

Freescale Semiconductor

Merging applications using Kinetis

Design Studio

By: Carlos Mendoza / Technical Information Center

Merging applications using Kinetis Design Studio
2 Freescale Semiconductor

About this document

Usually a user application can be developed independently, that is without the bootloader, and it can be

loaded into the microcontroller and debugged directly. However, for production purposes it is worth

merging the user application and bootloader together, so it can be downloaded into the microcontroller

all at once as a single file and reduce manufacture time and cost.

This document shows two methods of merging the applications.

1. Merging applications using linker commands.

2. Merging applications using the P&E Advanced Flash Programming options.

The steps described in the document were done using the MK64FN1M0VLL12 MCU like the one in the

FRDM-K64F board, but the same principles are applicable to any Kinetis MCU.

Software versions

The steps described in this document are valid for the following versions of the software tools:

 KDS v3.0.0

Contents
1. Glossary ... 3

2. Overview and concepts ... 4

2.1 Linker File (.ld) ... 4

2.1.1 Memory Segment .. 4

2.1.2 Sections Segment ... 4

3. Merging two applications ... 5

3.1 Creating applications .. 5

3.2 Merging applications using linker commands .. 10

3.3 Merging applications using the P&E Advanced Flash Programming options 14

Appendix A – Binary file generation in KDS .. 22

Appendix B - References ... 24

Merging applications using Kinetis Design Studio
3 Freescale Semiconductor

1. Glossary

KDS Kinetis Design Studio: Integrated Development Environment (IDE) software for Kinetis MCUs.

KSDK Kinetis Software Development Kit: Set of peripheral drivers, stacks and middleware layers for

Kinetis microcontrollers.

Merging applications using Kinetis Design Studio
4 Freescale Semiconductor

2. Overview and concepts

2.1 Linker File (.ld)

The Linker file (.ld) combines a number of object and archive files, relocates their data and ties up
symbol references. Usually the last step in compiling a program is to run ld.

2.1.1 Memory Segment

The memory segment is used to divide the microcontroller memory into segments. Each segment can
have read, write and execute attributes. The address and the length of each segment are defined as
well. An example is shown in listing 1.

Listing 1 – K64 Memory segment

2.1.2 Sections Segment

In sections segment are defined the contents of target-memory sections. In other words, a section
indicates which parts of your application will be allocated in each memory segment. Main sections are
‘.text’ which contains all the code and the constants of an application, ‘.data’ which contains all
initialized data, and ‘.bss’ which contains all non-initialized data.

Below you can see section ‘.text’ of an application using K64. As you can notice it is contained in
segment ‘m_text’.

MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x000FFBF0
 m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00010000
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x00030000
}

Merging applications using Kinetis Design Studio
5 Freescale Semiconductor

Listing 2 – K64 .text section

3. Merging two applications

3.1 Creating applications

- Before we start merging the projects we need to create 2 new baremetal or KSDK projects (No

Processor Expert) using KDS, select MK64FN1M0xxx1 as device. Let’s call them Application1 and

Application2.

- Application1 is supposed to be the Bootloader, as example it will just toggle the blue LED 5 times. It

will be linked to the default memory address which is 0x0000 and will end at 0xA000 (the flash space

reserved for the bootloader will depend on the size of your bootloader).

- Application2 is supposed to be the user Application, as example it will toggle the red LED forever. It

will be linked to the address 0xA000 and will end at 0x0010_0000.

- Here is the Flash memory layout of how the bootloader and application will be programmed:

 .text :
 {
 . = ALIGN(4);
 (.text) / .text sections (code) */
 (.text) /* .text* sections (code) */
 (.rodata) / .rodata sections (constants, strings, etc.) */
 (.rodata) /* .rodata* sections (constants, strings, etc.) */
 (.glue_7) / glue arm to thumb code */
 (.glue_7t) / glue thumb to arm code */
 *(.eh_frame)
 KEEP (*(.init))
 KEEP (*(.fini))
 . = ALIGN(4);
 } > m_text

Merging applications using Kinetis Design Studio
6 Freescale Semiconductor

- In a default project the memory segments of MK64FN1M0xxx1 are defined in the linker file as next:

Listing 3 – Default Memory segments

- First we need to reduce the memory size in Application1 to leave some space and create a new

memory segment for Application2 which will start in address 0xA000. Open

MK64FN1M0xxx12_flash.ld located in "${ProjDirPath}/Project_Settings/Linker_Files", the MEMORY

segment must look as below after being edited.

Listing 4 – Application1 modified Memory segments

MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x000FFBF0
 m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00010000
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x00030000
}

MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x00009BF0
 app2_text (RX) : ORIGIN = 0x0000A000, LENGTH = 0x000F6000
 m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00010000
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x00030000
}

Merging applications using Kinetis Design Studio
7 Freescale Semiconductor

[m_text] Bootloader space

[app2_text] Application space

- As it was mentioned before, the Application2 must be linked in address 0xA000, therefore we must

add an offset of 0xA000 to all the flash segments. Open MK64FN1M0xxx12_flash.ld located in

"${ProjDirPath}/Project_Settings/Linker_Files", the MEMORY segment must be edited as follows:

Listing 5 – Application2 modified Memory segments

- Build Application2, then look for Application2.map which you will find "${ProjDirPath}/Debug":

- Open the Application2.map file and search for the Reset_Handler which is the application entry

point address. As you can see in this case it is 0x0000a4d8:

MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x0000A000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x0000A400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x0000A410, LENGTH = 0x000F5BF0
 m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00010000
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x00030000
}

Merging applications using Kinetis Design Studio
8 Freescale Semiconductor

Listing 6 – Application2.map Entry Point

- Now go back to Application1. We will make this application to toggle the onboard blue LED 5 times

and then jump to the entry code of Application2 (Reset_Handler). You can use the following code:

Listing 7 – Application1 main.c

.text 0x0000a4d8 0x30 ./Project_Settings/Startup_Code/startup_MK64F12.o
 0x0000a4d8 Reset_Handler

/* include peripheral declarations "fsl_device_registers.h" if it is a KSDK project or
"MK64F12.h" if it is a baremetal project */

#define GPIO_PIN_MASK 0x1Fu
#define GPIO_PIN(x) (((1)<<(x & GPIO_PIN_MASK)))

void delay();

int main(void){

 int i;
 /* Turn on all port clocks */
 SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK |
SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;
 /*Set PTB21 (connected to BLUE LED) for GPIO functionality*/
 PORTB_PCR21=(0|PORT_PCR_MUX(1));
 /*Change PTB21 to output*/
 GPIOB_PDDR=GPIO_PDDR_PDD(GPIO_PIN(21));

 for(i = 0; i < 10; i++){
 /*Toggle the blue LED on PTB21*/
 GPIOB_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(21));
 delay();
 }

 __asm("bl 0x0000a4d8"); //Jump to Application2 entry point

 return 0;
}

void delay(){
 unsigned int i, n;
 for(i=0;i<10000;i++){
 for(n=0;n<200;n++){
 __asm("nop");
 }
 }
}

Merging applications using Kinetis Design Studio
9 Freescale Semiconductor

- The next step is to make Application2 toggle the Red LED forever. You can use the following code:

Listing 8 – Application2 main.c

/* include peripheral declarations "fsl_device_registers.h" if it is a KSDK project or
"MK64F12.h" if it is a baremetal project */

#define GPIO_PIN_MASK 0x1Fu
#define GPIO_PIN(x) (((1)<<(x & GPIO_PIN_MASK)))

void delay();

int main(void){

 /* Turn on all port clocks */
 SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK |
SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK;
 /*Set PTB22 (connected to RED LED) for GPIO functionality*/
 PORTB_PCR22=(0|PORT_PCR_MUX(1));
 /*Change PTB22 to output*/
 GPIOB_PDDR=GPIO_PDDR_PDD(GPIO_PIN(22));

 while(1){
 /*Toggle the RED LED on PTB22*/
 GPIOB_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(22));
 delay();
 }

 return 0;
}

void delay(){
 unsigned int i, n;
 for(i=0;i<10000;i++){
 for(n=0;n<200;n++){
 __asm("nop");
 }
 }
}

Merging applications using Kinetis Design Studio
10 Freescale Semiconductor

3.2 Merging applications using linker commands

- Now that the two applications have been created we will merge them using linker commands, first

we need to generate a binary file of the Application2 to insert it in the Application1, to do this

follow the steps described in the Appendix A. After this, copy the binary file into the ‘Sources’ folder

in Application1.

- The next step is to tell the Application1 linker to include the Application2 binary file. First you need

to use TARGET, INPUT and OUTPUT_FORMAT commands. You can do this just after MEMORY

segment and before SECTIONS segment:

Merging applications using Kinetis Design Studio
11 Freescale Semiconductor

Listing 9 – Application1 modified linker file

- Then add a new section inside SECTIONS segment to tell the linker where to allocate this binary file.

You can call this section ‘.app2’ and put it just before section ‘.data’. Notice this section is contained

in segment ‘my_text’.

Listing 10 – Application1 new app2 section

/* Specify the memory areas */
MEMORY
{
 m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x00009BF0
 my_text (RX) : ORIGIN = 0x0000A000, LENGTH = 0x000F6000
 m_data (RW) : ORIGIN = 0x1FFF0000, LENGTH = 0x00010000
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x00030000
}

TARGET(binary) /* specify the file format of binary file */
INPUT (Application2.bin) /* provide the file name */
OUTPUT_FORMAT(default) /* restore the out file format */

/* Define output sections */
SECTIONS
{

…

.app2 :
{
 Application2.bin (.data)
 . = ALIGN (0x4);
} > app2_text

.data : AT(__DATA_ROM)
{

…

Merging applications using Kinetis Design Studio
12 Freescale Semiconductor

- Finally go to menu Project > Properties > C/C++ Build > Settings > ARM Ltd Windows GCC C Linker >

Libraries and add under ‘Library search path (-L)’ the Sources folder path

"${workspace_loc:/${ProjName}/Sources}", this way the linker will be able to find the Application2

binary file.

-

- Now you can build and program the application using ‘Flash from file…’ option. Just click ‘Flash from

file…’ icon to get the Flash Configurations menu, choose your connection and the .elf file generated

by Application1 and click on the ‘Flash’ button.

Merging applications using Kinetis Design Studio
13 Freescale Semiconductor

- Reset your board and you should see the blue LED toggle 5 times which indicates the Application1 is

being executed after this the red LED will start to toggle indicating that the program jumped to the

Application2.

Merging applications using Kinetis Design Studio
14 Freescale Semiconductor

3.3 Merging applications using the P&E Advanced Flash Programming options

- After creating the two applications following the steps described in the section 3.1 we will now

proceed to merge them using the P&E Advanced Flash Programming options flash the Application2

to the MCU.

- For this section we will need our board to have the P&E OpenSDA firmware, you can find more

information on how to load this firmware to your board on this link:

https://community.freescale.com/docs/DOC-105199

- Build and program the Application2 using ‘Flash from file…’ option. Just click ‘Flash from file…’ icon

to get the Flash Configurations menu, choose the “GDB PEMicro Interface Debugging” connection,

and select the .elf file generated by Application2.

https://community.freescale.com/docs/DOC-105199

Merging applications using Kinetis Design Studio
15 Freescale Semiconductor

- Configure the PEMicro interface settings on the “Debugger” tab, click on Apply then on the ‘Flash’

button.

- The next step is to flash the Application1 to the board making sure that the Application2 is not

erased, to do this we use the Advanced Flash Programming options from P&E.

- Click on the ‘Flash from file…’ icon to get the Flash Configurations menu, choose the “GDB PEMicro

Interface Debugging” connection and select the .elf file generated by Application1.

Merging applications using Kinetis Design Studio
16 Freescale Semiconductor

- Configure the PEMicro interface settings on the “Debugger” tab and open the “Advanced Options”.

Merging applications using Kinetis Design Studio
17 Freescale Semiconductor

- On the Advanced options window we will preserve the memory range where the Application2 is

located.

- Click on OK, then Apply and finally on Flash.

- Reset your board and you should see the blue LED toggle 5 times which indicates the Application1 is

being executed after this the red LED will start to toggle indicating that the program jumped to the

Application2.

- Now that the MCU has both applications flashed we need to generate a single binary file that

contains both of the applications so it can be used for factory programming, this can be done by

performing a memory dump of the MCU.

Merging applications using Kinetis Design Studio
18 Freescale Semiconductor

- Click on the arrow next to the Debug icon and select the “Debug Configurations…” option.

- On the Debug Configurations window choose the “GDB PEMicro Interface Debugging” connection,

go to the “Startup” tab and enable the “Attach to Running Target” option, click on Apply then on

Debug.

Merging applications using Kinetis Design Studio
19 Freescale Semiconductor

- The Debug perspective will open, suspend the execution of the program.

- Go to the Memory view (Window > Show View > Memory) and add a new address to monitor:

- The memory information will show up:

Merging applications using Kinetis Design Studio
20 Freescale Semiconductor

- Click on the “Export” button, set the start and end address of the memory, set a file name, select

the format of the output file and click on OK:

- A window will show up indicating that the memory content is being exported:

Merging applications using Kinetis Design Studio
21 Freescale Semiconductor

- Finally you get a single file with both applications that can be used for production purposes:

Merging applications using Kinetis Design Studio
22 Freescale Semiconductor

Appendix A – Binary file generation in KDS

1) Open the project in KDS, go to Project -> Properties -> C/C++ Build -> Settings -> Toolchains.

Enable the checkbox for “Create flash image” and click on Apply:

2) Go to Tool Settings -> Cross ARM GNU Create Flash Image -> General. In the “Output file format

(-O) option select Raw binary. Click on Apply and then OK or close the Properties window.

Merging applications using Kinetis Design Studio
23 Freescale Semiconductor

3) Build the project. Once the build process is over, you should find the generated binary file (.bin

extension) inside of the build folder called “Debug” by default:

Merging applications using Kinetis Design Studio
24 Freescale Semiconductor

Appendix B - References

- KDS webpage:

www.freescale.com/kds

- Relocating Code and Data Using the KDS GCC Linker File (.ld) for Kinetis:

https://community.freescale.com/docs/DOC-104433

- Kinetis Design Studio videos:

 Installation of KDS and Kinetis SDK: https://community.freescale.com/videos/3281

 Installation of OpenSDA Firmware: https://community.freescale.com/videos/3282

 Debugging with KDS: https://community.freescale.com/videos/3283

 Building the KSDK demo applications: https://community.freescale.com/videos/3378

http://www.freescale.com/kds
https://community.freescale.com/docs/DOC-104433
https://community.freescale.com/videos/3281
https://community.freescale.com/videos/3282
https://community.freescale.com/videos/3283
https://community.freescale.com/videos/3378

