Freescale MQX RTOS Example Guide
web hvac example

This document explains the web hvac example, what to expect from the example
and a brief introduction to the API.

The example

This application represents the residential HVAC controller system requirements
which are as follows:
Control
e Control of 3 outputs: Fan on/off, Heating on/off, A/C on/off
. Thermostat Input
e Serial interface to set the desired temperature and to monitor the status
of the thermostat and outputs
Data logging:
. Log ambient temperature and output status on a periodic basis
. Store log information on a USB Memory Stick
Ethernet:

e Provide Ethernet connectivity to facilitate monitoring and control of the
device via a Telnet connection

. Support transfer of the logging information over Ethernet with FTP
e Use web pages to display status and receive setting commands

The next figure shows in detail all the parts that interacts with this demo

application.
/ Updates l \
HVAC Remote User Event
Task User Interface Logger HTTP Server,
Interface Task Task TCPIP
) anutl log
input output activity Z\;Zbes
s @@
“\.
File
Temp | |Fan I -
Sens. Heat Serial Tolriet —SVStem
AIC TCP/IP
Tasks usBe

Running the example

Re-build the BSP, PSP, MFS, RTCS, Shell and USB host projects for the target
platform/IDE. Then build and start the web hvac example application on the
target platform. For instructions how to do that in different IDEs and for
different debuggers, see the MQOX documentation (<MQX installation
folder>/doc/tools) .

Pay special attention for correct jumper settings of your board before running
the demo. Please consult the “MQX Getting started” document.

Explanation of the example

The Web HVAC demo application implements 6 main tasks in the MQX 0OS. The
objective of the application is to show the user an example of the resources
that MQX provides as a software platform and to show the basic interface with
Ethernet and USB peripherals.

The HVAC Task simulates the behavior of a Real HVAC system that reacts to
temperature changes based on the temperature and mode inputs from the system.
The user interacts with the demo through the serial interface with a Shell
input, through the push buttons in the hardware, and with a USB Stick that
contains information with File System format.

The task template list is a list of tasks (TASK TEMPLATE STRUCT). It defines an
initial set of tasks that can be created on the processor.

At initialization, MQX creates one instance of each task whose template defines
it as an auto start task. As well, while an application is running, it can
create a task present on the task template or a new one dynamically.

Tasks are declared in the MQX template list array as next:
--Tasks.c--—

const TASK TEMPLATE STRUCT MQX template list[] =
{

/* Task Index, Function, Stack, Priority, Name, Attributes,
Param, Time Slice */

{ HVAC TASK, HVAC Task, 1400, 9, "HVAC",
MQX_AUTO START TASK, 0, 0 3,
#if DEMOCFG ENABLE SWITCH TASK

{ SWITCH TASK, Switch_TaSk, 800, 10, "Switch",
MQX_AUTO START TASK, 0, 0 3,
fendif
#if DEMOCFG_ENABLE SERIAL SHELL

{ SHELL, TASK, Shell Task, 2500, 12, "Shell",
MQX AUTO_START TASK, 0, 0 b
#endif
#if DEMOCFG_ENABLE AUTO LOGGING

{ LOGGING TASK, Logging task, 2500, 11, "Logging",
0, 0, 0 by
#endif
#if DEMOCFG_ENABLE USB FILESYSTEM

{ USB_TASK, USB_task, 22001, 8L, "USB",
MQX AUTO_START TASK, 0, 0 b
#endif

{ ALIVE TASK, HeartBeat Task, 1500, 10, "HeartBeat",
0, 0, 0 I

{0}

Some tasks in the list are auto start tasks, so MQX creates an instance of each
task during initialization. The task template entry defines the task priority,
the function code entry point for the task, and the stack size.

This task initializes the RTCS, the Input/Output driver, and implements the
HVAC simulation state machine. The HVAC Demo implementation represents the user
application and shows how to use different MQX resources.

The initial part of the HVAC task installs unexpected ISRs.
Install the MQX-provided unexpected ISR, int unexpected isr(), for all

interrupts that do not have an application-installed ISR. The installed ISR
writes the cause of the unexpected interrupt to the standard I/O stream.

The MOX uses kernel log to analyze how the application operates and uses
resources. Kernel log is not enabled by default in the demo.

Note: The "BSP_DEFAULT MAX MSGPOOLS" has to be set to 3 or higher to ensure the

0}
b
[
3
kel
et
[}
-
[}
2
¢}
=
jas
o
ot
Q
ke
In
[}
e
[0}
[t
o
~

The HVAC task initializes the RTCS, the parameters of the HVAC application and
loads the Input/Output driver. RTCS and Input/Output initialization is
explained with detail in the RTCS section of this document. The HVAC parameter
initialization function sets the initial values for the temperature,
temperature scale, fan mode, and HVAC mode variables.

=
c o
5 O
=]
B
| 2
Q H
g
ltl'J
H
o
0
=
e
0
o
]
=
=
o
3
O
]
s
or
o
=
-
o
o
o
=g
()
'_l
]
)
c
)
o+
o
)
()
[0}
'_l
h
+
=g
()
0
53
0
o
[0}
=1
'_l
0
=
]
©
5
Q.

The HVAC main loop executes the HVAC system simulation. It controls the fan,
heating and cooling based on the mode and the measured temperature. The HVAC
data is stored in the HVAC State structure.

This loop uses functions from the Input/Output driver and from the HVAC Util.c
source file. The HVAC Util.c contains a group of functions that control all the
variables required for the HVAC simulation.

'\

The ipcfg task poll() function is part of the Ethernet link/bind monitoring
task. This function checks for all available Ethernet devices. Configuration
for each device is checked and the link and bind status are tested.

The application interfaces the HVAC variables by using the public functions

listed in HVAC public.h. These functions are implemented in HVAC Util.c and
HVAC I0O.c.

RTCS Initialization

Following macros (defined in file HVAC.h) enable various features of RTCS in
this demo:

Global variables from the RTCS library are initialized to configure the amount
of Packet Control Block and the size of the message pool to be allocated when

the RTCS is created. These values are set to default by the library and don’t

require an initialization from the user.

After setting the parameters RTCS is created by calling RTCS create() function.
The function allocates resources that RTCS needs and creates TCP/IP Task. For
more details on how the RTCS create function works please look at the RTCS
source code located in \<MQOX installation folder>\rtcs\.

error = RTCS create();

The RTCS is configured by setting IP address, IP mask, and Gateway. Address of
LWDNS server is set to the same value as the gateway. The ip data structure is
a local object used later on in the bind process.

LWDNS server ipaddr = ENET IPGATEWAY;
ip data.ip = ENET IPADDR;

ip data.mask = ENET IPMASK;

ip data.router = ENET IPGATEWAY;

These variables are initialized with macros defined in the HVAC.h file. The
ENET IPADDR and ENET IPMASK macros may be changed to modify the IP address of
the device.

A combination of the Ethernet Device and the IP address is used to generate the
MAC address. The ipcfg init device() is in turn called to set the MAC address
of the device to the generated value.

ENET get mac address (DEMOCFG DEFAULT DEVICE, ENET IPADDR, enet address);
error = ipcfg init device (DEMOCFG DEFAULT DEVICE, enet address);

If a WiFi device is being used, initialization and connection to a wireless
network is performed.

#if DEMOCFG USE WIFI
iwcfg set essid (DEMOCFG DEFAULT DEVICE, DEMOCFG SSID) ;

if ((strcmp (DEMOCFG SECURITY, "wpa") == 0) ||strcmp (DEMOCFG SECURITY, "wpa2")
== 0)
{
iwcfg_set_passphrase (DEMOCFG_DEFAULT DEVICE, DEMOCFG PASSPHRASE) ;
}
if (strcmp (DEMOCFG SECURITY, "wep") == 0)

{
iwcfg set wep key
(DEMOCFG_DEFAULT DEVICE, DEMOCFG WEP KEY,strlen (DEMOCFG WEP KEY), DEMOCFG WEP KEY
INDEX) ;

}
iwcfg set sec_type (DEMOCFG DEFAULT DEVICE,DEMOCFG_SECURITY) ;

iwcfg set mode (DEMOCFG DEFAULT DEVICE, DEMOCFG NW MODE) ;
#endif

The ipcfg init device() function is called with ip data structure to set the IP
address of the device and to perform the bind operation.

error = ipcfg bind staticip (DEMOCFG DEFAULT DEVICE, &ip data);

The http server requires a root directory and an index page. Web content of the
Demo is stored in the tfs data.c. This file was generated from files in the
web pages directory using the mktfs.exe tool located in the \<MQX installation
folder>\tools\ directory.

The external symbol tfs data holds the web page information as an array. This
array is installed as a Trivial File System using io tfs install() function.
This allows the RTCS to access the web page data stored in arrays in the “tfs:”
partition.

If no error occurs the server initializes with the specified root dir and with
the “\\mgx.shtml” file as the index page. Before the server runs it is
configured with the CGI information. The cgi lnk tbl contains a list of the
different available CGI services.

The fn Ink tbl contains an event that notifies the client when a USB event
occurs. For the demo this changes the layout of the web page when a USB stick
is connected or disconnected.

The call to function HTTPSRV init() initialize the server and opens a socket at
port 80 to listen for new connections.

The last part of the function initializes other servers if applicable. The
FTPSRV_init () provides FTP server feature to the Freescale MQX.

The TELNETSRV_init() function initializes the telnet shell.

This is the list of available Telnet commands that are passed to the new Shell
task.

HVAC I/O Interface

The inputs and outputs of the system are defined using macros. The macros LED 1
through LED 4 and BSP_BUTTON1 through BSP BUTTON3 define the pins used as the
interface of the application with the user.

The macros are used to initialize lwgpio handles ledl through led4 and buttonl
through button3 using lwgpio init function. Functionality options of the pins
are set according to BSP_xxx MUX GPIO macros. Directions of the pins are set
appropriately.

The obtained lwgpio handles are used to reference pins in calls to lwgpio
driver functions.

Manipulation of outputs is done using HVAC SetOutput function. The function
compares the desired state to the actual state of the output stored in the
HVAC OutputState global array. When the requested state is different to the
actual one lwgpio set value function is called to actually set the output value.

Input pins are accessed through HVAC GetInput function which in turn calls
lwgpio _get value with a handle corresponding with signal parameter. Finally the
HVAC GetInput function returns a boolean value representing state of the input.

The HVAC ReadAmbienTemperature function simulates temperature change across
time in the Demo. The time get(); function returns the amount of milliseconds
since MQX Started. Using this RTOS service the function updates temperature
every second. Depending on the state of the output temperature is increased or
decreased by HVAC TEMP UPD DELTA.

1

Shell task

This task uses the shell library to set up the available commands in the HVAC
demo. The Shell library provides a serial interface where the user can interact
with the HVAC demo features.

The shell library source code is available as a reference. To understand the
execution details of the Shell function review the source code for the library
located in:

\<MQOX installation folder>\shell\source\

The Shell function takes an array of commands and a pointer to a file as
parameters. The Shell commands array specifies a list of commands and relates
each command to a function. When a command is entered into the Shell input the
corresponding function is executed.

Each shell command definition includes a string containing name of the command
and the function executed when the command is typed.

Some of the functions executed using the Shell are provided by the MQX RTOS.
For example, functions that are related to the file system are implemented
within the MFS library. HVAC specific functions are implemented within

HVAC Shell Commands.c source file.

The functions implemented in HVAC Shell Commands.c are listed in the
corresponding header file. These functions use the terminal to display the user
how to use the particular command. Every function validates the input of the
Shell. When commands are entered correctly a specific HVAC command is executed.

As an example, the Shell fan function:

printf ("Usage: %s [<mode>]\n", argv[0]);
printf (" <mode> = on or off (off = automatic mode)\n") ;
}
}
return return_code;

}

W ”

The mode specified to the “fan” command in the shell input is compared to
and “off” strings. When the string received through the shell command is
the function HVAC SetFanMode (Fan On) is executed. When the string received
through the shell command is “off” the function HVAC SetFanMode (Fan Automatic)
is executed.

After the fan mode is set the function HVAC GetFanMode () reads and displays the
fan mode. The usage of the function is printed as a short help message for the
user 1f needed.

on

w ”

on

Other functions within HVAC Shell Commands.c execute different HVAC
functionalities but the implementation is similar to the example.

Shell is implemented as a separate library that interfaces with MQX. The MQX
related commands as well as RTCS and MFS commands may be executed from the
shell. Other custom Shell commands may be created by the user to execute
application specific operations.

USB task

The USB Task creates a message queue related to the USB resource. The message
informs the rest of the application code about an event. In the case of this
demo events are attaching or detaching of a USB memory stick. The message
notifies the availability of a valid USB stick connected to the Demo. After the
USB stick is detected the file system is installed. The other tasks then can
access the file system. They are informed with signaled semaphore.

The ClassDriverInfoTable array contains the class information supported in the
application. This array also relates the Vendor and Product ID to a specific
USB class and sub-class. Callback functions for each class is also included as
a part of the elements of the array. In this case any event related to the USB
2.0 hard drive executes the usb host mass device event() function.

/* Table of driver capabilities this application want to use */
static const USB _HOST DRIVER INFO ClassDriverInfoTable[] =
{

/* Vendor ID Product ID Class Sub-Class Protocol Reserved Application call
back */

/* Floppy drive */

{{0x00,0x00}, {0x00,0x00}, USB CLASS MASS STORAGE, USB_SUBCLASS MASS UFI,
USB_PROTOCOL MASS BULK, 0, usb host mass device event },

/* USB 2.0 hard drive */
{{0x00,0x00}, {0x00,0x00}, USB CLASS MASS STORAGE, USB_ SUBCLASS MASS SCSI,
USB_PROTOCOL_ MASS BULK, 0, usb host mass device event},

/* USB hub */
{{0x00,0x00}, {0x00,0x00}, USB CLASS HUB, USB_SUBCLASS HUB NONE,
USB_PROTOCOL_HUB ALL, 0, usb host hub device event},

/* End of list */
{{0x00,0x00}, {0x00,0x00}, 0,0,0,0, NULL}
Yi

The usb host mass device event() function executes when a device is attached or
detached. The function tests the event code to identify which type of event
caused the callback. In the case of an attach event the device structure is
filled with the USB DEVICE ATTACHED code and the sets USB Event created in the
USB Task() function. Detach events are similar to attach events. In the case of
a detach event the device structure is filled with the USB DEVICE DETACHED code
and the message is sent.

The USB task function creates a message queue. The message is sent from the
callback (see above) when a USB Stick is connected and ready for read/write
operations. The messages for the task are read by lwmsggq receive function.

The first step required to act as a host is to initialize USB component in the
MQOX. The stack in host mode is initialized afterwards. This allows the stack to
install a host interrupt handler and initialize the necessary memory required
to run the stack.

The host is now initialized and the driver is installed. The next step is to
register driver information so that the specific host is configured with the
information in the ClassDriverInfoTable array. The

_usb host driver info register links the classes specified in the array with
the callback function that each class executes on events.

This must be done in defined state of USB, so USB lock() and USB unlock() is
placed here to define the critical section.

Once initialization and configuration finishes the task loop executes. The
message informs the loop about the event.

After correct file system installation the USB Stick semaphore is posted to
indicate the other tasks that there is a USB Mass storage device available as a
resource. In the case of a detach event the lwsem wait() function blocks until
it is safe to uninstall the filesystem.

=

FS

The partition manager device driver is designed to be installed under the MFS

device driver. It lets MFS work independently of the multiple partitions on a

disk. It also enforces mutually exclusive access to the disk, which means that

two concurrent write operations from two different MFS devices cannot conflict.
The partition manager device driver can remove partitions, as well as create
new ones. The partition manager device driver is able to work with multiple
primary partitions. Extended partitions are not supported.

The usb filesystem install() function receives the USB handler, the block
device name, the partition manager name, and the file system name. Several
local variables are used to execute each step of the file system installation
process.

The usb fs ptr value is returned after the execution of the file system install
process. The first step of the process allocates zeroed memory with the
required size for a USB file system structure.

The USB device is installed with the _io usb mfs_install() function with the
device name and the USB handle as parameters. After installation the DEV_NAME
of the usb fs ptr variable is set to “USB:”.

A 500 milliseconds delay is generated using the time delay() function. Next,
the USB device is open as a mass storage device. Function fopen() opens the USB
device and the resulting handle is assigned to the DEV_FD PTR element of the
usb fs ptr structure. If the fopen operation fails an error message is
displayed.

The io ioctl() function accesses the mass storage device and set it to Block
Mode. When access to the device is available the vendor information, the
product ID, and the Product Revision are read and printed to the console.

The partition manager device driver is installed and opened like other devices.
It must also be closed and uninstalled when an application no longer needs it.

Partition Manager is installed with the io part mgr install() function. The
device number and partition manager name are passed as parameters to the
function. If an error occurs during partition manager installation a message is
displayed on the console. On successful partition manager installation the

PM NAME element of the usb fs ptr structure is set to “PM Cl:”.

A call to fopen() opens the partition manager and the resulting file pointer is
assigned to the PM FD PTR element of the usb fs ptr structure. In the case of
an error a message 1is displayed on the console and the file system is
uninstalled.

The partition number parameter of the io ioctl() function is passed by
reference. This value is modified inside the function. If an error code is
returned by io ioctl() the partition manager handle is closed with the
fclose () function. The partition manager is then uninstalls using the

_io part mgr uninstall() function.

In such a case an attempt to install the MFS without partition manager is
performed using io mfs install() function.

MFS is installed with the device handle pointer, a file system name and a
default partition value of 0.

If the partition number is wvalid the MFS installs with the same handle and file
system name but using the partition number as third parameter.

If the partition number is not valid then MFS tries to install the file system
over the entire device without partition table.

After the file system installation the status of the MFS is tested. The FS NAME
element of the usb fs ptr structure is set to “a:”.

The fopen () function takes the file system name as parameter. If no error
occurs the file system is ready to be used by the application and the
usb fs ptr structure is returned.

WEB Folder

MQOX includes the MKTFS.exe application that converts web pages files into a
source code file to be used in MQX. The tool is available in the \<MQX
installation folder>\tools\ folder.

Tool Usage:
mktfs.exe <Folder to be converted> <Output source file name>

The tool is executed using a batch file. The converted output of the web pages
folder is stored in the tfs data.c file which is compiled and linked with the
application. Information is accessed by the application through the tfs data
array.

