
0

1

2

3

4

5

6

7

This section will show how to use the new project wizard and to import existing files

8

into the project.

In order to use the New Project Wizard, you can only get to it from File->New-

>Kinetis Design Studio. If you use the “add” icon, the New Project Wizard is not a

selection.

9

10

The filter is a quick way to find the part you are looking for.

In the New Project Wizard, you select the base part. You will need to specify the

specific part, including package & pins, you are using. This is done in the Properties

tab of the Processor Component.

11

Select Kinetis SDK (this will be selectable for processors that are supported by the

SDK). Start with Perspective: Lets set this to the non-processor expert hardware

configuration perspective and select Linked project mode. The Standalone project
mode is not functional in the this Beta release. If you use “Linked” mode, and you

modify the contents of the code, then you are modifying the reference code.

If you plan on archiving the project or sharing the project, this assures the entire
project is included, all the source files, etc.

12

Processor Expert is working…

13

After the New Project Wizard, you end up in the standard C/C++ perspective with

the Processor Expert view also turned on. So, you see the Component Inspector

and the Component View as defaults.

There may be errors in the “problems view”. These will be removed as we configure
the part.

14

15

16

Select the CPU and Open up the window a bit for better visibility.

17

Here in the component library, we select the components needed for our project.

18

We are pulling in the components here. One for the switches and LED’s, one for the

interrupt timer, and one for the serial port.

An alternative to “double click” on the component, one could right click and select

“add to project”..

19

Scroll down and select the fsl_uart.

20

With all our components added to the project, we will move on to configuring the

components. Starting with the CPU. Notice there are errors in the components. This

is normal behavior, since the components have not been configured just yet.

21

These are the settings we will use for the next set of slides. This is the hardware

22

spec that we will be setting the chip up for.

When looking at this perspective, notice the error messages in the “Problems” view.

These problems will be rectified as we configure the different components.

23

Selecting the “package” of the chip. Remember that each chip has several

packages, selecting the proper package here is vitally important to have the proper

pin muxing.

24

Based on the hardware design, the system has a 50MHz clock source, not a crystal.

25

The input clock is set for 50MHz and now we will setup the clock configurations

MCG

26

Here we are setting up the MCG. The board has an external 50MHz signal, and so

to operate at maximum speed of the chip, the us of the PLL clock is required. So,

select PEE, and set the PLL output to 120MHz.

Scroll down and select “Clock configurations” tab

27

With the PLL set to 120, the system clocks need to be addressed.

Core Clock = 120MHz

Bus Clock = 60MHz

External bus Clock = 60MHz

Flash Clock = 24MHz

This completes the clocking configuration. Next we move onto other CPU settings.

28

Since our project does not require an nmi interrupt routine, we will uncheck this box.

Also, if you are using the nmi pin as a signal pin, like the FRDM board.

This completes the configuration of the cpu. Now its time to move onto the

component configurations.

29

Now select the “pin_mux:PinSettings” from the component view

30

Since the package has changed from the default, the system lets you know the

configuration will change.

31

Now we move into the pin settings. And our io’s will be:

LED’s are on ports PTB-21, PTB-22, and PTE-26

SWitches are on ports PTA-4, and PTC-6

UART is on PTB-16, and PTB-17

32

This is a summary list of the pins we are going to use for this project.

33

Now select the GPIO tab.

34

Summary of pins

Port Number Function Name DirectionPort Number Function Name Direction

PTA4 SW3 Input

PTB21 LED_BLUE Output

PTB22 LED_RED Output

PTC6 SW2 Input

PTE26 LED_GREEN Output

35

Now we will configure the pin properties.

36

For the switch inputs, the switches require the use of the internal pull-up since there

is no external pull-up on the schematic.

37

In the User/Pin Signal Name column, you can enter names here that will be easier

to remember or the same labels that are on your schematic.

38

Setting the pin mux for LED_RED

Summary of pins

Port Number Function Name Direction

PTA4 SW3 Input

PTB21 LED_BLUE Output

PTB22 LED_RED Output

PTC6 SW2 Input

PTE26 LED_GREEN Output

39

Summary of pins

Port Number Function Name Direction

PTA4 SW3 Input

PTB21 LED_BLUE Output

PTB22 LED_RED Output

PTC6 SW2 Input

PTE26 LED_GREEN Output

40

Setting the Pin Mux for LED_BLUE

Summary of pins

Port Number Function Name Direction

PTA4 SW3 Input

PTB21 LED_BLUE Output

PTB22 LED_RED Output

PTC6 SW2 Input

PTE26 LED_GREEN Output

41

42

Scroll down to PTC (Port C) and select the GPIO pin 6, this is for the SW2 settings.

Summary of pins

Port Number Function Name Direction

PTA4 SW3 Input

PTB21 LED_BLUE Output

PTB22 LED_RED Output

PTC6 SW2 Input

PTE26 LED_GREEN Output

43

Again, for the inputs, we need to select the pin functional properties

44

For the switch inputs, the switches require the use of the internal pull-up since there

is no external pull-up on the schematic.

45

One more setting for GPIO, that would be LED Green PTE26 Output

46

Scroll down to PTE (Port E) and LED Green PTE26 Output

Notice that when you change the name of the User Pin/Signal Name, the

“Pin/Signal Selection” also changes name. We will use these user names when we

set up the drivers.

Now we move onto the UART pin muxing

47

Here are the pins we need to deal with for the UART. This uart is connected to the

debug interface chip on this board, and it allows for the uart to print on the PC

terminal window.

48

There is no real need to give this pin a user name, since we will use the uart as a

module. we can and will leave this at the default name. For your own design, you

may want to rename this to match your schematic.

Notice there are errors showing up.

49

The error message indicates a conflict with “uartCom1”, which we have not

configured yet. These errors will be corrected when the uart component is

configured.

50

51

At this point we can now configure the drivers. The first on our list is the

gpio1:fsl_gpio. There are 2 inputs that are needed for our project, click the ‘+’ twice.

There may already be gpio pins set. If this is the case, we can delete them since our
project does not need them. If you were adding gpio’s to an existing project, then

you would expect the pins to be listed.

52

By selecting the row, which in this case is pin #1, select the details for this pin we

added. Since we assigned “SW2” as an input with pull ups enabled, that selection

carries over to this panel. Now do this again for pin #3, and call I “SW3”. The
selection that shows row 0 as an input pin is not being used by this project. This can

be removed. This is an errata.

53

By selecting the row, which in this case is pin #1, select the details for this pin.

Since we assigned “SW3” as an input with pull ups enabled, that selection carries

over to this panel.

54

Its time to move to the output pins. Add 3 output pins, one each for RED, GREEN,

BLUE.

55

Scroll down to see the pin settings properties. Click or select row 1, which is the first

of the rows (pins) that we added.

56

At this point, the pin will be assigned based on the pin_mux names that was used in

the pin_mux settings section. As you enter the pin name, the dropdown list will filter

as you enter the name. So, after entering “LED” the three LED_ names pop up. You
can either keep typing the name or select the name from the list.

57

Set the output logic to 1. So the default state of the LED is OFF.

And it looks like this…

58

Scroll down to see the pin settings properties. Click or select row 2 and enter

LED_GREEN, and set output logic to 1

59

Scroll down to see the pin settings properties. Click or select row 3 and enter

LED_RED.

60

Now we move to the interrupt timer (PIT) and set it to 1000mS.

61

Here the pins are selected and the baud rate is selected.

62

63

64

To generate Processor Expert Code, press on this icon. Also, if you hover over the

icon, it gives you an indication of what it does.

As with most programs, there are always more than one way to do something, and

this is no exception. To generate Processor Expert code, you can also click on

Project -> Generate Processor Expert Code.

65

66

A quick check of some of the generated code. When you expand the generated

code section in the Project, you will see listings of header and c files.

67

A quick check of some of the generated code. The “Sources” folder includes other

source files, including main.c and events.c.

Events.c is where the interrupt callback routines are placed. The project has the

GREEN_LED blinking based on the interrupt timer, this is where the code is placed

to blink the LED.

68

69

In “events.c” the interrupt callback is installed. Here is where we will put the blink

the led code. Please note the “/* Write your code here … */”

70

Simply “drag & drop” gpio_toggle_pin_output” to the Events.c file. Make sure this is

between the {}.

This sets up the call back routine to turn the LED on/off.

71

For the gpio_toggle_..., a parameter needs to be passed. Since we want the

GREEN led to blink at the timer.”LED_GREEN” was defined when we set the pin

name.

72

73

Looking at KDS Help, there are three ways to import files. We will demonstrate the

“drag and drop” method in this exercise. Remember, in our OS’s, there are always

more than one way to do any particular task.

74

Find the file you want to use…

75

And Drag & Drop into the “Sources” folder. Or copy/paste it into the “Sources” folder

76

Select the appropriate import. We will use “Copy files”. This allows for the user to

modify the sources without effecting the original sources.

77

Now the file is included in the “Sources” folder.

78

Around line 40 to add the declaration of “my_main” and the call around line 51.

Be sure the call is included after the line “/* Write your code here */

79

80

Right now we will clean the project. I make it a habit to clean a project especially

when there are files imported or if the entire project is imported. This ensures that

there are no artifacts carried over from the import.

81

82

The project is cleaned and ready to build…

83

Right click on the project you wish to build. Then select build. One could also select

the project then using the menus “Project -> Build”.

84

Build Progress – Just like most Eclipse based tools.

85

86

These includes are what is generated and needed by Processor Expert.

This is an auto generated file. All we need to add is our declarations and a call to

our code.

87

This set of code is your events handler. Every where you included an interrupt for

the peripheral module, PEx generates a routine in this file.

88

89

90

91

92

93

The first thing that you need to do before debugging, is to setup the debug

configuration. To get to the debug configuration for your project, highlight the project

(by selecting it) and then click on the “▼”, and select “Debug Configurations…”

94

KDS is based on stock eclipse with our Processor Expert Plug-ins and base debug

configurations. The base debug configurations are GDB. With this version the GDB

includes OpenOCD, P&E Micro and Segger J-Link.

95

KDS is based on stock eclipse with our Processor Expert Plug-ins and base debug

configurations. The base debug configurations are GDB. With this version the GDB

includes OpenOCD, P&E Micro and Segger J-Link.

96

The “Start OpenOCD locally” option allows for the OpenOCD executable to be

started by the tools. The other option is to start the OpenOCD manually and then

KDS will find it via the GDB port.

The “Allocate console…” selection MUST be selected in order to start the debug

session.

With GDB as the debugger engine, this will allow for remote debugging. The tools

on one machine, and the UUT and GDB server on another machine. To set that up,

use the GDB Hardware Debugging and setup the server IP address, connection
(JTAG Device), and port number of the remote machine.

97

In Other options, you must enter the type of interface and the target configuration

-c “interface cmsis-dap” –f target\k64.cfg file location. Be sure to enter -c “interface cmsis-dap” –f target\k64.cfg into the

“Other options:” box. This can be on a single line or separate lines. I chose separate
lines for readability.

98

Defaults for the “Startup” tab, and recommend to check the “Shared file” for the

debug configuration. This will bundle the configuration file with the project when

exported.

The Startup panel is where you would set the initial breakpoint for the debugger. By

default, it stops at main.

The Common tab has the “Shared file” selection. Check this if you want the debug

configuration to be included in the project when you export the project.

99

All Defaults

The Startup panel is where you would set the initial breakpoint for the debugger. By

default, it stops at main. If you want to stop at a particular place, you can enter an

address, or function name.

100

Click “Apply” then click “Debug” this will launch the debugger.

101

102

Click checkbox, so you do not get this again. What is happening here, is that

Eclipse wants to change to the Debug perspective, If you do not want to see this

dialog again, just check this box, and never to see this again.

103

104

Immediately after the Download task is completed, the perspective automatically

changes into the Debug Perspective. This perspective has a variety of windowing

possibilities, by default this perspective gives you 5 major windows. The Debug
window, the inspection window, source code window, and the console window.

Within the Inspection and Console window space, there are other choices of things

to view.

Another item, which is set by default, the code automatically breakpoints after main.

This choice can be changed in the Debug Configuration

105

Since the Step “into” was selected on the base line of PE_low_level_init(); the editor

moves to the first line of the call. Now we will do a single step, which will take us to

the next function call of this routine.

106

This will stop over the “PE_low_level_init and stop at my_main

107

108

Notice the sendstring printed on the terminal and the green LED should be blinking.

109

With the program running, now click the “Suspend Icon”

110

Expand the Registers View and expand the User/System Mode Registers

111

With the register window open, single step over, multiple times and see the register

value change as the code steps through the delay function.

Now click the suspend button.

112

Set breakpoints by double clicking in the margin next to the line you wish to break

point. In this case we want to break point at line 36.

113

Lets turn off a breakpoint at “my_main” and continue to run the program. Press the

buttons and see the pretty lights go on an off.

Did we meet our design goals?

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Start with Perspective: Lets set this to the non-processor expert hardware

configuration perspective. Select Kinetis SDK (this will be selectable for processors

that are supported by the SDK), and select Standalone project mode. This allows
for you to modify the files and settings to suite your needs without effecting the files

stored on disk. If you use “Linked” mode, and you modify the contents of the code,

then you are modifying the reference code.

If you plan on archiving the project or sharing the project, this assures the entire

project is included, all the source files, etc.

131

