NXP Semiconductors Document Number: IMXMCUMFUUG
User's Guide Rev 2, 08/2018

i.MX RT1060 Manufacturing User's Guide

h
P

Contents

Contents

Chapter 1 Introduction........ueeeeeeciiiiiiiirirrre s s s nnnnnnes &

Chapter 2 OVerVieW.....ccciimeeeeeeesssinsnsssnnnsssnssssssssssssssss s ssssssssssssssssssssssnsssnnnnnns O

2.1 LMX BT BOOt ROM.....coiiciiee ettt ettt e e e ettt e e e e e et e e e e e e e e stseeeaeeaassteeseeesaatseeseesaasssseeaeeansnteneeaeannses 5
2.2 MCUBOOT-bASEd FIASNIOAUENcccceuuiiiiei ettt ettt e ettt e e e e et e e e e e et e e e e e e e saseeeeeeaansbeeeeeeaansenees 5
2.3 HOSE ULIITIES ...ttt et et e eeeaeaeeeeeeeaeeeaa s aasassssaesesesseeeeeaeaeaaaeaaeeeaeeaaaaaaannnnsnrnrnn 5
P2 1=14 a1 e o] (o | PSSP U RO RURRP PRSP 5
Chapter 3 i.MX RT bootable image..........ccccoimmmmmmmmmmmrcrsissrsrrssnsesnscsssssssssseseeenes 7
3.1 Bootable image layout in target flash AEVICE.eoiiiieiee et e e aeee s 7
L T2 = o T} T 4 =T T= 0 (o 4 4 - SR 7
R 202 B AV =T g T I oY Yo] o F- | - PR OSPR 8

B T2 = To Yo ale F=1 = 1 £ U o1 11] (PSS 8

RIS T o =To [Ty g F=To 1= T O OO PR P TP PR 9
I = Tt o] (=T I 1 4 =V [TSP PR PPRRPPRIN 9

Chapter 4 Generate i.MX RT bootable image........ccccccmmmmmmmmmmmmmrrreeeeeeeeeeeeee. 10

4.1 Description Of the @IS ULIITY.........eeiiiiie ettt et e e b e e e abeee e 10
4.1.1 The elftosh UTIlITY OPTIONS.veieiiei ettt e b e e be e e s be e e sab e e e nn e e e nnes 10

412 BD Il ettt E R R et h b e bt e b e eae e 10

4.1.3 BD file for i.MX RT bootable image generation...........couuuii ittt 1

o G T B o] (o] g T3 o] [To1 OSSPSR ERRPP 1

4.1.3.2 SOUICES DIOCK ...ttt ettt b e b b e s e e et san e e re e 12

4.1.3.3 CONSIANTS DIOCK.ceuiiitiiciie ettt 12

4.1.3.4 SECHON DIOCKSeiiiiiiiieiii ettt ettt b e e e b e e 12

4.1.4 BD file fOr MemOry ProOgramIMiNg........eee ueeeaieeeereeeesseeeastteessteeesbeeeeasseeeeabeeesbeeeeaabeeeaseeesaneeeeanbeeeanneeennneas 19

4.2 Generate unsigned normal i.MX RT bootable iMage.........cccuuiiiiiiiiiii e e 20
4.3 Generate signed normal i.MX RT bootable iMage.ouiiiiiiiiiii e 21
4.4 Generate encrypted normal i.MX RT boOtable IMage.........uiiiuiiiiiiii e 22
4.5 Generate PlUGin DOOT IMAGE.......oiiiuiiiiiiii ettt ettt st e e s bt e e ettt e rbs e e e s be e e sate e e anbeeeanbeeenans 24

Chapter 5 Generate SB file for bootable image programming...................... 26

5.1 Generate SB file for FIexSPI NOR image ProgrammMiNg..........eeaueeueeiueeaueeateeseeareeseessessiaessseesisessseessseessessnsesssees 26
5.1.1 Generate Normal Bootable IMaGE........cccueiiuiiiiieiie ettt ettt saneenee s 26
5.1.2 Generate SB file for plaintext FlexSPI NOR image programming..........ccecoueereeiieereeeiiee e esiee e esiee e 26
5.1.3 Generate SB file for FlexSPI NOR Image encryption and programming...........ccoceeereesveereessueesneesueesneens 27
5.2 Generate SB file for FIexSPI NAND image ProgramMing.........cc.ec eeereeauearteeaseesueeaseessesseessesssessssesssesssesssesssesses 28
5.2.1 Generate SB file for FlexSPI NAND image programming.........cco.eereeaueeneeaieeeneeesieeseesreeseesseesseessessenes 29

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
2 NXP Semiconductors

Contents

5.2.2 Generate SB file for encrypted FlexSPI NAND Image and KeyBlob programming............ccceeeeeriveeieenneens 29
5.3 Generate SB file for SD image ProgramMiNg..........cue i eeeueeireareeartestee ettt aeeesse e ese et esaee bt e seneeaseesaneesaeeeneennes 30
5.3.1 Steps to Generate SB file for SD image programming..........cccueeieiereerieeieenee e 31
5.4 Generate SB file for eMMC iMmage ProgrammMiNg..........eceueeiteeeueeateeireesee st e siee et e sireessee st steeane e beeeneesneeabeesneenanes 32
5.4.1 NOIMAIMOUE......eeiiiiiieeet ettt s e et e e e e et e s et e e sr e e e e s e e e sne e e e aareeeeanneesnneeeanreeeanns 32
L e = 11 1 [o = OO PT PR 33
5.5 Generate SB file for Serial NOR/EEPROM image programmMing........ccccceueeireerueerrtaneenreesieesseesseseseeseessneesnessees 34
5.6 Generate SB file for SEMC NOR image programmMing........c.ueeieeareeieeasseenseteieeseeaseeseesseessesssee s esseesreesieesaseenes 35
5.7 Generate SB file for SEMC NAND image programiMing............eeueeiueerueerreerreaneesieeaseesseeasseesesessesssesssessnessseesnes 36
5.8 Generate SB file fOr fUSE PrOGIAM......cc.ui i ittt ettt e e eae et e e e st e b e e beeeneeanneas 37

Chapter 6 Program bootable image.........cccooomeeeeeeeeeeeeeeeeeeee 39

(S0 1 Koo OSSPSR 39
6.1.1 MIGTOOI DIr€CIOIY SITUCTUIE......eeiiiiiiiiii ettt ettt e e et e e s bt e e eane e e s ba e e e aabeeenaes 39
6.1.2 Preparation before image programming using MfGTOOL...........coiiuiiiiiiiiiiiiie e 41
6.2 Connect 10 the I.MX RT PlatfOrm.........ooiiiiiee ettt s ne e nene e 41
6.3 Program bootable image during deVEIOPMENT.........ccuuiiiiiiieiiii ettt e bbb e e e 41
6.4 Program bootable image fOr ProdUCTION.ui ittt saee e nnaee s 42

L0 =T o (=T gAY o 1T 3 1 Y - %)

A I [0 To T o eToTr=To] o] o= i o] o PSPPSR PR 43
7.1.1 Principles for Plugin boot appliCation deSIigN.........cocuieiiiiiiiiee ettt 43

7.1.2 Boot Flow of Plugin boot appliCatiON...........coiiiiiiiii e 43

7.1.3 Example Plugin boot application to enable non-XIP boot on FIexSPI NOR...........cccocoiiiiiiiiiiieniieieeiees 43

7.1.4 Images loaded by plugin boot @pPliCAtION..........cocuiii i s 45

7.2 Example of manufacturing flow for RTT060-EVK..........ooo e 45
7.2.1 Manufacturing process in Development Phase...........oooiiiiii e 45

7.2.1.1 Templates options for the Manufacturing flOW............cccueiiiii e 45

7.2.1.2 Create i.MX RT boOtable IMage.........coiiiiiiiiiieiie ettt 50

7.2.1.2.1 Create image using KSDK XIP €XamPI........cccuiriiriiiiriiiiiiesiie et 50

7.2.1.2.2 Create image using the elftosh Utility...........cooiiiriiiiiiii e 50

7.2.1.2.3 Create SB file for QSPI FLASH programming.........ccceceerueereerieenieeneeesieeseessieeseeesnee s 51

7.2.2 Program Unsigned Image to Flash using MfgTOOL........ccccuiiiiiiiiiiie e 52

7.2.3 Manufacturing process in ProduCtion PRASE.............eiiiiiiiiiiiiiiiie et 52

7.2.3.1 Generate signed i.MX RT bootable iMage.cuiiiiiiiiiiiiie e 52

7.2.3.2 Create SB file for FUSE Programming........o.eooeioiiiieieeiiie et e e naee s 54

7.2.3.3 Create SB file for Image encryption and programming for QSPI Flash..........cccccoooiiiiinninnnnn. 55

7.2.3.4 Create signed Flashloader iMage.uuiuiiiiiiiie ittt sieesne e 56

7.2.3.5 Program Signed Image to Flash using MfGTOOL.........cccuiiiiiiiiiiieie e 56

7.3 Generate KeyBIOD MaNUAIIY..........oiuiiiiiiiee ettt ettt b ettt eb e et e e e ae e et e e saeeenneesabeenneenaneas 56
Chapter 8 Revision history........ccccciiiiimmnnnnnnnnnnsssses 58

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 3

Introduction

Chapter 1
Introduction

This document describes the generation of bootable image for i.MX RT devices. It also explains the process to interface i.MX RT
Boot ROM and MCUBOOT-based Flashloader and to program a bootable image into the external flash including:

¢ QuadSPI NOR/Octal Flash / HyperFlash

* Serial NAND

e eMMC

e SD

* Parallel NOR

e SLC raw NAND

¢ SPI NOR/EEPROM
The i.MX RT Boot ROM resides in the ROM and enables RAM loading. The Flashloader is loaded into SRAM and facilitates
loading of boot images from boot devices into RAM. It also authenticates and executes the boot image.

This document introduces the Flashloader, a companion tool to i.MX RT Boot ROM, and a complete solution for programming
boot images to bootable devices. The Flashloader runs in SRAM, so it should be downloaded to SRAM typically via ROM serial
download interface. The Flashloader prepares and configures the devices for boot. It creates boot configuration structure on the
bootable media wherever required, assists in programming encrypted images, generates key blobs, communicates with master
on serial peripherals like USB and UART using MCUBOOT commands interface protocol in downloading boot images.

It also introduces the elftosb utility. The elftosb utility converts an elf images to signed, encrypted, and bootable image for i.MX
RT devices. It also creates all the boot structures like image vector table, boot data etc. It generates the input command sequence
file required to code sign or encrypt the image using the NXP signing tool (cst). It also calls the cst to generate the signatures and
pack everything together in order boot ROM expects the boot image.

The document describes the usage of MfgTool.exe (Manufacturing Tool) in a manufacturing environment for production of devices
(programming boot images on the bootable media using all the available tools).

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
4 NXP Semiconductors

i.MX RT Boot ROM

Chapter 2
Overview

2.1 i.MX RT Boot ROM

The i.MX RT Boot ROM is a standard bootloader for all i.MX RT devices. It resides in ROM space and supports booting from
external flash devices for both XIP and non-XIP boot cases. It also provides serial downloader feature via UART or USB-HID
interface into the internal RAM of i.MX RT devices.

The i.MX RT Boot ROM is a specific implementation of the existing i.MX MPU ROM Bootloader. For Flash programming use case,
the i.MX RT Boot ROM provides serial downloader feature powered by SDP command interface. For additional information, see
chapter, “System Boot” in i. MX RT1060 processor reference manual . The MfgTool then can load the MCUBOOT-based
Flashloader into internal SRAM and jump to the Flashloader to enable Flash programming features.

2.2 MCUBOOT-based Flashloader

The MCUBOOT-based Flashloader is a specific implementation of the MCU Bootloader. It is used as a one-time programming
aid for manufacturing. Most of the MCUBOOT commands are supported in the Flashloader to enable external Flash programming.
See MCU Flashloader Reference Manual for details.

2.3 Host utilities

The MfgTool is a GUI host program used to interface with devices running i.MX RT Boot ROM under serial downloader mode. It
can also be used to program an application image by interfacing with the Flashloader.

The blhost is a command-line host program used to interface with devices running MCUBOOQOT-based bootloaders. It is part of
MfgTool release.

The elftosb utility is a command-line host program used to generate bootable images for i.MX RT Boot ROM.

The cst is a command-line host program used to generate certificates, image signatures, and encrypt images for i.MX RT Boot
ROM.

2.4 Terminology

Table 1 summarizes the terms and abbreviations included in this document.

Table 1. Terminology and Abbreviations

Terminology Description
MCUBOOT MCU Bootloader
KeyBlob KeyBlob is a data structure that wraps the DEK for image decryption using AES-CCM algorithm

Table continues on the next page...

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 5

Overview

Table 1. Terminology and Abbreviations (continued)

DEK “Key” used to decrypt the encrypted bootable image

SB file The SB file is the NXP binary file format for bootable images. The file consists of sections,
sequence of bootloader commands, and data that assists MCU Bootloader in programming the
image to target memory. The image data can also be encrypted in the SB file. The file can be
downloaded to the target using the MCU Bootloader receive-sb-file command.

CST Code Signing Tool

XIP Execute-In-Place

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
6 NXP Semiconductors

Chapter 3

i.MX RT bootable image

Bootable image layout in target flash device

3.1 Bootable image layout in target flash device

There are two types of supported boot image:

* XIP (Execute-In-Place) boot image: This type of boot image is only applicable to Serial NOR devices connected to
QuadSPI or FlexSPI interfaces and Parallel NOR devices connected to WEIM or SEMC interface. The boot device memory
is identical to the destination memory. ROM can boot this boot image directly.

* Non-XIP boot image: This type of boot image is usually for the NAND, SD, and eMMC devices that does not support the
XIP feature. The boot device memory is different from the destination memory. ROM loads the boot image from the Boot
device memory to Destination memory and then boots from the Destination memory.

Boot Device Memory

Boot Device base

Table offset
Initial
Load Region

IVT —

Baoot Data

Image Vector [

header

entry

reservedi

ded

boot_data

self

csf

reserved2

start

length

plugin flag

DCcD

Application

CSF, certificates and signatures

Dest. Memory
—b 1—

Image Vector header

Table offset entry I
reserved1
ded
boot_data
self
csf
reserved2
start

Boot Data
length
plugin flag
DCD
L 3= Application -

CSF, certificates and signatures

Figure 1. Bootable image layout

3.2 Boot image format

This section describes the boot image format and data structures. For ease-of-use, the elftosb utility is provided to help customers
automatically generate the boot image format file. The elftosb utility usage is described later in this document.

Some data structures must be included in the bootable image. The bootable image consists of

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors

i.MX RT bootable image

* Image Vector Table (IVT): a list of pointers located at a fixed address that ROM examines to determine where the other

components of the bootable image are located

* Boot Data: a table that indicates the bootable image location, image size in bytes and the plugin flag

» Device configuration data (DCD) (optional): IC configuration data, usually is used to configure DDR/SDRAM memory. This

is optional

¢ User application and data

* CSF (optional): signature block for Secure Boot, generated by CST

* KeyBlob (optional) — a data structure consists of wrapped DEK for encrypt boot

Each bootable image starts with appropriate IVT. In general, for the external memory devices that support XIP feature, the IVT
offset is 0x1000 else it is 0x400. For example, for FlexSPI NOR on RT1060, the IVT must start at address 0x60001000 (start
address is 0x6000_0000, IVT offset is 0x1000). Refer to corresponding Processor Reference Manual for additional information.

3.2.1 IVT and boot data

The IVT is the data structure that the Boot ROM reads from the boot devices supplying the bootable image containing the required

data components to perform a successful boot.

See the Program image section in the System Boot Chapter of the device reference manual for more details

Table 2. IVT data structure

Offset Field Description
0x00 - 0x03 header * Byte 0 tag, fixed to OxD1
* Byte 1,2 length, bit endian format containing the overall length of the
IVT in bytes, fixed to 0x00, 0x20
* Byte 3: version, valid values: 0x40, 0x41, 0x42, 0x43
0x04 - 0x07 entry Absolute address of the first instruction to execute from the image, or the
vector address of the image
0x08 - 0x0b reservedi Reserved for future use, set to 0
0x0c - OxOf dcd Absolute address of the image DCD. It is optional, so this field can be set
to NULL if no DCD is required.
0x10 - Ox13 boot_data Absolute address of the boot data
0x14 - 0x17 self Absolute address of the IVT.
0x18 - Ox1b csf Absolute address of the Command Sequence File (CSF) used by the
HAB library
Ox1c - Ox1f reserved? Reserved, setto 0

3.2.2 Boot data structure

Table 3. Boot Data structure

Offset Field Description
0x00-0x03 start Absolute address of the bootable image
0x04-0x07 length Size of the bootable image
0x08-0x0b plugin Plugin flag, set to 0 if it is a normal boot image

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors

Signed image

3.3 Signed image

The bootable image can be signed by CST tool. The tool generates the CSF data in the binary file format that consists of command
sequences and signatures based on given input command sequence file (csf file). Refer to the documentation in the CST release
package for further details.

In this document, a simple method is introduced to generate signed images using elftosb utility.

3.4 Encrypted image

There are two types of encrypted image formats:
Encrypted XIP image format

The Flashloader generates the encrypted XIP image using the AES CTR algorithm when programming the image on the device.
On execution, the hardware engine does on-the-fly decryption.

Encrypted image generated by CST
To increase the security level, the bootable image can be signed and further encrypted by the CST. The KeyBlob must be generated
on the device. The hardware deletes all sensitive keys if any security violation happens, so the sensitive keys cannot be cloned.

In this document, a simple method is introduced to generate signed images using elftosb utility.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 9

Generate i.MX RT bootable image

Chapter 4
Generate i.MX RT bootable image

There are two types of bootable image for i.MX RT devices.
¢ Normal boot image: This type of image can boot directly by boot ROM.

* Plugin boot image: This type of image can be used to load a boot image from devices that are not natively supported by
boot ROM.

Both types of images can be unsigned, signed, and encrypted for different production phases and different security level
requirements:

* Unsigned Image: The image does not contain authentication-related data and is used during development phase.
¢ Signed Image: The image contains authentication-related data (CSF section) and is used during production phase.

* Encrypted Image: The image contains encrypted application data and authentication-related data and is used during the
production phase with higher security requirement.

The above types of bootable images can be generated by using the elftosb utility. The detailed usage of the elftosb utility is
available in elftosb User's Guide.

4.1 Description of the elftosb utility

The elftosb utility is a command-line host program used to generate the i.MX RT bootable image for the i.MX RT Boot ROM. The
utility also generates wrapped binary file with command sequences and a bootable image. To create a SB file, use command-
line options and an input text file (also called BD or command file).

4.1.1 The elftosb utility options

Table 4 shows the command line options used to create the i.MX RT bootable image.

Table 4. elftosb utility options

Option Description

-f Specify the bootable image format
To create the i.MX RT bootable image, the usage for family argument “-f” is: “f imx”

To create the SB file, the usage is: “-f kinetis”

-C Command file to generate corresponding bootable image

For example, “-c program_flexspi_nor_hyperflash.bd”

-0 Output file path

For example, “-o ivt_flashloader.bin”

-V Print extra detailed log information

-? Print help info

4.1.2 BD file

Each BD file consists of the following four blocks: options, sources, constants, section

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
10 NXP Semiconductors

¢ The image paths are typically defined in the “sources” block.

¢ The constant variables are defined in the “constants” block.

Description of the elftosb utility

¢ The memory configuration and programming-related operations are defined in the “section” block.

There are two types of BD files that are supported by the elftosb utility. The first type of file is used for the i.MX RT bootable image
generation. The “-f imx” option is mandatory during boot image generation using the elftosb utility. The second type of file contains
commands that are mainly used for memory programming. The “-f kinetis” flag is mandatory in this use case.

4.1.3 BD file for i.MX RT bootable image generation

The BD file for i.MX RT bootable image generation usually consists of four blocks. These are options, sources, constants, and

section.

4.1.3.1 Options block

Table 5 shows the options used to generate a bootable image for the Options block.

Table 5. Supported options in the “Options” block

Options Description

¢ bit 2 - Encrypted image flag
* bit 3 - Signed image flag
* bit 4 - Plugin image flag
For example:
¢ 0x00 - unsigned image
¢ 0x08 - signed image
¢ 0x04 - encrypted image (encrypted image is always a signed image)

¢ 0x18 - signed plugin image

Flags Generates unsigned, signed, encrypted boot images, and plugin images:

startAddress Provides the starting address of the target memory where image should be loaded by ROM.

not specified.

The valid value is 0x400 or 0x1000 for i.MX RT boot image.

ivtOffset Provides offset where the IVT data structure must appear in the boot image. The default is 0x400 if

initialLoadSize Defines the start of the executable image data from elf or the srec file.
The default value is 0x2000 if not specified.
In general, this value should be 0x1000 or 0x2000.

DCDFilePath Defines the path to DCD file.

If not specified, the DCD pointer in the IVT will be set to NULL (0) else the dcd file contents will be
loaded at offset 0x40 from ivtOffset. The dcd file size is limited to (initialLoadSize - ivtOffset-0x40).

cstFolderPath Defines the path for platform dependent CST. (windows, linux)

Table continues on the next page...

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

If not specified, elftosb tool will search for cst executable in same path as elftosb executable.

NXP Semiconductors

1

Generate i.MX RT bootable image

Table 5. Supported options in the “Options” block (continued)

entryPointAddress | provides the entry point address for ELF or SREC image.

If not specified, ELF image uses its source image entry point address but SREC image will use default
entry point address (0).

4.1.3.2 Sources block

Typically, all the application image paths are provided in this section. Currently, the ELF file and SREC file are supported for i.MX
RT Bootable image generation, for example:

sources {
elfFile = extern(O0);

4.1.3.3 Constants block

The Constants block provides a constant variable that is used to generate CSF data for image authentication and decryption. The
Constants block is optional for an unsigned image. The supported constants are listed below.

Constants {
SEC_CSF_HEADER = 20;
SEC_CSF_INSTALL SRK = 21;
SEC_CSF_INSTALL, CSFK = 22;
SEC_CSF_INSTALI, NOCAK = 23;
SEC_CSF_AUTHENTICATE CSF = 24;
SEC_CSF_INSTALL KEY = 25;
SEC_CSF_ AUTHENTICATE DATA
SEC_CSF_INSTALL_ SECRET KEY
SEC_CSF_DECRYPT DATA = 28;
SEC_NOP = 29;SEC_SET MID = 30;
SEC_SET ENGINE = 31;
SEC_INIT = 32;SEC UNLOCK = 33;

4.1.3.4 Section blocks

The Section blocks are used to create the sections for an i.MX RT bootable image, for example, all sections for CSF data. For the
unsigned image, the Section block is simple, just a fixed blank section, as shown below.

section (0)
{
}
For signed and encrypted image, the following sections are defined for elftosb utility to generate the CSF descriptor file which is
required by CST for CSF data generation.
e SEC_CSF_HEADER

This section defines the necessary elements required for CSF Header generation as well as default values used for other sections
throughout the remaining CSF.

Table 6. Elements for CSF Header section generation

Element Description

Table continues on the next page...

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
12 NXP Semiconductors

Description of the elftosb utility

Table 6. Elements for CSF Header section generation (continued)

Header_Version HAB library version

Valid values: 4.0, 4.1, 4.2, 4.3

Header_HashAlgorithm Default Hash Algorithm
Valid values: shal, sha256, sha512

Header_Engine Default Engine

Valid values: ANY, DCP, CAAM, SW

Header_EngineConfiguration Default Engine Configuration

Recommended value: 0

Header_CertificateFormat Default Certificate Format

Valid values: WTLS, X509

Header_SignatureFormat Default signature format

Valid values: PKCS, CMS

Header_SecurityConfiguration Fused security configuration

Valid values: Engineering, Production

Header_UID Generic (matches any value)
uo, U1,... Un
where each Ui=0..255 and n<255

Header_CustomerCode Value expected in “customer code” fuses

0..255

An example section block is shown as follows.

section (SEC CSF_HEADER;
Header Version="4.3",
Header HashAlgorithm="sha256",
Header Engine="DCP",
Header EngineConfiguration=0,
Header CertificateFormat="x509",
Header SignatureFormat="CMS"

)

e SEC_CSF_INSTALL_SRK

This section contains the elements to authenticate and install the root public key for use in subsequent sections, as shown in the
following table.

Table 7. Elements for CSF Install SRK section generation

Element Description

InstallSRK_Table Path pointing to the Super Root Key Table file

Table continues on the next page...

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 13

Generate i.MX RT bootable image

Table 7. Elements for CSF Install SRK section generation (continued)

InstallSRK_Source SRK index with the SRK table

Valid values: SHA1, SHA256 and SHA512

An example section block is shown as follows.

section (SEC_CSF_INSTALL_SRK;
InstallSRK Table="keys/SRK 1 2 3 4 table.bin", // "valid file path"

InstallSRK SourcelIndex=0
)

e SEC_CSF_INSTALL_CSFK

This section consists of the elements used to authenticate and install a public key for use in subsequent sections.

Table 8. Elements for CSF Install CSFK section generation

Element Description
Install CSFK_File File path pointing to CSFK certificate
InstallCSFK_CertificateFormat CSFK certificate format
Valid values: WTLS, X509

section (SEC_CSF_INSTALL_CSFK;

InstallCSFK File="crts/CSF1l 1 sha256 2048 65537 v3 usr crt.pem", // "valid file path"
InstallCSFK CertificateFormat="x509" // "x509"
)

e SEC_CSF_INSTALL_NOCAK

The Install NOCAK command authenticates and installs a public key for use with the fast authentication mechanism (HAB 4.1.2
and later only). With this mechanism, one key is used for all signatures.

The following table lists the install NOCAK command arguments.

Table 9. Elements for CSF Install NOCAK section generation

Element Description
InstalINOCAK _File File path pointing to CSFK certificate
InstalNOCAK _CertificateFormat CSFK certificate format
Valid values: WTLS, X509

An example section block is shown as follows:

section (SEC_CSF_INSTALL_NOCAK;

InstallNOCAK File= "crts/SRK1 sha256 2048 65537 v3_usr_crt.pem") // "valid file path"
InstallNOCAK CertificateFormat= "WTLS" // "WTLS", "X509"
)

e SEC_CSF_AUTHENTICATE_CSF

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

14 NXP Semiconductors

Description of the elftosb utility

This section is used to authenticate the CSF from which it is executed using the CSFK mentioned in the section above. The default
setting is enough. See the following table for more details.

Table 10. Elements for CSF Authenticate CSF section generation

Element Description

AuthenticateCSF_Engine CSF signature hash engine
Valid values: ANY, SAHARA, RTIC, DCP, CAAM and SW

AuthenticateCSF_EngineConfiguration Configuration flags for the hash engine. Note that the hash is computed over
an internal RAM copy of the CSF

Valid engine configuration values corresponding to engine name.

AuthenticateCSF_SignatureFormat CSF signature format

Valid values: PKCS1, CMS

An example section block is shown as follows:

section (SEC_CSF_AUTHENTICATE CSF)

{
}

e SEC_CSF_INSTALL_KEY

This section consists of elements used to authenticate and install a public key for use in subsequent sections, as shown in the
following table.

Table 11. Elements for CSF Install Key section generation

Element Description
InstallKey_File File path pointing to a Public key file
InstallKey_Verificationindex Verification key index in Key store

Valid values: 0, 2, 3, 4

InstallKey_Targetindex Target key index in key store

Valid values: 2, 3, 4

InstallKey_CertificateFormat Valid values: WTLS, X509

InstallKey_HashAlgorithm Hash algorithm for certificate binding.

If present, a hash of the certificate specified in the File argument is included
in the command to prevent installation from other sharing the same
verification key

Valid values: SHA1, SHA256, SHA512

section (SEC_CSF_INSTALL KEY;
InstallKey File="crts/IMG1l 1 sha256_ 2048 65537 v3 usr crt.pem",
InstallKey VerificationIndex=0, // Accepts integer or string
InstallKey TargetIndex=2) // Accepts integer or string

e SEC_CSF_AUTHENTICATE_DATA

This section contains elements that are used to verify the authenticity of pre-loaded data in memory.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 15

Generate i.MX RT bootable image

Table 12. Elements for CSF Authenticate Data section generation

Element

Description

AuthenticateData_ VerificationIndex

Verification key index in key store

AuthenticateData_Engine

Data signature hash engine

Valid values: ANY, DCP, CAAM, SW

AuthenticateData_EngineConfiguration

Configuration flags for the engine

AuthenticateData_SignatureFormat

Data signature format

Valid values: PKCS1, CMS

AuthenticateData_Binding

64-bit unique ID (UID) for binding.

If present, authentication succeeds only if the UID fuse value matches this
argument, and the TYPE fuse value matches the Security Configuration
argument from the Header command

Valid values:
uo, Ut, ... U7
with

ui: 0, ..., 255.

UID bytes separated by commas

An example section block is shown as follows:

section (SEC CSF_AUTHENTICATE DATA;

AuthenticateData VerificationIndex=2,

AuthenticateData Engine="DCP",

AuthenticateData EngineConfiguration=0)

e SEC_CSF_INSTALL_SECRET_KEY

This section contains elements used to install the secret key to the MCU secret key store, which is used for Keyblob decryption.
This section is required for encrypted image generation and not for signed image.

Table 13. Elements for CSF Install Secret Key section generation

Element

Description

SecretKey_Name

Specifies the file path used for CST to generate the random decryption key
file

SecretKey_Length

Key length in bits
Valid values: 128, 192, and 256

SecretKey_Verifylndex

Master KEK index

Valid values: 0 or 1

SecretKey_Targetindex

Target secret key store index

Valid values: 0-3

SecretKey_BlobAddress

Internal or external DDR address

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

16

NXP Semiconductors

An example section block is shown as follows:

section (SEC_CSF INSTALL SECRET KEY;
SecretKey Name="dek.bin",
SecretKey Length=128,
SecretKey VerifyIndex=0,
SecretKey TargetIndex=0)

e SEC_CSF_DECRYPT_DATA

Description of the elftosb utility

This section is required for encrypted image generation and not for signed image. It contains the necessary elements used to
decrypt and authenticate a list of code/data blocks using the secret key stored in the secret key store, as shown in the following

table.

Table 14. Elements for CSF Decrypt Data section generation

Element

Description

Decrypt_Engine

MAC engine
Valid value: CAAM, DCP

Decrypt_EngineConfiguration

Configuration flags for the engine

Default value: 0

Decrypt_Verifylndex

Secret key index in the Secret key store

Valid values: 0-3

Decrypt_MacBytes

Size of MAC in bytes

If engine is CAAM, the valid value is even number between 4-16. The
recommended value is 16.

If engine is DCP, the valid value is 16.

An example section block is shown as follows.

section (SEC_CSF_DECRYPT_DATA;
Decrypt Engine="DCP",
Decrypt EngineConfiguration="0",
Decrypt VerifyIndex=0,
Decrypt MacBytes=16)

* SEC_NOP

// "valid engine configuration values"

The command in this section has no effect. It also has no arguments.

An example section block is shown as follows.

section (SEC_NOP)
// NOP command has no arguments

e SEC_SET_MID

The Set MID command selects a range of fuse locations to use as a manufacturing identifier (MID). MID values are bound with
Authenticate Data signatures when verified using keys with the MID binding flag in the Install Key command.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors

17

Generate i.MX RT bootable image

Table 15. Elements for CSF Set MID section generation

Element Description

SetMID_Bank Fuse bank containing MID.
Valid values: O, ..., 255

SetMID_Row Starting row number of MID within bank.
Valid values: 0, ..., 255

SetMID_Fuse Starting fuse of MID within row.
Valid values: 0, ..., 255

SetMID_Bits Number of bits for MID.
Valid values: 0, ..., 255

An example section block is shown as follows:

section (SEC_SET MID;
SetMID Bank = 4,
SetMID Row = O,
SetMID_Fuse 7,
SetMID Bits = 64)

* SEC_SET_ENGINE

The Set Engine command selects the default engine and engine configuration for a given algorithm.

Table 16. Elements for CSF Set Engine section generation

Element Description

SetEngine_Engine Engine
Use ANY to restore the HAB internal criteria.

Valid values: ANY, SAHARA, RTIC, DCP, CAAM and SW

SetEngine_HashAlgorithm Hash algorithm
Valid values: SHA1, SHA256 and SHA512

SetEngine_EngineConfiguration Configuration flags for the engine.

Valid engine configuration values corresponding to engine name.

An example section block is shown as follows:

section (SEC_SET_ENGINE;

SetEngine HashAlgorithm = "sha256",
SetEngine Engine = "DCP",
SetEngine EngineConfiguration = "O0O")
{
}
* SEC_INIT

The Init command initializes specified engine features when exiting the internal boot ROM.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
18 NXP Semiconductors

Description of the elftosb utility

Table 17. Elements for CSF Init section generation

Element Description

INIT_Engine Engine to initialize

Valid value — SRTC

INIT_Features Comma-separated list of features to initialize

Valid engine feature corresponding to engine argument.

An example section block is shown as follows:

section

(SEC_INIT;

Init Engine = "SRTC")
// Init Features= "MID"

{
}

* SEC_UNLOCK The Unlock command prevents specified engine features from being locked when exiting the internal boot ROM.

Table 18. Elements for CSF Unlock section generation

Element Description

Unlock_Engine Engine to unlock

Valid values: SRTC, CAAM, SNVS and OCOTP

Unlock_features Comma-separated list of features to unlock

Valid engine feature corresponding to engine argument.

Unlock_UID Device specific 64-bit UID
uo, U1, ..., U7 with Ui=0...255

UID bytes separated by commas

An example section block is shown as follows:

section (SEC_UNLOCK;
Unlock Engine = "OCOTP",
Unlock features = "JTAG, SRK REVOKE",
Unlock UID = "0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxcd, Oxef")

4.1.4 BD file for memory programming

Typically, “load? “enable; and “erase” commands are the most commonly used commands in a BD file for memory programming.

1. “load” command: It can be used to load raw binary, srec file, elf file, hex string, etc. It also supports loading data to
external memory devices, for example:

Load itcm_boot_image.bin > 0x8000; (Load data to ITCM)

Load flexspi_nor_boot_image.bin > 0x60001000; (Load data to the memory mapped memory device)

Load semc_nor_boot_image.bin > 0x80001000; (Load data to SEMC NOR, memory mapped memory device)
Load spinand boot_image.bin > 0x04; (Load data to SPI NAND)

Load sdcard boot_image.bin > 0x400; (Load data to the SD Card)

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors 19

Generate i.MX RT bootable image

* Load mmccard boot_image.bin > 0x400; (Load data to eMMC)
* Load spieeprom boot_image.bin > 0x400; (Load data to SPI EEPROM/NOR)
* Load semcnand boot_image.bin > 0x400; (Load data to SLC raw NAND via SEMC)
¢ Load fuse 0x00000000 > 0x10; (Load data to the Fuse block)
2. “enable” command: It is used to configure external memory devices, for example:
¢ Enable flexspinor 0x1000
* Enable spinand 0x1000
* Enable sdcard 0x1000
* Enable mmccard 0x1000
¢ Enable spieeprom 0x1000
* Enable semcnor 0x1000
* Enable semcnand 0x1000
3. “erase” command: It is used to erase a memory range in the selected memory device. For example:
* Erase 0x60000000..0x60010000 (Erase 64 KB from FlexSPI NOR)
* Erase spinand 0x4..0x08 (Erase 4 blocks from SPI NAND)
* Erase sdcard 0x400..0x14000
* Erase mmccard 0x400..0x14000
» Erase spieeprom 0x400..0x14000
* Erase semcnand 0x400..0x14000

4.2 Generate unsigned normal i.MX RT bootable image

Typically, the unsigned bootable image is generated and programmed to the destination memory during the development phase.
The elftosb utility supports unsigned bootable image generation using options, BD file, and ELF/SREC file generated by toolchain.

Taking the Flashloader project as an example, here are the steps to create a bootable image for Flashloader.

Step 1: Create a BD file. For unsigned image creation, the “constants” block is optional, as shown below.
options

flags = 0x00;

startAddress = 0x20000000;

ivtOffset = 0x400;
initialLoadSize = 0x2000;

}

sources {
elfFile = extern(O0);

section (0)

{
}

After the BD file is created, place it into the same folder that holds elftosb utility executable.
Step 2: Copy Flashloader.srec provided in the release package into the same folder that holds elftosb utility executable.

Step 3: Generate the Bootable image using elftosb utility.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
20 NXP Semiconductors

Generate signed normal i.MX RT bootable image

imx -V -c Example_BD_Files/imx-unsigned.bd -o ivt_flashloader_unsigned.bin flashloader.srec

Figure 2. Example command to generate unsigned boot image
Then, there are two bootable images generated by elftosb utility. The first one is ivt_flashloader_unsigned.bin. The memory
regions from 0 to ivt_offset are filled with padding bytes (all 0x00s).

The second one is ivt_flashloader_nopadding.bin, which starts from ivtdata directly without any padding before ivt.

4.3 Generate signed normal i.MX RT bootable image

To generate a signed bootable image using elftosb utility, perform the following steps:
Step 1: Create a BD file. The BD file can be as follows.

options
flags = 0x08;
startAddress = 0x60000000;
ivtOffset = 0x1000;
initialLoadSize = 0x2000;

}

sources {
elfFile = extern(O0);
}

constants {

SEC_CSF HEADER = 20;
SEC_CSF_INSTALL SRK = 21;
SEC_CSF_INSTALL CSFK = 22;
SEC_CSF_INSTALL NOCAK = 23;
SEC_CSF_AUTHENTICATE CSF = 24;
SEC_CSF_INSTALL KEY = 25;
SEC_CSF_AUTHENTICATE DATA = 26;
SEC_CSF_INSTALL SECRET KEY = 27;
SEC_CSF _DECRYPT DATA = 28;
SEC_NOP = 29;
SEC_SET MID = 30;
SEC_SET_ENGINE = 31;
SEC_INIT = 32;
SEC_UNLOCK = 33;

}

section (SEC_CSF_HEADER;
Header Version="4.2",
Header HashAlgorithm="sha256",
Header Engine="DCP",
Header_ EngineConfiguration=0,
Header CertificateFormat="x509",
Header SignatureFormat="CMS"
)

{

}

section (SEC_CSF_INSTALL_SRK;

InstallSRK SourceIndex=0
)

{

}

section (SEC CSF_INSTALL CSFK;
InstallCSFK File="crts/CSF1_ 1 sha256 2048 65537 v3_ usr_crt.pem", // "valid file path"
InstallCSFK CertificateFormat="x509" // "x509"

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 21

Generate i.MX RT bootable image

{
}

section (SEC_CSF_AUTHENTICATE_ CSF)

{
}

section (SEC_CSF_INSTALL KEY;
InstallKey File="crts/IMG1l 1 sha256_ 2048 65537 v3 usr crt.pem",
InstallKey VerificationIndex=0, // Accepts integer or string
InstallKey TargetIndex=2) // Accepts integer or string

section (SEC CSF_AUTHENTICATE DATA;
AuthenticateData VerificationIndex=2,

AuthenticateData Engine="DCP",
AuthenticateData_EngineConfiguration=0)

{
}

section (SEC_SET_ENGINE;

SetEngine HashAlgorithm = "sha256", // "shal", "Sha256", "sha512"
SetEngine Engine = "DCP", // "ANY", "SAHARA", "RTIC", "DCP", "CAAM" and "SW"
SetEngine EngineConfiguration = "0") // "valid engine configuration values"

section (SEC_UNLOCK;
Unlock Engine = "SNVS",
Unlock features = "ZMK WRITE"
)

{
}

After the blank BD file is created, place it into the same folder that holds elftosb utility executable.
Step 2: Copy Flashloader.srec provided in the release package into the same folder that holds elftosb utility executable.

Step 3: Copy the “cst” executable, “crts” folder, and “keys” folder from “<cst_installation_dir>" to the same folder that holds elftosb
utility executable.

Step 4: Generate a bootable image using elftosb utility.

$./elftosb.exe -f imx -v -c Example_BD_Files/imx-signed.bd -o ivt_flashloader_signed.bin flashloader.srec

Figure 3. Example command to generate a signed boot image

Then, there are two bootable images generated by elftosb utility. The first one is ivt_flashloader_signed.bin. The memory regions
from 0 to ivt_offset is filled with padding bytes (all 0x00s). The second one is ivt_flashloader_signed_nopadding.bin, which starts
from ivt_offset directly. The CSF section is generated and appended to the unsigned bootable image successfully.

4.4 Generate encrypted normal i.MX RT bootable image

To generate an encrypted image, perform the following steps:

Step 1: Create a BD file.

options {
flags = 0x0c;
startAddress = 0x20000000;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
22 NXP Semiconductors

}

ivtOffset = 0x400;
initialLoadSize = 0x2000;

sources {

}

elfFile = extern(0);

constants {

}

SEC_CSF_HEADER
SEC_CSF_INSTALI_SRK
SEC_CSF_INSTALI, CSFK
SEC_CSF_INSTALL_NOCAK
SEC_CSF_AUTHENTICATE_ CSF
SEC_CSF_INSTALI, KEY
SEC_CSF_AUTHENTICATE_DATA
SEC_CSF_INSTALL SECRET KEY
SEC_CSF_DECRYPT DATA
SEC_NOP

SEC_SET MID

SEC_SET_ENGINE

SEC_INIT

SEC_UNLOCK

section (SEC CSF_HEADER;

{
}

Header Version="4.3",

Header HashAlgorithm="sha256",

Header Engine="DCP",

Header EngineConfiguration=0,

20;
21;
22;
23;
24 ;
25;
26;
27;
28;
29;
30;
31;
32;
33;

Header CertificateFormat="x509",

Header SignatureFormat="CMS"

)

section (SEC_CSF_INSTALL_SRK;

{
}

InstallSRK SourceIndex=0
)

section (SEC_CSF_INSTALL_CSFK;
InstallCSFK File="crts/CSF1l_ 1 sha256 2048 65537 v3 usr_crt.pem", // "valid file path"

{
}

section (SEC_CSF_AUTHENTICATE CSF)

{
}

InstallCSFK CertificateFormat="x509" // "x509"

)

section (SEC_CSF _INSTALL_KEY;
InstallKey File="crts/IMGl 1 sha256_ 2048 65537 _v3_usr_ crt.pem",

{
}

InstallKey VerificationIndex=0,

InstallKey TargetIndex=2)

section (SEC CSF_AUTHENTICATE DATA;

{
}

AuthenticateData_ VerificationIndex=2,
AuthenticateData_ Engine="DCP",
AuthenticateData EngineConfiguration=0)

section (SEC_CSF_INSTALL_SECRET KEY;

Generate encrypted normal i.MX RT bootable image

// "valid file path"

// Accepts integer or string
// Accepts integer or string

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors

23

Generate i.MX RT bootable image

SecretKey Name="dek.bin",
SecretKey Length=128,
SecretKey VerifyIndex=0,
SecretKey TargetIndex=0)

{

}

section (SEC_CSF _DECRYPT DATA;
Decrypt Engine="DCP",
Decrypt EngineConfiguration="0", // "valid engine configuration values"
Decrypt_ VerifyIndex=0,
Decrypt MacBytes=16)

{
}

Step 2: Copy Flashloader.srec provided in the release package into the same folder that holds elftosb utility executable.

Step 3: Copy the “cst” executable, “crts” folder, and “keys” folder from “<cst_installation_dir>" to the same folder that holds elftosb
utility executable.

Step 4: Generate an encrypted bootable image using elftosb utility.

/bd_file/ im‘:-'—dtcrg—er]cr‘ypted.bd -0 ivt_flashloader_encrypt.bin ../../../Flashloader/flashloader.elf
ned data e in csf.bin

in the image
Figure 4. Example command to generate encrypt image

Then, there are two bootable images generated by elftosb utility. The first one is ivt_flashloader_encrypt.bin. The memory regions
from 0 to ivt_offset are filled with padding bytes (all 0x00s).
The Key Blob offset printed out in the example above is used in later section.
The second one is ivt_flashloader_encrypt_nopadding.bin, which starts from ivt_offset directly. The CSF section is generated and
appended to the unsigned bootable image successfully.
Step 5: Generate the KeyBlob section using Flashloader.

The encrypted image generated by elftosb utility is incomplete because the KeyBlob section must be generated on the SoC side
only.

There are two methods to generate the KeyBlob block:

¢ Generate KeyBlob using the “generate-key-blob <dek_file> <blob_file>” command supported by Flashloader and blhost.
See Appendix for more details.

* Generate KeyBlob during manufacturing and use the KeyBlob option block. See Chapter 5 for more details.

4.5 Generate Plugin boot image

The plugin boot image generation process is similar as the one for normal boot image. The only difference is that the bit 4 in the
“flags” element within the “options” block must be set to 1, in other words, the valid flags value list for the plugin boot image is
{Ox10, 0x18, Ox1c}.

An example BD file for plugin boot image generation is shown as follows.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
24 NXP Semiconductors

options {

flags = 0x10;

startAddress
ivtOffset
initialLoadSize

!

sources {
elfFile =

!

section (0)

{

!

extern(0) ;

0x60000000;

0x2000;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

Generate Plugin boot image

NXP Semiconductors

25

Generate SB file for bootable image programming

Chapter 5
Generate SB file for bootable image programming

To make the manufacturing process easier, all the commands supported by Flashloader and bootable image, can be wrapped
into a single SB file. Even if there are any changes in the application, MfgTool still uses this SB file to manufacture. The SB file
can be updated separately without updating scripts for MfgTool use.

In this section, a bootable image will be created using the method introduced in former chapter. Then corresponding SB file is
generated using the bootable image. The corresponding BD file is prepared first to generate SB file for bootable image.

5.1 Generate SB file for FlexSPI NOR image programming

5.1.1 Generate Normal Bootable Image

For example, in RT1060, the FlexSPI NOR memory starts from address 0x6000_0000 and IVT from offset 0x1000. After following
the steps in section 4.2, Generate unsigned normal i.MX RT bootable image, and BD file generation, here is the usage of elftosb
utility to create bootable image for FlexSPI NOR. All the BD files are provided in the release package. The figure below refers to
the example command to generate signed image.

elftosb -f X £ ; i xi d.bin led_demo_evk_flexspi_nor

vailable in csf.bin

Figure 5. Example command to generate signed FlexSPI boot image

After running above command, a file with suffix “_nopadding.bin” is programed into destination memory via subsequent SB file
based on this binary.

5.1.2 Generate SB file for plaintext FlexSPI NOR image
programming
Usually, a BD file for FlexSPI NOR boot consists of 7 parts.
1. The bootable image file path is provided in sources block

The FlexSPI NOR Configuration Option block is provided in section block

To enable FlexSPI NOR access, the “enable” command must be provided following above option block.

P 0D

In case the Flash device is not erased, an “erase” command is required before programming data to Flash device. The
erase operation is time consuming and is not required for a blank Flash device (factory setting) during Manufacturing.

5. The FlexSPI NOR Configuration Block (FNORCB) is required for FlexSPI NOR boot. To program the FNORCB
generated by FlexSPI NOR Configuration Option block, a special magic number ‘0OxFOO0000F” must load into RAM first

6. To notify the Flashloader to program the FNORCB, an “enable” command must be used following the magic number
loading

7. After above operation, Flashloader can program the bootable image binary into Serial NOR Flash through FlexSPI
module using load command

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
26 NXP Semiconductors

Generate SB file for FlexSPI NOR image programming

A simple example containing the above steps is shown in the figure.

The source block assign file name to identifiers
sources {

|myB1nF1le = extern (0); | (1)
] (1)

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

#1. Prepare Flash option
0xc0233007 is the tag for Serial NOR parameter selection

bit [31:28] Tag fixed to 0x0C
bit [27:24] Option size fixed to 0
bit [23:20] F1ash type option
0 - QuadSPI SDR NOR
1 - QUadSPI DDR NOR
2 - HyperFLASH 1V8
3 - HyperFLASH 3V
4 - Macronix Octal DDR
6 - Micron Octal DDR
- Adesto EcoXIP DDR
bit [19:16] Query pads (Pads used for query Flash Parameters)
1
2 - 4
3-8
bit [15:12] CMD pads (Pads used for query Flash Parameters)
0-1
2 -4
3-8
bit [11: 08] fixed to 0
bit [07: 04] fixed to 0
bit [03: 00] Flash Frequency, device specific
#
#
In this example, the 0xc0233007 represents:
HyperEl ASH TVE _Ouery padi; 8 pads, Cmd pads: 8 pads, Frequency: 133MHz
Toad 0xc0233007 > 0x2000; LE)

1; option a address 0x2000

enable flexspinor 0x2000; (3)

#2 Erase Tlash as needed.
erase 0x60000000. .0x60010000;

(4)
#3. Program config block

rgLLmjﬂﬂﬂﬂﬂﬂf_lﬁ_xhg_Iag_I% notify Flashloader to program FlexSPI NOR config block to the start of device
oad O0xf000000f > 0x3000; .

3 sponge the option at address 0x3000

enable flexspinor 0x3000;i

(6)
|10ad myBinFile > 0x60001000;| (7

Figure 6. Example BD file for FlexSPI NOR programming

Here is an example to generate SB file using elftosb utility, ivt_flexspi_nor_xip.bin and BD file shown in figure below.
elftosb -f imx -V -c¢ imx-flexspinor-normal-unsigned.bd -o ivt_flexspi_nor_xip.bin led_demo_evk_flexspi_nor_@x660020e8.srec

Section: @xe
[iMX bootable image generated successfully

Figure 7. Example command to generate SB file for FlexSPI NOR programming

After above command, a file named boot_image.sb will be created in the same folder that holds elftosb utility executable.

5.1.3 Generate SB file for FlexSPI NOR Image encryption and
programming
Usually, a BD file for FlexSPI NOR image encryption and programming consists of 7 parts.
1. The bootable image file path is provided in sources block

2. Enable FlexSPI NOR access using FlexSPI NOR Configuration Option block

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 27

Generate SB file for bootable image programming

3. Erase the Flash device if it is not blank. The erase operation is time consuming and is not required for a blank Flash
device (factory setting) during Manufacturing.

. Enable image encryption using PRDB option block

4
5. Program FNORCB using magic number

6. Program boot image binary into Serial NOR via FlexSPI module
7.

Enable Encrypted XIP fuse bits.

The source block assign file name to identifiers
SOUEEE

fyBinFile = extern (0); PR
1 (1)

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

In this example, the 0%c0233007 represents:

HyperFLASH 1V8, Query pads: 8 pads, Cmd pads: 8 pads, Frequency: 133MHz
Toad 0xc0233007 > 0x2000
Configure HyperFLASH usH
orable flexspinor 0x2064,

g oﬁf%én a address 0x2000

erase 0x60000000. .0x60010000>
kY A

#3 Prepare PRDB options

0xe0120000 is an optwon for PRDB contruction and image encryption

n1t[19 16] %
bit[15:00] reserved in AOQ
load 0xe0120000 > 0x4000;

Region 0 start

Toad 0x60001000 > 0x4004;

Region 0 length

Toad 0x00001000 > 0x4008;

Region 1 start

Toad 0x60002000 > 0x400c;

¢ Region 1 Tlength

sad 0x0000e000 > 0x4010;

Program PRDBO based on op

(4)

ion

leUOUOUUf is the tag to
Tload 0xf000000f > 0x3000;

Notify Flashloader to respon z
enable flexspinor 0x3000;

Program image (6)
ad myBinFile > 0x6000100
. rogram BEE_KEYO_SEL and BEE_K] — (7)
. oad fuse 0x0000e000 > 0x06;

Figure 8. Example BD file for encrypted FlexSPI NOR image generation and programming

e ify!F]ash1oader to program FlexSPI NOR config block to the start of device

fhé option at address 0x3000

The steps to generate SB file is the same as above section.

5.2 Generate SB file for FlexSPI NAND image programming

For FlexSPI NAND boot, the IVT offset is always 0x400. However, to reduce effort in calculating the start address for each firmware
region, the Flashloader supports programming the FlexSPI NAND boot image to corresponding firmware region in block
granularity. So, the bootable image without “_nopadding” suffix will be used.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
28 NXP Semiconductors

Generate SB file for FlexSPI NAND image programming

5.2.1 Generate SB file for FlexSPI NAND image programming

In general, a BD file for FlexSPI NAND image programming consists of 4 parts.
1. The bootable image file path is provided in sources block
2. Enable FlexSPI NAND access using FlexSPI NAND Configuration Option block
3. Erase SPI NAND device as needed
4. Program boot image binary into Serial NAND via FlexSPI module

“I# The source block assign file name to identifiers
s0 :
myBootImageFile = extern (0); (1)

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

#1. Preparpe

eate FCB using FlexSPI NAND FCB option block

aarchstride = 64 pages, Address type: Block Address,
¥ Option Block size: 4 long words

Toad 0xc2000104 > 0x10000;
nandoptionAddr: 0x10000
Toad 0x00010020 > 0x10004;

Toad 0x00080004 > 0x1000c;
FlexSPI NAND Cofniguration Option Blo
Tag = 0x0c, Option size 1 long words
Max Freq:60MHZ

erase spinand 0x4
Erase firmwarel

#Toad to firmware0 region
Toad spinand myBootImageFile > 0x4;

Load to firmwarel region

Figure 9. Example BD file for FlexSPI NAND image programming

5.2.2 Generate SB file for encrypted FlexSPI NAND Image and
KeyBlob programming
Generally, the BD file for FlexSPI NAND image programming with KeyBlob consists of 7 parts.
1. The bootable image file path is provided in sources block
Enable FlexSPI NAND access using FlexSPI NAND Configuration Option block
Erase SPI NAND device as needed
Program boot image binary into Serial NAND via FlexSPI module

Update KeyBlob information using KeyBlob Option block

S

Program KeyBlob block into SPI NAND for firmware 0
7. Program KeyBlob block into SPI NAND for firmware 1

An example BD file is shown in the figure.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors 29

Generate SB file for bootable image programming

assign file name to identifiers

(1)

'# The source
S QUPCE)
myBootImageFile = extern (0);

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {
CB option block

0xc2000104 > 0x10000;

(0x00010020 > 0x10004;
Toad 0x00040004 > 0x10008;
load 0x00080004 > 0x1000c;

(2)

a5s must be equal to the value in nandOptionAddr)

Toad 0xC1010023 > 0x10020; #(Add

oad 0x00702000 > 0x10024;
figure Serial NAND usi option block at address 0x10000

r~cninand 0x10000;

: Block)
(3)

erase spinand 0Ox4..0x8;
se spinand 0x8..0xc;

Tmage
to firmware0 region
oad spinand myBootImageFile > 0x4;

#3. Pr

Load to firmwarel region 4
load spinand myBootImageFile > 0x8;

load” dekFile > 0x10100;

Construct KeyBlob Option

tag = Ox0b, type=0, block size=3, DEK siz&

Toad 0xb0300000 > 0x10200;

dek address = 0x10100

Toad 0x00010100 > 0x10204;

keyblob offset in boot image

Note: this is only an example bd file,
value in users project

ax00004000 > 0x10208;

enable spimand 0x10200;

e value must be replaced with actual

Program KeyBlob to firmware ion (6)
N s

'Iola.d 0xb1000000 > 0x10300;
spinand 0x10300;

am KeyBlob to TF region
oad Oxb1000001 > 0x10400; (7)
. le spinand 0x10400; R

Figure 10. Example BD file for encrypted FlexSPI NAND image and KeyBlob programming

5.3 Generate SB file for SD image programming

The SD image always starts at offset 0x400. The i.MX RT boot image generated by elftosb utility with “_nopadding.bin” will be

used for programming.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

30 NXP Semiconductors

Generate SB file for SD image programming

5.3.1 Steps to Generate SB file for SD image programming

In general, there are six steps in the BD file to program the bootable image to SD card.
1. The bootable image file path is provided in sources block
. Prepare SDCard option block

2
3. Enable SDCard access using enable command
4. Erase SD card memory as needed

5

. Program boot image binary into SD card

6. Program optimal SD boot parameters into Fuse (optional, remove it if it is not required in actual project)
An example is shown in the figure.

The source blo assign file name to identifiers

myBootImageFile = extern (0);

(1

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

Tepare SDCard option [s)
load 0xd0000000 > 0x100: (2)
ad 0x00000000 > 0xl04;

Contigure sSDCa (3
enable sdcard 0x100;

—TETase blocks as nee T (4
erase sdcard 0x400..0x14000; ’

T ogram SDCard Image (5)
load sdcard myBootImageFile > 0x400: I
PBrogram EIUSE LOr optimal read pPerlormen ional)
#1oad fuse 0x00000000 > 0x07; (6)
}

Figure 11. Example BD file for SD boot image programming

The steps to generate SB file for encrypted SD boot image and KeyBlob programming is similar to FlexSPI NAND. See example
below for more details.

The source block assign file name to identifiers
sources {

myBootImageFile = extern (0);

dekFile = extern (1) ;

}

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

#1. Prepare SDCard option block
load 0xd0000000 > 0x100;
load 0x00000000 > 0x104;

#2. Configure SDCard
enable sdcard 0x100;

#3. Erase blocks as needed.
erase sdcard 0x400..0x14000;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 31

Generate SB file for bootable image programming

5.4 Generate SB file for eMMC image programming

#4. Program SDCard Image
load sdcard myBootImageFile > 0x400;

#5. Generate KeyBlob and program it to SD Card
Load DEK to RAM

load dekFile > 0x10100;

Construct KeyBlob Option

bit [31:28] tag, fixed to 0x0b

bit [23:20] keyblob option block size, must equal to 3 if type =0,
reserved if type =1
bit [19:08] Reserved

bit [03:00] Firmware Index, only applicable if type = 1
if type = 0, next words indicate the address that holds dek
the 3rd word

HHEHEHEHFHEHFEHFEHFHFHE

tag = 0x0b, type=0, block size=3, DEK size=128bit
load 0xb0300000 > 0x10200;

dek address = 0x10100

load 0x00010100 > 0x10204;

keyblob offset in boot image

bit [27:24] type, 0 - Update KeyBlob context, 1 Program Keyblob to SPI NAND

bit [07:04] DEK size, 0-128bit 1-192bit 2-256 bit, only applicable if type=0

Note: this is only an example bd file, the value must be replaced with actual

value in users project
load 0x00004000 > 0x10208;
enable sdcard 0x10200;

#6. Program KeyBlob to firmwareO region
load 0xbl1000000 > 0x10300;
enable sdcard 0x10300;

#7. Program Efuse for optimal read performance (optional)
#load fuse 0x00000000 > 0x07;

The eMMC image always starts at offset 0x400. The i.MX RT boot image generated by elftosb utility with “_nopadding.bin” will
be used for programming.

There are two types of eMMC boot mode: Normal boot and Fast boot

5.4.1 Normal mode

There are 6 steps in the BD file to program the bootable image to eMMC for normal boot mode.

1.

2

The bootable image file path is provided in sources block
Prepare eMMC option block

Enable eMMC access using enable command

Erase eMMC card memory as needed

Program boot image binary into eMMC

Program optimal eMMC boot parameters into Fuse (optional, remove it if it is not required in actual project).

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

32

NXP Semiconductors

Generate SB file for eMMC image programming

The source sign file name to identifiers

(D

myBootImageFile = extern (0);

The section block specifies the sequence of boot commands to be written to the 5B file
section (0) {

! “repare MMCCard op - block
load 0xc0000000 > 0x100;

k2~ Configure MMCCATd (3)
enable mmccard 0x100; R
A
erase mmccard 0x400..0x14000; 4

#4. Program MMCCard Image

< Toad mmccard myBootImageFile > 0x400> (3

#5 m kLfuse Tfor optT d performance (optional)
#load fuse 0x00000000 > 0x07; (6)

}

Figure 12. Example BD file for eMMC boot image programming for Normal boot mode

5.4.2 Fast Mode

There are nine steps in the BD file to program the bootable image to eMMC for Fast boot mode.
1. The bootable image file path is provided in “sources” block
Prepare eMMC option block and enable eMMC access using “enable” command
Erase eMMC card memory as needed.
Program boot image binary into eMMC
Program optimal eMMC boot parameters into Fuse (optional, remove it if it is not required in actual project).
Prepare 2nd eMMC option block
Re-enable eMMC access using new option block

Erase data in User Data area as required

© ® N o o » 0 D

Load User Data file to User Data area

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 33

Generate SB file for bootable image programming

The _zs T &le name to identifiers

(1)

myBootImageFile = extern (0);
myUserDataFile = extern (1);

The section block specifies the sequence of boot commands to be written to the 5B file

section (0) {

¥ repare lst MMC Card op
: 8bit DDR, High Speed, Boo
¥ Fast boot config: Boot part
load 0xC1121625 > 0x100;

load Ox00000000 > O0x104;

artition 1 selected for access.
cion 1, 8bit DDR, -ACK.

(2)

wLonfigure MMC Card.
enable o S

- ase blocks at Boot partion 1 aS T d. 3
gﬁuﬂ?ﬂ Oxdq400, , 0x14000: T ()

¥4. Program Boot Image to MMC Card Boot par n-1. (4)
pad mmccard myBootImageFile > 0x400;

re Z2nd MMC Card op v [al
B8bit DDR, High Speed, User data
load OxC0001600 > 0Ox100;
00000000 > 0Ox104;

ea is selected for access.

(6)

7

Re-configure MMC Card (7)
nable mmccard 0x100;

¥ Erase blocks at User data area needed. (8)
rase mmccard 0x8000..0x100000;
paFProgram User Data file to User data
mmccard myUserDataFile > 0x8000; (9)

- gram Efuse accordil 3 ast boot config. (optional if use GPIO instead of Efuse)
Fload fuse 0x000006B3 > Ox05; (5)
k.

Figure 13. Example BD file for eMMC boot image programming for Fast boot mode

The BD file for encrypted eMMC boot image and KeyBlob programming is similar to SD.

5.5 Generate SB file for Serial NOR/EEPROM image
programming
There are five steps in the BD file to program the bootable image to SD card.

1. The bootable image file path is provided in sources block

Prepare Serial NOR/EEPROM option block and enable Serial NOR/EEPROM access using enable command.

2

3. Erase Serial NOR/EEPROM memory as required

4. Program boot image binary into Serial NOR/EEPROM device
5. Enable Recovery Boot via Serial NOR/EEPROM as required

An example is shown the figure

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

34

NXP Semiconductors

Generate SB file for SEMC NOR image programming

The source block assign file name to identifiers

myBootImageFile = extern (0):

(1)

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

1. Prepare SP PROM._option block

tag, fixed to 0xU
[S5ize, (bytes/4) -1
[23:20] SPI instance

bit [19:16] PCS index
[
[

(2)

15:12] Flash type, 0-SPI NOR, 1-SPI \EEPROM
11:08] Flash size(Bytes) 0 - 512K, 141M, 2-2M, 3-4M, 4-8M
13-64K, 14-128K, 15-2L6K, etc.
bit [07:04] Sector size (Bytes), 0-4K, 1-8
4-128K, 5-256K
bit [03:00] Page size (Bytes) 0-256,
gad 0xC0100300 > 0x100;

, 2-32K, 3-64K,

yfigure SPI NOR/EEPROM
enable spifeprom 0x100;

T TErase blocks as needed. (3)
erase spieeprom 0x400..0x14000;

. Program SPI NOR/EEPROM Image (4)
load spieeprom myBootImageFile > 0x40

#5 ecovery boot
Note: this fuse field is 50oC specI
according to fusemap.
fuse 0x01000000 > Ox2d:

ic, need to be updated

(5)

Figure 14. Example BD file for Serial NOR/EEPROM boot image programming

The BD file for encrypted SPI EEPRM/NOR boot image and KeyBlob programming is similar to SD.

5.6 Generate SB file for SEMC NOR image programming

In general, there are 5 steps in the BD file to program the bootable image to SD card.
1. The bootable image file path is provided in sources block
2. Prepare SEMC NOR option block and SEMC NOR access using enable command.
3. Erase SEMC NOR memory as required
4. Program boot image binary into SEMC NOR device
5. Program optimal SEMC NOR access parameters to Fuse as required

An example BD file is shown in the figure .

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 35

Generate SB file for bootable image programming

constants {
kabsAddr_start= 0x90000000;
kabsAddr_Ivt = 0x90001000;
kabsAddr_App = 0x90002000;

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

Prepare Flash option

Note: This is a template, need to be udpated to actual option in users' project
Toad 0xD0002600 > 0x2000;
Configure to CSX2, ADV high
enabie-semcnor 0x2000;

active, 16bits I0, safe AC timing mode

#2~Trase flash as needed.

Note: This is a template, need

in users' project.
sase 0x90000000. .0x90010004

to be udpated to actual required memory range

Program image
load myBinFile > kAbsAddr_Ivt;

o= SE
this is a te
project

load fuse 00000000 > 0x05;

seeded

{ote: mﬁ1ate,

aeed to be updated to actual required fuse value in users'

Figure 15. Example BD file for SEMC NOR boot image programming

5.7 Generate SB file for SEMC NAND image programming

There are 5 steps in the BD file to program the bootable image to SD card.
1. The bootable image file path is provided in sources block
2. Prepare SEMC NAND FCB option block and SEMC NAND access using enable command
3. Erase SEMC NAND memory as required
4. Program boot image binary into SEMC NAND device
5. Program optimal SEMC NAND access parameters to Fuse as required

An example is shown in Figure

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

36 NXP Semiconductors

Generate SB file for fuse program

ign file name to identifiers

(1)

(0):

The section block specifies the sequence of boot commands to be written to the SB file
section (0) {

ONFI 1.0, non-EDO, Timing mod#
load 0xD0030501 > 0x2000;
1image copy = 1, search stridg =
load 0x00010101 > 0x2004;
k. block index = 2, block
0x00020001 > 0x2008;

0, 8bit IO, CSXO
(2)

1, search count =1

Tote: This is a template, need
in users' project.
byte adress = page size * pages pe

a_be udpated to actual required memory range

%3) .
block * block index

#3. Pro i (4)
yte adress = page size * pages pe€ lock * block index
d semcnad myBinFile > 0x100000;

Program Fuse as needed
Note: this is a template, nek
project

#~lLoad fuse 00000000 > 0x0

d to be updated to actual required fuse wvalue in users'

(%)

Figure 16. Example BD file for SEMC NAND boot image programming

5.8 Generate SB file for fuse program

In certain cases, the fuse must be programmed first to enable specific features for selected boot devices or security levels. For
example, to enable Fast boot mode for eMMC, enable HAB closed mode, the fuse must be programmed first.

The elftosb utility can support programming Fuse using built-in supported “load fuse” command, an example to program SRK
table and enable HAB closed mode is shown as follows.

The source block assign file name to identifiers
sources {

}

constants {

}

section (0) {

Program SRK table

load fuse 0xD132E7F1 > 0x18;
load fuse 0x63CD795E > 0x19;
load fuse 0x8FF38102 > 0x1A;
load fuse 0x22A78E77 > 0x1B;
load fuse 0x01019c82 > 0x1C;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 37

Generate SB file for bootable image programming

load fuse
load fuse
load fuse

Program
load fuse

OxXFC3AC699
O0xF2C327A3
0xDAC9214E

> 0x1D;
> O0x1E;
> 0x1F;

SEC_CONFIG to enable HAB closed mode

0x00000002

> 0x06;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

38

NXP Semiconductors

Chapter 6

Program bootable image

Bootable image programming is supported by MfgTool only.

6.1 MfgTool

MfgTool

The MfgTool supports i.MX RT Boot ROM and MCUBOOT-based Flashloader. It can be used in factory production environment.
The MfgTool can detect i.MX RT Boot ROM devices connected to PC and invokes “blhost” to program the image on target memory
devices connected to i.MX RT device.

The template of MfgTool configuration profile is provided along with this document. It is applicable to most use cases without any

modifications.

6.1.1 MfgTool Directory structure

I <install direcotry>

L| Tools |

win

]

blhost.exe

cfg.ini

1 ivt_flashloader.bin |

UICfg.ini —l ivt_flashloader_signed.bin |

1

MfgTool.log l

ucl2.xml

—

boot_image.sb

—

enable_hab.sb

Figure 17. MfgTool organization

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors

39

Program bootable image

P 0D

9.

10.

1.

12.

In the release package, the mfgtools-rel folder appears in the tools folder along with blhost folder
The blhost.exe appears in the blhost/win folder and the MfgTools executable “MfgTool2.exe”
The Profiles folder contains the profile for the supported devices that include an “OS Firmware” folder and player.ini file

The ucl2.xmlfile in the OS Firmware folder is the main XML that MfgTool processes. It contains the flow of the manufacturing
process for the device. The process includes identification parameters for the device and blhost commands parameter to
identify the device connected to the PC host and a set of blhost commands required for updating the image. The ucl2.xml
file can be customized to suit custom setup or manufacturing process flow. The folder contains an example xml files for
user’s reference. An example ucl2.xml is shown below. In general, it defines the supported states and lists

I<UCL>

CFG>
<STATE name="BootStrap" dev="MXRT105X" vid="1FCS" pid="0130"/> <!-- I.MX SDP USB-HID —->
<STATE name="Blhost" dev="KBL-HID" vid="15A2" pid="0073"/> <!--KIBBLE USB-HID-->

/CEG>

LIST name="MXRT105X-DevBoot" de
!-- stage 1, load and execute
<CMD state="BootStrap" tyD

"Boot Flashloader">
oader -->
"boot" body="BootStrap" file="ivt flashloader.bin" > Loading Flashloader. </CMD>

<CMD state="BootStrap" type="jump" onError = "ignore"> Jumping to Flashloader. </CMD>
!-- Stage 2, Program boot image into external memory using Flashloader ——>
<CMD stat: —"blhost" body="get-property 1" > Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-—>
<CMD stats blhost" timeout="15000" body="receive-sb-file \"Profiles\\MKRT105X\\0S Firmware\\boot_image.sb\"" > Program Boot Image. </CMD>|

<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>

/LIST>

|KLIST name="MXRT105X-SecureBoot" desc="Boot Signed Flashloader'>
!~ Stage 1, load and execute Flashloader —->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader_ signed.bin" > Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError="ignore"> Jumping to Flashloader. </CMD>

!-- Stage 2, Enable HAB closed mode using Flashloader -->
<CMD state="Blhest" type="blhost" body="get-property 1" ifhab="Open" > Get Property 1. </CMD> <!--Used to test if flashloader runs successfully--»
<CMD state="Blhost" t blhost" body="receive-sb-file \"Profiles\\MXRT105X\\0S Firmware\\enable hab.sb\"" ifhab="Open" > Program Boot Image. </CMD>
<CMD state="Blhost" ty‘se* "blhost" body="reset" ifhab="Open"> Reset. </CMD> <!--Reset device to enable HAB Close Mode——>

!-- stage 3, Program signed image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body= qet property 1" :fhaa "¢lose"> Get Property 1. </CMD> <!
<CMD state="Blhost" type="blhost" timeout="15000" body="receive-sb-file \"Profiles\\MxRT105X\\03
<CMD state="Blhest" type="blhost" body="Update Completed!" ifhab="Close" >Done</CMD>

/LIST>

jsed to test if flashloader r
ware\\boot_image_signed.sb

s successfully-—>
" ifhab="Close" > Program Boot Image. </CMD:

</ucL>
Figure 18. Example UCL2.xml settings
The “ivt_flashloader.bin” file under the “OS firmware” is the Flashloader released to support image programming

The “ivt_flashloader_signed.bin” file under the “OS firmware” is the bootable Flashloader image file generated by users for
SecureBoot solution in production phase, it can be generated by following section 4.3

The “boot_image.sb” file under the “OS firmware” is the wrapped file with command sequences and bootable images
generated using elftosb utility by users

The “enable_hab.sb” file under the “OS firmware” is the wrapped file with command sequences that programs Fuses to
enable HAB closed mode, which is generated using elftosb utility by users

The play.ini in the “Device” profile folder contains configurable parameters for the manufacturing tool application
The cfg.ini and UICfg.ini files provide customizable parameters for the look and feel of the tool’s GUI. The cfg.ini in tool’s
GUI is used to select “chip’ “platform” and “name” in list. Refer to the example below

NOTE
Select appropriate “chip” from Device list, “name” from list in ucl2.xml in Device/OS Firmware folder.

[profiles]
chip = MXRT106X

[platform]
board =

[LIST]
name = MXRT106X-DevBoot

UICfg.ini is used to select the number of instances supported by MfgTool Ul. The valid instance range is 1-4

The MfgTool.log text file is a useful tool to debug failures reported on MfgTool Ul. The MfgTool logs the entire command
line string which was used to invoke blhost and collects the output response text the blhost puts out on stdout into the
MfgTool log file. The log file should be the considered first while troubleshooting

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

40

NXP Semiconductors

Connect to the i.MX RT Platform

6.1.2 Preparation before image programming using MfgTool

See Chapter 4 and Chapter 5 for more details.

6.2 Connect to the i.MX RT Platform

The i.MX RT platform can be connected to a host computer to interface with the i.MX RT Boot ROM application. After the platform
is connected in serial downloader mode, use the MfgTool to program bootable image into the target flash memory. If the connection
establishes successfully and the cfg.ini, UICfg.ini are configured appropriately, the device will be recognized by MfgTool Figure.

e —— = T =
m M Lool NP (o 2.7.0) = S
Hub 3--Port 2 Staius Inﬂ:urmatinn
Drive(s): Successful 0
Failed 0
HID-compliant device _
Failure Rate: 0 %
Start Exit |
)

Figure 19. MfgTool GUI with device connected

6.3 Program bootable image during development

In development phase, the device may be in HAB open mode for most use cases. Users can configure the “name” field in cfg.ini
file as <Device>-DevBoot, then prepare the boot_image.sb file using elftosb utility. After the “boot_image.sb” is generated, place
it into “<Device>/OS Firmware/” folder. Then put device into serial downloader mode and connect it to host PC. After opening the

MfgTool.exe and click “Start” to trigger a programming sequence. When the programming completes, the window shown in Figure
appears. To exit MfgTool, click “Stop” and “Exit” in turn.

% MigTool_MultiPanel (Library: 2.7.0) R
Hub 3--Port 2 Status Information
Drive(s): . Successful 1
Failed 0
Done
Failure Rate: 0.00 %

Stop Exit

Figure 20. Successful result for programming with MfgTool for DevBoot

b

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors 4

Program bootable image

6.4 Program bootable image for production

In production phase, the device can be in HAB closed mode for most use cases. Users can configure the “name” field in cfg.ini
file as <Device>-SecureBoot, then prepare the boot_image.sb file, enable_hab.sb and ivt_flashloader_signed.bin using elftosb
utility. After all are generated, place them into “<Device>/OS Firmware/” folder, then put device in serial downloader, connect it to

host PC. Open MfgTool.exe and click “Start” to trigger a programming sequence. After the programming completes, the below
window will be seen. To exit MfgTool, click “Stop” and “Exit” in turn.

i MfgTool_MultiPanel (Library: 2.7.0) e |
Hub 3--Port 2 Status Information
Drive(s): . Successful 1
Failed 0
Done
Failure Rate: 0.00 %

Figure 21. Successful result for programming with MfgTool for SecureBoot

e

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

42 NXP Semiconductors

Plugin boot application

Chapter 7
Appendix

7.1 Plugin boot application
The plugin boot application is usually used to enable boot features that are not natively supported by Boot ROM, for example,
* Boot from USB disk
¢ Boot from Ethernet,
* DDR/SDRAM configuration
* Redundant boot/reliable boot
The prototype of plugin boot application is:

bool (*plugin_download)(void **start, size_t *bytes, uint32_t *ivt_offset);

7.1.1 Principles for Plugin boot application design

The Boot ROM needs to jump between Plugin boot image and the normal boot image that is loaded by the plugin boot application.
To avoid any impact on the ROM boot flow, here are some recommended principles for plugin boot application design.

1. The plugin boot application must not use the memory that is currently reserved for ROM use

2. The plugin boot application should use minimum stack spaces to avoid the possibility of stack overflow caused by plugin
boot application

3. The plugin boot application must consider Watchdog service, if the WDOG enable bit is enabled in the Fuse block

7.1.2 Boot Flow of Plugin boot application

The boot flow for Plugin boot application is as follows
1. Boot ROM loads the XIP plugin boot image, does authentication and execution and then jump to plugin boot application
2. The plugin boot application loads the signed Non-XIP image from address 0x60008000 and jumps back to Boot ROM

3. Boot ROM does authentication/decryption based on the parameters output by plugin boot application and jumps to the
non-XIP boot image after authenticating successfully

7.1.3 Example Plugin boot application to enable non-XIP boot on
FlexSPI NOR

The Non-XIP boot case is not natively supported by some i.MX RT Boot ROM devices. In this case, a simple plugin boot image
can be created to enable non-XIP boot case for these boot devices.

The basic flow of how Plugin boot works is as follows:

Here are the example codes for plugin boot application for RT10xx FlexSPI NOR boot.

#define BOOT IMAGE LOAD BASE 0x60008000
enum

{

kTag HAB IVT = 0xdl,

7

typedef struct hab hdr

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 43

Appendix

uint8 t tag;

uint8 t len[2];

uint8_t version;
} hab hdr t;

typedef struct hab ivt

hab hdr t hdr;
uint32 t entry;
uint32 t reservedl;
uint32 t dcd;
uint32 t boot data;
uint32 t self;
uint32 t csf;
uint32 t reserved2;
} hab ivt t;

//'@brief Boot data structure
typedef struct _boot data

uint32 t start;

uint32 t length;

uint32_t plugin;

uint32_t reserved;
} boot data t;

//'@brief Boot Image header, including both IVT and BOOT_DATA
typedef struct _boot image hdr

hab_ivt t ivt;
boot _data_t boot data;
} boot image hdr t;

/*!@brief Plugin Download function
*

* This function is used to copy non-xip boot image from Flash to RAM
*

*/

bool plugin download(void **start, size t *bytes, uint32_t *ivt offset)

bool result = false;
const boot image hdr t *boot hdr;

//Search IVT
uint32 t ivt offset list[3] = {0, 0x400, 0x1000};

uint32_t search_index = 0;
while (search index < sizeof (ivt offset list) / sizeof (ivt offset list[0]))

boot _hdr = (const boot image hdr t *) (ivt offset list[search index] +
BOOT IMAGE LOAD BASE) ;
if (boot hdr-sivt.hdr.tag != kTag HAB IVT)

search index++;
continue;

}

*start = (void *)boot hdr-s>boot data.start;
*bytes = boot_ hdr->boot_data.length;
*ivt _offset = boot_hdr->ivt.self - boot_ hdr->boot_ data.start;

uint32 t *dst = (uint32_ t *)boot hdr->boot data.start;
uint32 t *src = (uint32_t *) ((uint32_t)boot hdr - *ivt offset);
size t remaining length = ((*byte + 3) & ~0x03) / 4;

while (remaining length--)

{

*dst++ = *src++;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
44 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

result = true;
break;

}

return result;

7.1.4 Images loaded by plugin boot application

The image loaded by Plugin boot application can be either XIP image or the non-XIP image. Refer to Chapter 4 for more details.

7.2 Example of manufacturing flow for RT1060-EVK

7.2.1 Manufacturing process in Development phase

In development phase, mostly the image is unsigned and it is mainly for functional test.

7.2.1.1 Templates options for the Manufacturing flow

To simplify the complexity of the Manufacturing flow, several templates are available in ucl2.xml.

The codeblock below is an example which is used for programming an SDK XIP project binary into RT1060-EVK board. To enable
the XiP users need to

1. Change the “name” item in cfg.ini to “name = MXRT106x-DevBootSerialFlashXiP”

2. Compile the SDK project

3. Generate the binary file for the project

4. Rename the binary to boot_image.bin

5. Copy it to the same folder as ucl2.xml
<LIST name="MXRT106x-DevBootSerialFlashXiP" desc="Manufacturing with Flashloader">
<!-- Stage 1, load and execute Flashloader -->

<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>

<CMD state="BootStrap" type="jump" onError = "ignore"> Jumping to Flashloader. </CMD>
<!-- Stage 2, Program boot image into external memory using Flashloader -->

<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>

<!--Used to test if flashloader runs successfully-->

<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure QuadSPI NOR Flash </CMD»>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x60000000 0x100000" > Erase 1MBytes </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60000000
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>
</LIST>

The codeblock below is an example which is used for programming the SDK XIP project binary into RT1060-EVK board with other
FLASH device. Users may need to modify the 0xc0000007 configuration option for actual soldered FLASH devices. See chapter
"External memory support" in MCU Flashloader Reference Manual for more details.

To enable the option, users need to

1. Change the “name” item in cfg.ini to “name = MXRT106x-DevBootSerialFlashXiP_NoConfigBlock”

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 45

Appendix

2. Compile the SDK project

3. Generate the binary file for the project
4. Rename the binary to boot_image.bin
5

. Copy it to the same folder as ucl2.xml

<LIST name="MXRT106x-DevBootSerialFlashXiP NoConfigBlock"
desc="Manufacturing with Flashloader"s>
<!-- Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore">
Jumping to Flashloader. </CMD>

<!-- Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure Serial FLASH </CMD>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x60000000 0x10000" > Erase 64KBytes </CMD>
<CMD state="Blhost" type="blhost" body="fill-memory 0x3000 4 0xf000000f">
Prepare Magic nubmer for config block programming </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x3000">
Write auto-generated config block to QuadSPI NOR Flash </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60001000
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>
</LIST>

The codeblock below is an example which is used for programming the SDK XIP project binary without FCB and Boot data
information. Users may need to modify the 0xc0000007 in the configuration option for actual soldered FLASH device. See chapter
"External memory support" in MCU Flashloader Reference Manual for more details.

To enable the option, users need to

1. Change the “name” item in cfg.ini to “name = MXRT106x-DevBootSerialFlashXiP_NoConfigBlockBootData”
2. Compile the SDK project

3. Generate the binary file for the project

4. Rename the binary to boot_image.bin

5. Copy it to the same folder as ucl2.xml

NOTE
1. The application start address must be 0x60002000 for this example.

2. The default image size is configured to 4 Mbytes in the ivt_bootdata_0x6000_2000. It fits most application
requirement. Users can modify offset 0x24-0x27 in this file to change the image size to meet the actual
requirement.

<LIST name="MXRT106x-DevBootSerialFlashXiP_ NoConfigBlockBootData"
desc="Manufacturing with Flashloader">
<l-- Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore'"> Jumping to Flashloader. </CMD>

<!-- Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
46 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure Serial FLASH </CMD>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x60000000 0x100000" > Erase 1MBytes </CMD>
<CMD state="Blhost" type="blhost" body="fill-memory 0x3000 4 0xf000000f">
Prepare Magic nubmer for config block programming </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x3000">
Write auto-generated config block to QuadSPI NOR Flash </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60001000
\"Profiles\\MXRT106x\\0S Firmware\\ivt bootdata.bin\"" >
Program IVT and Boot data. </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60002000
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>

</LIST>

The codeblock below is an example which is used for programming the non-XIP ITCM image which is stored on the FlexSPI NOR.
Users may need to modify the O0xc0000007 to the configuration option for actual soldered FLASH devices. See chapter "External
memory support" in MCU Flashloader Reference Manual for more details.

To enable the option, users need to

1.

Change the “name” item in cfg.ini to “name = MXRT106x-DevBootSerialFlashXiP_ITCM_0x0000_1400"

2. Compile the SDK project

3. Generate the binary file for the project
4.
5

Rename the binary to boot_image.bin

. Copy it to the same folder as ucl2.xml

NOTE
1. The application start address must be 0x1400 for this option. The actual boot image starts from address
0x1000, the IVT starts at offset 0x100, and application starts at offset 0x1300.

2. The default image size is configured to 127 Kbytes in the ivt_bootdata_0x0000_1400. This is because it
cannot exceed the default ITCM size(128KB).

<LIST name="MXRT1l06x-DevBootSerialFlashNonXiP ITCM 0x0000_1400"

<!--

<l--

desc="Manufacturing with Flashloader"s>
Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore"> Jumping to Flashloader. </CMD>

Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure Serial FLASH </CMD>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x60000000 0x80000" > Erase 512KBytes </CMD>
<CMD state="Blhost" type="blhost" body="fill-memory 0x3000 4 0xf000000f">
Prepare Magic nubmer for config block programming </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x3000">
Write auto-generated config block to QuadSPI NOR Flash </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60001000
\"Profiles\\MXRT106x\\0S Firmware\\ivt bootdata 0x0000 1400.bin\"" >
Program IVT, Boot data. </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60001300
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

NXP Semiconductors 47

Appendix

<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>
</LIST>

The codeblock below is an example which is used for programming the non-XIP DTCM image which is stored on the FlexSPI
NOR. Users may need to modify the 0xc0000007 to the configuration option for actual soldered FLASH devices. See chapter
"External memory support" in MCU Flashloader Reference Manual for more details.

To enable the option, users need to
1. Change the “name” item in cfg.ini to “name = MXRT106x-DevBootSerialFlash XiP_DTCM_0x2000_2000"
2. Compile the SDK project
3. Generate the binary file for the project
4. Rename the binary to boot_image.bin
5

. Copy it to the same folder as ucl2.xml

NOTE
1. The application start address must be 0x20002000 for this option. The actual boot image starts from
address 0x20000000, the IVT starts at offset 0x1000, and application starts at offset 0x2000.

2. The default image size is configured to 128 Kbytes in the ivt_bootdata_0x2000_2000. This is because it
cannot exceed the default DTCM size(128 KB).

<LIST name="MXRT1l06x-DevBootSerialFlashNonXiP DTCM 0x2000_2000"
desc="Manufacturing with Flashloader"s>
<!-- Stage 1, load and execute Flashloader --»>
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore"> Jumping to Flashloader. </CMD>

<!-- Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure Serial FLASH </CMD>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x60000000 0x80000" > Erase 512KBytes </CMD>
<CMD state="Blhost" type="blhost" body="fill-memory 0x3000 4 0xf000000f">
Prepare Magic nubmer for config block programming </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x3000">
Write auto-generated config block to QuadSPI NOR Flash </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60001000
\"Profiles\\MXRT106x\\0S Firmware\\ivt bootdata 0x2000 2000.bin\"" >
Program IVT, Boot data. </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x60002000
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>
</LIST>

The codeblock below is an example which is used for programming the non-XIP OCRAM image which is stored on the FlexSPI
NOR. Users may need to modify the 0xc0000007 to the configuration option for actual soldered FLASH devices. See chapter
"External memory support" in MCU Flashloader Reference Manual for more details.

To enable the option, users need to
1. Change the name item in cfg.ini to “hame = MXRT106x-DevBootSerialFlashNonXiP_OCRAM_0x2020_a000”
2. Compile the SDK project
3. Generate the binary file for the project

4. Rename the binary to boot_image.bin

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
48 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

5. Copy it to the same folder as ucl2.xml

NOTE
1. The application start address must be 0x2020a000 for this option. The actual boot image starts from
address 0x20208000, the IVT starts at offset 0x1000, and application starts at offset 0x2000.

2. The default image size is configured to 736Kbytes in the ivt_bootdata_0x2020_a000. This is because it
cannot exceed the default OCRAM size (768KB - 32KB Reserved RAM size for ROM use).

<LIST name="MXRT106x-DevBootSerialFlashNonXiP OCRAM 0x2020_a000"
desc="Manufacturing with Flashloader">
<l-- Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore'"> Jumping to Flashloader. </CMD>

<!-- Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" body="fill-memory 0x2000 4 0xc0000007">
Prepare Flash Configuration option </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x2000">
Configure Serial FLASH </CMD>
<!-- This erase size need to be updated based on the actual boot image size-->
<CMD state="Blhost" type="blhost" timeout="30000" body="flash-erase-region
0x70000000 0x80000" > Erase 512KBytes </CMD>
<CMD state="Blhost" type="blhost" body="fill-memory 0x3000 4 0xf000000f">
Prepare Magic nubmer for config block programming </CMD>
<CMD state="Blhost" type="blhost" body="configure-memory 0x9 0x3000">
Write auto-generated config block to QuadSPI NOR Flash </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x70001000
\"Profiles\\MXRT106x\\0S Firmware\\ivt bootdata 0x2020 a000.bin\"" >
Program IVT, Boot data. </CMD>
<CMD state="Blhost" type="blhost" timeout="15000" body="write-memory 0x70002000
\"Profiles\\MXRT106x\\0S Firmware\\boot image.bin\"" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>
</LIST>

The codeblock below is an example which is used for general purpose. SB format boot image, boot_image.sb, needs to be created
and copied to the same folder as ucl2.mxl. Details of creating SB format boot image can be found in chapter 4 and chapter 5.

<LIST name="MXRT106x-DevBoot" desc="Manufacturing with Flashloader"s
<l-- Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader.bin"s>
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError = "ignore"> Jumping to Flashloader. </CMD>

<!-- Stage 2, Program boot image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" > Get Property 1. </CMD>
<!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" timeout="15000" body="receive-sb-file
\"Profiles\\MXRT106X\\0S Firmware\\boot image.sb\"" > Program Boot image </CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!">Done</CMD>

</LIST>

The codeblock below is an example which is used for general purpose in production phase. SB format boot image, boot_image.sb,
needs to be created and copied to the same folder as ucl2.mxI. Details of creating SB format boot image can be found in chapter
4 and chapter 5.

<LIST name="MXRT106X-SecureBoot" desc="Boot Signed Flashloader"s
<l-- Stage 1, load and execute Flashloader -->
<CMD state="BootStrap" type="boot" body="BootStrap" file="ivt flashloader signed.bin" >
Loading Flashloader. </CMD>
<CMD state="BootStrap" type="jump" onError="ignore"> Jumping to Flashloader. </CMD>

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 49

Appendix

<!-- Stage 2, Enable HAB closed mode using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" ifhab="Open" >
Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" body="receive-sb-file \"Profiles\\MXRT106X\\0S
Firmware\\enable hab.sb\"" ifhab="Open" > Program Boot Image. </CMD>
<CMD state="Blhost" type="blhost" body="reset" ifhab="Open"> Reset. </CMD>
<!--Reset device to enable HAB Close Mode-->

<!-- Stage 3, Program signed image into external memory using Flashloader -->
<CMD state="Blhost" type="blhost" body="get-property 1" ifhab="Close">
Get Property 1. </CMD> <!--Used to test if flashloader runs successfully-->
<CMD state="Blhost" type="blhost" timeout="15000" body="receive-sb-file
\"Profiles\\MXRT106X\\0S Firmware\\boot image.sb\"" ifhab="Close" >
Program Boot Image.</CMD>
<CMD state="Blhost" type="blhost" body="Update Completed!" ifhab="Close">Done</CMD>
</LIST>

7.2.1.2 Create i.MX RT bootable image

72.1.2.1 Create image using KSDK XIP example

Users can create an unsigned bootable image by building a KSDK XIP project and convert the output to a binary file. The binary
file needs to be renamed to the boot_image.bin and copied to the same folder as ucl2.xml. Then users can update the cfg.ini file
to enable an option of manufacturing flow which is described in previous section.

7.2.1.2.2 Create image using the elftosb utility

To create a bootable image for a specific memory, users need to know the memory map of i.MX RT106x SoC. Details of generating
bootable image can be found in Chapter 4. Here are the steps to create an i.MX RT bootable image for FlexSPI NOR using elftosb
utility.

1. Create the BD file for boot image generation. The BD file content is showed below. It is also available in the release package
in “<install_dir> /Tools/bd_{file/imxrt10xx” folder

options {
flags = 0x00;
startAddress = 0x60000000;
ivtOffset = 0x1000;
initialLoadSize = 0x2000;

}

sources {
elfFile = extern(0);
}

section (0)

{
}

2. Create the i.MX RT bootable image using elftosb utility.

Here is the example command:

Figure 22. Example command to generate FlexSPI NOR boot image

* ivt_flexspi_nor_xip.bin
e ivt_flexspi_nor_xip_nopadding.bin

The ivt_flexspi_nor_xip_nopadding.bin will be used to generate SB file for QSPI FLASH programming in subsequent section.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
50 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

7.2.1.2.3 Create SB file for QSPI FLASH programming

Here is an example to create a SB file for QSPI FLASH programming for RT1060-EVK board. Details of generating SB file for
bootable image programming can be found in Chapter 5.

The source block assign file name to identifiers
sources {
myBinFile = extern (0);

}

constants {
kAbsAddr Start= 0x60000000;
kAbsAddr Ivt = 0x60001000;
kAbsAddr App = 0x60002000;

The section block specifies the sequence of boot commands to
be written to the SB file
section (0) f{

#1. Prepare Flash option
0xc0000007 is the tag for Serial NOR parameter selection
bit [31:28] Tag fixed to 0x0C
bit [27:24] Option size fixed to 0
bit [23:20] Flash type option
0 - QuadSPI SDR NOR
1 - QUadSPI DDR NOR
bit [19:16] Query pads (Pads used for query Flash Parameters)

0 -1
bit [15:12] CMD pads (Pads used for query Flash Parameters)
0 -1

bit [11: 08] Quad Mode Entry Setting
0 - Not Configured, apply to devices:
- With Quad Mode enabled by default or
- Compliant with JESD216A/B or later revision
- Set bit 6 in Status Register 1
- Set bit 1 in Status Register 2
- Set bit 7 in Status Register 2
- Set bit 1 in Status Register 2 by 0x31 command
bit [07: 04] Misc. control field
3 - Data Order swapped, used for Macronix OctaFLASH devcies only
(except MX25UM51345G)
4 - Second QSPI NOR Pinmux
bit [03: 00] Flash Frequency, device specific
load 0xc0000007 > 0x2000;
Configure QSPI NOR FLASH using option a address 0x2000
enable flexspinor 0x2000;

HHHFEHHFHHAHAFHFHFHFEHFEHEHEHHHFHFHFHFHF
W N R

#2 Erase flash as needed.

(Here only 64KBytes are erased, need to be adjusted to the actual
#size of users' application)

erase 0x60000000..0x60010000;

#3. Program config block

0xf000000f is the tag to notify Flashloader to program

FlexSPI NOR config block to the start of device

load 0xf000000f > 0x3000;

Notify Flashloader to response the option at address 0x3000
enable flexspinor 0x3000;

#4. Program image
load myBinFile > kAbsAddr Ivt;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 51

Appendix

After the BD file is ready, the next step is to generate the boot_image.sb file that is for MfgTool to use later. Here is the example
command:

Figure 23. Example command to generate SB f|Ie for FIexSPI NOR programmlng

ERAS | adr

FILL |
ENA |
LOAD |

After using the above command, the boot_image.sb is generated in elftosb utility folder.

7.2.2 Program Unsigned Image to Flash using MfgTool
Use the following steps to program a boot image into a flash device
1. Copy the boot_image.sb file to “<mfgtool_root_dir>/Profiles/MXRT106X/OS Firmware” folder

2. Change the “name” under “[List]” to selected option in cfg.ini file in <mfgtool_root_dir> folder, for example, “name =
MXRT106x-DevBootSerialFlashXiP"

Put the RT1060-EVK board to Serial Downloader mode by setting SW7 to “1-OFF, 2-OFF, 3-OFF, 4-ON”
Power up RT1060-EVK board and insert USB cable to J9

Open MfgTool, it will show as the detected device like the one shown in Figure 34.

o o~

Click “Start; MfgTool will do manufacturing process. After completion, it will show the status as success as shown in
Figure 35. Click “Stop” and close the MfgTool.

7. Put the RT1060-EVK board to internal boot mode and select QSPI FLASH as boot device by setting SW7 to “1-OFF, 2-
OFF,3-ON, 4-OFF” Then reset the device to start running the application

7.2.3 Manufacturing process in Production phase

In production phase, the image requires to be signed and even encrypted. In this case, the device must be configured to HAB
closed mode.

” o«

Assuming the PKI tree is ready for cst use, copy “ca;
utility executable, as shown below

crts} and “keys” folder and cst executable to the folder that holds elftosb

ca 10/4/2017 10:18 A.. File folder

crts 10/4/2017 10:18 A... File folder

keys 10/4/2017 10:19 A.. File folder
B cstexe 10/6/2017 3:16 AM Application

= O

® | elftosb.exe 10

Application

Figure 24. Copy required key and certs for signed image generation

7.2.3.1 Generate signed i.MX RT bootable image

To generate a bootable image for a specific memory, users need to know the memory map of i.MX RT device SoC. Details of
generating bootable image can be found in Chapter 4. Here are the steps to generate signed i.MX RT bootable image using elftosb
utility.

1. Generate the BD file for boot image generation. The BD file content is showed in figure below. It is also available in the
release package in “” folder.
options {
flags = 0x08;
startAddress = 0x60000000;

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
52 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

ivtOffset = 0x1000;

initialLoadSize = 0x2000;

//DCDFilePath = "dcd.bin";

Note: This is required if the cst and elftsb are not in the same folder
//cstFolderPath = "path/CSTFolder";

Note: This is required if the default entrypoint is not the Reset Handler
Please set the entryPointAddress to base address of Vector table
//entryPointAddress = 0x60002000;

}

sources {
elfFile = extern(0);

constants {
SEC_CSF_HEADER = 20;
SEC_CSF_INSTALL SRK = 21;
SEC_CSF_INSTALL CSFK = 22;
SEC_CSF_INSTALL NOCAK = 23;
SEC_CSF_AUTHENTICATE CSF = 24;
SEC_CSF_INSTALL KEY = 25;
SEC_CSF_AUTHENTICATE DATA = 26;
SEC_CSF_INSTALL SECRET KEY = 27;
SEC_CSF_DECRYPT DATA = 28;
SEC_NOP = 29;
SEC_SET MID = 30;
SEC_SET ENGINE = 31;
SEC_INIT = 32;
SEC_UNLOCK = 33;

}

section (SEC_CSF_HEADER;
Header Version="4.2",
Header HashAlgorithm="sha256",
Header Engine="DCP",
Header EngineConfiguration=0,
Header CertificateFormat="x509",
Header SignatureFormat="CMS")

{
}

section (SEC_CSF_INSTALL_SRK;
InstallSRK Table="keys/SRK 1 2 3 4 table.bin", // "valid file path"
InstallSRK SourcelIndex=0)

{

}

section (SEC_CSF_INSTALL_CSFK;
InstallCSFK File="crts/CSF1l_ 1 sha256 2048 65537 _v3 usr_crt.pem", // "valid file path"
InstallCSFK CertificateFormat="x509") // "x509"

{
}

section (SEC CSF_AUTHENTICATE CSF)

{
}

section (SEC_CSF_INSTALL KEY;
InstallKey File="crts/IMG1l_1_sha256_2048_65537_v3_usr_crt.pem",
InstallKey VerificationIndex=0, // Accepts integer or string
InstallKey TargetIndex=2) // Accepts integer or string

{

}

section (SEC CSF_AUTHENTICATE DATA;
AuthenticateData VerificationIndex=2,
AuthenticateData_Engine="DCP",
AuthenticateData EngineConfiguration=0)

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 53

Appendix

}
section (SEC_SET_ENGINE;
SetEngine HashAlgorithm = "sha256", // "shal", "Sha256", "sha512"
SetEngine Engine = "DCP", // "ANY", "SAHARA", "RTIC", "DCP", "CAAM" and "SW"
SetEngine EngineConfiguration = "0") // "valid engine configuration values"
%
section (SEC UNLOCK;
Unlock Engine = "SNVS, OCOTP", // "SRTC", "CAAM", SNVS and OCOTP
Unlock features = "ZMK WRITE, SRK REVOKE")
{
}

2. Generate the i.MX RT bootable image using elftosb utility file.
Here is the example command:

elftosb -f imx -V -c¢ imx-flexspinor-normal-signed.bd -o ivt_flexspi_nor_xip_signed.bin led_demo_evk_flexspi_nor_6x66662666.srec
Section: ex14
Section: ex15
Section: @x16
Section: ©€x18
Section: ©ex19

Section: exla

Section: exif

Section: ex21
SF Processed successfully and signed data available in csf.bin
iMX bootable image generated successfully

Figure 25. Example command to generate signed boot image

After above command, two bootable images are generated:
e ivt_flexspi_nor_xip_signed.bin
* ivt_flexspi_nor_xip_signed_nopadding.bin

The ivt_flexspi_nor_xip_signed_nopadding.bin will be used to generate SB file for HyperFlash programming in subsequent
section.

7.2.3.2 Create SB file for Fuse programming

must be programmed to fuses to enable secure boot mode.

Below is an example file

00000000 S5E 79 CD 63 02 81 F3 8F 77 8E A7 22 Fc2f~yic..s6.wis"
00000010 82 9C 01 01 99 Cé 32 FC A3 27 C3 F2 4E 21 C9% DA ,ce..™E:0f'ASN!ET

Below is an example BD file which shows the procedure to program fuses. The fuse field is a 32-bit long word data. It will be
programmed into fuses by Flashloader in little-endian mode.

The source block assign file name to identifiers
sources {

}

constants {

}

The section block specifies the sequence of boot commands to be written to the SB file
Note: this is just a template, please update it to actual values in users' project
section (0) {

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
54 NXP Semiconductors

Example of manufacturing flow for RT1060-EVK

Program SRK table

load fuse 0xD132E7F1 > 0x18;
load fuse 0x63CD795E > 0x19;
load fuse 0x8FF38102 > O0x1A;
load fuse 0x22A78E77 > 0x1B;
load fuse 0x01019c82 > 0x1C;
load fuse O0xFC3AC699 > 0x1D;
load fuse 0xF2C327A3 > O0X1E;
load fuse O0xXDAC9214E > O0x1F;
Program SEC_CONFIG to enable HAB closed mode
load fuse 0x00000002 > 0x06;

}

The last command in above BD file is used to enable HAB closed mode by setting SEC_CONFIG [1] bit in the fuse to 1.

After BD file is ready, the next step is to create SB file for Fuse programming to enable HAB closed mode.

An example command is shown below:
elftosb -f kinetis -V -c enable_hab.bd -o enable_hab.sb
Boot Section ©x80000000:

PROG
PROG
PROG
PROG
PROG
PROG
PROG
PROG
PROG

idx=0x00000018
idx=0x00000019
idx=0x0000001a
idx=6xeeeeeelb
idx=0xe000001c
idx=6xe0e0001d
idx=0xeeeee0le
idx=6xeeeeeelf
idx=0x00000006

wd1=0xd132e7f1
wd1=0x63cd795e
wd1l=ex8ff38102
wd1=0x22a78e77
wd1=0x810819c82
wd1=0xfc3ac699
wd1l=0xf2c327a3
wd1=6xdac9214e
wd1=0x20000002

wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000
wd2=0x00000000

flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400
flg=06x0400

Figure 27. Example command to generate SB file for Fuse programming

After the command “enable_hab.bd -0 enable_hab.sb” in Figure above is executed, a file named “enable_hab.sb” gets generated.
It is required in MfgTool for SecureBoot solution.

7.2.3.3 Create SB file for Image encryption and programming for QSPI
Flash

Following chapter 5, here is an example to generate the SB file for image encryption and programming on QSPIFlash for RT1060-
EVK board.

Refer to the BD file in section 5.1.3.

After the BD file is ready, the next step is to generate the SB file. Refer below for an example command.

elftosb -f kinetis -V -c program_flexspinor_image gspinor_encrypt.bd -o boot_image.sb ivt_flexspi_nor_xip_signed_nopadding.bin
Boot Section ©x00000000:

FILL
ENA

ERAS
FILL
FILL
FILL
FILL
FILL
ENA

FILL
ENA

LOAD
PROG

adr=0x00002600
adr=6xe0e02608
adr=ex60e00688
adr=0x00084600
adr=0x000e4804
adr=0x00084808
adr=0x0000468c
adr=6exeeee4618
adr=exeeee46e8e
adr=0x00003600
adr=0x00003800
adr=0x60001600
idx=ex000000806

len=0x00000004
cnt=0x00800004
cnt=0x00010000
len=@xe0000004
len=0x00000004
len=0x00000004
len=0x00000004
len=0x00800004
cnt=0x00800004
len=@xe0e00004
cnt=0x000e0004
len=0x00004000
wd1=0x60002600

ptn=8xceegeea?7
flg=6x6900
flg=6x6000
ptn=0xe@l20000
ptn=exc@ealeee
ptn=2xeoealeee
ptn=0x66002660
ptn=0x6060e000
flg=6x6900
ptn=@xfoeeeeef
flg=0x0900

crc=exfe2e5f56 | flg=exeeee
wd2=exeeeeeeee | flg-exesee

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

Figure 28. Example command to generate SB file for FlexSPI NOR image encryption and programming

NXP Semiconductors

Appendix

After the command “program_flexspinor_image_gspinor_encrypt.bd -o boot_image.sb
ivt_flexspi_nor_xip_signed_nopadding.bin” in Figure above , a file named “boot_image.sb” is generated in the folder that contains
elftosb utility executable.

7.2.3.4 Create signed Flashloader image
The BD file for signed Flashloader image generation is similar as the one in section Generate signed i.MX bootable image
The only difference is that the startAddress is 0x20000000 and IVTOffset is 0x400.

After the BD file is ready, the next step is to generate i.MX boot image using elftosb utility. The example command is as below:

elftosb -f imx -V -c¢ imx-dtem-signed.bd -o ivt_flashloader_signed.bin flashloader.srec
Section: Ox14
Section: ©x15
Section: Ox16
Section: Ox18
Section: ©x19

Section: @xla

Section: exif

Section: ex21
CSF Processed successfully and signhed data available in c¢sf.bin
iMX bootable image generated successfully

Figure 29. Example command for Signed Flashloader image generation

After the command “imx-dtcm-signed.bd -o ivt_flashloader_signed.bin flashloader.srec” in Figure above , two bootable images
are generated:

¢ ivt_flashloader_signed.bin
¢ ivt_flashloader_signed_nopadding.bin

The first one is required by MfgTool for Secure Boot.

7.2.3.5 Program Signed Image to Flash using MfgTool
Here are the steps to program boot image into Flash device

1. Copy the boot_image.sb file, ivt_flashloader_signed.bin and enable_hab.sb to “<mfgtool_root_dir>/Profiles/
MXRT106X/OS Firmware” folder

Change the “name” under “[List]” to “MXRT106x-SecureBoot” in cfg.ini file in <mfgtool_root_dir> folder
Put the RT1060-EVK board to Serial Downloader mode by setting SW7 to “1-OFF, 2-OFF, 3-OFF, 4-ON”
Power up RT1060-EVK board, and insert USB cable to J9

Open MfgTool, it will show the detected device.

S

Click “Start; MfgTool will do manufacturing process and after completion, it will show the status as success. Click “Stop”
and close the MfgTool

7. Put the RT1060-EVK board to internal boot mode and select QSPI FLASH as boot device by setting SW7 to “1-OFF, 2-
OFF,3-ON, 4-OFF” Reset the device. The LED above the ethernet interface starts blinking which indicates that the
image is running.

7.3 Generate KeyBlob manually

Users may need to generate the Keyblob manually in some cases. Flashloader supports such usage with blhost.

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
56 NXP Semiconductors

Generate KeyBlob manually

The KeyBlob must be generated when the device works under HAB closed mode with signed Flashloader application.

Assuming the dek.bin is ready (generated by elftosb utility during encrypted image generation). Here is an example command to

-- generate-key-blob dek.hin keyblob.bin

to the target.
generate-key-blob’

SUCCess.

Figure 30. Generate KeyBlob using Flashloader

After the command, “blhost.exe -u —generate-key-blob dek.bin keyblob.bin” in Figure is executed, a “keyblob.bin” file gets
generated.

gooo0000 81 00 38 43 66 55 10 00 A6 7D &3 D7 ES 2¢ TF B0
goooo0010 66 94 3D 90 80 3A R4 66 BE AD CS 53 1C 40 2E 5F
00000020 OF A6 ©RA D> E3 F2 97 BB R4 ET7 ©7 eF 8E 74 6l &5
gooooo30 78 S0 E1 33 B1 03 EF E2 00 00 00 00 0O 00 OO 0O
gooocdo40 00 00 OO OO OO 0O 00 OO

Figure 31. Example KeyBlob

With the encrypted image generated by elftosb utility and keyblob.bin generated by flashloader, it is also feasible to combine the
encrypted image and keyblob.bin. Then create a complete encrypted boot image with a Hex Editor. In this example, the KeyBlob
offset is 0x18000 in the boot image.

Figure is an example piece of encrypted image combined by Hex Editor.

goo17FDO 00 OO OO OO OO OO OO OO OO OO OO OO0 00 00 00 00
00017FEO 00 OO0 OO OO OO OO OO 0O 0O OO OO 00 00 00 00 00
0o017FFO 00 OO0 OO OO OO OO OO OO OO OO OO OO0 00 00 00 00
00018000 81 00 38 43 66 55 10 00 RAe 7D €3 D7 ES 2¢ TF B0
00018010 €6 54 3D S0 80 3A R4 &6 BE RD CS 53 1C 40 ZE 5SF
00018020 OF R6 6A D5 E3 F2 97 BE R4 E7 &7 €F BE 74 &1 &5
00018030 78 S0 E1 33 B1 03 EF EZ 00 00 00 00 00 00 00 0O
goolso040 00 00 OO0 OO OO0 OO0 00 0O

Figure 32. Create complete encrypted image using Hex editor

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018
NXP Semiconductors 57

Revision history

Chapter 8

Revision history

Table 19 summarizes the changes done to this document since the initial release.

Table 19. Revision history

Revision number Date Substantial changes
0 10/2017 Initial release
1 05/2018 MCU Bootloader v2.5.0 release
2 08/2018 RT1060 updates

i.MX MCU Manufacturing User's Guide, Rev.2, 08/2018

58

NXP Semiconductors

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil,
SecurCore, Thumb, TrustZone, and pVision are registered trademarks of Arm Limited (or its
subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight,
DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and
Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© 2018 NXP B.V.

h
P

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	i.MX RT1060 Manufacturing User's Guide
	Contents
	1 Introduction
	2 Overview
	2.1 i.MX RT Boot ROM
	2.2 MCUBOOT-based Flashloader
	2.3 Host utilities
	2.4 Terminology

	3 i.MX RT bootable image
	3.1 Bootable image layout in target flash device
	3.2 Boot image format
	3.2.1 IVT and boot data
	3.2.2 Boot data structure

	3.3 Signed image
	3.4 Encrypted image

	4 Generate i.MX RT bootable image
	4.1 Description of the elftosb utility
	4.1.1 The elftosb utility options
	4.1.2 BD file
	4.1.3 BD file for i.MX RT bootable image generation
	4.1.3.1 Options block
	4.1.3.2 Sources block
	4.1.3.3 Constants block
	4.1.3.4 Section blocks

	4.1.4 BD file for memory programming

	4.2 Generate unsigned normal i.MX RT bootable image
	4.3 Generate signed normal i.MX RT bootable image
	4.4 Generate encrypted normal i.MX RT bootable image
	4.5 Generate Plugin boot image

	5 Generate SB file for bootable image programming
	5.1 Generate SB file for FlexSPI NOR image programming
	5.1.1 Generate Normal Bootable Image
	5.1.2 Generate SB file for plaintext FlexSPI NOR image programming
	5.1.3 Generate SB file for FlexSPI NOR Image encryption and programming

	5.2 Generate SB file for FlexSPI NAND image programming
	5.2.1 Generate SB file for FlexSPI NAND image programming
	5.2.2 Generate SB file for encrypted FlexSPI NAND Image and KeyBlob programming

	5.3 Generate SB file for SD image programming
	5.3.1 Steps to Generate SB file for SD image programming

	5.4 Generate SB file for eMMC image programming
	5.4.1 Normal mode
	5.4.2 Fast Mode

	5.5 Generate SB file for Serial NOR/EEPROM image programming
	5.6 Generate SB file for SEMC NOR image programming
	5.7 Generate SB file for SEMC NAND image programming
	5.8 Generate SB file for fuse program

	6 Program bootable image
	6.1 MfgTool
	6.1.1 MfgTool Directory structure
	6.1.2 Preparation before image programming using MfgTool

	6.2 Connect to the i.MX RT Platform
	6.3 Program bootable image during development
	6.4 Program bootable image for production

	7 Appendix
	7.1 Plugin boot application
	7.1.1 Principles for Plugin boot application design
	7.1.2 Boot Flow of Plugin boot application
	7.1.3 Example Plugin boot application to enable non-XIP boot on FlexSPI NOR
	7.1.4 Images loaded by plugin boot application

	7.2 Example of manufacturing flow for RT1060-EVK
	7.2.1 Manufacturing process in Development phase
	7.2.1.1 Templates options for the Manufacturing flow
	7.2.1.2 Create i.MX RT bootable image
	7.2.1.2.1 Create image using KSDK XIP example
	7.2.1.2.2 Create image using the elftosb utility
	7.2.1.2.3 Create SB file for QSPI FLASH programming

	7.2.2 Program Unsigned Image to Flash using MfgTool
	7.2.3 Manufacturing process in Production phase
	7.2.3.1 Generate signed i.MX RT bootable image
	7.2.3.2 Create SB file for Fuse programming
	7.2.3.3 Create SB file for Image encryption and programming for QSPI Flash
	7.2.3.4 Create signed Flashloader image
	7.2.3.5 Program Signed Image to Flash using MfgTool

	7.3 Generate KeyBlob manually

	8 Revision history

