

NXP Semiconductor

Debugging Bootloader and Application

using KDS

By: Carlos Mendoza / Technical Information Center

Debugging Bootloader and Application using KDS
2 NXP Semiconductor

About this document

This document explains how to use Kinetis Design Studio to debug both a bootloader and application at

the same time, this will be done using GDB commands to specify an additional symbol file to be used in

the debug session.

The bootloader used for this example is the project for the FRDM-K64F board provided in the KBOOT

1.2.0 named freedom_bootloader and the application is a bareboard led demo that was adapted to

work with this bootloader by following the steps described in this document:

https://community.freescale.com/docs/DOC-256669

The document was created using the MK64FN1M0VLL12 MCU like the one in the FRDM-K64F board, but

the same principles are applicable to any Kinetis MCU.

Software versions

The steps described in this document are valid for the following versions of the software tools:

 KDS v3.2.0

 KBOOT v1.2.0

Contents
1. Overview and concepts ... 3

1.1 Kinetis Bootloader ... 3

1.2 GDB Server .. 3

2. Flashing Bootloader and Application .. 4

2.1 Flashing freedom_bootloader project .. 4

2.2 Loading demo application using the Kinetis Updater ... 8

2.3 Flashing demo application and bootloader using the P&E advanced programming options 14

3. Debugging Bootloader and Application .. 17

3.1 Debugging bootloader and demo application projects using the P&E interface 17

3.2 Debugging bootloader and demo application projects using the Segger interface 24

4. Conclusion. .. 31

Appendix A - References ... 32

https://community.freescale.com/docs/DOC-256669

Debugging Bootloader and Application using KDS
3 NXP Semiconductor

1. Overview and concepts

1.1 Kinetis Bootloader

The Kinetis bootloader is a configurable flash programming utility that operates over a serial connection

on Kinetis MCUs. It enables quick and easy programming of Kinetis MCUs through the entire product

lifecycle from application development to final product manufacturing and beyond for updating

applications in the field with confidence.

The bootloader is delivered in two ways: as full source code that is highly configurable; or pre-

programmed by NXP into ROM or flash on select Kinetis devices. Host-side command line and GUI tools

are available to communicate with the bootloader. Users can utilize host tools to upload/download

application code via the bootloader.

The KBOOT 1.2.0 release contains the following PC-based host tools:

o blhost - command line debug tool to send individual commands to the bootloader .
o Kinetis Updater - GUI application to download and flash an application image.

And the following project types:

o tower_bootloader – bootloader designed to execute from target flash memory on the Tower
platform.

o freedom_bootloader – bootloader designed to execute from target flash memory on the Freedom
platform.

o flashloader – bootloader designed to execute from target RAM memory on either the Freedom or
Tower platform.

o flashloader_loader – bootstrap loader designed to execute from flash memory on either the
Freedom or Tower platform. This loader copies an image of the flashloader into RAM, then executes
the flashloader from RAM.

1.2 GDB Server

The ‘GDB Server’ is a service or program which sits between the GDB inside Eclipse and the Debug

Probe. GDB talks to the GDB server using TCP/IP and a port number, so that GDB Server can be either on

your host machine, or on a remote machine. It translates and sends commands from the GDB in Eclipse

to the Debug probe, things like setting breakpoints and so on. The communication between the GDB

Server and the Debug Probe depends on the probe capabilities. It can be USB, TCP/IP, Serial or anything

else.

Debugging Bootloader and Application using KDS
4 NXP Semiconductor

2. Flashing Bootloader and Application

2.1 Flashing freedom_bootloader project

For this example we will use the freedom_bootloader project, this bootloader was designed to execute

from target flash memory on the Freedom platform. The project can be found on the following path:

C:\Freescale\FSL_Kinetis_Bootloader_1_2_0\targets\MK64F12\kds\freedom_bootloader

- Import the freedom_bootloader project to KDS by clicking on Menu > File > Import:

Debugging Bootloader and Application using KDS
5 NXP Semiconductor

- Select Existing Projects into Workspace and click on Next:

- Browse for the project and click on Finish:

Debugging Bootloader and Application using KDS
6 NXP Semiconductor

- Build the project and then click on Menu > Run > Debug Configurations:

- The debug configurations will open, choose the Segger interface and click on Debug. The same

steps apply when using the P&E interface:

Debugging Bootloader and Application using KDS
7 NXP Semiconductor

- The Debug session will start and the bootloader is now flashed on the board:

Debugging Bootloader and Application using KDS
8 NXP Semiconductor

2.2 Loading demo application using the Kinetis Updater

For this section of the document the Kinetis Updater tool will be used to flash the application image to

the MCU. The tool can be found on the following path:

C:\Freescale\FSL_Kinetis_Bootloader_1_2_0\bin\win\KinetisUpdater

Before executing the Kinetis Updater tool we need to generate the binary file of the demo application

that will be flashed to the MCU.

- Extract the K64F12_Led_Demo project and import it to KDS by clicking on Menu > File > Import:

Debugging Bootloader and Application using KDS
9 NXP Semiconductor

- Select Existing Projects into Workspace and click on Next:

- Browse for the project and click on Finish:

Debugging Bootloader and Application using KDS
10 NXP Semiconductor

- Build the project and the binary file will be generated in the Debug folder:

- Now open the Kinetis Updater tool and click on Select Device:

Debugging Bootloader and Application using KDS
11 NXP Semiconductor

- Select your device and click on Connect, if the connection is not established perform a reset to

the board:

- Click on Home and then on Select Image:

Debugging Bootloader and Application using KDS
12 NXP Semiconductor

- Browse for the binary file that was generated by the demo project and update the Base address

to 0x0000A000, this address is where the demo application starts:

- Click on Home and then on Update:

Debugging Bootloader and Application using KDS
13 NXP Semiconductor

- Click on the Update button and the application will be loaded to the MCU, the RGB led will start

to toggle indicating that the bootloader jumped to the application:

- At this point you can now proceed to the section 3.2 “Debugging bootloader and demo

application projects using the Segger interface”.

Debugging Bootloader and Application using KDS
14 NXP Semiconductor

2.3 Flashing demo application and bootloader using the P&E advanced

programming options

Refer to the sections 2.1 and 2.2 that explain how to import and build both the freedom_bootloader

and K64F12_Led_Demo projects.

- Once that both projects are in you workspace and have been built click on Menu > Run > Debug

Configurations:

Debugging Bootloader and Application using KDS
15 NXP Semiconductor

- Choose the corresponding P&E connection for the bootloader project and generate 1 additional

ELF field:

Debugging Bootloader and Application using KDS
16 NXP Semiconductor

- Browse for the *.elf file generated by the demo application, click on Apply then on Debug:

- The Debug session will start and both the bootloader and demo application are now flashed on

the MCU, you can now proceed to the section 3.1 “Debugging bootloader and demo application

projects using the P&E interface”.

Debugging Bootloader and Application using KDS
17 NXP Semiconductor

3. Debugging Bootloader and Application

3.1 Debugging bootloader and demo application projects using the P&E

interface

- After the bootloader and the demo application have been flashed to the MCU using the P&E

advanced programming options click on Menu > Run > Debug Configurations:

Debugging Bootloader and Application using KDS
18 NXP Semiconductor

- Choose the corresponding P&E connection for the bootloader project and go to the Debugger

tab:

Debugging Bootloader and Application using KDS
19 NXP Semiconductor

- Now we need to specify an additional symbol file to be used in the debug session, this will be

done by using the following GDB command:

add-symbol-file filename address

Where filename is the path to the *.elf file generated by the demo application using double

backslashes:

C:\\Users\\b38285\\workspace.kds-3.0.0\\K64F12_Led_Demo\\Debug\\K64F12_Led_Demo.elf

And the address is the origin of the m_text section of my demo application, in this case

0x0000a410:

Debugging Bootloader and Application using KDS
20 NXP Semiconductor

- Here are the updated debug configurations, after the GDB command is added, click on Apply

then Debug:

Debugging Bootloader and Application using KDS
21 NXP Semiconductor

- The Debug session will start:

Debugging Bootloader and Application using KDS
22 NXP Semiconductor

- Open the main.c file of the K64F_Led_Demo and set a breakpoint in the init_hardware()

function:

Debugging Bootloader and Application using KDS
23 NXP Semiconductor

- At this point you can step through the bootloader program and then jump to the demo

application and continue debugging it:

Debugging Bootloader and Application using KDS
24 NXP Semiconductor

3.2 Debugging bootloader and demo application projects using the Segger

interface

- After the bootloader has been flashed to the MCU and the demo application was loaded using

the Kinetis Updater tool go to KDS, make sure both projects are opened and click on Menu >

Run > Debug Configurations:

Debugging Bootloader and Application using KDS
25 NXP Semiconductor

- Choose the corresponding Segger connection for the bootloader project and go to the Debugger

tab:

Debugging Bootloader and Application using KDS
26 NXP Semiconductor

- Now we need to specify an additional symbol file to be used in the debug session, this will be

done by using the following GDB command:

add-symbol-file filename address

Where filename is the path to the *.elf file generated by the demo application using double

backslashes:

C:\\Users\\b38285\\workspace.kds-3.0.0\\K64F12_Led_Demo\\Debug\\K64F12_Led_Demo.elf

And the address is the origin of the m_text section of my demo application, in this case

0x0000a410:

Debugging Bootloader and Application using KDS
27 NXP Semiconductor

- Here are the updated debug configurations, after the GDB command is added click on Apply

then Debug:

Debugging Bootloader and Application using KDS
28 NXP Semiconductor

- The Debug session will start:

Debugging Bootloader and Application using KDS
29 NXP Semiconductor

- Open the main.c file of the K64F_Led_Demo and set a breakpoint in the init_hardware()

function:

Debugging Bootloader and Application using KDS
30 NXP Semiconductor

- At this point you can step through the bootloader program and then jump to the demo

application and continue debugging it:

Debugging Bootloader and Application using KDS
31 NXP Semiconductor

4. Conclusion.

This document has demonstrated how to use Kinetis Design Studio to flash a bootloader and an

application to an MCU and how to debug the bootloader and application at the same time using the

GDB command add-symbol-file filename address that specifies an additional symbol file to be used in

the debug session.

Debugging Bootloader and Application using KDS
32 NXP Semiconductor

Appendix A - References

- KDS webpage:

www.nxp.com/kds

- KBOOT webpage:

www.nxp.com/kboot

- Debugging with gdb:

https://sourceware.org/gdb/current/onlinedocs/gdb/

- Adapting KDS project for KBOOT flash resident bootloader:

https://community.freescale.com/docs/DOC-256669

- MCU on Eclipse - Debugger (GDB Server with P&E and Segger):

http://mcuoneclipse.com/2013/07/22/diy-free-toolchain-for-kinetis-part-3-debugger-gdb-server-

with-pe-and-segger/

http://www.nxp.com/kds
http://www.nxp.com/kds
http://www.nxp.com/kboot
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://community.freescale.com/docs/DOC-256669
http://mcuoneclipse.com/2013/07/22/diy-free-toolchain-for-kinetis-part-3-debugger-gdb-server-with-pe-and-segger/
http://mcuoneclipse.com/2013/07/22/diy-free-toolchain-for-kinetis-part-3-debugger-gdb-server-with-pe-and-segger/

