
EXTERNAL USE

CAS MAGGIE JIANG

2024 FEB

I.MX8MP STANDALONE APPLICATION RUNNING TIPS

EXTERNAL USE1

Topics

• Some customer need to run standalone application in i.MX side.

• This article describe how to run standalone application in uboot and kernel, how to

improve application running performance.

• It takes i.MX8MP as example, which is also suitable for other i.MX platform.

EXTERNAL USE2

Install Toolchain

• Produce i.MX Yocto SDK toolchain:

DISTRO=fsl-imx-xwayland MACHINE=imx8mp-lpddr4-evk source imx-setup-release.sh -b
build-xwayland

bitbake imx-image-multimedia -c populate_sdk

(or use bitbake meta-toolchain for small size toolchain)

• Install toolchain

cd (yocto build directory..)/build-xwayland/tmp/deploy/sdk

./fsl-imx-xwayland-glibc-x86_64-imx-image-multimedia-armv8a-imx8mp-lpddr4-evk -
toolchain-6.1-mickledore.sh

Then it will install on default directory:

/opt/fsl-imx-xwayland

EXTERNAL USE3

RUN APPLICATION

IN UBOOT

EXTERNAL USE4

Put application to Uboot standalone directory

• In /uboot-imx/examples/standalone/

There is already hello_world.c here, we can put test.c application in this directory,

• Inside hello_world.c, we add new function calling test() which from test.c

int hello_world(int argc, char *const argv[])

{………

+ test();

}

• Modify makefile to add new function compiling:

uboot-imx/examples/standalone$ vi Makefile

LIB = $(obj)/libstubs.o

LIBOBJS-$(CONFIG_PPC) += ppc_longjmp.o ppc_setjmp.o

LIBOBJS-y += stubs.o test.o

EXTERNAL USE5

Increase CPU frequency

• If we want to increase application running performance in uboot, we can increase i.MX8MP CPU

frequency to maximal 1.8GHz. By default, it is setting at 1.2GHz.

b/arch/arm/mach-imx/imx8m/clock_imx8mm.c

- /* Configure ARM at 1.2GHz */

+ /* Configure ARM at 1.8GHz */

- intpll_configure(ANATOP_ARM_PLL, MHZ(1200));

+ intpll_configure(ANATOP_ARM_PLL, MHZ(1800));

Then the uboot log print out 1.8G information:

EXTERNAL USE6

Modify uboot config file- include API examples

source /opt/fsl-imx-xwayland/6.1-mickledore/environment-setup-armv8a-poky-linux

cd uboot-imx：

make imx8mp_evk_defconfig

make menuconfig

Choose “General setup”- “Compile API examples”

EXTERNAL USE7

Modify uboot config file – increase optimization level

• Choose “General setup”-”Optimization level”-”Optimize for speed”

Default setting is “Optimize for size”. If customer have higher performance requirement, we can

change this config.

• run “CONFIG_STANDALONE_LOAD_ADDR=0x43000000 make” to compile

(CONFIG_STANDALONE_LOAD_ADDR=0x43000000 is parameter pass to uboot)

EXTERNAL USE8

Check compile output file

Check compile output file to confirm it make effect:

• Config file: uboot-imx/.config:

CONFIG_EXAMPLES=y

CONFIG_CC_OPTIMIZE_FOR_SPEED=y

• Compile command parameter:uboot-imx/examples/standalone/.hello_world.o.cmd:

cmd_examples/standalone/hello_world.o := aarch64-poky-linux-gcc -Wp,-

MD,examples/standalone/.hello_world.o.d ….. -fno-PIE -Ofast

• GCC compile optimization level(low to high, -Ofast is highest level)：

-O/-O1 -O2 -Os -O3 -Ofast

EXTERNAL USE9

Produce uboot and application binary

• After change config file and compile uboot, it produce new u-boot.bin, combine uboot/ATF/firmware
to flash.bin, then burn flash.bin to the board.

• It also produce hello_world.bin under /uboot-imx/examples/standalone at the same time. We need
to send hello_world.bin to board and run it.

• When customer modify their application in hello_world.c/test.c（In help_world.c, it call functions
from test.c), hello_world.bin will be updated , they can download hello_world.bin to the board next
time. No need to update flash.bin every time.

• It need to make sure uboot inside flash.bin and hello_world.bin are in same uboot environment.

EXTERNAL USE10

Download application to board

• We can use “loadb” command to download hello_world.bin to a blank address, such as 0x43000000,
which can’t affect uboot running.

• loadb 0x43000000

• Then choose UART tools Kermit protocol to send hello_world.bin to board.

•

EXTERNAL USE11

Run application from specific address

• Then run the application from the address:

go 0x43000000

It output print information from application code:

EXTERNAL USE12

Choose suitable blank address

• We choose 0x43000000 because it is a blank address in i.MX8MP when running uboot.

• This address need to be aligned with uboot definition on:

uboot-imx/examples/standalone/Makefile: LDFLAGS_STANDALONE += -Ttext

$(CONFIG_STANDALONE_LOAD_ADDR)

While default value in include/config/auto.conf:CONFIG_STANDALONE_LOAD_ADDR=0x0c100000

This address conflict with i.MX8MP uboot running area.

• So we add following parameter when compile uboot:

make CONFIG_STANDALONE_LOAD_ADDR=0x43000000

• We can loadb hello_world.srec to the board to double check the load address and start address.

EXTERNAL USE13

RUN APPLICATION

IN KERNEL

EXTERNAL USE14

Compile standalone application

• Setup toolchain: source /opt/fsl-imx-xwayland/6.1-mickledore/environment-setup-armv8a-poky-linux

• mkdir application/ directory, put all applications demo.c test.c… here. demo.c is main function.

In demo.c, it call test() from test.c and calculate running time.

void main()

{ t1 = get_ticks();

test();

t2 = get_ticks();

printf("during ticks = %ld\n", t2 - t1);

}

• Compile app:

$CC demo.c test.c -Ofast -o demo (using -Ofast to get highest optimization level)

It produce demo.o finally.

EXTERNAL USE15

Isolate CPU and run application in one dedicated CPU

• In uboot command line, we can add isolcpus=1-3 to isolate three cpu cores: 1, 2, 3

(i.MX8MP have four cpu cores: 0 1 2 3)

setenv mmcargs 'setenv bootargs ${jh_clk} ${mcore_clk} console=${console} root=${mmcroot}

isolcpus=1-3’

• Put demo.o to the board, then run: chmod 777 demo

• taskset -c 1 ./demo (taskset means to combine to one CPU to run, -c 1 means CPU1, it is aligned

with isolcpus =1 in uboot command line)

• Then it output running print information as following:

EXTERNAL USE16

Set to CPU performance mode

• In order to run at maximal CPU frequency, suggest to set to performance mode to run at highest

CPU frequency. It is ondemand mode by default.

Take CPU1 as example:

root@imx8mpevk:~# echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor

Then run application again：

root@imx8mpevk:~# taskset -c 1 ./demo

EXTERNAL USE17

Run dhrystone benchmark test

We can run dhrystone benchmark as an example:

• DMIPS（Dhrystone Million Instructions Per Second)

• dhry2 is compiled with optimization level -O3 and download from NXP web:

https://www.nxp.com/docs/en/application-note-software/AN13917SW.zip

• We can use script dhrystone.sh to repeat running dhry2 on CPU 1 for stress test.

while true; do

./dhry2

done

root@imx8mpevk:~# echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor

root@imx8mpevk:~# taskset -c 1 ./dhrystone.sh

https://www.nxp.com/docs/en/application-note-software/AN13917SW.zip

EXTERNAL USE18

Dhrystone result in i.MX8MP

• We can get the benchmark data from the log.

• Use “top” command to check. The dhry2 application is running on CPU1 . CPU1 is almost 100%,

CPU0/2/3 are spare.

EXTERNAL USE19

SOME OTHER

OPTIMIZATION WAYS

EXTERNAL USE20

Dynamic link and static link library

• Normally it is dynamic linked library by default when compiling application. Its

advantage is executable file size is small. But it may affect application loading time

and affect performance. If customer has strict requirement for application loading

time, we may try following way:

• Using default dynamic link compile, loading linked library to cache in advance;

• Using static link compile to compile image.

EXTERNAL USE21

Dynamic link library

• It is dymamic linked by default when compiling application. Use file command to check:

• Check which dynamica library are linked.

• Using vmtouch tool to fix dynanica linked library to cache in advance.

• Then run application:

root@imx8mpevk:~# taskset -c 1 ./demo

EXTERNAL USE22

add mlockall() function

• Try to add mlockall() before calling timer start and customer function.

• It locks all pages mapped into the address space of the calling process. It can help to reduce the

page fault latency and avoid potential page reclaim.

+ #include <sys/mman.h>

void main()

{

+ mlockall(MCL_CURRENT);

t1 = get_ticks();

test();

t2 = get_ticks();

printf("during ticks = %ld\n", t2 - t1)

}

EXTERNAL USE23

Use linaro toolchain to realize static link compile

i.MX Yocto default toolchain don’t support static link compile. We can also use another toolchain to

have a test.

• Download linaro toolchain which support static link compile:

https://releases.linaro.org/components/toolchain/binaries/latest-7/aarch64-linux-gnu/

download gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu.tar.xz

tar –xvf gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu.tar.xz

• Install toolchain and add to PATH

export PATH=~/Yocto/tool/gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu/bin:$PATH

• Compile application using static link

aarch64-linux-gnu-gcc demo.c test.c -Ofast -static -o demo_static

• Use “strip” command to reduce demo_static.o file size:

aarch64-linux-gnu-strip demo_static

https://releases.linaro.org/components/toolchain/binaries/latest-7/aarch64-linux-gnu/

EXTERNAL USE24

Run static linked compiled file

• Check demo_static file status on board using “file” command

• Run application on board:

EXTERNAL USE25

Conclusion

• It describe how to run standalone application in i.MX8MP board, including in uboot

& kernel.

• If customer want to get better performance, they can consider following way:

➢Check application compile parameters, including optimization level;

➢Set board status to run at maximal CPU frequency and DDR frequency;

➢Check dynamic link library status.

➢Check application memory allocation status.

➢……

	Slide 0: i.MX8MP standalone application running tips
	Slide 1: Topics
	Slide 2: Install Toolchain
	Slide 3: Run application in uboot
	Slide 4: Put application to Uboot standalone directory
	Slide 5: Increase CPU frequency
	Slide 6: Modify uboot config file- include API examples
	Slide 7: Modify uboot config file – increase optimization level
	Slide 8: Check compile output file
	Slide 9: Produce uboot and application binary
	Slide 10: Download application to board
	Slide 11: Run application from specific address
	Slide 12: Choose suitable blank address
	Slide 13: Run application in kernel
	Slide 14: Compile standalone application
	Slide 15: Isolate CPU and run application in one dedicated CPU
	Slide 16: Set to CPU performance mode
	Slide 17: Run dhrystone benchmark test
	Slide 18: Dhrystone result in i.MX8MP
	Slide 19: Some other optimization ways
	Slide 20: Dynamic link and static link library
	Slide 21: Dynamic link library
	Slide 22: add mlockall() function
	Slide 23: Use linaro toolchain to realize static link compile
	Slide 24: Run static linked compiled file
	Slide 25: Conclusion
	Slide 26

