
PUBLIC

Android HW-assisted
Address Sanitizer
for Memory Overflow
checking

FeiShen / 沈飞

Version 1.0

Apr.12, 2024

i.MX CAS

Agenda

• Introduction of HW-assisted Address Sanitizer (HWASan)

• Enable HWASan for NXP Android-13.0.0_2.3.0_auto BSP

• Example: WiFi-HAL Memory Overflow issue hunting

• Appendix
• Kernel Address-Sanitizer

Introduction of HW-assisted Address Sanitizer (HWASan)

Hardware-assisted AddressSanitizer (HWASan) is a memory error detection tool similar to AddressSanitizer. HWASan
uses a lot less RAM compared to ASan, which makes it suitable for whole system sanitization.

 HWASan is based on the memory tagging approach, where a small random tag value is associated both with pointers
and with ranges of memory addresses. For a memory access to be valid, the pointer and memory tags have to match.

 HWASan is only available on Android 10 and higher, and only on AArch64 hardware.

Enable HWASan for NXP Android-13.0.0_2.3.0_auto BSP (1)

Android-13.0.0_2.3.0_auto BSP is the latest Android-Auto BSP for i.MX (up to Date of this PPT).

 It can be download from NXP public website:

https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-automotive-os-for-i-mx-applications-processors:ANDROID-AUTO

Enable HWASan for NXP Android-13.0.0_2.3.0_auto BSP (2)

Apply following patch to enable HWASan:

Example: WiFi-HAL Memory Overflow issue hunting (1)

Test environment:

 SW: Android-13.0.0_2.3.0_car2, pre-built image.

 HW: 88W9098 WiFi/BT EVK (PCIe) + i.MX8QXP EVK.

Run 88W9098 WiFi/BT on i.MX8QXP EVK, after ~2 hours, got memory leakage.

Example: WiFi-HAL Memory Overflow issue hunting (2)

Enabled HWASan, re-build Android-13.0.0_2.3.0_auto BSP, run again,

 Got detail HWAddressSanitizer report: “heap-buffer-overflow”.

 --Reason> "Empty or null ScanResult list" ->

--Then> "Attempt to retrieve OsuProviders with invalid scanResult List" ->
--Result> "heap-buffer-overflow"

PUBLIC

Appendix

Kernel Address-Sanitizer (KASan)

Kernel Address-Sanitizer (KASan)

Similar to the LLVM-based sanitizers for userspace components, Android includes the Kernel Address Sanitizer (KASAN). KASAN is a combination of kernel
and compile time modifications that result in an instrumented system that allows for simpler bug discovery and root cause analysis.

 KASAN can detect many types of memory violations in the kernel. It can also detect out-of-bound reads and writes on stack, heap and global variables,
and can detect use-after-free and double frees.

 Similar to ASAN, KASAN uses a combination of memory-function instrumentation at compile time and shadow memory to track memory accesses at
runtime.

 Software Tag-Based KASAN, enabled with CONFIG_KASAN_SW_TAGS, can be used for both debugging and dogfood testing. This mode is only supported
for arm64, but its moderate memory overhead allows using it for testing on memory-restricted devices with real workloads.

 Hardware Tag-Based KASAN, enabled with CONFIG_KASAN_HW_TAGS, is the mode intended to be used as an in-field memory bug detector or as a
security mitigation. This mode only works on arm64 CPUs that support MTE (Memory Tagging Extension), but it has low memory and performance
overheads and thus can be used in production.

Implementation

To compile a kernel with KASAN enabled, add the following build flags to your kernel build configuration:

CONFIG_KASAN=y

CONFIG_KASAN_HW_TAGS=y

nxp.com

PUBLIC

nxp.com

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

