
1 Introduction
This document describes how the Secure JTAG on the i.MX RT10xx MCU
family can be used.

The i.MX RT series System JTAG Controller (SJC) provides a possibility to
regulate the JTAG access. The three JTAG security modes are available in the
i.MX RT series:

• No Debug mode—Maximum security is provided in this mode. All
security-sensitive JTAG features are permanently blocked, preventing
any debug.

• Secure JTAG mode—High security is provided in this mode. Secret key-
based challenge/response authentication mechanism is used for JTAG
access

• JTAG Enabled mode—Low security is provided in this mode. It is the
default mode of operation for the SJC.

Moreover, you can also fully disable the SJC functionality. For configuration of
these JTAG modes, One Time Programmable (OTP) eFuses are used and
burned after packaging. The fuse burning process is irreversible. It is impossible
to revert the fuse back to the unburned state. To explain, Secure JTAG mode
is used in this document. The aim is to allow return/field testing. Authorized
reactivation of the JTAG port is allowed in this mode. On the HW side, JTAG
signals must be routed out and accessible in the application.

2 i.MX RT10xx Secure JTAG support

JTAG access is limited in the Secure JTAG mode by using a challenge/response-based authentication. Any access to JTAG port
is internally checked. Only the devices authorized for debugging (with the right response) can access the JTAG port, otherwise
JTAG access is denied. The external debugger tools (such as SEGGER J-Link, Lauterbach Trace32, Arm RVDS/DS5, etc.)
supporting the challenge/response-based authentication mechanism can be used. The secure JTAG mode is typically enabled
in the factory manufacturing and not used during the development.

2.1 How to put the chip in Secure JTAG mode
The Secure JTAG feature is only available in the SJC mode, and can be selected by JTAG_MOD input pin (GPIO_AD_B0_08).
To enable the SJC mode, the pin must be connected to log.1, which means that the Secure JTAG is unavailable in the CM7 DAP
mode.

Contents

1 Introduction..1

2 i.MX RT10xx Secure JTAG support....1
2.1 How to put the chip in

Secure JTAG mode................. 1
2.2 i.MX RT SJC Security

Modes..................................... 2
2.3 SJC disable fuse.....................5

3 Secret response key approaches.......5
3.1 Programming Secure

JTAG eFuses using the
NXP tool.................................. 6

4 Debugging with the Secure JTAG
enabled...8

4.1 Steps to connect J-Link
debugger via Secure JTAG......8

4.2 Example of SEGGER J-
link Secure JTAG unlock
script...................................... 11

5 Conclusion..11

6 References..11

7 Revision history................................. 12

AN12419
Secure JTAG for i.MXRT10xx
Rev. 0 — 15 April 2019 Application Note

Table 1. JTAG_MOD pin settings

Signal Description Pad Mode Direction

JTAG_MOD SJC mode selection. This pin is
sampled at TRST reset to
determine two possible modes for
the TAP connection configuration.

GPIO_AD_B0_08 ALT0 IO

Figure 1. JTAG_MODE pin configuration

2.2 i.MX RT SJC Security Modes

The i.MX RT10xx System JTAG Controller (SJC) supports three different security modes. JTAG enabled is the default mode of
operation for SJC. The user can select the Secure JTAG mode by programing a value 0x1 to the eFuse labeled JTAG_SMODE,
described in Table 2. eFuses associated with the Secure JTAG feature on page 3. The eFuse has the default value 0x0, which
means that the JTAG controller is unsecured by default. Further details on eFuses are available in the Fusemap and On-Chip
OTP Controller (OCOTP_CTRL) chapters in the appropriate SRM_RT10xx Security Reference Manual for the i.MX RT1050
available at www.nxp.com upon a request.

To lock and prevent further modification to the JTAG_SMODE eFuse, the user should program the BOOT_CFG_LOCK eFuses
in addition to programming the JTAG_SMODE eFuse.

Programming these fuses disables access to functions and JTAG Security Mode fuse bits. Users should ensure

that it is programmed last, once the final fuse configuration has been decided. At a minimum, setting the fuse to

Override Protect (OP) mode is recommended.

 NOTE

NXP Semiconductors

i.MX RT10xx Secure JTAG support

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 2 / 13

https://www.nxp.com/docs/en/reference-manual/IMXRT1050SRM.pdf
http://www.nxp.com

Table 2. eFuses associated with the Secure JTAG feature

Addr[bits] Fuse Name Fuse Function Settings Locked By

0x460[26] KTE Kill Trace Enable.

Enables tracing

capability on ETM, and

other modules

0 - Bus tracing is allowed

1 - Bus tracing is allowed in case
security state as defined by Secure
JTAG allows it (for example,
JTAG_ENABLE or

NO_DEBUG)

BOOT_CFG_L
OCK

0x460[23:22] JTAG_SMOD
E[1:0]

JTAG Security Mode. Controls

the security mode of the JTAG

debug interface

00 - JTAG enable mode (Default)

01 - Secure JTAG mode

11 - No debug mode

BOOT_CFG_L
OCK

0x460[20] SJC_DISABLE Additional JTAG mode with

the highest level of JTAG

protection, thereby overriding

the JTAG_SMODE eFuses. In

this mode all JTAG features

are disabled including Secure

JTAG and Boundary Scan

0 - JTAG is enabled

1 - JTAG is disabled

BOOT_CFG_L
OCK

0x460[19] DAP_SJC_SW
D_SEL

Control DAP works in

JTAG or SWD mode

0 - DAP works in SWD mode

1 - DAP works in JTAG mode

BOOT_CFG_L
OCK

0x400[3:2] BOOT_CFG_L
OCK[1:0]

Perform lock protection on

BOOT-related fuses. This fuse

locks numerous functions

including JTAG_SMODE

00 - Unlock

1x - Override Protect (OP)

x1 - Write Protect (WP)

11 - Both OP and WP

N/A

0x400[6] SJC_RESP_LO
CK

SJC response lock 0 - Unlock

1 - Lock (WP,OP,RP, sense)

0x600 SJC_RESP[55:
0]

Response reference

value for the secure

JTAG controller

SJC_RESP_LO
CK

(locks also for
read and

explicit sense)

NXP Semiconductors

i.MX RT10xx Secure JTAG support

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 3 / 13

The level of security cannot be reduced but only increased. Since debug modes are controlled by OTP (Hardware

fuses), bits can only be blown once.

For example, following mode changes are possible:

− “JTAG Enabled” to “Secure JTAG”

− “Secure JTAG” to “No debug”

 NOTE

2.2.1 Secure JTAG eFuses

The challenge/response mechanism used to authenticate the JTAG accesses uses a challenge value and the associated secret
response key. The keys are stored in eFuses inside the IC. The i.MX RT1050 series eFuses used to store the challenge value
and the secret response key are listed below:

• The challenge value is the “Device Unique ID” which is programmed into the eFuses. This Device ID is unique for each IC
and can be read from the OCOTP registers HW_ OCOTP_CFG0 and HW_ OCOTP_CFG1. The eFuses are programmed
during manufacturing.

• The user program the secret response key (56 bits) into the eFuses marked SJC_RESP.

• KTE fuse need to be programmed to have JTAG secure mode work. Each POR only allows one-time response code input.
If the response code is incorrect, the chip must have a POR reset before user can try another response code. POR clears
sensitive data except SNVS domain.

After programming the secret response key, the user must disable the ability of software running on the Arm core to read or
overwrite the response key. This is done by programming a 0x1 to the associated lock eFuse HW_OCOTP_LOCK_SJC_RESP.

The definition of the response value is left to the user. The Arm core cannot read the value once the response fuse field is
provisioned and locked.

2.2.2 Secure JTAG debug authentication protocol

When the SJC is in Secure Debug mode, the authentication process is as follows:

1. JTAG shifts the challenge key through the Test Data Output (TDO) chain.

2. On the host side, the debug tool takes the challenge key as an input and generates the expected response key.

3. The associated response key is shifted back through the Test Data Input (TDI) chain.

4. The SJC compares the expected internal fused response key with the one shifted in and enables the JTAG access only
if it matches.

Any device reset after JTAG access authorization shifts the JTAG controller back to its locked state.

 NOTE

Figure 2. on page 5 shows how the challenge/response mechanism works with the JTAG tools.

NXP Semiconductors

i.MX RT10xx Secure JTAG support

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 4 / 13

Figure 2. Secure JTAG operation

The JTAG debug tool passes the retrieved challenge key to the user’s application and gets the associated response key in return.
The management of the challenge/response pairs is user-dependent and not handled by NXP or the debug tool vendors. Key
management is discussed further in Secret response key approaches on page 5.

2.3 SJC disable fuse

In addition to the various JTAG security modes implemented internally in the SJC, there is an option to disable the SJC functionality
with the SJC_DISABLE eFuse. This eFuse creates an additional JTAG mode, JTAG Disabled with the highest level of JTAG
protection, overriding the JTAG_SMODE eFuses. In this mode all JTAG features are disabled, including Secure JTAG and
Boundary Scan; users must ensure that this fuse is not blown if they wish to use the Secure JTAG functionality.

3 Secret response key approaches

For every challenge value (“Device Unique ID” in i.MX RT10xx) that is retrieved with a JTAG instruction, there is an associated
secret response key known only by the user. The JTAG tool vendor only handles the JTAG mechanism used by this authentication

NXP Semiconductors

Secret response key approaches

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 5 / 13

process, and does not know the secret response key value programmed into the eFuses. It is left to the user to determine the
level of protection that is put in place.

The following are policies for secret response key management by the user application.

1. Identical Response Keys —The same response key is used for each chip. The user can choose a response key that is
fused in all chips. This is the simplest, but least sophisticated usage from a security point of view. If an unauthorized
user gains access to the fused response key, all the products fused with this response key can be accessed through the
JTAG port.

2. Database of Unique Response Keys—The user maintains a database of all generated response keys. The user
application can look up the table based on the challenge value. It is possible to implement a secure server holding the
challenge/response pairs authenticating the user but this requires an independent implementation effort. The challenge
values for all ICs must be read and a database of matching challenge response pairs must be built. Storing and
managing numerous response keys is not trivial, but advantageous from a security standpoint, as it does not rely on any
breakable algorithms.

3. Algorithmically Generated Response Keys—Response keys are generated based on an algorithm. With this method,
there is no large database to manage. For instance, the challenge value can be used by the algorithm to generate a
response key. This response key is programmed into SJC_RESP eFuses. Then, every time the challenge value is
retrieved through JTAG, it can be processed by the user application and used to generate the expected response key for
the JTAG debug tools. Once the algorithm is exposed or reverse engineered, this method is no longer secure.

NXP does not provide secure response key management or key generation services; these topics are not within

the scope of this document.

 NOTE

3.1 Programming Secure JTAG eFuses using the NXP tool
To program the relevant eFuses needed for Secure JTAG on the chip, the user should first follow the steps below. Information on
the On-Chip OTP Controller (OCOTP_CTRL) and the Fusemap can be found in the appropriate i.MX RT10xx series reference
manual available at www.nxp.com. The NXP MCU Boot Utility is used in the following steps to program eFuses.

1. Download the latest NXP MCU Boot Utility from:http://www.nxp.com

2. The user should program the values below to the eFuses needed for secure JTAG:

• Read and back-up the 64-bit “Challenge” value stored in the eFuse UUID[1,0], location (0x420, 0x410). See Figure
3. on page 7.

• Program a 56-bit (7 Bytes) secret response key in the eFuse SJC_RESP, location (0x610, 0x600). In the example
below, value “0xedcba987654321” is programmed.

In Figure 3. on page 7 , MSB is stored on the higher address, while the most-left byte is 0x00 and it is ignored.

The user should define their own response key and keep the key backup for further usage.

 NOTE

• Program 0x1 in the eFuse DAP_SJC_SWD_SEL to switch the DAP to the JTAG mode.

• Program 0x1 in the eFuse JTAG_SMODE to switch the SJC to Secure JTAG mode.

• Program 0x1 in the eFuse KTE_FUSE

• Finally, the user must program 0x1 in the eFuse SJC_RESP _LOCK to disable read/write access of the secret
response key. After this operation, the secret response field “SJC_RESP” becomes “invisible” in the fuse map. See
Figure 3. on page 7 and Figure 4. on page 8 .

NXP Semiconductors

Secret response key approaches

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 6 / 13

http://www.nxp.com

Following figures demonstrate how to use the NXP MCU Boot Utility to program the above eFuses. The eFuse operation utility is
a part of the tool, which can read and write the eFuse map registers. Be careful when doing writing (Burn) operations, as it is
irreversible and may lock some features or the device completely.

To have the Secure JTAG enabled, follow the steps mentioned above in Programming Secure JTAG eFuses using the NXP tool
on page 6 and refer to Table 2. eFuses associated with the Secure JTAG feature on page 3, Figure 3. on page 7 and Figure
4. on page 8 for more details about the appropriate eFuse bits.

The example does not program the BOOT_CFG_LOCK[1:0] and eFuses to prevent further modifications of the JTAG_SMODE
eFuse. As programming these lock eFuses, disables the access to functions in addition to the JTAG mode bits. Hence, it should
be performed once the final configuration has been decided.

Figure 3. eFuse Operation Utility - Secure Response key configuration

NXP Semiconductors

Secret response key approaches

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 7 / 13

Figure 4. eFuse Operation Utility – Secure Response key lock

4 Debugging with the Secure JTAG enabled

To use the Secure JTAG feature, the JTAG debugger must support it. The example provided in this section uses the SEGGER J-
Link debug tool.

Although the procedures outlined in the example below use an i.MX RT1052 device on IMXRT1050-EVKB board. They can be
applied to other RT10xx devices too. The following steps assume that users have experience working with the debug tools and
the NXP MCU Boot Utility.

4.1 Steps to connect J-Link debugger via Secure JTAG

The following steps connect the SEGGER J-Link debug tool to the i.MX RT10xx when using Secure JTAG:

1. Download the SEGGER J-Link Software and documentation pack:

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

If you wish to navigate to these scripts from SEGGER main page for reference, they are located under “Downloads” - “J-
Link / J-Trace” - “J-Link Software and Documentation Pack”.

2. Download and edit the file J-Link script file named “NXP_RT1052_SecureJTAG.JlinkScript”. The script file can be
received from NXP upon request. In this file, add the secret response key which was programmed into the SJC_RESP
eFuse. In the following example, the secret response key is “0xedcba987654321”, and matches the response key
programmed in the eFuses in Programming Secure JTAG eFuses using the NXP tool on page 6 .

NXP Semiconductors

Debugging with the Secure JTAG enabled

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 8 / 13

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack

// Secure response stored @ 0x600, 0x610 in eFUSE region (OTP memory)

Key0 = 0x87654321;

Key1 = 0xedcba9;

3. Power-up or reset the board with the JTAG_MODE pin (GPIO_AD_B0_08) in log.1. The user must do it manually, since
we do not have the signal connected to the debug connector on EVB.

4. Locate the SEGGER SW J-Link installation directory.

5. Run the “jlink.exe” with the mentioned script file as a parameter.

For instance:

jlink.exe -JLinkScriptFile NXP_RT1052_SecureJTAG.JlinkScript -device MCIMXRT1052 -if JTAG -speed 4000 -
autoconnect 1 -JTAGConf -1, -1

The external IDE tool can call “JLinkGDBServer.exe” application with the same script file to unsecure the target.

 NOTE

The tool script should read the Challenge value from eFUSE UUID[1,0] location. And it provides the appropriate Response
from for SJC for authentication match.

The JTAG_MODE pin must be switched to log.0, see Figure 1. on page 2 and Figure 6. on page 10 for details. The user
should do it manually by changing the pin polarity on board. If the pin is routed to the JTAG connector and the tool supports
the control of this signal, the tool can do it automatically,

Figure 5. Running SEGGER J-Link script on the secured i.MX RT device

The debug tool should successfully attach to the i.MX RT10xx target over JTAG. The screen capture in Figure 7. on page
10 shows a successful attach over Secure JTAG:

NXP Semiconductors

Debugging with the Secure JTAG enabled

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 9 / 13

Figure 6. SEGGER J-Link script reads Challenge ID

Figure 7. SEGGER J-Link successfully connected to Secured JTA

Users can now perform normal JTAG debugger operations, as the device has been authenticated using the Challenge-
Response mechanism.

Any reset after JTAG access authorization shifts the JTAG controller back to its lock state, requiring that this

authentication process is repeated.

 NOTE

NXP Semiconductors

Debugging with the Secure JTAG enabled

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 10 / 13

6. To ensure, that i.MX RT series SJC is operating in secure mode, edit the “NXP_RT1052_SecureJTAG.JlinkScript” file,
provide an incorrect response key, and rerun the script. The debug tool should fail to attach to the i.MX RT10xx series
target over JTAG.

4.2 Example of SEGGER J-link Secure JTAG unlock script

int InitTarget(void) {
 int v;
 int Key0;
 int Key1;

 JLINK_SYS_MessageBox("Set pin JTAG_MOD => 1 and press any key to continue...");

 // Secure response stored @ 0x600, 0x610 in eFUSE region (OTP memory)
 Key0 = 0x87654321;
 Key1 = 0xedcba9;

 JLINK_CORESIGHT_Configure("IRPre=0;DRPre=0;IRPost=0;DRPost=0;IRLenDevice=5");
 CPU = CORTEX_M7;
 JLINK_SYS_Sleep(100);
 JLINK_JTAG_WriteIR(0xC); // Output Challenge instruction

 // Readback Challenge, Shift 64 dummy bits on TDI
 JLINK_JTAG_StartDR();
 JLINK_SYS_Report("Reading Challenge ID....");

 // 32-bit dummy write on TDI / read 32 bits on TDO
 JLINK_JTAG_WriteDRCont(0xffffffff, 32);
 v = JLINK_JTAG_GetU32(0);
 JLINK_SYS_Report1("Challenge UUID0:", v);

 JLINK_JTAG_WriteDREnd(0xffffffff, 32);
 v = JLINK_JTAG_GetU32(0);
 JLINK_SYS_Report1("Challenge UUID1:", v);

 JLINK_JTAG_WriteIR(0xD); // Output Response instruction

 JLINK_JTAG_StartDR();
 JLINK_JTAG_WriteDRCont(Key0, 32);
 JLINK_JTAG_WriteDREnd(Key1, 24);

 JLINK_SYS_MessageBox("Change pin JTAG_MOD => 0, press any key to continue...");

 return 0;
}

5 Conclusion

This application note describes the eFuse configuration for Secure JTAG and the authentication process, which is validated and
demonstrated using the SEGGER J-Link script. Support and examples for the other Debugging tools like Lauterbach Trace32
and Arm DS5 will be included in later versions.

6 References

NXP Semiconductors

Conclusion

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 11 / 13

1. Configuring Secure JTAG for the i.MX 6 Series Family of Application Processors (AN4686)

2. Security reference Manual for the i.MX RT1050 Processor (IMXRT1050SRM), available upon a request from:
www.nxp.com

3. J-Link / J-Trace User Guide https://www.segger.com/downloads/jlink/UM08001>

4. Training JTAG Interface, Lauterbach TRACE32 http://www2.lauterbach.com/pdf/training_jtag.pdf

7 Revision history

Table 3. Revision history

Rev. number Date Substantive change(s)

Rev. 0 04/2019 Initial release with J-Link script example

NXP Semiconductors

Revision history

Secure JTAG for i.MXRT10xx, Rev. 0, 15 April 2019
Application Note 12 / 13

https://www.nxp.com/docs/en/application-note/AN4686.pdf
http://www.nxp.com
https://www.segger.com/downloads/jlink/UM08001
http://www2.lauterbach.com/pdf/training_jtag.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 April 2019

Document identifier: AN12419

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Secure JTAG for i.MXRT10xx
	Contents
	1 Introduction
	2 i.MX RT10xx Secure JTAG support
	2.1 How to put the chip in Secure JTAG mode
	2.2 i.MX RT SJC Security Modes
	2.2.1 Secure JTAG eFuses
	2.2.2 Secure JTAG debug authentication protocol

	2.3 SJC disable fuse

	3 Secret response key approaches
	3.1 Programming Secure JTAG eFuses using the NXP tool

	4 Debugging with the Secure JTAG enabled
	4.1 Steps to connect J-Link debugger via Secure JTAG
	4.2 Example of SEGGER J-link Secure JTAG unlock script

	5 Conclusion
	6 References
	7 Revision history

