapter 15 I2C Demo with RTOS

This demo application demonstrates the I2C demo on different RTOS.

15.1 Overview

This I2C application demonstrates the SDK Peripheral drivers working on different RTOS. The application acts as both the I2C master and the slave device on different I2C buses, such as the I2C Master on the I2C0 bus and the I2C Slave on the I2C1 bus. It can run on a single board or on two different boards. When connecting the two I2C buses on one board, the master sends the command using the I2C0 bus to the slave using the I2C1 bus. When connecting the I2C0 bus to the I2C1 bus on the other board, the application running on the first board is a master and sends a command to the other board which acts as a slave. This means that the first board can send a command and get a response from the other board by using the I2C bus.

The basic purpose of this demo is:

- 1. Read the Kinetis chip UID (low 32bits) from the slave board
- 2. Read the Kinetis chip internal temperature from the slave board
- 3. Control the RED/GREEN/BLUE color LEDs on the slave board

The application creates three different tasks to handle events concurrently:

- 1. Master task: responds to the user interface interaction, runs as a I2C master, and acts as a simple UI. It accepts user's commands to read the basic chip UID, chip temperature and control the on board LED, and power mode on the slave.
- 2. Slave task: responds to the command received from the I2C master and returns the result to the master.
- 3. ADC sample task: responds to getting the chip temperature in a period.
- 4. For the bare metal version, the master and slave tasks are separated into two separate projects.

15.2 Supported RTOS

- Freescale MQX[™] RTOS
- FreeRTOS
- µC/OS-II
- µC/OS-III
- Bare Metal (no RTOS)

15.3 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK I2C demo with RTOS.

The Bare Metal (no RTOS) demo Supported Platforms:

Supported Platforms

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M

The FreeRTOS, µC/OS-II, µC/OS-III demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M

The MQX demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL27Z
- FRDM-KL43Z
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M

- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M

15.4 System Requirement

15.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

15.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

15.4.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/i2c_rtos/<rtos>/<toolchain>. Where <rtos> is the chosen RTOS configuration.
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

15.5 Getting Started

The I2C RTOS application is designed to work on one single board or two different boards. Note that the bare-metal version only supports two boards.

15.5.1 Build with different RTOS support

Before running this application, build it with the RTOS you want to use. The projects for different RT-OSes are differentiated by the workspace file name in the format of i2c_rtos_<rtos>.eww. For example,

in IAR, the i2c_rtos_ucosii.eww workspace file is the μ C/OS-II version of this application. After opening the appropriate workspace, build the ksdk_<rtos>_lib project and build the application project. A binary named i2c_rtos_<rtos>.out is generated.

15.5.2 Hardware configuration

Make the connections between the listed signals by using the external wires.

Freescale Freedom FRDM-K22F

FRDM-K22F Single Board				
Master Connects To Slave				
Pin Name	Board Location	on Pin Name Board Locati		Board Location
I2C0_SCL	J24 - Pin 12	->	I2C1_SCL	J1 - Pin 13
I2C0_SDA	J24 - Pin 10	->	I2C1_SDA	J2 - Pin 7

FRDM-K22F Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name Board Location Pin Name				Board Location
I2C0_SCL	J24 - Pin 12	->	I2C1_SCL	J1 - Pin 13
I2C0_SDA	J24 - Pin 10	->	I2C1_SDA	J2 - Pin 7
GND	TP21	->	GND	TP21

Freescale Freedom FRDM-K64F

FRDM-K64F Single Board				
Master Connects To Slave				
Pin Name	Pin Name Board Location Pin Nam		Pin Name	Board Location
I2C0_SCL	J2 - Pin 20	->	I2C1_SCL	J4 - Pin 12
I2C0_SDA	J2 - Pin 18	->	I2C1_SDA	J4 - Pin 10

FRDM-K64F Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 - Pin 20	->	I2C1_SCL	J4 - Pin 12
I2C0_SDA	J2 - Pin 18	->	I2C1_SDA	J4 - Pin 10

				Getting Started
GND	J2 - Pin 14	->	GND	J2 - Pin 14

Freescale Freedom FRDM-KL02Z

FRDM-KL02Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Board Location	on Pin Name Board Locat		
I2C0_SCL	J7 Pin 10	->	I2C0_SCL	J7 Pin 10
I2C0_SDA	J7 Pin 9	->	I2C0_SDA	J7 Pin 9
GND	J7 Pin 7	->	GND	J7 Pin 7

Freescale Freedom FRDM-KL25Z

FRDM-KL25Z Single Board				
Master Connects To Slave				
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J10 - Pin 6	->	I2C1_SCL	J10 - Pin 12
I2C0_SDA	J10 - Pin 8	->	I2C1_SDA	J10 - Pin 10

FRDM-KL25Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Pin Name Board Location Pin Name Board			
I2C0_SCL	J10 Pin 6	->	I2C1_SCL	J10 Pin 12
I2C0_SDA	J10 Pin 8	->	I2C1_SDA	J10 Pin 10
GND	J9 Pin 14	->	GND	J9 Pin 14

Freescale Freedom FRDM-KL26Z

FRDM-KL26Z Single Board				
Master Connects To Slave				
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J4 - Pin 6	->	I2C1_SCL	J2 - Pin 20
I2C0_SDA	J4 - Pin 8	->	I2C1_SDA	J2 - Pin 18

FRDM-KL26Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J4 - Pin 6	->	I2C1_SCL	J2 - Pin 20
I2C0_SDA	J4 - Pin 8	->	I2C1_SDA	J2 - Pin 18
GND	J2 - Pin 14	->	GND	J2 - Pin 14

Freescale Freedom FRDM-KL27Z

FRDM-KL27Z Single Board				
Master Connects To Slave				
Pin Name	Board Location		Pin Name Board Location	
I2C0_SCL	J4 Pin 20	->	I2C1_SCL	J4 Pin 12
I2C0_SDA	J4 Pin 18	->	I2C1_SDA	J4 Pin 10

FRDM-KL27Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Board Location	Location Pin Name Board Locat		
I2C0_SCL	J4 Pin 20	->	I2C1_SCL	J4 Pin 12
I2C0_SDA	J4 Pin 18	->	I2C1_SDA	J4 Pin 10
GND	J2 Pin 14	->	GND	J2 Pin 14

Freescale Freedom FRDM-KL43Z

FRDM-KL43Z Single Board					
Master Connects To Slave					
Pin Name	Board Location		Pin Name	Board Location	
I2C0_SCL	J4 Pin 2	->	I2C1_SCL	J2 Pin 20	
I2C0_SDA	J4 Pin 4	->	I2C1_SDA	J2 Pin 18	

FRDM-KL43Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Board Location		Pin Name Board Locati	
I2C0_SCL	J4 Pin 2	->	I2C1_SCL	J2 Pin 20
I2C0_SDA	J4 Pin 4	->	I2C1_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

Freescale Freedom FRDM-KL46Z

FRDM-KL46Z Single Board				
Master Connects To Slave				
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J4 Pin 6	->	I2C1_SCL	J2 Pin 20
I2C0_SDA	J4 Pin 8	->	I2C1_SDA	J2 Pin 18

FRDM-KL46Z Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name	Board Location	Location Pin Name Board Locati		
I2C0_SCL	J4 Pin 6	->	I2C1_SCL	J2 Pin 20
I2C0_SDA	J4 Pin 8	->	I2C1_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

Freescale Modular Reference Board MRB-KW01

MRB board doesn't include user controllable LEDs, so the only available commands are: 4 (Read Temperature) and 5 (Read Id).

MRB-KW01 Single Board					
Master Connects To Slave					
Pin Name	Board Location		Pin Name	Board Location	
I2C0_SCL	J15 - Pin 12	->	I2C1_SCL	J14 - Pin 14	
I2C0_SDA	J14 - Pin 8	->	I2C1_SDA	J14 - Pin 12	

MRB-KW01 Two Boards				
Master (Board #1)Connects ToSlave (Board #2)				
Pin Name Board Location Pin Name				Board Location
I2C0_SCL	J15 - Pin 12	->	I2C1_SCL	J14 - Pin 14
I2C0_SDA	J14 - Pin 8	->	I2C1_SDA	J14 - Pin 12
GND	J14 - Pin 18	->	GND	J14 - Pin 18

TWR-K21D50M Tower System module

TWR-K21D50M Single Board			
Master	Connects To	Slave	

Pin Name	Board Location		Pin Name	Board Location
PTC10/I2C0_SCL	Primary Elevator - Pin A7	->	PTD2/I2C1_SCL	Primary Elevator - Pin B45
PTC11/I2C0_SDA	Primary Elevator - Pin A8	->	PTD3/I2C1_SDA	Primary Elevator - Pin B44

TWR-K21D50M Two Boards				
Master (I	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
PTC10/I2C0_SCL	Primary Elevator - Pin A7	->	PTD2/I2C1_SCL	Primary Elevator - Pin B45
PTC11/I2C0_SDA	Primary Elevator - Pin A8	->	PTD3/I2C1_SDA	Primary Elevator - Pin B44
GND	Primary Elevator - Pin A65	->	GND	Primary Elevator - Pin A65

TWR-K21F120M Tower System module

TWR-K21F120M Single Board					
Master Connects To Slave				ave	
Pin Name	Board Location		Pin Name Board Location		
PTD2/I2C0_SCL	Primary Elevator B45	->	PTC10/I2C1_SCL	Primary Elevator B50	
PTD3/I2C0_SDA	Primary Elevator B44	->	PTC11/I2C1_SDA	Primary Elevator B51	

TWR-K21F120M Two Boards				
Master (I	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
PTD2/I2C0_SCL	Primary Elevator B45	->	PTC10/I2C1_SCL	Primary Elevator B50
PTD3/I2C0_SDA	Primary Elevator B44	->	PTC11/I2C1_SDA	Primary Elevator B51
GND	Primary Elevator - Pin A65	->	GND	Primary Elevator - Pin A65

TWR-K22F120M Tower System module

TWR-K22F120M Single Board				
Master Connects To Slave			ave	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin B50
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B51

TWR-K22F120M Two Boards				
Master (1	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin B50
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B51
GND	Primary Elevator - Pin A65	->	GND	Primary Elevator - Pin A65

TWR-K24F120M Tower System module

TWR-K24F120M Single Board				
Ma	ster	Connects To	Sla	ave
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator B50
I2C0_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator B51

TWR-K24F120M Two Boards				
Master (1	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator B50
I2C0_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator B51
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K60D100M Tower System module

TWR-K60D100M Single Board				
Master Connects To Slave				
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator A75
I2C0_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator B71

TWR-K60D100M Two Boards				
Master (l	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C1_SCL	Primary Elevator A75
I2C0_SDA	Primary Elevator A8	->	I2C1_SDA	Primary Elevator B71
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K64F120M Tower System module

TWR-K64F120M Single Board				
Master Connects To Slave			ave	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin A75
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B71

TWR-K64F120M Two Boards				
Master (l	Board #1)	Connects To	Slave (Board #2)	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin A75
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B71
GND	Primary Elevator - Pin A65	->	GND	Primary Elevator - Pin A65

TWR-K65F180M Tower System module

TWR-K65F180M Single Board				
Master Connects To Slave			ave	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin B11
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B22

TWR-K65F180M Two Boards				
Master (1	Board #1)	Connects To	Slave (B	Board #2)
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator - Pin A7	->	I2C1_SCL	Primary Elevator - Pin B11
I2C0_SDA	Primary Elevator - Pin A8	->	I2C1_SDA	Primary Elevator - Pin B22
GND	Primary Elevator - Pin A65	->	GND	Primary Elevator - Pin A65

TWR-KL43Z48M Tower System module

TWR-KL43Z48M Single Board					
Master		Connects To	Slave		
Pin Name	Board Location		Pin Name	Board Location	
I2C0_SCL	Primary Elevator A40	->	I2C1_SCL	Primary Elevator A7	
I2C0_SDA	Primary Elevator A39	->	I2C1_SDA	Primary Elevator A8	

TWR-KL43Z48M Two Boards						
Master (Board #1)		Connects To	Slave (Board #2)			
Pin Name	Board Location		Pin Name	Board Location		
I2C0_SCL	Primary Elevator A40	->	I2C1_SCL	Primary Elevator A7		
I2C0_SDA	Primary Elevator A39	->	I2C1_SDA	Primary Elevator A8		

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Run the demo

GND	Primary Elevator A6	->	GND	Primary Elevator A6
-----	------------------------	----	-----	------------------------

15.5.3 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For more detailed instructions, see a Kinetis SDK User's Guide for your board.

15.6 Run the demo

This menu displays on the terminal window:

```
Available Commands:
LED Red Toggle (1) - Red Light toggles on/off
LED Green Toggle (2) - Green Light toggles on/off
LED Blue Toggle (3) - Blue Light toggles on/off
Read Temperature (4) - Get temperature of client (It is necessary to set voltage reference exactly to 3.3
V to see correct temperature.)
Read Id (5) - Read client unique ID
```

Enter your choice (1 - 5):

You can select to toggle the RGB LED, read the temperature of the client board, and read the client unique ID.

Note that a different colored LED may turn on if the selected color is not available on that board.

Chapter 16 HTTP Server Demo on IwIP TCP/IP Stack

This demo application demonstrates the HTTPServer demo on lwIP TCP/IP stack with bare metal SDK or different RTOSes.

16.1 Overview

This is an HTTPServer set up on lwIP TCP/IP stack with bare metal SDK or different RTOSes. The user uses an Internet browser to send a request for connection. The board acts as an HTTP server and sends a Web page back to the PC.

16.2 Supported RTOS

- Freescale MQXTM RTOS
- FreeRTOS
- µC/OS-II
- µC/OS-III
- Bare Metal (no RTOS)

16.3 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis software development kit HTTPServer demo.

- FRDM-K64F
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

16.4 System Requirement

16.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

16.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

16.4.3 Software requirements

- The project files are in:
 - Baremetal: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_httpserver_demo/httpserver_ _bm/<toolchain>
 - RTOS: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_httpserver_demo/httpserver_ _rtos/<rtos>/<toolchain>
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

16.5 Getting Started

See the *lwIP TCPIP Stack and Kinetis SDK Integration User's Guide* (document KSDKLWIPUG) for more information about the setup and requirements.

16.5.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with the following settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions steps, see a Kinetis SDK User's Guide for your board.

16.5.2 Network Configuration

Configure the IP address of PC network adapters as shown: IP address - 192.168.2.100 Subnet Mask - 255.255.255.0
16.5.3 Run the demo

- 1. Download the program to target board, which should be installed in TWR or FRDM.
- 2. Connect the Ethernet cable between the PC and the board.
- 3. When successfully connected, reset the board to run the demo.
- 4. Open the PC command window, type in "ping 192.168.2.102" to test whether lwIP stack is running. If successful, four echo request packets are successfully replied.
- 5. Input "192.168.2.102" in the URL of an Internet browser on a PC. If successful, the web page which the board returns opens in the browser.

Chapter 17 Ping Demo on IwIP TCP/IP Stack

This demo application demonstrates the Ping demo on lwIP TCP/IP stack with bare metal SDK or different RTOSes.

17.1 Overview

This is a Ping Demo on the lwIP TCP/IP stack which uses the ICMP protocol. The application on board periodically sends the ICMP echo request to a PC and processes the PC reply. Type the "ping \$board_-address" in the PC command window to send an ICMP echo request to the board. The lwIP stack sends the ICMP echo reply back to the PC.

17.2 Supported RTOS

- Freescale MQXTM RTOS
- FreeRTOS
- µC/OS-II
- µC/OS-III
- Bare Metal (no RTOS)

17.3 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK Ping demo.

- FRDM-K64F
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

17.4 System Requirement

17.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

17.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

17.4.3 Software requirements

- The project files are in:
 - Baremetal: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_ping_demo/ping_bm/<toolchain>
 - RTOS: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_ping_demo/ping_rtos/<rtos>/<toolc
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

17.5 Getting Started

See the *lwIP TCPIP Stack and Kinetis SDK Integration User's Guide* (document KSDKLWIPUG) for instructions and requirements.

17.5.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

17.5.2 Network Configuration

Configure the IP address of PC network adapters as shown:

• 192.168.2.100

17.6 Run the demo

- 1. Download the program to the target board.
- 2. Connect the Ethernet cable between the PC and the board.
- 3. When successfully connected, reset the board to run the demo.
- 4. Open the terminal. Ping send and ping receive are successful.
- 5. Type in "ping 192.168.2.102" in PC command window. If the operation is successful, four packets are successful replied.

Run the demo

Chapter 18 TCP Echo Demo on IwIP TCP/IP Stack

This demo application demonstrates the TCP Echo demo on lwIP TCP/IP stack with bare metal KSDK or different RTOSes.

18.1 Overview

This is a TCP echo demo on the lwIP TCP/IP stack with bare metal KSDK or different RTOSes, which uses the TCP protocol and acts as an echo server. The application on board sends back the TCP packets from the PC, which can be used to test whether the TCP connection is available.

18.2 Supported RTOS

- Freescale MQXTM RTOS
- FreeRTOS
- µC/OS-II
- µC/OS-III
- Bare Metal (no RTOS)

18.3 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK TCP Echo demo.

- FRDM-K64F
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

18.4 System Requirement

18.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

18.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

18.4.3 Software requirements

- The project files are in:
 - Baremetal: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_tcpecho_demo/tcpecho-_bm/<toolchain>
 - RTOS: <SDK_Install>/examples/<board>/demo_apps/lwip/lwip_tcpecho_demo/tcpecho_ rtos/<rtos>/<toolchain>
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

18.5 Getting Started

See the *lwIP TCPIP Stack and Kinetis SDK Integration User's Guide* (document KSDKLWIPUG) for instructions and requirements.

18.5.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

18.5.2 Network Configuration

Configure the IP address of PC network adapters as shown:

• 192.168.2.100

18.6 Run the demo

- 1. Download the program to the target board.
- 2. Connect the Ethernet cable between the PC and the board.
- 3. When successfully connected, reset the board to run the demo.
- 4. Open the command window on PC, type in "ping 192.168.2.102" to test whether the lwIP is running.
- 5. If it is running, use an external echo tool to perform the echo request. This tool sends TCP packets to the board and checks whether the content sent back from board is the same. A similar tool named "echotool" can be downloaded from the: http://bansky.net/echotool/ [example: echotool 192.168.2.102 /p tcp /r 7 /d hello]
- 6. If the operation is successful, all packets sent back are same as the packets sent to the board.

Run the demo

Chapter 19 UDP Echo Demo on IwIP TCP/IP Stack

This demo application demonstrates the UDP Echo demo on lwIP TCP/IP stack with bare metal KSDK or different RTOSes.

19.1 Overview

This is a UDP echo demo on the lwIP TCP/IP stack with bare metal KSDK or different RTOSes, which uses the UDP protocol and acts as an echo server. The application on board sends back the UDP packets from the PC, which can be used to test whether the UDP connection is available.

19.2 Supported RTOS

- Freescale MQX[™] RTOS
- FreeRTOS
- µC/OS-II
- µC/OS-III
- Bare Metal (no RTOS)

19.3 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK UDP Echo demo.

- FRDM-K64F
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

19.4 System Requirement

19.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

19.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

19.4.3 Software requirements

- The project files are in:
 - Bare metal: <KSDK_Install>/examples/<board>/demo_apps/lwip/lwip_udpecho_demo/udpecho-_bm/<toolchain>
 - RTOS: <KSDK_Install>/examples/<board>/demo_apps/lwip/lwip_udpecho_demo/udpecho-_rtos/<rtos>/<toolchain>
- Library dependencies:
 - Bare metal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

19.5 Getting Started

See the *lwIP TCPIP Stack and Kinetis SDK Integration User's Guide* (document KSDKLWIPUG) for instructions and requirements.

19.5.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

19.5.2 Network Configuration

Configure the IP address of PC network adapters as shown:

• 192.168.2.100

19.6 Run the demo

- 1. Download the program to the target board.
- 2. Connect the Ethernet cable between the PC and the board.
- 3. When successfully connected, reset the board to run the demo.
- 4. Open the command window on PC, type in "ping 192.168.2.102" to test whether the lwIP is running.
- 5. If it is running, use an external echo tool to perform the echo request. This tool sends UDP packets to the board and checks whether the content sent back from board is the same. A similar tool named "echotool" can be downloaded from the: http://bansky.net/echotool/ [example: echotool 192.168.2.102 /p udp /r 7 /d hello]
- 6. If the operation is successful, all packets sent back are the same as the packets sent to the board.

Run the demo

Chapter 20 MMDVSQ Demo

This demo application demonstrates how to use MMDVSQ driver.

20.1 Overview

The MMDVSQ Demo project is a simple demonstration program to show how to use the MMDVSQ driver. This demo demonstrates the efficiency of division and square root operations and typical C functions.

20.2 Supported Platforms

This demo supports the following Tower System module:

• TWR-KV10Z32

20.3 System Requirement

20.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

20.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

20.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/mmdvsq_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Kinetis SDK v.1.2 Demo Applications User's Guide

Run the demo

20.4 Getting Started

20.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

20.5 Run the demo

This is an example serial terminal output:

```
MMDVSQ Demo start!
C library calculation takes 622 tickcycles
MMDVSQ t calculation takes 521 tickcycles
MMDVSQ Demo end
```

The tickcycles are used as a reference.

Chapter 21 Power Manager HAL Demo

21.1 Overview

The Power Manager demo application demonstrates different Power Manager modes supported by the Kinetis SoCs. The set of supported low power modes and their transition possibility differ platform to platform. See section: "System Mode Controller" in a Reference Manual for each Kinetis sub-family microcontroller.

21.2 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis software development kit Power Manager demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KW24D512

21.3 System Requirement

21.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable

- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

21.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

21.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/power_manager_hal_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

21.4 Getting Started

21.4.1 Hardware Settings

The demo does not require any special hardware configurations. Although not required, the recommendation is to leave the development board jumper settings and configurations in default state when running this demo.

21.4.2 Prepare the Demo

Follow the instructions in Getting Started with Kinetis Software Development Kit (KSDK) to:

- Setup hardware connections
- Configure a Terminal session
- Build and download application to targeted devices

Note: The demo is configured to work with the Terminal baudrate at 9600 bps. When running the demo, unplug all debugger devices.

21.4.3 Run the demo

- 1. Press the reset button on the hardware.
- 2. A control menu will displayed on the Terminal window. Note that the list on the menu is not the same for all platforms.

It depends on the list of supported low power modes. For example, on the TWR-K64F120M, this menu displays:

Power Manager Demo

```
Core Clock = 4800000Hz
SMC mode = kStatRun
Select the desired operation
Press A for enter: RUN - Normal RUN mode
Press B for enter: Wait - Wait mode
Press C for enter: Stop - Stop mode
Press D for enter: VLPR - Very Low Power Run mode
      E for enter: VLPW - Very Low Power Wait mode
Press
Press F for enter: VLPS - Very Low Power Stop mode
Press
      G for enter: LLS
                       - Low Leakage Stop mode
Press
      H for enter: VLLSO - Very Low Leakage Stop 0 mode
Press
      I for enter: VLLS1 - Very Low Leakage Stop 1 mode
Press J for enter: VLLS3 - Very Low Leakage Stop 3 mode
Waiting for key to be pressed ...
```

1. Enter a command by pressing the corresponding input key. If the user enters an invalid mode transition, the demo displays this message on the terminal window:

Cannot go from RUN to VLPW directly. Next loop

In most valid mode transitions, the SoC wakes up after receiving the RTC alarm or the GPIO switch trigger. However, in some modes, the SoC only accepts either RTC alarm or the GPIO switch trigger. In that case, the demo prints the following message on the terminal: Note: On the FRDM-KL25-Z, FRDM-KL26Z and FRDM-KL46Z, the RTC counter is fed without the 32Khz (OSC32KCLK) clock. Therefore the accuracy of RTC alarms will be impacted.

The board does not support wake up from this mode by RTC due to disabled External Entering Very Low Leakage Stop 0 mode, press the SW1 button to wake up. Wake up goes through Reset sequence.

21.4.4 Supported Low Power Modes By Platform

Platform	Supported Power Modes	Wakeup Sources
FRDM-K22F, TWR-K22F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS3, VLLS0, VLLS1, VLLS2, VLLS3, RUN(80MHz), H- SRUN(80MHz)	RTC, SW1
FRDM-K64F, TWR-K64F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(120MHz)	RTC, SW1
FRDM-KL03Z48M	WAIT, STOP, VLPR(1MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(48MHz)	RTC, SW2
FRDM-KL25Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, PTD6 J2-17 to VSS J9-14
FRDM-KL26Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW2
FRDM-KL27Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW3
FRDM-KL43Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW3
FRDM-KL46Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
FRDM-KW24	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1

This table shows the supported modes on different platforms:

Supported RTOS

TWR-K21D50M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
TWR-K24F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(48MHz)	RTC, SW2
TWR-K60D100M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS1, VLLS2, VLLS3, RUN(100MHz)	RTC, SW1
TWR-K65F180M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS3, VLLS0, VLL- S1, VLLS2, VLLS3, RUN(120M- Hz), HSRUN(180MHz)	RTC, SW1
TWR-KW24D512	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
TWR-K21F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(120MHz)	RTC, SW3
TWR-KL43Z48M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW2
TWR-KV10Z32	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, VLLS0, VLLS1, VLL- S3, RUN(75MHz)	RTC, SW2
TWR-KV31F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(80MHz), H- SRUN(120MHz)	RTC, SW1

This demo application demonstrates how to use the Power Manager.

21.5 Overview

The Power Manager demo application demonstrates different Power Manager modes supported by the Kinetis SoCs. The set of supported low power modes and their transition possibility differ platform to platform. See section: "System Mode Controller" in a Reference Manual for each Kinetis Sub-family microcontroller.

21.6 Supported RTOS

- Freescale MQX RTOS
- FreeRTOS
- C/OS-II

Kinetis SDK v.1.2 Demo Applications User's Guide

Supported Hardware

- C/OS-III
- Bare Metal (no RTOS)

21.7 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis software development kit Power Manager demo.

The Bare Metal (no RTOS) demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV31F120M
- TWR-KW24D512

The FreeRTOS, Freescale MQX RTOS, C/OS-II, C/OS-III demo Supported Platforms:

- FRDM-K22F
- FRDM-K64F
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV31F120M
- TWR-KW24D512

21.8 System Requirements

21.8.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for a specific device
- Personal Computer

21.8.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

21.8.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/power_manager_rtos_demo/<configuration>/<toolchain> where <configuration> is either baremetal or a supported R-TOS.
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

21.9 Getting Started

21.9.1 Hardware Settings

The demo does not require any special hardware configurations. Although not required, the recommendation is to leave the development board jumper settings and configurations in default state when running this demo.

21.9.2 Prepare the Demo

Follow the instructions in Getting Started with Kinetis Software Development Kit (KSDK) to:

- Set up hardware connections
- Configure a Terminal session

• Build and download application to targeted devices

Note: The demo is configured to work with the Terminal baudrate at 9600 bps. When running the demo, unplug all debugger devices.

21.9.3 Run the demo

- 1. Press the reset button on the hardware.
- 2. A control menu will displayed on the Terminal window. Note that the list on the menu is not the same for all platforms. It depends on the list of supported low power modes. For example, on the TWR-K64F120M, this menu displays:

Power Manager Demo

Core Clock = 4800000Hz SMC mode = kStatRun Select the desired operation Press A for enter: RUN - Normal RUN mode B for enter: Wait - Wait mode Press C for enter: Stop - Stop mode Press Press D for enter: VLPR - Very Low Power Run mode Press E for enter: VLPW - Very Low Power Wait mode Press F for enter: VLPS - Very Low Power Stop mode G for enter: LLS Press - Low Leakage Stop mode Press H for enter: VLLSO - Very Low Leakage Stop 0 mode Press I for enter: VLLS1 - Very Low Leakage Stop 1 mode J for enter: VLLS3 - Very Low Leakage Stop 3 mode Press Waiting for key to be pressed ...

1. Enter a command by pressing the corresponding input key. If the user enters an invalid mode transition, the demo displays this message on the terminal window:

```
Cannot go from RUN to VLPW directly.
Next loop
```

In most valid mode transitions, the SoC wakes up after receiving the RTC alarm or the GPIO switch trigger. However, in some modes, the SoC only accepts either RTC alarm or the GPIO switch trigger. In that case, the demo prints the following message on the terminal: Note: On the FRDM-KL25-Z, FRDM-KL26Z and FRDM-KL46Z, the RTC counter is fed without the 32Khz (OSC32KCLK) clock. Therefore the accuracy of RTC alarms will be impacted.

The board does not support wake up from this mode by RTC due to disabled External Entering Very Low Leakage Stop 0 mode, press the SW1 button to wake up. Wake up goes through Reset sequence.

21.9.4 Supported Low Power Modes By Platform

Platform	Supported Power Modes	Wakeup Sources
FRDM-K22F, TWR-K22F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS3, VLLS0, VLLS1, VLLS2, VLLS3, RUN(80MHz), H- SRUN(80MHz)	RTC, SW1
FRDM-K64F, TWR-K64F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(120MHz)	RTC, SW1
FRDM-KL03Z48M	WAIT, STOP, VLPR(1MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(48MHz)	RTC, SW2
FRDM-KL25Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, PTD6 J2-17 to VSS J9-14
FRDM-KL27Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW3
FRDM-KL43Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW3
FRDM-KL46Z	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1

This table shows the supported modes on different platforms:

FRDM-KW24	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
TWR-K21D50M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
TWR-K24F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(48MHz)	RTC, SW2
TWR-K60D100M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS1, VLLS2, VLLS3, RUN(100MHz)	RTC, SW1
TWR-K65F180M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS3, VLLS0, VLL- S1, VLLS2, VLLS3, RUN(120M- Hz), HSRUN(180MHz)	RTC, SW1
TWR-KW24D512	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW1
TWR-K21F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(120MHz)	RTC, SW3
TWR-KL43Z48M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS3, RUN(48MHz)	RTC, SW2
TWR-KV31F120M	WAIT, STOP, VLPR(4MHz), VL- PW, VLPS, LLS, VLLS0, VLLS1, VLLS2, VLLS3, RUN(80MHz), H- SRUN(120MHz)	RTC, SW1

Chapter 22 EflexPWM Demo

This demo application demonstrates the EflexPWM demo.

Overview

This application demonstrates the pulse with modulation function of EflexPWM module. It outputs the PWM to control the intensity of the LED.

Supported Platforms

This Freescale Tower System development platform is supported by the Kinetis software development kit EflexPWM demo.

• TWR-KV46F150M

22.1 System Requirement

22.1.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

22.1.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

22.1.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/pwm_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Run the demo

Getting Started

Hardware configuration

No jumper configuration is needed.

22.1.4 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

22.2 Run the demo

- 1. Terminal prints the message "Welcome to EflexPWM demo!"
- 2. The LED on board increases/decreases intensity according to PWM pulse width changes.

Chapter 23 EflexPWM Fault Demo

This demo application demonstrates the EflexPWM fault demo.

Overview

This application demonstrates the pulse with modulation function of EflexPWM module. It outputs the PWM to control the intensity of the LED. PWM shut down when a fault signal is detected on the CMP output. One input of CMP is from C8, other input is from internal DAC.

Supported Platforms

This Freescale Tower System development platform is supported by the Kinetis software development kit EflexPWM demo.

• TWR-KV46F150M

23.1 System Requirement

23.1.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

23.1.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

23.1.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/pwm_fault_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Run the demo

Getting Started

Hardware configuration

For the TWR-KV46F150M Tower System module, connect C8 (J501.13) to ground to see PWM output. When this pin is connected to high level, PWM will shut down. PWM fault will be automatically cleared when the C8 pin is connected to ground again.

23.1.4 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

23.2 Run the demo

- 1. Terminal prints the message "Welcome to EflexPWM Fault demo!"
- 2. Observe PWM output on J501.9 as C8 pin is changed.

Chapter 24 RTC Function Demo

This demo application demonstrates how to use the RTC driver.

24.1 Overview

This RTC demo application demonstrates the important features of the RTC Module by using the RTC Periperhal Driver.

It supports these features:

- Calendar
 - Get the current date time with Year, Month, Day, Hour, Minute and Second.
 - Set the current date time with Year, Month, Day, Hour, Minute and Second.
- Alarm
 - Set the alarm based on the current time.
 - Application prints a notification when the alarm expires.
- Seconds interrupt
 - Use second interrupt function to display a digital time blink every second.
- Compensation
 - Configure the compensation with cycles.
 - The 1 Hz RTC clock with compensation configured is output to a pin. Use an oscilloscope to check the compensation result.

24.2 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the KSDK RTC Function demo.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M

Kinetis SDK v.1.2 Demo Applications User's Guide

- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KW24D512

24.3 System Requirement

24.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

24.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

24.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/rtc_func/<toolchain>.
- Library dependencies: ksdk_platform_lib

24.4 Getting Started

24.4.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control (Note that for the FRDM-KL03 platform, the terminal baud rate should be 9600)
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

Note: For the MRB-KW01, it is necessary to connect on the J8 pins 2-3 and change the CLOCK_SETUP to 1 (or change the RTC input to OSC32KCLK by another way).

For detailed instructions, see a Kinetis SDK User's Guide for your board.

24.5 Run the demo

This menu is displayed on the serial terminal:

Please choose the sub demo to run:
1) Get current date time.
2) Set current date time.
3) Alarm trigger show.
4) Second interrupt show (demo for 20s).
5) Set RTC compensation.

Select:

Run the demo

Chapter 25 SAI Demo

This demo application demonstrates how to use the SAI drivers.

25.1 Overview

The SAI Demo project is a digital audio demonstration program that uses the KSDK software. It performs audio playback from either a .wav file, stored in Flash, or from the line-in on a TWR-AUDIO-SGTL Tower System module using the KSDK I2S and I2C drivers. On the TWR-K22F120M, TWR-K24F120M, and the TWR-K64F120M Tower System modules, the project also uses the CMSIS-DSP library to perform a Fast Fourier Transform, and return the fundamental frequency of the line-in audio.

25.2 Supported Hardware

This demo supports the following Freescale Freedom development platforms and Tower System modules:

- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

25.3 System Requirement

25.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

25.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0

• Atollic TrueSTUDIO for ARM win32 v5.2.1

25.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/sai_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

25.4 Getting Started

25.4.1 GCC Compiler notes

When building the demo with GCC, ensure that the demo and platform library are built with this option:

Otherwise, the project does not use the Kinetis device's hardware floating point when using the CMSIS--DSP library.

25.4.2 Hardware Settings

These Tower System modules are required to run the sai_demo:

- TWR-ELEV (except for the TWR-K24F120M)
- TWR-AUDIO-SGTL (except TWR-K24F120M which has a built-in one)

25.4.3 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions, see a Kinetis SDK User's Guide for your board.
25.5 Run the demo

To hear the audio playback, connect a set of headphones to the headphone output on the TWR-AUDIO--SGTL card. For input to the codec, connect an audio source to the Line-In on the TWR-AUDIO-SGTL.

When the demo starts, this message is displayed in the terminal output window:

```
Audio Demo!
Press spacebar to start demo.
Demo begin...
```

The user can either play back audio from the line-in source, or play a .wav file stored in the Flash. The line-in option plays the audio gathered from the codec line-in for approximately 15 seconds.

```
Select player:

1. Line-In Playback

2. Wav File Playback

->1
```

If selecting playback from the line-in source, decide whether to perform an FFT analysis to find the fundamental frequency of the audio input. Finding the fundamental frequency is best suited for pure tones played into the line-in of the TWR-AUDIO-SGTL card.

```
Select filter:
    1. FFT - Find Fundamental Frequency
    2. None
->1
```

The user is prompted to select from a list of headphone output levels:

```
Choose headphone dB level:

1. +3.0 dB

2. 0.0 dB

3. -3.0 dB

4. -6.0 dB

5. -12.0 dB

6. -24.0 dB

7. -48.0 dB

->5

Frequency is 93 Hz
```

The table shows the terminal display after playback has completed and the FFT option was selected. These are the options for the .wav file option:

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Run the demo

```
Select player:
        1. Line-In Playback
        2. Wav File Playback
->2
Select Wav file:
       1. Audio Demo
->1
Choose headphone dB level:
        1. +3.0 dB
        2. 0.0 dB
        3. -3.0 dB
        4. -6.0 dB
        5. -12.0 dB
        6. -24.0 dB
        7. -48.0 dB
->5
```

The quality of the .wav file PCM data depends on the demo system and the compiler.

This table shows the audio sample rate, channels and bit depth of the .wav file for the various platforms and compilers.

Hardware Sample Rate (kHz)				Bit Depth				Channels				
Sys- tem	IAR	ARM	GN- U-G- CC	KDS- GCC	IAR	ARM	GN- U-G- CC	KDS- GCC	IAR	ARM	GN- U-G- CC	KDS- GCC
TW- R K22- F120- M	44.1	44.1	11 025	11 025	16	16	16	16	2	2	2	2
TW- R K24- F120- M	44.1	44.1	44.1	44.1	32	32	32	32	2	2	2	2
TW- R K60- F100- M	44.1	44.1	44.1	44.1	32	32	32	32	2	2	2	2
TW- R K64- F120- M	44.1	44.1	44.1	44.1	32	32	32	32	2	2	2	2

I	I	I	I	I	I	l	l	I	l	l	I	I
TW-	44.1	44.1	44.1	44.1	32	32	32	32	2	2	2	2
к К65-												
F180-												
Μ												
TW-	44.1	44.1	11	11	16	16	16	16	2	2	2	2
R			025	025								
K21- F120												
M												

Quality differences of the .wav playback depend on the size constraints of the target device, the Flash size, and the density of the code generated by the compiler.

Note that all supported platforms play audio from the line-in option with the same quality: 16-bit, 44.1 kHz, 2 channels.

25.6 Key Functions

void audio_stream_init(void)

Initializes the I2S, I2C, and TWR-AUDIO-SGTL Tower System module for streaming audio from Line-In.

void audio_wav_init(wave_file_t *newWav)

Initializes the I2S, I2C, and TWR-AUDIO-SGTL Tower System module for playing back WAV file in Flash.

Parameters

newWav | Pointer to wave file data structure.

uint32_t config_volume(sgtl_handler_t *handler, sgtl_module_t module, uint32_t volume-Ctrl)

Sets volume from the user input.

Parameters

handler pointer to codec handler structure.

Key Functions

Key Functions

module	name of module on codec to set the volume for.
volumeCtrl	user input data from terminal menu.

Returns

status_t Return kStatus_Success if function completed successfully, return kStatusFail if function failed.

snd_status_t stream_audio(dsp_types_t dspType, uint8_t volumeCtrl)

Plays a stream of audio.

Parameters

dspType	Used to select one DSP function to perform on the data.
volumeCtrl	Value used to set decibel level on codec.

Returns

Returns soundcard status

snd_status_t get_wav_data(wave_file_t *waveFile)

Collects data from WAV file header.

Parameters

waveFile	Data structure of pcm data array.

Returns

status_t Return kStatus_Success if function completed successfully, return kStatusFail if function failed.

snd_status_t play_wav(uint32_t *pcmBuffer, uint8_t volumeCtrl)

Plays the PCM audio data from the WAV format array.

Parameters

pcmBuffer	Pointer to data array containing WAV formatted audio data.
volumeCtrl	Value used to set decibel level on codec.

Returns

status_t Return kStatus_Success if function completed successfully, return kStatusFail if function failed.

void send_wav(uint8_t *dataBuffer, uint32_t length, sai_data_format_t *dataFormat)

Sends audio data to the sound card.

Parameters

pdataBuffer	Pointer to data array containing WAV formatted audio data.
length	length of WAV file to send.
dataFormat	Point to audio_data_format_t for sound card.

float32_t do_fft(sai_data_format_t *dataFormat, uint8_t *buffer, float32_t *fftData, float32_t *fftResult)

Performs frequency analysis and finds fundamental frequency of the PCM data.

Parameters

dataFormat	Pointer to audio data format structure.
buffer	Pointer to data array to store modulated PCM data.
fftData	Pointer to data array for storing Fast Fourier Transform data.
fftResult	Point to data array for storing real frequency bins from FFT.

Returns

float32_t Returns fundamental frequency in Hz.

Key Functions

Chapter 26 Thermistor Lab Demo

This demo application demonstrates how to use PDB to trigger ADC and measure on-board thermistor.

26.1 Overview

This lab shows how to configure and use the ADC module to sample the differential voltage across onboard thermistors RT1-RT4. If the user touches any on-board thermistor with a finger, the lab application detects a change in the thermistor temperature and starts flashing the corresponding LED pair.

- The lab tutorial demonstrates:
 - how to configure ADC module to read differential inputs
 - how to filter and process ADC results
 - how to use FreeMASTER visualization tool to display sampled results.

26.2 Supported Hardware

This Tower System module is supported by the Thermistor Lab demo.

-TWR-KV10Z32

26.3 System Requirement

26.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

26.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

26.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/thermistor_lab/<toolchain>.
- Library dependencies: ksdk_platform_lib

26.4 Getting Started

26.4.1 Prepare the Demo

- 1. Short pin 1 & 2 on J11 to J14.
- 2. Short pin2 and 3 on J8.
- 3. Download the program to the target board.
- 4. Touch 4 on-board thermistor to see LED change.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

26.4.2 Demo Code Overview

The lab application configures both ADCs to be triggered by the FlexTimer0 via the PDB. The FlexTimer is configured to generate the 16 KHZ PWM and the channel1 trigger is used to trigger both ADCs via the PDB. The PDB is configured to generate four delayed trigger signals to both ADCs per FlexTimer0 Channel 1 trigger and, as a result, 4 ADCs samples are converted per each Flextimer channel trigger. The ADC is configured to be in a 16-bit differential and ping-pong mode.

When an ADC conversion is complete, an interrupt is generated by the ADC module and an interrupt service routine is executed. The interrupt service routine ADCn_ISR() calls the ADCn_Task which executes these tasks:

reads ADC results registers. filters ADC results with low-pass FIR filter. differentiates filtered results to detect a change in a voltage across the thermistor. detects a negative/positive slope of a voltage change to determine which LED will be turned on/off. executes a software timer, whose time out period is 100ms and it resets every 400ms. the software timer is used to generate a time base for LEDs flashing.

26.4.2.1 ADC Differential Mode of Operation

To measure a voltage across the thermistor, configure the ADC for a differential mode of operation. In a differential mode, the ADC measures a difference between two analogous inputs. The ADC enables selecting input pairs which are treated as differential inputs.

Detection of a Change of Thermistor Voltage

If a user places a finger on a thermistor, its temperature increases. The temperature rise results in a voltage decrease across the resistor. If the user removes the finger, the temperature decreases and the voltage goes up.

A simple differentiators are used to detect a voltage change. The filtered thermistor voltage is stored in a buffer. The buffer size is defined by the BUFF_SIZE. The differentiator calculates a difference between an actual voltage sample and a sample delayed by i_delay pointer, which points to the buffer.

delta_rt1 = rt1_filt -rt1_filt_buff[i_delay];

If the voltage across the thermistor decreases, the differentiator returns a negative value. If the voltage increases, the differentiator returns a positive value. If there is no change in voltage, the deviator output returns zero. The bigger the slope of voltage increase/decrease, the more positive/negative value the differentiator returns. The lab application uses this information to detect if the finger is placed on the particular thermistor or if the finger was removed. Placing/removing a finger on the thermistor is characterized by a certain slope (rate) of voltage decrease/increase. The application defines positive and negative thresholds for each thermistor. If a difference output exceeds threshold limits(for at least three consequent samples), an action is taken and a corresponding LED starts to flash.

Chapter 27 Thermistor Lab CADC Demo

This demo application demonstrates how to use PDB to trigger ADC and measure on-board thermistor.

27.1 Overview

This lab shows how to configure and use the ADC module to sample the differential voltage across onboard thermistors RT1-RT4. If the user touches any on-board thermistor with a finger, the lab application detects a change in the thermistor temperature and starts flashing the corresponding LED pair.

- The lab tutorial demonstrates:
 - how to configure ADC module to read differential inputs
 - how to filter and process ADC results
 - how to use FreeMASTER visualization tool to display sampled results.

27.2 Supported Hardware

This Tower System module is supported by the Thermistor Lab demo.

-TWR-KV46F150M

27.3 System Requirement

27.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

27.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

27.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/thermistor_lab_cadc/<toolchain>.
- Library dependencies: ksdk_platform_lib

27.4 Getting Started

27.4.1 Prepare the Demo

- 1. Short pin 1-2 & 3-4 on J1, J2, J19 and J23.
- 2. Download the program to the target board.
- 3. Touch 4 on-board thermistor to see LED change.

For detailed instructions, see a Kinetis SDK User's Guide for your board.

27.4.2 Demo Code Overview

The lab application configures both CADCs to be software triggered in simultaneous differential mode. The CADC is configured to be in a 12-bit differential and ping-pong mode.

When an ADC conversion is complete, an interrupt is generated by the ADC module and an interrupt service routine is executed. The interrupt service routine ADCn_ISR() calls the ADCn_Task which executes these tasks:

reads ADC results registers. filters ADC results with low-pass FIR filter. differentiates filtered results to detect a change in a voltage across the thermistor. detects a negative/positive slope of a voltage change to determine which LED will be turned on/off. executes a software timer, whose time out period is 100ms and it resets every 400ms. the software timer is used to generate a time base for LEDs flashing.

27.4.2.1 ADC Differential Mode of Operation

To measure a voltage across the thermistor, configure the ADC for a differential mode of operation. In a differential mode, the ADC measures a difference between two analogous inputs. The ADC enables selecting input pairs which are treated as differential inputs.

Detection of a Change of Thermistor Voltage

If a user places a finger on a thermistor, its temperature increases. The temperature rise results in a voltage decrease across the resistor. If the user removes the finger, the temperature decreases and the voltage goes up.

Placing/removing a finger on the thermistor is characterized by a certain slope (rate) of voltage decrease/increase. The application defines positive and negative thresholds for each thermistor. If a dif-

ference output exceeds threshold limits(for at least three consequent samples), an action is taken and a corresponding LED starts to flash.

Chapter 28 Heating, Ventilating, and Air Conditioning on IwIP TCP/IP Stack

This demo application demonstrates the Heating, Ventilating, and Air Conditioning demo on lwIP TCP/IP stack with different RTOSes.

28.1 Overview

This is simulation of HVAC system with web server using lwIP TCP/IP stack on different RTOSes. The user uses an Internet browser to send a request for connection, to set up HVAC system on board. The board acts as an HTTP server and sends a Web page back to the PC. The user also can directly set up desired temperature by pressing switches on board and observe LEDs status.

28.2 Supported RTOS

- Freescale MQX RTOS
- FreeRTOS
- C/OS-II
- C/OS-III

28.3 Supported Hardware

These Freescale Freedom development platforms and Tower System modules are supported by the Kinetis SDK web_hvac demo.

- FRDM-K64F
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

28.4 System Requirement

28.4.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

28.4.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

28.4.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/web_hvac/<rtos>/<toolchain>. Where <rtos> is one of the supported RTOSes.
- Library dependencies:
 - Baremetal, FreeRTOS, uC/OS: ksdk_platform_lib
 - MQX RTOS: mqx_<board>, mqx_stdlib_<board>

28.4.4 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/web_hvac/<toolchain>.
- Library dependencies: ksdk_platform_lib

28.5 Getting Started

28.5.1 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with the following settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

For detailed instructions steps, see a Kinetis SDK User's Guide for your board.

28.5.2 Network Configuration

Configure the IP address of PC network adapters as shown: IP address - 192.168.2.100 Subnet Mask - 255.255.255.0

28.5.3 Run the demo

- 1. Download the program to the target board, which should be installed in Tower System or Freescale Freedom.
- 2. Connect the Ethernet cable between the PC and the board.
- 3. When successfully connected, reset the board to run the demo.
- 4. Open the PC command window, type in "ping 192.168.2.102" to test whether lwIP stack is running.
- 5. Input "192.168.2.102" in the URL of an Internet browser on a PC. If successful, the web page which the board returns opens in the browser.
- 6. In the browser, click on "HVAC Status" option to observe the current information on the target board.
- 7. In the browser, Selected "Change Settings" option, input new setting then click "Set" button, the browser loads the status page. If successful, the desired temperature changes to a new setting and the actual temperature increases/decreases until it reaches desired temperature:
 - Change the desired temperature to a greater value and HVAC mode to "Heat", the actual temperature increases until it meet configured desired temperature.
 - Change the desired temperature to a lower value and HVAC mode to "Cool", the actual temperature decreases until it meets the configured desired temperature
- 8. On the other hand, the desired temperature can be changed by pressing the switches on board. The LEDs (if they exist) on the board represent HVAC system's state:
 - LED1: Simulate the Fan's state
 - LED2: System in the Heat mode
 - LED3: System in the Cool mode
 - LED4: Simulate the heart beat, increase real temperature (i.e., by hair dryer) to see the LED4 go faster and decrease temperature to see it slow down.

Chapter 29 XBAR and AOI Demo

This demo application demonstrates the XBAR and AOI demo.

Overview

The XBAR and AOI demo project is a demonstration program that uses the KSDK software. In addition to the XBAR and the AOI peripheral drivers, the PIT and the CMP module drivers are used too. A button with a pull-up resistor (PSEL) and output of 6-bit DAC (MSEL) are the CMP inputs. The PIT is configured to the periodic 500 ms interrupt generating. The CMP and the PIT outputs are connected by the XBAR module to the AOI inputs. In AOI, the CMP output is inverted and logical AND is made with the PIT and inverted CMP output. The AOI output is then connected to the XBARA_OUT0 output which is configured to generates the interrupt event on the rising edge. In the interrupt service rutine, the message is printed on a debug console. So, if the button is pressed and the PIT periodic interrupt occurs a message is printed.

Supported Platforms

This Freescale Tower System development platform is supported by the Kinetis SDK XBAR and AOI demo.

• TWR-KV46F150M

29.1 System Requirement

29.1.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

29.1.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

Run the demo

29.1.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/demo_apps/xbar_aoi_demo/<toolchain>.
- Library dependencies: ksdk_platform_lib

Getting Started

The XBAR and AOI demo project is designed to work with the Tower System.

Hardware configuration

Be sure that a jumper on J4 HDR is in 1-2 position (GC7 is connected to the button).

29.1.4 Prepare the Demo

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

29.2 Run the demo

- 1. Push the SW1 button on Tower board and watch debug console output.
- 2. The message is written on debug console every 0.5 second, if SW1 button is pressed.

Chapter 30 ADC16 Example

30.1 Overview

The ADC16 Example project is a demonstration program that uses the KSDK software to measure the internal temperature of the chip. This function uses the user input as a trigger to start the measurement. Use the ADC to read the chip's temperature, press any key in the terminal and print the converted value and temperature to the terminal.

30.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the ADC16 example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KW24D512

30.3 System Requirement

30.3.1 Hardware requirements

• J-Link ARM

- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

30.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

30.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/adc16/<toolchain>.
- Library dependencies: ksdk_platform_lib

30.4 Getting Started

30.4.1 Hardware settings

The ADC16 Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

30.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

30.4.3 Run the example

These instructions are displayed/shown on the terminal window:

press any key to start measure temperature

Input any character from the keyboard to start calculating the temperature with the calibrated value and formula listed in the Reference Manual. These instructions are displayed/shown on the terminal window:

press any key to start measure temperature ADC converted value: 14151 Temperature 29 press any key to start measure temperature

Chapter 31 CMP Example

31.1 Overview

The CMP Example compares the analog input to the reference DAC output to control an LED. If the analog input is higher than the DAC output, the LED is on. Otherwise, the LED is turned off.

31.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the CMP example.

- FRDM-K64F
- FRDM-KL03Z
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

31.3 System Requirement

31.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

31.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0

• Atollic TrueSTUDIO for ARM win32 v5.2.1

31.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/cmp/<toolchain>.
- Library dependencies: ksdk_platform_lib

31.4 Getting Started

31.4.1 Hardware settings

The CMP Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

31.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

31.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
The demo compares analog input to the reference DAC output to control an LED.
The LED is turned ON/OFF when the analog input is LOWER/HIGHER than the DAC output.
Press SW to see the LED status.
The analog input is HIGHER than DAC output!
The analog input is LOWER than DAC output!
The analog input is HIGHER than DAC output!
The analog input is LOWER than DAC output!
```

Press the SW (*) button on the board and observe the LED toggle. NOTE: For the TWR-K65F180M board, the on-board potentiometer is used instead of the SW button.

Chapter 32 COP Example

32.1 Overview

The COP Example project is a demonstration program that uses the KSDK software to enable Watchdog and continuously refreshes the Watchdog to prevent the CPU reset. After pushing the software button, the Watchdog expires after approximately 1 seconds and the chip is reset.

- Combine refresh and reset operation on the WDOG timer.
- Use a SW to start the COP. After pressing the software button, the COP starts to expire.
- Use an LED to indicate the reset process. First, the LED is turned off when the software button is pressed, the LED starts blinking. After reset, the LED is turned off. (**When running this example, we need enable watchdog)

32.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the COP example.

- FRDM-KL03Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- TWR-KL43Z48M

32.3 System Requirement

32.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

32.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13

- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

32.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/cop/<toolchain>.
- Library dependencies: ksdk_platform_lib

32.4 Getting Started

32.4.1 Hardware settings

The COP Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

32.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

32.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
COP example begin.
Press SW to begin expiring COP
```

Press the SW (*) button on the board and the board receives and refreshes the reset operation on COP WDOG timer. These instructions are displayed/shown on the terminal window:

```
Press SW to begin expiring COP
Board will reset after 1 seconds.
COP reset the chip successfully
```

Chapter 33 CRC Example

/*!

33.1 Overview

The CRC Example project is a demonstration program that uses the KSDK software to generate checksum for an array. After entering all input numbers, the checksum number is calculated and printed to the terminal.

33.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the CRC example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

33.3 System Requirement

33.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

33.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

33.4 Getting Started

33.4.1 Hardware settings

The CRC Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

33.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

33.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
CRC EXAMPLE
Please input size of buffer:
```

Input the size of the array. After the array is initialized, populate the specific values for each array element one-by-one. These instructions are displayed/shown on the terminal window:

```
Please input size of buffer: 10
Please input 10 random numbers [0 - 255]:
buffer[0] = 21
buffer[1] = 22
buffer[2] = 23
```

buffer[3] = 24 buffer[4] = 25 buffer[5] = 26 buffer[6] = 27 buffer[7] = 28 buffer[8] = 29 buffer[9] = 30

The checksum number of the array is calculated and displayed in the terminal as shown here:

Checksum value of buffer array 0x8ED9 Press any key to continue

Chapter 34 DAC Example

34.1 Overview

The DAC Example project is a demonstration program that uses the KSDK software. This function uses the terminal to enter a DAC value and convert this value to a DAC output.

34.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the DAC example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M

34.3 System Requirement

34.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

34.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

34.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/dac/<toolchain>.
- Library dependencies: ksdk_platform_lib

34.4 Getting Started

34.4.1 Hardware settings

The DAC Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

34.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

34.4.3 Run the example

These instructions are displayed/shown on the terminal window:

DAC Example. Enter the value for DAC input from 0 to 65535

Input the DAC value and the board converts that value to the DAC output. The converted value can be seen on the oscilloscope. These instructions are displayed/shown on the terminal window:

Check oscilloscope to see DAC output of 20000

Verify that the voltage is compatible with the DAC level on the oscilloscope.
Chapter 35 DMA Example

35.1 Overview

The direct memory access (DMA) controller performs complex data transfers with minimal intervention from the host processor. This example uses the DMA peripheral to transfer data from the Flash to RAM by using the DMA with different channels.

35.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the DMA example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- TWR-K21D50M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-KL43Z48M
- TWR-KV10Z32

35.3 System Requirement

35.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

35.3.2 Toolchain requirements

• IAR embedded Workbench version 7.30.4

- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

35.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/dma/<toolchain>.
- Library dependencies: ksdk_platform_lib

35.4 Getting Started

35.4.1 Hardware settings

The DMA Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

35.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

35.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
DMA EXAMPLE
Requesting channel 0 to transfer data from address 0x37ec to 0x1fffe018
Starting tranfer data ...
Transfered with DMA channel No.0: successful
Press any key to start tranferring data with other channel
```

User need type characters from the keyboard and the board will transfer data by using other channel (number of supported channels depends on each DMA instance). These instructions are displayed/shown on the terminal window:

Requesting channel 1 to transfer data from address 0x37ec to 0x1fffe018 Starting tranfer data ... Transfered with DMA channel No.1: successful Press any key to start tranferring data with other channel Requesting channel 2 to transfer data from address 0x37ec to 0x1fffe018

Starting tranfer data ... Transfered with DMA channel No.2: successful Press any key to start tranferring data with other channel Requesting channel 3 to transfer data from address 0x37ec to 0x1fffe018

Starting tranfer data ... Transfered with DMA channel No.3: successful Press any key to start tranferring data with other channel

Chapter 36 DSPI Example with other methods

36.1 Overview

The DSPI Example project is a demonstration program that uses the KSDK software. This example provides 5 examples with 5 modes: DSPI polling, non-blocking, blocking, DMA blocking, DMA non blocking and DSPI loop-back.

- DSPI board to board:
 - Transfers data through instance 0 of SPI interface. SPI0 pins of the master board are connected to the SPI0 pins of the slave board.
 - It is important to ensure all SPI board-to-board connections are kept as short as possible and that a solid ground wire is connected between the boards. Preferably this ground connection should be as close as possible to the SPI signals on each board. A poor board-to-board connection compromises data signal integrity causing failures in the example.
 - Master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The slave sends back the received buffer from the master.
 (*) (Power up slave first)
- DSPI master loop-back:
 - Transfer data through instance 0 of SPI interface. The MISO pin and MOSI pin are connected.
 - Sends an array out through the MISO pin and compares it with the received buffer from the MOSI pin.

_

36.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the DSPI example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

Kinetis SDK v.1.2 Demo Applications User's Guide

36.3 System Requirement

36.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

36.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

36.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/dspi/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

36.4 Getting Started

36.4.1 Hardware settings

- DSPI master loopback:
 - Transfers data through the instance 0 of the SPI interface. The MISO pin and MOSI pin are connected.
- DSPI board to board:
 - Transfers data through the instance 0 of the SPI interface. SPI0 pins of the master board are connected to the SPI0 pins of the slave board.

FRDM-K22F:

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
SPI0_SIN	J1 pin 11	->	SPI0_SOUT	J1 pin 16

SPI0_SOUT	J1 pin 16	->	SPI0_SIN	J11 pin 11
SPI0_CLK	J1 pin 15	->	SCK	J1 pin 15
SPIO_CS0	J24 pin 9	->	PCSO0	J24 pin 9
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-KW24 :

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
SPI0_SIN	J2 pin 10	->	SPI0_SOUT	J2 pin 8
SPI0_SOUT	J2 pin 8	->	SPI0_SIN	J2 pin 10
SPI0_CLK	J2 pin 12	->	SCK	J2 pin 12
SPI0_CS0	J2 pin 6	->	PCSO0	J2 pin 6
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-K64F:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
SPI0_SIN	J2 pin 10	->	SPI0_SOUT	J2 pin 8
SPI0_SOUT	J2 pin 8	->	SPI0_SIN	J2 pin 10
SPI0_CLK	J2 pin 12	->	SCK	J2 pin 12
SPI0_SC0	J2 pin 6	->	PCSO0	J2 pin 6
GND	J2 pin 14	->	GND	J2 pin 14

TWR-K21D50M & TWR-K21F120M & TWR-K64F120M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
SPI0_SIN	Primary Elevator B44	->	SPI0_SOUT	Primary Elevator B45
SPI0_SOUT	Primary Elevator B45	->	SPI0_SIN	Primary Elevator B44
SPI0_SCK	Primary Elevator B48	->	SPI0_SCK	Primary Elevator B48
SPI0_PCS0	Primary Elevator B46	->	SPI0_PCS0	Primary Elevator B46

Getting	Started
Geeeng	Startea

GND Primary El B2	evator ->	GND	Primary Elevator B2
----------------------	-----------	-----	------------------------

TWR-K22F120M & TWR-K24F120M & TWR-KV10Z32 & TWR-KV31F120M & TWR-K24WD512:

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
SPI0_SIN	Primary Elevator B44	->	SPI0_SOUT	Primary Elevator B45
SPI0_SOUT	Primary Elevator B45	->	SPI0_SIN	Primary Elevator B44
SPI0_CLK	Primary Elevator B48	->	SPI0_CLK	Primary Elevator B48
SPI0_CS0	Primary Elevator B46	->	SPI0_CS0	Primary Elevator B46
GND	Primary Elevator B2	->	GND	Primary Elevator B2

TWR-K60D100M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
MISO	Primary Elevator A77	->	MISO	Primary Elevator A76
MOSI	Primary Elevator A76	->	MOSI	Primary Elevator A77
SCK	Primary Elevator B64	->	SCK	Primary Elevator B64
PCSO0	Primary Elevator A63	->	PCSO0	Primary Elevator A63
GND	Primary Elevator B2	->	GND	Primary Elevator B2

TWR-K65F180M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	Primary Elevator B19	->	MISO	Primary Elevator B20

MOSI	Primary Elevator B20	->	MOSI	Primary Elevator B19
SCK	Primary Elevator B15	->	SCK	Primary Elevator B15
PCSO0	Primary Elevator A16	->	PCSO0	Primary Elevator A16
GND	Primary Elevator B2	->	GND	Primary Elevator B2

TWR-KV46F150M:

Master	Board	Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
MISO	Primary Elevator A37	->	MISO	Primary Elevator A38
MOSI	Primary Elevator A38	->	MOSI	Primary Elevator A37
SCK	Primary Elevator A39	->	SCK	Primary Elevator A39
PCSO0	Primary Elevator A40	->	PCSO0	Primary Elevator A40
GND	Primary Elevator B2	->	GND	Primary Elevator B2

36.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

Kinetis SDK v.1.2 Demo Applications User's Guide

36.4.3 Run the example

DSPI blocking Master-Slave

Note: On the TWR-K65F180M board, ensure that all TWR-SERs are rejected. Set up the slave first and the slave board displays this message on the terminal:

```
DSPI board to board blocking example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Slave example is running...
```

The master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The master board prints this message on the terminal:

```
DSPI board to board blocking example

This example run on instance 0

Be sure DSPI0-DSPI0 are connected

Transfer at baudrate 468750

Master transmit:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Master receive:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

DSPI Master Sends/ Receives successfully

Press any key to run again
```

The slave board receives and prints this message on terminal:

Slave receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Slave example is running...

DSPI non-blocking Master-Slave

Set up the slave first and the slave board displays this message on the terminal:

```
DSPI board to board non-blocking example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Slave example is running...
```

The master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The master board prints this message on the terminal:

```
DSPI board to board non-blocking example
This example run on instance 0
Be sure DSPIO-DSPIO are connected
Transfer at baudrate 468750
```

Master transmit: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Master receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 DSPI Master Sends/ Receives successfully Press any key to run again

The slave board receives and prints this message on the terminal:

Slave receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Slave example is running...

DSPI edma blocking Master-Slave

Set up the slave first and the slave board displays this message on the terminal:

```
DSPI board to board EDMA blocking example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Slave example is running...
```

The master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The master board print this message on the terminal:

```
DSPI board to board edma-blocking example

This example run on instance 0

Be sure DSPI0-DSPI0 are connected

Transfer at baudrate 468750

Master transmit:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Master receive:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

DSPI Master Sends/ Receives successfully

Press any key to run again
```

The slave board will receive and print on terminal:

Slave receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Slave example is running...

DSPI edma non-blocking Master-Slave

Set up the slave first and the slave board displays this message on the terminal:

```
DSPI board to board EDMA non-blocking example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Slave example is running...
```

The master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The master board prints this message on the terminal:

```
DSPI board to board edma-non-blocking example

This example run on instance 0

Be sure DSPI0-DSPI0 are connected

Transfer at baudrate 468750

Master transmit:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Master receive:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

DSPI Master Sends/ Receives successfully

Press any key to run again
```

The slave board receives and prints this message on terminal:

```
Slave receive:

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Slave example is running...
```

DSPI polling Master-Slave

Set up the slave first and the slave board displays this message on the terminal:

```
DSPI board to board polling example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Slave example is running...
```

The master sends an array to the slave and receives the array back from the slave. It also compares whether the two buffers are the same. The master board displays this message on the terminal:

```
DSPI board to board polling example
This example run on instance 0
Be sure DSPI0-DSPI0 are connected
Transfer at baudrate 468750
Master transmit:
        01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
        11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
Master receive:
        01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
        11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
DSPI Master Sends/ Receives successfully
Press any key to run again
```

The slave board receives and prints this message on the terminal:

Slave receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Slave example is running...

DSPI Loopback

These instructions are displayed/shown on the terminal window:

DSPI master self loopback example This example run on instance 0 Be sure MISO-to-MOSI are connected Transfer at baudrate 468750 Master transmit: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Master receive: 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 DSPI Sends/ Receives successfully Press any key to run again

Chapter 37 EDMA Example

37.1 Overview

The enhanced direct memory access (eDMA) controller is a second-generation performing complex data transfers with minimal intervention from a host processor. This example uses the eDMA peripheral to transfer data from the Flash to RAM using the eDMA with different channels.

37.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the EDMA example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

37.3 System Requirement

37.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

37.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

37.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/edma/<toolchain>.
- Library dependencies: ksdk_platform_lib

37.4 Getting Started

37.4.1 Hardware settings

The EDMA Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

37.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

37.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
EDMA transfer from memory to memory
Starting EDMA channel No. 0 to transfer data from addr 0x1fff0000 to addr 0x1fff0028
Transfered with eDMA channel No.0: successful
Press any key to start transfer with other channel
```

Starting EDMA channel No. 1 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.1: successful Press any key to start transfer with other channel Starting EDMA channel No. 2 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.2: successful Press any key to start transfer with other channel

Starting EDMA channel No. 3 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.3: successful Press any key to start transfer with other channel

Starting EDMA channel No. 4 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.4: successful Press any key to start transfer with other channel

Starting EDMA channel No. 5 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.5: successful Press any key to start transfer with other channel

Starting EDMA channel No. 6 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.6: successful Press any key to start transfer with other channel

Starting EDMA channel No. 7 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.7: successful Press any key to start transfer with other channel

Starting EDMA channel No. 8 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.8: successful Press any key to start transfer with other channel

Starting EDMA channel No. 9 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.9: successful Press any key to start transfer with other channel

Starting EDMA channel No. 10 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.10: successful Press any key to start transfer with other channel

Starting EDMA channel No. 11 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.11: successful Press any key to start transfer with other channel

Starting EDMA channel No. 12 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.12: successful Press any key to start transfer with other channel

Starting EDMA channel No. 13 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.13: successful Press any key to start transfer with other channel

Starting EDMA channel No. 14 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.14: successful Press any key to start transfer with other channel

Starting EDMA channel No. 15 to transfer data from addr 0x1fff0000 to addr 0x1fff0028 Transfered with eDMA channel No.15: successful Press any key to start transfer with other channel

This example will try to transfer data from FLASH to RAM on each channels that are supported by the eDMA instance.

Chapter 38 EWM Example

38.1 Overview

The EWM Example project is a demonstration program that uses the KSDK software. This function uses EWM as a Watchdog for an external circuit when the counter reaches a high value. First, the EWM keeps refreshing. When the software button is pressed, the EWM expires and an interrupt occurs.

38.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the EWM example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

38.3 System Requirement

38.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

38.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3

- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

38.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/ewm/<toolchain>.
- Library dependencies: ksdk_platform_lib

38.4 Getting Started

38.4.1 Hardware settings

The EWM Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

38.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

38.4.3 Run the example

These instructions are displayed/shown on the terminal window:

EWM example Press SW1 to expire EWM

Press the SW (*) button on the board to reset the counter and enable the interrupt for the next run. These instruction are displayed/shown on the terminal window:

EWM interrupt has occurred Press SW to allow the EWM to expire

Chapter 39 FLASH Example

39.1 Overview

The Flash Example project is a demonstration program that uses the KSDK software to access Flash memory. The example provide following features:

- Check flash information
- Erase a sector and verify
- Program a sector and verify

39.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the FLASH example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

39.3 System Requirement

39.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

39.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

39.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/flash/<toolchain>.
- Library dependencies: ksdk_platform_lib

39.4 Getting Started

39.4.1 Hardware settings

The FLASH Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

39.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.

4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

39.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
Flash Example Start
Flash Information:
Total Flash Size: 1024 KB, Hex: (0x100000)
Flash Sector Size: 4 KB, Hex: (0x1000)
There is no D-Flash (FlexNVM) on this Device.
There is no Enhanced EEPROM (EEE) on this Device.
Flash is UNSECURE!
Erase a sector of flash
successfully Erased Sector 0xfa000 -> 0xfb000
Program a buffer to a sector of flash
successfully Programmed and Verified Location 0xfa000 -> 0xfa080
```

Flash Example End

Chapter 40 FlexCAN Example

40.1 Overview

This FlexCAN example application demonstrates the SDK Peripheral drivers working with different methods. FlexCAN network and FlexCAN loop-back are the two provided examples:

- CAN network: transfers data through the CAN interface. On node 1, the user inputs characters by using the UART debug terminal and sends the data with the FlexCAN interface. On the other node, the FlexCAN receives the data and prints it to the UART terminal.
- CAN loop-back: transfers data through the CAN loop-back interface. On one node, one 8-byte buffer stream transmitter output is internally sent back to the receiver input.

The board transfers and receives characters through the FlexCAN-UART interface. Type the characters on the keyboard and the board receives and displays them on the terminal screen. Look for instructions output to the terminal.

40.2 Supported Platforms

These Tower System modules are supported by the FlexCAN example:

- TWR-K21F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

40.3 System Requirement

40.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

40.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13

- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

40.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/flexcan/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

40.4 Getting Started

40.4.1 Hardware settings

TWR-SER Tower System module configuration (only FlexCAN network example)

- Short J5(1-2), J5(3-4), J5(5-6), J5(7-8), and J5(9-10) to enable CAN connection.
- Connect the two TWR-SER modules through the CAN port (J7).

Although not required, the recommendation is to leave the development board jumper settings and configurations in default state when running this example.

40.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

40.4.3 Run the example

40.4.3.1 FlexCAN loopback

These instructions are displayed/shown on the terminal window:

```
Running the FlexCAN loopback example.
********FLEXCAN LOOPBACK EXAMPLE********
Message format: Standard (11 bit id)
Message buffer 8 used for Rx.
```

```
Message buffer 9 used for Tx.
Interrupt Mode: Enabled
Operation Mode: TX and RX --> Normal
FlexCAN MB receive config
FlexCAN send config
Data transmit: 0a 0b 0c 0d 0e 0f 10 11
DLC=8, mb_idx=8
RX MB data: 0x0a 0b 0c 0d 0e 0f 10 11
ID: 0x123Press any key to run again!
```

40.4.3.2 FlexCAN network

After connecting the two boards, these instructions display on each terminal window. One board must be chosen as node A and the other board as node B. Data is sent continuously between the node A and the node B.

This message displays on the node A terminal:

```
*********FlexCAN : SCI2CAN demo ********
Message format: Standard (11 bit id)
Message buffer 8 used for Rx.
Message buffer 9 used for Tx.
OSJTAG Port used for Serial Console.
Interrupt Mode: Enabled
Operation Mode: TX and RX --> Normal
Please select local node as A or B:
Node:A
Data from Node B. Data from Node B. Data from Node B.
```

This message displays on the node B terminal:

```
*********FlexCAN : SCI2CAN demo ********
Message format: Standard (11 bit id)
Message buffer 8 used for Rx.
Message buffer 9 used for Tx.
OSJTAG Port used for Serial Console.
Interrupt Mode: Enabled
Operation Mode: TX and RX --> Normal
Please select local node as A or B:
Node:B
Data from Node B. Data from Node B. Data from Node B.
```

Chapter 41 FlexIO simulated I2C Example with other methods

41.1 Overview

The FlexIO I2C example application demonstrates the FlexIO simulated I2C driver working with different methods. The FlexIO I2C example shows transmit/receive between the FlexIO-simulated I2C and I2C1 using these efficiency methods:

- Using blocking method
- Using non-blocking method

41.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the FlexIO I2C example.

- TWR-KL43Z48M
- FRDM-KL43Z48M
- FRDM-KL27Z48M

41.3 System Requirement

41.3.1 Hardware requirements

- J-Link ARM
- PE Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Personal Computer

41.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5
- Atollic TrueSTUDIO for ARM win32 v5.2.1

41.3.3 Software requirements

• The project files are in: <SDK_Install>/examples/<board>/driver_examples/flexio/i2c/<toolchain>.

• Library dependencies: ksdk_platform_lib

41.4 Getting Started

41.4.1 Hardware settings

This example requires connecting the FlexIO pins with the I2C1 pins. Connect FlexIO pins to the I2C1 pins. Note that the default uses FlexIO pin2 and pin4:

FlexIO Pins	Connects To	I2C1 Pins	
FlexIO Pin2	->	I2C1 SDA	
FlexIO Pin4	->	I2C1 SCL	

Make these connections between the FlexIO pins and the I2C1 pins by using external wires:

TWR-KL43Z48

FlexIO Pins		Connects To	I2C1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD2/FLEXIO_PI- N2	Primary Elevator B45	->	I2C1 SDA	Primary Elevator A8
PTD4/FLEXIO_PI- N4	Primary Elevator B59	->	I2C1 SCL	Primary Elevator A7

FRDM-KL43Z48M

FlexIO Pins		Connects To	I2C1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD2/FLEXIO_PI- N2	J2-4	->	I2C1 SDA	J2-18
PTD4/FLEXIO_PI- N4	J2-6	->	I2C1 SCL	J2-20

FRDM-KL27Z48M

FlexIO Pins		Connects To	I2C1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD2/FLEXIO_PI- N2	J1-5	->	I2C1 SDA	J2-18

				Getting Started
PTD4/FLEXIO_PI- N4	J1-9	->	I2C1 SCL	J2-20

C

04.4

41.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. For TWR-KL43Z48M, insert TWR board into TWR-ELEV.
- 3. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 4. Download the program to the target board.
- 5. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

41.4.3 Run the example

These instructions are displayed/shown on the terminal window:

Press any key to start transfer:

Type a character on the keyboard and the FlexIO simulated I2C sends a buffer to the I2C1. It also compares the received buffer on the I2C1 side with the txBuff and checks whether the result is successful. Then, the I2C1 sends a buffer to the FlexIO simulated I2C, compares the receive buffer in the FlexIO simulated I2C side to the txBuff, and checks whether the result is successful.

-----Non-blocking example------FlexIO simulated I2C master to I2C standard slave write transfer succeed!! FlexIO simulated I2C master to I2C standard slave read transfer succeed!! ------Blocking example------FlexIO simulated I2C master to I2C standard slave write transfer succeed!! FlexIO simulated I2C master to I2C standard slave read transfer succeed!! ...

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Chapter 42 Flexio I2S Example with other methods

42.1 Overview

The FlexIO I2S example project is a demonstration program that uses the KSDK software. This example plays back a period of sound stored in the Flash. This example involves four methods:

- Using the master interrupt
- Using the master DMA
- Using the slave interrupt and slave DMA

42.2 Supported Platforms

This Tower System module is supported by the FlexIO I2S example:

• TWR-KL43Z48M

42.3 System Requirement

42.3.1 Hardware requirements

- J-Link ARM
- PE Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- TWR-SGTL5000 board
- Headphone
- Hardware (tower/base board, ...) for specific device
- Personal Computer

42.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5
- Atollic TrueSTUDIO for ARM win32 v5.2.1

42.3.3 Software requirements

• The project files are in: <SDK_Install>/examples/<board>/driver_examples/flexio/i2s/<toolchain>.

• Library dependencies: ksdk_platform_lib

42.4 Getting Started

42.4.1 Hardware settings

This example requires connecting the FLEXIO pins with the SAI pins so that the I2S signals can route to the TWR-SGTL5000 board. Connect FlexIO pins to the SAI pins. Note that the default uses the FlexIO pin $0 \sim \text{pin}3$:

Flexio Pins	Connects To	SAI	Pins
Flexio Pin0	->	SAI TxData	
Flexio Pin1	->	SAI RxData	
Flexio Pin2	->	SAI SCLK	
Flexio Pin3	->	SAI FS	

Make these connections between the FlexIO pins and SAI pins by using external wires:

TWR-KL43Z48

Flexio Pins		Connects To	SAI Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD2/FLEXIO_PI- N2 (*)	Primary Elevator B45	->	SAI SCLK (*)	Primary Elevator A22
PTD3/FLEXIO_PI- N3 (*)	Primary Elevator B44	->	SAI Fs (*)	Primary Elevator A23
PTD0/FLEXIO_PI- N0	Primary Elevator B46	->	SAI TxData	Primary Elevator A25
PTD0/FLEXIO_PI- N1	Primary Elevator B48	->	SAI TxData	Primary Elevator A24

42.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Insert all board into TWR-ELEV.
- 3. Insert headphone into J7 port in TWR-SGTL5000 board.
- 4. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits

- No parity
- One stop bit
- No flow control
- 5. Download the program to the target board.
- 6. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

42.4.3 Run the example

These instruction are repeatedly displayed/shown on the terminal window:

Master Interrupt testing passed! Master DMA testing passed! Slave Interrupt testing passed! Slave DMA testing passed!

Users can hear the sine wave sound in the headphones. <note> Because the FlexIO does not have the M-CLK, the example has to use the MCLK in the TWR-SGTL5000 board to make the codec work correctly. The clock, which is not a part of the FlexIO clock source, is not accurate. This issue causes the clock mismatch between the FlexIO and the sgtl5000 codec. As a result, when the FlexIO i2s is the master, it has a certain amount of noise.
Chapter 43 FlexIO simulated SPI Example with other methods

43.1 Overview

The FlexIO SPI example application demonstrates the FlexIO simulated SPI driver working with different methods. The FlexIO SPI example shows the transmit/receive between the FlexIO-simulated SPI and SPI1 using these methods:

master

- Using interrupts
- Using the DMA

slave

- Using the interrupts
- Using the DMA

43.2 Supported Platforms

This Tower System module is supported by the FlexIO SPI example:

- TWR-KL43Z48M
- FRDM-KL27Z48M

43.3 System Requirement

43.3.1 Hardware requirements

- J-Link ARM
- PE Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Personal Computer

43.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13

Kinetis SDK v.1.2 Demo Applications User's Guide

- Kinetis Design Studio IDE v.2.5
- Atollic TrueSTUDIO for ARM win32 v5.2.1

43.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/flexio/spi/<mode>/<toolchain>
- Library dependencies: ksdk_platform_lib

43.4 Getting Started

43.4.1 Hardware settings

This example requires connecting FlexIO pins with the SPI1 pins. Connect FlexIO pins to the SPI1 pins. Note that the default uses the FlexIO pin0~pin3:

FlexIO Pins	Connects To	SPI1	Pins
FlexIO Pin0	->	SPI1 MOSI/MISO	
FlexIO Pin1	->	SPI1 MISO/MOSI	
FlexIO Pin2	->	SPI1 SCK	
FlexIO Pin3	->	SPI1 CSn	

Make these connections between the FlexIO Pins and the SPI1 pins by using external wires:

master example

FlexIO Pins		Connects To	SPI1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD0/FLEXIO_PI- N0	Primary Elevator B46	->	SPI1 MOSI	Primary Elevator B10
PTD1/FLEXIO_PI- N1	Primary Elevator B48	->	SPI1 MISO	Primary Elevator B11
PTD2/FLEXIO_PI- N2	Primary Elevator B45	->	SPI1 SCK	Primary Elevator B7
PTD3/FLEXIO_PI- N3	Primary Elevator B44	->	SPI1 CSn	Primary Elevator B9

FRDM-KL27Z48M

FlexIO Pins		Connects To	SPI1 Pins	
Pin Name	Board Location		Pin Name	Board Location

PTD0/FLEXIO_PI- N0	J1-1	->	SPI1 MOSI	J2-18
PTD1/FLEXIO_PI- N1	J1-3	->	SPI1 MISO	J2-20
PTD2/FLEXIO_PI- N2	J1-5	->	SPI1 SCK	J1-11
PTD3/FLEXIO_PI- N3	J1-7	->	SPI1 CSn	J1-9

slave example

FlexIO Pins		Connects To	SPI1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD0/FLEXIO_PI- N0	Primary Elevator B46	->	SPI1 MISO	Primary Elevator B11
PTD4/FLEXIO_PI- N1	Primary Elevator B48	->	SPI1 MOSI	Primary Elevator B10
PTD2/FLEXIO_PI- N2	Primary Elevator B45	->	SPI1 SCK	Primary Elevator B7
PTD4/FLEXIO_PI- N3	Primary Elevator B44	->	SPI1 CSn	Primary Elevator B9

FRDM-KL27Z48M

FlexIO Pins		Connects To	SPI1 Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD0/FLEXIO_PI- N0	J1-1	->	SPI1 MOSI	J2-20
PTD1/FLEXIO_PI- N1	J1-3	->	SPI1 MISO	J2-18
PTD2/FLEXIO_PI- N2	J1-5	->	SPI1 SCK	J1-11
PTD3/FLEXIO_PI- N3	J1-7	->	SPI1 CSn	J1-9

43.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. For TWR-KL43Z48M, insert TWR board into TWR-ELEV.

- 3. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 4. Download the program to the target board.
- 5. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

43.4.3 Run the example

master example

These instructions are displayed/shown on the terminal window:

Press any key to start the transfer:

Type a character on the keyboard and the FlexIO-simulated SPI master starts the transfer with the SPI1 slave, compares the masterWriteBuff and slaveReadBuff, the slaveWriteBuff and the masterReadBuff to check whether the transfer is successful.

FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave transfer DMA bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave transfer DMA bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!! FlexIO simulated SPI master to SPI slave bidirectional transfer succeed!!

slave example

These instructions are displayed/shown on the terminal window:

SPI1 acts as master starts transfer with masterWriteBuff and masterReadBuff.
 FlexIO simulated SPI slave also transfer with slaveWriteBuff and slaveReadBuff.
 Compare masterWriteBuff and slaveReadBuff, slaveWriteBuff and masterReadBuff to see result.

Press any key to start transfer:

Type a character on the keyboard and the SPI1 master starts the transfer with the FlexIO- simulated SPI slave, compares the masterWriteBuff and the slaveReadBuff, the slaveWriteBuff and the masterReadBuff to check whether the transfer is successful.

SPI master to FlexIO simulated SPI slave bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave DMA bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave DMA bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave bidirectional transfer succeed!! SPI master to FlexIO simulated SPI slave bidirectional transfer succeed!!

Chapter 44 FlexIO simulated UART Example with other methods

44.1 Overview

The FlexIO UART example application demonstrates the FlexIO-simulated UART driver working with different methods. The FlexIO UART example shows the transmit/receive between the FlexIO-simulated UART and the LPUART1 using interrupts and DMA:

- flexio_uart_example using interrupts
- flexio_uart_dma_example using DMA

44.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the FlexIO UART example.

- TWR-KL43Z48M
- FRDM-KL43Z
- FRDM-KL27Z

44.3 System Requirement

44.3.1 Hardware requirements

- J-Link ARM
- PE Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Personal Computer

44.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5
- Atollic TrueSTUDIO for ARM win32 v5.2.1

44.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/flexio/uart/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

44.4 Getting Started

44.4.1 Hardware settings

This example requires connecting the FLEXIO pins with the LPUART1 pins. Connect the FlexIO pins to the LPUART1 pins. Note that the default uses the FlexIO pin2 and pin4:

FlexIO Pins	Connects To	LPUART1 Pins	
FlexIO Pin2	->	LPUART1 Rx	
FlexIO Pin4	->	LPUART1 Tx	

Make these connections between the FlexIO pins and LPUART pins by using external wires:

TWR-KL43Z48

FlexIO Pins		Connects To	LPUART Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD0/FLEXIO_PI- N2	Primary Elevator B45	->	LPUART1 Rx	TWR-KL43Z48M J15-14
PTD0/FLEXIO_PI- N4	Primary Elevator B59	->	LPUART1 Tx	Primary Elevator B47

FRDM-KL43Z

Because the LPUART1_RX is not pinned out on the FRDM-KL43Z, the example only demonstrates the FlexIO UART Rx:

FlexIO Pins		Connects To	LPUART Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD4/FLEXIO_PI- N4	J2-6	->	LPUART1 Tx	J1-7

FRDM-KL27Z

FlexIO Pins		Connects To	LPUART Pins	
Pin Name	Board Location		Pin Name	Board Location
PTD0/FLEXIO_PI- N2	J1-5	->	LPUART1 Rx	J3-3
PTD4/FLEXIO_PI- N4	J1-9	->	LPUART1 Tx	J3-1

44.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Insert TWR board into TWR-ELEV.
- 3. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 4. Download the program to the target board.
- 5. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

44.4.3 Run the example

44.4.3.1 FLEXIO_UART_DMA interrupt method

These instructions are displayed/shown on the terminal window:

Type a character from the keyboard and the FlexIO simulated UART sends a buffer to the LPUART1, compares the receive buffer in the LPUART1 side with the txBuff and checks whether the result is successful. Then, the LPUART1 sends a buffer to the FlexIO simulated UART, compares the received buffer in the FlexIO-simulated UART side with the txBuff and checks whether the result is successful.

FlexIO simulated UART receive from FlexIO LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

```
FlexIO simulated UART receive from FlexIO LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully ...
```

For other boards:

Transfer from FlexIO simulated UART to LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully Transfer from FlexIO simulated UART to LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully Transfer from FlexIO simulated UART to LPUART1 successfully FlexIO simulated UART receive from FlexIO LPUART1 successfully ...

44.4.3.2 FLEXIO_UART_DMA interrupt method

These instructions are displayed/shown on the terminal window:

Type a character from the keyboard and the FlexIO-simulated UART sends a buffer to the LPUART1, compares the received buffer in the LPUART1 side with the txBuff, checks whether the result is successful. Then, the LPUART1 sends a buffer to the FlexIO-simulated UART, compares the received buffer in the FlexIO-simulated UART, side with the txBuff and checks whether the result is successful.

FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully

• • •

For other boards:

Transfer from FlexIO simulated UART to LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully Transfer from FlexIO simulated UART to LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully Transfer from FlexIO simulated UART to LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully Transfer from FlexIO simulated UART to LPUART1 using DMA successfully Transfer from FlexIO simulated UART to LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully FlexIO simulated UART receive from FlexIO LPUART1 using DMA successfully

. . .

Chapter 45 FTM Example

45.1 Overview

The FTM Example project is a demonstration program that uses the KSDK software to generate a square pulse PWM to control the LED brightness.

- FTM generates a PWM with the increasing and decreasing duty cycle.
- LED brightness is increasing and then dimming. This is a continuous process.

45.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the FTM example.

- FRDM-K22F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

<note>The TWR-K65F180M Tower System module does not have a suitable LED. The PWM signal is connected to the elevator board connector B25.</note>

45.3 System Requirement

45.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

45.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

45.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/ftm/<toolchain>.
- Library dependencies: ksdk_platform_lib

45.4 Getting Started

45.4.1 Hardware settings

The FTM Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

45.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

45.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
Welcome to FTM example
See the change of LED brightness
```

After that, the LED brightness is increasing and then dimming. This is a continuous process.

Chapter 46 GPIO Example

46.1 Overview

The GPIO Example project is a demonstration program that uses the KSDK software to manipulate the general-purpose outputs. The example is supported by the set, clear, and toggle write-only registers for each port output data register. The example uses the software button to control/toggle the LED.

46.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the GPIO example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

46.3 System Requirement

46.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable

- Hardware (tower/base board, ...) for specific device
- Personal Computer

46.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

46.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/gpio/<toolchain>.
- Library dependencies: ksdk_platform_lib

46.4 Getting Started

46.4.1 Hardware settings

The GPIO Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

46.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

46.4.3 Run the example

These instructions are displayed/shown on the terminal window:

GPIO PD Driver example Press SW to turn on/off a LED1

Press the SW (*) button on the board and observe the LED toggle, which is controlled by GPIO.

Chapter 47 I2C Example with other methods

47.1 Overview

The I2C Example project is a demonstration program that uses the KSDK software. This example provides 4 examples: I2C blocking, non blocking, callback and polling.

- I2C master sends and receives the array to/from the I2C slave and compares whether the two buffers are the same
- I2C slave sends the buffer received from the master then echoes back to the master
- First run the master and then run the slave

47.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the I2C example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

47.3 System Requirement

47.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

47.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

47.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/i2c/<use_-case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

47.4 Getting Started

47.4.1 Hardware settings

This example requires two separate boards. Connect an instance of the I2Cx master to the I2Cx slave. The process is the same as the I2C common instance in the demo project:

Master Board	Connects To	Slave	Board
SDA	->	SDA	
SCL	->	SCL	
GND	->	GND	

Make these connections between the two boards by using external wires:

FRDM-K22F :

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTB2/I2C0_SCL	J24 Pin 12	->	PTB2/I2C0_SCL	J24 Pin 12
PTB3/I2C0_SDA	J24 Pin 10	->	PTB3/I2C0_SDA	J24 Pin 10
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-K64F:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE24/I2C0_SCL	J2 Pin 20	->	PTE24/I2C0_SCL	J2 Pin 20
PTE25/I2C0_SDA	J2 Pin 18	->	PTE25/I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KL02Z & FRDM-KL03Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE3/I2C0_SCL	J7 Pin 10	->	PTE3/I2C0_SCL	J7 Pin 10
PTE4/I2C0_SDA	J7 Pin 9	->	PTE4/I2C0_SDA	J7 Pin 9
GND	J7 Pin 7	->	GND	J7 Pin 7

FRDM-KL25Z, TWR-KL25Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C1_SCL	J10 Pin 12	->	I2C1_SCL	J10 Pin 12
I2C1_SDA	J10 Pin 10	->	I2C1_SDA	J10 Pin 10
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KL26Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE24/I2C0_SCL	J2 Pin 20	->	PTE24/I2C0_SCL	J2 Pin 20
PTE25/I2C0_SDA	J2 Pin 18	->	PTE25/I2C0_SDA	J2 Pin 18

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

GND J2 Pin 14 -> GND J2 Pin 14	n 14

FRDM-KL27Z & FRDM-KL43Z & FRDM-KL46Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTD7/I2C1_SCL (*)	J2 Pin 20	->	PTD7/I2C1_SCL (*)	J2 Pin 20
PTD6/I2C1_SDA (*)	J2 Pin 18	->	PTD6/I2C1_SDA (*)	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

FRDM-KW24:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	J2 Pin 20	->	I2C0_SCL	J2 Pin 20
I2C0_SDA	J2 Pin 18	->	I2C0_SDA	J2 Pin 18
GND	J2 Pin 14	->	GND	J2 Pin 14

MRB-KW01:

Master Board REVD and I2C1		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE1/I2C1_SCL	J15 Pin 12	->	PTE1/I2C1_SCL	J15 Pin 12
PTE0/I2C1_SDA	J14 Pin 12	->	PTE0/I2C1_SDA	J14 Pin 12
GND	J14 Pin 18	->	GND	J14 Pin 18

TWR-K21D50M & TWR-K22F120M & TWR_K24F120M & TWR-KV31F120M & TWR-KL43Z48M & TWR-KV31F120M:

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
PTE24/I2C0_SCL	Primary Elevator	->	PTE24/I2C0_SCL	Primary Elevator
(*)	A7		(*)	A7
PTE25/I2C0_SDA	Primary Elevator	->	PTE25/I2C0_SDA	Primary Elevator
(*)	A8		(*)	A8

GND	Primary Elevator	->	GND	Primary Elevator
	A6			A6

TWR-KV10Z32:

Note: Board is required to short J7 pin 2-3 and J9 pin 2-3 to enable pull up resistors on SDA0, SCL0.

Master Board		Connects To	Slave	Board
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C0_SCL	Primary Elevator A7
I2C0_SDA	Primary Elevator A8	->	I2C0_SDA	Primary Elevator A8
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K60D100M & TWR-K64F120M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE10/I2C1_SCL	Primary Elevator A75	->	PTE10/I2C1_SCL	Primary Elevator A75
PTE11/I2C1_SDA	Primary Elevator B71	->	PTE11/I2C1_SDA	Primary Elevator B71
GND	Primary Elevator A6	->	GND	Primary Elevator A6

TWR-K65F180M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE19/I2C0_SCL	Primary Elevator - Pin A7	->	PTE19/I2C0_SCL	Primary Elevator - Pin A7
PTE18/I2C0_SDA	Primary Elevator - Pin A8	->	PTE18/I2C0_SDA	Primary Elevator - Pin A8
GND	Primary Elevator A65	->	GND	Primary Elevator A65

TWR-KV46F150M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTE19/I2C0_SCL	Primary Elevator - Pin A7	->	PTE19/I2C0_SCL	Primary Elevator - Pin A7
PTE18/I2C0_SDA	Primary Elevator - Pin A8	->	PTE18/I2C0_SDA	Primary Elevator - Pin A8
GND	Primary Elevator A65	->	GND	Primary Elevator A65

TWR-K21F120M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
PTC10/I2C1_SCL	Primary Elevator B50	->	PTC10/I2C1_SCL	Primary Elevator B50
PTC11/I2C1_SDA	Primary Elevator B51	->	PTC11/I2C1_SDA	Primary Elevator B51
GND	Primary Elevator A65	->	GND	Primary Elevator A65

TWR-KW24D512:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
I2C0_SCL	Primary Elevator A7	->	I2C0_SCL	Primary Elevator A7
I2C0_SDA	Primary Elevator A8	->	I2C0_SDA	Primary Elevator A8
GND	Primary Elevator A81	->	GND	Primary Elevator A81

47.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits

- No parity
- One stop bit
- No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

47.4.3 Run the example

47.4.3.1 I2C blocking

These instructions are displayed/shown on the terminal window:

On Master board:

Pless any key to start transfer:

Type a character on the keyboard and the master board sends to the slave board and receives back from the slave board.

On Master board:

```
Master sends 1 bytes:

01

Master Sends/ Receives 1 bytes successfully

Master sends 2 bytes:

01 02

Master Sends/ Receives 2 bytes successfully

Master sends 3 bytes:

01 02 03

Master Sends/ Receives 3 bytes successfully

Master sends 4 bytes:

01 02 03 04

Master Sends/ Receives 4 bytes successfully

...
```

On Slave board:

47.4.3.2 I2C non-blocking

These instructions are displayed/shown on the terminal window same as above.

47.4.3.3 I2C callback

These instructions are displayed/shown on the terminal window same as above.

47.4.3.4 I2C polling

These instructions are displayed/shown on the terminal window same as above.

Chapter 48 Low Power Serial Communication Interface (LPSCI) Example with Other Methods

48.1 Overview

This LPSCI example application demonstrates the SDK Peripheral drivers working with different methods. The LPSCI example shows transmit/receive LPSCIs driver with other efficiency methods:

- Using blocking method
- Using non-blocking method
- Using Dma blocking method
- Using Dma non-blocking method
- Using polling method

The board transfers and receives characters through the LPSCI interface. Type characters on the keyboard and the board receives and echoes them on the terminal screen. Look for instructions output to the terminal.

48.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the LPSCI example.

- FRDM-KL02Z (*) (DMA not supported)
- FRDM-KL25Z (*) (DMA not supported)
- FRDM-KL26Z
- FRDM-KL46Z
- MRB-KW01
- TWR-KL25Z48M (*) (DMA not supported)

48.3 System Requirement

48.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

48.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

48.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/lpsci/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

48.4 Getting Started

48.4.1 Hardware settings

The LPSCI Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

48.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

48.4.3 Run the example

48.4.3.1 LPSCI blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

48.4.3.2 LPSCI non-blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

48.4.3.3 LPSCI DMA blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

48.4.3.4 LPSCI DMA non-blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

48.4.3.5 LPSCI polling

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them to the terminal screen.

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

Chapter 49 LPTMR Example

49.1 Overview

The LPTMR (Low Power Timer) project is a demonstration program to show how to use the LPTMR driver. It triggers an LPTMR interrupt once every second and prints out the number of interrupts that have occurred since the program started running.

49.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the LPT-MR example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL25Z48M
- TWR-KL43Z48M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

49.3 System Requirement

49.3.1 Hardware requirements

• J-Link ARM

- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

49.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

49.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/lptmr/<toolchain>.
- Library dependencies: ksdk_platform_lib

49.4 Getting Started

49.4.1 Hardware settings

The LPTMR Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

49.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

49.4.3 Run the example

These instructions are displayed/shown on the terminal window:

Low Power Timer Example LPTMR interrupt No.1 LPTMR interrupt No.2 LPTMR interrupt No.3

An LPTMR interrupt is triggered once every second. The LED blinks and prints out the number of interrupts that have occurred since the program started running.

Chapter 50 Low Power Universal Asynchronous Receiver/Transmitter (LPUA-RT) Example with other methods

50.1 Overview

This LPUART example application demonstrates the SDK Peripheral drivers working with different methods. The LPUART example shows transmit/receive LPUART driver with these efficiency methods:

- Using blocking method
- Using non-blocking method
- Using DMA blocking method
- Using DMA non-blocking method
- Using polling method

Transfer data between the board and the PC. The board transfers and receives characters through the LP-UART interface. Type characters on the keyboard and the board receives and echoes them to the terminal screen. Look for instructions output to the terminal.

50.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the LPU-ART example.

- FRDM_KL03Z (*) (EDMA not supported)
- FRDM_KL27Z
- FRDM-KL43Z (*) (EDMA not supported)

50.3 System Requirement

50.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

50.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3

- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

50.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/lpuart/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

50.4 Getting Started

50.4.1 Hardware settings

The LPUART Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

50.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

50.4.3 Run the example

50.4.3.1 FLEXIO_UART_DMA interrupt method

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

50.4.3.2 LPUART non-blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

50.4.3.3 LPUART DMA blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

50.4.3.4 LPUART DMA non-blocking

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

50.4.3.5 LPUART polling

These instructions are displayed/shown on the terminal window:

Type characters on the keyboard and the board receives and echoes them on the terminal screen.

Type characters on the keyboard and the board receives and echoes them on the terminal screen.
Chapter 51 MPU Example

51.1 Overview

MPU Example defines protected/unprotected memory region from the core. A memory region is configured as the non-writable region. If any operation writes to this region, this example provides a prevention alert by outputting a message on terminal. Then, this region becomes accessible and writing to it is successful.

51.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the MPU example.

- FRDM-K64F
- TWR-K21F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

51.3 System Requirement

51.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

51.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

51.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/mpu/<toolchain>.
- Library dependencies: ksdk_platform_lib

51.4 Getting Started

51.4.1 Hardware settings

The MPU Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

51.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

51.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
MPU example begin.
Set regionArray to non-writeable.
Write 0 to regionArray at No.0
regionArray[0] = 0
Core access violation and generate bus fault!
Core is granted write access permission!
regionArray[0] = 0
Protected regionArray successfully !
Press any key to continue
```

Chapter 52 PDB Example

52.1 Overview

The PDB Example project is a demonstration program that uses the KSDK software and PDB to generate a constant periodic of time (trigger pulse and interrupt). Each time the PDB expires, an interrupt occurs and counter is increased and prints to the terminal.

52.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the PDB example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

52.3 System Requirement

52.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (Tower System/base board, ...) for specific device
- Personal Computer

Kinetis SDK v.1.2 Demo Applications User's Guide

52.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

52.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/pdb/<toolchain>.
- Library dependencies: ksdk_platform_lib

52.4 Getting Started

52.4.1 Hardware settings

The PDB Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

52.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

52.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
PDB example
PDB ISR No.1 occurred !
PDB ISR No.2 occurred !
PDB ISR No.3 occurred !
PDB ISR No.4 occurred !
```

PDB ISR No.5 occurred ! PDB ISR No.6 occurred ! PDB ISR No.7 occurred ! PDB ISR No.8 occurred ! PDB ISR No.9 occurred ! PDB ISR No.10 occurred ! PDB example finished Press any key to run example again

Chapter 53 PIT Example

53.1 Overview

The PIT Example project is a demonstration program that uses the KSDK software and PIT to cause the LED to blink with different frequencies on multiple channels. Measure the time of the generated pulse with the oscilloscope on the LED1 and the LED2. The LED2 toggles two times faster than the LED1.

53.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the PIT example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL25Z48M
- TWR-KL43Z48M
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

53.3 System Requirement

53.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable

- Hardware (tower/base board, ...) for specific device
- Personal Computer

53.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

53.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/pit/<toolchain>.
- Library dependencies: ksdk_platform_lib

53.4 Getting Started

53.4.1 Hardware settings

The PIT Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

53.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

53.4.3 Run the example

These instructions are displayed/shown on the terminal window:

- Starting channel No.0 ...
- Starting channel No.1 ...
- Channel No.0 interrupt is occurred !
- Channel No.0 interrupt is occurred !
- Channel No.1 interrupt is occurred !
- Channel No.0 interrupt is occurred !
- Channel No.0 interrupt is occurred !
- Channel No.1 interrupt is occurred !

Chapter 54 RNGA Example

54.1 Overview

The RNGA is a digital integrated circuit capable of generating the 32-bit random numbers. The RNGA Example project is a demonstration program that uses the KSDK software to generate random numbers and prints them to the terminal.

54.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the RNGA example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV31F120M
- TWR-KW24D512

54.3 System Requirement

54.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

54.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3

- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

54.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/rnga/<toolchain>.
- Library dependencies: ksdk_platform_lib

54.4 Getting Started

54.4.1 Hardware settings

The RNGA Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

54.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

54.4.3 Run the example

These instructions are displayed/shown on the terminal window:

RNGA Peripheral Driver Example Generate 10 random numbers Get random data No.0: 75128ccd. Get random data No.1: f3bc5f99. Get random data No.2: fe50a8bc. Get random data No.3: 4737e46d. Get random data No.4: 9f8bb4a8. Get random data No.5: cadfd781. Get random data No.6: a8263a08.

Get random data No.7: 3fed8d88. Get random data No.8: c2826970. Get random data No.9: 2715eb04. Press any key to continue

Chapter 55 RTC Example

55.1 Overview

The RTC Example project is a demonstration program that uses the KSDK software to get/set RTC Time & Alarm time. RTC module is configured to use as an alarm clock.

- Set alarm date time, it should be later than initial date time.
- Start RTC, when RTC date time match alarm date time, an indicated LED should be turned on

55.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the RTC example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- FRDM-KW24
- MRB-KW01
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL25Z48M
- TWR-KL43Z48M
- TWR-KW24D512

55.3 System Requirement

55.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable

- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

55.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

55.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/rtc/<toolchain>.
- Library dependencies: ksdk_platform_lib

55.4 Getting Started

55.4.1 Hardware settings

The RTC Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

55.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

55.4.3 Run the example

These instructions are displayed/shown on the terminal window:

RTC example: set up time to wake up an alarm Current datetime: 2014-12-25 19:00:00 Please input the number of second to wait for alarm The second must be positive value

User need type characters from the keyboard and the board will receive and initialize a second value to occur alarm mode. Then, until specific second, alarm will be occurred. Note: On the FRDM-KL26Z and FRDM-KL46Z, the RTC counter is fed without the 32Khz (OSC32KCLK) clock. Therefore the accuracy of RTC alarms will be impacted. These instructions are displayed/shown on the terminal window:

```
Alarm will be occurred at: 2014-12-25 19:00:21
Alarm occurred !!!! Current datetime: 2014-12-25 19:00:22
Please input the number of second to wait for alarm
The second must be positive value
```

After specific RTC date time matches alarm date time, an indicated LED should be turned on.

Chapter 56 SDHC SdCard Example

56.1 Overview

The SDHC SdCard Example application demonstrates the use of SD card driver. It displays the card information followed by a write-read compare test and the erase operation. Provide an example with different modes:

- Detect card inserted
- Read and write single block and multi-blocks to sdcard
- Erase blocks in sdcard

56.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the SDHC SdCard example.

- TWR-K21F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M

56.3 System Requirement

56.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

56.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

56.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/sdhc_sdcard/<toolchain>.
- Library dependencies: ksdk_platform_lib

56.4 Getting Started

56.4.1 Hardware settings

The SDHC SdCard Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

56.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

56.4.3 Run the example

Insert an SD or a micro-SD card depending on the board connector. Ensure that the card doesn't contain any important content because the demo will erase and overwrite some sectors.

These instructions are displayed/shown on the terminal window:

```
SD Card Demo Start!

This demo is going to access data on card

A card is detected

sdcard initialized

------ Card Information ------

Card Type: SDHC

Card Capacity: f GB

Host Clock Max Rate: 120 MHz

Clock Rate: 20 MHz

Manufacturer ID: 0x3

OEM ID: 0x5344

Product name: SD04G

Product serial number: 0x25BD9A0

Product revision: 8.0
```

Manufacturing data: Dec 2010 CSD Structure: 0x1 taac: f ns nsac: 0 clks tran speed: f kbps ccc: class 0 2 4 5 7 8 10 max read block length: 512 Bytes c_size: 7562 Erase unit size is one or multiple units of 512 bytes The size of write protected group is 2 blocks R2W_Factor: 2 max write block length: 9 The content is copied Hard disk-like file system with partition table SCR Structure: 0x0 SD Spec: 0x2 SD Spec 3.0 SDHC Card(Security Version 2.00) Card supports 1-bit bus width Card supports 4-bit bus width Support set block count command THIS DEMO IS GOING TO ERASE AND WRITE RAW DATA TO THE CARD, MAKE SURE YOU TAKE BACKUP OF ANY VALUEABLE DATA PRESENT IN THE CARD BEFORE PROCEEDING.

User need type 'Y' character from the keyboard. These instructions are displayed/shown on the terminal window:

Start write/read/compare demo... Single block write/read/compare demo passed! Multi-block write/read/compare demo passed! Erase blocks demo passed! SD Card Demo End!

Do you want to proceed? (Enter 'y' IF yes) :

Chapter 57 SLCD Example

57.1 Overview

SLCD Example defines how to use slcd to display content.

57.2 Supported Platforms

These Freescale Freedom development platforms are supported by the SLCD example.

- FRDM-KL43Z
- FRDM-KL46Z

57.3 System Requirement

57.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

57.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

57.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/slcd/<toolchain>.
- Library dependencies: ksdk_platform_lib

Kinetis SDK v.1.2 Demo Applications User's Guide

57.4 Getting Started

57.4.1 Hardware settings

The MPU Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

57.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

57.4.3 Run the example

These instructions are displayed/shown on the terminal window:

SLCD example begin.

Output: SLCD enters interrupt

Chapter 58 SPI Example with Other Methods

58.1 Overview

The SPI Example project is a demonstration program that uses the KSDK software. This example provides 5 examples SPI board to board with 5 modes: SPI polling, non-blocking, blocking, DMA-blocking, DM-A-non blocking and SPI loopback

- SPI board to board:
 - Transfer data through instance 0 of SPI interface. SPI0 pins of master board are connected with SPI0 pins of slave board.
 - It is important to ensure all SPI board-to-board connections are kept as short as possible and that a solid ground wire is connected between the boards. Preferably this ground connection should be as close as possible to the SPI signals on each board. A poor board-to-board connection compromises data signal integrity causing failures in the example.
 - Master send an array to slave and receive the array back from slave, compare whether the two buffers are the same. Slave send back received buffer from master (Setup slave first)
- SPI master loopback:
 - Transfer data through instance 0 of SPI interface, MISO pin and MOSI pin are connected
 - Send an array out through MISO pin and compare it with the received buffer from MOSI pin to see whether they are the same.

58.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the SPI example.

- FRDM-KL02Z (*) (DMA not supported)
- FRDM-KL03Z (*) (DMA not supported)
- FRDM-KL25Z (*) (DMA not supported)
- FRDM-KL26Z
- FRDM-KL27Z (*) (DMA not supported)
- FRDM-KL43Z
- FRDM-KL46Z
- MRB-KW01
- TWR-KL25Z48M (*) (DMA not supported)
- TWR-KL43Z48M

58.3 System Requirement

58.3.1 Hardware requirements

• J-Link ARM

Kinetis SDK v.1.2 Demo Applications User's Guide

- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

58.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

58.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/spi/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

58.4 Getting Started

58.4.1 Hardware settings

- SPI master loopback:
 - Transfer data through instance 0 of SPI interface, MISO pin and MOSI pin are connected
- SPI board to board:
 - Transfer data through instance 0 of SPI interface, SPI0 pins of master board are connected with SPI0 pins of slave board

This example requires two separate boards. Connect the instance SPI0 master to SPI0 slave:

FRDM-KL02Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J7 pin 5	->	MISO	J7 pin 5
MOSI	J7 pin 4	->	MOSI	J7 pin 4
SCK	J7 pin 6	->	SCK	J7 pin 6
PCS0	J7 pin 3	->	PCS0	J7 pin 3
GND	J7 pin 7	->	GND	J7 pin 7

FRDM-KL03Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J2 pin 5	->	MISO	J2 pin 5
MOSI	J2 pin 4	->	MOSI	J2 pin 4
SCK	J2 pin 6	->	SCK	J2 pin 6
PCS0	J2 pin 3	->	PCS0	J2 pin 3
GND	J2 pin 7	->	GND	J2 pin 7

FRDM-KL25Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J1 pin 11	->	MISO	J1 pin 11
MOSI	J1 pin 1	->	MOSI	J1 pin 1
SCK	J1 pin 9	->	SCK	J1 pin 9
PCS0	J1 pin 7	->	PCS0	J1 pin 7
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-KL26Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J1 pin 9	->	MISO	J1 pin 9
MOSI	J1 pin 11	->	MOSI	J1 pin 11
SCK	J4 pin 9	->	SCK	J4 pin 9
PCS0	J1 pin 7	->	PCS0	J1 pin 7
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-KL27Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J2 pin 10	->	MISO	J2 pin 10
MOSI	J2 pin 8	->	MOSI	J2 pin 8
SCK	J2 pin 12	->	SCK	J2 pin 12

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

PCS0	J2 pin 6	->	PCS0	J2 pin 6
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-KL43Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J2 pin 10	->	MISO	J2 pin 10
MOSI	J2 pin 8	->	MOSI	J2 pin 8
SCK	J2 pin 12	->	SCK	J2 pin 12
PCS0	J2 pin 6	->	PCS0	J2 pin 6
GND	J2 pin 14	->	GND	J2 pin 14

FRDM-KL46Z:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J3 pin 3	->	MISO	J3 pin 3
MOSI	J3 pin 5	->	MOSI	J3 pin 5
SCK	J3 pin 7	->	SCK	J3 pin 7
PCS0	J3 pin 9	->	PCS0	J3 pin 9
GND	J3 pin 14	->	GND	J3 pin 14

MRB-KW01:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location
MISO	J15 pin 20	->	MISO	J15 pin 20
MOSI	J15 pin 19	->	MOSI	J15 pin 19
SCK	J15 pin 18	->	SCK	J15 pin 18
PCS0	J14 pin 16	->	PCS0	J14 pin 16
GND	J15 pin 15	->	GND	J15 pin 15

TWR-KL43Z48M:

Master Board		Connects To	Slave Board	
Pin Name	Board Location		Pin Name	Board Location

MISO	Primary Elevator B44	->	MISO	Primary Elevator B44
MOSI	Primary Elevator B45	->	MOSI	Primary Elevator B45
SCK	Primary Elevator B48	->	SCK	Primary Elevator B48
PCS0	Primary Elevator B46	->	PCS0	Primary Elevator B46
GND	Primary Elevator B2	->	GND	Primary Elevator B2

58.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

58.4.3 Run the example

58.4.3.1 SPI blocking Master - Slave

Setup the Slave first. The Slave board has to be powered up first) and then the slave board echoes to the terminal:

```
SPI board to board blocking example
This example run on instance 0
Be sure master's SPIO and slave's SPIO are connected
Slave example is running...
SPI is waiting to receive data
```

Master sends an array to slave and receives the array back from slave and compares whether the two buffers are the same. The master board prints to the terminal:

SPI board to board blocking example This example runs on instance 0 Ensure that the master's SPI0 and slave's SPI0 are connected

Baud rate in Hz is: 500000

Master transmit: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Master receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F SPI master blocking transfer succeed!

Press any key to run again

The slave board receives and prints to the terminal:

Slave receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Slave example is running... SPI is waiting to receive data

58.4.3.2 SPI non-blocking Master - Slave

Set up the Slave first and then the slave board echoes to the terminal:

```
SPI board to board non-blocking example
This example run on instance 0
Be sure master's SPI0 and slave's SPI0 are connected
Slave example is running...
SPI is waiting to receive data
```

Master sends an array to slave and receives the array back from slave and compares whether the two buffers are the same. The master board prints to the terminal:

SPI board to board non-blocking example This example run on instance 0 Ensure that the master's SPIO and slave's SPIO are connected Baud rate in Hz is: 500000 Master transmit: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Master receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F SPI master blocking transfer succeed! Press any key to run again

The slave board receives and prints to the terminal:

Slave receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Slave example is running... SPI is waiting to receive data

58.4.3.3 SPI EDMA blocking Master - Slave

Set up the Slave first and then the slave board echoes to the terminal:

```
SPI board to board DMA blocking example
This example run on instance 0
Be sure master's SPIO and slave's SPIO are connected
Slave example is running...
SPI is waiting to receive data
```

Master sends an array to slave and receives the array back from slave and compares whether the two buffers are the same. The master board prints to the terminal:

SPI board to board DMA-blocking example This example run on instance 0 Ensure that the master's SPIO and slave's SPIO are connected Baud rate in Hz is: 500000 Master transmit: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Master receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F SPI master blocking transfer succeed! Press any key to run again

The slave board receives and prints to the terminal:

Slave receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Slave example is running... SPI is waiting to receive data

58.4.3.4 SPI EDMA non-blocking Master - Slave

Set up the Slave first and then the slave board echoes to the terminal:

SPI board to board DMA non-blocking example This example run on instance 0 Be sure master's SPI0 and slave's SPI0 are connected Slave example is running... SPI is waiting to receive data

Master sends an array to slave and receives the array back from slave and compares whether the two buffers are the same. The master board prints to the terminal:

Press any key to run again

The slave board receives and prints to the terminal:

Slave receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Slave example is running... SPI is waiting to receive data

58.4.3.5 SPI loopback

These instructions are displayed/shown on the terminal window:

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F Master receive: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F SPI master blocking transfer succeed!

Press any key to run again

Chapter 59 SPI SDCard Example

59.1 Overview

The SPI SdCard Example application demonstrates the use of SD card driver with SPI. Provide an example with different modes: (Temporary, this example just don't support SD card memory more than 2 GB)

- Detect card inserted
- Check card status: lock or unlock (detect by hardware pin)
- Read and write single block and multi-blocks to SdCard
- Erase blocks in SdCard

59.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the SPI SdCard example.

- TWR-K22F120M
- TWR-K24F120M
- TWR-KV31F120M

59.3 System Requirement

59.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, TWR-MEM board...) for specific device
- Personal Computer

59.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

59.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/spi_sdcard/<toolchain>.
- Library dependencies: ksdk_platform_lib

59.4 Getting Started

59.4.1 Hardware settings

The SPI SdCard Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example. If there is not any built-in SD-Card slot on the board, TWR-MEM board is required to run this example.

59.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

59.4.3 Run the example

Ensure that the card doesn't contain any important content because the demo will erase and overwrite some sectors.

These instructions are displayed/shown on the terminal window:

```
SPI SD Card Demo Start!
BaudRate set to 375000Hz
BaudRate set to 20000000Hz
------ Card Information ------
Card Type: SDSC
Card Capacity: 1.97 GB
------ Card CID ------
Manufacturer ID: 0x2
OEM ID: 0x544D
Product name: SA02G
Product newision: 0.5
Product serial number: 0x2080728A
Manufacturing data: Aug 2010
------ Card CSD ------
```
CSD Structure: 0x0 taac: 2000.00 us nsac: 0 clks tran speed: 2500000.00 kbps ccc: class 0 2 4 5 7 8 10 max read block length: 1024 Bytes max write block length: 1024 Bytes Support partial read Support crossing physical block boundaries reading is allowed VDD_R_CURR_MIN: 0x7 VDD_R_CURR_MAX: 0x1 VDD_W_CURR_MIN: 0x7 VDD_W_CURR_MAX: 0x3F c_size_mult: 7 c_size: 3763 Erase unit size is one or multiple units of 512 bytes The size of write protected group is 2 blocks R2W_Factor: 2 Hard disk-like file system with partition table Start read/write example... Single block read/write example passed! Writing 4096 bytes for 100 times in 2502 ms, at 163 kB/s Reading 4096 bytes for 100 times in 2164 ms, at 189 $\rm kB/s$ Multi-block read/write example passed!

SPI SD Card Demo End!

Chapter 60 TPM Example

60.1 Overview

The TPM Example project is a demonstration program that uses the KSDK software to generate square pulse PWM to control a LED brightness.

- TPM generate a PWM with increasing duty cycle and then decreasing
- LED is firstly brighter and then dimmer, continuously

60.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the TPM example.

- FRDM-KL02Z
- FRDM-KL03Z
- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL27Z
- FRDM-KL43Z
- FRDM-KL46Z
- TWR-KL43Z48M

NOTE: The TWR-K65F180M does not have a suitable LED. The PWM signal is connected to the elevator board connector B52.

60.3 System Requirement

60.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

60.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3

- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

60.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/tpm/<toolchain>.
- Library dependencies: ksdk_platform_lib

60.4 Getting Started

60.4.1 Hardware settings

The TPM Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

60.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

60.4.3 Run the example

These instructions are displayed/shown on the terminal window:

See the change of LED brightness

After that, LED bright is first increasing and then LED becomes dimmer, continuously.

Chapter 61 TSI Example

61.1 Overview

The TSI Example project is a demonstration program that uses the KSDK software to demonstrate how to use touch sensor interface. This example will turn on LED when board is in the touched state and otherwise turn it off.

61.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the TSI example.

- FRDM-KL25Z
- FRDM-KL26Z
- FRDM-KL46Z
- TWR-K65F180M

61.3 System Requirement

61.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

61.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

61.3.3 Software requirements

• The project files are in: <SDK_Install>/examples/<board>/driver_examples/tsi/<toolchain>.

• Library dependencies: ksdk_platform_lib

61.4 Getting Started

61.4.1 Hardware settings

The TSI Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

61.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

61.4.3 Run the example

These instructions are displayed/shown on the terminal window:

Touch Sensing input example Touching for turning led on

After that, LED bright will be toggle after each touched state changing.

Chapter 62 Universal Asynchronous Receiver/Transmitter (UART) Example with other methods

62.1 Overview

This UART example application demonstrates the KSDK Peripheral drivers working on different methods. The UART example will show transmit/receive UART's driver with other efficiency methods:

- Using blocking method
- Using non-blocking method
- Using DMA blocking method
- Using DMA non-blocking method
- Using polling method

Transfer data between board and PC. The board transfers and receives characters with PC through the UART interface. Type characters from the keyboard and the board receives and then echoes them to the terminal screen. See instructions output to the terminal.

62.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the UART example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KL03Z (*) (EDMA not supported)
- FRDM-KW24 (*) (EDMA not supported)
- TWR-K21D50M (*) (EDMA not supported)
- TWR-K21F120M (*) (EDMA not supported)
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M (*) (EDMA not supported)
- TWR-K64F120M
- TWR-K65F180M
- TWR-KL43Z48M (*) (EDMA not supported)
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512 (*) (EDMA not supported)

62.3 System Requirement

62.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

62.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

62.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/uart/<use_case>/<toolchain>.
- Library dependencies: ksdk_platform_lib

62.4 Getting Started

62.4.1 Hardware settings

The UART Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

62.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control

- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

62.4.3 Run the example

62.4.3.1 UART blocking

These instructions are displayed/shown on the terminal window:

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

62.4.3.2 UART non-blocking

These instructions are displayed/shown on the terminal window:

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

62.4.3.3 UART DMA blocking

These instructions are displayed/shown on the terminal window:

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

62.4.3.4 UART DMA non-blocking

These instructions are displayed/shown on the terminal window:

Type characters from keyboard, the board receives and then echoes them to the terminal screen.

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

Kinetis SDK v.1.2 Demo Applications User's Guide

Freescale Semiconductor

62.4.3.5 UART polling

These instructions are displayed/shown on the terminal window:

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

Type the characters on the keyboard and the board receives and then echoes them to terminal screen.

Chapter 63 WDOG Example

63.1 Overview

The WDOG Example project is a demonstration program that uses the KSDK software to show a simple application that enables watchdog, then continuously refreshes the watchdog to prevent CPU reset. Upon SW button push, the watchdog will expire after approximately 2 seconds and chip will reset.

- Combine refresh and reset operation on WDOG timer
- Use a SW to start WDOG. When SW is pressed, WDOG begins to expire.
- Use a LED to indicate reset process. At first, LED is turned on, when SW is pressed, LED start blinking and after resetting LED is turned off. And then, LED is turned on after reset is success.

63.2 Supported Platforms

These Freescale Freedom development platforms and Tower System modules are supported by the WDOG example.

- FRDM-K22F
- FRDM-K64F
- FRDM-KW24
- TWR-K21D50M
- TWR-K21F120M
- TWR-K22F120M
- TWR-K24F120M
- TWR-K60D100M
- TWR-K64F120M
- TWR-K65F180M
- TWR-KV10Z32
- TWR-KV31F120M
- TWR-KV46F150M
- TWR-KW24D512

63.3 System Requirement

63.3.1 Hardware requirements

- J-Link ARM
- P&E Micro Multi-link universal
- Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for specific device
- Personal Computer

63.3.2 Toolchain requirements

- IAR embedded Workbench version 7.30.4
- ARM GCC 4.8.3 2014q3
- Keil MDK 5.13
- Kinetis Design Studio IDE v.2.5.0
- Atollic TrueSTUDIO for ARM win32 v5.2.1

63.3.3 Software requirements

- The project files are in: <SDK_Install>/examples/<board>/driver_examples/wdog/<toolchain>.
- Library dependencies: ksdk_platform_lib

63.4 Getting Started

63.4.1 Hardware settings

The WDOG Example project does not call for any special hardware configurations. Although not required, the recommendation is to leave the development board's jumper settings and configurations in default state when running this example.

63.4.2 Prepare the example

- 1. Connect a USB cable between the PC host and the OpenSDA USB port on the board.
- 2. Open a serial terminal with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 3. Download the program to the target board.
- 4. Either press the reset button on your board or launch the debugger in your IDE to begin running the example.

63.4.3 Run the example

These instructions are displayed/shown on the terminal window:

```
WDOG example
Press SW1 to expire watchdog
WDOG reset count 1
Press SW1 to expire watchdog
```

WDOG reset count 2 Press SW1 to expire watchdog

After that, user need press the SW (*) button on board and observe a LED toggle for showing that the watchdog is about to expire.

64 Revision History

This table summarizes revisions to this document.

Revision History		
Revision number	Date	Substantial changes
0	04/2015	Kinetis SDK 1.2.0 release

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Kinetis, Processor Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM, ARM Powered logo, Keil, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

