Freescale Semiconductor

Merging applications using Kinetis
Design Studio

By: Carlos Mendoza / Technical Information Center

<@,

> freescale

semiconductor

About this document

Usually a user application can be developed independently, that is without the bootloader, and it can be
loaded into the microcontroller and debugged directly. However, for production purposes it is worth
merging the user application and bootloader together, so it can be downloaded into the microcontroller
all at once as a single file and reduce manufacture time and cost.

This document shows two methods of merging the applications.

1. Merging applications using linker commands.
2. Merging applications using the P&E Advanced Flash Programming options.

The steps described in the document were done using the MK64FN1MOVLL12 MCU like the one in the
FRDM-K64F board, but the same principles are applicable to any Kinetis MCU.

Software versions

The steps described in this document are valid for the following versions of the software tools:

= KDSv3.0.0

Contents
IR G (o 1YY | oY 2P 3
0V VLYY A= g Vo I ol o] g Vol =Y o} PRSP 4
D N W o1 =T o S 1L (o | PRSPPIt 4
2.0 1 MEMOIY SEEMEBNT ..o e e e e e e s eeeeeesasssssssasssasassassssasassasaannnnsnnns 4
2.1.2 SECTIONS SEEMENT..cciii ittt ettt e e e e srbe et e e e e s e s stabeaeeeeesssasssabtaaeeeesssssssseeeeeessnsssreseaeeessnnnas 4
3. Merging tWo @PPlICALIONSuviiiiiiee et e e et e e e e e e et e e e e abr e e e e eaba e e e e rae e e enaraeeeennraeas 5
I O o T Y=Y o] o] [Tor=) 4 o o SRR 5
3.2 Merging applications using linker COMMANScoceiiiiiiiiiiiie e e e 10
3.3 Merging applications using the P&E Advanced Flash Programming options.......cccccceeecvivveeeeennnn. 14
Appendix A — Binary file generation in KDSooi ittt e e e saae e s et e e e s aaaeeeas 22
APPENIX B = REFEIENCESvviiiiiiiie ettt ettt e e et e e st a e e e e atae e e e ataeeeestaeeeessseeesnsseeesnnsaaeeans 24

Merging applications using Kinetis Design Studio
2 Freescale Semiconductor

1. Glossary

KDS Kinetis Design Studio: Integrated Development Environment (IDE) software for Kinetis MCUs.

KSDK Kinetis Software Development Kit: Set of peripheral drivers, stacks and middleware layers for
Kinetis microcontrollers.

Merging applications using Kinetis Design Studio
3 Freescale Semiconductor

2. Overview and concepts

2.1 Linker File (.1d)

The Linker file (.Id) combines a number of object and archive files, relocates their data and ties up
symbol references. Usually the last step in compiling a program is to run Id.

2.1.1 Memory Segment

The memory segment is used to divide the microcontroller memory into segments. Each segment can
have read, write and execute attributes. The address and the length of each segment are defined as
well. An example is shown in listing 1.

MEMORY

{
m_interrupts (RX) : ORIGIN = Ox00000000, LENGTH = 0x00000400
m_flash_config (RX) : ORIGIN = Ox00000400, LENGTH = 0x00000010
m_text (RX) : ORIGIN = Ox00000410, LENGTH = Ox©0QOFFBFO
m_data (RW) : ORIGIN = Ox1FFF0O000, LENGTH = 0x00010000
m_data_2 (RW) : ORIGIN = Ox20000000, LENGTH = 0x00030000

}

Listing 1 — K64 Memory segment

2.1.2 Sections Segment

In sections segment are defined the contents of target-memory sections. In other words, a section
indicates which parts of your application will be allocated in each memory segment. Main sections are
‘.text’ which contains all the code and the constants of an application, ‘.data’” which contains all
initialized data, and ‘.bss’ which contains all non-initialized data.

Below you can see section “.text’ of an application using K64. As you can notice it is contained in
segment ‘m_text’.

Merging applications using Kinetis Design Studio
4 Freescale Semiconductor

.text :

{

. = ALIGN(4);

(.text) / .text sections (code) */

(.text) /* .text* sections (code) */

(.rodata) / .rodata sections (constants, strings, etc.) */
(.rodata) /* .rodata* sections (constants, strings, etc.) */
(.glue_7) / glue arm to thumb code */

(.glue_7t) / glue thumb to arm code */

*(.eh_frame)
KEEP (*(.init))
KEEP (*(.fini))
. = ALIGN(4);

} > m_text

Listing 2 — K64 .text section

3. Merging two applications
3.1 Creating applications

— Before we start merging the projects we need to create 2 new baremetal or KSDK projects (No
Processor Expert) using KDS, select MK64FN1MOxxx1 as device. Let’s call them Applicationl and
Application2.

— Applicationl is supposed to be the Bootloader, as example it will just toggle the blue LED 5 times. It
will be linked to the default memory address which is 0x0000 and will end at 0xA00QO (the flash space

reserved for the bootloader will depend on the size of your bootloader).

— Application2 is supposed to be the user Application, as example it will toggle the red LED forever. It
will be linked to the address 0xA000 and will end at 0x0010_0000.

- Here is the Flash memory layout of how the bootloader and application will be programmed:

Merging applications using Kinetis Design Studio
5 Freescale Semiconductor

{ 0x0000_0000

0x0000_0400
0x0000_0410

m_interrupts
m_flash_config [

Applicationl

m_text _|

0x000A_0000

0x000A_0400
0x000A_0410

m_interrupts _[
m_flash_config -

Application2

m_text -

0x0010_0000

— In a default project the memory segments of MK64FN1MOxxx1 are defined in the linker file as next:

MEMORY

{
m_interrupts (RX) : ORIGIN = 0Ox00000000, LENGTH = 0x00000400
m_flash_config (RX) : ORIGIN = Ox00000400, LENGTH = 0x00000010
m_text (RX) : ORIGIN = Ox00000410, LENGTH = Ox00OFFBFO
m_data (RW) : ORIGIN = Ox1FFF@000, LENGTH = 0x00010000
m_data_2 (RW) : ORIGIN = Ox20000000, LENGTH = 0x00030000

}

Listing 3 — Default Memory segments

- First we need to reduce the memory size in Applicationl to leave some space and create a new
memory segment for Application2 which will start in address 0xA000. Open
MK64FN1IMOxxx12_flash.ld located in "S{ProjDirPath}/Project_Settings/Linker_Files", the MEMORY
segment must look as below after being edited.

MEMORY

{
m_interrupts (RX) : ORIGIN = Ox00000000, LENGTH = 0x00000400
m_flash_config (RX) : ORIGIN = Ox00000400, LENGTH = 0x00000010
m_text (RX) : ORIGIN = Ox00000410, LENGTH = Ox00009BF0
app2_text (RX) : ORIGIN = Ox0000A000, LENGTH = Ox000F6000
m_data (RW) : ORIGIN = Ox1FFFO000, LENGTH = 0x00010000
m_data_2 (RW) : ORIGIN = Ox20000000, LENGTH = 0x00030000

}

Listing 4 — Application1 modified Memory segments

Merging applications using Kinetis Design Studio
6 Freescale Semiconductor

[m_text] Bootloader space
[app2_text] Application space

- As it was mentioned before, the Application2 must be linked in address 0xA000, therefore we must
add an offset of 0xA00O to all the flash segments. Open MK64FN1MOxxx12_flash.ld located in
"S{ProjDirPath}/Project_Settings/Linker_Files", the MEMORY segment must be edited as follows:

MEMORY

{
m_interrupts (RX) : ORIGIN = Ox0000A000, LENGTH = 0x00000400
m_flash_config (RX) : ORIGIN = Ox0000A400, LENGTH = 0x00000010
m_text (RX) : ORIGIN = Ox0000A410, LENGTH = Ox00OF5BFO
m_data (RW) : ORIGIN = Ox1FFFO000, LENGTH = 0x00010000
m_data_2 (RW) : ORIGIN = Ox20000000, LENGTH = 0x00030000

}

Listing 5 — Application2 modified Memory segments

- Build Application2, then look for Application2.map which you will find "${ProjDirPath}/Debug":

[F Project Explorer 52 S |
i (25 Applicationl
a5 Application?
[» :j;y." Binaries
[@'J.I Includes
4 = Debug
I» [= Project_Settings
[+ [Sources
[3@3: Application2 elf - [armJe]
(=] Applicationl.map|#

| @ makefile

| & cbjects.mk
| @ sources.mk
[= Includes
4 = Project_Settings
[» [= Debugger
[» = Linker_Files
[+ [Startup_Code
[» [= Sources

- Open the Application2.map file and search for the Reset_Handler which is the application entry
point address. As you can see in this case it is 0x0000a4d8:

Merging applications using Kinetis Design Studio
7 Freescale Semiconductor

.text 0x0000a4d8 0x30 ./Project_Settings/Startup_Code/startup_MK64F12.0
0x000024d8 Reset_Handler

Listing 6 — Application2.map Entry Point

- Now go back to Application1. We will make this application to toggle the onboard blue LED 5 times
and then jump to the entry code of Application2 (Reset_Handler). You can use the following code:

/* include peripheral declarations "fsl device_registers.h" if it is a KSDK project or
"MK64F12.h" if it is a baremetal project */

#define GPIO_PIN_MASK Ox1Fu
#define GPIO_PIN(x) (((1)<<(x & GPIO_PIN_MASK)))

void delay();
int main(void){

int i;

/* Turn on all port clocks */

SIM_SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK |
SIM SCGC5_PORTC_MASK | SIM SCGC5_PORTD_MASK | SIM SCGC5_PORTE_MASK;

/*Set PTB21 (connected to BLUE LED) for GPIO functionality*/

PORTB_PCR21=(@|PORT_PCR_MUX(1));

/*Change PTB21 to output*/

GPIOB_PDDR=GPIO_PDDR_PDD(GPIO_PIN(21));

for(i = 0; i < 10; i++){
/*Toggle the blue LED on PTB21*/
GPIOB_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(21));
delay();

}

__asm("bl 0x0000a4d8"); //Jump to Application2 entry point

return 9;

void delay(){
unsigned int i, n;
for(i=0;1<10000;i++){
for(n=0;n<200;n++){
__asm("nop");
}

Listing 7 — Application1 main.c

Merging applications using Kinetis Design Studio
8 Freescale Semiconductor

- The next step is to make Application2 toggle the Red LED forever. You can use the following code:

/* include peripheral declarations "fsl_device_registers.h"™ if it is a KSDK project or
"MK64F12.h" if it is a baremetal project */

#define GPIO_PIN_MASK ox1Fu
#define GPIO_PIN(x) (((1)<<(x & GPIO_PIN_MASK)))

void delay();
int main(void){

/* Turn on all port clocks */

SIM_SCGC5 = SIM_SCGC5 PORTA_MASK | SIM_SCGC5_PORTB_MASK |
SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5 PORTE_MASK;

/*Set PTB22 (connected to RED LED) for GPIO functionality*/

PORTB_PCR22=(@|PORT_PCR_MUX(1));

/*Change PTB22 to output*/

GPIOB_PDDR=GPIO_PDDR_PDD(GPIO_PIN(22));

while(1){
/*Toggle the RED LED on PTB22*/
GPIOB_PTOR|=GPIO_PDOR_PDO(GPIO_PIN(22));
delay();

}

return 0;

void delay(){
unsigned int i, n;
for(i=0;1<10000;i++){
for(n=0;n<200;n++){
__asm("nop");
}

Listing 8 — Application2 main.c

Merging applications using Kinetis Design Studio
9 Freescale Semiconductor

3.2 Merging applications using linker commands

Now that the two applications have been created we will merge them using linker commands, first
we need to generate a binary file of the Application2 to insert it in the Applicationl, to do this
follow the steps described in the Appendix A. After this, copy the binary file into the ‘Sources’ folder

in Applicationl.

[75 Project Explorer &3 = G.:pl ¢ - = 0O
4 =5 Applicationl

[> :j;-?' Binaries

bl Includes

[» = Debug
[= Includes

I (= Project Settings
== Source
B ; main.c
|2 Application2.bin|
4 =5 Application2

[» :j;-?' Binaries
bl Includes

. Debu
3 roject_Setti

[+ = Sources
%5 Application28f - [arm/le]

Application2.Bin
|&| Application2.map

[& makefile

| @& objects.mk

| & sources.mk
[= Includes
[» [Project_Settings
[» [= Sources

- The next step is to tell the Applicationl linker to include the Application2 binary file. First you need
to use TARGET, INPUT and OUTPUT_FORMAT commands. You can do this just after MEMORY

segment and before SECTIONS segment:

Merging applications using Kinetis Design Studio

10 Freescale Semiconductor

/* Specify the memory areas */

MEMORY

{
m_interrupts (RX) : ORIGIN = Ox00000000, LENGTH = 0x00000400
m_flash_config (RX) : ORIGIN = Ox00000400, LENGTH = 0x00000010
m_text (RX) : ORIGIN = Ox00000410, LENGTH = Ox00009BF0
my_text (RX) : ORIGIN = Ox0000A000, LENGTH = Ox000F6000
m_data (RW) : ORIGIN = Ox1FFF000Q, LENGTH = 0x00010000
m_data_2 (RW) : ORIGIN = Ox20000000, LENGTH = 0x00030000

}

TARGET (binary) /* specify the file format of binary file */

INPUT (Application2.bin) /* provide the file name */

OUTPUT_FORMAT (default) /* restore the out file format */

/* Define output sections */
SECTIONS

{

Listing 9 — Application1 modified linker file

- Then add a new section inside SECTIONS segment to tell the linker where to allocate this binary file.
You can call this section ‘.app2’ and put it just before section ‘.data’. Notice this section is contained
in segment ‘my_text’.

.app2 :
{
Application2.bin (.data)

. = ALIGN (ox4);
} > app2_text

.data : AT(__DATA_ROM)
{

Listing 10 — Applicationl new app2 section

Merging applications using Kinetis Design Studio
11 Freescale Semiconductor

Finally go to menu Project > Properties > C/C++ Build > Settings > ARM Ltd Windows GCC C Linker >
Libraries and add under ‘Library search path (-L)’ the Sources folder path

"S{workspace_loc:/S${ProjName}/Sources}", this way the linker will be able to find the Application2
binary file.

4 Properties for Applicationl

|t)rpe filter text Settings

|- Resource

Builders

a4 C/C++ Build Configuration: ’Dehug [Active]

Build Variables
Environment

'] [Manage Configura’(ions...]

Logging & Tool Settings | & Toolchains | # Build Steps | I Build Artifact | s Binary Parsers | @ Error Parsers |
Settings
Tool Chain Editor @ Target Processor Libraries (-1} AR '@| .@|
Tools Paths (# Optimization
[» C/C++ General (# Warnings
Linux Tools Path (2 Debugging
Project References 4) Cross ARM GNU Assembler
Run/Debug Settings @ Preprocessor
[» Task Repository 2 Includes
WikiText # Warnings

@ Miscellanecus

a4 3 Cross ARM C Compiler
(# Preprocessor
2 Includes
(# Optimization
(# Warnings
(# Miscellaneous

a4 B Cross ARM C++ Compiler .
(2 Preprocessor Library search path (-L) £ & 8§ 2
@ Includes

"§{ProjDirPath}/Project_Settings/Linker_Files"”

(# Optimization "${workspace_loc/${ProjName}/5ources}” 1
Warnings
@ Miscellanecus

a4 B Cross ARM C++ Linker

B G |
% Libraries
: i neous

4 1 L3

2]
| Restore Defaults| | Applym
@ ﬁ ok || cancel |

Now you can build and program the application using ‘Flash from file...” option. Just click ‘Flash from

file...” icon to get the Flash Configurations menu, choose your connection and the .elf file generated
by Applicationl and click on the ‘Flash’ button.

Merging applications using Kinetis Design Studio

12 Freescale Semiconductor

-
1

| Flash from file...

Create, manage, and run configurations

CEX B3P~

Mame: Applicationl_Debug_OpenQOCD
ype filter text | Mainl I Debugger| = Startup| By Source| S| Common|
4 [t] GDB Open0OCD Debugging .
[5] Applicationl_Debug_ OpenOCD gz
[€] Application2_Debug_OpenOCD Applicationl Browse...
i+ [£] GDB PEMicro Interface Debugging T Gt
1 [E] GDB SEGGER J-Link Debugging
Debug/Applicationl .elf
Variables...] ’Sealch Plcﬂect...] ’ Browse...]
Build (if required) before launching
Build configuration: | Use Active v]
() Enable auto build () Disable auto build
@ Use workspace settings Configure Workspace Settings...
Filter matched 9 of 9 items

| Apply | | Revert |
@

[Flash%’ Close |

Reset your board and you should see the blue LED toggle 5 times which indicates the Applicationl is
being executed after this the red LED will start to toggle indicating that the program jumped to the
Application2.

Merging applications using Kinetis Design Studio

Freescale Semiconductor

3.3 Merging applications using the P&E Advanced Flash Programming options

— After creating the two applications following the steps described in the section 3.1 we will now
proceed to merge them using the P&E Advanced Flash Programming options flash the Application2
to the MCU.

— For this section we will need our board to have the P&E OpenSDA firmware, you can find more
information on how to load this firmware to your board on this link:
https://community.freescale.com/docs/DOC-105199

— Build and program the Application2 using ‘Flash from file...” option. Just click ‘Flash from file...” icon
to get the Flash Configurations menu, choose the “GDB PEMicro Interface Debugging” connection,
and select the .elf file generated by Application2.

[Flash from file... |

/% Flash Configurations

Create, manage, and run configurations

OB X | =3~ MName: Application2_Debug_PMNE
type filter text Mainl 3&% Debugw Startup| E_/ Source| = Common|
i+ [E] GDB OpenOCD Debugging .
a [T] GDB PEMicro Interface Debugging g
[] Applicationl_Debug_PNE Application2
=3 AppllcatlonZI_Dehug_PN.H OO cat o
i+ [£] GDB SEGGER J-Link Debugging T —
Debug/Application.elf
Variables...] ’Search iject...] ’ Browse...]
Build (if required) before launching
Build configuration: | Use Active v]
() Enable auto build (") Disable auto build
@ Use workspace settings Configure Workspace Settings...
. . Apply Revert
Filter matched 8 of 8 items
@ [Fash][close

Merging applications using Kinetis Design Studio
14 Freescale Semiconductor

https://community.freescale.com/docs/DOC-105199

— Configure the PEMicro interface settings on the “Debugger” tab, click on Apply then on the ‘Flash’

button.
% Flash Configurations (23]
Create, ge, and run configurati
|_| &S] x' =] }:9 M Mame: Application?_Debug_PNE
|t_~,fpefi|terte7d: | Main 3&‘ Debuggerl - Startup| E_/ Source| iS| Common|

b [£] GDB OpenOCD Debugging
4 [E] GDB PEMlicro Interface Debugging

3

PEMicro Interface Settings

[5] Application]_Debug_PNE Interface: [OpenSDA Embedded Debug - USE Port '] Compatible Hardware
[£] Application2_Debug_PNE Port: [UsB1 - OpensDA (42704E48) - | [Refresh |
» [E] GDB SEGGER J-Link Debugging
Vendor: Freescale Family: Kbx Target: K64FN1IMOM12
Specify IP Specify Network Card IP 1

Additional Options
|| Mass erase en connect Use SWD protocol

Advanced Options

Hardware Interface Power Control (Voltage --> Power-Out Jack)

Provide power to target Regulator Output Voltage Power Down Delay ms

Power off target upon software exit |2V Power Up Delay ms

Target Communication Speed
Debug Shift Freq (KHZ]e 5000

[] Delay after Reset and before communicating to target for 0 ms

§ R i\ppl}w! Revert
Filter matched 9 of 9 items >
@ w Flish | [Close

— The next step is to flash the Applicationl to the board making sure that the Application2 is not
erased, to do this we use the Advanced Flash Programming options from P&E.

— Click on the ‘Flash from file..." icon to get the Flash Configurations menu, choose the “GDB PEMicro
Interface Debugging” connection and select the .elf file generated by Application1.

| Flash from file... |

Merging applications using Kinetis Design Studio
15 Freescale Semiconductor

ﬁ

Create, ge, and run configurati
] x' B Name: Applicationl_Debug_PNE
|typefi|tertext | Mainl <3 Debu%ﬂ'{up| By Source| S| Common|
1+ [£] GDB OpenOCD Debugging

4 [£] GDB PEMicro Interface Debugging [e=ar

[T] Applicationl_Debug_PNE Applicationl Browse...

[] Application2_Debug_PME
1+ [E] GDB SEGGER J-Link Debugging

C/C++ Application:
Debug/Applicationl.elf

Variables...] [Sealch Ploject...] [Browse...]
Build (if required) before launching
Build configuration: | Use Active v]
() Enable auto build () Disable auto build
Use workspace settings Configure Workspace Settings...

Appl Revert
Filter matched 9 of 9 items | PEY % |

@ [Fash][close |

— Configure the PEMicro interface settings on the “Debugger” tab and open the “Advanced Options”.

M

Create, ge, and run fig
TEX B3~ Name: Application]_Debug_PNE
|t3f'F'Eﬁ|tE" fed ‘ Main %5 Debuggarl = Startup| By Source| i=| Common|
v [E] GDB OpenOCD Debugging PEMlicre Interface Settings =
4[] GDB PEMicro Interface Debugging
[5] Applicationl_Debug PNE Interface: [DpenSDA Embedded Debug - USB Port '] Compatible Hardware
[£] Application2 Debug PNE Port: [USBL - OpenSDA (43704E48) - | [Refresh

1> [E] GDB SEGGER J-Link Debugging

Vendor: Freescale Family: Kéx Target: K64FNIMOM12
T S T —

Additional Options
Mass erase on connect Use SWD protocel

Advanced Optioni
Hardware Interface Power Control (Voltage --> Power-Out Jack)
|| Provide power to target Regulator Qutput Voltage Power Down Delay E ms

[] Power off target upon software exit Power Up Delay E ms
Target Communication Speed

Debug Shift Freq (KHz)® | 5000

m

Appl Revert
Filter matched 9 of @ items ‘ PRy % EVEl |

@ [Pk][cose |

Merging applications using Kinetis Design Studio
16 Freescale Semiconductor

- On the Advanced options window we will preserve the memory range where the Application2 is
located.

"ﬁ Advanced Options

Flash Algorithm Selection MNon-Volatile Memory Preservation

Use the following flash algorithm when programming Data that reside in a preserved range of

flash data: rmemery will be maintained through
erase/program cycles, Values will be

’freescale_kﬁ-flfnlmﬂ ml2_1x32x256k_pflash.arp '] masked to match the row size of the
memaory,

[7] Use Alternative Algorithm | Browse...
Preserve this range (Memaory Range 0)

From: = A000 To: FFFFF

JTAG Daisy Chain Settings

e By s [] Preserve this range (Memory Range 1)

From: (0 To: |3

Tap Number: | 0 Pre-IR Bits: | 0
[] Preserve this range (Memory Range 2)
From: |0 Te: | 3

Program Trim Registers

[7] Calculate Trim and Prograrm the Non-Volatile Trim Register

Default trim reference frequency is: 32768.0 Hz (Valid Range: 31250.0 to 39062.5 Hz)

Use custom trim reference frequency: | 0.0 Hz

Program Partition
. Partition [13:12] = EEESPLIT, Partition[11:8] = EEESIZE
Enable Partitioning for the device | 0 Partition[7:4] =4'b0000, Partition[3:0] = DEPART

Preserve Partitioning for the device EEPROM data set size must be within 0:x00..0:00
FlexMVM partition code must be within 0:00..0:00

[oK ﬁ [Cancel

— Click on OK, then Apply and finally on Flash.

— Reset your board and you should see the blue LED toggle 5 times which indicates the Application1 is
being executed after this the red LED will start to toggle indicating that the program jumped to the
Application2.

- Now that the MCU has both applications flashed we need to generate a single binary file that
contains both of the applications so it can be used for factory programming, this can be done by
performing a memory dump of the MCU.

Merging applications using Kinetis Design Studio
17 Freescale Semiconductor

18

Click on the arrow next to the Debug icon and select the “Debug Configurations...” option.

[©] 1 Applicationl_Debug_PMNE
[©] 2 Application2_Debug_PMNE

Debug As 3
Debug Cenfigurations...

Organize Favorites..,

On the Debug Configurations window choose the “GDB PEMicro Interface Debugging” connection,
go to the “Startup” tab and enable the “Attach to Running Target” option, click on Apply then on

Debug.

Create, manage, and run configurations

% Debug Configurations E

CEREXI B>~

[£] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
[£] GDEB Hardware Debugging
1 [£] GDB Open0OCD Debugging
4 [&] GDB PEMicro Interface Debugging
[€] Applicationl_Debug PNE
[T] Application2_Debug_PNE
1 [£] GDB SEGGER J-Link Debugging
= Launch Group

Filter matched 15 of 15 iterns

Name: Application]_Debug_PNE

Main | %% Debugger | b+ Startup

Ey Source| [Common |

Semihosting Settings
Enable semihosting
[/] Enable Telnet console Telnet Port:

Load Symbels and Executable
Load symbols
@ Use project binany: Application] elf

Console routed to: [/] Telnet [| GDB client

() Usefile:

|| Workspace... H File System...

Symbols offset (hex):
Load executable
@ Use project binary: Applicationl.elf

() Use file: |

|| Workspace... H File System...

Executable offset (hex):

Runtime Options

GDB run commands:

Attach to Running Target Run on reset
[[]Set PC (hex): [/] Set breakpoint at:

®

Merging applications using Kinetis Design Studio

Freescale Semiconductor

— The Debug perspective will open, suspend the execution of the program.

rﬁ*@u@glékub‘wﬂ--- B E S OIS

%5 Debug 2 -%W|i‘=’? = =08
a [c] Applicationl Debug [GDE PEMicro Interface Debugging]
Applicationl.elf
.E ChFreescale\KDS_3.0.00eclipse\plugins\com.pemicro.debug.gdbjtag.pne_2.0.8.201504092111 win32\pegdbs
] arm-none-eabi-gdb

g - —— —— e ee—— e

- Go to the Memory view (Window > Show View > Memory) and add a new address to monitor:

Bl Console | Tasks E Problems 23 Ececutahld] 0 Memory %b
Monitors [_ R
%Memnr}r Menitor]

& Monitor Memaory E

Enter address or expression to monitor

D=0 -

@ | D% [Cancel

— The memory information will show up:

Merging applications using Kinetis Design Studio
19 Freescale Semiconductor

El Conscle 4= Tasks [%/ Problems (3 Executables [J Memory &3 | [% g o || | ggr ¥ = 8
Monitors & K & 00 : O <Hex= 53 l ge New Renderings...|

(¢ 00 Address @ - 3 4-7 8 -8 C-F -
|aaaaaa8 Doadaa68 5856808 asasea88
bappaale esasoaor asesaeae B5asaaea oeaaoae
©000002(10 b @5850800
%%693@—45%9@ aepaaaaae a5a5aa0a8 asaseass
BaBaaa48 B5a56660 @sesenaEe B5ESE66E B5a56666
eaaaaa58 asesoacs aseseea8 5856808 asasea88
bappaace esaesoaor asesaeae B5asaaea asaseass
Beaaaa7e asaseaae asesepas B5e56606 asaseaae
baoaaase esesease asesaaae a5a5aa0a8 asaseass
BEBaaa98 B5a56660 @sesenaEe B5ESE66E B5a56666
eapaaaAa B5Se5Soaoe aseseea8 5856808 asasea88
bappaaBa esesoaor asesaeae B5asaaea asaseass

— Click on the “Export” button, set the start and end address of the memory, set a file name, select
the format of the output file and click on OK:

| P
Start address: Dxﬂ End address: nuooom Length: 1043576
File naa C:\Users\b38285\Documents\APP1_APP2 MERGE.srec —
SRecord format only supports 32-bit address spaces. E
4 @ [ok)5 Cancel —
E Console | Tasks (%] Problems) Executables [J Memory 53 [=% o | | Bgr ¥ = F
Monitors CLU 4 % |U:|ﬂ 0 <Hex» 23 IE'} Mew F‘.enderings...‘
@ O |Addr‘ess 8 -3 4-7 8 - B C-F

- A window will show up indicating that the memory content is being exported:

% Memory Export to 5-Record File

@ Transferring Data

-

Always run in background

IRun in Eackgmundl ’ Cancel l l Details » =]

Merging applications using Kinetis Design Studio
20 Freescale Semiconductor

- Finally you get a single file with both applications that can be used for production purposes:

APP1_APPZ_MERGE.srec i3

S3l5escaapaoanoaas2eioadapaaasebappaasesaanaie
5315ea8808010850500008505000085050008880088888C
53l5ea00602600000000000000000000000885050808C0
53158800083 0850500000000002085050080850588889C
53loes000p48a505000005050000050500000585000082
5315eaeaaa58a5056000a5050 000085050 00008505600687 2
S3l5eaeaapoaasebapaaasatapaaasebappaasebanban
S3l5eaeaaa7easesepaaasatapaaasetappaasesaapas2
53lsesepapseasesapaasa-eppaasesappaaseseanad

Merging applications using Kinetis Design Studio
21 Freescale Semiconductor

Appendix A - Binary file generation in KDS

1) Open the project in KDS, go to Project -> Properties -> C/C++ Build -> Settings -> Toolchains.
Enable the checkbox for “Create flash image” and click on Apply:

-

E’g—_PropertiesforAppIicationZ = @
|t_',rpefilterte:¢ | Settings =T = R 4
I» Resource
Builders
4 C/C++ Build Configuration: [Debug [Active] '] [Mal\age Configula’(ions...]

Build Variables
Environment

Legging 3 Tool Settings |(&9 Toolchains "_ ¥ Build Steps Build Artifact | Binary Parsers | @ Error Parsers|
Settings
Tool Chain Editor Mame: GMNU Tools for ARM Embedded Processors (arm-none-eabi-gec) R
Tools Paths Y
i ! ARM (AArch32] -
b C/C++ General Architecture: (AArch3Z)
Linux Tools Path Prefin: arm-none-eabi-
Proi
roject Referenc.es Suffic
Run/Debug Settings
|+ Task Repository C compiler: gcc
WikiText c .
++ compiler: g++

Hex/Bin converter: objcopy
Listing generator: objdump
Size command: size
Build command: make

Remove command: rm

Toclchain path: ${eclipse_home}/../toclchain/bin
(to change it use the global or workspace preferences pages orthe project properties page)
?reateﬂa;h image
Create extended listing
[Print size

[Restore Defaults wpply]

@ [k][canea |

2) Go to Tool Settings -> Cross ARM GNU Create Flash Image -> General. In the “Output file format
(-O) option select Raw binary. Click on Apply and then OK or close the Properties window.

Merging applications using Kinetis Design Studio
22 Freescale Semiconductor

-

,flﬁ Properties for Application2

| type filter text Settings

> Resource

Builders

4 C/C++ Build Cenfiguration: [Debug [Active]
Build Variables

'] ’ Manage Configulations...]

Environment

Logging & Tool Settings | 53 Toolchains | & Build Steps |
Settings

Build Artifact | Binary Parsers | @ Error Parsers|

Tool Chain Editor (8 Target Processor

Tools Paths (2 Optimization Section: -] text
[C/C++ General @ Warnings

; | Sectior: - .dat
Linux Tools Path (% Debugging ection: -j .data

Output file format (-0) ’ Raw binary -]

Project References 4 3 Cross ARM GNU Assembler

Other sections (-j)
Run/Debug Settings @ Preprocessor

aa 8§l &

[Task Repository (2 Includes
WikiText (2 Warnings
@ Miscellaneocus
a4 B8 Cross ARM C Compiler
(2 Preprocessor
(8 Includes
(# Optimization
(2 Warnings
@ Miscellaneocus
a4 B8 Cross ARM C++ Compiler
(2 Preprocessor
(8 Includes
(# Optimization
(# Warnings
@ Miscellaneocus
4) Cross ARM C++ Linker
@ General
(2 Libraries
(# Miscellaneous

4 Q\ENU Create Flash Image

Other flags

m ok |[conca |

’ Restore Defaults] ’ App%

3) Build the project. Once the build process is over, you should find the generated binary file (.bin

extension) inside of the build folder called “Debug” by default:

4 = Debug
[[Project_Settings
[» [Sources

[’f;'; Applicationd.elf - [arm/le]
Application2.bin
|=] Applicationd.map

Merging applications using Kinetis Design Studio

23

Freescale Semiconductor

Appendix B - References

- KDS webpage:
www.freescale.com/kds

- Relocating Code and Data Using the KDS GCC Linker File (.Id) for Kinetis:
https://community.freescale.com/docs/DOC-104433

- Kinetis Design Studio videos:

e |nstallation of KDS and Kinetis SDK: https://community.freescale.com/videos/3281

e Installation of OpenSDA Firmware: https://community.freescale.com/videos/3282

e Debugging with KDS: https://community.freescale.com/videos/3283

e Building the KSDK demo applications: https://community.freescale.com/videos/3378

Merging applications using Kinetis Design Studio
24 Freescale Semiconductor

http://www.freescale.com/kds
https://community.freescale.com/docs/DOC-104433
https://community.freescale.com/videos/3281
https://community.freescale.com/videos/3282
https://community.freescale.com/videos/3283
https://community.freescale.com/videos/3378

