

Freescale Semiconductor

Getting started with the eGUI (a.k.a. D4D)

By: Technical Information Center

Introduction

The complimentary embedded graphical user interface (eGUI) allows single chip MCU

systems to implement a graphical user interface and drive the latest generation of color graphics

LCD panels with integrated display RAM and simple serial peripheral interface (SPI) or parallel

bus interface. The eGUI supports conventional LCD panels and ColdFire LCD MPUs.

Freescale Semiconductor

Contents

Introduction ... 1

1. About this document.. 3

2. Running the K70 demo on IAR .. 4

a. Compiling the TWR-K70F120M MQX libraries ... 4

b. Adding the SD card content ... 5

c. Download the application to the MCU ... 5

3. Modifying the eGUI demo ... 6

a. Creating a new screen ... 6

i. Adding a new source file for the new screen .. 7

ii. Adding the screen header files ... 8

iii. Adding some macro definitions .. 8

iv. Defining screen attributes .. 8

v. Declaring the screen .. 9

vi. Defining a new string ... 10

vii. Adding the screen interfaces ... 10

b. Opening the new screen ... 11

c. Creating a new button.. 13

d. Toggling the LED .. 15

4. Results ... 16

5. Conclusion .. 17

Freescale Semiconductor

1. About this document

This document is intended to be a basic guide to get started with the eGUI. If you need a

closer view about what this driver is, it is recommended to take a look into the eGUI Introduction

document. Before starting, it is needed to download the library from the NXP eGUI website and it

is recommended to take a look into the eGUI Reference Manual.

For this document, a demo included in the eGUI drivers will be run and then modified to

toggle a LED in the TWR-K70F120M board from the eGUI interface displayed in the TWR-LCD-

RGB board.

IMPORTANT: The eGUI is able to be run either in baremetal or over MQX.

http://cache.nxp.com/files/microcontrollers/doc/reports_presentations/EGUIPRE.ppt?fpsp=1&WT_TYPE=Reports%20or%20Presentations&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=ppt&WT_ASSET=Documentation&fileExt=.ppt
http://www.nxp.com/eGUI
http://gargy007.github.io/egui_doc/

Freescale Semiconductor

2. Running the K70 demo on IAR

This demo is showing the eGUI capability in simulate standard forms and the keyboard

and mouse handling. This demo needs theTWR-K70F120M, the TWR-SER and the TWR-LCD-

RGB boards; also, it runs over MQX. The hardware and MQX configurations must be as follows:

TWR-SER card settings:

 The card has to be setup to provide USB host capability: J10: 1-2; J16: 1-2.

TWR-K70F120M card settings:

 Use default setting of card.

TWR-LCD-RGB:

 The demo supports revision B and newer revisions of this card.

The MQX Settings:

 The only two changes that must be done in the MQX PSP configuration are these:

a. Compiling the TWR-K70F120M MQX libraries

Since the demo project is built with IAR, it is needed to compile the BSP, PSP, MFS and

USB Host libraries for the TWR-K70F120M for IAR so it is needed to open and compile the

projects located in the paths below.

user_config.h
#define MQX_HAS_TIME_SLICE 1

small_ram_config.h
 #define MQX_ROM_VECTORS 0

C:\Freescale\Freescale_MQX_4_2\mqx\build\iar\bsp_twrk70f120m
C:\Freescale\Freescale_MQX_4_2\mqx\build\iar\psp_twrk70f120m
C:\Freescale\Freescale_MQX_4_2\mfs\build\iar\mfs_twrk70f120m
C:\Freescale\Freescale_MQX_4_2\usb\host\build\iar\usbh_twrk70f120m

Freescale Semiconductor

b. Adding the SD card content

Before running the application in the MCU, it is needed to copy the files from the

Freescale_embedded_GUI_SW_Official_Demos\EGUI_Demo\SD_Card_Content to the root

directory in a micro SD card. This folder contains a text and an image files which will be previewed

in the demo and two font files generated with the Freescale eGUI Converter Utility 3.0 that can

be configured to be used in the demo.

c. Download the application to the MCU

Once everything is configured, it is time to open the demo in the path

Freescale_embedded_GUI_SW_Official_Demos\EGUI_Demo\TWR_K70\IAR\eGUI_Demo.

eww.

The file eGUI_Demo\Sources\ScreenData\unicode_test.c must be deleted from the

project and the path C:\Freescale\Freescale_MQX_4_2\shell\source\include must be added

before to compile by right-clicking over the project and selecting the menu Options… > C/C++

Compiler > Preprocessor and then add the path in the section Additional include directories.

The micro SD card must be inserted before to run the demo which includes an “Open”

button which will pop up a window to explore the micro SD card content and look for files that can

be previewed. There is also a “System” button which opens a pop up window to configure stuff

like language, colors and fonts.

http://gargy007.github.io/egui_doc/downloads/Freescale%20Embedded%20GUI%20Converter%20Utility%203.0.zip

Freescale Semiconductor

3. Modifying the eGUI demo

This demo will be modified to create a new window with a button capable to toggle a LED

located in the board. This can be done by several ways but for this time a new screen will be

created with a big toggle button. The information presented in this chapter is mostly taken from

the eGUI Reference Manual.

a. Creating a new screen

The D4D_SCREEN is the basic organizational structure of the eGUI. The whole project

structure is divided into individual screens and its objects, therefore screens are used to keep

organization of the whole project by the appearance as well as the program structure. It is

recommended to create your own source code file for each individual screen. It is possible to go

through the screens by system forward and back (activate and escape screen).

Figure 1. eGUI structured objects and screens.

The D4D_SCREEN object can be used as a window, have a smaller size, be placed

anywhere, and also have a header (title bar) with icon, title, and exit button. Such a screen looks

like a window and has many uses (help menu, warning, error, ask, messages, and so on).

http://gargy007.github.io/egui_doc/
http://gargy007.github.io/egui_doc/group__doxd4d__screen.html

Freescale Semiconductor

Figure 2. Screen with non-default settings.

i. Adding a new source file for the new screen

Taking the advices from the reference manual, a new source file is created in the path

Freescale_embedded_GUI_SW_Official_Demos\EGUI_Demo\common_sources\d4d_scre

en_LEDtoggle.c. This file is added to the Screens group by right clicking over Workspace >

eGUI_Demo\Sources\Screens and then Add > Add files… and selecting the new source file.

Figure 3. Add the new screen’s source file to the project.

Freescale Semiconductor

ii. Adding the screen header files

 Once the screen’s source file has been added, it is needed to define the header files that

are mainly used:

The d4d.h header includes the d4d libraries, i.e. it includes all the needed definitions to

use the d4d objects. The fonts.h header contains the fonts data generated by the eGUI converter

utility. The strings.h header includes the strings definitions, this is fundamental to support multi

language applications.

iii. Adding some macro definitions

Sometimes it is useful to define macros with information that is usually modified after

changing some hardware (like the screen’s size) or while designing interfaces (like the objects’

size). This is a good reason to create macro definitions for this kind of elements and keep the

source code organized.

Since the TWR-LCD-RGB resolution (size) is 480 x 272, the screen size 432 x 220 means

that the new screen will look like a non-full-screen window.

iv. Defining screen attributes

As it was said, a screen has several configurations such the existence of a close (exit)

button, a title bar, among others. This information is usually defined through macro definitions as

/***
* Includes header files
***/
#include "d4d.h"
#include "fonts.h"
#include "strings.h"

/***
* D4D widgets (graphic objects) declarations
***/

#define SET_SCREEN_SIZE_X 432
#define SET_SCREEN_SIZE_Y 220

Freescale Semiconductor

it is shown below. In this case, the new window has an outline, a title bar, a filled background, a

normal mouse cursor and an exit button.

For more information go to the screen behavior flags section in the eGUI Reference

Manual.

v. Declaring the screen

Once the screen’s properties have been defined, it is time to declare a new screen. It is

done through the D4D_DECLARE_SCREEN_BEGIN() and D4D_DECLARE_SCREEN_END()

sentences. I suggest to expand these sentences by right clicking over them and then select the

option Go to definition of ‘’. This will show that in terms of C programming, these macros are

declaring a new structure with the screen configurations.

 It is seen that, among other parameters, it is needed to define a screen’s name and a

prefix name for some event handlers that must be defined on each screen, this will be

implemented later.

Also, the parameter text asks for a title bar text. This means that a new string for this

screen must be defined. By the moment, it is selected the name D4D_STR_TOGGLE_LED for

this string, it will be defined in the next step.

/***
* D4D widgets (graphic objects) declarations
***/

#define D4D_SCRSET_F (D4D_SCR_F_OUTLINE | D4D_SCR_F_TITLEBAR |
D4D_SCR_F_BCKG | D4D_SCR_FINT_MOUSE_NORMAL | D4D_SCR_F_EXIT)

/***
* D4D screen declarations
***/
D4D_DECLARE_SCREEN_BEGIN(screen_LEDtoggle, ScreenToggleLED_, 20 ,20,
(SET_SCREEN_SIZE_X + 2), (SET_SCREEN_SIZE_Y + 20), D4D_STR_TOGGLE_LED,
FONT_SYSTEM, NULL, D4D_SCRSET_F, NULL)

D4D_DECLARE_SCREEN_END()

http://gargy007.github.io/egui_doc/group__doxd4d__screen__const__flags.html

Freescale Semiconductor

vi. Defining a new string

 A new string must be defined, as it was defined in the last step, it must be called

D4D_STR_TOGGLE_LED. Since this demo has support for English, Czech and Chinese, it is

needed to add these three strings for the same definition.

The first step to do this is to define a new name for this string and an ID in the

eGUI_Demo\Sources\ScreenData\strings.h file, in this case the ID 40 was added.

 Then, in the eGUI_Demo\Sources\ScreenData\strings.c file, a new element must be

added in the 40th position (because of the defined ID) of the string’s array on each of the three

already defined languages. For example, in the case of the English language, the new element

must look as follows:

A table with the supported languages is declared in this file so if it is needed to add a new

language this must be defined here.

vii. Adding the screen interfaces

 Finally, it is needed to implement the mandatory event handlers (interfaces) for the screen.

These handlers include the OnInit, OnActivate, OnMain, OnDeactivate and OnObjectMessage

events. By this moment, these handlers will be empty.

#define D4D_STR_TOGGLE_LED D4D_DEFSTR("@40")

D4D_DEFSTR("Toggle LED") // D4D_STR_TOGGLE_LED

Freescale Semiconductor

b. Opening the new screen

At this point, the screen has been created but it hasn’t been opened yet. The event of

“open” a screen is called “activate” and the event of “close” it is called “escape”.

For the sake of simplicity, the way to activate this new screen will be by replacing the

“system” button in the main screen for this new one. This is done by replacing the OnClick event

for the “system” button in the “main” screen (i.e. in the main’s screen source file

/***
* D4D standard screen functions definitions
***/

// One time called screen function in screen initialization process
static void ScreenToggleLED_OnInit()
{

}

// Screen on Activate function called with each screen activation
static void ScreenToggleLED_OnActivate()
{

}

// Screen "Main" function called periodically in each D4D_poll runs
static void ScreenToggleLED_OnMain()
{

}

// Screen on DeActivate function called with each screen deactivation
static void ScreenToggleLED_OnDeactivate()
{

}

// Screen on message function called with each internal massage for this
screen
static Byte ScreenToggleLED_OnObjectMsg(D4D_MESSAGE* pMsg)
{
 D4D_UNUSED(pMsg);
 return 0;
}

Freescale Semiconductor

Freescale_embedded_GUI_SW_Official_Demos\EGUI_Demo\common_sources\d4d_scre

en_main.c).

The first step to activate a screen is to declare as extern the target screen somewhere in

the source screen. The parameter of the macro D4D_EXTERN_SCREEN makes reference to the

name which was given when the screen was declared.

 Also, it results convenient to change the button’s text from “system” to “Toggle LED”. The

string D4D_STR_TOGGLE_LED defined for the screen’s title bar could work. Change the text

argument for the sMain_btnSettings button declaration from D4D_STR_SYSTEM to

D4D_STR_TOGGLE_LED.

The OnClick event is called when the “system” button is pressed, originally it activates the

settings screen, so we need to comment out that function and activate the LED toggle screen

instead.

 Since the string is larger, it is recommended to change the BTN_SIZE_X from 100 to 107.

// Reference to the target screen
D4D_EXTERN_SCREEN(screen_LEDtoggle);

D4D_DECLARE_TXT_RBUTTON(sMain_btnSettings,D4D_STR_TOGGLE_LED,
BTN_POS_X(1), BTN_POS_Y, BTN_SIZE_X, BTN_SIZE_Y, MAIN_RADIUS, FONT_SYSTEM,
SFL_BtnSettingsOnClick)

// On Click Event of "SETTINGS" button
static void SFL_BtnSettingsOnClick(D4D_OBJECT* pThis)
{
 //D4D_ActivateScreen(&screen_settings, D4D_FALSE);

 // Activate the Toggle LED screen.
 D4D_ActivateScreen(&screen_LEDtoggle, D4D_FALSE);
}

#define BTN_SIZE_X 107

Freescale Semiconductor

c. Creating a new button

At this point, a new screen is opened after pressing the “Toggle LED” button. However, it

is empty. The natural way to toggle a LED is with a button so a button will be created for this

purpose.

The first step to define some macros with the button’s properties like the size, the position,

the corner radius and the button flags. The possible button flags are listed in the eGUI Reference

Manual.

 Then, the button is declared through the macro D4D_DECLARE_RBUTTON.

/***
* D4D widgets (graphic objects) declarations
***/

#define SET_BTN_POS_X 50
#define SET_BTN_POS_Y 50

#define SET_BTN_SIZE_X (SET_SCREEN_SIZE_X - 2 * SET_BTN_POS_X)
#define SET_BTN_SIZE_Y (SET_SCREEN_SIZE_Y - 2 * SET_BTN_POS_Y)

#define SET_RADIUS 6

#define SET_BUTTON_FLAGS (D4D_OBJECT_F_VISIBLE | D4D_OBJECT_F_ENABLED
| D4D_OBJECT_F_TABSTOP | D4D_OBJECT_F_TOUCHENABLE |
D4D_OBJECT_F_MOUSE_NORMAL | D4D_OBJECT_F_FASTTOUCH |
D4D_OBJECT_F_BEVEL_RAISED | D4D_BTN_F_3D)

/***
* Local variables declarations
**/

// Declare Toggle LED button
D4D_DECLARE_RBUTTON(sLED_btnToggleLED, D4D_STR_TOGGLE_LED, SET_BTN_POS_X,
SET_BTN_POS_Y, SET_BTN_SIZE_X, SET_BTN_SIZE_Y, SET_RADIUS,
SET_BUTTON_FLAGS, NULL, NULL, NULL, FONT_SYSTEM_BIG, NULL,
BtnToggleLEDOnClick, NULL)

http://gargy007.github.io/egui_doc/group__doxd4d__object__const__flags.html
http://gargy007.github.io/egui_doc/group__doxd4d__object__const__flags.html

Freescale Semiconductor

 The parameter OnClick is a callback which will be executed each time the button is

pressed. This callback must be declared and defined by the application.

 Finally, the button must be added as part of the toggle LED screen. If more widgets want

to be added to this screen, these must be added in this section.

/***
* Local functions declarations
***/

static void BtnToggleLEDOnClick(D4D_OBJECT* pThis);

/***
* D4D widgets static events functions definitions
***/

// The Toggle LED button action
static void BtnToggleLEDOnClick(D4D_OBJECT* pThis)
{

}

/***
* D4D screen declarations
***/

D4D_DECLARE_SCREEN_BEGIN(screen_LEDtoggle, ScreenToggleLED_, 20 ,20,
(SET_SCREEN_SIZE_X + 2), (SET_SCREEN_SIZE_Y + 20), D4D_STR_TOGGLE_LED,
FONT_SYSTEM, NULL, D4D_SCRSET_F, NULL)
 D4D_DECLARE_SCREEN_OBJECT(sLED_btnToggleLED)
D4D_DECLARE_SCREEN_END()

Freescale Semiconductor

d. Toggling the LED

The only step remaining is to toggle the LED into the button’s OnClick callback. This is

done through the MQX API for the GPIO. The LED must be initialized before to be used, the best

moment to do this is in the screen’s OnInit handler.

Then, each time the button is pressed, the GPIO’s toggle function must be called.

/***
* D4D standard screen functions definitions
***/

// One time called screen function in screen initialization process
static void ScreenToggleLED_OnInit()
{
 /* initialize lwgpio handle (led1) for BSP_LED1 pin
 * (defined in mqx/source/bsp/<bsp_name>/<bsp_name>.h file)
 */
 if (!lwgpio_init(&ledC, BSP_LED2, LWGPIO_DIR_OUTPUT,
LWGPIO_VALUE_NOCHANGE))
 {
 //Error.
 }

 /* swich pin functionality (MUX) to GPIO mode */
 lwgpio_set_functionality(&ledC, BSP_LED1_MUX_GPIO);
}

/***
* D4D widgets static events functions definitions
***/
LWGPIO_STRUCT ledC;

// The Toggle LED button action
static void BtnToggleLEDOnClick(D4D_OBJECT* pThis)
{
 lwgpio_toggle_value(&ledC); /* toggle pin value */
}

Freescale Semiconductor

4. Results

Freescale Semiconductor

5. Conclusion

This document has demonstrated how easy is to get introduced to the eGUI library. Only

two elements (screen and button) were used in this document, however, the eGUI reference

manual explains in detail how the other widgets are used by following the same methodology.

