
i.MX 6 Series Firmware Guide

Document Number: IMX6FG
Rev. 0, 11/2012

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
About This Guide

1.1 About this content...25

1.2 Devices supported...25

1.3 Essential reference..25

1.4 Suggested reading...26

1.4.1 General information...26

1.4.2 Related documentation...26

1.5 Notational conventions...27

1.6 Acronyms and abbreviations...28

Chapter 2
Register Macro Usage

2.1 Register macro usage overview..33

2.2 Register macro usage advantages...33

2.3 Overview of SCT registers..34

2.3.1 Using an SCT register..34

2.3.2 Using a clear-set (CS) operation..35

2.4 Naming conventions for include files and macros..35

2.4.1 Include file naming conventions..35

2.4.2 Register macro name conventions...36

2.4.3 Bitfield macro name conventions..37

2.4.4 Register struct naming conventions...37

2.4.5 Register struct usage..38

2.5 Examples...39

2.5.1 Setting 1-Bit Wide Field..39

2.5.2 Clearing 1-Bit Wide Field..39

2.5.3 Toggling 1-Bit Wide Field...39

2.5.4 Modifying n-Bit Wide Field..39

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 3

Section number Title Page

2.5.5 Modifying Multiple Fields...40

2.5.6 Writing Entire Register..40

2.5.7 Reading a Bit Field..40

2.5.8 Reading Entire Register...41

2.5.9 Assembly example...41

2.6 Summary examples...41

2.6.1 Preferred syntax...41

2.6.2 Alternate syntax...41

Chapter 3
Multicore Startup

3.1 Overview...43

3.2 Boot ROM process..43

3.3 Activating the secondary cores...44

3.4 Multicore hello world example ..45

3.4.1 System Reset Controller enable CPU function..46

3.4.2 Hello multicore world..46

Chapter 4
Configuring the GIC Driver

4.1 Overview...49

4.2 Feature summary...51

4.3 ARM interrupts and exceptions..51

4.3.1 GIC interrupt distributor..52

4.3.2 GIC core interfaces..53

4.4 Sample code..53

4.4.1 Handling interrupts using C...53

4.4.2 Enabling the GIC distributor ...54

4.4.3 Enabling interrupt sources ..55

4.4.4 Configuring interrupt priority ...55

4.4.5 Targeting interrupts to specific cores ..56

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

4 Freescale Semiconductor, Inc.

Section number Title Page

4.4.6 Using software generated interrupts (SGIs) ..57

4.4.7 Enabling the GIC processor interface..57

4.4.8 Setting the CPU priority level..58

4.4.9 Reading the GIC IRQ Acknowledge ..58

4.4.10 Writing the end of IRQ..58

4.4.11 GIC "hello world" example ...59

4.4.12 GIC test code..59

4.5 Initializing and using the GIC driver..60

Chapter 5
Configuring the AUDMUX Driver

5.1 Overview...63

5.2 Feature summary...64

5.3 Clocks...65

5.4 IOMUX pin mapping..65

5.5 Modes of operation...65

5.5.1 Port timing mode ...66

5.5.2 Port receive mode...66

5.6 Port configuration...67

5.6.1 Signal direction..67

5.6.2 AUDMUX default setting..68

5.6.2.1 Example: Port2 to Port5...68

5.7 Port configuration for SSI sync mode...69

5.8 Pseudocode for audmux_route..69

5.9 Pseudocode for audmux_port_set...70

Chapter 6
Configuring the eCSPI Driver

6.1 Overview...71

6.2 Feature summary...71

6.3 I/O signals...72

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 5

Section number Title Page

6.4 eCSPI controller initialization...72

6.5 eCSPI IOMUX pin mapping...73

6.6 Clocks ..74

6.7 Controller initialization...74

6.8 eCSPI data transfers..75

6.9 Application program interface..76

Chapter 7
Configuring the EIM Driver

7.1 EIM overview...79

7.2 Feature summary...79

7.3 Modes of operation...80

7.4 Clocks...80

7.5 IOMUX pin mapping..81

7.6 Resets and interrupts...82

7.7 Initializing the driver...82

7.8 Testing the driver..83

Chapter 8
Configuring the EPIT Driver

8.1 Overview...85

8.2 Feature summary...85

8.3 Modes of operation...85

8.4 Output compare event...86

8.5 Clocks...86

8.6 IOMUX pin mapping..88

8.7 Resets and interrupts...88

8.8 Initializing the EPIT driver...88

8.9 Testing the EPIT driver...90

8.9.1 Delay test..90

8.9.2 Tick test..90

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

6 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 9
Configuring the ESAI Driver

9.1 ESAI overview..91

9.2 Feature summary...91

9.3 Clocks...92

9.4 IOMUX pin mapping..92

9.5 External ESAI signal description ...93

9.6 Audio framework..94

9.6.1 audio_card_t data structure..94

9.6.2 audio_ctrl_t data structure..94

9.6.3 audio_codec_t data structure..94

9.6.4 audio_dev_ops_t data structure..95

9.6.5 audio_dev_para_t data structure..95

9.7 ESAI driver functions...95

9.7.1 Resetting the ESAI...96

9.7.2 Obtaining ESAI parameters...96

9.7.3 Setting ESAI parameters..96

9.7.4 Obtaining ESAI status..96

9.7.5 Enabling ESAI submodules...97

9.7.6 Initializing the ESAI..97

9.7.7 Configuring the ESAI..97

9.7.8 Playback through ESAI..98

9.7.9 ESAI de-initialization..98

9.8 CS42888 driver...98

9.9 Testing the unit...98

Chapter 10
Configuring the Ethernet Driver

10.1 Overview...101

10.2 Feature summary...101

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 7

Section number Title Page

10.3 Modes of operation...103

10.4 Clocks...104

10.5 IOMUX pin mapping..104

10.6 Resets and interrupts...105

10.7 Initializing the driver...106

10.8 Testing the driver..106

Chapter 11
Configuring the FlexCAN Modules

11.1 Overview...107

11.2 Feature summary...108

11.3 Modes of operation...109

11.4 Clocks...109

11.5 Module timing...110

11.6 IOMUX pin mapping..110

11.7 Resets and interrupts...111

11.7.1 Module reset...111

11.7.2 Module interrupts...111

11.8 Initializing the FlexCAN module..112

11.9 Testing the driver..113

Chapter 12
Configuring the GPU3D Driver

12.1 Overview...117

12.2 Feature summary...117

12.3 Modes of operation...118

12.4 Clocks...118

12.5 IOMUX pin mapping..118

12.6 Resets and interrupts...118

12.7 Initializing the GPU3D driver...119

12.8 Testing the GPU3D driver..119

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

8 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 13
Configuring the GPMI Controller

13.1 Overview...121

13.2 Feature summary...122

13.3 Modes of operation...123

13.4 Basic NAND timing..124

13.5 Clocks...125

13.6 IOMUX pin mapping..125

13.7 APBH DMA..127

13.8 BCH ECC...128

13.9 NAND FLASH WRITE example code...129

13.10 NAND FLASH READ example code..133

13.11 NAND FLASH ERASE example code...136

Chapter 14
Configuring the GPT Driver

14.1 Overview...139

14.2 Feature summary...139

14.3 Modes of operation...140

14.4 Events..140

14.4.1 Output compare event..140

14.4.2 Input capture event...140

14.4.3 Rollover event..141

14.5 Clocks...141

14.6 IOMUX pin mapping..143

14.7 Resets and interrupts...143

14.8 Initializing the GPT driver..144

14.9 Testing the GPT driver..145

14.9.1 Output compare test...146

14.9.2 Input compare test..146

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 9

Section number Title Page

Chapter 15
Configuring the HDMI Tx Module

15.1 Overview...147

15.2 Feature summary...148

15.3 Modes of operation...149

15.4 Events..149

15.5 Clocks...149

15.5.1 Video input interface clock..150

15.5.2 System and slave register interface clocks...150

15.5.3 EDID I2C E-DDC interface clock...151

15.5.4 CEC interface clock...151

15.5.5 HDMI Tx PHY interface..152

15.6 IOMUX pin mapping..152

15.7 Resets and interrupts...153

15.8 Initializing the driver...153

15.8.1 Setting up the video input..153

15.8.2 Setting up the video sampler..154

15.8.3 Setting up the CSC (color space converter)...155

15.8.4 Setting up the video packetizer..155

15.8.5 Setting up the frame composer...156

15.8.6 Setting up HDMI Tx PHY...157

15.9 Testing the driver..157

Chapter 16
Configuring the I2C Controller as a Master Device

16.1 Overview...159

16.2 Initializing the I2C controller..159

16.2.1 IOMUX pin configuration...160

16.2.2 Clocks...160

16.2.3 Configuring the programming frequency divider register (IFDR)..161

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

10 Freescale Semiconductor, Inc.

Section number Title Page

16.3 I2C protocol..163

16.3.1 START signal..163

16.3.2 Slave address transmission...163

16.3.3 Data transfer...164

16.3.4 STOP signal ..165

16.3.5 Repeat start...165

16.4 Programming controller registers for I2C data transfers..166

16.4.1 Function to initialize the I2C controller...166

16.4.2 Programming the I2C controller for I2C Read..166

16.4.3 Code used for I2C read operations...168

16.4.4 Programming the I2C controller for I2C Write...169

16.4.5 Code used for I2C write operations...171

Chapter 17
Configuring the I2C Controller as a Slave Device

17.1 Overview...173

17.2 Feature summary...173

17.3 Modes of operation...173

17.4 Clocks...174

17.5 Resets and interrupts...175

17.6 Initializing the driver...175

17.7 Testing the driver..177

17.7.1 Running the test...177

Chapter 18
Configuring the IPU Driver

18.1 Overview...179

18.2 IPU task management...181

18.3 Image rendering..183

18.3.1 IDMAC..183

18.3.2 DMFC..183

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 11

Section number Title Page

18.3.3 Display Processor (DP)..184

18.3.4 Display controller (DC)...185

18.3.5 Display interface (DI)..186

18.4 Image processing..186

18.4.1 Downsizing..187

18.4.2 Main processing...188

18.4.3 Rotation..188

18.5 CSI preview..189

18.5.1 CSI interfaces...189

18.5.1.1 Parallel interface..189

18.5.1.2 High-speed serial interface-MIPI (mobile industry processor interface).....................................189

18.5.2 CSI modes..190

18.5.2.1 Gated mode..190

18.5.2.2 Non-gated mode...190

18.5.2.3 BT656 mode...191

18.5.2.4 BT1120 mode...191

18.6 CSI capture..192

18.7 Mixed task...193

18.8 Clocks...193

18.8.1 High-speed processing clock (HSP_CLK)..193

18.8.2 Display interface clocks (DI_CLKn)...194

18.9 IOMUX pin mapping..195

18.10 Use cases...196

18.10.1 Single image rendering example..196

18.10.1.1 Configuring the IPU DMA channel (single image rendering)...197

18.10.1.2 Allocating the DMFC block...197

18.10.1.3 Configuring the DP block..197

18.10.1.4 Configuring the DC block..198

18.10.1.5 Configuring the DI block...198

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

12 Freescale Semiconductor, Inc.

Section number Title Page

18.10.1.6 Enabling the blocks involved in the display flow..201

18.10.2 Image combining example...201

18.10.2.1 Configuring the IPU DMA channel...203

18.10.2.2 Allocating the DMFC...203

18.10.2.3 Configuring the DP module...203

18.10.2.4 Other modules..204

18.10.3 Image rotate example...204

18.10.3.1 Configuring IDMAC channels for IC tasks (IC rotate)...205

18.10.3.2 Configuring the IC task..205

18.10.3.3 Setting IDMAC buffer ready...206

18.10.3.4 Image rendering process (IDMAC)...206

18.10.4 Image resizing example...206

18.10.4.1 IPU process flow..206

18.10.4.2 Configuring IDMAC channels for IC resize tasks...207

18.10.4.3 Configuring the IC resize tasks..208

18.10.4.4 Setting IDMAC buffer ready (image rotation)..209

18.10.4.5 Image rendering process..209

18.10.5 Color space conversion example..210

18.10.5.1 IPU process flow (color space conversion)..210

18.10.5.2 Configuring IDMAC channels for IC tasks...210

18.10.5.3 Configuring IC tasks..211

18.10.5.4 IPU configurations for the DP task..212

Chapter 19
Configuring the Keypad Controller

19.1 Overview...215

19.2 Feature summary...215

19.3 Modes of operation...215

19.4 Clocks...216

19.5 IOMUX pin mapping..216

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 13

Section number Title Page

19.6 Resets and interrupts...217

19.7 Initializing the driver...217

19.7.1 Closing the keypad port...218

19.7.2 Waiting for or obtaining a key press event..218

19.7.3 Waiting for all keys to release..218

19.8 Testing the driver..219

Chapter 20
Configuring the LDB Driver

20.1 Overview...221

20.2 Feature summary...223

20.3 Input and output ports...223

20.4 Modes of operation...223

20.4.1 Single display mode...224

20.4.2 Dual display mode...224

20.4.3 Separate display mode...224

20.4.4 Split mode..225

20.5 LDB Processing..225

20.5.1 SPWG mapping..225

20.5.2 JEIDA mapping..225

20.6 Clocks...226

20.6.1 Data serialization clocking...227

20.7 Configuring the LDB_CTRL register...228

20.8 Use cases...228

Chapter 21
Configuring the Camera Preview Driver

21.1 Overview...231

21.2 Feature summary...233

21.2.1 Synchronization performance details...233

21.2.2 Simultaneous functionality support...234

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

14 Freescale Semiconductor, Inc.

Section number Title Page

21.2.3 Data rate support..234

21.3 Modes of operation...234

21.3.1 Interface modes..234

21.3.2 Work modes...235

21.4 Clocks...235

21.5 IOMUX pin mapping..236

21.5.1 IOMUX pin mapping for CSI0/CIS1 parallel interface...237

21.5.2 IOMUX pin mapping for the MIPI CSI-2 interface ...237

21.6 Resets and interrupts...238

21.6.1 Resets...238

21.6.2 Interrupts..238

21.7 Initializing the driver...239

21.7.1 Configuring the IDMAC channel for CSI..239

21.7.2 Allocating SMFC...239

21.7.3 Configuring CSI...240

21.7.4 Configuring the sensor...240

21.7.5 Image rendering...241

21.8 Testing the driver..241

Chapter 22
Configuring the MIPI CSI-2 Driver

22.1 Overview...243

22.2 Feature summary...245

22.3 Modes of operation...245

22.4 Clocks...245

22.4.1 Output clock...246

22.4.2 Input clock ...246

22.5 IOMUX pin mapping..248

22.6 Resets and interrupts...248

22.7 Initializing the driver...249

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 15

Section number Title Page

22.8 Testing the driver..250

Chapter 23
Configuring the MIPI DSI driver

23.1 Overview...251

23.2 Feature summary...252

23.3 Modes of operation...253

23.4 Clocks...254

23.5 IOMUX pin mapping..255

23.6 Resets and Interrupts...255

23.7 Initializing the driver...255

23.7.1 Initializing the DSI controller..255

23.7.1.1 Global configuration..255

23.7.1.2 Configure the DPI interface...256

23.7.1.3 Select the video transmission mode...256

23.7.1.4 Define the DPI horizontal timing configuration..258

23.7.1.5 Define the vertical line configuration..258

23.7.2 Initializing the D-PHY...259

23.8 Testing the driver..260

Chapter 24
Configuring the Power Modes

24.1 Overview...261

24.2 Feature summary...261

24.3 Modes of operation...261

24.4 Clocks...261

24.5 IOMUX pin mapping..262

24.6 Resets and interrupts...262

24.7 Using the driver...262

24.8 Testing the driver..263

24.9 Running the test..263

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

16 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 25
Configuring the OCOTP Driver

25.1 Overview...265

25.2 Feature summary...265

25.3 Modes of operation...265

25.4 Clocks...266

25.5 IOMUX pin mapping..266

25.6 Resets and interrupts...266

25.7 Initializing the driver...266

25.8 Testing the driver..267

25.9 Running the test..267

Chapter 26
Configuring the PCI Express Driver

26.1 Overview...269

26.2 Feature summary...269

26.3 Modes of operation...270

26.4 Clocks...271

26.5 IOMUX pin mapping..271

26.6 Resets and interrupts...271

26.7 Initializing the driver...271

26.8 Testing the driver..271

Chapter 27
Configuring the PWM driver

27.1 Overview...273

27.2 Feature summary...273

27.3 Clocks ..274

27.4 IOMUX pin mapping..274

27.5 Resets and interrupts...275

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 17

Section number Title Page

27.6 Initializing the driver...276

27.6.1 Configuring the PWM output..276

27.6.1.1 Generating the pulse width..276

27.6.1.2 Generating the duty cycle..277

27.6.2 Enabling PWM output...277

27.7 Application program interface..277

Chapter 28
Using the SATA SDK

28.1 Overview...279

28.2 Feature summary...279

28.3 Modes of operation...280

28.4 Clocks...280

28.5 IOMUX pin mapping..281

28.6 Resets and Interrupts...281

28.7 Initializing the driver...281

28.8 Testing the driver..281

Chapter 29
Configuring the SDMA Driver

29.1 Overview...283

29.2 IOMUX pin mapping..283

29.3 Scripts...285

29.4 Channels and channel descriptor..285

29.5 Buffer descriptor and BD chain..286

29.6 Application programming interface..287

29.7 Using the API..290

Chapter 30
Configuring the SPDIF Driver

30.1 Overview...291

30.2 Feature summary...291

30.3 Clocks...292

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

18 Freescale Semiconductor, Inc.

Section number Title Page

30.4 IOMUX pin mapping..292

30.5 Audio framework..293

30.5.1 audio_card_t data structure..293

30.5.2 audio_ctrl_t data structure..294

30.5.3 audio_codec_t data structure..294

30.5.4 audio_dev_ops_t data structure..294

30.5.5 audio_dev_para_t data structure..294

30.6 Using SPDIF driver functions...295

30.6.1 Soft resetting SPDIF..295

30.6.2 Dumping readable SPDIF registers..295

30.6.3 Obtaining SPDIF setting and status...296

30.6.4 Initializing SPDIF..296

30.6.5 Configuring SPDIF..297

30.6.6 Playback through SPDIF..297

30.6.7 De-initializing SPDIF..297

30.7 Testing the SPDIF driver..298

Chapter 31
Using the SNVS RTC/SRTC Driver

31.1 Overview...299

31.2 Feature summary...300

31.3 Modes of operation...300

31.4 Clocks...301

31.5 Counters..301

31.5.1 Non-Secured Real Time Counter...301

31.5.1.1 Non-Secured Real Time Counter Alarm..301

31.5.1.2 Non-Secured Real Periodic Interrupt...302

31.5.2 Secure Real Time Counter...302

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 19

Section number Title Page

31.6 Driver API...303

31.6.1 SNVS lower level driver APIs...303

31.6.1.1 Enable/Disable SNVS non-secured real time counter...303

31.6.1.2 Enable/Disable SNVS non-secured time alarm...304

31.6.1.3 Enable/Disable SNVS periodic interrupt...304

31.6.1.4 Set SNVS non-secure real time counter registers..305

31.6.1.5 Set SNVS non-secure RTC time alarm registers...306

31.6.1.6 Enable/Disable SNVS secure real time counter...306

31.6.1.7 Enable/Disable SNVS secure time alarm...307

31.6.1.8 Set SNVS secured real time counter registers...307

31.6.1.9 Set SNVS non-secure time alarm register..308

31.6.2 RTC upper layer driver APIs...308

31.6.2.1 Initialize RTC...308

31.6.2.2 De-initialize RTC...309

31.6.2.3 Setup RTC one time alarm...309

31.6.2.4 Setup RTC periodic time alarm ..310

31.6.2.5 Disable RTC periodic alarm..310

31.6.3 SRTC upper layer driver APIs...311

31.6.4 Initialize SRTC..311

31.6.5 De-initialize SRTC...311

31.6.6 Setup SRTC one time alarm...312

31.6.7 Testing the SNVS SRTC/RTC driver..312

Chapter 32
Configuring the SSI Driver

32.1 SSI overview...315

32.2 Feature summary...316

32.3 Clocks...317

32.4 IOMUX pin mapping ...317

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

20 Freescale Semiconductor, Inc.

Section number Title Page

32.5 Audio framework..318

32.5.1 audio_card_t data structure..319

32.5.2 audio_ctrl_t data structure..319

32.5.3 audio_codec_t data structure..319

32.5.4 audio_dev_ops_t data structure..319

32.5.5 audio_dev_para_t data structure..320

32.6 SSI driver functions..320

32.6.1 Resetting the SSI..321

32.6.2 Obtaining SSI setting and status values...321

32.6.3 Setting SSI parameters...321

32.6.4 Enabling SSI sub-modules...322

32.6.5 Initializing the SSI driver...322

32.6.6 Configuring the SSI...322

32.6.6.1 Playback through SSI...323

32.7 sgtl5000 driver..323

32.8 Testing the unit...323

32.9 Functions...324

32.9.1 Local functions...324

32.9.2 APIs..325

Chapter 33
Configuring the UART Driver

33.1 Overview...327

33.2 Feature summary...327

33.3 Modes of operation...327

33.4 Clocks...328

33.5 IOMUX pin mapping..329

33.6 Resets and interrupts...329

33.7 Initializing the UART driver...329

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 21

Section number Title Page

33.8 Testing the UART driver..331

33.8.1 Echo test...331

33.8.2 SDMA test..331

33.8.3 Running the UART test..331

Chapter 34
Configuring the USB Host Controller Driver

34.1 Overview...333

34.2 Feature summary ..333

34.3 Modes of operation...334

34.4 Clocks...334

34.5 IOMUX pin mapping..335

34.6 Resets and interrupts...335

34.7 Initializing the host driver...336

34.8 Initializing the device driver...337

34.9 Testing the host mode...338

34.10 Testing the device mode...338

34.11 PHY and clocks API...339

34.12 USB host API..339

34.13 USB device API..341

34.14 Source code and structure...342

Chapter 35
Configuring the uSDHC Driver

35.1 Overview...345

35.2 Clocks...345

35.3 IOMUX pin mapping..346

35.4 Initializing the uSDHC controller ..347

35.4.1 Initializing the SD/MMC card...347

35.4.2 Frequency divider configuration..347

35.4.3 Send command to card flow chart..348

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

22 Freescale Semiconductor, Inc.

Section number Title Page

35.4.4 SD voltage validation flow chart...349

35.4.5 SD card initialization flow chart..350

35.4.6 MMC voltage validation flow chart...351

35.4.7 MMC card initialization flow chart...352

35.5 Transferring data with the uSDHC...353

35.5.1 Reading data from the card..353

35.5.2 Writing data to the card..354

35.6 Application programming interfaces..355

35.6.1 card_init API..355

35.6.2 card_data_read API..355

35.6.3 card_data_write API..355

Chapter 36
Configuring the VDOA Driver

36.1 Overview...357

36.2 Feature summary...357

36.3 Modes of operation...357

36.4 Clocks...358

36.5 Resets and interrupts...358

36.6 Initializing the driver...358

36.7 Testing the driver..359

Chapter 37
Configuring the VPU Driver

37.1 Overview...361

37.2 Feature summary...362

37.3 Modes of operation...363

37.3.1 Using the input stream modes..363

37.3.2 Using the output stream modes..363

37.4 Clocks...365

37.5 Resets and interrupts...366

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 23

Section number Title Page

37.6 Initializing the driver...366

37.6.1 Initializing the VPU for the first time..366

37.6.2 Initializing the VPU decoder..367

37.6.3 VPU encoder initialization...367

37.6.4 Using the multi-instance operation..369

37.7 Testing the driver..369

37.7.1 Testing the decoder..369

37.7.2 Testing the encoder..369

37.7.3 Running the multi-instance demo..370

Chapter 38
Configuring the Watchdog Driver

38.1 Overview...373

38.2 Feature summary...375

38.3 Modes of operation...375

38.4 Signals...375

38.5 Resets and interrupts...376

38.6 Initializing the driver...376

38.7 Testing the driver..376

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

24 Freescale Semiconductor, Inc.

Chapter 1
About This Guide

1.1 About this content
This document’s purpose is to help software engineers create board bring up and test
code for their own custom boards based on the i.MX 6 series of application processors. It
provides example driver code that demonstrates the proper initialization, boot up and
basic I/O operation of i.MX 6 peripherals and controllers. This code can be implemented
into test suites or boot code to help ensure proper board functionality.

Engineers are expected to have a working understanding of the ARM processor
programming model, the C programming language, tools such as compilers and
assemblers, and program build tools such as MAKE. Familiarity with the use of
commonly available hardware test and debug tools such as oscilloscopes and logic
analyzers is assumed. An understanding of the architecture of the i.MX 6 series of
application processors is also assumed.

This guide is released along with the i.MX 6 series Platform SDK release package, which
consists of a working set of sample drivers and test code for customer reference and use.
The README.pdf document in the package describes how to build and run the drivers
and the test code.

1.2 Devices supported
The firmware guide currently supports the i.MX 6Quad and 6Dual processor families.

1.3 Essential reference
This guide intended as a companion to the i.MX 6 series chip reference manuals and data
sheets. You should have access to an electronic copy of the latest versions of your chip-
specific reference manual and data sheet. A non-disclosure agreement may be required.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 25

At the time of publication, the following reference manual is available:

• i.MX 6Dual/6Quad Multimedia Applications Processor Reference Manual
(IMX6DQRM).

At the time of publication, the following data sheets are available:

• i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors
(IMX6DQAEC)

• i.MX 6Dual/6Quad Applications Processors for Consumer Products (IMX6DQCEC)

Contact your local FAE if you need assistance obtaining an electronic copy or an updated
list of available chip-specific reference manuals.

1.4 Suggested reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the architecture.

1.4.1 General information

The following documentation provides useful information about the ARM processor
architecture and computer architecture in general:

• For information about the ARM Cortex-A9 processor see http://www.arm.com/
products/processors/cortex-a/cortex-a9.php

• Computer Architecture: A Quantitative Approach, Fourth Edition, by John L.
Hennessy and David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second
Edition, by David A. Patterson and John L. Hennessy

1.4.2 Related documentation

Freescale documentation is available from the sources listed on the back page of this
guide.

Additional literature is published as new Freescale products become available. For a
current list of documentation, refer to www.freescale.com.

Suggested reading

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

26 Freescale Semiconductor, Inc.

1.5 Notational conventions
This table shows notational conventions used in this content.

Table 1-1. Notational conventions

Convention Definition

General

Cleared When a bit takes the value zero, it is said to be cleared.

Set When a bit takes the value one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics can indicate the following:

• Variable command parameters, for example, bcctrx
• Titles of publications
• Internal signals, for example, core int

h Suffix to denote hexadecimal number. Note that numbers in code may use the alternate 0x prefix
convention to denote hexadecimal instead.

b Suffix to denote binary number. Note that numbers in code may use the alternate 0b prefix
convention to denote binary instead.

REGISTER[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or ranges appear in
brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state
register.

x In some contexts, such as signal encodings, an unitalicized x indicates a don't care.

x An italicized x indicates an alphanumeric variable

n An italicized n indicates either:

• An integer variable
• A general-purpose bitfield unknown

~ NOT logical operator

& AND logical operator

| OR logical operator

|| Concatenation, for example, TCR[WPEXT] || TCR[WP]

Signals

OVERBAR An overbar indicates that a signal is active-low.

_b, _B Alternate notation to indicate that a signal is active-low

lowercase_italics Lowercase italics is used to indicate internal signals

lowercase_plaintext Lowercase plain text is used to indicate signals that are used for configuration.

Register access

Reserved Ignored for the purposes of determining access type

R/W Indicates that all non-reserved fields in a register are read/write

R Indicates that all non-reserved fields in a register are read only

W Indicates that all non-reserved fields in a register are write only

w1c Indicates that all non-reserved fields in a register are cleared by writing ones to them

Chapter 1 About This Guide

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 27

1.6 Acronyms and abbreviations
The following table defines the acronyms and abbreviations used in this document.

Table 1-2. Definitions and acronyms

Term Definition

Address
Translation

Address conversion from virtual domain to physical domain

API Application programming interface

ARM® Advanced RISC machines processor architecture

AUDMUX Digital audio multiplexer

Provides a programmable interconnection for voice, audio, and synchronous data routing between host
serial interfaces and peripheral serial interfaces.

BCD Binary coded decimal

Bus Path between several devices through data lines.

Bus load Percentage of time a bus is busy.

CODEC Coder/decoder or compression/decompression algorithm

Used to encode and decode (or compress and decompress) various types of data.

CPU Central processing unit

Generic term used to describe a processing core.

CRC Cyclic redundancy check

Bit error protection method for data communication.

CSI Camera sensor interface

DMA Direct memory access

An independent block that can initiate memory-to-memory data transfers.

DRAM Dynamic random access memory

EMI External memory interface

Controls all IC external memory accesses (read/write/erase/program) from all the masters in the system.

Endian Refers to byte ordering of data in memory.

• Little endian means that the least significant byte of the data is stored in a lower address than the
most significant byte.

• Big endian means that the least significant byte of the data is stored in a higher address than the
most significant byte (the reverse of little endian)

EPD Electronic paper display

EPIT Enhanced periodic interrupt timer

A 32-bit set and forget timer capable of providing precise interrupts at regular intervals with minimal
processor intervention.

ePXP Enhanced pixel pipeline

FCS Frame checker sequence

FIFO First in first out

Table continues on the next page...

Acronyms and abbreviations

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

28 Freescale Semiconductor, Inc.

Table 1-2. Definitions and acronyms (continued)

Term Definition

FIPS Federal information processing standards

United States Government technical standards published by the National Institute of Standards and
Technology (NIST). NIST develops FIPS when there are compelling Federal government requirements
such as for security and interoperability but no acceptable industry standards or solutions.

FIPS-140 Security requirements for cryptographic modules

Federal Information Processing Standard 140-2(FIPS 140-2) is a standard that describes US Federal
government requirements that IT products should meet for sensitive, but unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks of the
entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a
software command.

GPIO General purpose input/output

Hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself,
and is generated by a formula in such a way that it is extremely unlikely that some other text will produce
the same hash value.

I/O Input/output

ICE In-circuit emulation

IP Intellectual property

IrDA Infrared data association

A nonprofit organization whose goal is to develop globally adopted specifications for infrared wireless
communication.

ISR Interrupt service routine

JTAG JTAG (IEEE Standard 1149.1)

A standard specifying how to control and monitor the pins of compliant devices on a printed circuit board.

Kill Abort a memory access.

KPP Keypad port

A 16-bit peripheral that can be used as a keypad matrix interface or as general purpose input/output (I/O).

line Refers to a unit of information in the cache that is associated with a tag

LRU Least recently used

A policy for line replacement in the cache.

MMU Memory management unit

A component responsible for memory protection and address translation.

MPEG Moving picture experts group

An ISO committee that generates standards for digital video compression and audio. It is also the name
of the algorithms used to compress moving pictures and video.

Table continues on the next page...

Chapter 1 About This Guide

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 29

Table 1-2. Definitions and acronyms (continued)

Term Definition

MPEG standards There are several standards of compression for moving pictures and video.

• MPEG-1 is optimized for CD-ROM and is the basis for MP3.
• MPEG-2 is defined for broadcast quality video in applications such as digital television set-top

boxes and DVD.
• MPEG-3 was merged into MPEG-2.
• MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web.

MQSPI Multiple queue serial peripheral interface

Used to perform serial programming operations necessary to configure radio subsystems and selected
peripherals.

MSHC Memory stick host controller

NAND Flash Flash ROM technology

NAND Flash and NOR Flash architecture are the two flash technologies that are used in memory cards
such as the Compact Flash cards. NAND Flash is best suited to flash devices requiring high capacity data
storage. NAND Flash devices offer storage space up to 512-Mbyte and offer faster erase, write, and read
capabilities than NOR architecture.

NOR Flash See NAND Flash.

PCMCIA Personal computer memory card international association

A multi-company organization that has developed a standard for small, credit card-sized devices, called
PC cards. There are three types of PCMCIA cards that have the same rectangular size (85.6 by 54
millimeters), but different widths.

Physical address The address by which the memory in the system is physically accessed.

PLL Phase locked loop

An electronic circuit controlling an oscillator so that it maintains a constant phase angle (a lock) on the
frequency of an input, reference, or signal.

RAM Random access memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which red, green, and blue light are combined in
various ways to create other colors. The abbreviation RGB come from the three primary colors in additive
light models.

RGBA RGBA color space stands for the colors red, green, blue, and alpha. The alpha channel is the
transparency channel, and is unique to this color space. RGBA, like RGB, is an additive color space, so
the more of a color you place, the lighter the picture gets. PNG is the best known image format that uses
the RGBA color space.

RNGA Random number generator accelerator

A security hardware module that produces 32-bit pseudorandom numbers as part of the security module.

ROM Read only memory

ROM bootstrap Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-time integrity checker

A security hardware module

SCC Security controller

A security hardware module

SDMA Smart direct memory access

SDRAM Synchronous dynamic random access memory

SoC System on a chip

Table continues on the next page...

Acronyms and abbreviations

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

30 Freescale Semiconductor, Inc.

Table 1-2. Definitions and acronyms (continued)

Term Definition

SPBA Shared peripheral bus arbiter

A three-to-one IP-Bus arbiter, with a resource-locking mechanism.

SPI Serial peripheral onterface

A full-duplex synchronous serial interface for connecting low-/medium-bandwidth external devices using
four wires. SPI devices communicate using a master/slave relationship over two data lines and two
control lines: Also see SS, SCLK, MISO, and MOSI.

SRAM Static random access memory

SSI Synchronous serial interface

Standardized interface for serial data transfer

TBD To be determined

UART Universal asynchronous receiver/transmitter

This module provides asynchronous serial communication to external devices.

UID Unique ID

A field in the processor and CSF identifying a device or group of devices

USB Universal serial bus

An external bus standard that supports high speed data transfers. The USB 1.1 specification supports
data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480 Mbps. A single USB
port can be used to connect up to 127 peripheral devices, such as mice, modems, and keyboards. USB
also supports plug-and-play installation and hot plugging.

USBOTG USB On The Go

An extension of the USB 2.0 specification for connecting peripheral devices to each other. USBOTG
devices, also known as dual-role peripherals, can act as limited hosts or peripherals depending on how
the cables are connected to the devices. They also can connect to a host PC.

Word A group of bits comprising 32 bits

Chapter 1 About This Guide

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 31

Acronyms and abbreviations

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

32 Freescale Semiconductor, Inc.

Chapter 2
Register Macro Usage

2.1 Register macro usage overview
This chapter provides background on the register set and provides examples of how to
use the hardware register macros generated from the chip database. The include files
provide a consistent set of C defines and macros that should be used to access the
hardware registers.

2.2 Register macro usage advantages
Using the register macros generated from the chip reference manual database provides
the following advantages.

• The macros isolate code from specifics of the hardware such as register addresses,
which makes it possible to write drivers and other code that is portable between
chips.

• Using register macros produces self-documenting code. Named constants and macros
clearly indicate the tasks being performed, unlike hard-coded addresses or values that
are difficult to understand.

• Using register headers provided by Freescale instead of hand-coded headers ensures
the most accurate values and facilitates easy updates if errors in the header files or
reference manual are discovered.

• The macros ensure that the optimal sequence of operations is performed for set,
clear, or toggle (SCT) or bitfield write operations, depending on whether the register
has hardware SCT register instances available.

• Register macros provide multiple options for expressing the operation being
performed.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 33

2.3 Overview of SCT registers
Certain hardware registers are implemented as a set that can be used to either set, clear, or
toggle (SCT) individual bits of the primary register. These registers are used to avoid
time consuming read-modify-write (RMW) operations. SCT registers also provide the
ability atomically change values of single-bit bitfields.

This functionality is useful because the chip has a complex architecture that uses multiple
buses to segment I/O traffic and clock domains. To facilitate low power consumption,
clocks are set to just meet application demands. In general, the I/O buses and associated
hardware blocks run at slower speeds than the CPU’s speed. Reading a hardware register
may therefore incur a large number of wait cycles because the CPU must wait for the
register data to travel multiple buses and bridges. The chip does provide write buffering,
meaning the CPU does not wait for register write transactions to complete. From the CPU
perspective, register writes occur much faster than reads.

In addition, most hardware registers are subdivided into smaller functional bit fields that
are not required to align on byte or half-word boundaries. These bit fields can be any
number of bits wide and are usually packed.

Without the SCT registers, the best way to update a single bit field without affecting the
contents of the register’s remaining fields would be to use a read-modify-write (RMW)
operation. In this operation, the CPU reads the register, modifies the target field, and then
writes the results back to the register. However, the initial register read makes the RMW
operation expensive in terms of CPU cycles.

2.3.1 Using an SCT register

When writing to an SCT register, all set bits perform the associated operation on the
primary register, while all cleared bits set are not affected. SCT registers always read
back 0 and should be considered write-only.

SCT registers are not implemented if the primary register is read-only or if the register
contains a single value that does not make sense to update partially (such as a memory
address). In addition, only certain IP blocks support SCT registers.

NOTE
Not all macros for set, clear, or toggle (SCT) are atomic. For
registers that do not provide hardware support for this
functionality, these macros are implemented as a sequence of
read/modify/write operations. When atomic operation is

Overview of SCT registers

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

34 Freescale Semiconductor, Inc.

required, the developer should pay attention to this detail,
because unexpected behavior might result if an interrupt occurs
in the middle of the critical section comprising the update
sequence.

2.3.2 Using a clear-set (CS) operation

When SCT registers are available, it is possible to update one or more fields using only
register writes. First, all bits of the target fields are cleared by a write to the associated
clear register, then the desired value of the target fields is written to the set register. This
sequence of two writes is referred to as a clear-set (CS) operation.

A CS operation does have one potential drawback. Whenever a field is modified, the
hardware sees a value of 0 before the final value is written. For most fields, passing
through the 0 state is not a problem. Nonetheless, this behavior is something to consider
when using a CS operation.

Also, a CS operation is not required for fields that are one bit wide. While the CS
operation works in this case, it is more efficient to simply set or clear the target bit (that
is, one write instead of two). A simple set or clear operation is also atomic, while a CS
operation is not.

2.4 Naming conventions for include files and macros
The generated include files and macros follow a consistent naming convention. This
prevents namespace collisions and makes the macros easier to remember. Macro names
are built from patterns based on the names listed in the reference manual. Thus, it is
possible to construct a macro name solely by looking at the reference manual contents.

2.4.1 Include file naming conventions
• The include file for a specific hardware module is named regs<module>.h. The module

name is in all lower case and has no spaces.
• The regs.h header file is included by each of the hardware module header files. It

provides several shared typedefs and macros.
• The regs.h file also provides a number of generic macros that can be used as an

alternate syntax for the various register operations. Because many operations involve
using two or more of the defined macros, the module, register, and bitfield names are

Chapter 2 Register Macro Usage

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 35

often repeated in a C expression. The generic macros provide shorthand to avoid the
repetition. Refer to the examples in this chapter for the alternate syntax.

The include files are safe to use with assembly code as well as C or C++ code. Not all
defines make sense in the assembly context, but many are useful. Those declarations that
are only applicable to C/C++ are excluded when the headers are included in assembly
code.

CAUTION
The preprocessor macro __LANGUAGE_ASM__ must be defined prior
to including the register definition header files in assembly
code.

2.4.2 Register macro name conventions

The following tables show the register macro name conventions for single- and multi-
instance modules.

Table 2-1. Single-instance modules

Format Purpose Example

hw_<module>_<register>_t register struct hw_gpmi_ctrl0_t

HW_<module>_<register>_ADDR register address HW_GPMI_CTRL0_ADDR

HW_<module>_<register> access register struct HW_GPMI_CTRL0

HW_<module>_<register>_RD() read register HW_GPMI_CTRL0_RD()

HW_<module>_<register>_WR(v) write register HW_GPMI_CTRL0_WR(0xc0000000)

HW_<module>_<register>_SET(v) set register bits HW_GPMI_CTRL0_SET(0x1000)

HW_<module>_<register>_CLR(v) clear register bits HW_GPMI_CTRL0_CLR(0x1000)

HW_<module>_<register>_TOG(v) toggle register bits HW_GPMI_CTRL0_TOG(0x1000)

Macros for multi-instance modules take the instance number as an additional first
argument. In the definitions below, the parameter x is the instance number. The instance
numbers accepted as arguments match the numbers shown in the register memory map in
the reference manual. In almost all cases, instance numbers start at 1.

Table 2-2. Multi-instance modules

Format Purpose Example

hw_<module>_<register>_t register struct hw_ecspi_conreg_t

HW_<module>_<register>_ADDR(x) register address HW_ECSPI_CONREG_ADDR(2)

HW_<module>_<register>(x) access register struct HW_ECSPI_CONREG(2)

HW_<module>_<register>_RD(x) read register HW_ECSPI_CONREG_RD(2)

Table continues on the next page...

Naming conventions for include files and macros

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

36 Freescale Semiconductor, Inc.

Table 2-2. Multi-instance modules (continued)

Format Purpose Example

HW_<module>_<register>_WR(x, v) write register HW_ECSPI_CONREG_WR(2, 0xc0000000)

HW_<module>_<register>_SET(x, v) set register bits HW_ECSPI_CONREG_SET(2, 0x1000)

HW_<module>_<register>_CLR(x, v) clear register bits HW_ECSPI_CONREG_CLR(2, 0x1000)

HW_<module>_<register>_TOG(x, v) toggle register bits HW_ECSPI_CONREG_TOG(2, 0x1000)

2.4.3 Bitfield macro name conventions

The following tables explain the bitfield macro naming conventions for single- and multi-
instance modules.

Table 2-3. Single-instance modules

Format Purpose Example

BP_<module>_<register>_<field> bit position BP_GPMI_CTRL0_CLKGATE

BM_<module>_<register>_<field> bit mask, pre-shifted BM_GPMI_CTRL0_CLKGATE

BF_<module>_<register>_<field>(v) shift and mask bitfield
value

BF_CCM_ANALOG_PLL_ARM_DIV_SELECT(7)

BG_<module>_<register>_<field>(r) get bitfield value from
register value

BG_CCM_ANALOG_PLL_ARM_DIV_SELECT(HW_
CCM_ANALOG_PLL_ARM_RD())

BW_<module>_<register>_<field>(v) write bitfield using SCT
or RMW

BW_CCM_ANALOG_PLL_ARM_DIV_SELECT(12)

BV_<module>_<register>_<field>__<val
ue>

bitfield named value
constant

BV_CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC
__OSC_24M

Only the BW_ bitfield macro differs for multi-instance modules.

Table 2-4. Multi-instance modules

Format Purpose Example

BW_<module>_<register>_<field>(x, v) write bitfield using SCT
or RMW

BW_ECSPI_CONREG_CHANNEL_SELECT(1, 2)

2.4.4 Register struct naming conventions

For each register present in a module, the generated include files declare a struct
(actually, a union) with a name similar to hw_ecspi_conreg_t. These struct declarations have
members for each of the register's bitfields, as well as a member to access the register
value as a whole.

Chapter 2 Register Macro Usage

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 37

The following code shows an example register struct declaration, using the EPITSR
register of the EPIT mode:

typedef union _hw_epit_epitsr
{
 reg32_t U;
 struct _hw_epit_epitsr_bitfields
 {
 unsigned OCIF : 1; //!< [0] Output compare interrupt flag.
 unsigned RESERVED0 : 31; //!< [31:1] Reserved.
 } B;
} hw_epit_epitsr_t;

This example demonstrates the key features of register structs:

• The outer union declaration always includes a U field that represents the entire
register value.

• A B member struct holds the bitfield member declarations.

Note
The B member struct is used to ensure that all compilers can
understand the declarations. Some compilers do not allow
anonymous union members.

2.4.5 Register struct usage

The include files also contain a macro to access each register as a reference to the
corresponding register struct.

As shown in Table 2-2 , these macros look like HW_EPIT_EPITSR. Because the macro
evaluates to a reference, not a pointer, members are accessed with the dot ('.') operator.

The following shows example uses of register structs:

// Integer value of the register
HW_GPMI_CTRL0.U // single-instance
HW_EPIT_EPITSR(1).U // multi-instance

// Bitfield access
HW_GPMI_CTRL0.B.CLKGATE // single-instance
HW_EPIT_EPITSR(2).B.OCIF // multi-instance

NOTE
Modifying bitfield values through the register struct causes the
compiler to generate read-modify-write code, which is
inherently non-atomic. In cases where registers have SCT
instances, it is possible to update single-bit bitfields atomically
using set or clear operations.

Naming conventions for include files and macros

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

38 Freescale Semiconductor, Inc.

2.5 Examples
The following examples show how to code common register operations using the
predefined include files. Each example shows preferred and alternate syntax and also
shows constructs to avoid. Summaries are provided toward the end.

The examples are valid C and will compile without errors. The reader is encouraged to
compile these examples and examine the resulting assembly code.

2.5.1 Setting 1-Bit Wide Field

// Preferred (one atomic write to SET register)
HW_GPMI_CTRL0_SET(BM_GPMI_CTRL0_UDMA);

// Alternate (same as above, just different syntax)
BF_SET(GPMI_CTRL0, UDMA);

// Avoid
BW_GPMI_CTRL0_UDMA(1); // writes 1 to _CLR then 1 to _SET register
BF_WR(GPMI_CTRL0, UDMA, 1); // same as above, just different syntax
HW_GPMI_CTRL0.B.UDMA = 1; // RMW

2.5.2 Clearing 1-Bit Wide Field

// Preferred (one atomic write to _CLR register)
HW_GPMI_CTRL0_CLR(BM_GPMI_CTRL0_DEV_IRQ_EN);

// Alternate (same as above, just different syntax)
BF_CLR(GPMI_CTRL0, DEV_IRQ_EN);

// Avoid
BW_GPMI_CTRL0_DEV_IRQ_EN(0); // writes 1 to _CLR then 0 to _SET register
BF_WR(GPMI_CTRL0, DEV_IRQ_EN, 0); // same as above, just different syntax
HW_GPMI_CTRL0.B.DEV_IRQ_EN = 0; // RMW

2.5.3 Toggling 1-Bit Wide Field

// Preferred (one atomic write to _TOG register)
HW_GPMI_CTRL0_TOG(BM_GPMI_CTRL0_RUN);

// Alternate (same as above, just different syntax)
BF_TOG(GPMI_CTRL0, RUN);

// Avoid
HW_GPMI_CTRL0.B.RUN ^= 1; // RMW

Chapter 2 Register Macro Usage

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 39

2.5.4 Modifying n-Bit Wide Field

// Preferred (does CS operation or byte/halfword write if the field is
// 8 or 16 bits wide and properly aligned)
BW_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE);
BW_GPMI_CTRL0_COMMAND_MODE(iMode);
BW_GPMI_CTRL0_XFER_COUNT(2); // this does a halfword write

// Alternate (same as above, just different syntax)
BF_WR(GPMI_CTRL0, COMMAND_MODE, BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE);
BF_WR(GPMI_CTRL0, COMMAND_MODE, iMode);
BF_WR(GPMI_CTRL0, XFER_COUNT, 2); // this does a halfword write

// Avoid (RMW)
HW_GPMI_CTRL0.B.COMMAND_MODE = BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE;
HW_GPMI_CTRL0.B.COMMAND_MODE = iMode;

2.5.5 Modifying Multiple Fields

// Preferred (explicit CS operation)
HW_GPMI_CTRL0_CLR(OR3(BM_GPMI_CTRL0, RUN, DEV_IRQ_EN, COMMAND_MODE));
HW_GPMI_CTRL0_SET(OR3(BF_GPMI_CTRL0, RUN(iRun), DEV_IRQ_EN(1),
 COMMAND_MODE_V(READ_AND_COMPARE)));
// Alternate (same as above, just different syntax)
BF_CS3(GPMI_CTRL0, RUN, iRun, DEV_IRQ_EN, 1, COMMAND_MODE,
 BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE);
// Avoid (multiple RMW - the C compiler does NOT merge into one RMW)
HW_GPMI_CTRL0.B.RUN = iRun;
HW_GPMI_CTRL0.B.DEV_IRQ_EN = 1;
HW_GPMI_CTRL0.B.COMMAND_MODE = BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE;

2.5.6 Writing Entire Register

These operations update all fields at once.

// Preferred
HW_GPMI_CTRL0_WR(BM_GPMI_CTRL0_SFTRST); // all other fields are set to 0

// Alternate (same as above, just different syntax)
HW_GPMI_CTRL0.U = BM_GPMI_CTRL0_SFTRST;

2.5.7 Reading a Bit Field

// Preferred
iRun = HW_GPMI_CTRL0.B.RUN;

// Alternate (same as above, just different syntax)
iRun = BF_RD(GPMI_CTRL0, RUN);

// Verbose Alternate (example of using bit position (BP_) define)
iRun = (HW_GPMI_CTRL0_RD() & BM_GPMI_CTRL0_RUN) << BP_GPMI_CTRL0_RUN;

Examples

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

40 Freescale Semiconductor, Inc.

2.5.8 Reading Entire Register

// Preferred
i = HW_GPMI_CTRL0_RD();

// Alternate (same as above, just different syntax)
i = HW_GPMI_CTRL0.U;

2.5.9 Assembly example
// 6.1 Take GPMI block out of reset and remove clock gate.

// 6.2 Write a value to GPMI CTRL0 register. All other fields are set to 0.
 ldr r0, =HW_GPMI_CTRL0_CLR_ADDR
 ldr r1, =BM_GPMI_CTRL0_SFTRST | BM_GPMI_CTRL0_CLKGATE
 str r1, [r0]
 ldr r0, =HW_GPMI_CTRL0_ADDR
 ldr r1, =BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE)
 str r1, [r0]

2.6 Summary examples

2.6.1 Preferred syntax

// Setting, clearing, toggling 1-bit wide field
HW_GPMI_CTRL0_SET(BM_GPMI_CTRL0_UDMA);
HW_GPMI_CTRL0_CLR(BM_GPMI_CTRL0_DEV_IRQ_EN);
HW_GPMI_CTRL0_TOG(BM_GPMI_CTRL0_RUN);

// Modifying n-bit wide field
BW_GPMI_CTRL0_XFER_COUNT(2);

// Modifying multiple fields
HW_GPMI_CTRL0_CLR(OR3(BM_GPMI_CTRL0, RUN, DEV_IRQ_EN, COMMAND_MODE));
HW_GPMI_CTRL0_SET(OR3(BF_GPMI_CTRL0, RUN(iRun), DEV_IRQ_EN(1),
 COMMAND_MODE_V(READ_AND_COMPARE)));

// Reading a bit field
iRun = HW_GPMI_CTRL0.B.RUN;

// Writing or reading entire register (all fields updated at once)
HW_GPMI_CTRL0_WR(BM_GPMI_CTRL0_SFTRST);
i = HW_GPMI_CTRL0_RD();

2.6.2 Alternate syntax

// Setting, clearing, toggling 1-bit wide field
BF_SET(GPMI_CTRL0, UDMA);

Chapter 2 Register Macro Usage

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 41

BF_CLR(GPMI_CTRL0, DEV_IRQ_EN);
BF_TOG(GPMI_CTRL0, RUN);

// Modifying n-bit wide field
BF_WR(GPMI_CTRL0, XFER_COUNT, 2);

// Modifying multiple fields
BF_CS3(GPMI_CTRL0, RUN, iRun, DEV_IRQ_EN, 1, COMMAND_MODE,
 BV_GPMI_CTRL0_COMMAND_MODE_READ_AND_COMPARE);

// Reading a bit field
iRun = BF_RD(GPMI_CTRL0, RUN);

// Writing or reading entire register (all fields updated at once)
HW_GPMI_CTRL0.U = BM_GPMI_CTRL0_SFTRST;
i = HW_GPMI_CTRL0.U;

Summary examples

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

42 Freescale Semiconductor, Inc.

Chapter 3
Multicore Startup

3.1 Overview
This chip includes multiple Cortex-A9 cores. Regardless of how many cores are available
on the part, only core0 will be automatically released from reset upon initial power-up.
All other available secondary cores will remain in a low-power reset state. The firmware
must initialize all secondary cores. This chapter explains how to enable the available
secondary cores.

3.2 Boot ROM process
Once it has been released from reset, each Cortex-A9 core attempts to execute at the
ARM reset exception vector upon initial power-up. This vector in the chip memory map
(at 0000 0000h) is part of the on-chip boot ROM. The boot ROM code uses the state of
the eFuses and/or boot GPIO settings to determine the boot behavior of the device using
core0 (where core0- core3's availability on the chip depends on which chip is being used).

To distinguish which core is currently booting up, the boot ROM checks the CPU ID
stored in the CortexA9 Multiprocessor Affinity register. See the CortexA9 technical
reference manual for further details.

If core0 is booting up, the boot ROM enters the boot process and determines where to
boot the image from. It loads and executes the image after completing all HAB checks.
See the "System Boot" chapter of the chip reference manual for further details.

If the core booting is not core0, the boot ROM checks the persistent bits to determine
whether the core has a valid pointer that the boot ROM can execute from. The persistent
bits are a collection of general-purpose registers in the System Reset Controller (SRC).
The boot ROM code expects to find valid pointers to executable regions and functions for
each core stored in these registers. These registers are used because they retain their
values even after a warm reset. See the following table for the list of registers.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 43

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388h/index.html

For full details on boot process and the persistent bits, refer to the chip reference manual.

Table 3-1. Function pointers used in boot ROM

Register Description

SRC_GPR3 Entry function pointer for CPU1

SRC_GPR4 Argument for entry function for CPU1

SRC_GPR5 Entry function pointer for CPU2 (i.MX 6Quad only)

SRC_GPR6 Argument for entry function for CPU2

SRC_GPR7 Entry function pointer for CPU3 (i.MX 6Quad only)

SRC_GPR8 Argument for entry function for CPU3

In addition to the entry function pointer for each core, the presistent bit registers also
provide an argument register that is passed into the entry function as an argument pre-
loaded to the Cortex-A9 register 0 (r0) for that core. The i.MX 6 series Platform SDK
uses the entry function to point to the startup routine that initializes the core, cache, and
stacks. Then it uses the argument value in r0 as a pointer to a function that the core will
jump to once general initialization is complete.

3.3 Activating the secondary cores
Although multiple cores are available on this processor, only core0 automatically
activates during the initial boot process. SRC, the system reset controller module, handles
the reset signal for each core. By default, SRC keeps the secondary cores in a reset state
after boot. Therefore, the application needs to enable the other available cores.

To enable the other available cores:

1. Initialize persistent bits for the secondary core being activated.
2. Set the core_enable signal for each of the cores in the SRC Control Register (bits

22:24, for core1, core2, and core3 respectively).
3. Once the enable bits are set, the corresponding core is released from its reset state,

and it executes the boot ROM (at 0000 0000h).
4. The boot ROM determines if it is a secondary core and uses the presistent bit

registers to determine what to execute next.

This boot process is described in detail in the "System Boot" chapter of the reference
manual.

Activating the secondary cores

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

44 Freescale Semiconductor, Inc.

3.4 Multicore hello world example
Here is an example startup routine written in ARM assembly that shows how the
argument registers can be used.

ResetHandler
 mov r4, r0 ; save r0 for cores 1-3, r0 arg field passed by ROM
 ; r0 is a function pointer for secondary cpus
 ldr r0, =STACK_BASE
 ldr r1, =STACK_SIZE
 ; get cpu id, and subtract the offset from the stacks base address
 mrc p15,0,r2,c0,c0,5 ; read multiprocessor affinity register
 and r2, r2, #3 ; mask off, leaving CPU ID field
 mov r5, r2 ; save cpu id for later
 mul r3, r2, r1
 sub r0, r0, r3

 mov r1, r1, lsl #2

 ; set stack for SVC mode
 mov sp, r0
 ; set stacks for all other modes
 msr CPSR_c, #Mode_FIQ :OR: I_Bit :OR: F_Bit
 sub r0, r0, r1
 mov sp, r0

 msr CPSR_c, #Mode_IRQ :OR: I_Bit :OR: F_Bit
 sub r0, r0, r1
 mov sp, r0

 msr CPSR_c, #Mode_ABT :OR: I_Bit :OR: F_Bit
 sub r0, r0, r1
 mov sp, r0

 msr CPSR_c, #Mode_UND :OR: I_Bit :OR: F_Bit
 sub r0, r0, r1
 mov sp, r0

 msr CPSR_c, #Mode_SYS :OR: I_Bit :OR: F_Bit
 sub r0, r0, r1
 mov sp, r0

 ; go back to SVC mode and enable interrupts
 msr CPSR_c, #Mode_SVC

 bl freq_populate
 ; Disable caches
 bl disable_caches
 ; Invalidate caches
 bl invalidate_caches
 ; Invalidate Unified TLB
 bl invalidate_unified_tlb
 ; Enable MMU
 bl enable_mmu
 ; check cpu id - for cores 1-3 jump to user code, continue otherwise
 cmp r5, #0
 bleq primary_cpu_init
 blne secondary_cpus_init
 primary_cpu_init:
 bl enable_scu
 bl enable_GIC
 bl enable_gic_processor_interface
 bl hello_mpcore ; jump to main application
secondary_cpus_init:

Chapter 3 Multicore Startup

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 45

 bl enable_gic_processor_interface
 bx r4 ; jump to argument function pointer passed in by ROM
 END

This ResetHandler routine is written with the expectation that the secondary cores will be
enabled by setting the Entry Function Pointer persistent bits for all the cores to point to
the address of the ResetHandler routine. Initially, all of the stack pointers for all of the
cores need to be initialized; therefore, they can all execute a common startup routine.

3.4.1 System Reset Controller enable CPU function

This example uses a start secondary core function that writes the boot function pointers to
the ROM persistent bits and releases the secondary core from reset.

void start_secondary_cpu(int cpu_num, unsigned int *ptr){
 /* prepare pointers for ROM code */
 writel((u32)&ResetHandler, SRC_BASE_ADDR + (SRC_GPR1_OFFSET + cpu_num*8));
 writel((u32)ptr, SRC_BASE_ADDR + (SRC_GPR2_OFFSET + cpu_num*8));
 /* start core */
 if (cpu_num > 0){
 writel((readl(SRC_BASE_ADDR + SRC_SCR_OFFSET) | (1 << (21 + cpu_num))),
(SRC_BASE_ADDR + SRC_SCR_OFFSET));
 }
}

In this function, the main Entry Function (in the persistent bits) is always be set to the
ResetHandler startup routine for all cores. The second argument is a pointer (*ptr) to the
function that will execute after the Entry Function. This is the argument that will be
passed in at r0 to the ResetHandler startup function. After the startup routine finishes
initializing the CortexA9, it jumps to this pointer.

3.4.2 Hello multicore world

The example hello world routine is shown below.

void hello_mpcore(){
 int cpu_id, i;
 cpu_id = getCPUnum();
 if (cpu_id == 0){
 debug_uart_iomux();
 debug_uart->freq = 80000000;
 init_debug_uart(debug_uart, 115200);
 printf("##\n");
 }
 printf("Hello from CPU %d\n", cpu_id);
 if (cpu_id < (TOTAL_CORES-1)){ //start the next core
 start_secondary_cpu(cpu_id+1, (unsigned int *)&hello_mpcore);
 }
 while(1);
}

Multicore hello world example

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

46 Freescale Semiconductor, Inc.

This function first determines which core is executing the routine. If it is core0, the
function initializes the UART port so that the printf statements are sent out to the debug
UART port on the hardware. If it is core1-3, the function prints the statement "Hello from
CPU n."

After the function communicates its hello statement, it enables the next available core
using the start_secondary_cpu routine. Here the persistent bits argument function pointer
is set to call the hello_mpcore routine so that each core prints out its equivalent "hello
world" statement.

When executing the example using the i.MX 6Quad chip, these are the expected results:

##
Hello from CPU 0
Hello from CPU 1
Hello from CPU 2
Hello from CPU 3

Chapter 3 Multicore Startup

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 47

Multicore hello world example

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

48 Freescale Semiconductor, Inc.

Chapter 4
Configuring the GIC Driver

4.1 Overview
This chapter explains how to enable interrupts in the processor. The general interrupt
controller (GIC) supports up to 128 shared peripheral interrupt (SPI) sources and 16
software generated interrupt (SGI) sources. The GIC is split into a main interrupt
distributor block and individual core interface blocks, one for each Cortex-A9 core
present in the system. Refer to the GIC Architecture Specification from ARM for a
complete description of the GIC.

The block diagram for GIC is as follows:

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 49

GIC

SPIs

DISTRIBUTOR

Interrupt
IDs
32-1019

SGI
request

core0
interface

FIQ, IRQ

Interrupt
IDs
0-15

Interrupt
IDs
0-15

Interrupt
IDs
0-15

Interrupt
IDs
0-15

SGI
request

SGI
request

SGI
request

(to core0)

core1
interface

FIQ, IRQ (to core1)

core2
interface

FIQ, IRQ (to core2)

core3
interface

FIQ, IRQ (to core3)

Figure 4-1. GIC simplified block diagram

The interrupt controller is memory mapped. Each core can access these global control
registers by using a private interface through the snoop control unit (SCU). The base
address can be determined by reading the Cortex-A9 CP15 configuration base address,
which stores the value of this location. On this processor, the SCU base address (aka
PERIPHBASE address) starts at 00A0 0000h. The following table shows the general
high-level private memory map.

Table 4-1. Cortex A-9 general MPCore memory map

Offset from (00A0 0000h) Cortex-A9 MPCore Module

0000h-00FCh SCU registers

0100h-01FFh GIC core interrupt interfaces

Table continues on the next page...

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

50 Freescale Semiconductor, Inc.

Table 4-1. Cortex A-9 general MPCore memory map (continued)

Offset from (00A0 0000h) Cortex-A9 MPCore Module

0200h-02FFh Global timer

0600h-06FFh Private timers and watchdogs

1000h-1FFFh GIC interrupt distributor

4.2 Feature summary
The GIC's main functions are to:

• Globally enable the GIC distributor
• Enable individual interrupt sources (IDs)
• Set individual interrupt ID priority levels
• Set the interrupt source targeted core
• Send software generated interrupts between the cores

4.3 ARM interrupts and exceptions
All i.MX applications processors use the standard ARM exception vectors, where by
default the exception vector table resides at 0000 0000h. The standard exception vector
table is shown in the following table.

Table 4-2. Standard exception vectors

Address ARM Mode Exception Description

0000 0000h SVC Reset

0000 0004h UND Undefined Instruction

0000 0008h SVC Software Interrupt

0000 000Ch ABT Prefetch Abort

0000 0010h ABT Data Abort

0000 0014h - Not assigned

0000 0018h IRQ IRQ

0000 001Ch FIQ FIQ

When there is an exception, the ARM core jump to the associated exception vector and
switches to the corresponding mode. Therefore, the stack pointers for all ARM modes
should be initialized to a valid address during the start-up routine.

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 51

NOTE
If the stacks are not initialized when servicing an interrupt,
pushing registers to the stack causes a memory access violation,
triggers a Data Abort exception, and ultimately crashes the
system.

On i.MX processors, the default ARM exception table region is allocated to the boot
ROM region and cannot be overwritten. Upon power up, the boot ROM sets up this table
to jump to locations in the internal RAM space (iRAM).

To modify the table to execute custom interrupt/exception handlers, update the locations
that the iRAM vectors point to. On the chip, the boot ROM locates the IRQ jump pointer
address at 0093 FFF4h and the FIQ pointer at 0093 FFF8h. To have an interrupt
exception execute a custom handler, update the pointer to the IRQ and FIQ to point to the
custom function.

4.3.1 GIC interrupt distributor

The distributor block performs interrupt prioritization and distribution of interrupts to the
core interface blocks. Any interrupt (IRQ, FIQ) that is triggered from any peripheral must
follow this sequence:

1. The GIC distributor determines the priority of each interrupt.
2. It forwards the highest priority interrupt to the available core interface blocks. Each

interrupt source can be targeted to a single or multiple cores through GIC distributor
CPU target registers.

3. Hardware ensures that if an interrupt is targeted to several of the available cores, only
one of the cores handles it.

The GIC distributor registers used in the chip's interrupt example are shown in the
following table. For a full list of available registers/features, refer to the ARM GIC
architecture specification document.

Table 4-3. GIC distributor registers

Offset from GIC interrupt
distributor base (00A0 1000h)

Register
name

Description

000h ICDDCR Distributor Control Register

080h-0FCh ICDISR Interrupt Security Registers (n-interrupts/32, registers)

100h-17Ch ICDISER Interrupt Set Enable Registers (n-interrupts/32, registers)

180h-1FCh ICDICER Interrupt Clear Enable Registers (n-interrupts/32, registers)

400h-7F8h ICDIPR Interrupt Priority Registers (n-interrupts/4, registers)

800h-BF8h ICDITR Interrupt CPU Target Register (n-interrupts/4, registers)

ARM interrupts and exceptions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

52 Freescale Semiconductor, Inc.

4.3.2 GIC core interfaces

The core interface blocks provide a separate interface between each available core and
the GIC distributor. Their main functions are to:

• Enable the GIC CPU interface (to allow it to send interrupts to the CPU it is
connected to) and set the CPU priority level

• Read the acknowledge register to send an ack signal to the GIC Distributor
• Write to the end of interrupt register

When enabled, the interface takes the highest priority pending interrupt available from
the distributor and determines whether the interrupt source has sufficient priority to
interrupt the core to which it is connected. The core interface needs to be enabled to send
interrupt requests to the core to which it is connected.

In the main interrupt service routine, if the interrupt source is sent to a core, that core
must use its GIC core interface to send the GIC distributor an acknowledge signal.
Similarly, when the interrupt finishes being serviced, the core interface must be used to
send an end of interrupt signal to the distributor block.

The registers used in this example are shown in the following table. For a full list of
available registers and features, refer to the ARM GIC Architecture Specification.

Table 4-4. GIC CPU interface registers

Offset from GIC CPU Interface
Base (00A0 0100h)

Register Name Description

00h ICCICR CPU Interface Control Register

04h ICCPMR CUP Interrupt Priority Mask Register

0Ch ICCIAR Interrupt acknowledge Register

10h ICCEOIR End of Interrupt Register

Note that each core interface is memory mapped to the same address space, but is unique
for each available core interface. For example, in the i.MX6Quad, each core must
perform writes to these registers to configure the associated GIC core interface.

4.4 Sample code

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 53

4.4.1 Handling interrupts using C

This example shows how to implement the interrupt support by creating an interrupt
vector array. Using C, you can create an array of function pointers (pointers to the
individual ISR routines) where the array index corresponds to the interrupt source ID.

typedef void (*funct_t)(void); // define a pointer to a function
funct_t vect_IRQ[160];

The i.MX6Quad/Dual processor implements the interrupt sources as follows:

• interrupt IDs[0:15] are used for the 16 software generated interrupt sources
• interrupt IDs [15:31] are unused and left as reserved
• interrupt IDs [32:160] are used for the 128 shared peripheral interrupt sources

Therefore, there are 160 corresponding entries in the interrupt vector array. A register
IRQ function can be used to set the corresponding device driver interrupt service routine
to the position in the array that corresponds to the device interrupt source ID.

// set funcISR as the ISR function for the source ID #
void registerIRQ(int ID, funct_t funcISR){
 vect_IRQ[ID] = funcISR;
}

In the actual interrupt service routine that is executed when the ARM jumps to an IRQ
exception, determine the interrupt source ID and use that as the index to the interrupt
vector array.

To follow GIC guidelines for handling interrupts:

• Read the IAR register to send the ack signal
• After the actual targeted interrupt service routine is finished, the interrupt handler

must send the end of IRQ to the distributor.

// IRQ_Handler, this functions handles IRQ exceptions
void __irq C_IRQ_Handler(void){
 unsigned int vectNum;
 vectNum = read_irq_ack(); // send ack, get ID source #
 // vectNum now contains source ID in bits [9:0]
// Check if ID is 1023 or 1022 (spurious interrupt)
if (vectNum & 0x0200){
 write_end_of_irq(vectNum); // if spurious, send end of irq
 }
 else{
 vect_IRQ[vectNum & 0x1FF](); // jump to ISR in the look up table
 write_end_of_irq(vectNum); // send end of irq
 }
}

Sample code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

54 Freescale Semiconductor, Inc.

4.4.2 Enabling the GIC distributor

To enable the distributor, set bit 0 of the GIC distributor control register (ICDDCR). This
enables the distributor to forward pending interrupts to the enabled GIC core interface
blocks.

; void enable_GIC(void);
enable_GIC PROC
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
 ADD r0, r0, #0x1000 ; Add the GIC Distributor offset
 LDR r1, [r0] ; Read the GIC's Enable Register (ICDDCR)
 ORR r1, r1, #0x03 ; the enable bits
 STR r1, [r0] ; Write the GIC's Enable Register (ICDDCR)
 BX lr
 ENDP

4.4.3 Enabling interrupt sources

To enable an interrupt source, the GIC distributor provides Interrupt Set Enable Registers
(ICDISER) for the interrupt sources. Each bit in the registers corresponds to an available
interrupt source. The number of ICDISER registers are implementation dependent and
vary depending on how many interrupts the system supports.

To enable the GIC distributor so that it can forward the corresponding interrupt to the
GIC CPU interfaces, set the corresponding interrupt source bit.

; void enable_irq_id(unsigned int ID);
enable_irq_id PROC
 MOV r1, r0 ; Back up passed in ID value
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
 ; First, we need to identify which 32 bit block the interrupt lives in
 MOV r2, r1 ; Make working copy of ID in r2
 MOV r2, r2, LSR #5 ; LSR by 5 places, affective divide by 32
 ; r2 now contains the 32 bit block for the ID
 MOV r2, r2, LSL #2 ; mult by 4, to convert offset into an address offset (four
bytes
per reg)
 ; Now work out which bit within the 32 bit block the ID is
 AND r1, r1, #0x1F ; Mask off to give offset within 32bit block
 MOV r3, #1 ; Move enable value into r3
 MOV r3, r3, LSL r1 ; Shift it left to position of ID
 ADD r2, r2, #0x1100 ; Add r2 offset, to get (ICDISER) register
 STR r3, [r0, r2] ; Store r3 to (ICDISER)
 BX lr
 ENDP

4.4.4 Configuring interrupt priority

The GIC distributor provides a set of Interrupt Priority Registers (ICDIPR) for the
interrupt sources. Each byte in the registers corresponds to the priority level of an
interrupt source. Therefore, there are four priority bit fields per ICDIPR register. Each 8-
bit priority field within the priority registers can have possible values of 00h-FFh, where

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 55

00h is the highest possible priority and FFh is the lowest. The individual interrupt priority
level must be set to a higher priority level than the core priority level to be able to
interrupt the ARM core.

; void set_irq_priority(unsigned int ID, unsigned int priority);
; r0 = ID, r1 = priority
set_irq_priority PROC
 ; Get base address of private peripheral space
 MOV r2, r0 ; Back up passed in ID value
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
; Make sure that priority value is only 8 bits
 AND r1, r1, #0xFF
 ; Find which priority register this ID lives in
 BIC r3, r2, #0x03 ; copy ID to r3 clearing off the bottom two bits
 ; There are four IDs per reg, by clearing the bottom two
bits
we get an address offset
 ADD r3, r3, #0x1400 ; Now add the offset of the Priority Level registers from
the
base of the private peripheral space
 ADD r0, r0, r3 ; Now add in the base address of the private peripheral
space,
giving us the absolute address
 ; Now work out which ID in the register it is
 AND r2, r2, #0x03 ; Clear all but the bottom four bits, leaves which ID in
the
reg it is (which byte)
 MOV r2, r2, LSL #3 ; Multiply by 8, this gives a bit offset
 ; Read -> Modify -> Write
 MOV r12, #0xFF ; Mask (8 bits)
 MOV r12, r12, LSL r2 ; Move mask into correct bit position
 MOV r1, r1, LSL r2 ; Also, move passed in priority value into correct bit
position
 LDR r3, [r0] ; Read current value of the Priority Level register
(ICDIPR)
 BIC r3, r3, r12 ; Clear appropriate field
 ORR r3, r3, r1 ; Now OR in the priority value
 STR r3, [r0] ; And store it back again (ICDIPR)
 BX lr
 ENDP

4.4.5 Targeting interrupts to specific cores

The GIC distributor provides a set of Interrupt Target Registers (ICDITR) for the
interrupt sources. Each byte in the registers corresponds to the core targets of an interrupt
source. Therefore, there are four core target bit fields per ICDITR register.

For the i.MX 6Quad/6Dual processor, each 8-bit CPUT target field within the priority
registers can have possible values of 00h-0Fh because there are only up to four available
cores. Each bit corresponds to one core (where core-0 = bit0, core-1 = bit1, and so on…).

Using the core target registers, the GIC distributor can distribute the load between cores
effectively. If a triggered interrupt is targeted to multiple cores, the GIC distributor has
options for where it can send the interrupt. Thus, a delay is less likely because if one of
the targeted cores is busy, the GIC distributor can send the interrupt to a free core instead.

Sample code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

56 Freescale Semiconductor, Inc.

; void enable_interrupt_target_cpu(unsigned int ID, unsigned int target_cpu);
enable_interrupt_target_cpu PROC
 MOV r2, r0 ; Back up passed in ID value
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address

 ; Make sure that cpu value is only 2 bits max CPU value is 3 (0-3)
 AND r1, r1, #0x3
 ; Find which cpu_target register this ID lives in
 BIC r3, r2, #0x03 ; copy the ID, clearing off the bottom two bits
 ; There are four IDs per reg, by clearing the bottom two
bits
we get an address offset
 ADD r3, r3, #0x1800 ; Now add the offset of the Target CPU registers from the base
of
the private peripheral space
 ADD r0, r0, r3 ; Now add in the base address of the private peripheral space,
giving us the absolute address
 ; Now work out which ID in the register it is
 AND r2, r2, #0x03 ; Clear all but the bottom four bits, leaves which ID in
the
reg it is (which byte)
 MOV r2, r2, LSL #3 ; Multiply by 8, this gives a bit offset
 MOV r4, #1 ; Move enable value into r4
 MOV r4, r4, LSL r1 ; Shift it left to position of CPU target
 MOV r4, r4, LSL r2 ; move it to correct bit ID offset position

 LDR r3, [r0] ;read current value of the CPU Target register (ICDITR)
 ORR r3, r3, r4 ; Now OR in the CPU Target value
 STR r3, [r0] ; And store it back again (ICDITR)
 BX lr
 ENDP

4.4.6 Using software generated interrupts (SGIs)

The GIC distributor also allows the use of software generated interrupts (SGIs) for
interprocessor communication. SGIs allow a core to interrupt other cores directly.

This processor supports 16 SGI interrupt sources. To issue an SGI, write to the SGIR
distributor register and set the SGI_ID and CPUTarget bit fields. As with normal
interrupts, each SGI can target multiple cores.

; void send_sgi(unsigned int ID, unsigned int target_list, unsigned int filter_list)
send_sgi PROC
 AND r3, r0, #0x0F ; Mask off unused bits of ID, and move to r3
 AND r1, r1, #0x0F ; Mask off unused bits of target_filter
 AND r2, r2, #0x0F ; Mask off unused bits of filter_list
 ORR r3, r3, r1, LSL #16 ; Combine ID and target_filter
 ORR r3, r3, r2, LSL #24 ; and now the filter list
 ; Get the address of the GIC
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
 ADD r0, r0, #0x1F00 ; Add offset of the sgi_trigger reg
 STR r3, [r0] ; Write to the SGI Register (ICDSGIR)
 BX lr
 ENDP

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 57

4.4.7 Enabling the GIC processor interface

To enable the GIC processor interface, write to the bottom two bits of the core Interface
Control Register, where bit:0 enables secure interrupts, and bit:1 enables non-secure
interrupts.

; void enable_gic_processor_interface(void);
enable_gic_processor_interface PROC
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
 LDR r1, [r0, #0x100] ; Read CPU Interface Control reg (ICCICR/ICPICR)
 ORR r1, r1, #0x07 ; Bit 0:secure interrupts, bit 1: Non-Secure
 STR r1, [r0, #0x100] ; Write CPU Interface Control reg (ICCICR/ICPICR)
 BX lr
 ENDP

4.4.8 Setting the CPU priority level

Each core can have different priority levels set with the core Interface Priority Mask
Register. After reset, the value of the priority mask registers for each core interface is set
to mask all interrupts. Therefore, this register needs to be configured to allow the core to
service interrupts. The associated core can only be interrupted by interrupt sources with
higher priority levels than the core mask priority level.

; void set_cpu_priority_mask(unsigned int priority);
set_cpu_priority_mask PROC
 MRC p15, 4, r1, c15, c0, 0 ; Read periph base address to r1
 STR r0, [r1, #0x0104] ; Write the priority mask reg (ICCPMR/ICCIPMR)
 BX lr
 ENDP

4.4.9 Reading the GIC IRQ Acknowledge

After an interrupt is sent to a core, the core must read the Interface IRQ Acknowledge
Register (ICCIAR) to determine the interrupt source. This read effectively acts as an
acknowledge for the interrupt to the GIC distributor. The ICCIAR register contains the
interrupt ID for normal interrupts in the bottom 10 bits, and the core ID for any software
generated interrupts in bits 13-10.

; unsigned int read_irq_ack(void);
read_irq_ack PROC
 MRC p15, 4, r0, c15, c0, 0 ; Read periph base address
 LDR r0, [r0, #0x010C] ; Read the Interrupt Acknowledge reg (ICCIAR)
 ; value gets returned in r0
 BX lr
 ENDP

Sample code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

58 Freescale Semiconductor, Inc.

4.4.10 Writing the end of IRQ

After the core finishes servicing the interrupt, it must write the interrupt source ID to the
CPU Interface End of Interrupt Register (ICCEOIR). For every read of a valid ID from
the ICCIAR register, the core must perform a matching write to the ICCEOIR register.
The value written to the EOIR must be the interrupt ID read from the IAR register.

; void write_end_of_irq(unsigned int ID)
write_end_of_irq PROC
 MRC p15, 4, r1, c15, c0, 0 ; Read periph base address to r1
 STR r0, [r1, #0x0110] ; Write ID(r0) to the End of Interrupt register
 BX lr
 ENDP

4.4.11 GIC "hello world" example

This simple "hello world" example uses software generated interrupts. We arbitrarily
chose SGI ID 3, which in the example is defined as SW_INTERRUPT_3.

1. In the main routine, all four cores are initialized with the system reset controller.
2. When core-3 completes the main routine, it triggers the SGI3 interrupt to core-0.
3. The SGI service routine initiates a loop that tells all cores to print hello to the

terminal because of the SGI ISR routine is written such that after the SGI prints hello
to the terminal, it triggers another SGI to the next core, as shown below:

void SGI3_ISR(void){
 int cpu_id;
 cpu_id = getCPUnum();
 printf("Hello from CPU %d\n", cpu_id);
 if(cpu_id < 4){
 send_sgi(SW_INTERRUPT_3, (1 << (cpu_id+1)), 0);
 }
}

When executing the following example, these are the expected results:

##
Hello from CPU 0
Hello from CPU 1
Hello from CPU 2
Hello from CPU 3

4.4.12 GIC test code
#include "hardware.h"
//globals used for gic_test
unsigned int gicTestDone;
//unsigned int uartFREE;
extern void startup_imx6x(void); // entry function, startup routine, defined in startup.s
extern uint32_t getCPUnum(void);
void SGI3_ISR(void)
{
 uint32_t cpu_id;
 cpu_id = getCPUnum();

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 59

 //while(1); // debug
 printf("Hello from CPU %d\n", cpu_id);
 if (cpu_id < 4) {
 send_sgi(SW_INTERRUPT_3, (1 << (cpu_id + 1)), 0); // send to cpu_0 to start sgi
loop;
 }
 if (cpu_id == 3) {
 gicTestDone = 0; // test complete
 }
}
void start_secondary_cpu(uint32_t cpu_num, void functPtr(void))
{
 //printf("start sedondary %d\n", cpu_num);
 //printf("ptr 0x%x\n",(uint32_t)functPtr);
 /* prepare pointers for ROM code */
 writel((uint32_t) & startup_imx6x, SRC_BASE_ADDR + (SRC_GPR1_OFFSET + cpu_num * 8));
 writel((uint32_t) functPtr, SRC_BASE_ADDR + (SRC_GPR2_OFFSET + cpu_num * 8));
 /* start core */
 if (cpu_num > 0) {
 writel((readl(SRC_BASE_ADDR + SRC_SCR_OFFSET) | (1 << (21 + cpu_num))),
 (SRC_BASE_ADDR + SRC_SCR_OFFSET));
 }
}
// only primary cpu will run gic_test
void gic_test(void)
{
 uint32_t cpu_id;
 cpu_id = getCPUnum();
 if (cpu_id == 0) {
 gicTestDone = 1;
 //uartFREE = 1;
 register_interrupt_routine(SW_INTERRUPT_3, SGI3_ISR); // register sgi isr
 printf("Running the GIC Test \n");
 printf("Starting and sending SGIs to secondary CPUs for \"hello world\" \n\n");
 // start second cpu
 start_secondary_cpu(1, &gic_test);
 while (gicTestDone) ; //cpu0 wait until test is done, that is until cpu3 completes
its SGI.
 //writel((readl(SRC_BASE_ADDR + SRC_SCR_OFFSET) & ~(7 << 22)),
 // (SRC_BASE_ADDR + SRC_SCR_OFFSET)); // put other cores back into reset with
SRC module
 printf("\nEND of GIC Test \n");
 } else { //other cpus
 //printf("secondary main cpu: %d\n", cpu_id);
 if (cpu_id == 3) {
 //void send_sgi(unsigned int ID, unsigned int target_list, unsigned int
filter_list);
 send_sgi(SW_INTERRUPT_3, 1, 0); // send to cpu_0 to start sgi loop;
 } else {
 start_secondary_cpu(cpu_id + 1, &gic_test);
 }
 while (1) ; //do nothing wait to be interrupted
 }
}

4.5 Initializing and using the GIC driver
Typically, the startup routine (for the i.MX 6 series Platform SDK, startup_imx6x) is used
to initialize the GIC distributor and each of the available GIC CPU interfaces for both the
primary and secondary cores. The startup routine uses the available GIC driver functions
to initialize the GIC.

Initializing and using the GIC driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

60 Freescale Semiconductor, Inc.

When executing startup on the primary core, the GIC distributor and the GIC CPU
interface for the primary core are initialized as follows:

mov r0, #0xFF @ 0xFF is lowest priority level
bl set_cpu_priority_mask

bl enable_gic_processor_interface
bl enable_GIC

When a secondary core is brought up and executes the startup routine, only its GIC CPU
interface needs to be initialized because the GIC distrubutor only needs to be initialized
once. An example of this is shown below:

Example GIC secondary CPU initialization

secondary_cpus_init:
 mov r0, #0xFF @ 0xFF is lowest priority level
 bl set_cpu_priority_mask
 bl enable_gic_processor_interface enable_gic_processor_interface

Since the GIC distributor and CPU interfaces are initialized during startup, each module
driver does not need to access any of these functions to initialize these GIC interfaces.
Because the low-level initialization is already taken care of, only the following items
need to be initialized to enable interrupts for a given source:

• Enable interrupt sources (unmask interrupts) at the module level.
• Register the module interrupt service routine (ISR).
• Enable the interrupt to one of the available CPUs.

The following shows a generic example:

Example -3. Initializing module interrupts

enable_module_interrupt();
register_interrupt_routine(module_IRQ_ID, module_ISR); //register ISR
enable_interrupt(module_IRQ_ID, CPU_0, 0); //gic function to enable interrupt source
 //init to CPU_0, with max priority

Chapter 4 Configuring the GIC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 61

Initializing and using the GIC driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

62 Freescale Semiconductor, Inc.

Chapter 5
Configuring the AUDMUX Driver

5.1 Overview
AUDMUX, which is a digital audio multiplexer, provides a programmable interconnect
device for voice, audio, and synchronous data routing between host serial interfaces (such
as SSI, the synchronous serial interface controller) and peripheral serial interfaces (audio
and voice codecs, also known as coder-decoders). This chapter explains how to configure
the AUDMUX driver.

The AUDMUX is dedicated to the SSI only. With the AUDMUX, SSI signals can be
multiplexed to different ports without changing the PCB layout.

AUDMUX includes two types of interfaces: internal and external ports.
• Internal ports connect to the processor serial interfaces.
• External ports connect to off-chip audio devices and the serial interfaces of other

processors.

The desired connectivity is achieved by configuring the appropriate internal and external
ports.

AUDMUX includes three internal ports (Port1, Port2, and Port7) and four external ports
(Port3, Port4, Port5, and Port6). Each port can be programmed to one of the following:

• A full 6-wire SSI interface for asynchronous receive and transmit
• 4-wire (synchronous) peripheral interfaces
• 6-wire (asynchronous) peripheral interfaces

The following figure shows the structure of the AUDMUX.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 63

SSI1 Port 1

SSI2

SSI3

Port 2

Port 7

Port 3 Audio Device 1

Port 4 Audio Device 2

Port 5 Audio Device 3

Port 6 Audio Device 4

Mux

Matrix

AUDMUX Block

Figure 5-1. AUDMUX structure

The only instance of AUDMUX is located in the memory at the following address:

• AUDMUX base address = 021D 8000h

For each port, the AUDMUX interface provides the following two programmable, 32-bit
registers:

• Port Timing Control Register (AUDMUX_PTCRn)
• Port Data Control Register (AUDMUX_PDCRn)

For AUDMUX register definition details, see the chip reference manual.

5.2 Feature summary
The AUDMUX driver supports:

• Three internal ports
• Four external ports
• Full 6-wire SSI interfaces for asynchronous receive and transmit
• Configurable 4-wire (synchronous) or 6-wire (asynchronous) peripheral interfaces
• Each host interface's capability to connect to any other host or peripheral interface in

a point-to-point or point-to-multipoint (network mode)
• Transmit and Receive Data switching to support external network mode

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

64 Freescale Semiconductor, Inc.

5.3 Clocks
The AUDMUX only requires a peripheral clock and places no restrictions on the clock
frequency. Before accessing the AUDMUX register, the peripheral clock must be gated
on. Please see the CCM chapter of the chip reference manual for details.

5.4 IOMUX pin mapping
The IOMUX pin configuration shown in the following table is based on the connections
in an engineering sample board in which PORT5 was connected with the SSI codec
sgtl5000 in SYNC mode. Check your board's schematic for your board's specific pin
assignments.

Table 5-1. IOMUX pin map

Signal name Pin name ALT

AUD5_RXD KEY_ROW1 ALT2

AUD5_TXD KEY_ROW0 ALT2

AUD5_TXC KEY_COL0 ALT2

AUD5_TXFS KEY_COL1 ALT2

5.5 Modes of operation
The following table explains the AUDMUX modes of operation:

Table 5-2. Modes of operation

Mode Description Configuration

Asynchronous This port has a 6-wire interface (meaning RxD, TxD,
TxCLK,TxFS, RxCLK, RxFS). This mode has additional receive
clock (RxCLK) and frame sync (RxFS) signals for receiving (as
compared to the synchronous 4-wire interface.)

AUDMUX_PTCR[SYN] = 0b

Synchronous This port has a 4-wire interface (that is, RxD, TxD, TxCLK, and
TxFS). The receive data timing is determined by TxCLK and
TxFS.

AUDMUX_PTCR[SYN] = 1b

Normal This port is connected in a point-to-point configuration (as a
master or a slave). The RXDSEL [2:0] setting selects the
transmit signal from any port.

AUDMUX_PDCR1[MODE] = 0b

Table continues on the next page...

Chapter 5 Configuring the AUDMUX Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 65

Table 5-2. Modes of operation (continued)

Mode Description Configuration

Internal Network The output of the AND gate is routed (via the output of the port)
to the RxD signal of the corresponding host interface. The
INMMASK bit vector selects the transmit signals of the ports
that are to be connected in network mode. An AND Operator
receives the transmit signals from the AUDMUX ports (TxDn_in)
to form the output. In internal network mode, only one device
can transmit in its predesignated timeslot and all other transmit
signals must remain in high-impedance state and pulled-up.

AUDMUX_PDCR1[MODE] = 1b

5.5.1 Port timing mode

All ports can be configured in one of two timing modes: synchronous (SYNC) and
asynchronous (ASYNC). Both timing modes affect the usage of RxCLK and RxFS.
AUDMUX_PTCR[SYN] can set SYNC and ASYNC modes.

5.5.2 Port receive mode

Each port has two receive modes (normal mode and internal network mode) that affect
which data lines are used to create the RxD line for the corresponding host interface.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

66 Freescale Semiconductor, Inc.

RxD
(Port x)

AUDMUX boundary

1

0

MODE

TxD1_in

RXDSEL[2:0]

TxD2_in

TxD3_in

TxD4_in

TxD5_in

TxD6_in

TxD7_in

Signal selection for
internal network mode

1

INMMASK[7:0]

Figure 5-2. Port receive mode

Normal mode or internal network mode can be selected using
AUDMUX_PDCRn[MODE]. When internal network mode is selected,
AUDMUX_PDCRn[RXDSEL] is ignored and AUDMUX_PDCRn[INMMASK]
determines which RxD signals are ANDed together.

5.6 Port configuration

5.6.1 Signal direction

The direction of TxFS, TxCLK, RxFS, and RxCLK can be programmed to configure the
SSI interface connecting to the internal port of AUDMUX as a master or a slave of the
bus. The following fields control direction of TxFS, TxCLK, RxFS, and RxCLK:

• AUDMUX_PTCRn[TFSDIR]
• AUDMUX_PTCRn[TCLKDIR]
• AUDMUX_PTCRn[RFSDIR]
• AUDMUX_PTCRn[RCLKDIR]

Chapter 5 Configuring the AUDMUX Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 67

If the signal of the port is set as an output, then a source signal should be selected. For
example, if AUDMUX_PTCRn[TFSDIR] is set, the AUDMUX_PTCRn[TFSEL] bits
should be programmed to select which port will supply the source TxFS signal.

5.6.2 AUDMUX default setting

The default port-to-port connections are as follows:

• Port1 to Port6— Port6 provides the clock and frame sync.
• Port2 to Port5—Port5 provides the clock and frame sync.
• Port3 to Port4—Port4 provides the clock and frame sync.
• Port7 to Port7—in data loopback mode

5.6.2.1 Example: Port2 to Port5

Assume that the SSI audio codec is connected to the external Port5. Using the default
setting, SSI controller 2 (connected to the internal Port2) and the codec are connected
together. SSI controller 2 is the slave of the SSI bus and the codec is the master.

The registers related to port2 and port5 are listed in the following table along with their
reset values:

Table 5-3. Port2 and Port5 Example

Register Reset Value

AUDMUX_PTCR2 A500_0800h

AUDMUX_PDCR2 0000_8000h

AUDMUX_PTCR5 0000_0800h

AUDMUX_PDCR5 0000_2000h

The following figure shows the multiplexing and direction of the signals related to Port2
and Port5.

Port configuration

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

68 Freescale Semiconductor, Inc.

SSI
Controller 2

TxFS

TxCLK

TxD

RxD

AUDMUX
Port 2

AUDMUX
Port 5

TxFS

TxCLK

RxD

TxD

SSI
codec

Figure 5-3. Signal muxing and direction of Port2 and Port5 under default setting

5.7 Port configuration for SSI sync mode
For most audio codecs, the SSI sync mode will be utilized. A function named
audmux_route configures the audmux ports for SSI sync mode. In this case, the timing
mode of the ports is set as synchronous mode, and the receive mode of the port is set as
normal mode. The direction of the clock signals (TxClk, TxFS) depends on the SSI
controller being master or not.

5.8 Pseudocode for audmux_route
/*!
 * Set audmux port according to ssi mode (master/slave).
 * Set the audumx ports in sync mode (which is the default status for most codec).
 *
 * @param intPort the internal port to be set
 * @param extPort the external port to be set
 * @param is_master ssi mode(master/slave) of ssi controller, for example if
 * is_master=AUDMUX_SSI_MASTER,then the ssi controller is the master of the ssi bus. That is,
 * it supplies the bit clock frame sync signal, while the codec is the slave of the bus.
 * @return 0 if it succeeds
 * -1 if it fails
 */
uint32_t audmux_route(uint32_t intPort, uint32_t extPort, uint32_t is_master)
{
 Check_the_Parameter_Valid();
 //Configure the internal port firstly.
 If(ssi_controller_is_master){
 Set_clk_signals_as_input(intPort);
 }else{
 Set_clk_signals_as_output(intPort);
 Set_clk_sigtnals_from(extPort);
 }
 // Then configure the external port
 If(ssi_controller_is_master){
 Set_clk_signals_as_output(extPort);
 Set_clk_sigtnals_from(intPort);
 }else{
 Set_clk_signals_as_input(extPort);
 }
 return 0;
}

Chapter 5 Configuring the AUDMUX Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 69

5.9 Pseudocode for audmux_port_set
/* Set ptcr and pdcr of the audmux port
 *
 * @param port the port to be set
 * @param ptcr ptcr value to be set
 * @param pdcr pdcr value to be set
 * @return 0 if succeeded
 * -1 if failed.
 */
uint32_t audmux_port_set
 (uint32_t port, uint32_t ptcr, uint32_t pdcr)
{
 uint32_t pPTCR, pPDCR;
 if ((port < AUDMUX_PORT_INDEX_MIN) || (port > AUDMUX_PORT_INDEX_MAX)) {
 return -1;
 }
 pPTCR = AUDMUX_BASE_ADDR + AUDMUX_PTCR_OFFSET(port);
 pPDCR = AUDMUX_BASE_ADDR + AUDMUX_PDCR_OFFSET(port);
 writel(ptcr, pPTCR);
 writel(pdcr, pPDCR);
 return 0;
}

Pseudocode for audmux_port_set

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

70 Freescale Semiconductor, Inc.

Chapter 6
Configuring the eCSPI Driver

6.1 Overview
This chapter provides a quick guide for firmware developers about how to write a device
driver for the eCSPI controller. The enhanced configurable serial peripheral interface
(eCSPI) is a full-duplex, synchronous, four-wire serial communication block. The eCSPI
controller works as a device over the SPI bus, either as a master or a slave, and
communicates with other devices according to the chip select (CS) signal's selections.
Note that this driver does not implement slave mode.

NOTE
This chapter uses an engineering sample board's schematics for
pin assignments. Refer to your board's schematics for your
board's specific information.

There are five instances of eCSPI in the chip. They are located in the memory map at the
following addresses:

• eCSPI1 base address - 0200 8000h
• eCSPI2 base address - 0200 C000h
• eCSPI3 base address - 0201 0000h
• eCSPI4 base address - 0201 4000h
• eCSPI5 base address - 0201 8000h

6.2 Feature summary
This driver provides the basic eCSPI initialization functionality and R/W in master mode.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 71

6.3 I/O signals
The eCSPI block has below I/O signals:

Table 6-1. eCSPI I/O signals

Signal I/O Description Reset State Pull Up/Down

SS[3:0] I/O Chip selects 1 -

SCLK I/O SPI clock 0 Active

MISO I/O Master data in; slave data out 0 Passive

MOSI I/O Master data out; slave data in 0 -

SPI_RDY I Master data out; slave data in 0 Active

The following figure shows the usage when eCSPI is functioning as an SPI master:

eCSPI

(master)

External
Device 0

SS[3:0]

SCLK

MOSI

SS[0]

External
Device 1

External
Device 2

External
Device 3

SS[1] SS[2] SS[3]

MISO

Figure 6-1. eCSPI as SPI master

6.4 eCSPI controller initialization
The necessary initialization process can be summarized as:

1. Pin-mux configuration
2. Clock configuration
3. Controller initialization
4. Controller is ready to transfer data.

I/O signals

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

72 Freescale Semiconductor, Inc.

6.5 eCSPI IOMUX pin mapping
Refer to board schematics for correct pin assignments to configure the pin signals. The
following table is based on an engineering sample board and is used as an example:

Table 6-2. eCSPI1 options

Signals Option 1

PAD MUX

MISO CSI0_DAT6 ALT2

DISP0_DAT22 ALT2

EIM_D17 ALT1

KEY_COL1 ALT0

MOSI CSI0_DAT5 ALT2

DISP0_DAT21 ALT2

EIM_D18 ALT1

KEY_ROW0 ALT0

RDY GPIO_19 ALT4

SCLK CSIO_DAT4 ALT2

DISP0_DAT20 ALT2

EIM_D16 ALT1

KEY_COL0 ALT0

SS0 CSIO_DAT7 ALT2

DISP0_DAT23 ALT2

EIM_EB2 ALT1

KEY_ROW1 ALT0

SS1 DISP0_DAT15 ALT2

EIM_D19 ALT1

KEY_COL2 ALT0

SS2 EIM_D24 ALT3

KEY_ROW2 ALT0

SS3 EIM_D25 ALT3

KEY_COL3 ALT0

The pad control of each pin also needs to be configured. Because the clock and data pins
have pull-up resistors, these pads can be configured to open drain if the board schematic
already has external pull-up resistors for them. Otherwise, they have to be configured to
push-pull with a specified pull-up resistor value.

Chapter 6 Configuring the eCSPI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 73

6.6 Clocks
If the eCSPI clock is gated, ungate it in the clock control module (CCM) as follows:

• For eCSPI1, set CCM_CCGR1[CG0] (bits 1-0).
• For eCSPI2, set CCM_CCGR1[CG1] (bits 2-3).
• For eCSPI3, set CCM_CCGR1[CG2] (bits 4-5).
• For eCSPI4, set CCM_CCGR1[CG3] (bits 6-7).
• For eCSPI5, set CCM_CCGR1[CG4] (bits 8-9).

The following figure shows the eCSPI clock source.

PLL 3 60M 61

CSCDR2: ecspl_clk_podf

6 bit divider
default-1

ECSPI_CLK_ROOT
60 MHz

cg

Figure 6-2. eCSPI clock source

To set the frequency of the eCSPI, Set the ecspi_clk_podf field of CCM_CSCDR2. To
achieve the expected frequency, set the divider value on the control register of eCSPI
controller.

6.7 Controller initialization
To initialize the controller, configure the control and configuration registers. For a full
listing of eCSPI controller registers, see the eCSPI memory map in the eCSPI chapter of
your chip reference manual.

The control register's channel select field's value determines which chip select is used.
The channel mode field's value determines the mode (master or slave) for each chip
select. See the "Control Register (ECSPIx_CONREG)" section of the chip reference
manual's eCSPI chapter for the complete description of these fields.

Note that you must select master mode because this driver does not implement R/W slave
mode functionality.

The configuration register can configure the inactive state of the clock as well as the data
and polarity settings. The configuration to the controller should be aligned to the setting
in device. See the "Config Register (ECSPIx_CONFIGREG)" section of the chip
reference manual's eCSPI chapter for the complete description of this register.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

74 Freescale Semiconductor, Inc.

NOTE
The EN bit of control register should be cleared to reset the
controller internal logic. Set this bit before setting the
configuration register or setting to the configuration register
will not have an effect.

To set the SPI bus frequency, configure the pre divider and post divider, as shown in the
following equation:

Fspi = Fsource ÷ ((pre + 1) x 2post)

The following figure shows an example using an engineering sample board's schematic
eCSPI. In this example, SS1(EIM_D19) is selected and master mode is set; therefore, the
CONREG bit[19:18] should be 01b and bit 5 should be 1b.

SPI NOR Flash

EIM_D18

EIM_D16

EIM_D19

R889
10.0K

3.3 V

R880 SPI_NOR_MOSI

SPI_NOR_WP_B

M25P32_VMW6TG

PORT3_P38 R879{5.11.12.14.17.20}

SPI_NOR_RST_B

SPI_NOR_MISO R886 EIM_D17

4

7

2

8

3.3 V

C494C493

4.7uF 0.1UF

U78

VCC
D

C

S
HOLD

Q

W/VPP

VSS

0

0

5

6

1

3

R881 SPI_NOR_SCK

R887 SPI_NOR_CS_B0

0

0

Figure 6-3. eCSPI example configuration

For further details, see the eCSPI chapter in the chip reference manual.

6.8 eCSPI data transfers
This section describes how to handle data transfers between the eCSPI controller and the
device. In SPI master mode, the controller initiates the transfer actively, and then reads
the response from the slave.

The following figure shows the flow chart for data transfer in master mode.

Chapter 6 Configuring the eCSPI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 75

Start

Setup burst length

Setup SMC
(CONREG)

Put data to TxFIFO
(size = burst bytes)

Check status

Transfer complete?

Read data from TxFIFO
(size = burst bytes)

Clear status
(TC, RC)

Success

Fail

Timeout?

Y

N

Y

N

Figure 6-4. Master mode data transfer flow chart

During the SPI transfer, burst length bits of data should be written to TxFIFO.

1. Set the burst length and SMC first, and then you can write the burst length of data to
TxFIFO.

2. The transfer complete (TC) bit is set only when the controller receives the same burst
length of data from the slave as the burst length of data that the controller sent.

3. When this bit is set, burst length bits of data can be read from RxFIFO.

6.9 Application program interface
All the external function calls and variables are located in the inc/ecspi_ifc.h file. The
following table explains the APIs.

Application program interface

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

76 Freescale Semiconductor, Inc.

Table 6-3. eCSPI APIs

API Description Parameters Return

int
ecspi_open(dev_ecspi_
e device, param_ecspi_t
parameter);

Initializes the eCSPI controller
as specified by device;
parameter specifies the
configuration.

device: device instance/
enumeration

parameter: device
configuration.

See ecspi_ifc.h for detailed bit
field definitions.

• TRUE on success
• FALSE on fail

int
ecspi_close(dev_ecspi_
e device);

Disables the eCSPI device. device: device instance/
enumeration

• TRUE on success
• FALSE on fail.

int
ecspi_ioctl(dev_ecspi_e,
param_ecspi_t);

Resets the eCSPI controller.

Unlike ecspi_open it does not
configure the clock or IOMUX.

device: device instance/
enumeration

parameter: device
configuration.

See ecspi_ifc.h for detailed bit
field definitions.

• TRUE on success
• FALSE on fail.

int
ecspi_xfer(dev_ecspi_e
device, uint8_t *tx_buf,
uint8_t *rx_buf, uint16_t
burst_len);

Initiates data transfer device: device instance/
enumeration:

• tx_buf: data to be sent
• rx_buf: buffer to put data

returned
• burst_len: length in bits of

the data to exchange

• TRUE on success
• FALSE on fail

Chapter 6 Configuring the eCSPI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 77

Application program interface

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

78 Freescale Semiconductor, Inc.

Chapter 7
Configuring the EIM Driver

7.1 EIM overview
This chapter explains how to configure the driver for the wireless external interface
module (EIM). The EIM handles the interface to devices that are external to the chip,
including the generation of chip selects (CS), clock, and control for external peripherals
and memory.

The EIM provides access as follows:

• Asynchronous access to devices with SRAM-like interface
• Synchronous access to devices with NOR-flash-like or PSRAM-like interface.

Locations on the chip are:

• EIM controller register base = 021B 8000h
• External memory (EIM NOR/RAM CS0) = 0800 0000h.
• CS1 = 256 Mbytes after CS0
• CS2 = 256 Mbytes after CS1
• CSn+1 = 256 Mbytes after CSn

The EIM controller supports the following programmable data port sizes: 8 bit, 16 bit,
and 32 bit. It also supports the multiplexed address/data operation, which means A0-A15
can be multiplexed as data pins.

7.2 Feature summary
The EIM has the following features:

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 79

Table 7-1. EIM feature summary

Feature Details

Chip selects • Up to six chip selects for external devices
• Flexible address decoding; each chip select can be configured separately

with the configuration register
• Individual select signal for each memory space defined
• Selectable write protection for each chip select
• Support for multiplexed address/data bus operation on 16-bit or 32-bit

port size
• Programmable data port size for each chip select (8 bit, 16 bit, or 32 bit)
• Programmable wait-state generator for each chip select for write and read

accesses separately

Accesses • Asynchronous accesses with programmable setup and hold times for
control signals

• Support for asynchronous page mode accesses (16-bit and 32-bit port
size)

Mode support • Independent synchronous memory burst read mode support for NOR
Flash and PSRAM memories (16-bit and 32-bit port size)

• Independent synchronous memory burst write mode support for PSRAM-
and NOR-Flash-like memories

• Independent programable variable/fix latency support for read and write
synchronous (burst) mode

• Support for big endian and little endian operation modes per access

General feature support • Support for NAND Flash devices with NOR Flash like interface-MDOC,
OneNand

• Support for one ID at a time ARM AXI slave interface
• External interrupt support, RDY_INT signal function as external interrupt

Boot from external device support according
to boot signals, using RDY_INT signal

• RDY signal support assertion after reset for MDOC device
• INT signal support assertion after reset for OneNand device

7.3 Modes of operation
Table 7-2. EIM modes of operation

Mode Description

Asynchronous mode Non-burst mode used for SDRAM access

Asynchronous page mode Allows burst accesses by emulating page mode operation

Multiplexed address/data mode Address pins DA[15:0] can be multiplexed as data pins

Burst clock mode Supports burst synchronous operations in various frequencies

Low power mode Gates input clocks by ACT_CS bits

Boot mode Boots from external device located on CS0

7.4 Clocks
The following table shows the EIM clock source.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

80 Freescale Semiconductor, Inc.

Table 7-3. Reference clocks

Clock Name Description

EIM clock root ACLK_EMI_SLOW_CLK_ROOT 132 MHz source by default. Can be changed through:

• CSCMR1[aclk_emi_slow_sel]
• CSCMR1[aclk_emi_slow_podf]

7.5 IOMUX pin mapping
The following table shows the pins that are used on the engineering sample board.
Because some pins can be MUXed to multiple pads, refer to the board schematic to
choose the proper pad.

Table 7-4. IOMUX pin mapping

Signal PAD MUX SION

WEIM_DA_A[0] EIM_DA0 ALT0 0

WEIM_DA_A[1] EIM_DA1 ALT0 0

WEIM_DA_A[2] EIM_DA2 ALT0 0

WEIM_DA_A[3] EIM_DA3 ALT0 0

WEIM_DA_A[4] EIM_DA4 ALT0 0

WEIM_DA_A[5] EIM_DA5 ALT0 0

WEIM_DA_A[6] EIM_DA6 ALT0 0

WEIM_DA_A[7] EIM_DA7 ALT0 0

WEIM_DA_A[8] EIM_DA8 ALT0 0

WEIM_DA_A[9] EIM_DA9 ALT0 0

WEIM_DA_A[10] EIM_DA10 ALT0 0

WEIM_DA_A[11] EIM_DA11 ALT0 0

WEIM_DA_A[12] EIM_DA12 ALT0 0

WEIM_DA_A[13] EIM_DA13 ALT0 0

WEIM_DA_A[14] EIM_DA14 ALT0 0

WEIM_DA_A[15] EIM_DA15 ALT0 0

WEIM_D[16] EIM_D16 ALT0 0

WEIM_D[17] EIM_D17 ALT0 0

WEIM_D[18] EIM_D18 ALT0 0

WEIM_D[19] EIM_D19 ALT0 0

WEIM_D[20] EIM_D20 ALT0 0

WEIM_D[21] EIM_D21 ALT0 0

WEIM_D[22] EIM_D22 ALT0 0

WEIM_D[23] EIM_D23 ALT0 0

WEIM_D[24] EIM_D24 ALT0 0

Table continues on the next page...

Chapter 7 Configuring the EIM Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 81

Table 7-4. IOMUX pin mapping (continued)

Signal PAD MUX SION

WEIM_D[25] EIM_D25 ALT0 0

WEIM_D[26] EIM_D26 ALT0 0

WEIM_D[27] EIM_D27 ALT0 0

WEIM_D[28] EIM_D28 ALT0 0

WEIM_D[29] EIM_D29 ALT0 0

WEIM_D[30] EIM_D30 ALT0 0

WEIM_D[31] EIM_D31 ALT0 0

WEIM_A[16] EIM_A16 ALT0 0

WEIM_A[17] EIM_A17 ALT0 0

WEIM_A[18] EIM_A18 ALT0 0

WEIM_A[19] EIM_A19 ALT0 0

WEIM_A[20] EIM_A20 ALT0 0

WEIM_A[21] EIM_A21 ALT0 0

WEIM_A[22] EIM_A22 ALT0 0

WEIM_A[23] EIM_A23 ALT0 0

WEIM_A[24] EIM_A24 ALT0 0

WEIM_A[25] EIM_A25 ALT0 0

WEIM_LBA EIM_LBA ALT0 0

WEIM_OE EIM_OE ALT0 0

WEIM_RW EIM_RW ALT0 0

WEIM_CS[0] EIM_CS0 ALT0 0

WEIM_CS[1] EIM_CS1 ALT0 0

WEIM_EB[0] EIM_EB0 ALT0 0

WEIM_EB[1] EIM_EB1 ALT0 0

WEIM_EB[2] EIM_EB2 ALT0 0

WEIM_EB[3] EIM_EB3 ALT0 0

WEIM_WAIT EIM_WAIT ALT0 0

WEIM_BCLK EIM_BCLK ALT0 0

7.6 Resets and interrupts
This driver does not implement an interrupt mode.

7.7 Initializing the driver
Use the following code to initialize the driver:

Resets and interrupts

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

82 Freescale Semiconductor, Inc.

uint32_t eim_init(…)
{
Configure the DSZ field of GCR1
Configure the MUM field of GCR1
Configure the SHFT field of GCR1
Enable chip select
Set other fields according to external device and HW connection
}

7.8 Testing the driver
Build the SDK with the following command:

./tools/build_sdk -target mx6dq -board sabre_ai -board_rev a -test eim

This generates an ELF and binary file into the following locations:

• output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-eim-sdk.elf

• output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-eim-sdk.bin

Download mx6dq_sabre_ai_rev_a using RV-ICE or Lauterbach Trace32. Alternately, burn
mx6dq_sabre_ai_rev_a to an SD card with the following command (entered in Windows's
"Command Prompt" window):

cfimager-imx -o 0 -f mx6dq_sabre_ai_rev_a-eim-sdk.bin -d g:(SD drive name in your PC)

Finally, power-up the board to run the test.

The general test routine is as follows:

int main(void)
{
 Initialize test buffer
Initialize EIM controller
 Initialize NOR-flash on CS0
 Write data to flash
 Read data back from flash
 Compare data
}

Chapter 7 Configuring the EIM Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 83

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

84 Freescale Semiconductor, Inc.

Chapter 8
Configuring the EPIT Driver

8.1 Overview
This chapter explains how to configure the EPIT driver. EPIT is a 32-bit set-and-forget
timer that begins counting after it is enabled by software. It is capable of providing
precise interrupts at regular intervals with minimal processor intervention.

This low-level driver helps to configure the EPIT for some functions like delay or system
tick.

There are two instances of EPIT. They are located in the memory map at:

• EPIT1 base address = 020D 0000h
• EPIT2 base address = 020D 4000h

8.2 Feature summary
This low-level driver supports:

• The usage of three different clock sources for the 32-bit down counter.
• Set-and-forget and free-running modes
• On the fly counter reprogramming
• Can be programmed to be active in low-power and debug modes
• Interrupt generation when the counter reaches the compare value

8.3 Modes of operation
The following table explains the EPIT modes of operation:

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 85

Table 8-1. Modes of operation

Mode What it does

Set-and-forget mode: The EPIT counter starts the count down from the load register EPIT_EPITLR value to zero. When
the counter reaches 0, it reloads the value from EPIT_EPITLR, and starts to count down towards
0. For this, the reload mode must be enabled. The counter does not have to be at 0 for it to be
loaded with a different start value. It can be achieved by setting EPIT_CR[IOVW].

Free-running mode: The EPIT counter endlessly counts down from FFFF FFFFh to 0h. The reload mode must be
disabled.

8.4 Output compare event
The EPIT has the capability to change the state of an output signal (EPITO) on a compare
event. The behavior of that signal is configurable in the driver and could be set to:

• OUTPUT_CMP_DISABLE = output disconnected from the external signal EPITO.
• OUTPUT_CMP_TOGGLE = toggle the output.
• OUTPUT_CMP_CLEAR = set the output to a low level.
• OUTPUT_CMP_SET = set the output to a high level.

Use the following function to generate an output event on compare:

• epit_get_compare_event()

8.5 Clocks
EPIT receives three clock signals.

Output compare event

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

86 Freescale Semiconductor, Inc.

DPLL2
396 MHz
352 MHz
198 MHz

pre_periph_clk_sel

pll_bypass_en2

0 0

periph_clk_sel

4

ipg_podf

2

CCM

AHB_CLKs_ROOT
(132 MHz)

IPG_CLK_ROOT
(66 MHz)

PERCLK_ROOT
(66 MHz) C

LK
S

R
C

perclk_podf

cg

CKIL

2

1

3-bit Divider where 2 = default divider value.

6-bit Divider where 1 = default divider value.
th

MUX with default 0 selection. Unless mentioned, the inputs are in ascending order.0

GPT

counter
clock

GPT_PR

I/O PAD

0

Figure 8-1. Reference clocks

The following table explains the EPIT reference clocks:

Table 8-2. Reference clocks

Clock Name Description

Low-frequency clock CKIL Global 32,768 Hz source from the CKIL input. It remains on
in low power mode.

High-frequency clock PERCLK_ROOT Provided by the CCM. It can be disabled in low power mode.

Peripheral clock IPG_CLK_ROOT Typically used in normal operation. It is provided by CCM. It
cannot be powered down.

Because the frequency of DPLL2 and various dividers is system dependent, the user may
need to adjust the driver's frequency. To do this, change the freq member of the
hw_module structure defined into ./src/include/io.h

For example, take the following non-default divider values:

• DPLL2 is set to output 396 MHz
• ahb_podf divides by 3
• ipg_podf divides by 2

In this example, IPG_CLK = 132 MHz and PERCLK = 66 MHz.

The driver handles the clock gating on the source clock.

Chapter 8 Configuring the EPIT Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 87

8.6 IOMUX pin mapping
The EPIT can change the state of an output signal (EPITO) on a compare event. The
IOMUX should route these signals to the appropriate pins. The IOMUX configuration is
board dependent and can be handled with the IOMUX tool.

Table 8-3. EPIT IOMUX pin assignments

Signal IOMUXC Setting for EPIT1 iOMUXC Setting for EPIT2

PAD MUX SION PAD MUX SION

EPITO EIM_D19 ALT6 1 EIM_D20 ALT6 1

EPITO GPIO_0 ALT4 1 GPIO_8 ALT2 1

EPITO GPIO_7 ALT2 1 - - -

8.7 Resets and interrupts
The driver sets EPITCR[SWR] in the function epit_init() to reset the module during
initialization.

The external application is responsible for creating the interrupt subroutine. The address
of this routine is passed through the structure hw_module defined in ./src/include/io.h. It
is initialized by the application and used by the driver for various configurations.

All interrupt sources are listed in the "Interrupts and DMA Events" chapter of the device
reference manual. In the SDK, the list is provided in ./src/include/mx6dq/
soc_memory_map.h.

8.8 Initializing the EPIT driver
Before using the EPIT timer in a system, prepare a structure that provides the essential
system parameters to the driver. This is done by using the hw_module structure, which is
defined in ./src/include/io.h.

The following pseudocode provides an example of the EPIT used as system timer:

struct hw_module g_system_timer = {
 "EPIT1 used as system timer",
 EPIT1_BASE_ADDR,
 66000000,
 IMX_INT_EPIT1,
 &default_interrupt_routine,
};

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

88 Freescale Semiconductor, Inc.

The following functions typically use the address of this structure.

/*!
 * Initialize the EPIT timer.
 *
 * @param port - pointer to the EPIT module structure.
 * @param clock_src - source clock of the counter: CLKSRC_OFF,
 * CLKSRC_IPG_CLK, CLKSRC_PER_CLK, CLKSRC_CKIL.
 * @param prescaler - prescaler of source clock from 1 to 4096.
 * @param reload_mode - counter reload mode: FREE_RUNNING or
 * SET_AND_FORGET.
 * @param load_val - load value from where the counter start.
 * @param low_power_mode - low power during which the timer is enabled:
 * WAIT_MODE_EN and/or STOP_MODE_EN.
 */
void epit_init(struct hw_module *port, uint32_t clock_src,
 uint32_t prescaler, uint32_t reload_mode,
 uint32_t load_val, uint32_t low_power_mode)

/*!
 * Setup EPIT interrupt. It enables or disables the related HW module
 * interrupt, and attached the related sub-routine into the vector table.
 *
 * @param port - pointer to the EPIT module structure.
 */
void epit_setup_interrupt(struct hw_module *port, uint8_t state)

/*!
 * Enable the EPIT module. Used for instance when the epit_init is done, and
 * other interrupt related settings are ready.
 *
 * @param port - pointer to the EPIT module structure.
 * @param load_val - load value from where the counter starts.
 * @param irq_mode - interrupt mode: IRQ_MODE or POLLING_MODE.
 */
void epit_counter_enable(struct hw_module *port, uint32_t load_val,
 uint32_t irq_mode)

/*!
 * Disable the counter. It saves energy when not used.
 *
 * @param port - pointer to the EPIT module structure.
 */
void epit_counter_disable(struct hw_module *port)

/*!
 * Get the output compare status flag and clear if set.
 * This function is typically used for polling method.
 *
 * @param port - pointer to the EPIT module structure.
 * @return the value of the compare event flag.
 */
uint32_t epit_get_compare_event(struct hw_module *port)

/*!
 * Reload the counter with a known value.
 *
 * @param port - pointer to the EPIT module structure.
 */
void epit_reload_counter(struct hw_module *port, uint32_t load_val)

Chapter 8 Configuring the EPIT Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 89

8.9 Testing the EPIT driver
The EPIT driver runs the following tests:

• Delay test
• Tick test

8.9.1 Delay test

The delay test shows the usage of the EPIT as a timer for a delay function hal_delay_us(),
which is programmed into ./src/sdk/timer/drv/imx_timer/timer.c. This function serves as
a use case example of EPIT in a system. The test displays the elapsed numbers of
seconds. This test runs for 10 seconds and then returns to the main test menu.

8.9.2 Tick test

In the tick test, the EPIT is configured to generate an interrupt every 10 ms. This is
similar to an operating system tick timer with one hundred interrupts occurring per
second. After each second has elapsed, the test displays the equivalent number of
received ticks. This runs for 10 seconds and then returns to the main test menu.

Testing the EPIT driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

90 Freescale Semiconductor, Inc.

Chapter 9
Configuring the ESAI Driver

9.1 ESAI overview
This chapter describes the module-level operation and programming for the enhanced
serial audio interface (ESAI). The pseudocode supplied in the document is based on the
source code for the ESAI driver, which is delivered with the i.MX 6 series Platform SDK.

The ESAI provides a full-duplex serial port for serial communication with serial devices,
including industry-standard codecs and other DSPs. It consists of independent transmitter
and receiver sections and can contain up to six transmitters and up to four receivers.

• Transmitters 2-5 and receivers 0-3 share the following pins:
• SDO2/SDI3
• SDO3/SDI2
• SDO4/SDI1
• SDO5/SDI0

• Transmitters 0 and 1 share the following pins, which they use exclusively:
• SDO0
• SDO1

Each independent transmitter and receiver section has its own clock generator, but all
transmitters share the 128-word transmit FIFO and all receivers share the 128-word
receive FIFO.

There is only one instance of the ESAI, which is located at base address = 0202 4000h.

9.2 Feature summary
The ESAI driver in the SDK has the following features:

• A simple framework for audio

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 91

• ESAI driver
• CS42888 driver for the external audio codec

9.3 Clocks

CSCMR2: esai_clk_sel

PLL 4

1

0

2

3

CS1CDR: esai_clk_pred

CS1CDR: esai_clk_podf

cg 3 bit divider
default=2

3 bit divider
default=8

ESAI_CLK_ROOT

PLL 3
PFD 2

PLL 3
PFD 3

PLL 3

(508.2M)

(454.7M)

Figure 9-1. ESAI clock tree

Before the ESAI is used, CCM_CCGR1[CG8] must be set to gate on esai_clks. See the
"Clock Controller Module" chapter in the chip reference manual for details.

By default, ESAI_CLK_ROOT is sourced from PLL3, which is 480 MHz in this chip.
Taking the default CS1CDR esai_clk_pred value of 2 and the default CS1CDR
esai_clk_podf value of 8, esai_clk_root is divided to 30 MHz.

9.4 IOMUX pin mapping
The IOMUX pin mapping in the following table is based on an engineering sample
board. For other boards, see the board schematics for the specific pin assignments.

Table 9-1. Example IOMUX pin mapping

Signal name Pin name ALT Daisy chain involved

ESAI_FSR ENET_REF_CLK ALT2 YES

ESAI1_FST ENET_RXD1 ALT2 YES

ESAI_HCKT ENET_RXD0 ALT2 YES

ESAI_SCKR ENET_MDIO ALT2 YES

ESAI_SCKT ENET_CRS_DV ALT2 YES

Table continues on the next page...

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

92 Freescale Semiconductor, Inc.

Table 9-1. Example IOMUX pin mapping (continued)

Signal name Pin name ALT Daisy chain involved

ESAI_SDO0 NANDF_CS2 ALT2 YES

ESAI_ SDO1 NANDF_CS3 ALT2 YES

ESAI_SDO2/SDI3 ENET_TXD1 ALT2 YES

ESAI_ SDO3/SDI2 ENET_TX_EN ALT2 YES

ESAI_ SDO4/SDI1 ENET_TXD0 ALT2 YES

ESAI_ SDO5/SDI0 ENET_MDC ALT2 YES

9.5 External ESAI signal description
Table 9-2. ESAI signal descriptions (external)

Signal name Description I/O

SDO0 Used for transmitting data from the ESAI_TX0 serial transmit shift register. O

SDO1 Used for transmitting data from the ESAI_TX1 serial transmit shift register. O

SDO2/SDI3 • Used as SDO2 for transmitting data from the ESAI_TX2 serial transmit shift register when
programmed as a transmitter pin

• Used as the SDI3 signal for receiving serial data to the ESAI_RX3 serial receive shift
register when programmed as a receiver pin

I/O

SDO3/SDI2 • Used as the SDO3 signal for transmitting data from the ESAI_TX3 serial transmit shift
register when programmed as a transmitter pin

• Used as the SDI2 signal for receiving serial data to the ESAI_RX2 serial receive shift
register when programmed as a receiver pin

I/O

SDO4/SDI1 • Used as SDO4 for transmitting data from the ESAI_TX4 serial transmit shift register when
programmed as transmitter pin

• Used as SDI1 for receiving serial data to the RX1 serial receive shift register when
programmed as a receiver pin

I/O

SDO5/SDI0 • Used as SDO5 for transmitting data from the ESAI_TX5 serial transmit shift register when
programmed as transmitter pin

• Used as SDI0 for receiving serial data to the ESAI_RX0 serial shift register when
programmed as a receiver pin

I/O

SCKR SCKR is a bidirectional pin providing the receivers' serial bit clock for the ESAI interface. The
direction can be programmed.

I/O

SCKT SCKT is a bidirectional pin providing the transmitters' serial bit clock for the ESAI interface. The
direction can be programmed.

I/O

FSR FSR is a bidirectional pin providing the receivers' frame sync signal for the ESAI interface. I/O

FST FST is a bidirectional pin providing the frame sync for both the transmitters and receivers in the
synchronous mode (SYN=1) and for the transmitters only in asynchronous mode

I/O

HCKT HCKT is a bidirectional pin providing the transmitters high frequency clock for the ESAI interface. I/O

HCKR HCKR is a bidirectional pin providing the receivers high frequency clock for the ESAI interface. I/O

Chapter 9 Configuring the ESAI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 93

9.6 Audio framework
Because this chip uses multiple audio controllers and audio codecs, an audio framework
is needed to manage all audio modules (controllers and codecs) and to provide a uniform
APIs for application programmers.

The following three data structures create the audio framework:

• audio_card_t—describes the audio card
• audio_ctrl_t—describes the audio controller (for example, SSI or ESAI module)
• audio_codec_t—describes the audio codec (for example sgtl5000 or CS42888)

In addition, audio_dev_ops_t is the data member for the three audio framework data
structures and audio_dev_para_t describes the audio parameter passed to the configuration
function.

The audio card consists of one audio controller and one audio codec. audio_card_t is the
only data structure that applications can access and manage.

9.6.1 audio_card_t data structure

The data structure audio_card_t, which describes the audio card, is:

typedef struct {
 const char *name;
 audio_codec_p codec; //audio codec which is included
 audio_ctrl_p ctrl; //audio controller which is included
 audio_dev_ops_p ops; //APIs
} audio_card_t, *audio_card_p;

9.6.2 audio_ctrl_t data structure

The data structure audio_ctrl_t, which describes the audio controller, is:

typedef struct {
 const char *name;
 uint32_t base_addr; // the io base address of the controller
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the controller supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the controller supports
 int irq; //the irq number
 int sdma_ch; //Will be used for SDMA
 audio_dev_ops_p ops; //APIs
} audio_ctrl_t, *audio_ctrl_p;

Audio framework

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

94 Freescale Semiconductor, Inc.

9.6.3 audio_codec_t data structure

The data structureaudio_codec_t, which describes the audio codec, is:

typedef struct {
 const char *name;
 uint32_t i2c_base; //the i2c connect with the codec
 uint32_t i2c_freq; // i2c operate freq;
 uint32_t i2c_dev_addr; //Device address for I2C bus
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the codec supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the codec supports
 audio_dev_ops_p ops; //APIs
} audio_codec_t, *audio_codec_p;

9.6.4 audio_dev_ops_t data structure

The data structure audio_dev_ops_t, which describes the APIs of audio devices (codec,
controller, and card), is:

 typedef struct {
 int (*init) (void *priv);
 int (*deinit) (void *priv);
 int (*config) (void *priv, audio_dev_para_p para);
 int (*ioctl) (void *priv, uint32_t cmd, void *para);
 int (*write) (void *priv, uint8_t * buf, uint32_t byte2write, uint32_t *bytewrittern);
 int (*read) (void *priv, uint8_t * buf, uint32_t byte2read, uint32_t byteread);
} audio_dev_ops_t, *audio_dev_ops_p;

9.6.5 audio_dev_para_t data structure

The data structure audio_dev_para_t, which describes the audio parameter that is passed to
the configuration function is:

typedef struct {
 audio_bus_mode_e bus_mode; //Master or slave
 audio_bus_protocol_e bus_protocol; //I2S, AC97 and so on
 audio_trans_dir_e trans_dir; //Tx, Rx or both
 audio_samplerate_e sample_rate; //32K, 44.1K , 48K, and so on
 audio_word_length_e word_length;
 unsigned int channel_number;
} audio_dev_para_t, *audio_dev_para_p;

9.7 ESAI driver functions
The ESAI driver has both local functions and public APIs.

The local functions are used to:

• Reset the ESAI
• Obtain the ESAI setting and status values

Chapter 9 Configuring the ESAI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 95

• Set ESAI parameters
• Enable ESAI sub-modules

The public APIs are used to:

• Initialize and deintialize the ESAI driver
• Configure the ESAI
• Playback through the ESAI

9.7.1 Resetting the ESAI

The ESAI and its submodules (transmitters, receivers, Tx FIFO, and Rx FIFO) can be
reset, using the following function:

static int32_t esai_reset(audio_ctrl_p ctrl)

9.7.2 Obtaining ESAI parameters

The function uint32_t esai_get_hw_para(audio_ctrl_p ctrl, uint32_t type) returns the ESAI
parameter values according to the parameter type, as follows:

typedef enum {
 ESAI_HW_PARA_ECR,
 ESAI_HW_PARA_TCR,
 ESAI_HW_PARA_RCR,
 ESAI_HW_PARA_TCCR,
 ESAI_HW_PARA_RCCR,
 ESAI_HW_PARA_TFCR,
 ESAI_HW_PARA_RFCR,
 ESAI_HW_PARA_TSR,
 ESAI_HW_PARA_SAICR,
 ESAI_HW_PARA_TSM, //time slot mask
 ESAI_HW_PARA_RSM, //time slot mask
 ESAI_HW_PARA_TX_WL, //word len in bits
 ESAI_HW_PARA_RX_WL, //word len in bits
} esai_hw_para_type_e;

The function can be called once ESAI has been initialized.

9.7.3 Setting ESAI parameters

The function static uint32_t esai_set_hw_para(audio_ctrl_p ctrl, uint32_t type, uint32_t val)
sets ESAI parameters according to the parameter type. The supported parameter types are
listed in the enumeration esai_hw_para_type_e.

ESAI driver functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

96 Freescale Semiconductor, Inc.

9.7.4 Obtaining ESAI status

The function static uint32_t esai_get_status(audio_ctrl_p ctrl, uint32_t type) obtains the
ESAI status according to status type. The status types are supported as follows:

typedef enum {
 ESAI_STATUS_ESR,
 ESAI_STATUS_TFSR,
 ESAI_STATUS_RFSR,
 ESAI_STATUS_SAISR,
} esai_status_e;

9.7.5 Enabling ESAI submodules

ESAI and its sub-modules can be enabled or disabled individually. The function static
uint32_t esai_sub_enable(audio_ctrl_p ctrl, uint32_t type, uint32_t val) can enabled or
disabled ESAI or its sub-modules according enabling types as follows:

typedef enum {
 ESAI_SUB_ENABLE_TYPE_ESAI,
 ESAI_SUB_ENABLE_TYPE_TX,
 ESAI_SUB_ENABLE_TYPE_RX,
 ESAI_SUB_ENABLE_TYPE_TXFIFO,
 ESAI_SUB_ENABLE_TYPE_RXFIFO,
} esai_sub_enable_type_e;

9.7.6 Initializing the ESAI

Before the ESAI driver can be used to play audio, the ESAI module must be initialized
using the function int esai_init(void *priv). Initialization includes the following:

• Configuring the IOMUX for external ESAI signals.
• Setting the clock, such as selecting the clock source and gating on clocks for ESAI.
• Resetting the ESAI module and puting all registers into their reset value.

9.7.7 Configuring the ESAI

The function int esai_config(void *priv, audio_dev_para_p para) configures the ESAI
parameters according to the audio_dev_para data structure that is passed by the audio card
driver. This function:

• Sets the direction of bit clock and frame sync clock
• Sets the attribute of bit clock and frame sync clock, such as polarity and frame sync

length
• Sets bit clock dividers if the internal bit clock was used
• Sets frame length

Chapter 9 Configuring the ESAI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 97

• Sets word length and slot length
• Sets FIFO's watermarks.
• Fills zeros to Tx FIFO if Tx FIFO is used.
• Enables the ESAI
• Enables Tx FIFO, Rx FIFO, the transmitters, and the receivers

9.7.8 Playback through ESAI

After initialization and configuration, data can be written to ESAI Tx FIFO to play back
music. ESAI_ESR[TFE] polls to determine whether the Tx FIFO is empty or not. If Tx
FIFO is empty (the data count in Tx FIFO is less than the watermark), data can be written
to it according to the word length (TFCR[TWA]).

9.7.9 ESAI de-initialization

This function de-initializes the ESAI and frees the resources that the ESAI had been
using.

9.8 CS42888 driver
CS42888 is one of many codecs that have an ESAI interface and can be used as an
external audio codec. This chapter discusses the ESAI controller itself, and therefore does
not provide details about the CS42888 driver. See the CS42888 driver for details.

9.9 Testing the unit
To run the ESAI test, the SDK builds the test with the following command:

tools/build_sdk -target mx6dq -board evb -test audio -clean

This creates the following ELF and binary files:

output/mx6dq/evb_rev_a/bin/mx6dqevb-audio-sdk.elf
output/mx6dq/evb_rev_a/bin/mx6dqevb-audio-sdk.bin

Use RV-ICE or Lauterbach to download mx6dqevb-audio-sdk.elf or burn mx6dqevb-
audio-sdk.bin to an SD card by entering the following command in Windows's command
prompt window:

cfimager-imx -o 0 -f mx6dqevb-audio-sdk.bin -d g:(SD drive name in your PC)

CS42888 driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

98 Freescale Semiconductor, Inc.

Then, power-up the board and select ESAI playback according to the prompt in the
terminal. This runs the ESAI test unit.

The ESAI test unit demonstrates how to use the audio framework to play back music. The
test unit works as follows:

1. Initialize the snd_card_esai which includes ESAI and CS42888.
2. Configure the snd_card_esai.
3. Write the music file to the snd_card_esai, that is, playback music.
4. If "exit" selected by the user, de-initialize the snd_card_esai and return.

If the test is successful, you will hear a voice in the headphone.

Chapter 9 Configuring the ESAI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 99

Testing the unit

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

100 Freescale Semiconductor, Inc.

Chapter 10
Configuring the Ethernet Driver

10.1 Overview
This chapter explains how to use the driver for the MAC-NET core, which implements a
triple speed 10/100/1000 Mbps Ethernet MAC compliant with the IEEE 802.3-2002
standard. The MAC layer provides compatibility with half- or full-duplex 10/100 Mbps
Ethernet LANs and full-duplex gigabit Ethernet LANs.

The core also implements a hardware acceleration block that optimizes the performance
of network controllers providing IP and TCP, UDP, ICMP protocol services. The
acceleration block performs critical functions in hardware, which are typically
implemented with large software overhead.

The programmable 10/100/1000 Ethernet MAC with IEEE 1588 integrates a standard
IEEE 802.3 Ethernet MAC with a time-stamping module.

10.2 Feature summary
The following table summarizes the MAC-NET core features.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 101

Table 10-1. Feature summary

Protocol Feature list

Ethernet MAC • Implements the full 802.3 specification with preamble/SFD generation, frame
padding generation, CRC generation, and checking

• Dynamically configurable to support 10/100 Mbps and Gigabit operation
• Supports 10/100 Mbps full duplex and configurable half duplex operation
• Supports gigabit full duplex operation
• Supports AMD magic packet detection with interrupt for node remote power

management
• Seamless interface to commercial Ethernet PHY device via one of the following:

• A 4-bit MII (medium independent interface) operating at 25 MHz
• A 2-bit RMII (reduced medium independent interface) operating at 50 MHz
• A double data rate 4-bit RGMII (reduced gigabit media independent interface)

operating at 125 MHz
• Simple 64-Bit FIFO interface to user application
• CRC-32 checking at full speed with optional forwarding of the frame check sequence
• (FCS) field to the client
• CRC-32 generation and append on transmit or forwarding of user application

provided FCS selectable on a per-frame basis
• When operating in full duplex mode, the MAC-NET core includes the following:

• Automated pause frame (802.3 x31A) generation and termination providing
flow control without user application intervention

• Pause quanta used to form pause frames, dynamically programmable
• Pause frame generation additionally controllable by user application offering

flexible traffic flow control
• Optional forwarding of received pause frames to the user application

• In half-duplex mode, provides full collision support, including jamming, back off, and
automatic retransmission

• Support for VLAN-tagged frames according to IEEE 802.1Q
• Programmable MAC address: insertion on transmit and discards frames with

mismatching destination address on receive (except broadcast and pause frames)
• Programmable promiscuous mode support to omit MAC destination address

checking on receive
• Multicast and unicast address filtering on receive based on 64 entries hash table

reducing higher layer processing load
• Programmable frame maximum length providing support for any standard or

proprietary frame length
• Statistics indicators for frame traffic and errors (alignment, CRC, length) and pause

frames providing for IEEE 802.3 basic and mandatory management information
database (MIB) package and remote network monitoring (RFC 2819)

• Simple handshake user application FIFO interface with fully programmable depth
and threshold levels

• Separate status word available for each received frame on the user interface,
providing information such as frame length, frame type, VLAN tag, and error
information

• Multiple internal loopback options
• MDIO master interface for PHY device configuration and management with two

programmable MDIO base addresses
• Supports legacy FEC buffer descriptors

Table continues on the next page...

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

102 Freescale Semiconductor, Inc.

Table 10-1. Feature summary (continued)

Protocol Feature list

IP Protocol Performance
Optimization

• Operates on TCP/IP and UDP/IP and ICMP/IP protocol data or IP header only
• Enables wire-speed processing
• IPv4 and IPv6 support
• Transparent passing of frames of other types and protocols
• Support for VLAN tagged frames according to IEEE 802.1q with transparent

forwarding of VLAN tag and control field
• Automatic IP-header and payload (protocol specific) checksum calculation and

verification on receive
• Automatic IP-header and payload (protocol specific) checksum generation and

automatic insertion on transmit configurable on a per-frame basis
• Support for IP and TCP, UDP, ICMP data for checksum generation and checking
• Full header options support for IPv4 and TCP protocol headers
• IPv6 support limited to datagrams with base header only. Datagrams with extension

headers are passed transparently unmodified/unchecked.
• Statistics information for received IP and protocol errors
• Configurable automatic discard of erroneous frames
• Configurable automatic host-to-network (Rx) and network-to-host (Tx) byte order

conversion for IP and TCP/UDP/ICMP headers within the frame
• Configurable padding remove for short IP datagrams on receive
• Configurable Ethernet payload alignment to allow for 32-bit word aligned header and

payload processing
• Programmable store-and-forward operation with clock and rate decoupling FIFOs

IEEE 1588 • Support for all IEEE 1588 frames
• Reference clock can be chosen independently of the network speed
• Software-programmable precise time-stamping of ingress and egress frames
• Timer monitoring capabilities for system calibration and timing accuracy

management
• Precise time-stamping of external events with programmable interrupt generation
• Programmable event and interrupt generation for external system control
• Hardware- and software-controllable timer synchronization
• 4 channel IEEE 1588 timer, each with support for input capture and output compare

using the 1588 counter

10.3 Modes of operation
Table 10-2. Ethernet modes of operation

Mode What it does

10M 10 Mbps

100M 100 Mbps

1000M 1000 Mbps

Chapter 10 Configuring the Ethernet Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 103

10.4 Clocks
Table 10-3. Reference clock

Clock Name Description

Ethernet PLL Ethernet PLL The PLL outputs a 500 MHz clock.

10.5 IOMUX pin mapping
Table 10-4. IOMUX pin mapping for the Ethernet driver

Signals Driver Description

PAD MUX SION

MDC KEY_COL2 IOMUXC_SW_MUX_CTL_PAD_KEY_COL2 - MDC

- - IOMUXC_SW_PAD_CTL_PAD_KEY_COL2 - Pad control

MDIO KEY_COL1 IOMUXC_SW_MUX_CTL_PAD_KEY_COL1 - MDIO

- - IOMUXC_ENET_IPP_IND_MAC0_MDIO_SELECT_INP
UT

- Select
KEY_COL1
Involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_KEY_COL1 - Pad control

RGMII_RXD0 RGMII_RD0 IOMUXC_SW_MUX_CTL_PAD_RGMII_RD0 - RXD0

- - IOMUXC_ENET_IPP_IND_MAC0_RXDATA_0_SELECT
_INPUT

- Select
RGMII_RD0
Involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RD0 - Pad control

- - IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE_RGMII - DDR Select Field

- - IOMUXC_SW_PAD_CTL_GRP_RGMII_TERM - On Die
Termination Field

RGMII_RXD1 RGMII_RD1 IOMUXC_SW_MUX_CTL_PAD_RGMII_RD1 - RXD1

- - IOMUXC_ENET_IPP_IND_MAC0_RXDATA_1_SELECT
_INPUT

- Select
RGMII_RD1
Involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RD1 - Pad control

RGMII_RXD2 RGMII_RD2 IOMUXC_SW_MUX_CTL_PAD_RGMII_RD2 - RXD2

- - IOMUXC_ENET_IPP_IND_MAC0_RXDATA_2_SELECT
_INPUT

- Select
RGMII_RD2
involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RD2 - Pad control

RGMII_RXD3 RGMII_RD3 IOMUXC_SW_MUX_CTL_PAD_RGMII_RD3 - RXD3

Table continues on the next page...

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

104 Freescale Semiconductor, Inc.

Table 10-4. IOMUX pin mapping for the Ethernet driver (continued)

Signals Driver Description

PAD MUX SION

- - IOMUXC_ENET_IPP_IND_MAC0_RXDATA_3_SELECT
_INPUT

- Select
RGMII_RD3
involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RD3 - Pad control

RGMII_RX_CTL RGMII_RX_CTL IOMUXC_SW_MUX_CTL_PAD_RGMII_RX_CTL - RX control

- - IOMUXC_ENET_IPP_IND_MAC0_RXEN_SELECT_INP
UT

- Select
RGMII_RX_CTL
involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RX_CTL - Pad control

RGMII_RXC RGMII_RXC IOMUXC_SW_MUX_CTL_PAD_RGMII_RXC - RX clock

- - IOMUXC_ENET_IPP_IND_MAC0_RXCLK_SELECT_IN
PUT

- Select
RGMII_RXC
involved in Daisy
Chain

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_RXC - Pad control

RGMII_TD0 RGMII_TD0 IOMUXC_SW_MUX_CTL_PAD_RGMII_TD0 - TXD0

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TD0 - Pad control

RGMII_TD1 RGMII_TD1 IOMUXC_SW_MUX_CTL_PAD_RGMII_TD1 - TXD1

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TD1 - Pad control

RGMII_TD2 RGMII_TD2 IOMUXC_SW_MUX_CTL_PAD_RGMII_TD2 - TXD2

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TD2 - Pad contorl

RGMII_TD3 RGMII_TD3 IOMUXC_SW_MUX_CTL_PAD_RGMII_TD3 - TXD3

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TD3 - Pad control

RGMII_TX_CTL RGMII_TX_CTL IOMUXC_SW_MUX_CTL_PAD_RGMII_TX_CTL - TX control

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TX_CTL - Pad control

RGMII_TXC RGMII_TXC IOMUXC_SW_MUX_CTL_PAD_RGMII_TXC - TX clock

- - IOMUXC_SW_PAD_CTL_PAD_RGMII_TXC - Pad control

ENET_REF_CLK ENET_REF_CLK IOMUXC_SW_MUX_CTL_PAD_ENET_REF_CLK - Enet refernece
clock

- - IOMUXC_SW_PAD_CTL_PAD_ENET_REF_CLK - Pad control

10.6 Resets and interrupts
The Ethernet IRQ number is 149. This SDK does not implement an interrupt mode.

Chapter 10 Configuring the Ethernet Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 105

10.7 Initializing the driver
To initialize the driver, use the following pseudocode:

void imx_ar8031_iomux(void)
{
 /*intialize IOMUX of ethernet*/
}
int imx_enet_init(imx_enet_priv_t * dev, unsigned long reg_base, int phy_addr)
{
 /*1.initialize BD buffers*/
 /*2.initialize ethernet chip*/
}
int imx_enet_mii_type(imx_enet_priv_t * dev, enum imx_mii_type mii_type)
{
 /*Set MMI type: RMII or RGMII*/
}
void imx_enet_phy_init(imx_enet_priv_t * dev)
{
 /*initialize ethernet PHY*/
}

10.8 Testing the driver
To test the driver, run the following code. Note that a loop cable is required on the RJ45
interface.

int main(void)
{
 imx_ar8031_iomux();
 //init enet0
 imx_enet_init(dev0, ENET_BASE_ADDR, 0);
 imx_enet_mii_type(dev0, RGMII);
 //init phy0.
imx_enet_phy_init(dev0);
/*send data*/
/*receive data*/
/*compare data*/
}

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

106 Freescale Semiconductor, Inc.

Chapter 11
Configuring the FlexCAN Modules

11.1 Overview
This chapter explains how to configure and use the FlexCAN modules. The FlexCAN
(flexible controller area network) module is a communication controller that implements
the CAN protocol (CAN 2.0B).

The following figure shows a general block diagram, which illustrates the main
subblocks implemented in the FlexCAN module. This includes two embedded memories:
one for supporting message buffers (MB) and another for storing Rx individual mask
registers. For more details, refer to the FlexCAN chapter of the reference manual.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 107

MB63

MB62
RXIMR63
RXIMR62

ID mask
storage

64/128/256-
Byte RAM

Message
buffer

storage

288/544/1066-
Byte RAM

RXIMR1
RXIMR0 MB1

MB0 Bus Interface Unit

IP bus interface
Clocks, address and data buses,
interrupt and test signals

CAN Tx

CAN Txmax MB #
(0-63)

Message

Buffer

Management

CAN

Protocol

Interface

Figure 11-1. FlexCAN block diagram

There are two module instances of the FlexCAN module in the chip, which are memory
mapped to locations:

• CAN1 base address = 0209 0000h
• CAN2 base address = 0209 4000h

11.2 Feature summary
This low-level driver supports:

• Up to 64 message buffers
• Standard CAN initialization routine
• Maskable interrupts for each message buffer
• Use of data structures to define the module register memory map

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

108 Freescale Semiconductor, Inc.

11.3 Modes of operation
The following table summarizes the FlexCAN modes of operation.

Table 11-1. FlexCAN modes of operation

Mode What it does

Normal mode

(User or Supervisor)

The module can receive and transmit message frames; errors
are handled normally, and all CAN protocol functions are
enabled.

User and supervisor mode differ in given access to some
restricted control registers.

Freeze mode The module cannot transmit or receive message frames, and
synchronicity to the CAN bus is lost.

Listen-only mode Transmission is disabled, and all error counters are frozen.
The module operates in a CAN error passive mode. Only
messages acknowledged by another CAN station are
received.

Loopback mode The module performs an internal loopback that can be used
for a self-test operation. The bit stream output of the
transmitter is internally fed back to the receiver input.

Module disable This is a low power mode in which the clocks to the flexCAN
module are disabled.

Stop mode This is a low power mode. The module puts itself into an
inactive state then it informs the ARM core that the clocks can
be shutdown globally.

Exit from this mode can be achieved when activity is detected
on the CAN bus.

11.4 Clocks
The main clock source input for the FlexCAN module is the CAN_CLK_ROOT clock,
which is derived as shown in the following image. Additionally, the CCM module has
two CAN-related clock gating signals that are configurable with the CCM CGR0 register.
The can*_serial_clock_enable and can*_clock_enable signals must both be gated on for
the FlexCAN module to function properly.

PLL3 / div 8
can divider

/1 .. /64

CAN_CLK_ROOT

Figure 11-2. Clocking figure

Chapter 11 Configuring the FlexCAN Modules

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 109

Table 11-2. Clock sources

Clock Name Description

CAN protocol engine (PE) clock

(also called the CAN protocol interface
clock, or CPI)

CAN_CLK_ROOT FlexCAN module main clock (PE clock).

Serial clock Sclock The Sclock period defines the time
quantum of the CAN protocol. The
prescaler division factor (PRESDIV bit
field in the CTRL register) determines
the ratio between CAN_CLK_ROOT and
the serial clock.

11.5 Module timing
The FlexCAN bit rate is derived from the serial clock, which is generated by dividing the
PE clock by the programmed PRESDIV value. Each serial clock (Sclock, or Ftq. time
quantum frequency) period is also referred to as a time quantum. The FlexCAN bitrate is
defined as the Sclock divided by the number of time quanta, where time quanta are
further broken down segments within the bit time (time to transmit and sample a bit).

The following list shows the CAN bitrates that are supported in the CAN module driver.
It is possible to support other bit rates within the range of the default supported bit rates
by updating the clocks and required time quanta in the can_update_bitrate(struct
imx_flexcan *can_module) function to support the new bit rates.

• 1 Mbytes/s
• 800 Kbytes/s
• 500 Kbytes/s
• 250 Kbytes/s
• 125 Kbytes/s
• 62.5 Kbytes/s
• 20 Kbytes/s
• 10 Kbytes/s

11.6 IOMUX pin mapping
The IOMUX configuration is board dependent and can be handled by the IOMUX tool.
The following table shows the available mux options for the FlexCAN module signals.

Module timing

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

110 Freescale Semiconductor, Inc.

Table 11-3. FlexCAN IOMUX options

Signals Option 1 Option 2 Option 3

PAD MUX PAD MUX PAD MUX

Module Instance: CAN1

TXCAN KEY_COL2 ALT2 SD3_CMD ALT2 GPIO_7 ALT3

RXCAN KEY_ROW2 ALT2 SD3_CLK ALT2 GPIO_8 ALT3

Module Instance: CAN2

TXCAN KEY_COL4 ALT0 SD3_DAT0 ALT2 - -

RXCAN KEY_ROW4 ALT0 SD3_DAT1 ALT2 - -

NOTE
Daisy chain configuration is required. Because the RXCAN
input signals have multiple mux options, users must also
configure the associated daisy chain select registers. Refer to
the IOMUXC chapter of the reference manual for more details.

11.7 Resets and interrupts

11.7.1 Module reset

The FlexCAN module can be reset in two ways. First, the FlexCAN module is reset when
the system powers up (and/or there is a system reset). Additionally, the FlexCAN module
may also be reset by asserting the software reset bit (bit 25) in the Module Configuration
Register. The firmware driver provides the following software reset function:

Software reset

void can_sw_reset(struct hw_module *port){
 volatile struct mx_can_control *can_ctl = (volatile struct mx_can_control *)port->base;

 can_ctl->mcr |= (1<<25); //assert SOFT_RST
 while(can_ctl->mcr & (1<<25)); // poll until complete
}

11.7.2 Module interrupts

The FlexCAN module can generate an interrupt from 70 interrupt sources:

• 64 interrupts, one from each message buffer
• 6 other general sources (MBs OR'ed together, Bus Off, Error, Tx warning, Rx

Warning, Wake-Up)

Chapter 11 Configuring the FlexCAN Modules

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 111

All FlexCAN interrupt sources are OR'ed together to a single interrupt source to the
ARM GIC. The interrupt service routine determines which event actually triggered the
interrupt. Similarly, each message buffer can generate an interrupt on either a Tx or Rx
event, but both events (Rx/Tx events) trigger a single interrupt source. The interrupt
service routine needs to read the message buffer that triggered the event in order to
distinguish which type of event occurred.

The firmware driver provides functions for enabling or disabling (setting or clearing each
interrupt mask or imask bit) interrupts for each individual message buffer as shown in the
following example:

Message buffer interrupts

void can_enable_mb_interrupt(struct hw_module *port, uint32_t mbID)
{
 volatile struct mx_can_control *can_ctl = (volatile struct mx_can_control *)port->base;
 if (mbID < 32) {
 can_ctl->imask1 |= (1 << mbID);
 } else if (mbID < 64) {
 can_ctl->imask2 |= (1 << (mbID - 32));
 }
}
void can_disable_mb_interrupt(struct hw_module *port, uint32_t mbID)
{
 volatile struct mx_can_control *can_ctl = (volatile struct mx_can_control *)port->base;
 if (mbID < 32) {
 can_ctl->imask1 &= ~(1 << mbID);
 } else if (mbID < 64) {
 can_ctl->imask2 &= ~(1 << (mbID - 32));
 }
}

To enable FlexCAN interrupts to the system to one of the available cores, however, use
the GIC-related functions for enabling interrupts. See Testing the driver, for an example.

11.8 Initializing the FlexCAN module
To initialize the FlexCAN module, use the following steps:

1. Run the can_init function, which will configure iomux, issue a module software
reset, initialize the configuration register, initialize the control register, initialize the
message buffers to zero, and disable all message buffer interrupt mask registers.

2. Run the set_can_mb function to initialize the message buffers.
3. Run the can_exit_freeze function to exit freeze mode and allow module to transmit

or receive data.

Initializing the FlexCAN module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

112 Freescale Semiconductor, Inc.

11.9 Testing the driver
The FlexCAN module test is set up to transmit eight message buffers, each with different
byte lengths of data. This test requires that the board has both FlexCAN modules
available and that the two ports are connected together to complete the loopback. In this
example, the CAN1 module is used to transmit the message buffers, while CAN2 is used
to receive them. This is shown below:

FlexCAN unit test

/* CAN module data structures */
static struct hw_module can1_port = {
 "CAN1",
 CAN1_BASE_ADDR,
 30000000,
 IMX_INT_CAN1,
};
static struct hw_module can2_port = {
 "CAN2",
 CAN2_BASE_ADDR,
 30000000,
 IMX_INT_CAN2,
 &can2_rx_handler,
};
uint32_t can_test_count;
/*! --
 * CAN Test (loopback can1/can2 ports)
 * --
 */
void flexcan_test(void)
{
 int i;
 printf("\n---- Running CAN1/2 loopback test ----\n");
 can_test_count = 0;
 can_init(&can1_port, CAN_LAST_MB); // max 64 MB 0-63
 can_init(&can2_port, CAN_LAST_MB); // last mb is MB[63]
 printf("CAN1-TX and CAN2-RX\n");
 // configure CAN1 MBs as Tx, and CAN2 MBs as Rx
 // set-up 8 MBs for the test
 for (i = 1; i < 9; i++) {
 set_can_mb(&can1_port, i, 0x0c000000 + (i << 16), 0x0a000000 + (i << 20), 0x12345678,
 0x87654321);
 set_can_mb(&can2_port, i, 0x04000000 + (i << 16), 0x0a000000 + (i << 20), 0, 0);
 can_enable_mb_interrupt(&can2_port, i); // enable MB interrupt for idMB=i
 }
 //enable CAN2 interrupt
 register_interrupt_routine(can2_port.irq_id, can2_port.irq_subroutine);
 enable_interrupt(can2_port.irq_id, CPU_0, 0); // to cpu0, max priority (0)
 // init CAN1 MB0
 can_exit_freeze(&can2_port); // Rx
 can_exit_freeze(&can1_port); // Tx
 while (!(can_test_count)) ;
 can_freeze(&can2_port); // Rx
 can_freeze(&can1_port); // Tx
 printf("%d MBs were transmitted \n", can_test_count);
 printf("---- CAN1/2 test complete ----\n");
}

Chapter 11 Configuring the FlexCAN Modules

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 113

As shown above, the GIC functions register_interrupt_routine and enable_interrupt
enabled the CAN2 interrupt source to CPU_0. The CAN2 interrupt service routine is then
checked to see which message buffer triggered the interrupt. It prints the message buffer
to the terminal as shown below:

FlexCAN test interrupt service routine

/*
 * Can2 receive ISR function
*/
void can2_rx_handler(void)
{
 int i = 0;
 volatile struct mx_can_control *can_ctl = (volatile struct mx_can_control *)can2_port.base;
 if (can_ctl->iflag1 != 0) {
 for (i = 0; i < 32; i++) {
 if (can_ctl->iflag1 & (1 << i)) {
 can_ctl->iflag1 = (1 << i); //clear interrupt flag
 printf("\tCAN2 MB:%d Recieved:\n", i);
 print_can_mb(&can2_port, i);
 can_test_count++;
 }
 }
 } else if (can_ctl->iflag2 != 0) {
 for (i = 0; i < 32; i++) {
 if (can_ctl->iflag2 & (1 << i)) {
 can_ctl->iflag1 = (1 << i); //clear interrupt flag
 printf("\tCAN2 MB:%d Recieved:\n", i + 32);
 print_can_mb(&can2_port, i + 32);
 can_test_count++;
 }
 }
 }
}

The expected output from this test is:

---- Running CAN1/2 loopback test ----
CAN1-TX and CAN2-RX
 CAN2 MB:1 Recieved:
 MB[1].cs = 0x201000f
 MB[1].id = 0xa100000
 MB[1].data0 = 0x12000000
 MB[1].data1 = 0x353deb2
 CAN2 MB:2 Recieved:
 MB[2].cs = 0x2020048
 MB[2].id = 0xa200000
 MB[2].data0 = 0x12340000
 MB[2].data1 = 0x353deb2
 CAN2 MB:3 Recieved:
 MB[3].cs = 0x2030088
 MB[3].id = 0xa300000
 MB[3].data0 = 0x12345600
 MB[3].data1 = 0x353deb2
 CAN2 MB:4 Recieved:
 MB[4].cs = 0x20400d0
 MB[4].id = 0xa400000
 MB[4].data0 = 0x12345678
 MB[4].data1 = 0x353deb2
 CAN2 MB:5 Recieved:
 MB[5].cs = 0x2050122
 MB[5].id = 0xa500000
 MB[5].data0 = 0x12345678
 MB[5].data1 = 0x87000000
 CAN2 MB:6 Recieved:
 MB[6].cs = 0x206017b

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

114 Freescale Semiconductor, Inc.

 MB[6].id = 0xa600000
 MB[6].data0 = 0x12345678
 MB[6].data1 = 0x87650000
 CAN2 MB:7 Recieved:
 MB[7].cs = 0x20701db
 MB[7].id = 0xa700000
 MB[7].data0 = 0x12345678
 MB[7].data1 = 0x87654300
 CAN2 MB:8 Recieved:
 MB[8].cs = 0x2080244
 MB[8].id = 0xa800000
 MB[8].data0 = 0x12345678
 MB[8].data1 = 0x87654321
8 MBs were transmitted
---- CAN1/2 test complete ----

Chapter 11 Configuring the FlexCAN Modules

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 115

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

116 Freescale Semiconductor, Inc.

Chapter 12
Configuring the GPU3D Driver

12.1 Overview
This chapter explains GPU3D operation and programming at the block level. All supplied
pseudocode is based on the source code of GPU3D driver, which is delivered with the
i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite Platform SDKs.

The GPU3D is a high-performance core that delivers hardware acceleration for 3D
graphics display for screen sizes ranging from the smallest cell phones to HD 1080p
displays. The core accelerates numerous 3D graphics applications, including graphical
user interfaces (GUI), menu displays, flash animation, and gaming.

There is only one instance of the GPU3D located in the memory map at GPU3D base
address = 0013 0000h

12.2 Feature summary
The GPU3D has the following hardware features:

• OpenGL ES 2.0 compliance, including the following extensions
• OpenGL ES 1.1
• OpenVG 1.1

• IEEE 32-bit floating-point pipeline
• Ultra-threaded, unified vertex, and fragment shaders
• Low bandwidth at both high and low data rates
• Low CPU loading
• Dependent texture operation with high-performance
• Alpha blending
• Depth and stencil compare
• Support for the following textures:

• Fragment shader simultaneous textures

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 117

• Vertex shader simultaneous textures
• Point sampling, bi-linear sampling, tri-linear filtering, and cubic textures

• Resolve and fast clear
• 8 x 8 kpixel texture size and 8 x 8 kpixel rendering target
• Vertex DMA streams
• 2 texture units and 2 pixel units for higher pixel processing rate
• Supports YUV format in display output (YUYV 4:2:0)

12.3 Modes of operation
The GPU3D supports four operation modes, as described in the following table. This
driver configures the GPU3D controller for working in active mode.

Table 12-1. GPU3D modes of operation

Mode What it does

Active mode GPU is actively processing commands. One or more blocks are not in idle mode.

Idle mode GPU is not processing any commands. All modules in the pipeline are in idle state.

Standby mode All input clocks to the GPU are shut off.miriamgmir

Sleep mode The entire GPU is powered off through power gating.

12.4 Clocks
Table 12-2. GPU3D reference clocks

Clock Name Description

GPU3D core clock GPU3D_CORE_CLK_ROOT Clock for GPU3D core

GPU3D shader clock GPU3D_SHADER_CLK_ROOT Clock for GPU3D shader

12.5 IOMUX pin mapping
There is no need to configure pins for GPU3D.

12.6 Resets and interrupts
The driver does not implement interrupt mode.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

118 Freescale Semiconductor, Inc.

12.7 Initializing the GPU3D driver
The initialization procedure driver requires the following procedure:

1. Initialize the IPU, including IOMUX, power, etc.
2. Configure the LVDS interface and the LVDS panel.
3. Configure the IPU to support XGA.
4. Initialize GPU3D and run the command buffer.

12.8 Testing the GPU3D driver
The GPU3D testing demo is based on an engineering sample board and can be easily
ported to other boards.

Build the SDK with the following command to generate ELF and binary files:

tools/build_sdk -target=mx6dq -board=evb -test=gpu -clean

Download mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-gpu-sdk.elf using RV-ICE or Lauterbach, or
burn mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-gpu-sdk.elf to an SD card by entering the
following command in Windows's command prompt window:

cfimager-imx -o 0 -f mx6dq_evb_rev_a-gpu-sdk.bin -d g:(SD drive name in your PC)

Then power up the board to run the test.

To test the driver, connect an LVDS display panel to LVDS0 on the board. The test
shows a 3-D scene in the LVDS display panel.

Chapter 12 Configuring the GPU3D Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 119

Testing the GPU3D driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

120 Freescale Semiconductor, Inc.

Chapter 13
Configuring the GPMI Controller

13.1 Overview
This chapter explains how to configure and use the general-purpose media interface
(GPMI) controller. The GPMI controller is a flexible interface for up to eight NAND
Flash devices. It is compatible with the ONFI 2.2 standard, including source synchronous
DDR mode and the Samsung/Toshiba Toggle Mode DDR protocol.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 121

ARM core SRAM System clock
general

AMBA

AHB slave AHB master
APBH DMA

H
C

LK

G
P

M
IC

LK

Shared DMA

APHB master
A

P
H

B

BCH

GPMI

GPMI FIFO

div2GPMI pin state machine

other modules GPIO

GPMI/memory/
GPIO pin mux

Pins

GPMI DMA interface state machine

D
M

A
 R

eq
ue

st
 0

D
M

A
 R

eq
ue

st
 1

D
M

A
 R

eq
ue

st
 2

D
M

A
 R

eq
ue

st
 3

D
M

A
 R

eq
ue

st
 4

D
M

A
 R

eq
ue

st
 5

D
M

A
 R

eq
ue

st
 6

D
M

A
 R

eq
ue

st
 7

Figure 13-1. GPMI block diagram

The GPMI resides on the APBH. The GPMI also provides an interface to the BCH
module to allow direct parity processing.

This chip has a single instance of both the GPMI and BCH modules. There is also a
single associated APBH DMA module. These modules are memory mapped to the
following locations:

• APBH DMA base address = 0011 0000h
• GPMI base address = 0011 2000h
• BCH base address = 0011 4000h

13.2 Feature summary
The key features are:

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

122 Freescale Semiconductor, Inc.

• Individual chip select and ready/busy pins for up to eight NAND devices
• Option to use ganged ready/busy mode to reduce the number of ready/busy pins to

one
• Individual state machine and DMA channel for each chip select
• Special command modes that work with the DMA controller, using chained

descriptors to perform arbitrarily complex NAND functions without CPU
intervention

• Configurable timing based on a dedicated clock allows the optimal balance of high
NAND performance and low system power

• Direct connection to a BCH ECC engine with support for up to 40-bit correction per
512 or 1024 bytes.

The GPMI and the DMA have been designed to handle complex multi-page operations
without CPU intervention. The DMA uses a linked descriptor function with branching
capability to automatically handle all of the operations needed to read/write multiple
pages.

13.3 Modes of operation
Table 13-1. GPMI modes of operation

Mode What it does

Data/Register Read/
Write

In this mode, the GPMI can be programmed to read or write multiple cycles to the NAND address,
command, or data registers.

Wait for NAND ready This mode can monitor the ready/busy signal of a single NAND flash and signal to the DMA when
the device is ready. It also has a timeout counter and can indicate to the DMA that a timeout error
has occurred. The DMAs can conditionally branch to a different descriptor in the case of an error.

Check status This mode allows the GPMI to check NAND status against a reference. If an error is found, the
GPMI can instruct the DMA to branch to an alternate descriptor, which attempts to fix the problem or
asserts a CPU IRQ.

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 123

13.4 Basic NAND timing

CLE = HW_GPMI_CTRL0.bit18 (ADDRESS[1])
ALE = HW_GPMI_CTRL0.bit17 (ADDRESS[0])0 0

tAS tDS tDH tDS tDHtDStDH tDStDH

1 cycle

dev_clk

CE_N

CLE/
ALE

WE_N

Host controller drives the IO[7:0] bus, but
the data in the IO[7:0] should be ignored by the device

- tAS is configurable by programming HW_GPMI_TIMING0 Address_Setup: in this example, Address_Setup = 4, tAS is equal to 4 dev_clk cycles.
- tDS is configurable by programming HW_GPMI_TIMING0 Data_Setup; in this example, Data_Setup = 3, tDS is equal to 3 dev_clk cycles
- tDH is configuarble by programming HW_GPMI_TIMING0 Data_Hold: in this example, Data_Hold = 2, tDH is equal to 2 dev_clk cycles
- tAS/tDS/tDH will extend, if the output data is not ready in device fifo.

IO[7:0]
as

Output
from

device

Host controller drives the IO [7:0] bus
And also don't care if device will drive that or not and what will be drived

No.1
output[7:0]

No.2
output[7:0]

No.(n-1)
output[7:0]

No.n
output[7:0]

1 cycle

Figure 13-2. Asynchronous mode basic write timing diagram (command write, address
write, or data write)

Basic NAND timing

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

124 Freescale Semiconductor, Inc.

For additional timing information, see the "Basic NAND timing" section of the GPMI
chapter in the chip reference manual.

13.5 Clocks

352 PFD

PLL2

PLL3
400 PFD

CS2CDR: enfc_clk_pred CS2CDR: enfc_clk_podf

ENFC_CLK_ROOT
(200 MHz)

6 bit divider
default=1

3 bit divider
default=2

CS2CDR: enfc_clk_sel

cg

72 0
2

3

21

1
2
3

Figure 13-3. GPMI clock tree

The dedicated clock, GPMICLK(ENFC_CLK_ROOT), is used as a timing reference for
NAND Flash I/O. Because various NANDs have different timing requirements,
GPMICLK may need to be adjusted for each application. While the actual pin timings are
limited by the NAND chips used, the GPMI can support data bus speeds of up to 200
MHz x 8 bits.

13.6 IOMUX pin mapping
The IOMUX configuration is board dependent. The IOMUX tool can be used to auto-
generate an IOMUX configuration code for a particular board. The following table shows
this chip's available mux options.

Table 13-2. GPMI IOMUX pin mapping options

Signal GPMI

PAD MUX SION

ALE NANDF_ALE ALT0 0

CLE NANDF_CLE ALT0 0

Reset NANDF_WP_B ALT0 0

Ready/busy NANDF_RB0 ALT0 0

CE0N NANDF_CS0 ALT0 0

CE1N NANDF_CS1 ALT0 0

CE2N NANDF_CS2 ALT0 0

CE3N NANDF_CS3 ALT0 0

Table continues on the next page...

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 125

Table 13-2. GPMI IOMUX pin mapping options (continued)

Signal GPMI

PAD MUX SION

RDN SD4_CMD ALT1 0

WRN SD4_CLK ALT1 0

D0 NANDF_D0 ALT0 0

D1 NANDF_D1 ALT0 0

D2 NANDF_D2 ALT0 0

D3 NANDF_D3 ALT0 0

D4 NANDF_D4 ALT0 0

D5 NANDF_D5 ALT0 0

D6 NANDF_D6 ALT0 0

D7 NANDF_D7 ALT0 0

D8 SD4_DAT0 ALT0 0

D9 SD4_DAT1 ALT0 0

D10 SD4_DAT2 ALT0 0

D11 SD4_DAT3 ALT0 0

D12 SD4_DAT4 ALT0 0

D13 SD4_DAT5 ALT0 0

D14 SD4_DAT6 ALT0 0

D15 SD4_DAT7 ALT0 0

The NANDF_RBx and NANDF_CSx signals need to be pulled up, as the NAND Flash
device only drives them low. This can be accomplished either with external pull-up
resistors, or by using the internal, on-chip pull-ups. To enable the internal pull-ups for
NANDF_RB0, use the IOMUXC_IOMUXC_SW_PAD_CTL_PAD_NANDF_RB0
register. Set IOMUXC_IOMUXC_SW_PAD_CTL_PAD_NANDF_RB0[PUS] to 3, to
select the 22kΩ pull-up. Also, be sure to set
IOMUXC_IOMUXC_SW_PAD_CTL_PAD_NANDF_RB0[PUE] to 1 to select pull
mode, and set IOMUXC_IOMUXC_SW_PAD_CTL_PAD_NANDF_RB0[PKE] to 1 to
enable the pull-up. Other NANDF_RBx or NAND_CSx pads are configured similarly. If
using an external pull-up resistor, you may wish to use a stronger pull-up such as 10kΩ.

The GPMI module has the option of using a wired-OR configuration for multiple ready/
busy signals, so that only one ready/busy input pin (NANDF_RB0) is required. Most
boards will use this configuration. To enable ganged ready/busy mode, set
HW_GPMI_CTRL1[GANGED_RDYBUSY].

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

126 Freescale Semiconductor, Inc.

13.7 APBH DMA
APBH DMA is the only recommended way to transfer data between NAND flash and
RAM.

AHB

AHB slave AHB master

AHB-to-APHB DMA

APHB master

GPMI0

GPMI4

AHB-to-APHB Bridge

GPMI1

GPMI5

GPMI6

GPMI2

GPMI3

GPMI7

A
P

B
H

Figure 13-4. APBH DMA block diagram

The AHB-to-APBH bridge includes:

• The AHB-to-APB PIO bridge for a memory-mapped I/O to the APB devices
• A central DMA facility for devices on this bus
• A vectored interrupt controller for the ARM core

The following figure shows the structure for the channel command word. This single
command structure specifies a number of operations to be performed by the DMA in
support of a given device. Using this structure, the ARM platform can set up large units
of work, chaining together many DMA channel command words and passing them off to
the DMA. The ARM platform has no further concern for the device until the DMA

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 127

completion interrupt occurs. The goal is to have enough intelligence in the DMA and the
devices to keep the interrupt frequency from any device below 1 KHz (arrival intervals
longer than 1 ms).

word 0

word 1

word 2

word 3-n

XFER COUNT

BUFFERADDRESS

PIOWORD

C
M

D
P

IO
W

O
R

D
S

NEXTCMDADDR

H
A

LT
O

N
T

E
R

M
IN

A
T

E
W

A
IT

4E
N

D
C

M
D

S
E

M
A

P
H

O
R

E
N

A
N

D
W

A
IT

4R
E

A
D

Y
N

A
N

D
LO

C
K

IR
Q

O
N

C
M

P
LT

C
H

A
IN

C
O

M
M

A
N

D

Figure 13-5. Channel-command word structure

13.8 BCH ECC
The hardware BCH (Bose, Ray-Chaudhuri, Hocquenghem) ECC accelerator provides a
forward error-correction function for improving the reliability of NAND Flash media. It
is capable of correcting from 2 to 40 single bit errors within a block of data no larger than
about 1900 bytes, with either 512 bytes or 1024 bytes being typical.

The important things to remember when using the BCH engine are:

• Data block sizes must be a multiple of 4 bytes and be aligned in system memory.
• Metadata is always written at the beginning of the flash page to facilitate fast access

for file-system operations.
• The BCH does not directly support a partial page write. Because most NAND Flash

devices do not support partial page write, this is rarely a limitation. However, if a
partial page write is desired, it can be accomplished by programming the BCH layout
registers such that the BCH only sees a portion of the page (but see the note below
about byte alignment).

• Flash read operations through the BCH can read either the entire page or the first
ECC block on the page. The first ECC block is either only metadata or metadata plus
the first data block, depending on the BCH flash layout register settings.

• Be sure to set HW_GPMI_CTRL1[BCH_MODE].
• When using GPMI with BCH, the driver must wait on both the APBH DMA

completion IRQ (HW_APBH_CTRL1[CHn_CMDCMPLT_IRQ]) as well as the
BCH completion IRQ (HW_BCH_CTRL[COMPLETE_IRQ]).

Note the following suggestions for BCH flash layout arrangement:

BCH ECC

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

128 Freescale Semiconductor, Inc.

• The number of metadata bytes should usually be set to 10. Very few NAND drivers
or file systems require more metadata.

• Combining the metadata with the first data block in the flash layout is more efficient
in terms of NAND page usage.

• The BCH supports four flash layout configurations, and each of the eight chip
enables can be set to use any of the flash layouts. However, it is uncommon to use a
combination of different NAND Flash devices is one system. Thus, it is often easiest
to only fill in the HW_BCH_FLASH0LAYOUTn and clear
HW_BCH_LAYOUTSELECT. Be aware that the reset values of
HW_BCH_LAYOUTSELECT are such that each chip enable uses a different flash
layout.

NOTE
Depending on the selected level of error correction, the number
of parity bits per encoded data block are not always equal to an
even number of bytes. In these cases, the BCH does not insert
pad bits between the parity for one block and the beginning of
the next block. This means that the beginning of data blocks
other than the first may not be aligned to byte boundaries. Not
inserting pad bits allows the use of higher error correction
levels in some cases, at the expense of not being able to directly
read data blocks other than the first (for instance, by setting the
column address in the NAND page read command).

See the "BCH Encoding for NAND Writes" section of the chip reference manual for
instructions for constructing a DMA descriptor chain to write a NAND page using BCH
ECC.

See the "BCH Decoding for NAND Reads" section of the chip reference manual for
instructions for building a DMA chain to read a NAND page encoded with BCH ECC.

13.9 NAND FLASH WRITE example code
The following example code illustrates the code for writing 4096 byte page data to
NAND Flash with no error correction.

//--
// generic DMA/GPMI/ECC descriptor struct, order sensitive!
//--
typedef struct {
// DMA related fields
unsigned int dma_nxtcmdar;
unsigned int dma_cmd;
unsigned int dma_bar;
// GPMI related fields
unsigned int gpmi_ctrl0;

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 129

unsigned int gpmi_compare;
unsigned int gpmi_eccctrl;
unsigned int gpmi_ecccount;
unsigned int gpmi_data_ptr;
unsigned int gpmi_aux_ptr;
} GENERIC_DESCRIPTOR;
//--
// allocate 10 descriptors for doing a NAND ECC Write
//--
GENERIC_DESCRIPTOR write[10];
//--
// DMA descriptor pointer to handle error conditions from psense checks
//--
unsigned int * dma_error_handler;
//--
// 8 byte NAND command and address buffer
// any alignment is ok, it is read by the GPMI DMA
// byte 0 is write setup command
// bytes 1-5 is the NAND address
// byte 6 is write execute command
// byte 7 is status command
//--
unsigned char nand_cmd_addr_buffer[8];
//--
// 4096 byte payload buffer used for reads or writes
// needs to be word aligned
//--
unsigned int write_payload_buffer[(4096/4)];
//--
// 65 byte meta-data to be written to NAND
// needs to be word aligned
//--
unsigned int write_aux_buffer[65];
//--
// Descriptor 1: issue NAND write setup command (CLE/ALE)
//--
write[0].dma_nxtcmdar = &write[1]; // point to the next descriptor
write[0].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1 + 5)| // 1 byte command, 5 byte address
BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
write[0].dma_bar = &nand_cmd_addr_buffer; // byte 0 write setup, bytes 1 - 5 NAND address
// 3 words sent to the GPMI
write[0].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1 + 5); // 1 byte command, 5 byte address
write[0].gpmi_compare = NULL; // field not used but necessary to set eccctrl
write[0].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE); // disable the ECC block
//--
// Descriptor 2: write the data payload (DATA)
//--
write[1].dma_nxtcmdar = &write[2]; // point to the next descriptor
write[1].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (4096+128)| // page size + spare size
BF_APBH_CHn_CMD_CMDWORDS (4)| // send 4 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1)| // Wait to end
BF_APBH_CHn_CMD_SEMAPHORE (0)|
BF_APBH_CHn_CMD_NANDWAIT4READY (0)|
BF_APBH_CHn_CMD_NANDLOCK (1)| // maintain resource lock
BF_APBH_CHn_CMD_IRQONCMPLT (0)|
BF_APBH_CHn_CMD_CHAIN (1)| // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, READ); //

NAND FLASH WRITE example code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

130 Freescale Semiconductor, Inc.

write[1].dma_bar = &write_payload_buffer; // pointer for the 4K byte data area
// 4 words sent to the GPMI
write[1].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA)|
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (4096+128); //
// DMA transferred to GPMI via DMA (0)!
write[1].gpmi_compare = NULL; // field not used but necessary to set eccctrl
write[1].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ECC_CMD, ENCODE_8_BIT) | // specify t = 8
mode
BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE) | // enable ECC module
BF_GPMI_ECCCTRL_BUFFER_MASK (0x1FF); // write all 8 data blocks
// and 1 aux block
write[1].gpmi_ecccount = 0; // disable ecc
write[1].gpmi_data_pointer = (write_payload_pointer)&0xFFFFFFFC; // data buffer address
write[1].gpmi_aux_pointer = (write_aux_pointer)&0xFFFFFFFC; // metadata pointer
//--
// Descriptor 3: issue NAND write execute command (CLE)
//--
write[2].dma_nxtcmdar = &write[3]; // point to the next descriptor
write[2].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte command
BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // maintain resource lock
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
write[2].dma_bar = &nand_cmd_addr_buffer[6]; // point to byte 6, write execute command
// 3 words sent to the GPMI
write[2].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
write[2].gpmi_compare = NULL; // field not used but necessary to set eccctrl
write[2].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE); // disable the ECC //
block
//--
// Descriptor 4: wait for ready (CLE)
//--
write[3].dma_nxtcmdar = &write[4]; // point to the next descriptor
write[3].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 word to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(1) | // wait for nand to be ready
BF_APBH_CHn_CMD_NANDLOCK (0) | // relinquish nand lock
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
write[3].dma_bar = NULL; // field not used
// 1 word sent to the GPMI
write[3].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WAIT_FOR_READY) | // wait //for NAND
ready
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, DISABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (0);
//--
// Descriptor 5: psense compare (time out check)
//--

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 131

write[4].dma_nxtcmdar = &write[5]; // point to the next descriptor
write[4].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // do not wait to continue
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) |
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_SENSE); // perform a sense check
write[4].dma_bar = dma_error_handler; // if sense check fails, branch to error handler
//--
// Descriptor 6: issue NAND status command (CLE)
//--
write[5].dma_nxtcmdar = &write[6]; // point to the next descriptor
write[5].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte command
BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
write[5].dma_bar = &nand_cmd_addr_buffer[7]; // point to byte 7, status
command
write[5].gpmi_compare = NULL; // field not used but necessary to set
eccctrl
write[5].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE); // disable the ECC block
// 3 words sent to the GPMI
write[5].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
//--
// Descriptor 7: read status and compare (DATA)
//--
write[6].dma_nxtcmdar = &write[7]; // point to the next descriptor
write[6].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // send 2 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before
// continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // maintain resource lock
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_WRITE); // no dma transfer
write[6].dma_bar = NULL; // field not used
//--
// Descriptor 8: psense compare (time out check)
//--
write[7].dma_nxtcmdar = &write[8]; // point to the next descriptor
write[7].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // do not wait to continue
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) | // relinquish nand lock
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_SENSE); // perform a sense check
write[7].dma_bar = &write[9]; // if sense check fails, branch to error handler
//--
// Descriptor 9: success handler
//--
write[8].dma_nxtcmdar = NULL; // not used since this is last descriptor

NAND FLASH WRITE example code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

132 Freescale Semiconductor, Inc.

write[8].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // do not wait to continue
BF_APBH_CHn_CMD_SEMAPHORE (1) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) |
BF_APBH_CHn_CMD_IRQONCMPLT (1) | // emit GPMI interrupt
BF_APBH_CHn_CMD_CHAIN (0) | // terminate DMA chain processing
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
write[8].dma_bar = (void*) SUCCESS;
//--
// Descriptor 10: failure handler
//--
write[9].dma_nxtcmdar = NULL; // not used since this is last descriptor
write[9].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // do not wait to continue
BF_APBH_CHn_CMD_SEMAPHORE (1) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) |
BF_APBH_CHn_CMD_IRQONCMPLT (1) | // emit GPMI interrupt
BF_APBH_CHn_CMD_CHAIN (0) | // terminate DMA chain processing
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
write[9].dma_bar = (void *) FAILURE;

13.10 NAND FLASH READ example code
The following example code illustrates the code for reading 4096 bytes of page data from
NAND Flash to RAM address with no error correction.

//--
// Descriptor 1: issue NAND read setup command (CLE/ALE)
//--
read[0].dma_nxtcmdar = &read[1]; // point to the next descriptor
read[0].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1 + 5) | // 1 byte command, 5 byte //address
BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
read[0].dma_bar = &nand_cmd_addr_buffer; // byte 0 read setup, bytes 1 - 5 NAND address
// 3 words sent to the GPMI
read[0].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1 + 5); // 1 byte command, 5 byte address
read[0].gpmi_compare = NULL; // field not used but necessary to set eccctrl
read[0].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE); // disable the ECC block
//--
// Descriptor 2: issue NAND read execute command (CLE)
//--
read[1].dma_nxtcmdar = &read[2]; // point to the next descriptor
read[1].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte read command
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 word to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 133

BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
read[1].dma_bar = &nand_cmd_addr_buffer[6]; // point to byte 6, read execute command
// 1 word sent to the GPMI
read[1].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, DISABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
//--
// Descriptor 3: wait for ready (DATA)
//--
read[2].dma_nxtcmdar = &read[3]; // point to the next descriptor
read[2].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 word to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(1) | // wait for nand to be ready
BF_APBH_CHn_CMD_NANDLOCK (0) | // relinquish nand lock
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
read[2].dma_bar = NULL; // field not used 1 word sent to the GPMI
read[2].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WAIT_FOR_READY) |
// wait for NAND ready
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, DISABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (0);
//--
// Descriptor 4: psense compare (time out check)
//--
read[3].dma_nxtcmdar = &read[4]; // point to the next descriptor
read[3].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // do not wait to continue
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) |
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_SENSE); // perform a sense check
read[3].dma_bar = dma_error_handler; // if sense check fails, branch to error handler
//--
// Descriptor 5: read 4K page from Nand flash
//--
read[4].dma_nxtcmdar = &read[5]; // point to the next descriptor
read[4].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (4096+128) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (6) | // send 6 words to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) | // ECC block generates BCH interrupt on completion
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_WRITE); // DMA write,
// ECC block handles transfer
read[4].dma_bar = NULL; // field not used 6 words sent to the GPMI
read[4].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, READ) | // read from the NAND
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, DISABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (4096+218); // eight 512 byte data blocks

NAND FLASH READ example code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

134 Freescale Semiconductor, Inc.

// metadata, and parity
read[4].gpmi_compare = NULL; // field not used but necessary to set eccctrl
// Disable ECC
read[4].gpmi_eccctrl = 0;// disable ECC module
read[4].gpmi_ecccount = 0; // specify number of bytes
// read from NAND
read[4].gpmi_data_ptr = (&read_payload_buffer)&0xFFFFFFFC; // pointer for the 4K byte data
area
read[4].gpmi_aux_ptr = (&read_aux_buffer)&0xFFFFFFFC; // pointer for the 65 byte aux area +
parity and syndrome
//--
// Descriptor 6: wait for done
//--
read[5].dma_nxtcmdar = &read[6]; // point to the next descriptor
read[5].dma_bar =&read[7];//if error, jump to error handler
read[5].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(1) | // wait for nand to be ready
BF_APBH_CHn_CMD_NANDLOCK (1) | // need nand lock to be thread safe while turn-off BCH
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
read[5].dma_bar = NULL; // field not used 3 words sent to the GPMI
read[5].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WAIT_READY) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, DISABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (0) |
BF_GPMI_CTRL0_XFER_COUNT (0);
read[5].gpmi_compare = NULL; // field not used but necessary to set eccctrl
read[5].gpmi_eccctrl = BV_FLD(GPMI_ECCCTRL, ENABLE_ECC, DISABLE); // disable the ECC block
//--
// Descriptor 7: success handler
//--
read[6].dma_nxtcmdar = NULL; // not used since this is last descriptor
read[6].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (1) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) | // relinquish nand lock
BF_APBH_CHn_CMD_IRQONCMPLT (1) | //
BF_APBH_CHn_CMD_CHAIN (0) | // terminate DMA chain processing
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
read[6].dma_bar =(void *)SUCCESS;
//--
// Descriptor 8: FAILURE handler
//--
read[6].dma_nxtcmdar = NULL; // not used since this is last descriptor
read[6].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // no dma transfer
BF_APBH_CHn_CMD_CMDWORDS (0) | // no words sent to GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (1) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (0) | // relinquish nand lock
BF_APBH_CHn_CMD_IRQONCMPLT (1) | //
BF_APBH_CHn_CMD_CHAIN (0) | // terminate DMA chain processing
BV_FLD(APBH_CHn_CMD, COMMAND, NO_DMA_XFER); // no dma transfer
read[6].dma_bar =(void *)FAILURE;

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 135

13.11 NAND FLASH ERASE example code
The following code illustrates the flow of Nand Erase Block command.

//--
// Descriptor 1: send ERASE setup command and 3 row address cycles
//--
erase[0].dma_nxtcmdar = &erase[1]; // point to the next descriptor
erase[0].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1 + 3) | // 1 byte command, 3 byte //address
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 3 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
read[0].dma_bar = 0x60; // NAND erase command
// 1 words sent to the GPMI
read[0].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1 + 3); // 1 byte command, 3 byte address
//--
// Descriptor 2: Fill ERASE confirm command
//--
erase[1].dma_nxtcmdar = &erase[2]; // point to the next descriptor
erase[1].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte command
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND
read[1].dma_bar = 0xD0; // NAND erase confirm command
// 1 words sent to the GPMI
read[1].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
//--
// Descriptor 3: Check NAND Status start
//--
erase[2].dma_nxtcmdar = &erase[3]; // point to the next descriptor
erase[2].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // 0 byte command
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(1) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, NO_TRANSFER);
read[2].dma_bar = NULL
// 1 words sent to the GPMI
read[2].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, CMD_WAIT_READY) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |

NAND FLASH ERASE example code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

136 Freescale Semiconductor, Inc.

BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (0); // 0 byte command
//--
// Descriptor 4: Check status conditional branch
//--
erase[3].dma_nxtcmdar = &erase[4]; // point to the next descriptor
erase[3].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // 0 byte command
BF_APBH_CHn_CMD_CMDWORDS (0) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_SENSE);
read[3].dma_bar = &erase[7]; //if fail, jump to error handler
//--
// Descriptor 5: send read status command - 0x70
//--
erase[4].dma_nxtcmdar = &erase[5]; // point to the next descriptor
erase[4].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte command
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ);
read[4].dma_bar = &erase[7]; //if fail, jump to error handler
// 1 words sent to the GPMI
read[4].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
//--
// Descriptor 6: read status value
//--
erase[5].dma_nxtcmdar = &erase[6]; // point to the next descriptor
erase[5].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1) | // 1 byte command
BF_APBH_CHn_CMD_CMDWORDS (1) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
BV_FLD(APBH_CHn_CMD, COMMAND, DMA_WRITE);
read[5].dma_bar = &erase[7]; //if fail, jump to error handler
// 1 words sent to the GPMI
read[5].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, READ) |
BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
BF_GPMI_CTRL0_CS (0) | // must correspond to NAND CS used
BV_FLD(GPMI_CTRL0, ADDRESS, NAND_DATA) |
BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
BF_GPMI_CTRL0_XFER_COUNT (1); // 1 byte command
//--
// Descriptor 7: success handler
//--
erase[6].dma_nxtcmdar = NULL; // point to the next descriptor
erase[6].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // 0 byte command
BF_APBH_CHn_CMD_CMDWORDS (0) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // wait for command to finish before continuing

Chapter 13 Configuring the GPMI Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 137

BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (0) | // the last command, no need to chain
BV_FLD(APBH_CHn_CMD, COMMAND, NO_TRANSFER);
read[5].dma_bar = (void *)SUCCESS;
//--
// Descriptor 8: failer handler
//--
erase[6].dma_nxtcmdar = NULL; // point to the next descriptor
erase[6].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (0) | // 0 byte command
BF_APBH_CHn_CMD_CMDWORDS (0) | // send 1 words to the GPMI
BF_APBH_CHn_CMD_WAIT4ENDCMD (0) | // wait for command to finish before continuing
BF_APBH_CHn_CMD_SEMAPHORE (0) |
BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
BF_APBH_CHn_CMD_IRQONCMPLT (0) |
BF_APBH_CHn_CMD_CHAIN (0) | // the last command, no need to chain
BV_FLD(APBH_CHn_CMD, COMMAND, NO_TRANSFER);
read[5].dma_bar = (void *)FAILURE;

NAND FLASH ERASE example code

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

138 Freescale Semiconductor, Inc.

Chapter 14
Configuring the GPT Driver

14.1 Overview
This chapter explains how to configure the GPT driver. GPT is a 32-bit up-counter that
uses four clock sources, one of which is external. The timer counter value can be
captured in a register using an event on an external pin. The capture trigger can be
programmed to be a rising or/and falling edge. The GPT can also generate an event on
the CMPOUTn pins and an interrupt when the timer reaches a programmed value.

This chapter uses the SABRE for Automotive Infotainment based on the i.MX 6 Series
board schematics for pin assignments. For other board types, please refer to respective
schematics.

There is one instance of GPT, which is located in the memory map at the GPT base
address, 0209 8000h.

14.2 Feature summary
This low-level driver supports:

• Usage of four different clock sources for the counter
• Restart and free-run modes for counter operations
• Two input capture channels with a programmable trigger edge
• Three output compare channels with a programmable output mode; a forced compare

feature is also available
• Ability to be programmed to be active in low power and debug modes
• Interrupt generation at capture, compare, and rollover events

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 139

14.3 Modes of operation
The following table explains the GPT modes of operation:

Table 14-1. Modes of operation

Mode What it does

Restart mode The GPT counter starts to count from 0h. When it reaches the compare value, it generates an
event and restarts to the initial value. Any write access to the Compare register of Channel 1 will
reset the GPT counter. This is done to avoid possibly missing a compare event when compare
value is changed from a higher value to lower value while counting is proceeding. For the other
two compare channels, when the compare event occurs the counter is not reset.

Free-run mode The GPT counter starts to count from 0h. When it reaches the compare value, it generates an
event and continues to run. Once it reaches FFFF FFFFh , it rolls over to zero.

14.4 Events

14.4.1 Output compare event

The GPT can change the state of an output signal (CMPOUTx - x = ,2,3) based on a
programmable compare value. The behavior of that signal is configurable in the driver
and can be set to:

• OUTPUT_CMP_DISABLE = output disconnected from the external signal CMPOUTx.
• OUTPUT_CMP_TOGGLE = toggle the output.
• OUTPUT_CMP_CLEAR = set the output to a low level.
• OUTPUT_CMP_SET = set the output to a high level.
• OUTPUT_CMP_LOWPULSE = low pulse generated on the output.

Use the following functions to trigger the output compare event:

• gpt_get_compare_event()

• gpt_set_compare_event()

14.4.2 Input capture event

The GPT can capture the counter's value when an external input event occur on signals
(CAPINx - x = 1,2). The behavior of that signal is configurable in the driver and can be
set to:

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

140 Freescale Semiconductor, Inc.

• INPUT_CAP_DISABLE = input capture disabled.
• INPUT_CAP_RISING_EDGE = input capture on rising edge.
• INPUT_CAP_FALLING_EDGE = input capture on falling edge.
• INPUT_CAP_BOTH_EDGE = input capture on both edges

The following function can be used to capture input events:

gpt_get_capture_event()

14.4.3 Rollover event

The GPT generates an event when the counter rolls over from FFFF FFFFh to 0h.

The following function checks if this event occurred.

gpt_get_rollover_event()

14.5 Clocks
The GPT receives four clocks: three from the CCM and one external clock through
CLKIN I/O.

Chapter 14 Configuring the GPT Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 141

DPLL2
396 MHz
352 MHz
198 MHz

pre_periph_clk_sel

pll_bypass_en2

0 0

periph_clk_sel

4

ipg_podf

2

CCM

AHB_CLK_ROOT
(132 MHz)

IPG_CLK_ROOT
(66 MHz)

PERCLK_ROOT
(66 MHz)

C
LK

S
R

C

perclk_podf

cg

CKIL

2

1

3-bit Divider where 2 = default divider value.

6-bit Divider where 1 = default divider value.
th

MUX with default 0 selection. Unless mentioned, the inputs are in ascending order.0

GPT

counter
clock

GPT_PR

0

1

I/O PAD

Figure 14-1. Reference clocks

The following table explains the GPT reference clocks:

Table 14-2. Reference clocks

Clock Name What it does

Low-frequency clock CKIL This 32768 Hz low reference clock is intended to be ON in
Low Power mode when ipg_clk is off

High-frequency clock PERCLK_ROOT GPT operates on PERCLK in normal power mode when
ipg_clk is off.

Peripheral clock IPG_CLK_ROOT In low power modes, if the GPT is disabled, then ipg_clk can
be switched off.

External clock CLKIN External clock source synchronized to ipg_clk inside GPT. it's
frequency should be < 1/4 (ipg_clk).

Because the frequency of PLL2 and various dividers is system dependent, the user may
need to adjust the driver's frequency. To do this change the freq member of the
hw_module structure defined into ./src/include/io.h .

For example, take the following non-default divider values:

• PLL2 is set to output 396 MHz

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

142 Freescale Semiconductor, Inc.

• ahb_podf divides by 3
• ipg_podf divides by 2

In this example, IPG_CLK = 132 MHz and PERCLK = 66 MHz.

The driver handles the clock gating on the source clock.

14.6 IOMUX pin mapping
The GPT can change the state of the compare outputs (CMPOUT, CMPOUT2,
CMPOUT3) on a compare event. The IOMUX should route the signals to the appropriate
pins. The IOMUX configuration is board dependent and can be handled with the IOMUX
tool.

Table 14-3. GPT IOMUX pin assignments

Signal IOMUXC setting for GPT

PAD MUX SION

CLKIN SD1_CLK ALT3 1

CAPIN1 SD1_DAT0 ALT3 1

CAPIN2 SD1_DAT1 ALT3 1

CMPOUT1 SD1_CMD ALT3 -

CMPOUT2 SD1_DAT2 ALT2 -

CMPOUT3 SD1_DAT3 ALT2 -

14.7 Resets and interrupts
The driver resets the module during the initialization by setting GPT_CR[SWR] in the
function gpt_init().

The external application is responsible for creating the interrupt subroutine. The address
of this routine is passed through the structure hw_module defined in ./src/include/io.h. It
is initialized by the application and used by the driver for various configurations.

All interrupt sources are listed in the "Interrupts and DMA Events" chapter of the device
reference manual. In the SDK, the list is provided in ./src/include/mx6dq/soc_memory_map.h.

Chapter 14 Configuring the GPT Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 143

14.8 Initializing the GPT driver
Before using the GPT timer in a system, prepare a structure that provides the essential
system parameters to the driver. This is done with the hw_module structure, which is
defined in ./src/include/io.h.

See the following example:

struct hw_module g_test_timer = {
 "GPT used for test",
 GPT_BASE_ADDR,
 66000000,
 IMX_INT_GPT,
 &default_interrupt_routine,
};

The following function's typically use this structure's address.

/*!
 * Initialize the GPT timer.
 *
 * @param port - pointer to the GPT module structure.
 * @param clock_src - source clock of the counter: CLKSRC_OFF, CLKSRC_IPG_CLK,
 * CLKSRC_PER_CLK, CLKSRC_CKIL, CLKSRC_CLKIN.
 * @param prescaler - prescaler of the source clock from 1 to 4096.
 * @param counter_mode - counter mode: FREE_RUN_MODE or RESTART_MODE.
 * @param low_power_mode - low power during which the timer is enabled:
 * WAIT_MODE_EN and/or STOP_MODE_EN.
 */
void gpt_init(struct hw_module *port, uint32_t clock_src, uint32_t prescaler,
 uint32_t counter_mode, uint32_t low_power_mode)

/*!
 * Setup GPT interrupt. It enables or disables the related HW module
 * interrupt, and attached the related sub-routine into the vector table.
 *
 * @param port - pointer to the GPT module structure.
 */
void gpt_setup_interrupt(struct hw_module *port, uint8_t state)

/*!
 * Enable the GPT module. Used typically when the gpt_init is done, and
 * other interrupt related settings are ready.
 *
 * @param port - pointer to the GPT module structure.
 * @param irq_mode - interrupt mode: list of enabled IRQ such GPTSR_ROVIE,
 * or (GPTSR_IF1IE | GPTSR_OF3IE), ... or POLLING_MODE.
 */
void gpt_counter_enable(struct hw_module *port, uint32_t irq_mode)

/*!
 * Disable the counter. It saves energy when not used.
 *
 * @param port - pointer to the GPT module structure.
 */
void gpt_counter_disable(struct hw_module *port)

/*!

Initializing the GPT driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

144 Freescale Semiconductor, Inc.

 * Get a compare event flag and clear it if set.
 * This function can typically be used for polling method.
 *
 * @param port - pointer to the GPT module structure.
 * @param flag - checked compare event flag such GPTSR_OF1, GPTSR_OF2, GPTSR_OF3.
 * @return the value of the compare event flag.
 */
uint32_t gpt_get_compare_event(struct hw_module *port, uint8_t flag)

/*!
 * Set a compare event by programming the compare register and
 * compare output mode.
 *
 * @param port - pointer to the GPT module structure.
 * @param cmp_output - compare output: CMP_OUTPUT1, CMP_OUTPU2, CMP_OUTPUT3.
 * @param cmp_output_mode - compare output mode: OUTPUT_CMP_DISABLE, OUTPUT_CMP_TOGGLE,
 * OUTPUT_CMP_CLEAR, OUTPUT_CMP_SET, OUTPUT_CMP_LOWPULSE.
 * @param cmp_value - compare value for the compare register.
 */
void gpt_set_compare_event(struct hw_module *port, uint8_t cmp_output,
 uint8_t cmp_output_mode, uint32_t cmp_value)

/*!
 * Set the input capture mode.
 *
 * @param port - pointer to the GPT module structure.
 * @param cap_input - capture input: CAP_INPUT1, CAP_INPUT2.
 * @param cap_input_mode - capture input mode: INPUT_CAP_DISABLE, INPUT_CAP_BOTH_EDGE,
 * INPUT_CAP_FALLING_EDGE, INPUT_CAP_RISING_EDGE.
 */
void gpt_set_capture_event(struct hw_module *port, uint8_t cap_input,
 uint8_t cap_input_mode)

/*!
 * Get a captured value when an event occured, and clear the flag if set.
 *
 * @param port - pointer to the GPT module structure.
 * @param flag - checked capture event flag such GPTSR_IF1, GPTSR_IF2.
 * @param capture_val - the capture register value is returned there if the event is true.
 * @return the value of the capture event flag.
 */
uint32_t gpt_get_capture_event(struct hw_module *port, uint8_t flag,
 uint32_t * capture_val)

/*!
 * Get rollover event flag and clear it if set.
 * This function can typically be used for polling method, but
 * is also used to clear the status compare flag in IRQ mode.
 * @param port - pointer to the GPT module structure.
 * @return the value of the rollover event flag.
 */
uint32_t gpt_get_rollover_event(struct hw_module *port)

14.9 Testing the GPT driver
GPT can run the following tests:

• Output compare test
• Input capture test

Chapter 14 Configuring the GPT Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 145

14.9.1 Output compare test

The test enables the three compare channels. A first event occurs after 1s; the second
occurs after 2s; and the third after 3s. The last event is generated by the compare channel
1, which is the only compare channel that can restart the counter to 0h after an event.
This restarts for a programmed number of seconds.

Output compare I/Os are not enabled in this test, although enabling them can be done by
configuring the IOMUX settings to enable the feature.

14.9.2 Input compare test

This test enables an input capture. An I/O is used to monitor an event that stores the
counter value into a GPT input capture register when it occurs. The test displays the
amount of time that elapsed since the test started and the moment the capture finished. It
uses the rollover interrupt event, too, because if the counter is used for a sufficient time, it
rolls over. That information is requested to calculate the exact number of seconds.

Testing the GPT driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

146 Freescale Semiconductor, Inc.

Chapter 15
Configuring the HDMI Tx Module

15.1 Overview
This chapter explains how to configure and use the high-definition multimedia interface
transmitter (HDMI Tx) module in the i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite
products. The HDMI Tx module is the source device for an HDMI system, which
transmits uncompressed digital video data and uncompressed or compressed digital audio
data. HDMI, the high definition multimedia interface, is a wired digital interconnect that
replaces the analog TV out or VGA out. HDMI Tx consists of two parts:

• HDMI Tx controller
• HDMI Tx PHY

The following figure shows a basic HDMI system architecture.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 147

CEC

HEAC

detect

HDMI Source HDMI Sink

TMDS Channel 0

TMDS Channel 1

TMDS Channel 2

TMDS Clock Channel

HDMI
Receiver

Video

Audio

Control/Status

Video

Audio

Control/Status

HDMI
Transmitter

Display Data Channel (DDC)

CEC Line

Utility Line

HPD Line
High/Low

HEAC

CEC

ROM
EDID

Figure 15-1. HDMI block diagram

This chip uses a single instance of the HDMI Tx module, which is memory mapped to
the following location:

• HDMI base address = 0012_0000h

15.2 Feature summary
Table 15-1. HDMI feature summary

Feature Details

Standard Compliance • HDMI 1.4a
• HDMI CTS 1.4a
• DVI 1.0

Video Standard Compliance EIA/CEA-861D

Monitor Detection Hot plug/unplug detection

Table continues on the next page...

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

148 Freescale Semiconductor, Inc.

Table 15-1. HDMI feature summary (continued)

Feature Details

Supported Video Resolutions • Up to 1080p at 120 Hz HDTV display
• Up to QXGA graphics display
• HDMI 1.4a 4K x 2K video formats
• HDMI 1.4a 3D video modes with up to 340MHz TMDS clock

Pixel Clock Frequency from 25 MHz to 340 MHz

Input Data Formats • Parallel YCbCr 4:4:4 and parallel RGB 4:4:4
• Parallel YCbCr 4:2:2

Input Color Depth 24/30/36/48 bits/pixel

Input Syncs Format Separate HSYNC and VSYNC plus data enable control

Internal Video Processing Interpolation YCbCr 4:2:2 to 4:4:4, Color space conversion YCbCr to RGB
and vice versa

15.3 Modes of operation
Table 15-2. HDMI modes of operation

Mode What it does

HDMI 1.4 HDMI Tx includes the HDMI 1.4a specification features.

Color Space Converter Parameter enables CSC support.

Consumer Electronics
Control

Parameter enables CEC interface.

Internal Pixel Repetition Parameter enables the internal pixel repetition support.

15.4 Events
HDMI_audio_done is mapped with SDMA souce 2, which is muxed with IPU-1 DMA
Event and controlled by GPR0[0].

15.5 Clocks
The following table shows the clock frequency requirements for the HDMI Tx core.

Table 15-3. HDMI Tx clocks

Clock Frequency Description

ipixelclk 13.5 ~ 340 MHz Pixel clock from the IPU display interface; becomes the input to the HDMI_TX module

isfrclk 18 ~ 27 MHz Derived from video_27M_clk_root clock from CCM clock tree.

Table continues on the next page...

Chapter 15 Configuring the HDMI Tx Module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 149

Table 15-3. HDMI Tx clocks (continued)

Clock Frequency Description

iahbclk 27 MHz Derived from ahb_clk from the CCM clock tree

icecclk 32.768 kHz Derived from external 32.768 kHz reference clock

ihclk 27 MHz Derived from ahb_clk from the CCM clock tree

15.5.1 Video input interface clock

The following figure shows the video input interface clock signal.

ipixelclk

HDMI Tx

Video input interface

Figure 15-2. Video input interface clock signal

These signals require the input clock ipixelclk, which is the data pixel clock that is input
from the IPU display interface clock (DI_CLKn). DI_CLKn is determined by the IPU
and the DI port that the user chooses. The SDK example hdmi_clock_set() uses
IPU1_DI0. See Display interface clocks (DI_CLKn) for detailed information about how
to generate DI_CLKn.

15.5.2 System and slave register interface clocks

HDMI Tx supports the following interfaces:

• I2C
• SFR
• AMBA AHB slave
• OCP slave

The following figure shows which clocks are used by the slave interfaces. Table 15-4
provides a description of each clock

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

150 Freescale Semiconductor, Inc.

HDMI transmitter

isfrclk

OCP slave interface iocpclk

APB 3.0 slave interface iapbclk

AHB slave interface iahbclk

I2C interface ii2c_slvh13tconf_scl

Figure 15-3. System and slave register interface clock signals

Table 15-4. System and slave register interface clock signal descriptions

Clock Description

isfrclk Internal register configuration clock

ii2c_slvh13tconf_scl I2C slave clock for register configuration

iahbclk AHB bus clock.

iapbclk APB bus clock

iocpclk OCP Slave Bus clock. This clock times all bus transfers. All signal timings are related to the
rising edge.

15.5.3 EDID I2C E-DDC interface clock

The E-DDC channel is a dedicated I2C master interface that permits reading the E-EDID
sink according to system needs.

ii2c_msth13tddc_sclin oi2c_msth13tddc_sclout

E-DDC interface

Figure 15-4. E-DDC interface clock signals

The E-DDC signals are defined as follows:

• ii2c_msth13tddc_sclin is the HDMI DDC I2C slave clock input.
• oi2c_msth13tddc_sclout is the HDMI DDC I2C slave clock input for E-EDID

communication with the transmitter.

15.5.4 CEC interface clock

Consumer Electronics Control (CEC) is a protocol that provides high-level control
functions between all of the various audiovisual products in a user's environment. It is an
optional feature in the HDMI 1.3a specification. It uses only one bidirectional line for
transmission and reception.

Chapter 15 Configuring the HDMI Tx Module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 151

The following figure shows the interface signal of the CEC interface. icecclk (the CEC
controller main clock input) should be a fixed frequency at 32.768 kHz.

HDMI transmitter

icecclkCEC interface

Figure 15-5. CEC interface clock signal

15.5.5 HDMI Tx PHY interface

otmdsclkp

otmdsclkn

HDMI Tx PHY interface

Figure 15-6. HDMI Tx PHY interface clock signal

otmdsclkp/otmdsclkn are the TMDS differential line driver clock output.

15.6 IOMUX pin mapping
Table 15-5. HDMI Tx IOMUX pin mapping

Signals Driver

PAD MUX SION

CEC

CEC_LINE (icecin) EIM_A25 ALT6 0

DDC

DDC_SCL (ii2c_msth13tddc_sclin) EIM_EB2 ALT4 1

DDC_SDA (ii2c_msth13tddc_sdain) EIM_D16 ALT4 1

HDMI 3D Tx PHY

OPHYDTB[0] (ophytbd) SD1_DAT1 ALT6 0

OPHYDTB[1] (ophytbd) SD1_DAT0 ALT6 0

NOTE
Most HDMI Tx signals have their own dedicated pins and are
not listed in the IOMUX pin mapping table.

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

152 Freescale Semiconductor, Inc.

15.7 Resets and interrupts
The chips GIC (global interrupt controller) has two ARM domain HDMI interrupts,
which are described in the following table.

Table 15-6. ARM domain interrupts

IRQ Description

147 HDMI master interrupt request

148 HDMI CEC engine dedicated interrupt signal raised by a wake-up event

15.8 Initializing the driver
This section explains how to initialize the driver according to the work flow, which is
shown in the following figure.

PLL

PLL

PLL

PLL

HDMI Tx PHY

TMDSCLKP
TMDSCLKN

TMDSDATAP[0]
TMDSDATAN[0]

TMDSDATAP[1]

TMDSDATAP[2]

TMDSDATAN[1]

HDMI Tx

Video
interface

Audio
interface

Video sampler
Color
space

converter

Video
packetizer

Audio
packetizer

Frame
composer

I2S / SPDIF
(Serial Audio in)

High Bitrate (HBR)
(Parallel Audio in)

GP Audio via DMA

TMDSDATAN[2]

Figure 15-7. HDMI driver initialization

15.8.1 Setting up the video input

The video input source to the HDMI Tx module can be any output stream from the IPU
module.

Chapter 15 Configuring the HDMI Tx Module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 153

MUX MUX MUX

LVDS #0 LVDS #1 HDMI
Parallel

#0 MIPI
DSI

MUX

Parallel
#1

MIPI
DSIIOMUX

SOC
MUX

DCIC #0

Lockable
control

SOC
MUX

DCIC #1

Lockable
control

IPU #0 IPU #1

D10 D11 D10 D11

Figure 15-8. Available mux configurations

To configure the input to the HDMI Tx module, use the IOMUXC_GPR3 register. Bits
3-2 (in the HDMI_MUX_CTL bit field) control the mux that selects which of the
available IPU display interface outputs is used.

The possible settings are:

• 00b - IPU1 display interface 0 (IPU1-DI0)
• 01b - IPU1 display interface 1 (IPU1-DI1)
• 10b - IPU2 display interface 0 (IPU2-DI0)
• 11b - IPU2 display interface 1 (IPU2-DI1)

15.8.2 Setting up the video sampler

The video pixel sampler is responsible for the video data synchronization, according to
the video data input mapping defined by the Color Depth (Deep Color) and format
configuration. The following table describes the input video mapping.

Table 15-7. Input video mapping code

Color space Color depth Video mapping (hex)

RGB 4:4:4 8-bit 01

10-bit 03

12-bit 05

16-bit 07

Table continues on the next page...

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

154 Freescale Semiconductor, Inc.

Table 15-7. Input video mapping code (continued)

Color space Color depth Video mapping (hex)

YCbCr 4:4:4 8-bit 09

10-bit 0B

12-bit 0D

16-bit 0F

YCbCr 4:2:2 8-bit 16

10-bit 14

12-bit 12

15.8.3 Setting up the CSC (color space converter)

CSC is responsible for carrying out the following video color space conversion functions:

• RGB to/from YCbCr
• 4:2:2 to/from 4:4:4 up (pixel repetition or linear interpolation) / down-converter
• Limited to/from full quantization range conversion

The following figure shows the CSC block diagram.

g_y_data[15:0]

r_cr_data[15:0]

b_cb_data[15:0]

de

hsync

vsync

pixelclk

g_y_data_csc[15:0]

r_cr_data_csc[15:0]

b_cb_data_csc[15:0]

de_csc

hsync_csc

vsync_csc

pixelclk_csc

YCbCr RGB YCbCr YCbCr

4:4:4 4:4:4 4:4:4 4:2:2

Color
space

Chroma
decimation

Color space converter

YCbCr YCbCr
4:2:2 4:4:4

Chroma
interpolation

Figure 15-9. CSC block diagram

The CSC conversion function is:

out1

out2

out3

A1A2A3
B1B2B3
C1C2C3

= 2 scale-12
in1
in2
in3

A4
B4
C4

+ 2 scale-12* *

15.8.4 Setting up the video packetizer

The following figure shows the video packetizer functional diagram.

Chapter 15 Configuring the HDMI Tx Module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 155

Input_data

Pixel
Repeater

bypass_selector

default_phase
fix_pp_to_last
cx_goto_p0
pp_en
pp_stuffing

output_selector

output_data

ycc422_size
ycc422_en

16, 20, 24
YCC 422
remap

10, 12, 16
Packing Phase
FSM

Pixel
Packing

8-bit bypass

bypass en

Figure 15-10. Video packetizer functional diagram

To set up the video packetizer:

1. Configure input data path -- pixel repeater or bypass selector
2. Configure pixel repetition, pixel packing, YCC422 stuffing, remap
3. Configure output selector

15.8.5 Setting up the frame composer

The frame composer is responsible for assembling video, audio, and data packets into a
consistent frame that is streamed to the HDMI TX PHY.

To set up the video component:

1. Configure video synchronism for video signal: interlaced/progressive, vblank
variation and polarity.

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

156 Freescale Semiconductor, Inc.

2. Configure video timing: hactive/vactive, hblank/vblank, hsyncoffset/vsyncoffse,
hsyncwidth/vsyncwidth.

3. Configure pixel repetition ratio factor of the input and output video signal.

15.8.6 Setting up HDMI Tx PHY

The following HDMI PHY types can be configured by HDMI_PHY_SEL:

• 0 - chrt_065lp
• 1 - ibm_065lp
• 2 - tsmc_065gp
• 3 - tsmc_065lp
• 4 - phy_gen2

NOTE
Only phy_gen2 is supported in the i.MX 6 Series HDMI Tx
PHY module.

When the phy_gen2 option is selected, a new I2C master interface is added to the HDMI
TX. This then enables the I2C Master PHY registers to be programmed.

The process for setup HDMI Tx PHY is as follows

1. Setup the physical interfaces: power down, data enable polarity and interface control
of the HDMI Source PHY control.

2. Configure Tx PHY type, behavior model
3. Scan test interface signals.
4. Software reset physcial and TMDS drivers

15.9 Testing the driver
The HDMI Tx unit test demonstrates how to output both audio and video from the HDMI
signals. The test utilizes the IPU unit test to initialize the IPU to output a Freescale logo
picture to the HDMI block. It also sets up a sine wave audio sample and outputs it from
the HDMI signals along with the IPU output.

Chapter 15 Configuring the HDMI Tx Module

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 157

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

158 Freescale Semiconductor, Inc.

Chapter 16
Configuring the I2C Controller as a Master Device

16.1 Overview
This chapter provides a quick guide for firmware developers about how to write the
driver for the I2C controller, which provides an efficient interface to the I2C bus. The
I2C bus is a two-wire, bidirectional serial bus that provides an efficient method of data
exchange to minimize the interconnection between devices. The I2C controller provides
the functionality of standard I2C slave and master. This guide targets the development of
the I2C master mode driver.

There are three instances of I2C in the chip. They are located in memory map at the
following addresses:

• I2C1 base address-021A 0000h
• I2C2 base address-021A 4000h
• I2C3 base address-021A 8000h

For register definitions and information, refer to the chip reference manual.

This chapter assumes an understanding of the I2C bus specification, version 2.1.
However, a brief introduction to I2C protocol is discussed in I2C protocol.

NOTE
This chapter uses an engineering sample board's schematics as
its reference for pin assignments. For other board types, refer to
the appropriate schematics.

16.2 Initializing the I2C controller
To initialize the I2C controller, configure the following two I2C signals: clock
initialization and the programming frequency divider register (I2Cn_IFDR). The
following subsections explain how to do this.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 159

16.2.1 IOMUX pin configuration

Refer to your board schematics for correct pin assignments. The following table shows
the contacts assigned to the signals that the three I2C blocks use:

Table 16-1. I2C pin assignments

Signals I2C1 I2C2 I2C3

PAD MUX SION PAD MUX SION PAD MUX SION

SDA EIM_D28 ALT1 1 EIM_D16 ALT6 1 EIM_D18 ALT6 1

CSI0_DAT8 ALT4 1 KEY_ROW3 ALT4 1 GPIO_6 ALT2 1

GPIO_16 ALT6 1

SCL EIM_D21 ALT6 1 EIM_EB2 ALT6 1 EIM_D17 ALT6 1

CSI0_DAT9 ALT4 1 KEY_ROW3 ALT4 1 GPIO_3 ALT2 1

GPIO_5 ALT6 1

NOTE
Set the SION (Software Input ON) bit of the software MUX
control register to force MUX input path.

Program the pad setting register to have pull up enabled in open
drain mode or ensure that pull ups are connected externally to
each lines .

For more information about the IOMUX controller, refer to the
IOMUXC chapter of the chip reference manual.

16.2.2 Clocks

The following figure shows the clock control signals.

Initializing the I2C controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

160 Freescale Semiconductor, Inc.

PLL2

2

1

3-bit Divider where 2 = default divider value.

6-bit Divider where 1 = default divider value.

MUX with default 0 selection. Unless mentioned, the inputs are in ascending order.0

396 MHz
352 MHz
198 MHz

0

pre_periph_clk_sel

pll_bypass_en2

0

periph_clk_sel

4

ahb_podf

ipg_podf

2

AHB_CLK_ROOT
(132 MHz)

IPG_CLK_ROOT
(66 MHz)

PERCLK_ROOT
(66 MHz)

perclk_podf

cg

1

1

Figure 16-1. Clock control signals for I2C blocks

The I2C uses PERCLK_ROOT as its clock source. PERCLK_ROOT is derived from
IPG_CLK_ROOT. The IPG_CLK_ROOT runs at 66 MHz with default dividers, as
shown in the above figure.

IPG_CLK_ROOT is derived from PLL2, which typically runs at 528 MHz. If PLL2 is
programmed to run at a speed other than 528 MHz, the IPG_CLK_ROOT output speed
will also be different. To set the desired source speed for I2C clock, adjust the dividers by
setting the fields ahb_podf and ipg_podf of CCM_CBCDR and perclk_podf of
CCM_CSCMR1. Refer to the register description for further information.

If the I2C clock is gated, ungate it as follows:

• For I2C1, set bits CCM_CCGR2[7:6]
• For I2C2, set bits CCM_CCGR2[9:8]
• For I2C3, set bits CCM_CCGR2[11:10]

Refer to the CCM chapter of the chip reference manual for more information about
programming clocks.

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 161

16.2.3 Configuring the programming frequency divider register
(IFDR)

The I2C module can operate at speeds up to 400 kbps. The driver calculates the SCL
frequency automatically by passing the desired baud rate to the initialization function.
Nevertheless, the following steps can be used to set the I2C frequency divider to get
appropriate transfer speed.

1. Software reset I2C block before changing the I2C frequency divider register by
clearing the I2Cn_I2CR register.

write(0, I2Cn_I2CR);

• For 100 kbps speed, program I2Cn_IFDR to 14h.
• For 400 kbps, program IFDR to a value of Eh.

The source clock for I2C is PERCLK_ROOT running at 66 MHz. According to
the frequency divider table, a value of 14h set to the IFDR register results in a
divider value of 576, and I2C_CLK = 66 MHz ÷ 576 = 100 Kbps. Refer to table
below for the IFDR frequency divider values.

write(0x14, i2c_base_register_address + I2C_IFDR);

2. Enable the I2C module by setting I2C_I2CR[IEN].

write(IEN, i2c_base_register_address + I2C_I2CR);

The following table shows the divider values for I2Cn_IFDR register settings.

Table 16-2. I2Cn_IFDR[5:0] Register Field Values

IC Divider IC Divider IC Divider IC Divider

00h 30 10h 288 20h 22 30h 160

01h 32 11h 320 21h 24 31h 192

02h 36 12h 384 22h 26 32h 224

03h 42 13h 480 23h 28 33h 256

04h 48 14h 576 24h 32 34h 320

05h 52 15h 640 25h 36 35h 384

06h 60 16h 768 26h 40 36h 448

07h 72 17h 960 27h 44 37h 512

08h 80 18h 1152 28h 48 38h 640

09h 88 19h 1280 29h 56 39h 768

0Ah 104 1Ah 1536 2Ah 64 3Ah 896

0Bh 128 1Bh 1920 2Bh 72 3Bh 1024

0Ch 144 1Ch 2304 2Ch 80 3Ch 1280

0Dh 160 1Dh 2560 2Dh 96 3Dh 1536

0Eh 192 1Eh 3072 2Eh 112 3Eh 1792

0Fh 240 1Fh 3840 2Fh 128 3Fh 2048

Initializing the I2C controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

162 Freescale Semiconductor, Inc.

16.3 I2C protocol

SCL

MSB

1 2 3 4 5 6 7 8 9

LSB

SDA AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

A START
signal

Calling address

B C

R/W ACK
bit D

E

XXX

Data Byte No
ACK

bit

STOP
signal

F

D7 D6 D5 D4 D3 D2 D1 D0

987654321

MSB LSB

Figure 16-2. I2C standard communication protocol

The I2C communication protocol consists of the following six components:

• START
• Data Source/Recipient
• Data Direction
• Slave Acknowledge
• Data Acknowledge
• STOP

16.3.1 START signal

When no other device is a bus master (both SCL and SDA lines are at logic high), a
device can initiate communication by sending a START signal. A START signal is
defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a data transfer (each data transfer can be several bytes long) and awakens all
slaves.

NOTE
Setting the MSTA bit of the I2CR register generates a START
on the bus and selects master mode.

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 163

16.3.2 Slave address transmission

The master sends the slave address in the first byte after the START signal (B). After the
seven-bit calling address, it sends the R/W bit (C), which tells the slave the data transfer
direction.

Each slave must have a unique address. An I2C master must not transmit an address that
is the same as its slave address; it cannot be master and slave at the same time.

The slave whose address matches that sent by the master pulls SDA low at the ninth
clock (D) to return an acknowledge bit.

NOTE
The slave address is sent along with the R/W bit using the
I2Cn_I2DR register. When cleared, I2Cn_I2SR[RXAK]
denotes the ACK bit received.

16.3.3 Data transfer

When successful slave addressing is achieved, the data transfer can proceed (E) on a
byte-by-byte basis in the direction specified by the R/W bit sent by the calling master in a
slave address transmission.

Data can be changed only while SCL is low and must be held stable while SCL is high.
SCL is pulsed once for each data bit, most-significant bit first. The receiving device must
acknowledge each byte by pulling SDA low at the ninth clock; therefore, a data byte
transfer takes nine clock pulses.

If it does not acknowledge the master, the slave receiver must leave SDA high. The
master can then generate a STOP signal to abort the data transfer or generate a START
signal (a repeated start) to start a new calling sequence.

If the master receiver does not acknowledge the slave transmitter after a byte
transmission, it means end-of-data to the slave. The slave releases SDA for the master to
generate a STOP or START signal.

NOTE
Writing to the data register triggers the transmit operation.

Transmit data should always be written after I2Cn_I2CR[MTX] bit is programmed.
Transmit data is not latched inside until the transfer is initiated on the interface bus.

I2C protocol

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

164 Freescale Semiconductor, Inc.

After the transmit data write in I2C, software can either wait for a transfer-done interrupt
or it can poll I2Cn_I2SR[ICF] for zero if new data had to be written during the previous
data transfer. I2Cn_I2SR[IIF] may not be polled if I2Cn_I2CR[IIEN] is set because the
I2C generates an interrupt when IIF is set.

NOTE
When cleared, I2Cn_I2SR[RXAK] denote the ACK bit was
received.

16.3.4 STOP signal

The master can terminate communication by generating a STOP signal to free the bus. A
STOP signal is defined as a low-to-high transition of SDA while SCL is at logical high
(F).

NOTE
A master can generate a STOP even if the slave has made an
acknowledgment, at which point the slave must release the bus.
Clearing the I2Cn_I2CR[MSTA] bit generates a STOP and
selects slave mode.

16.3.5 Repeat start

SCL

MSB

1 2 3 4 5 6 7 8 9

LSB

SDA AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

A

START
signal

Calling address R/W ACK
bit

XX

New calling address No
ACK
bit

STOP
signal

987654321

MSB LSB

R/WRepeated
START
signal

Stop

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

Figure 16-3. Repeated START

Instead of signaling a STOP, the master can repeat the START signal, followed by a
calling command. A repeated START occurs when a START signal is generated without
first generating a STOP signal to end the communication. The master uses a repeated
START to communicate with another slave or with the same slave in a different mode
(transmit/receive mode) without releasing the bus.

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 165

NOTE
Setting I2Cn_I2CR[RSTA] bit generates a repeat start
condition.

16.4 Programming controller registers for I2C data transfers
his section describes how to program I2C controller registers I2Cn_I2CR, I2Cn_I2SR,
and I2Cn_I2DR for transferring data on an I2C bus. Pseudocode is provided wherever
necessary.

16.4.1 Function to initialize the I2C controller

This initialization function uses two parameters: the base address of the initialized
controller and the desired baud rate used for the I2C bus. The function:

• Manages the controller's clock gating
• Calculates the divider to get the desired frequency of SCL
• Enables the controller

/*!
 * Initialize the I2C module -- mainly enable the I2C clock, module
 * itself and the I2C clock prescaler.
 *
 * @param base base address of I2C module (also assigned for I2Cx_CLK)
 * @param baud the desired data rate in bps
 *
 * @return 0 if successful; non-zero otherwise
 */
int i2c_init(uint32_t base, uint32_t baud)

Programming controller registers for I2C data transfers

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

166 Freescale Semiconductor, Inc.

16.4.2 Programming the I2C controller for I2C Read

Count == 1

Yes

Yes

Yes

Done

Yes

Wait for bus to be
free

(IBB == 1)

Yes

Send read address

Send slave address with
LSB set to 1 to transmit

Wait for bus to be
busy

(IBB == 0)

Enable I2C and program it
to master transmit mode

Wait for bus to be
free

(IBB == 1

I2C master
receives

(I2C_read

Count == 0

Repeat start
(Set RSTA bit)

Wait for bus to be
busy

(IBB == 0)

Send slave address with
LSB set to 0 to receive

Count == 2

Generate STOP
condition

Set TXA Kbit to
lot generate ACK

Read a byte from DC

Decrement read count by
1

No

No

No

Yes

No

No

No

Figure 16-4. Flow chart for I2C read

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 167

Program the I2C controller according to the following sequence to receive bytes (read) a
device.

<WAITBUSFREE><START><WAITBUSBUSY><SLV ADR><W><ADR MSB><ADR LSB><RPT START><WAITBUSBUSY><SLV
ADR><R><READ BYTE><ACK><READ BYTE><STOP>

<WAITBUSFREE> Wait until I2Cn_I2SR[IBB] (I2C bus busy) bit is high. Wait for bus
to go free.

<START> Start signaled by master

<WAITBUSBUSY> Wait until I2Cn_I2SR[IBB] (I2C bus busy) bit is low. Wait for bus
to go busy.

<SLV ADR><W> 7-bit slave address and last bit set to 1. This indicates to the slave
device with the matching slave address that a transmit operation from master to slave is
being issued by master. Slave responds with ACK; software can read the ACK using
I2Cn_I2SR[RXAK] bit. If it is 1, then no ACK was received and software can issue stop
signal.

<ADR MSB> .. . <ADR LSB> Depending on device type this could be a memory offset,
a command, or a register address. The address may be a byte or multiple bytes depending
on device type. Master should be programmed to transmit this data byte at a time using
I2Cn_I2DR. This address tells the slave I2C device what data master is requesting. Slave
ACK after receiving each byte and software should make sure I2Cn_I2SR[RXAK] bit is
set in order to confirm ACK is received.

<RPT START> Repeat start signaled by master

<SLA ADR><R> 7 bit slave address and last bit set to 0, this will indicate to the slave
device that master is ready to receive data.

<READ BYTE><ACK> , Master reads data from slave byte at a time. The I2Cn_I2DR
register is used by software to read the byte. The I2C controller issues the ACK bit upon
reading each byte; once the specified number of bytes are received, software should
program the I2C controller's I2Cn_I2CR[TXAK] bit to not generate ACK.

<STOP> Stop signaled by master

16.4.3 Code used for I2C read operations

This section provides the functions used in an I2C read operation.

The function i2c_xfer is used with the I2C_READ parameter.

/*!
 * This is a rather simple function that can be used for most I2C devices.
 * Common steps for both READ and WRITE:

Programming controller registers for I2C data transfers

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

168 Freescale Semiconductor, Inc.

 * step 1: issue start signal
 * step 2: put I2C device addr on the bus (always 1 byte write. the dir always
I2C_WRITE)
 * step 3: offset of the I2C device write (offset within the device. can be 1-4 bytes)
 * For READ:
 * step 4: do repeat-start
 * step 5: send slave address again, but indicate a READ operation by setting LSB bit
 * Step 6: change to receive mode
 * Step 7: dummy read
 * Step 8: reading
 * For WRITE:
 * Step 4: do data write
 * Step 5: generate STOP by clearing MSTA bit
 *
 * @param rq pointer to struct imx_i2c_request
 * @param dir I2C_READ/I2C_WRITE
 *
 * @return 0 on success; non-zero otherwise
 */
int32_t i2c_xfer(struct imx_i2c_request *rq, int dir)

/*!
 * For master RX
 * Implements a loop to receive bytes from I2C slave.
 *
 * @param base base address of I2C module
 * @param data return buffer for data
 * @param sz number of bytes to receive
 *
 * @return 0 if successful; -1 otherwise
 */
static int rx_bytes(uint8_t * data, uint32_t base, int sz)

/*!
 * For master TX
 * Implements a loop to send a byte to I2C slave.
 * Always expect a RXAK signal to be set!
 *
 * @param base base address of I2C module
 * @param data return buffer for data
 *
 * @return 0 if successful; -1 otherwise
 */
static int tx_byte(uint8_t * data, uint32_t base)

/*!
 * wait for operation done
 * This function loops until we get an interrupt. On timeout it returns -1.
 * It reports arbitration lost if IAL bit of I2SR register is set
 * Clears the interrupt
 * If operation is transfer byte function will make sure we received an ack
 *
 * @param base base address of I2C module
 * @param is_tx Pass 1 for transfering, 0 for receiving
 *
 * @return 0 if successful; negative integer otherwise
 */
static int wait_op_done(uint32_t base, int is_tx)

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 169

16.4.4 Programming the I2C controller for I2C Write

I2C Master
Transmit

(I2C_Write)

Wait for bus to be
free

(IBB == 1)

Enable I2C and program it
to master transmit mode

Wait for bus to be
busy

(IBB == 0)

Send slave address with
LSB set to 1 to transmit

Send write address

Wait for bus to be
free

(IBB == 1)

Done

Generate STOP
condition

Count <= 0

Decrement write count by
1

Send a byte

Yes

Yes

Yes

No

No

No

Yes

No

Figure 16-5. Flow chart for I2C write

Programming controller registers for I2C data transfers

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

170 Freescale Semiconductor, Inc.

Use the following sequence to program the I2C controller to send data bytes (write) to the
device.

<WAITBUSFREE><START><WAITBUSBUSY><SLV ADR><W><ADR MSB>…<ADR LSB><WRITE BYTE>…<WRITE
BYTE><STOP>

<WAITBUSFREE> Wait until I2Cn_I2SR[IBB] (I2C bus busy) bit is high. Wait for bus
to go free.

<START> Start signaled by master

<WAITBUSBUSY> Wait until I2Cn_I2SR[IBB] (I2C bus busy) bit is low. Wait for bus
to go busy.

<SLV ADR><W> 7 bit slave address and last bit set to 1, this will indicate to the slave
device with matching slave address that a transmit operation from master to slave is being
issued by master. Slave responds with ACK, software can read the ACK using
I2Cn_I2SR[RXAK] bit. If it is 1 then no ACK received and software can issue stop
signal.

<ADR MSB> ... <ADR LSB> Depending on device type this could be a memory offset,
a command or a register address. The address could be just a byte or multiple bytes
depending on device type. Master should be programmed to transmit this data byte at a
time using I2Cn_I2DR. This address tells the slave I2C device what data master is going
to send. Slave ACK after receiving each byte and software should make sure
I2Cn_I2SR[RXAK] bit is 1 to confirm ACK is received.

<WRITE BYTE> … Master sends data to slave byte at a time. The I2Cn_I2DR register
is used by software to read the byte. Slave ACK after receiving each byte and software
should make sure RXAK bit is 1 to confirm ACK is received.

<STOP> Stop signaled by master

16.4.5 Code used for I2C write operations

Code used for I2C read operations provides the description of the functions used in the
driver.

For an I2C write operation, use the function i2c_xfer with the I2C_WRITE parameter.

Chapter 16 Configuring the I2C Controller as a Master Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 171

Programming controller registers for I2C data transfers

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

172 Freescale Semiconductor, Inc.

Chapter 17
Configuring the I2C Controller as a Slave Device

17.1 Overview
This chapter explains how to configure the I2C controller as a slave device.

There are three instances of I2C in the chip, located in the memory map at the base
addresses:

• I2C1 at 021A 0000h
• I2C2 at 021A 4000h
• I2C3 at 021A 8000h

17.2 Feature summary
This low-level driver supports:

• Usage of an I2C controller as a slave device

17.3 Modes of operation
The following table explains the I2C slave driver modes of operation:

Table 17-1. I2C slave driver modes of operation

Mode What it does

Slave device The controller is configured with a user's defined slave device
ID. It executes the user's defined transmit and receive
operations as commanded by an external master. The driver
is able to automatically receive and transmit like a memory,
with a pre-defined number of address cycles and unlimited
number data cycles.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 173

17.4 Clocks

PLL2

2

1

3-bit Divider where 2 = default divider value.

6-bit Divider where 1 = default divider value.

MUX with default 0 selection. Unless mentioned, the inputs are in ascending order.0

396 MHz
352 MHz
198 MHz

0

pre_periph_clk_sel

pll_bypass_en2

0

periph_clk_sel

4

ahb_podf

ipg_podf

2

AHB_CLK_ROOT
(132 MHz)

IPG_CLK_ROOT
(66 MHz)

PERCLK_ROOT
(66 MHz)

perclk_podf

cg

1

1

Figure 17-1. Clock control signals for I2C blocks

This controller uses IPG_CLK as its single input clock. The frequency of the I2C bus
SCL signal is calculated based on the IPG_CLK frequency and block divider defined in
the I2C Frequency Divider Register (IFDR).

The SCL frequency is simply the IPG_CLK frequency divided by any of the values
defined in the "I2C_IFDR Register Field Values" table (see the I2C chapter in the chip
reference manual)

Table 17-2. I2C slave driver clocks

Clock Name Description

IPG_CLK IPG_CLK Global IPG_CLK that is typically used in
normal operation. It is provided by CCM.
It cannot be powered down.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

174 Freescale Semiconductor, Inc.

17.5 Resets and interrupts
To save power, the driver disables the controller when not using it and enables the
controller to use it. When disabled, the controller is reset.

The driver provides an interrupt routine (i2c_interrupt_routine) that reads the status
register for later processing, depending on the active flags, and clears the register. The
application routine address is passed through the hw_module data structure, which is
defined in .src/include/io.h. This data structure is initialized by the application and used
by the driver for various configurations.

All interrupt sources are listed in the "Interrupts and DMA Events" chapter of the chip
reference manual. In the SDK, the list is provided at ./src/include/mx6dq/soc_memory_map.h.

17.6 Initializing the driver
The application should use the following function to initialize the I2C controller. This
function is available in the I2C master driver at the location: ./src/sdk/i2c/drv/imx_i2c.c

/*!
 * Initialize the I2C module -- mainly enable the I2C clock, module
 * itself and the I2C clock prescaler.
 *
 * @param base base address of I2C module (also assigned for I2Cx_CLK)
 * @param baud the desired data rate in bps
 *
 * @return 0 if successful; non-zero otherwise
 */
int i2c_init(uint32_t base, uint32_t baud)

The following structure creates an I2C request. It is defined in ./src/include/imx_i2c.h by

struct imx_i2c_request {
 uint32_t ctl_addr; // the I2C controller base address
 uint32_t dev_addr; // the I2C DEVICE address
 uint32_t reg_addr; // the actual REGISTER address
 uint32_t reg_addr_sz; // number of bytes for the address of I2C device register
 uint8_t *buffer; // buffer to hold the data
 uint32_t buffer_sz; // the number of bytes for read/write
 int32_t (*slave_receive) (struct imx_i2c_request *rq); // slave receive data from master
 int32_t (*slave_transmit) (struct imx_i2c_request *rq); // slave transmit data to master
};

This structure provides the following information to the driver:

• ctl_addr is the I2C controller base address.
• dev_addr is the slave device address ID of the i.MX6.
• reg_addr is not used.
• reg_addr_sz is the number of address cycles that the master uses.
• *buffer is a pointer used for the data transfers.

Chapter 17 Configuring the I2C Controller as a Slave Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 175

• buffer_sz is not used.
• (*slave_receive) is a pointer to the function used to handle the received data. It takes

an I2C request as parameter, which is typically this request.
• (*slave_transmitter) is a pointer to the function used to handle the transmitted data. It

takes an I2C request as parameter, which is typically this request.

An hw_module data structure created in the application and defined in ./src/include/io.h
is used to pass the interrupt number and base address of the used I2C controller. Other
parameters are not used.

Once the data is ready, the transfer function can be called. It returns when the access from
the master is complete.

/*!
 * The slave mode behaves like any device with g_addr_cycle of address + g_data_cycle of
data.
 * Master read =
 * START - SLAVE_ID/W - ACK - MEM_ADDR - ACK - START - SLAVE_ID/R - ACK - DATAx - NACK - STOP
 * Example for a 16-bit address access:
 * 1st IRQ - receive the slave address and Write flag from master.
 * 2nd IRQ - receive the lower byte of the requested 16-bit address.
 * 3rd IRQ - receive the higher byte of the requested 16-bit address.
 * 4th IRQ - receive the slave address and Read flag from master.
 * 5th and next IRQ - transmit the data as long as NACK and STOP are not asserted.
 *
 * Master write =
 * START - SLAVE_ID/W - ACK - MEM_ADDR - ACK - DATAx - NACK - STOP
 *
 * 1st IRQ - receive the slave address and Write flag from master.
 * 2nd IRQ - receive the lower byte of the requested 16-bit address.
 * 3rd IRQ - receive the higher byte of the requested 16-bit address.
 * 4th and next IRQ - receive the data as long the STOP is not asserted.
 */
/*!
 * Handle the I2C transfers in slave mode.
 *
 * @param port - pointer to the I2C module structure.
 * @param rq - pointer to struct imx_i2c_request
 */
void i2c_slave_xfer(struct hw_module *port, struct imx_i2c_request *rq)

For more functional details, the i2c_slave_xfer function calls the following function.
This function is a software implementation of the flow chart described in the I2C chapter
of the chip reference manual (see the "Flow Chart for Typical I2C Polling Routine"
figure for the flow chart).

/*!
 * I2C handler for the slave mode. The function is based on the
 * flow chart for typical I2C polling routine described in the
 * I2C controller chapter of the reference manual.
 *
 * @param rq - pointer to struct imx_i2c_request
 */
void i2c_slave_handler(struct imx_i2c_request *rq)

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

176 Freescale Semiconductor, Inc.

17.7 Testing the driver
A test is available to use the slave driver as a memory device. Any of the chip addresses
(for example register or memory location) can be read or written to in this usage example.

17.7.1 Running the test

To run the I2C slave test, the SDK builds the test with the following command:

./tools/build_sdk -target mx6dq -board sabre_ai -board_rev a -test i2c

This generates the following ELF and binary files:

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-i2c-sdk.elf

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-i2c-sdk.bin

The I2C test allows testing the controller in two ways:

• As a master, using an EEPROM as slave
• As a slave by using an external master connected to the appropriate I2C bus.

The I2C slave test allows the user to choose the device ID of the chip, as well as the
number of address cycles (1 to 4) that this device should support when accessed by the
master.

The data size is variable and automatically adjusted by the driver until the bus is busy (no
ACK or STOP are received). However, the imx6_slave_transmit and imx6_slave_receive
functions of the test application can only handle up to four transmitted or received bytes
whatever the address size is. With 1- and 2-byte address accesses, the data is read from a
reference data buffer or written onto the console to show the received data.

Take special care when performing a 4-byte address access because the
imx6_slave_transmit and imx6_slave_receive service functions access a physical
memory address of the chip. These functions assume that when using 4 address cycles,
the data size is 4 bytes. Therefore, the targeted memory location must be 32-bit
accessible.

For example, when the master performs a read access at the address 1000 0000h, the
driver transmits the value read from this address, which is the base address of the
SDRAM memory.

Chapter 17 Configuring the I2C Controller as a Slave Device

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 177

NOTE
The master used to validate that driver is an FTDI chip
FT2232H mounted on an evaluation board from FTDI -
FT2232H_Mini_Module.

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

178 Freescale Semiconductor, Inc.

Chapter 18
Configuring the IPU Driver

18.1 Overview
The IPU is a part of the video and graphics subsystem in the i.MX 6Dual/6Quad and
i.MX 6Solo/6DualLite application processors. The goal of the IPU is to provide
comprehensive support for the flow of data from an image sensor, and/or storage, to a
display device.

This support covers all aspects of these activities:

• Connectivity to relevant devices: such as displays, graphics accelerators, and TV
encoders

• Related image processing and manipulation: sensor image signal processing, display
processing, image conversions, etc.

• Synchronization and control capabilities (to avoid tearing artifacts)

This integrative approach leads to several significant advantages:

• Automation: The involvement of the ARM platform in image management is
minimized. In particular, display refresh/update can be performed completely
autonomously. The resulting benefits are reducing the overhead due to software-
hardware synchronization, freeing the ARM platform to perform other tasks and
reducing power consumption (when the ARM core is idle and can be powered
down).

• Optimal data path: Access to system memory is minimized. In particular, significant
processing can be performed on-the-fly while sending data to a display. System
memory is used only when a change in pixel order or frame rate is needed. The
resulting benefits are reduced load on the system bus and further reduction of power
consumption.

• Resource sharing: Maximum hardware reuse for different applications, resulting in
the support of a wide range of requirements with minimal hardware.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 179

The hardware reuse is enabled by a sophisticated configurability of each hardware block.
This configurability also allows the support of a wide range of external devices, data
formats, and operation modes. The resulting flexibility is also important because the
support requirements are evolving significantly and expected future changes need to be
anticipated and accounted for.

There are two equivalent instances of IPU, which are located in the memory map at the
following addresses:

• IPU1 base address = 0240 0000h
• IPU2 base address = 0280 0000h

The following figure provides a simple block diagram of IPU:

Cameras

O
p

ti
o

n
al

 c
o

n
n

ec
ti

vi
ty

 b
ri

d
g

es

Displays

IPU

CSI (camera
sensor interface)

VDI (video
de-interlacer)

IC (image
converter)

DP (display
processor) DMFC (display

multi FIFO
controller)

IRT (image
rotator)

CM (control
module)

DC
(display controller)

32-bit AHB

platformARM

IDMAC
(image
DMA

controller) AXI
64-bit

Memory

DI
(display interface)

(L
V

D
S

, V
G

A
, T

V
E

)

SMFC (sensor
multi FIFO
 controller)

Figure 18-1. IPU block diagram

The following table describes the role of each block.

Table 18-1. IPU block descriptions

Block Description

Camera Sensor Interface (CSI) • Controls a camera port
• Provides interface to an image sensor or a related device
• Each IPU includes two CSI blocks

Display Interface (DI) • Provides interface to displays, display controllers, and related devices
• Each IPU includes two DI blocks

Display Controller (DC) • Controls the display ports

Table continues on the next page...

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

180 Freescale Semiconductor, Inc.

Table 18-1. IPU block descriptions (continued)

Block Description

Image Converter (IC) • Performs resizing, color conversion/correction, combining with graphics, rotating,
and horizontal inversion

Display Processor (DP) • Performs the processing required for data sent to display.

Image Rotator (IRT) • Performs rotation (90 or 180 degrees) and inversion (vertical/horizontal).

Image DMA Controller (IDMAC) • Controls the memory port
• Transfers data to/from system memory

Display Multi FIFO Controller
(DMFC)

• Controls FIFOs for IDMAC channels related to the display system.

Sensor Multi FIFO Controller
(SMFC)

• Controls FIFOs for output from the CSIs to system memory

Video De-Interlaced and Combiner
(VDIC)

• Converts interlaced image into progressive and layers combination

Control Module (CM) • Provides control and synchronization.

18.2 IPU task management
The detailed IPU diagram is shown in the following figure:

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 181

Memories

Primary
Camera

Secondary
Camera

CSI0

CSI1

SMFC

VDIC
FSU

Control
Module

CRCU RF

IRT

IC

IDMAC AXI

Primary
Display

Secondary
Display

DI0

DI1

DC

DP

AHB

DMFC

AHB

Figure 18-2. Detailed IPU block diagram

The five types of IPU tasks are listed in the following table:

Table 18-2. IPU tasks

Task Data flow Additional information

Image rendering The data flow is from memory to display. The image is provided by external devices
(such as sensor, DVD player, etc.) through
the CSI interface.

Image processing The data flow is from memory to memory. The image is provided by external devices
(such as sensor, DVD player, etc.) through
the CSI interface.

CSI preview The data flow is from CSI to display on a direct
path with no memory involved.

-

CSI capture The data flow is from CSI to memory. -

Mixed mode Can be a combination of two or more of the
above tasks.

-

IPU task management

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

182 Freescale Semiconductor, Inc.

18.3 Image rendering
Image rendering is the process by which the image data that is stored in the memory is
transferred to the display device. The following are examples of supported display
devices:

• Parallel dumb panel
• Smart panel
• Other further processed sinks:

• HDMI/DVI monitor (the chip provides the HDMI/DVI transmitter, and the PHY
converts the data into serialized differentiated data lanes)

• LVDS panels (the chip provides LDB as a bridge to LVDS display)
• MIPI DSI

An example of a simple display flow is: memory > IDMAC > DMFC (> DP) > DC > DI
> display.

18.3.1 IDMAC

IDMAC is the DMA bridge between external memory and IPU blocks. There are 64
DMA channels inside the IPU. Each channel is dedicated as a read/write channel to/from
the memory. Detailed channel descriptions can be found in the IPU spec.

The configuration parameters for each IDMAC channel are held in the CPMEM. For
each channel, there are two mega-words to describe the properties. Each mega-word is
160 bits wide and includes information such as data format, frame width and height, burst
size, stride line, and bit per pixel setting.

IDMAC can support interleaved mode and non-interleaved mode data transfer. The
IDMAC will pack (in write direction) or unpack (in read direction) the data, no matter
what format it is stored in. This means all data flow through IDMAC to other blocks of
IPU will be in YUVA4444 or RGBA8888 mode.

There are several IDMAC events/interrupts for system control and debug purposes. The
most import of these are EOF (end of frame) and NF (new frame). These two events are
usually used to indicate the frame status and drive the whole flow.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 183

18.3.2 DMFC

The display multi-FIFO control (DMFC) manages multi-channel FIFOs. It serves the
following clients:

Table 18-3. DMFC clients

Client Access

IDMAC Read and write

DP Read only

DC Read and write

IC Write only

AHB Read and write

The DP and the DC read channels are physically attached to an IDMAC or an IC channel.
When the input is coming from the image converter, it replaces a channel that was
physically attached to the IDMAC because the image converter has only one output
channel connected to the DMFC. The DMFC uses a single physical memory that serves
the DP and DC read channels. The AHB accesses to the DC, and the DC's write channel
(read from display), use a separate physical memory. This is used to write an external
device directly through AHB bus, or to configure a smart panel.

In image rendering, DMFC is served as FIFO between either IDMAC (fetching data from
external memory) or IPU subblocks (such as IC, DP, DC). The physical memory of
DMFC is partitioned into eight segments. For each channel, the start address at a
segment's boundary must be defined using the DMFC_ST_ADDR parameter, and the
size of the FIFO allocated to a channel must be defined using the DMFC_FIFO_SIZE
parameter. The FIFO must be allocated to avoid overlapping between FIFOs. The FIFO's
burst length is also configurable, and it should match the IDMAC burst length for optimal
performance.

There is a watermark setting to dynamically tune the channel's priority on the IDMAC's
arbitration. DMFC_WM_SET and DMFC_WM_CLR are used to trigger the watermark
signals.

18.3.3 Display Processor (DP)

Each IPU can support two synchronous display flows concurrently. One is through the
display processor BG/FG, and the other is through the display controller.

The display processor processes the image prior to sending it to the display. The main
task performed by the display processor is combining between full and partial planes. The
display processor has two input FIFOs holding the data of the full plane and the partial

Image rendering

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

184 Freescale Semiconductor, Inc.

plane. The two planes can be blended as per local or global alpha setting, based on the
mode chosen by DP_GWAM_SYNC. For global alpha, the alpha value is configured in
DP register DP_GWAV_SYNC. In addition, the display processor performs some image
enhancement functions like gamma correction and color space conversion (including
Gamut mapping).

During combining, the background is a full plane, and the foreground is a partial plane.
Left and top offsets of the foreground can be set in register DP_FG_POS_SYNC. The
size of the foreground is determined by the corresponding IDMAC descriptor.

The following figure shows the display processor architecture diagram:

DC
Inter-
face

control-
ler

Gamma
Output
FIFO

CSC Cursor
Combi-

ning
Unit

CSC

CSC

FIFO
(full

plane)

FIFO
(partial)

Memory
Read
Cont-
roller

Control Logic

Figure 18-3. Display processor architecture diagram

The combination task can also be done in the image converter, but in that case the size of
the two planes must be the same. The display processor is the first choice for two-layer
blending because its combining performance is higher than the image converter's
combining performance.

Note that the DP register cannot be accessed directly. For example, the shadow register
SRM_DP_COM_CONF_SYNC must be accessed in order to configure the
DP_COM_CONF_SYNC register. The DP_S_SRM_MODE setting indicates how the
changes in shadow registers are updated in the actual registers.

18.3.4 Display controller (DC)

The display controller controls the flows coming to and from the DI port. The display
controller manages the flows, decides which flows are currently active and when each
flow is activated. The display controller arbitrates between the active flows, gets the data
from the predefined source and distributes it to the correct DI.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 185

The display controller's core is the microcode. The microcode contains a set of routine
which is built of a set of commands stored in the template's (microcode) memory. For
each event (such as new frame, end of frame etc.) a specific routine is executed. Users
write the routines to describe the rules of processing, and then map them to specific
events. The routine contains instructions for the display controller about how to handle
the data/address/commands associated with the display. The routine can also contain
information about data mapping, waveform characteristics, and more.

In the display controller block, the data coming from IDMAC is linked to a display
interface. It also sets the interface format (parallel or serial, interlaced or progressive,
etc.), to which the display flow is attached, and maps the data to the sink device (based on
which waveform of the display interface data will be processed). The rendered image
data is then sent to the display interface.

18.3.5 Display interface (DI)

The display interface provides access to up to three displays using time multiplexing. It
converts data from the display controller, or the MCU (low level access for serial
interface only), to a format suitable for the specific display interface. The display
interface generates display clocks and other display control signals such as HSYNC,
VSYNC and DRDY with programmable timings. It also outputs data to, or inputs data
from, parallel and/or serial interfaces.

This module generates all the control signals sent to the display. The display controller
sends the data for the display and a set of control signals to the display interface. The
controls coming from the display controller are used to generate the control signals sent
to the display through the display interface. One exception is serial low-level access
(LLA), meaning the display controller is bypassed and the data comes directly from the
MCU.

The display interface also sets the attributes of the interfaces to the display. The timing
and polarity of signals are set in the display interface block according to the different
types of displays.

18.4 Image processing
Image processing performs resizing, rotation, color space conversion, multi-layer
combination with alpha blending, de-interlaced, gamma correction, gamut mapping, etc.
The main image processing blocks are the IC (image converter) and VDIC (video de-
interlaced and converter).

Image processing

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

186 Freescale Semiconductor, Inc.

The image converter contains three processing sections: downsizing, main processing and
rotation. The peripheral bus registers control this module. Some processing parameters
are written by the MCU to the Task Parameter Memory, and the AHB bus performers
writing to the memory.

from
CSI

from/to
IDMAC

Input
Buffer

Memory
Control

Downsizing
Control

Downsizing
Arithmetic

Unit

Input
Buffer

Memory

Downsizing
Temporary

Memory
Control

Main
Processing

Memory

from/to
IDMAC

Main processing
section

Task
Parameter
MemoryDownsizing section

Rotation
Unit

Rotation
Memory
Control

from/to
IDMAC

Rotation
Memory

Rotation section

Downsizing
Temporary

Memory

Downsizing
Output

Memory
Control

Downsizing
Output

Memory

Task
Parameter
Memory
Control

Main
Processing

Memory
Control

Main
Processing
Arithmetic

Unit

Main
Processing

Control

Figure 18-4. Image converter diagram

The image converter has three processing sections that can perform up to three
processing tasks with time sharing mode. This means that three sets of configurations can
be set at the same time, but they share the unique set of hardware accelerators. For post
processing tasks, it has a dedicated input and output channel. For preprocessing tasks,
encoder and viewfinder share the same input but have their own separate output channels.

18.4.1 Downsizing

In this block, the image converter performs 1x, 2x, 4x downsizing operations on the input
image. The downsizing ratio can be set in DS_R_H for horizontal or DS_R_V for
vertical.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 187

18.4.2 Main processing

The main processing block reads the data from the Downsizing output and is able to
perform the following operations in each task:

• Horizontal/Vertical Flip by HF/VF settings-The corresponding DMA channel
descriptor should be changed accordingly.

• Horizontal/Vertical Resizing by bilinear interpolation-There is a formula to calculate
the resizing ration. Resizing_ratio = floor(2^13 x (SI - 1) ÷ (SO - 1)), where SI
means the input size and SO means the output size. In the Resizing block, the output
should be no more than 1024 in horizontal due to the FIFO width limitation.

• Color Space Conversion-The conversion matrix is user configurable, and it can
support SAT_MODE and NON_ SAT_MODE. In SAT_MODE, the range of Y is [0,
235], range of U/V is [16, 240]. In NON_SAT_MODE, the range of Y/U/V are all
[0, 255].

• Combination-The image converter can support local alpha blending, global alpha
blending, and use of key color. The size of the two layers for combining must be the
same.

18.4.3 Rotation

The image converter and IDMAC work together to perform rotation. The image for
rotation is divided into 8 x 8 blocks. The IDMAC must work in block mode and perform
data rearrangement within the blocks. The image converter provides the proper rotation
of the whole frame in the block unit.

The VDIC can de-interlace standard interlaced video to progressive video that is used for
upsizing to HD formats or for display on progressive displays. For VDI operation, three
sequential fields are necessary: F(n - 1), F(n), and F(n + 1). There is a per-designed de-
interlace algorithm stored in the VDIC block as firmware. The de-interlace is performed
by setting the motion level (high-motion or low-motion), and it outputs a progressive
whole frame.

The VDIC can also perform on-the-fly combination and color keying. The position and
size of the foreground layer are configurable.

Image processing

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

188 Freescale Semiconductor, Inc.

18.5 CSI preview
Image preview is a direct path from CSI to display. The CSI gets data from the sensor,
synchronizes the data and the control signals to the IPU clock (HSP_CLK), and transfer it
according to configuration of DATA_DEST register to one or more of the following: IC
or SMFC. When data is transferred to the IC module then routed to display module, it is
called image preview.

18.5.1 CSI interfaces

CSI supports two types of interfaces: parallel interface and high-speed serial interface.
The interface is determined via the DATA_SOURCE register.

18.5.1.1 Parallel interface

In this mode, a single value arrives in each clock except when working in BT.1120 mode,
in which case two values arrive in each cycle. Each value can be 8-16 bits wide according
to the configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N
LSB bits are ignored.

CSI can work with several data formats according to SENS_DATA_FORMAT
configuration. In case the data format is YUV, the output of the CSI is always YUV444
(even if the data arrives in YUV422 format).

The polarity of the inputs can be configured using the registers SENS_PIX_CLK_POL,
DATA_POL, HSYNC_POL, and VSYNC_POL.

18.5.1.2 High-speed serial interface-MIPI (mobile industry processor
interface)

In MIPI interface, two values arrive in each cycle. Each value is 8 bit wide, meaning 16
MSB bits of the data bus input are treated, while 4 LSB bits are ignored.

When working in this mode, the CSI can handle up to four streams of data. Each stream
is identified with DI (data identifier), including the virtual channel and the data type of
this stream. Each stream that is handled is defined in registers MIPI_DI0-3. Only the
main stream (MIPI_DI0) can be sent to all destination units, while the other streams are
sent only to the SMFC as generic data.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 189

In this mode SENS_DATA_FORMAT and DATA_WIDTH registers are ignored, since
this information is coming to the CSI via the MCT_DI bus.

18.5.2 CSI modes

CSI can work in several timing/data mode protocols according to SENS_PRTCL
configuration.

18.5.2.1 Gated mode

clock

Vsync

Hsync

data 0 1 2 3 4 5 6

Figure 18-5. CSI gated mode

In this mode, VSYNC is used to indicate the beginning of a frame, and HSYNC is used
to indicate the beginning of a raw. The sensor clock is ticking all the time.

18.5.2.2 Non-gated mode

clock

Vsync

data 0 1 2 3 4

Figure 18-6. CSI non-gated mode

In this mode, VSYNC is used to indicate the beginning of a frame. The sensor clock only
ticks when data is valid. HSYNC is not used.

When working with MIPI, configure the non-gated mode.

CSI preview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

190 Freescale Semiconductor, Inc.

18.5.2.3 BT656 mode

clock

data ff 00 00 xy data . . . ff 00 00 xy

Figure 18-7. BT656 mode

BT656 describes a simple digital video protocol for streaming uncompressed PAL or
NTSC Standard Definition TV (525 or 625 lines) signals. The protocol builds upon the
4:2:2 digital video encoding parameters which provide interlaced video data (streaming
each field separately). It uses the YCbCr color space and a 13.5 MHz sampling frequency
for pixels.

The timing reference signals (frame start, frame end, line start, line end) are embedded in
the data bus input, and each timing reference signal consists of a four word sequence. The
first three words are fixed and are configured in the CCIR_PRECOM register. The fourth
word contains information defining the field, the state of field blanking, and the state of
line blanking. These states are configured in registers CCIR_CODE_1 (for field 0) and
CCIR_CODE_2 (for field 1).

For PAL mode, the CCIR_CODE can be configured as shown below:

• CCIR_CODE_1: D 07DFh
• CCIR_CODE_2: 4 0596h
• CCIR_CODE_3: FF 0000h

One value of data arrives in each cycle of the BT656 mode.

18.5.2.4 BT1120 mode

In this mode, CSI can work in SDR or DDR mode.

clock

data-lsb

data-msb ff 00 00 xy d1 d3 d5

d0 d2 d4 d6 d8

d7 d9

Figure 18-8. BT1120 SDR mode

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 191

In DDR mode, data will arrive on both rising and falling edge of a clock, meaning that
two values of data arrive in each clock.

clock

data-lsb

data-msb ff 00 00 xy d1 d3 d5

d0 d2 d4 d6 d8

d7 d9

Figure 18-9. BT1120 DDR Mode

For direct path from CSI to the image converter, CSI_MEM_WR_EN and RWS_EN
(located in IPU_IC_CONF) are used to choose the data flow. CSI_SEL (in IPU_CONF)
determines which CSI is selected as the direct input to IC module. There is a limitation in
this task: the refresh rate of the display device must be the same as the CSI input frame
rate, otherwise the screen may not be functional due to the frame rate mismatch.

In the CSI block, images can be cropped by setting the actual window size. Follow these
rules:

• SENS_FRM_HEIGHT ≥ VSC + ACT_FRM_HEIGHT
• SENS_FRM_WIDTH ≥ HSC + ACT_FRM_WIDTH

18.6 CSI capture
In CSI capture task, data is received from the sensor and output to the memory through
SMFC and IDMAC.

The SMFC (Sensor Multi FIFO Controller) is used as a buffer between CSI and IDMAC.
Both masters (CSIs) can be connected to SMFC and both can be active simultaneously.

There are four channels that can be used as CSI output channels: channels 0~3 (of the
IPU DMA channels). The frame from CSI can be mapped to one of four IDMAC
channels via SMFC mapping registers. Each DMA channel has a dedicated FIFO, and the
burst length of the FIFO must match the DMA settings. The FIFO size attached to each
DMA channel is flexible according to the number of channels required. All four channels
share the whole FIFO, and if only one of them is enabled, the entire FIFO can be
allocated to one channel.

CSI capture

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

192 Freescale Semiconductor, Inc.

18.7 Mixed task
The mixed task can be a collection of the tasks described in the sections above. For
example, a CSI captured image can be stored in memory and then resized to full screen
for display.

For a complex task, CM is used for the flow management in order to support automatic
control without using the CPU. After the different blocks are connected together by CM,
the flow will be auto-driven by internal events (such as NF, EOF, etc.).

CM configures five registers:

• IPU_FS_PROC_FLOW1
• IPU_FS_PROC_FLOW2
• IPU_FS_PROC_FLOW3
• IPU_FS_DISP_FLOW1
• IPU_FS_DISP_FLOW2

The first three set the processing tasks and the last two set the display flows. For each
task, the source and destination must be configured to form a round linkage between
blocks.

18.8 Clocks
The following table lists the IPU clock sources:

Table 18-4. IPU clock sources

Clock Name Description

High-speed processing clock HSP_CLK Source from the clock control module

Display interface clocks • DI_CLK0
• DI_CLK1

Source from the clock control module or an external PLL

These clocks are optional; they are needed for
synchronization with interface bridges.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 193

18.8.1 High-speed processing clock (HSP_CLK)

mmdc_ch0

400M PFD

120M

540M PFD

9

21

59

73

3 bit divider
default=2

17 IPU1_HSP_CLK_ROOE (264 Mhz)

CSCDR3: ipu1_hsp_podfCSC DR3: ipu1_hsp_clk_sel

0

1

2

3

cg

mmdc_ch0

400M PFD

120M

540M PFD

9

21

59

73

3 bit divider
default=2

16 IPU2_HSP_CLK_ROOE (264 Mhz)

CSCDR3: ipu2_hsp_podfCSCDR3: ipu2_hsp_clk_sel

0

1

2

3

cg

Figure 18-10. IPU HSP_CLK clock tree

The IPU main clock (HSP_CLK) is generated by the internal clock control module
(CCM) (see Figure 18-10). The default HSP_CLK is divided from mmdc_ch0 by 2.

18.8.2 Display interface clocks (DI_CLKn)

The IPU display interface clock can be generated by either an internal clock divider or an
external PLL. For example, to drive a display of XGA resolution, we need a 65 MHz
pixel clock. There are two ways to obtain the clock.

• Divide from the internal IPU clock (HSP_CLK)

Dividing the 264 MHz IPU HSP_CLK clock by 4 provides the 65 MHz pixel clock.
IPU can also support fractional division, but image rendering does not usually
require that precise of a clock. Clear DI#_CLK_EXT to set the DI clock source to
internal.

• From external PLLs

The following figure shows the clock tree for generating IPU_DI0 clock from an
external source to the IPU source (HSP_CLK). The external source is selected with
the ipp_di_#_ext_clk_pin. The clock tree only works when the DI#_CLK_EXT is
set, which means the clock is generated externally.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

194 Freescale Semiconductor, Inc.

mmdc_ch0

PLL3

PLL5

352M PFD

400M PFD

540M PFD

9

3

58

72

21

73

0

1

2

3

4

5

CHSCCDR: ipu1_di0_pre_clk_sel

CHSCCDR: ipu1_di0_podf

CHSCCDR: ipu1_di0_clk_sel

IPU_DI0_CLK_ROOT
180 MHz

3 bit divider
default=3 0

1

2

3

4

cg

ipp_di0_clk

ipp_di1_clk

ipp_di0_ipu

ipp_di1_ipu

Figure 18-11. IPU DI0 clock tree

18.9 IOMUX pin mapping
IPU has two sets of display interfaces. For a parallel display, IPU provides data lanes,
vsync, hsync, date ready and pixel clock to drive the panel. For other further-processed
displays, such as HDMI or LVDS, the IPU output signals are internally multiplexed to
the relative modules.

For example, to connect the LVDS with IPU, LVDSx_MUX_CTL can be configured as
shown below:

• 00—IPU1 DI0, connect LVDSx to IPU1 DI0. The "x" means 0 or 1, and there are
two sets of LVDS display interfaces.

• 01—IPU1 DI1
• 10—IPU2 DI0
• 11—IPU2 DI1

To connect HDMI with IPU, HDMI_MUXCTRL can be configured as shown below:

• 00—IPU1 DI0, connect HDMI to IPU1 DI0
• 01—IPU1 DI1
• 10—IPU2 DI0
• 11—IPU2 DI1

For parallel displays, set the output signals of IPU according to the schematic and the
chip data sheet. General IPU display waveform pins provide the sync signals. They must
match with the waveform settings in the DI block.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 195

The following table shows a typical IOMUX mapping for an IPU parallel panel through
DI0. The exact mapping is board dependant.

Table 18-5. Typical IOMUX mapping for IPU parallel panel through DI0

Signals Option 1

PAD MUX

DI0 display clock DI0_DISP_CLK ALT0

DRDY DI0_PIN15 ALT0

HSYNC DI0_PIN2 ALT0

VSYNC DI0_PIN3 ALT0

DI0 data0~23 DISP0_DATx ALT0

18.10 Use cases
This section describes how to program I2C controller registers I2CR, I2SR, and I2DR for
transferring data on the I2C bus. Pseudocode is provided wherever necessary.

18.10.1 Single image rendering example

Image rendering (image display) is the basic use case. This example provides a general
introduction to how the IPU is configured to show an RGB image on the screen.

Memory

IDMAC

DMFC DP DC DI

Figure 18-12. IPU process for single image rendering

As described in Image rendering, several blocks are involved in the display flow. Before
setting the hardware registers, ensure you know all input and output information.

This example uses memory-to-display for the flow type and chooses the DP BG path.
Hardware configuration includes the following steps:

1. Configuring the IPU DMA channel (single image rendering)
2. Allocating the DMFC block
3. Configuring the DP block
4. Configuring the DC block
5. Configuring the DI block
6. Enabling the blocks involved in the display flow

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

196 Freescale Semiconductor, Inc.

18.10.1.1 Configuring the IPU DMA channel (single image rendering)

In this step, API ipu_disp_bg_idmac_config () is called. Because we chose the DP BG
path for display, we must use channel 23 as the DMA channel to fetch data from
memory.

The input data format is interleaved RGB565, so the relative bit fields must be set as:

• Bpp = 0x3, which means bit per pixel is 16
• Pfs, which indicates the data format to be interleaved RGB mode.
• Wid0=5-1, off0=0;
• Wid1=6-1, off1=5
• Wid2=5-1, off2=11
• Wid3=0, off3=16

Wid is the actual width of the component subtracting 1. Off means the start address of the
component within the pixel.

• FW, which is the actual frame width - 1
• FH , which is the actual frame width - 1
• Stride line, which means the offset of the next line in bytes

The IPU DMA channel can support single buffer mode or double buffer mode by setting
the MOD_SEL bit of each channel. In double buffer mode, the channel alternately
fetches data from EBA0 and EBA1.

18.10.1.2 Allocating the DMFC block

The DMFC is allocated for channel 23. The FIFO is equally split for the DP and DC
synchronous display channel.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 197

18.10.1.3 Configuring the DP block

DP is the data processor for image combination, color space conversion, gamma
correction, and gamut mapping. This example uses one layer, with the inputs and outputs
all in RGB mode. Therefore, the data flow through the DP is bypassed with no additional
processing.

18.10.1.4 Configuring the DC block

This block calls the API ipu_dc_config() and creates the following three microcodes: new
data, new line, and end of line. These three events are synchronized with the DI
waveform that generates the active data by setting the sync field of the microcode.

The mapping unit in DC block is used to pack the data output from DC to DI and then to
the data format that the display device supports. For example, if the display can accept
RGB666 mode, the RGBA8888 data flow must be packed into RGB666 format. This
operation is done in ipu_dc_map(). The mapping bit field of the microcode determines
which of the three available sets of data mapping units is chosen.

NOTE
As described in the IDMAC section, all data flow through the
subblocks of IPU (YUVA4444 or RGBA8888) is unpacked by
the IDMAC block.

Finally, ipu_dc_microcode_config() writes the microcode into a space in template
memory, and ipu_dc_microcode_event() attaches it to the event. The event priority can
be set individually.

The DC block also provides connection information between DI and DC. Both
ipu_dc_display_config() and ipu_dc_write_channel_config() can determine which DI the
DC is connected to, which format the display interface is in, what the data width is, and
which port the display has selected.

18.10.1.5 Configuring the DI block

This block is the interface to the display panels or other display processing modules. The
timing to display is generated by the general waveform sets inside the DI block.

For a parallel panel, IPU needs to provide pixel clock, HSYNC, VSYNC, DRDY, and
data lines. The pixel clock can be generated internally or externally. In external mode, the
pixel clock is always equal to the di_clk_root shown in Figure 18-11.

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

198 Freescale Semiconductor, Inc.

Each waveform generator requires several parameters to generate a proper signal, as
described in the following table.

Table 18-6. Signal parameters

Signal parameter Description

syncWaveformGen.runValue Indicates the number of periods based on the reference clock

syncWaveformGen.runResolution Indicates the reference clock for the waveform generator. It will trigger the
counter to decrease.

syncWaveformGen.offsetValue Indicates the predefined offset in the unit of offsetResolution

syncWaveformGen.offsetResolution Indicates the offset reference clock.

syncWaveformGen.cntAutoReload in auto-reload mode, the counter will reload the predefined value(runValue)
when the counter decrease to zero

syncWaveformGen.stepRepeat Valid only in non auto-reload mode. The counter will reload the predefined
value (runValue) when the counter decrease to zero

syncWaveformGen.cntClrSel Source to clear the non auto-reload waveform counter

syncWaveformGen.cntPolarityGenEn
= 0

Used to clear/set the polarity of the waveform

syncWaveformGen.cntPolarityTrigSe
l = 0

Used to clear/set the polarity of the waveform

syncWaveformGen.cntPolarityClrSel

= 0

Used to clear/set the polarity of the waveform

syncWaveformGen.cntUp = 0 Indicates the rising edge of the waveform

syncWaveformGen.cntDown = 2 Indicates the falling edge of the waveform

The following figures show how to set the key parameters to specify the timing of the
display.

VSYNC

R[7:0]
G[7:0]
B[7:0]

DE
VBL

VFP

VSYNC

VBP VDISP VFP

VSYNC

VBP

VBL

VP

HSYNC

Figure 18-13. Vertical display time

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 199

Vertical time has a blanking time, VBL, between two vsync active periods. VBL can be
divided into three parts:

• VFP, vertical front porch
• VBP, vertical back porch
• VSYNC, sync width in vertical

In the code, vSyncStartWidth indicates the start width of blanking in a whole vsync
period, and vSyncEndWidth indicates the end width of blanking in a whole vsync period.

DE

HSYNC

VSYNC

R[7:0]
G[7:0]
B[7:0]

HFP

HSYNC

HBP

tHV

HBL

HP

HDISP HFP

HSYNC

HBP

HBL

Figure 18-14. Horizontal display timing

Horizontal timing has blanking time, HBL, between two hsync active periods. Like VBL,
HBL can be divided into three parts:

• HFP, horizontal front porch
• HBP, horizontal back porch
• HSYNC, sync width in horizontal

In the code, hSyncStartWidth indicates the start width of blanking in a whole hsync
period, and hSyncEndWidth means the end width of blanking.

DE (or DRDY) has the same frequency as HSYNC, but the active period of DE indicates
data lines that are active in that period.

Based on the timing diagram, the parameters are configured as:

• hSyncStartWidth = HSYNC + HBP;

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

200 Freescale Semiconductor, Inc.

• hSyncWidth = HSYNC;
• hSyncEndWidth = HFP;
• delayH2V = tHV;
• vSyncStartWidth = VSYNC + VBP;
• vSyncWidth = VSYNC;
• vSyncEndWidth = VFP;
• hDisp = HDISP;
• vDisp = VDISP;

The frame width and height of the screen are indicated by hDisp and vDisp.

All the waveforms in the DI block are for general usage. Some are used for internal logic,
and some are used as output signals. The output pins are determined by the schematic
design, and DI must bind the pins to the output by setting VSYNC_SEL and
DISP_Y_SEL in the ipu_di_interface_set() function. The polarity of each output signal
can also be configured in the ipu_di_interface_set().

18.10.1.6 Enabling the blocks involved in the display flow

This is the last step of hardware settings. The display flow requires the following blocks:

• IDMAC
• DMFC
• DP
• DC
• DI

All these subblocks can be selected in the IPU_CONF register.

18.10.2 Image combining example

The image combining use case illustrates combining between the full and partial planes.
Each one of the planes may be a graphic or video plane. The following figure shows two
planes displayed on a display.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 201

Full plane

FGYP

FGXP

CXP

CYP

Partial plane

Cursor

CYH + 1

CXW + 1

Partial plane width

Full plane width

P
ar

tia
l p

la
ne

 h
ei

gh
t

F
ul

l p
la

ne
 h

ei
gh

t

Figure 18-15. Display planes

The partial plane's position is defined relatively to the upper left corner of the full plane.
The size of the partial and full planes is defined on the corresponding IDMAC's channels'
FW and FH parameters. The cursor position and parameters are set in the DP_CUR_POS
register.

The following figure shows the IPU process for displaying two combined images to
screen from two separated memories.

Memory

IDMAC

DMFC DP DC DI

Figure 18-16. IPU process for image combining

The background image is sent to its DMFC through IDMAC main plane channel. The
foreground image is send to its DMFC through IDMC auxiliary plane. The combining
options are set in DP module.

Hardware configuration includes the following steps:

1. Configuring the IPU DMA channel
2. Allocating the DMFC
3. Configuring the DP module
4. Other modules

Compared to the single image rendering (Figure 18-12), IPU hardware configuration is
different in the IDMAC, DMFC and DP modules.

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

202 Freescale Semiconductor, Inc.

18.10.2.1 Configuring the IPU DMA channel

The following table lists the IDMAC channels from memory to display for the main
plane and auxiliary plane list.

Table 18-7. Channels for main and auxiliary planes

Channel# Source Destination Purpose Data type

23 Fmem DP DP primary flow-main plane Pixel

27 Fmem DP DP primary flow-auxiliary plane Pixel

31 Fmem DP Transparency (alpha for channel 27) Generic

24 Fmem DP DP secondary flow-main plane Pixel

29 Fmem DP DP secondary flow-auxiliary plane Pixel

33 Fmem DP Transparency (alpha for channel 29) Generic

This use case calls API ipu_disp_bg_idmac_config() to configure channel #23 for main
plane and ipu_disp_fg_idmac_config() to configure channel #27 for auxiliary plane.
This use case uses global alpha. If using local alpha, channel #31 should also be
configured.

Please refer to Configuring the IPU DMA channel (single image rendering) for the
relative bit fields' setting for each channel.

18.10.2.2 Allocating the DMFC

Allocate DMFC for both main plane (background) and auxiliary plane (foreground)
IDMA channels.

18.10.2.3 Configuring the DP module

The DP module can set the following combining options:

• Local alpha blending
• Global alpha blending
• Use of key color
• Order of the planes (full is presented over the partial plane and vice versa)

The relative bit fields for combining are:

• DP_FGXP_SYNC / DP_FGYP_SYNC set the left upper corner position for
foreground on display on screen.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 203

• DP_FG_EN_SYNC must be set 1 to enable the partial plane channel.
• DP_GWAM_SYNC selects the use of alpha to be global or local.

• 1 Global Alpha.
• 0 Local Alpha.

• DP_GWAV_SYNC defines the global alpha value of background (main plane).

18.10.2.4 Other modules

The settings are the same as those for corresponding modules stated in Configuring the
DP block, Configuring the DC block, and Configuring the DI block.

18.10.3 Image rotate example

The following figure shows the IPU process for rotating an image and displaying it on a
screen.

Memory Memory

IDMAC

IC

Rotation

Section

IDMAC
DMFC DC DIDP

Figure 18-17. IPU process for image rotation

Rotation is performed by the IDMAC and the rotation unit inside the image converter.
The frame is partitioned into 8 x 8 pixels blocks.

1. The image converter reorders the pixels within a block. The rotation unit rewrites
pixels from the input block to the output FIFO with corresponding relocation of a
pixel inside the block.

2. The IDMAC reorders the block according to the VF, HF, and ROT parameters of the
corresponding DMA channels.

IPU configuration includes the following steps:

1. Configuring IDMAC channels for IC tasks (IC rotate)
2. Configuring the IC task
3. Setting IDMAC buffer ready

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

204 Freescale Semiconductor, Inc.

4. Image rendering process (IDMAC)

18.10.3.1 Configuring IDMAC channels for IC tasks (IC rotate)

The following table lists the IDMAC channels for the IC rotate tasks.

Table 18-8. Rotation channels

Channel # IC
channel

name

R/W Source Destination Purpose

45 CB10 Read Memory ENC ROT Preprocessing data for rotation (encoding task)

48 CB8 Write ENC ROT Memory Preprocessing data after rotation (encoding task)

46 CB11 Read Memory VF ROT Preprocessing data for rotation (viewfinder task)

49 CB9 Write VF ROT Memory Preprocessing data after rotation (viewfinder task)

47 CB13 Read Memory PP ROT Postprocessing data for rotation

50 CB12 Write PP ROT Memory Postprocessing data after rotation

This use case takes input channel #47 and output channel #50 for the postprocessing task.
The API calls ipu_rotate_idmac_config() to set the IDMAC for IC rotation tasks.

The rotation related bit fields' setting of input channel #47 are:

• NPB (Number of pixels per burst access) must be set as 7, which means 8 pixels per
burst.

• ROT (Rotation) is enabled, which means 90 degree rotation clockwise.
• BM (Block Mode) is set as 01h, which means 8 x 8 pixels blocks.

The rotation related bit fields' setting of output channel #50 are:

• NPB (Number of pixels per burst access) must be set as 7, which means 8 pixels per
burst.

• ROT (Rotation) is disabled. The rotation is performed in the input channel.
• HF (Horizontal Flip) is enabled depends on the use case.
• VF (Vertical Flip) is enabled depends on the use case.
• BM (Block Mode) is set as 01h, which means 8 x 8 pixels blocks.

Please refer to Image rendering for the relative bit fields' setting for each channel.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 205

18.10.3.2 Configuring the IC task

The rotation unit rewrites pixels from the input block to the output FIFO with the
corresponding relocation of a pixel inside the block. Rotation, left/right flipping, and/or
up/down flipping are enabled separately. The rotation section includes:

• Rotation memory (stores an input rectangular block of 8 x 8 pixels)
• Output FIFO (contains four pages of 8 pixels)

This example uses the postprocessing task for rotate only (without left/right or up/down
flip). The settings are:

• T3_ROT is enabled, which means rotation for the postprocessing task.
• T3_ FLIP_LR is enabled depending on the use case, which means the left/right flip

for the postprocessing task.
• T3_FLIP_UD is enabled depending on the use case, which means the up/down flip

for the postprocessing task.

NOTE
These three fields should be the same as in IDMAC.

• PP_EN is enabled, which enables the postprocessing task.
• PP_ROT_EN is enabled, which enables postprocessing rotation task.

18.10.3.3 Setting IDMAC buffer ready

Set IDMAC buffer ready after configuring and enable the IC task. Set the output IDMAC
channel buffer ready first and then the input IDMAC channel buffer.

18.10.3.4 Image rendering process (IDMAC)

Please refer to Single image rendering example for the image rendering process settings.

18.10.4 Image resizing example

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

206 Freescale Semiconductor, Inc.

18.10.4.1 IPU process flow

The image resizing is performed in the image converter module. The main processing
unit reads pairs of pixels from the downsizing output memory background part. The
following figure shows the IPU process for resizing an image and displaying it on a
screen.

Memory Memory

IDMAC

IC

Downsize
Section

IDMAC
DMFC DC DIDP

Main
Processing

Figure 18-18. IPU process for image rotation

IPU configuration includes the following steps:

1. Configuring IDMAC channels for IC resize tasks
2. Configuring the IC resize tasks
3. Setting IDMAC buffer ready (image rotation)
4. Image rendering process

18.10.4.2 Configuring IDMAC channels for IC resize tasks

The following table lists the IDMAC channels for the IC resize tasks.

Table 18-9. Channels for resizing

Channel# IC
channel

name

R/W Source Destination Purpose

11 CB5 Read Memory IC PP Postprocessing data from memory

22 CB2 Write IC PP Memory Postprocessing data from IC to memory

12 CB6 Read Memory IC VF Preprocessing data from sensor stored in memory (for
example Bayer)

21 CB1 Write IC VF Memory/DMFC Preprocessing data from IC (viewfinder task) to
memory; This channel can be configured to send the
data directly to the DMFC. This is done by
programming the ic_dmfc_sel bit.

20 CB0 Write IC ENC Memory Preprocessing data from IC (encoding task) to memory

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 207

This use case takes input channel #11 and output channel #22 for the postprocessing task.
The API calls ipu_resize_idmac_config() to set the IDMAC for IC resizing tasks.

The resizing related bit fields' setting for input channel #11and output channel #22 is
NPB (number of pixels per burst access), which is determined by frame width. The frame
width must be multiple of burst size 8 or 16 pixels as defined. If the frame width is a
multiple of 16, set NPB as 16 or 8. Otherwise, NPB must be set as 8.

NOTE
For both channels, the input's frame width to the image
converter must be a multiple of 8 pixels.

Refer to Configuring the IPU DMA channel (single image rendering) for the other bit
field settings.

18.10.4.3 Configuring the IC resize tasks

The main processing unit reads pairs of pixels from the downsizing output memory
background part. The following table describes the resize task settings:

Table 18-10. Resize task settings

Setting What it does

CB2_BURST_16 Defines the number of active cycles within a burst (burst size) coming from the IDMAC for
IC's CB2 (channel #22). For pixel data, the number of pixels should match the NPB[6:2]
value on the IDMAC's CPMEM.

CB5_BURST_16 Defines the number of active cycles within a burst (burst size) coming from the IDMAC for
IC's CB5 (channel #11). For pixel data, the number of pixels should match the NPB[6:2]
value on the IDMAC's CPMEM.

T3_FR_HEIGHT Sets the frame height (FH) for the postprocessing task. The value of this field must be
identical to the corresponding FH channel's parameters in the IDMAC's CPMEM. This
parameter refers to the output's size - 1.

T3_FR_WIDTH Sets the frame width (FW) for the post processing (PP) task. The value of this field must be
identical to the corresponding FW channel's parameters in the IDMAC's CPMEM. This
parameter refers to the output's size - 1.

PP_DS_R_H Sets the postprocessing task's downsizing horizontal ratio.

Table continues on the next page...

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

208 Freescale Semiconductor, Inc.

Table 18-10. Resize task settings (continued)

Setting What it does

PP_RS_R_H Sets the postprocessing task's resizing horizontal ratio.

Horizontal resizing is performed by bilinear interpolation between two adjacent pixels
received from the downsizing output memory, according to the equation:

where, RS_C_H is the current horizontal resizing coefficient. The calculation result is
rounded to 8 bits.

The resizing coefficient is calculated by:

PP_DS_R_V Sets the postprocessing task's downsizing vertical ratio.

PP_RS_R_V Sets the postprocessing task's resizing vertical ratio.

Vertical resizing is performed by bilinear interpolation between the current and previous
results of horizontal resizing. Both the current and previous results of horizontal resizing are
stored in the task parameter memory. Resizing is accomplished according to the equation:

where, RS_C_V is the current vertical resizing coefficient. The calculation result is rounded
to 8 bits.

The resizing coefficient is calculated as

PP_EN Enables the postproduction task

18.10.4.4 Setting IDMAC buffer ready (image rotation)

After configuring and enabling the IC resizing task, set the IDMAC buffer to ready
according to the following sequence.

1. Set the output IDMAC channel buffer ready.
2. Set the input IDMAC channel buffer ready.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 209

18.10.4.5 Image rendering process

Refer to Configuring the IPU DMA channel (single image rendering) for the settings for
the image rendering process.

18.10.5 Color space conversion example

18.10.5.1 IPU process flow (color space conversion)

The IPU contains two hardware modules that perform color space conversion (CSC): the
image converter and the display processor.

The following figure shows how the image converter performs color space conversion.

Memory

Memory

IDMAC IC

Downsize
section

Main
processing CH21

DMFC
IDMAC

IDMAC

Figure 18-19. IPU process for color space conversion (IC module)

The following figure shows how the display processor performs color space conversion.
The display processor connects to the display interface, so this color space conversion
process is used when color space conversion is needed in the display.

Memory

IDMAC

DMFC CSC

DP

DC DI

Figure 18-20. IPU process for CSC (DP module)

Color space conversion is performed in the main processing unit inside the image
converter. See these sections for further details:

1. Configuring IDMAC channels for IC tasks
2. Configuring IC tasks
3. IPU configurations for the DP task

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

210 Freescale Semiconductor, Inc.

18.10.5.2 Configuring IDMAC channels for IC tasks

Refer to Configuring IDMAC channels for IC resize tasks for the IDMA channel
configuration. This use case uses input channel #11 and output channel #22 for the
postprocessing task.

18.10.5.3 Configuring IC tasks

Use the conversion matrix CSC1 to perform color space conversion YUV to RGB or
RGB to YUV. The conversion matrix coefficients are programmable and stored in the
task parameter memory.

The conversion equations are:
• Z0=2Scale-1(X0×C00+X1×C01+X2×C02+A0)
• Z1=2Scale-1(X0×C10+X1×C11+X2×C12+A1)
• Z2=2Scale-1(X0×C20+X1×C21+X2×C22+A2)

• For YUV to RGB:
• X0 = Y
• X1 = U
• X2 = V
• Z0 = R
• Z1 = G
• Z2 = B,

• For RGB to YUV:
• X0 = R
• X1 = G
• X2 = B
• Z0 = Y
• Z1 = U
• Z2 = V

The following table shows the resizing related bit fields' setting for the postprocessing
CSC1 task lists. For all parameters, use the following:

• Address at 6060h
• word 0 and word 1

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 211

Table 18-11. Postprocessing task IC parameters for color space
conversion

Parameter Field Description

C22 8:0 Coefficients of color conversion matrix1 for viewfinder task:

• Z0 = X0 × C00 + X1 × C01 + X2 × C02 + A0;
• Z1 = X0 × C10 + X1 × C11 + X2 × C12 + A1;
• Z2 = X0 × C20 + X1 × C21 +X2 × C22+A2;

Coefficients format is s.xxxxxxxx;

C11 17:9

C00 26:13

A0 39:27 Offset of color conversion matrix1 for viewfinder task: Offset format is
sxx.xxxxxxxxxx

SCALE 41:40 Scale of coefficients for color conversion matrix1 for viewfinder task:
• 0 -->coefficients × 2
• 1 --> coefficients × 1
• 2 --> coefficients × 0.5
• 3 -->coefficients × 0.25

SAT MODE 42:42 Saturation mode for color conversion matrix1 for viewfinder task:
• 0 --> (min, max) = (0, 255)
• 1 --> (min, max) = (16, 240) for Z1,Z2
• 1 --> (min, max) = (16, 235) for Z0

The main processing unit reads pairs of pixels from the downsize output memory
background part. Therefore, the downsize unit also needs to be configured and enabled.
Refer to Configuring the IC resize tasks for help.

18.10.5.4 IPU configurations for the DP task

API calls ipu_dp_csc_config() to do color space conversion inside the display processor.
The conversion formula is:

x → Clip(Round(S×2^E)), S = Ax + B

Where:

• A is a 3 x 3-dimensional matrix of weights, each a 10-bit signed number with 8
fractional digits:

• B is a 3-dimensional vector of offsets, each a 14-bit signed number with 2 fractional
digits:

B = [CSC_B0 CSC_B1 CSC_B2]

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

212 Freescale Semiconductor, Inc.

• E is an exponent, assuming one of the following values: -1,0,1,2 (allowing weights
up to 8):

E = [CSC_S0 CSC_S1 CSC_S2]

The CSC related bit fields' settings in the display processor are:

• DP_CSC_DEF_SYNC is set to enable color space conversion.
• DP_CSC_A_SYNC_ sets the A parameter.
• DP_CSC_B0_SYNC/ DP_CSC_B1_SYNC/ DP_CSC_B2_SYNC sets the B

parameter.
• DP_CSC_S0_SYNC/ DP_CSC_S1_SYNC/ DP_CSC_S2_SYNC sets the E

parameter.

Chapter 18 Configuring the IPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 213

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

214 Freescale Semiconductor, Inc.

Chapter 19
Configuring the Keypad Controller

19.1 Overview
This chapter explains how to configure the keypad controller to manage a key matrix of
up to 8 x 8 keys.

This chip has one instance of the keypad, which is located in the memory map at
020B 8000h.

19.2 Feature summary
This low-level driver supports:

• Single and multiple key press on interrupt from up to an 8 x 8 matrix.
• Release detection of all keys.

19.3 Modes of operation
The following table explains the keypad driver modes of operation:

Table 19-1. Keypad modes of operation

Mode What it does

Multiple key press A scanning routine returns the detected pressed key(s) when
an interrupt is triggered by a press event.

Release detection When a key or multiple keys were pressed, an interrupt is
generated when all keys are released.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 215

19.4 Clocks
This module has no clock to configure.

19.5 IOMUX pin mapping
The following table shows the IOMUX pin map for the keypad controller. Shading
indicates the version that was tested on an engineering sample board.

Table 19-2. IOMUX pin map

Signals Driver

PAD MUX SION DAISY

CHAIN

KEY_COL0 KEY_COL0 ALT3 1 N/A

KEY_COL1 KEY_COL1 ALT3 1 N/A

KEY_COL2 KEY_COL2 ALT3 1 N/A

KEY_COL3 KEY_COL3 ALT3 1 N/A

KEY_COL4 KEY_COL4 ALT3 1 N/A

KEY_COL5 GPIO_0 ALT2 1 0

GPIO_19 ALT0 1

CSI0_DAT4 ALT3 2

SD2_CLK ALT2 3

KEY_COL6 GPIO_9 ALT2 1 0

CSI0_DAT6 ALT3 1

SD2_DAT3 ALT2 2

KEY_COL7 SD2_DAT1 ALT4 1 0

GPIO_4 ALT2 1

CSI0_DAT8 ALT3 2

KEY_ROW0 KEY_ROW0 ALT3 1 N/A

KEY_ROW1 KEY_ROW1 ALT3 1 N/A

KEY_ROW2 KEY_ROW2 ALT3 1 N/A

KEY_ROW3 KEY_ROW3 ALT3 1 N/A

KEY_ROW4 KEY_ROW4 ALT3 1 N/A

KEY_ROW5 GPIO_1 ALT2 1 0

CSI0_DAT5 ALT3 1

SD2_CMD ALT3 2

Table continues on the next page...

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

216 Freescale Semiconductor, Inc.

Table 19-2. IOMUX pin map (continued)

Signals Driver

PAD MUX SION DAISY

CHAIN

KEY_ROW6 SD2_DAT2 ALT4 1 0

GPIO_2 ALT2 1

CSI0_DAT7 ALT3 2

KEY_ROW7 SD2_DAT0 ALT4 1 0

GPIO_5 ALT2 1

CSI0_DAT9 ALT3 2

19.6 Resets and interrupts
This module resets along with the chip on both warm and cold resets. This is reset with
the chip’s global reset signal and is not a software controllable reset.

All the interrupt sources are listed in the reference manual in the "Interrupts and DMA
Events" chapter. The SDK provides this list at./src/include/mx6dq/soc_memory_map.h.

The interrupt source for the keypad is: IMX_INT_KPP.

The driver provides an interrupt routine (kpp_interrupt_routine). This routine disables the
key press and release interrupts as well as clears a flag used as wait for interrupt into
some of driver's functions.

19.7 Initializing the driver
The application initializes the keypad controller by calling the kpp_open function (see
below), which is available in the keypad port driver at ./src/sdk/keypad/drv/
keypad_port.c.

/*!
 * Initialize the keypad controller.
 *
 * @param kpp_col - active columns in the keypad.
 * @param kpp_row - active rows in the keypad.
 */
void kpp_open(uint8_t kpp_col, uint8_t kpp_row)
The value for kpp_col and kpp_row are those used to fill the KPP_KPCR register.
In the test example, the keypad matrix only uses the rows and columns from 5 to 7. Set these
variables to:
kpp_col = kpp_row = 0xE0.
This sets up a 3 x 3 matrix.

Chapter 19 Configuring the Keypad Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 217

19.7.1 Closing the keypad port
The application calls the following function to close the keypad port properly.
/*!
 * Leave the keypad controller in a known state.
 *
 */
void kpp_close(void)

19.7.2 Waiting for or obtaining a key press event
When the application needs to wait for or obtain a key press event, it calls the following
function:
/*!
 * Keypad port function to return the read key.
 *
 * @param rd_keys - active columns in the keypad.
 * @param condition - keypad state is read immediately (IMMEDIATE)
 * or it waits for key pressed interrupt (WF_INTERRUPT).
 */
void kpp_get_keypad_state(uint16_t *rd_keys, uint8_t condition)

The scan routine can be processed immediately to return the current keypad state, or it
can be executed once a key press event has been detected. The columns configured in
output mode are consecutively placed into a known state, and the state of the rows
configured in input mode is logged each time.

rd_keys is a pointer to an array of 8 unsigned short elements. This array can be parsed
like in the example test and compared to a key map to determine the name of the pressed
key(s). It logs the sampled status of the 8 rows, and the value of the register KPP_KPDR
provides the coordinates of the pressed key(s).

See the keypad port chapter of the chip reference manual for a detailed description of the
scanning routine.

19.7.3 Waiting for all keys to release

The application uses the following function once at least one key has been pressed to wait
for all keys to release. Note that the keypad controller cannot detect that a particular key
has been released; it can only return the information that none of the keys are pressed.

/*!
 * Keypad port function that waits for all keys to release.
 * The hardware can only detect this condition, and couldn't
 * detect the release of a single key but by doing it
 * by software.
 */
void kpp_wait_for_release_state(void)

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

218 Freescale Semiconductor, Inc.

19.8 Testing the driver
A test is available that uses the keypad driver to retrieve the names of the pressed keys.

To run the keypad test, the SDK builds the test with the following command:

./tools/build_sdk -target mx6dq -board evb -board_rev a -test keypad

This generates the following binary and ELF files:

• ./output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-keypad-sdk.elf

• ./output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-keypad-sdk.bin

The multiple keys pressed test works as follows:

1. Waits for a key press event.
2. Upon a key press event's occurence, scans the matrix.
3. Waits for 50 ms
4. Re-scans the matrix in case of multiple pressed keys.
5. Waits for all keys to release.

When the test is completed, the console displays the name of the pressed keys based on
the keys map (located in keypad_test.h).

Chapter 19 Configuring the Keypad Controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 219

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

220 Freescale Semiconductor, Inc.

Chapter 20
Configuring the LDB Driver

20.1 Overview
This chapter explains how to configure the LVDS display bridge (LDB), an integrated IP
that is used to connect the internal IPU (image processing unit) to the external LVDS
display interface in the i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite products. The goal
of the LDB is to convert the parallel data into LVDS data lanes. It must be tested together
with the IPU, which produces the parallel data, and the LVDS panel which acts as a
LVDS receiver.

LVDS (low-voltage differential signaling) is an electrical digital signaling system that
can run at very high speeds over inexpensive twisted-pair copper cables. It transmits
information as the difference between two voltages on a pair of wires; the two-wire
voltages are compared at the receiver end. The low common voltage (the average of the
voltages on the paired wires, ~1.2 V) and the low differential voltage (~350 mV) allows
LVDS to consume less power than other systems.

This chip has one instance of LDB. it is located in the IOMUX chapters with only one
configure register named IOMUXC_IOMUXC_GPR2.

In this chip, the pins are dedicated for LVDS output with no mux.

The following figure shows the LDB block diagram.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 221

ipu_di0_data

ipu_di0_hsync

ipu_di0_vsync

ipu_di0_de

ipu_di0_ctl

ipu_di0_clk

ipu_di1_data

ipu_di1_hsync

ipu_di1_vsync

ipu_di1_de

ipu_di1_ctl

ipu_di1_clk

ch0_data_width

ch1_data_width

ch0_bit_mapping

ch1_bit_mapping

ldb_channel_mode

ldb_ch0_ser_clk

ldb_ch1_ser_clk

NGND_LVDS_BG

LVDS_BG_RES

NVCC_LVDS_BG

LVDS_BIAS

BANDGAP

LDB
Mux &

Control

ch0_data0

ch0_data1

ch0_data2

ch0_data3

ch0_en

ch0_data_enable

ch1_data_enable

ch1_data0

ch1_data1

ch1_data2

ch1_data3

ch1_en

ch1_ser_clk
ch0_ser_clk

ipp_do_lvds0_tx0

ipp_do_lvds0_tx1

ipp_do_lvds0_tx2

ipp_do_lvds0_tx3

ipp_do_lvds0_clk

ipp_obe_lvds0

ipp_do_lvds1_tx0

ipp_do_lvds1_tx1

ipp_do_lvds1_tx2

ipp_do_lvds1_tx3

ipp_do_lvds1_clk

ipp_obe_lvds1

LDB
Channel #1
Serializer

LDB
Channel #0
Serializer

24

24

7

7

7

77

7

7

7

7

Figure 20-1. LDB block diagram

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

222 Freescale Semiconductor, Inc.

20.2 Feature summary
LDB supports:

• Connectivity to devices that have displays with LVDS receivers
• Arranging data to meet the requirements of the external display receiver and the

LVDS display standards
• Synchronization and control capabilities to avoid tearing artifacts.

20.3 Input and output ports
The LDB module obtains its input from the IPU display interfaces. The LVDS channel
theoretically has four choices for routing its data path because there are two IPU modules
with two display ports per IPU.

However, there is no reason to connect LVDS channel 0 to IPU DI1 or LVDS channel 1
to IPU DI0 in a single display mode; those connections are only supported in dual display
mode. See Modes of operation for more information.

LVDS output uses the following four pairs of wires:

• TX0_P/N
• TX1_P/N
• TX2_P/N
• TX3_P/N
• TXC_P/N

LVDS uses a current-mode driver output from a 3.5 mA current source. This drives a
differential line that is terminated by a 100 Ω resistor, generating about 350 mV across
the receiver. The +350 mV voltage swing is centered on a 1.2 V offset voltage.

20.4 Modes of operation
LDB supports the following modes of operation:

• Single display mode
• Dual display mode
• Separate display mode
• Split mode

Chapter 20 Configuring the LDB Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 223

The following table summarizes the channel mapping for each mode:

Table 20-1. Channel mapping

Use Case LVDS channel 0 LVDS channel 1

Single display mode

Single channel DI0 on channel 0 DI0 Disabled

Single channel DI1 on channel 1 Disabled DI1

Dual display mode

Dual channels to DI0 DI0 DI0

Dual channel to DI1 DI1 DI1

Separate display mode

Separate channels DI0 DI1

Split mode

Split mode to DI0 DI0 (odd pixels in line) DI0 (even pixels in line)

Split mode to DI1 DI1 (odd pixels in line) DI1 (even pixels in line)

20.4.1 Single display mode

In single display mode, either LVDS channel 0 or channel 1 is enabled but not both. The
selected channel must be connected to the appropriate IPU display interface: channel 0 to
DI0 and channel 1 to DI1.

To enable LVDS channel 0:

1. Connect LVDS channel 0 to DI0.
2. Configure LVDS0_MUX_CTL in IOMUXC_GPR3 to be 0h or 2h.
3. Enable channel 0 by setting CH0_MODE to be 1h in IOMUXC_GPR2.

To enable LVDS channel 1:

1. Connected LVDS channel 1 to DI1.
2. Configure LVDS0_MUX_CTL in IOMUXC_GPR3 to be 1h or 3h.
3. Enable channel 0 by setting CH0_MODE to be 0x3 in IOMUXC_GPR2.

20.4.2 Dual display mode

In dual display mode, LVDS channel 0 and 1 are jointly enabled. Both channels must be
connected to the same IPU display interface (for example, both connected to DI1).

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

224 Freescale Semiconductor, Inc.

20.4.3 Separate display mode

In separate display mode, both channel 0 and channel 1 are enabled, but they are
connected to different display interfaces. This allows users to display different content on
the different displays.

20.4.4 Split mode

In split mode, the LDB has one input and two outputs. The parallel data is first serialized
and then output in horizontal interlaced mode. Odd columns are output from LVDS
channel0, and even columns are output from LVDS channel1.

20.5 LDB Processing
The LDB's main job is to convert the parallel data lines into differential serial data lines.
It supports SPWG and JEIDA mapping modes. See Data serialization clocking for
additional information.

Use the LDB_CTRL register to configure the data mapping mode and data width. See
Configuring the LDB_CTRL register for further information.

20.5.1 SPWG mapping

SPWG (standard panel working group) uses a set of standard LCD panels with
dimensions and interface characteristics that allow both notebook and LCD supplier
industries to manage the volatile LCD supply and demand in an easier fashion. The
following table shows the SPWG mapping mode.

Table 20-2. SPWG mapping mode

Serializer input Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

CHx_DATA0 G0 R5 R4 R3 R2 R1 R0

CHx_DATA1 B1 B0 G5 G4 G3 G2 G1

CHx_DATA2 DE VS HS B5 B4 B3 B2

CHx_DATA3 (for 24 bpp only) CTL B7 B6 G7 G6 R7 R6

Chapter 20 Configuring the LDB Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 225

20.5.2 JEIDA mapping

JEIDA (The Japan Electronic Industry Development Association) was an industry
research, development, and standards body for electronics in Japan. JEIDA mapping
mode is also popular for LVDS panels. The following table shows the JEIDA mapping
mode.

Table 20-3. JEIDA mapping mode

Serializer input Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

CHx_DATA0 G2 R7 R6 R5 R4 R3 R2

CHx_DATA1 B3 B2 G7 G6 G5 G4 G3

CHx_DATA2 DE VS HS B7 B6 B5 B4

CHx_DATA3 CTL B1 B0 G1 G0 R1 R0

20.6 Clocks

Figure 20-2. LDB clock tree

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

226 Freescale Semiconductor, Inc.

Route IPU_DI_CLK_ROOT to ipp_di_clk.

20.6.1 Data serialization clocking

The LDB module serializes the parallel 18/24 bit data output from IPU. In both SPWG
and JEIDA modes, one pixel is reordered into 3 or 4 lines, with 7 bits per line.

• In non-split mode, for the IPU side, one pixel is driven to LDB during a pixel clock
period, and for the LDB side, one pixel is driven to the display in 7 serialization
clock periods.

• In split mode, one frame is split into two horizontal fields, and the serialization clock
is x3.5 the pixel clock.

The IPU pixel clock and the serialization clock of LDB must be synchronous. To enable
this:

1. Select the IPU DI clock to be external in the IPU configuration registers.
2. Choose the clock branch in CCM to root the IPU DI clock from the LDB DI clock.

The following figure shows how to generate the LDB serialization clock.

Figure 20-3. LDB serialization clock

The pixel clock is generated by dividing the clock selected by ldb_di_clk_sel (as shown
in Figure 20-3, there are five clock sources available) by 3.5 if in split mode or 7 if in
non-split mode.

Chapter 20 Configuring the LDB Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 227

20.7 Configuring the LDB_CTRL register
The following table shows how to configure the parameters in the LDB_CTRL register
for your use case:

Table 20-4. LDB_CTRL register parameter configurations

Parameter Configuration

vs_polarity Polarity of VSYNC signal; should match the IPU output

Bit_mapping Using the SPWG or the JEIDA standard

Data_width 18 bit or 24 bit selection

Split_mode Enable or disable split mode

Channel_mode Channel route to IPU DI

20.8 Use cases
This section provides example settings for:

• Image display on Hannstar HSD100PXN1 XGA panel
• Image display on CHIMEI M216H1 1080HD panel

The following table shows the implementation for the Hannstar HSD100PXN1 XGA
panel use case:

Table 20-5. Hannstar HSD100PXN1 XGA panel use case

Setting Requirements

Mode • Single display mode

Power supply • 3.3 V for core/IO
• 5 V for backlight LED driven

Clock settings • 65 MHz for ldb_di_clk (typical pixel clock for XGA resolution)
• 455 MHz for LDB_DI_SERIAL_CLK_ROOT (ldb_di_ipu_div is set to 7 in non-split display

mode and 65 x 7 = 455 MHz).

LDB configuration • ldb_config(IPU1_DI0, LVDS _PORT0, SPWG, LVDS_PANEL_18BITS_MODE);

NOTE: The LDB is connected to IPU1 DI0 output, and LVDS port0 is enabled. LVDS output is
in SPWG standard with 18 bit width, so the TX3 lane is ignored.

• ldb_config(IPU1_DI0, LVDS _DUAL_PORT, SPWG, LVDS_PANEL_18BITS_MODE);

NOTE: In this mode, IPU output is sent to both LVDS channels, and the content is identical.

The following table shows the implementation for the CHIMEI M216H1 1080HD panel
use case:

Configuring the LDB_CTRL register

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

228 Freescale Semiconductor, Inc.

Table 20-6. CHIMEI M216H1 1080HD panel use case

Setting Requirements

Mode • Split display mode

Power supply • 5 V for core/IO and backlight LED driven

Clock settings • 74.25 MHz for ldb_di_clk (typical pixel clock for HD1080 with 30 Hz refresh rate)

Note that in split mode, the panel acts as pixel interleaved mode, 960 x 1280 at 30 fps per
LVDS channel.

• 260 MHz for LDB_DI_SERIAL_CLK_ROOT (ldb_di_ipu_div is set to 3.5 in split display
mode and 74.25 x 3.5 = 260 MHz).

LDB configuration • ldb_config(IPU1_DI0, LVDS _SPLIT_PORT, SPWG, LVDS_PANEL_18BITS_MODE);

NOTE: The LDB is connected to IPU1 DI0 output, and LVDS port0 is enabled. LVDS output is
in SPWG standard with 18 bit width, and data is processed in split mode.

Chapter 20 Configuring the LDB Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 229

Use cases

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

230 Freescale Semiconductor, Inc.

Chapter 21
Configuring the Camera Preview Driver

21.1 Overview
This chapter describes the camera preview driver design for the camera sensor interface
(CSI) in the i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite products. It includes a
description of the connectivity between the camera sensor and chip.

The following figure shows the task flow between the camera sensor and the display
device.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 231

Camera Sensor Display

CSI (Camera
Sensor I/F)

Display
enhancement

Image Processing Unit
(IPU)

Camera previewImage
conversions

Compression Video Processing Unit
(VPU)

Video/graphics
combining

Graphics
generation

ARM
and Graphics
Processing
Unit (GPUs)

Image
conversions

Decompression

Separation
from audio

Combining with
audio

Memory

Communication
network

ARM
Audio compressiong

Audio
Decompression

Deblocking
Deringing

Figure 21-1. Task flow between camera sensor and display

The camera ports receive input from camera sensors and provide support for time-
sensitive control signals to the camera. (The ARM main control unit (MCU) performs
non-time-sensitive controls, such as configuration or reset, through an I2C I/F or GPIO
signals.) The IPU sends the camera preview image directly to the display. The VPU and
ARM performs high performance video processing.

This chip supports four parallel or MIPI camera interfaces. Up to three interfaces may be
active at once:

• Two parallel camera ports (up to 20-bit, up to 240 MHz peak2 each).
• MIPI CSI-2 port, supporting from 80 Mbps up to 1 Gbps speed per data lane.

The CSI block provides an interface to an image sensor or a related device.

• Data coming from two parallel camera sensor is received by CSI directly.
• Serial data from MIPI CSI-2 camera sensor is unpacked by MIPI CSI-2 host

controller (for further information, see MIPI CSI-2 (Camera Serial Interface 2) driver
design chapter. And then the unpacked data is received by CSI.

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

232 Freescale Semiconductor, Inc.

This chip has two instances of an IPU (IPU1 and IPU2), and each IPU has two CSI
blocks (CSI0 and CSI1). The CSI blocks are located in the memory map at the following
base addresses:

• CSI0 in IPU1 base address = 0263 0000h
• CSI1 in IPU1 base address = 0263 8000h
• CSI0 in IPU2 base address = 02A3 0000h
• CSI1 in IPU2 base address = 02A3 8000h

21.2 Feature summary
Each of the camera ports includes:

• Direct connectivity to the most relevant image sensors and to TV decoders.
• Parallel interface, up to 20-bit data bus
• Frame size: up to 8192 x 4096 pixels (including blanking intervals)
• Support for the following data formats

• Raw (Bayer)
• RGB
• YUV 4:4:4
• YUV 4:2:2
• Grayscale, up to 16 bits per value (component).

• Two methods for synchronization (video mode and still image capture)

The camera ports include the following auxiliary features:

• Frame rate reduction, by periodic skipping of frames
• Downsizing x2, by skipping rows/columns
• Window-of-interest selection
• Pre-flash for red-eye reduction and for measurements such as focus in low-light

conditions

21.2.1 Synchronization performance details

In video mode synchronization, the sensor is the master of the pixel clock (PIXCLK) and
synchronization signals. Synchronization signals are received using either of the
following methods:

Chapter 21 Configuring the Camera Preview Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 233

• Dedicated control signals (VSYNC, HSYNC) with programmable pulse width and
polarity

• Controls embedded in the data stream, loosely following the BT.656 protocol, with
flexibility in code values and location

In still image capture synchronization, the image capture is triggered by the MCU or by
an external signal, such as a mechanical shutter. Synchronized strobes are generated for
up to six outputs: the sensor and five additional camera peripherals, such as the flash or
mechanical shutter.

21.2.2 Simultaneous functionality support

Several sensors can be connected to each CSI. Simultaneous functionality (sending data)
is supported as follows:

1. Two sensors send data independently, each through a different port.
2. One of the streams is transferred to the VDI or IC for on-the-fly processing while the

other one is sent directly to system memory.

21.2.3 Data rate support

The input rate supported by the camera port is as follows:

• Peak: up to 240 MHz (values/sec)
• Average, assuming 35% blanking overhead, for YUV 4:2:2
• Pixel in one cycle (BT.1120): up to 180 MP/sec, for example 12 Mpixels at 15 fps
• Pixel on two cycles (BT.656): up to 90 MP/sec, for example. 6 Mpixels at 15 fps.
• On-the-fly processing may be restricted to a lower input rate.

21.3 Modes of operation
CSI supports the following types of modes of operation:

• Two types of interfaces
• Gated and non-gated mode
• Compliance with recommendation ITU-R BT.656 or ITU-R BT.1120

See Interface modes and Work modes for details about each mode.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

234 Freescale Semiconductor, Inc.

21.3.1 Interface modes

The CSI supports using either a parallel interface or a high-speed serial interface (MIPI
CSI-2). The DATA_SOURCE register controls the interface mode.

Table 21-1. Interface modes

Mode What it does

Parallel Up to 20 bit data inputs

5-6 clocks and controls

High-speed serial (MIPI
CSI-2)

Up to 4 D-PHY data lanes

Different clock.

21.3.2 Work modes
Table 21-2. Work modes

Mode What it does

Gated mode VSYNC is used to indicate beginning of a virtual frame

HSYNC is used to indicate beginning of a raw frame, including active sensor frame and horizontal
blanking intervals.

Sensor clock ticks continuously.

Non-gated mode VSYNC is used to indicate beginning of a frame.

Sensor clock is ticking only when data is valid. HSYNC is not used.

Sensor clock is ticking only when data is valid

BT.656 mode CSI works in compliance with recommendation ITU-R BT.656

BT.1120 mode CSI works in compliance with recommendation ITU-R BT.1120

21.4 Clocks
The following figure shows the clock interface between the external sensor and the chip.
The external sensor and the camera interface share a single clock (sensor_clk) that must
be synchronized.

Chapter 21 Configuring the Camera Preview Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 235

CCM_CLK_SRC_DIV

CKO1
CKO2

CLKO
CLKO2

PAD

Chip

Camera
interface

sensor_clk

Data and
control signals

External sensor

CCM

Figure 21-2. Clock interface between the external sensor and the chip

The chip generates sensor_clk and provides it to the external sensor as its input clock.
CCM_CLK_SRC_DIV of the chip's internal clock control module (CCM) muxes
different clocks to two output clocks: CKO1 and CKO2. CKO1 and CKO2 are connected
to several pads. Choose a CLKO/CLKO2 instance of a pad connected CKO1/CKO2.

The following table shows the internal pad selection for CLKO/CLKO2.

Table 21-3. sensor_clk internal source selection

Clock Pad Mode

CLKO CSI0_MCLK ALT3

GPIO_0 ALT0

GPIO_19 ALT3

GPIO_5 ALT3

CLKO2 GPIO_3 ALT4

NANDF_CS2 ALT4

21.5 IOMUX pin mapping
Set bits 19-20 of the General Purpose Register (IOMUXC_GPR1) appropriately to enable
either the CSI parallel interface or the MIPI CSI-2 interface based on the settings shown
in table below. The IOMUX pin mapping varies depending on which interface is enabled.

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

236 Freescale Semiconductor, Inc.

Table 21-4. Camera interface mode setting

IOMUXC_GPR1 Value Description

Bit 19 0 (default) Enables MIPI interface to IPU1 CSI0; virtual channel is fixed to 0

1 Enables parallel interface to IPU1 CSI0

Bit 20 0 Enables MIPI interface to IPU2 CSI1; virtual channel is fixed to 3

1 (default) Enables parallel interface to IPU2 CSI1

The CSI driver controls the camera data source as follows:

• IPU1 CSI0 can configure the data source; it connects to the MIPI CSI-2 interface by
default.

• IPU1 CSI1 connects directly to the MIPI CSI-2 interface, and the virtual channel is
fixed to 1.

• IPU2 CSI1 can configure the data source; it connects to the parallel interface by
default.

• IPU2 CSI0 connects directly to MIPI CSI-2 interface, and the virtual channel is fixed
to 2.

21.5.1 IOMUX pin mapping for CSI0/CIS1 parallel interface
Table 21-5. IOMUX pin mapping for CSIn parallel interface

Signals Driver

PAD MUX SION

CSIn_PIXCLK CSIn_PIXCLK ALT0 1

CSIn_HSYNC CSIn_MCLK ALT0 1

CSIn_VSYNC CSIn_VSYNC ALT0 1

CSIn_DATA_EN CSIn_DATA_EN ALT0 1

CSIn_D[12] CSIn_DAT12 ALT0 1

CSIn_D[13] CSIn_DAT13 ALT0 1

CSIn_D[14] CSIn_DAT14 ALT0 1

CSIn_D[15] CSIn_DAT15 ALT0 1

CSIn_D[16] CSIn_DAT16 ALT0 1

CSIn_D[17] CSIn_DAT17 ALT0 1

CSIn_D[18] CSIn_DAT18 ALT0 1

CSIn_D[19] CSIn_DAT19 ALT0 1

Chapter 21 Configuring the Camera Preview Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 237

21.5.2 IOMUX pin mapping for the MIPI CSI-2 interface

The data and control signals—DATA_EN, VSYNC, and HSYNC—are derived from the
serial data packet. The MIPI CSI-2 interface does not require IOMUX pin mapping.

21.6 Resets and interrupts

21.6.1 Resets

The chip generates sensor_rst and provides it to the external sensor as its reset signal. The
sensor_rst signal can be generated by any GPIO that is connected to the reset pad of the
external sensor. The reset signal should follow the timing request of the external sensor.

GPIO
Sensor_rst

External SensorChip

Figure 21-3. Reset signal for external sensor

21.6.2 Interrupts

The IPU's interrupt generator (IG) provides error interrupts to the main control unit
(MCU) for monitoring CSI errors. All interrupts are maskable.

The following table describes the error interrupts of CSI.

Table 21-6. CSI error interrupts

Location Submodule Interrupt
Status Name

Description

IPU_INT_STAT_9
[30]

CSI0 CSI0_PUPE The error is generated in cases where a new frame arrived from the
CSI0 before the SRM (shadow registers module) completed CSI0's
parameter updates.

IPU_INT_STAT_9
[31]

CSI1 CSI1_PUPE The error is generated in cases where a new frame arrived from the
CSI1 before the SRM completed CSI1's parameter updates.

Resets and interrupts

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

238 Freescale Semiconductor, Inc.

21.7 Initializing the driver
The following figure shows the procedure for intializing the camera preview driver:

Configure IDMAC
for CSI to Fmem

Allocate SMFC

Configure CSI

Configure sensor

Image rendering
process

Figure 21-4. Flow for initializing the camera preview driver

21.7.1 Configuring the IDMAC channel for CSI

The following table describes the IDMAC channels. Choose any one of four IDMAC
channels as the CSI input channel.

Table 21-7. IDMAC channels for CSI input

Channel # Source Destination Purpose Data type

0 CSI (via SMFC) Fmem VF2 - Bayer; BPP>8; JPEG; MIPI additional channels Generic or pixel

1 CSI (via SMFC) Fmem VF2 - Bayer; BPP>8; JPEG; MIPI additional channels Generic or pixel

2 CSI (via SMFC) Fmem VF2 - Bayer; BPP>8; JPEG; MIPI additional channels Generic or pixel

3 CSI (via SMFC) Fmem VF2 - Bayer; BPP>8; JPEG; MIPI additional channels Generic or pixel

21.7.2 Allocating SMFC

The SMFC (sensor multifile controller) provides a buffer between the CSI and the
IDMAC (image DMA controller). Two masters (CSIs) can be connected to the SMFC.
Both masters can be active simultaneously. Each master can send up to four frames,

Chapter 21 Configuring the Camera Preview Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 239

distinguished by the csi_id bus. The frame can be mapped to one of four IDMAC
channels by means of the SMFC mapping registers. Each DMA channel has a dedicated
FIFO.

Allocate one SMFC channel for IPUn CSIn.

21.7.3 Configuring CSI

The CSI obtains data from the sensor, synchronizes the data and the control signals to the
IPU clock (HSP_CLK), and, depending on the configuration of DATA_DEST register,
transfers it to either the image controller (IC) block, the sensor multifile controller
(SMFC), or both.

The following figure shows the data flow for the camera interface (CSI):

Sensor

CSI0

CSI1

SMFC

dma_smfc_ch1

dma_smfc_ch0

dma_smfc_ch2

dma_smfc_ch3

IDMAC Memory

Figure 21-5. Data flow for the CSI

The relative bit fields are:

• CSIn_DATA_DEST sets the destination of the data coming from the CSI.
• CSIn_DATA_WIDTH sets the number of bits per color.
• CSIn_SENS_DATA_FORMAT sets the data format from the sensor.
• CSIn_SENS_PRTCL sets the sensor timing/data mode protocol.
• CSIn_SENS_FRM_HEIGHT/WIDTH sets the sensor frame height and width.
• CSIn_SEL sets whether CSI0 or CSI1 is selected.
• CSIn_DATA_SOURCE sets whether the data source for the CSI1 is parallel or

MIPI.
• CSIn_EN sets whether CSI0 is enabled.

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

240 Freescale Semiconductor, Inc.

21.7.4 Configuring the sensor

Access the camera sensor through the I2C interface to initialize and configure the camera
sensor.

21.7.5 Image rendering

To send camera preview images to display, see the "Single image rendering example"
section in the IPU chapter for the image rendering process settings.

21.8 Testing the driver

Start camera test
0 - Sensor capture
x - to exit

Figure 21-6. Camera test start image

Test the driver using the following procedure:

1. Plug sensor ov5640 into the parallel sensor interface on the development board.
2. Run the Platform SDK test suite.
3. Press 0 to run the parallel sensor capture test.

If the test is sucessful, the LVDS0 display shows the 640 x 480 camera preview.

Chapter 21 Configuring the Camera Preview Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 241

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

242 Freescale Semiconductor, Inc.

Chapter 22
Configuring the MIPI CSI-2 Driver

22.1 Overview
This chapter describes the camera preview driver design for the MIPI CSI-2 (camera
serial interface 2) host processor for the i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite
products. It includes a description of the connectivity between the MIPI CSI-2 host
controller and the MIPI CSI-2 camera sensor.

The following figure shows the relationship between the MIPI CSI-2 camera sensor and
the chip.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 243

clk_data

virtual chnl[1:0]
data_type[5:0]

word_count[5:0]
ecc[7:0]

data_en

csi_data[31:0]

btyes_en[1:0]

v valid[3:0]
h valid[3:0]

d valid[3:0]

intr1
intr2

AMBA
APB
Slave

Register
Bank

Camera Control Interface
(CCI)

Chip

I2C
PAD SDA

SCL

MIPI CSI-2
Camera Sensor

I2C

Clock-

Clock+

Data 1 -

Data 1 +
D-PHY

PHY
Adaptation

Layer

Packet
Analyzer

CSI-2 Host Controller

PPI Standard
Interface

Support up to 4
D-PHY Data Lanes

APB Slave
Bus

APB Slave
Bus

Image
Data

Interface

DataN+

DataN-
MIPI

Camera
Sensor

Figure 22-1. Relationship between MIPI CSI-2 camera sensor and the chip

The MIPI CSI-2 is a high speed serial interface, and the chip works as a MIPI CSI-2
receiver. It is controlled by a CSI-2 host controller and camera control interface (CCI).

• The CSI-2 host controller receives data from a CSI-2 compliant camera sensor.
• It is a digital core that implements all protocol functions defined in the MIPI

CSI-2 specification.
• It provides an interface between the chip image data interface and the MIPI D-

PHY, allowing communication with a MIPI CSI-2 compliant camera sensor.
• The camera control interface (CCI) controls the transmission through I2C interface.

• A CSI-2 receiver should be configured as a master on the CCI bus.
• A CSI-2 transmitter should be configured as a slave on the CCI bus.

The MIPI CSI module is located in the memory map at 021D C000h.

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

244 Freescale Semiconductor, Inc.

22.2 Feature summary
The MIPI CSI-2 host controller supports the following features:

• Conformity with multiple standards
• MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2), Version 1.00
• Interface with MIPI D-PHY following PHY Protocol Interface (PPI), as defined

in MIPI Alliance Specification for D-PHY, Version 1.00.00
• Optional support for camera control interface (CCI) through the I2C interface

• Supports up to four D-PHY Rx data lanes
• Dynamically configurable multi-lane merging
• Long and short packet decoding
• Timing accurate signaling for frame and line synchronization packets
• Support for several frame formats such as:

• General Frame or Digital Interlaced Video with or without accurate sync timing
• Data type (packet or frame level) and virtual channel interleaving

• 32-bit image data interface, delivering data formatted as recommended in the CSI-2
specification

• Supports all primary and secondary data formats
• RGB, YUV, and RAW color space definitions
• From 24-bit down to 6-bit per pixel
• Generic or user-defined byte-based data types

• Error detection and correction
• PHY level
• Packet level
• Line level
• Frame level

22.3 Modes of operation
Table 22-1. MIPI CSI-2 modes of operation

Mode What it does

Continuous clock Clock lane remains in high-speed mode generating active clock signals between the
transmission of data packets

Non-continuous clock Clock lane enters the LP-11 state between the transmission of data packets.

22.4 Clocks

Chapter 22 Configuring the MIPI CSI-2 Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 245

22.4.1 Output clock

The following figure shows the clock interface between the external sensor and the chip.
The external sensor and the camera interface share a single clock (sensor_clk) that must
be synchronized.

CCM_CLK_SRC_DIV

CKO1
CKO2

CLKO
CLKO2

PAD

Chip

Camera
interface

sensor_clk

Data and
control signals

External sensor

CCM

Figure 22-2. Clock interface between the external sensor and the chip

The chip generates sensor_clk and provides it to the external sensor as its input clock.
CCM_CLK_SRC_DIV of the chip's internal clock control module (CCM) muxes
different clocks to two output clocks: CKO1 and CKO2. These output clocks are
connected to several pads. Choose a CLKO/CLKO2 instance of a pad connected to
CKO1/CKO2.

22.4.2 Input clock

The MIPI CSI-2 host controller typically works with the high speed byte clock provided
by RXBYTECLKHS. RXBYTECLKHS is, by specification, 1/4 of the DDR clock on the
D-PHY clock.

The DDR clock (RxDDRClkHS) is received from the MIPI camera sensor. The MIPI
CSI-2 clock lane receives the clock± signals and obtains the high-speed receive DDR
clock. The following figure shows the MIPI CSI-2 clock lane receiver.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

246 Freescale Semiconductor, Inc.

Figure 22-3. MIPI CSI-2 clock lane receiver

The following table describes the clock lane PPI interface signals to the MIPI CSI-2 host
controller.

Table 22-2. PPI interface signals

Interface signal name Input/output Description

RxDDRClkHS Output High-speed receive DDR clock; samples the data in all data lanes

RxClkActiveHS Output High-speed reception active. This active high signal indicates that the
clock lane is receiving valid clock. This signal is asynchronous.

Stopstate Output Lane is in stop state. This active high signal indicates that the lane
module is currently in stop state. This signal is asynchronous.

Shutdown Input Shutdown lane module. This active high signal forces the lane module
into shutdown, disabling all activity. All line drivers, including
terminators, are turned off when shutdown is asserted. When shutdown
is high, all PPI outputs are driven to the default inactive state. Shutdown
is a level sensitive signal and does not depend on any clock.

RxUlpmEsc Output Escape ultra low power (receive) mode. This active high signal is
asserted to indicate that the lane module has entered the ultra low
power mode. The lane module remains in this mode with RxUlpmEsc
asserted until a stop state is detected on the lane interconnect.

The following table summarizes the MIPI CSI-2 clocks.

Table 22-3. Reference clocks

Clock Name Description

Sensor clock CLKO Select osc_clk 24 MHz to generate CLKO

DDR clock RxDDRClkHS Receive from MIPI CSI-2 camera sensor

Chapter 22 Configuring the MIPI CSI-2 Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 247

22.5 IOMUX pin mapping
The MIPI CSI-2 does not require IOMUX pin mapping. As shown in Figure 22-1, the
CSI-2 host controller derives its image data and frame control signal from the serial data
packet.

22.6 Resets and interrupts
The CSI-2 host controller provides an interrupt mechanism for monitoring errors and
debugging. The interrupt mechanism uses two interrupt signals: intr1 and intr2. These
signals are synchronous with the AMBA APB clock signal.

Registers MASK1 and MASK2 respectively assert intr1 and intr2 to select which bits of
registers ERR1 and ERR2 can generate interrupts. Both ERR1 and ERR2 always contain
the information about events, regardless of the state of MASK1 and MASK2. ERR1 and
ERR2 self-clear after a read access. Interrupt signals intr1 and intr2 are de-asserted upon
read access of ERR1 and ERR2, respectively. For more information, see the "Error state
register 1 (MIPI_CSI_ERR1)" and "Error state register 2 (MIPI_CSI_ERR2)" sections of
the MIPI-CSI chapter in the reference manual.

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

248 Freescale Semiconductor, Inc.

22.7 Initializing the driver

Global Reset

D-PHY Init

CSI-2
Host Controller

Program

D-PHY
Ready?

No

Yes

Config MIPI
Camera Sensor

DDR Clock
Received?

No

Yes

OK Failed

Figure 22-4. Flow for initializing the driver

1. Deassert the CSI2 presetn signal (global reset).
2. Configure the MIPI camera sensor to have all Tx lanes in the LP-11 state

(STOPSTATE) if required.
3. The D-PHY specification states that the D-PHY master should be initialized at LP-11

state (STOPSTATE); however, a CCI command may be required to switch-on the
MIPI interface.

4. Access the D-PHY programming interface to initialize and program the D-PHY
according to the selected operating mode. This step is D-PHY dependent; use the D-
PHY data book to identify the correct programming.

5. Program the CSI2 Host controller registers according to the operating mode's
requirements:

• Number of Lanes (register N_LANES)
• Deassert PHY shutdown (register PHY_SHUTDOWNZ)
• Deassert PHY reset (register PHY_RSTZ)
• Deassert CSI reset (register CSI2_RESETN)
• (Optional) Program Data IDs for matching error reporting (registers

DATA_IDS_1 and DATA_IDS_2)
• (Optional) Program the interrupt masks (registers MASK1 and MASK2)

Chapter 22 Configuring the MIPI CSI-2 Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 249

6. Read the PHY status register (PHY_STATE) to confirm that all data and clock lanes
of the D-PHY are in stop state, which means they are ready to receive data.

7. Access the camera sensor using the CCI interface to initialize and configure the
camera sensor to transmit a clock on the D-PHY clock lane.

8. Read the PHY status register (PHY_STATE) to confirm that the D-PHY is receiving
a clock on the D-PHY clock lane.

22.8 Testing the driver

Figure 22-5. MIPI test screen image

Test the driver using the following procedure

1. Plug sensor ov5640 into the MIPI interface on the development board.
2. Run the platform SDK test suite.
3. Press 0 to run the mipi csi-2 test.

If the test is sucessful, the LVDS0 display shows the 640 x 480 camera preview from the
MIPI CSI-2.

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

250 Freescale Semiconductor, Inc.

Chapter 23
Configuring the MIPI DSI driver

23.1 Overview
This chapter explains how to configure the MIPI DSI driver for the i.MX 6Dual/6Quad
and i.MX 6Solo/6DualLite products. The DSI (display serial interface) host controller is a
digital core that implements all protocol functions defined in the MIPI DSI specification.
It provides an interface between the system and the MIPI D-PHY, which allows
communication with a MIPI DSI compliant display.

The following figure shows the overall architecture of the DSI host controller. See the
"Architecture" section of the MIPI DSI chapter in the reference manual for a description
of the component blocks.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 251

DPI
interface

DPI ctrl
FIFO

DPI pixel
FIFO

DBI
interface

DBI
FIFOs

APB to
Generic

Generic
FiFOs

Register bank Error management

Packet
handler

PHY
interface
control

D-PHY

MIPI
display

DPI

DBI

APB

CLK

LP

HS

LN PPI
Interface

CLK PPI
Interface

PPI standard interface

Image host processor

Clock+

Clock-

Data1+

Data1-

DataN+

DataN-

Support for
4 D-PHY data lanes

and 1 clock lane

C
ustom

er S
ystem

Figure 23-1. MIPI DSI block guide

The MIPI DSI module is located in the memory map at the MIPI DSI base address: 021E
0000h

23.2 Feature summary
The MIPI DSI host controller supports the following features:

• Conformity to standards and specifications as follows:
• Conforms to the MIPI alliance standard for display pixel interface (DPI-2),

version 2.00, with pixel data bus width up to 24 bits
• Conforms to the MIPI alliance standard for display bus interface (DBI-2),

version 2.00, for the following DBI types:
• Type A Fixed E mode
• Type A Clocked E mode
• Type B
• 16-bit, 9-bit and 8-bit data bus width

• Support all commands defined in MIPI Alliance specification for display
command set (DCS), Version 1.02.00

• Interface with MIPI D-PHY following PHY protocol interface (PPI), as defined
in MIPI alliance specification for D-PHY, Version 1.00.00

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

252 Freescale Semiconductor, Inc.

• Supports the following general features:
• Up to 4 D-PHY data lanes
• Bidirectional communication and escape mode support through data lane 0
• Programmable display resolutions, from 160 x 120 (QQVGA) to 1024 x 768

(XVGA)
• Multiple peripheral support capability and configurable virtual channels
• Transmission of all generic commands
• ECC and checksum
• End of transmission packet (EoTp)
• Ultra low power mode
• Schemes for fault recovery

• Supports the following video mode pixel formats
• 16 bpp (5,6,5 RGB)
• 18 bpp (6,6,6,RGB) packed
• 18 bpp (6,6,6,RGB) loosely
• 24 bpp (8,8,8,RGB).

23.3 Modes of operation
The following two tables show the MIPI DSI interface modes and the MIPI DSI
operating modes. Note that the display bus interface and display pixel interface can
coexist, but only one can be operational.

Table 23-1. MIPI DSI interface modes

Data interface What it does

DPI mode In DPI mode, the DPI interface captures the data and control signals and conveys them to the
FIFO interfaces that transmit them to the DSI link.

Two different streams of data are present at the interface: video control signals and pixel
data. Depending on the interface color coding, the pixel data is handled differently throughout
the dpipixdata bus.

DBI mode In DBI mode, the DBI-2 interface encapsulates DCS commands in DSI packets to be
transmitted through the D-PHY link

Table 23-2. MIPI DSI operating modes

Operating mode What it does

High-speed mode Data transmission at higher speeds than the other operating modes

Escape mode Escape mode is an optional mode of operation for data lanes. This mode allows low bit-rate
commands and data to be transferred in a very low power state

Control mode Provides an alternative to escape mode for a low-power signaling state.

Chapter 23 Configuring the MIPI DSI driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 253

23.4 Clocks
To start the internal PLL, sett the PLL clock by calling dphy_write_control().

The working clock for DSI controller and DPHY are all derived from an on-chip clock
source. The reference clock is 27 MHz. The following table shows the configuration
options for the work frequency of the DSI controller and PHY.

Table 23-3. Configuration settings for the DSI working clock

Ranges (Mbps) Settings (binary) Default bit rate (Mbps)

80-90 (default) 000000 90

90-100 010000 99

100-110 100000 108

110-125 000001 123

125-140 010001 135

140-150 100001 150

150-160 000010 159

160-180 010010 180

180-200 100010 198

200-210 000011 210

210-240 010011 240

240-250 100011 249

250-270 000100 270

270-300 010100 300

300-330 000100 330

330-360 010101 360

360-400 100101 399

400-450 000110 450

450-500 010110 486

500-550 000111 549

550-600 010111 600

600-650 001000 648

650-700 011000 699

700-750 001001 750

750-800 011001 783

800-850 001010 849

850-900 011010 900

900-950 101010 972

950-1000 111010 999

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

254 Freescale Semiconductor, Inc.

23.5 IOMUX pin mapping
The MIPI DSI interface does not need IOMUX pin mapping.

23.6 Resets and Interrupts
The DSI supports multiple methods for reset.

• For soft reset, the DSI host sends soft_reset (command ID 01h) through DCS.
• For hard reset of DSI controller, set register PWR_UP.
• For a D-PHY reset, set register PHY_RSTZ.

23.7 Initializing the driver
This driver is initialized in two parts:

• Initializing the DSI controller
• Initializing the D-PHY

23.7.1 Initializing the DSI controller

To initialize the DSI to work in DPI mode, use the following procedure.

1. Global configuration.
2. Configure the DPI interface.
3. Select the video transmission mode.
4. Define the DPI horizontal timing configuration.
5. Define the vertical line configuration.

See the following subsections for detailed information about each step.

23.7.1.1 Global configuration

Use DSI_PHY_IF_CFG[1:0] to configure the number of lanes available to the controller
for performing high speed transmissions. The settings are as follows:

• Use 00b for a single data lane (lane 0).
• Use 01b for two data lanes (lane 0 and 1).

Chapter 23 Configuring the MIPI DSI driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 255

• Use 10b for three data lanes (lane 0, 1, and 2).
• Use 11b for four data lanes (all)

See the "D-PHY interface configuration (MIPI_DSI_PHY_IF_CFG_)" section in the
MIPI DSI chapter of the reference manual for additional information about this register.

23.7.1.2 Configure the DPI interface

Configure the DSI_DPI_CFG register to define how the DPI interface interacts with the
controller. The fields are:

• Virtual Channel ID (DSI_DPI_CFG[1:0])-configures the virtual channel that the
packet generated by this interface is indexed to.

• Dpi_color_coding (DSI_DPI_CFG [4:2])-configures the bits per pixels that the
interface transmits and also the variant configuration of each bpp.

NOTE
When the 18 bpp is selected and Enable_18_loosely_packed is
not active, the number or pixels per line must be a multiple of
four.

• Data_active_low_enable (DSI_DPI_CFG [5])-configures the polarity of the
DATAEN signal and enables it as active low.

• Vsync_active_low_enable (DSI_DPI_CFG [6])-configures the polarity of the
VSYNC signal and enables it as active low.

• Hsync_active_low_enable (DSI_DPI_CFG [7])-configures the polarity of the
HSYNC signal and enables it as active low.

• Shutd_active_low_enable (DSI_DPI_CFG [8])-configures the polarity of the
SHUTD signal and enables it as active low.

• Colorm_active_low_enable (DSI_DPI_CFG [9])-configures the polarity of the
COLORM signal and enables it as active low.

• Enable_18_loosely_packed (DSI_DPI_CFG [10])-configures whether pixel packing
is loose or packed when dpi_color_coding selects 18 bpp. This bit enables loose
packing.

See the "DPI interface configuration (MIPI_DSI_DPI_CFG)" section of the MIPI DSI
chapter in the reference manual for additional information about this register.

23.7.1.3 Select the video transmission mode

Use the DSI_VID_MODE_CFG to define how the the video line will be transported
through the DSI link. The fields are as follows:

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

256 Freescale Semiconductor, Inc.

• The enable low power fields (DSI_VID_MODE_CFG[8:3]) defines the video
periods that are permitted to go to low power if there is available time to do so.

• frame_bta_ack (DSI_VID_MODE_CFG [11]) defines whether the controller should
request the peripheral acknowledge message at the end of a frames.

• vid_mode_type (DSI_VID_MODE_CFG[2:1]) sets whether the mode is burst or
non-burst.

• In burst mode, the entire active pixel line is buffered into a FIFO and transmitted
in a single packet with no interruptions. This transmission mode requires that the
DPI pixel FIFO can store a full line of active pixel data inside it. This mode is
best used when there is a large difference between the pixel required bandwidth
and DSI link bandwidth because it enables the controller to dispatch the entire
active video line in a single burst of data and then return to low power.

• Configure video_mode_type (DSI_VID_MODE_CFG [2:1]) with value 01b.
• Configure video_packet_size (DSI_VID_PKT_CFG [10:0]) with the size of

the active line period.
• The controller automatically ignores the following fields:

enable_multiple_packets (DSI_VID_MODE_CFG [9]), enable_null_packets
(DSI_VID_MODE_CFG [10]), number_of_chunks (DSI_VID_PKT_CFG
20:11]) and null_packet_size (DSI_VID_PKT_CFG [30:21]).

• In non-burst mode, the processor uses the partitioning properties of the controller
to divide the video line transmission into several DSI packets, which matches the
pixel required bandwidth to the DSI link bandwidth. This mode allows the
controller configuration not store only the content of one video packet inside the
DPI pixel FIFO instead of a full line of pixel data.

• Configure the register field video_mode_type (DSI_VID_MODE_CFG
[2:1]) with the value 00b.

• Configure video_mode_type (DSI_VID_MODE_CFG [2:1]) with 00b to
enable the transmission of sync pulses.

• Configure video_mode_type (DSI_VID_MODE_CFG [2:1]) with 01b to
enable the transmission of sync events.

• Configure the video_packet_size (DSI_VID_PKT_CFG[10:0]) with the
number of pixels to be transmitted in a single packet.

• The field enable_multiple_packets (DSI_VID_MODE_CFG [9]) enables the
division of the active video transmission into more than one packet.

• The field number_of_chunks (DSI_VID_PKT_CFG [20:11]) configures the
number of video chunks that the active video transmission is divided into.

• The field enable_null_packets (DSI_VID_MODE_CFG [10]) enables the
insertion of null packets between video packets.

• The field null_packet_size (DSI_VID_PKT_CFG [30:21]) configures the
actual size of the inserted null packet.

Chapter 23 Configuring the MIPI DSI driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 257

See the "Video Mode Configuration (MIPI_DSI_VID_MODE_CFG)" section and the
"Video packet configuration (MIPI_DSI_VID_PKT_CFG)" section of the MIPI DSI
chapter in the reference manual for additional information about these fields.

23.7.1.4 Define the DPI horizontal timing configuration

Use the TMR_LINE_CFG register to define the DPI horizontal timing configuration. The
fields are as follows:

• hline_time (TMR_LINE_CFG[31:18])-configures the time taken by a DPI video line.

NOTE
When the DPI clock and clock lane clock are not multiples,
hline_time is the result of a rounded number. If the core is
configured to go to low power a few times, an error induced in
one line can be incremented with the next one. At the end of
several lines, the controller may have enough error to cause the
video transmission to malfunction.

• hsa_time (TMR_LINE_CFG [8:0])-configures the time taken by a DPI horizontal
sync active period.

• hbp_time (TMR_LINE_CFG[17:9])-configures the time taken by the DPI horizontal
back porch period. Pay close attention to the calculation of this parameter and all
timing parameter settings. if the timing setting does not match the IPU output signals,
there can be problems with the display, such as the screen flicking or lines displaying
abnormally.

NOTE
All time is calculated in clock lane bytes clock cycles, which is
normally a period of 8 ns.

See the "Line timer configuration (MIPI_DSI_TMR_LINE_CFG)" section in the MIPI
DSI chapter of the reference manual for additional information about the register.

23.7.1.5 Define the vertical line configuration

Use the DSI_VTIMING_CFG register to define the vertical line configuration. The fields
are as follows:

• vsa_lines (DSI_VTIMING_CFG[3:0])-configures the number of lines existing in the
DPI vertical sync active period.

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

258 Freescale Semiconductor, Inc.

• vbp_line (DSI_VTIMING_CFG [9:4])-configures the number of lines existing in the
DPI vertical back porch period.

• vfp_line (DSI_VTIMING_CFG [15:10])-configures the number of lines existing in
the DPI vertical front porch period.

• vertical_active_lines (DSI_VTIMING_CFG [26:16])-configures the number of lines
existing in the DPI vertical active period.

See the "Vertical timing configuration (MIPI_DSI_VTIMING_CFG)" section of the
MIPI DSI chapter in the reference manual for additional information about the register.

23.7.2 Initializing the D-PHY

The initialization procedure is as below:

1. By default, the PHY_RSTZ register activates the PHY resets physhutdownz and
phyrstz as well as disables enableclk.

2. Configure the PHY_IF_CFG register with the correct number of lanes to be used by
the controller.

3. Configure the TX_ESC clock frequency to a frequency lower than 20 MHz, which is
the maximum allowed frequency for D-PHY ESCAPE mode.

• Write in CLKMGR_CFG[TX_ESC_CLK_DIVISION] (see the "Number of
active data lanes (MIPI_DSI_CLKMGR_CFG)" section in the MIPI DSI chapter
in the reference manual).

• TX_ESC_CLK_DIVISION divides the byte clock and generates a TX_ESC
clock for the D-PHY.

4. Configure the DPHY PLL clock frequency through the TEST interface to operate at
1 GHz, assuming that the REF_CLK is provided with a frequency of 27 MHz.

This step is performed in dphy_write_control. The first parameter is the control
command, and the second parameter is the clock selection number. Refer to Table
23-3 for different clock configurations.

• Write at PHY_TST_CTRL0-0000 0000h disables the testclr pin, which enables
the interface to write new values to the DPHY internal registers.

• Write at PHY_TST_CTRL1-0001 0044h enables the testen pin bit 16 of this core
register and configures the test datain to 44h. This operation initiates the
configuration process of the test code number 44h.

• Write at PHY_TEST_CTRL0-0000 0002h followed by a new write to
PHY_TEST_CTRL0 0000 0000h. This operation toggles the testclk (bit 2). The
testdin is sampled on the falling edge of testclk latching a new test code.

Chapter 23 Configuring the MIPI DSI driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 259

• Write at PHY_TEST_CTRL1-0000 0074h disables the testen pin and configures
testdatain to 74h. This operation prepares the interface to load the 74h value into
the test code 4h.

• Write at PHY_TEST_CTRL0-0000 0002h followed by a new write to
PHY_TEST_CTRL0 0000 0000h. This operation toggles the testclk. The testdin
is sampled on the rising edge of testclk, latching new content data to the
configured test code.

• Write at PHY_RSTZ-0000 0007h asserts physhutdownz, phyrstz, and enableclk
releasing the PHY from power down. The PHY initiates the PLL locking
procedure to 1 GHz operation.

• Read at PHY_STATUS - nnnn nnn1, until bit 0, phylock, is detected at 1. This
signals that the PLL is locked and that a stable byte clock is being provided to
the DSI host controller.

• Read at PHY_STATUS - nnnnnnn3h, until bit 2, phystopstateclklane, is read at
1. This identifies that the clock lane is in stop state. The clock lane needs to be in
stop state so that the D-PHY can switch to other operational states, such as high
speed mode.

5. Write register PHY_IF_CTRL bit 0 to generate high speed clock (txrequestHSclk).
6. After the PLL is locked and the clock lane is in stop state, the PHY drives the correct

LP sequence to configure the receiver end for high speed.
7. D-PHY transmits the high speed clock on the clock lane.
8. (Optional) Program the interrupt masks (registers MASK1 and MASK2).

23.8 Testing the driver
Test the drive according to the following procedure.

1. Connect the MIPI expansion board to the chip's CPU board
2. Run the MIPI test program.
3. Select the MIPI display test.

The screen should display an image.

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

260 Freescale Semiconductor, Inc.

Chapter 24
Configuring the Power Modes

24.1 Overview
This chapter explains how to use the low-power modes driver, which provides an
example of how to use the processor's low power modes.

24.2 Feature summary
This low-level driver supports:

• Entering in wait or stop mode.
• Configuration of the interrupt sources that can wake up the processor.

24.3 Modes of operation
Table 24-1. Low-power modes of operation

Mode What it does

Enter wait state Places a core in a wait-for-interrupt state with the core clock disabled and well-
biasing enabled.

Enter stop mode Places a core in a wait-for-interrupt state with all clocks disabled and well-
biasing enabled.

24.4 Clocks
All clocks are under the fully automated control of the clock controller module (CCM).

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 261

24.5 IOMUX pin mapping
The low-power functions do not implement the ability to control an external power
management IC. Even if this is an option, the current driver does not need to configure
any I/Os.

24.6 Resets and interrupts
The clock controller module resets along with the chip with a warm or cold reset. This is
reset with the chip's global reset signal and is not a software controllable reset.

The low-power functions do not have a dedicated interrupt. However, all interrupt
sources can be used to wake up the processor.

24.7 Using the driver
This driver provides an example implementation of the low-power modes. The
processor's ability to lower the core voltage or switch that voltage off is not implemented.

To enter wait or stop mode, call the following function:

/*!
 * Prepare and enter in a low power mode.
 * @param lp_mode - low power mode : WAIT_MODE or STOP_MODE.
 */
void ccm_enter_low_power(uint32_t lp_mode)

To enable the interrupt source(s) that can wake up the system once in a wait for interrupt
state, call the following function:

/*!
 * Mask/Unmask an interrupt source that can wake up the processor when in a
 * low power mode.
 * @param irq_id - ID of the interrupt to mask/unmask.
 * @param state - masked/unmasked the source ID : ENABLE/DISABLE.
 */
void ccm_set_lpm_wakeup_source(uint32_t irq_id, uint32_t state)

All interrupt IDs are provided in the "Interrupt and DMA events" chapter of the reference
manual.

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

262 Freescale Semiconductor, Inc.

24.8 Testing the driver
A test is available that excersises this set of functions. It uses the EPIT timer as a source
for the interruption that wakes up the processor. The core is first placed in a wait state
during 5 seconds; then it is placed in stop mode for approximately 5 seconds.

24.9 Running the test
To run the lower-power modes test, the SDK builds the test with the following command:

./tools/build_sdk -target mx6dq -board sabre_ai -board_rev a -test power_modes

This generates the following ELF and binary files:

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-power_modes-sdk.elf

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-power_modes-sdk.bin

Chapter 24 Configuring the Power Modes

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 263

Running the test

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

264 Freescale Semiconductor, Inc.

Chapter 25
Configuring the OCOTP Driver

25.1 Overview
This chapter explains how to configure the OCOTP driver. The OCOTP controller is used
to read and write to the chip's OTP eFuses.

There is one instance of OCOTP in the chip, located in the memory map at the base
address 021B C000h.

25.2 Feature summary
This low-level driver supports:

• Read of a fuse bank/row
• Write to a fuse bank/row.

25.3 Modes of operation
The following table explains the OCOTP modes of operation:

Table 25-1. OCOTP modes of operation

Mode What it does

Sense operation Reads the content of a fuse location as defined by a bank and
a row

Write operation Writes a value to a fuse location as defined by a bank and a
row

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 265

25.4 Clocks
This controller uses a single input clock: IPG_CLK. The read and write timings are
calculated based on the IPG_CLK frequency.

Table 25-2. OCOTP reference clocks

Clock Name Description

IPG_CLK IPG_CLK Global IPG_CLK that is typically used in
normal operation. It is provided by CCM.
It cannot be powered down.

25.5 IOMUX pin mapping
This module has no off-chip connection.

25.6 Resets and interrupts
This block is reset with the chip’s global reset signal and does not have a software
controllable reset.

The external application is responsible for creating the interrupt subroutine. The address
of this routine is passed through the hw_module structure, which is defined in ./src/
include/io.h. The application also initializes and manages the interrupt subroutine.

All interrupt sources are listed in the "Interrupts and DMA Events" chapter of the device
reference manual. In the SDK, the list is provided at ./src/include/mx6dq/
soc_memory_map.h.

25.7 Initializing the driver
This controller does not need a special initialization procedure. The driver API is limited
to the functions below. The first is used to read at a fuse location, and the second is used
to program a value at a fuse location.

/*!
 * Read the value of fuses located at bank/row.
 *
 * @param bank of the fuse
 * @param row of the fuse

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

266 Freescale Semiconductor, Inc.

 * @return fuse value
 */
int32_t sense_fuse(uint32_t bank, uint32_t row)

/*!
 * Program fuses located at bank/row to value.
 *
 * @param bank of the fuses.
 * @param row of the fuses.
 * @param value to program in fuses.
 */
void fuse_blow_row(uint32_t bank, uint32_t row, uint32_t value)

The bank and row/word of a fuse location is specified in the OCOTP register definitions,
which are available in the chip reference manual.

25.8 Testing the driver
A test is available to read or write at any fuse location. The test uses interactive messages
to let the user choose which bank and row should be read or written to.

NOTE
All e-Fuses are one time programmable, so any misusage of the
write command is irrerversible.

25.9 Running the test
To run the OCOTP test, the SDK builds the test with the following command:

./tools/build_sdk -target mx6dq -board sabre_ai -board_rev a -test ocotp

This generates the following ELF and binary files:

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-ocotp-sdk.elf

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-ocotp-sdk.bin

Chapter 25 Configuring the OCOTP Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 267

Running the test

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

268 Freescale Semiconductor, Inc.

Chapter 26
Configuring the PCI Express Driver

26.1 Overview
This chapter describes the PCI Express (PCIe controller and PHY) operation and
programming at the module level. All supplied pseudocode is based on the source code of
GPU3D driver, which is delivered with the Plat-SDK.

The PCIe driver:

• Provides APIs to operate the PCIe controller.
• Provides APIs to operate the PCIe PHY.
• Provides APIs for the PCIe protocol.

The chip's PCIe controller and the PCIe PHY are compatible with PCI Express Spec 2.0
and support one PCIE link.

There is only one instance of PCIe. It is located in the memory map at PCIE base address
= 01FF C000h

The GPU3D testing demo is based on an engineering sample board and can be easily
ported to other boards.

26.2 Feature summary
The PCIe controller includes the following features.

• Compatible with PCI Express Spec 2.0.
• Supports root complex and endpoint modes
• Internal memory address mapping supported (iATU)
• Supports one PCIE link
• Supports the debug feature

The PCIe PHY includes the following features:

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 269

• 5 Gbps data transmission rate
• PIPE3 compliant transceiver interface
• Configurable using soft PCS layer above hard macro PHY
• Supports the following interfaces:

• 8-bit interface at 500 MHz operation
• 16-bit interface at 250 MHz operation
• 32-bit interface at 125 MHz operation

• Integrated PHY includes the following:
• Transmitter
• Receiver
• PLL
• Digital core
• ESD

• Programmable Rx equalization
• Designed for excellent performance margin and receiver sensitivity
• Robust PHY architecture tolerates wide process, voltage and temperature variations
• Low-jitter PLL technology with excellent supply isolation
• IEEE 1149.6 (JTAG) boundary scan
• Built-in self-test (BIST) features for production at-speed testing on any digital tester
• 5Gb/s PCIe Gen 2 and 2.5Gb/s PCIe Gen 1.1 test modes supported
• Advanced built-in diagnostics including on-chip sampling scope for easy debug
• Visibility and controllability of hard macro functionality through programmable

registers in the design
• Overrides on all ASIC side inputs for easy debug
• Access register space through simple 16-bit parallel interface or through JTAG

26.3 Modes of operation
This driver configures the PCIe controller working in root complex (RC) mode. Refer to
the PCI Express Specification, version 2.0 for the definition of RC. The specification is
located at http://www.pcisig.com.

Table 26-1. PCIe operation modes

Mode What it does

RC The PCIe works as root complex.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

270 Freescale Semiconductor, Inc.

26.4 Clocks
Table 26-2. PCIe reference clocks

Clock Name Description

PCIe reference clock Ref_PCIe Reference Clock for the PCIe endpoint
device, 125 MHz

26.5 IOMUX pin mapping
All PCIe pins (PCIE_RXM, PCIE_RXP, PCIE_TXM, PCIE_TXP) are dedicated to the
PCIe PHY itself. There is no need to configure the IOMUX.

26.6 Resets and interrupts
This driver does not implement an interrupt mode.

26.7 Initializing the driver
Use the following code to initialize the PCIe driver.

int pcie_init(pcie_dm_mode_e dev_mode)
{
 Configure the GPR fields related with PCIE.
 Configure the PCIE reference clock.
 Reset the PCIE endpoint device.
 Start linkup the endpoint device.
 Wait until the linkup setup unless timeout.
}

26.8 Testing the driver
Build the SDK with the following command:

./tools/build_sdk -target mx6dq -board evb -board_rev a -test pcie

This generates an ELF and file into:

• output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-pcie-sdk.elf

• output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-pcie-sdk.bin

Chapter 26 Configuring the PCI Express Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 271

Download mx6dq_evb_rev_a-pcie-sdk.elf using RV-ICE or Lauterbach or burn
mx6dq_evb_rev_a-pcie-sdk.bin to an SD card with the following command (entered in
Windows's command prompt window):

cfimager-imx -o 0 -f mx6dq_evb_rev_a-pcie-sdk.bin -d g:(SD drive name in your PC)

Then power-up the board to run the test.

To test the driver, connect a PCIe device, such as a PCIe Wi-Fi card, to the PCIe
connector.

The test routine is as follows:

int main(void)
{
 //Initialize the PCIE controller and phy and then link up the PCIE endpoint device.
 pcie_init(PCIE_DM_MODE_RC);
 //Verify the PCIE phy's JTAG ID.
 …
 //Remap the endpoint's configuration space to ARM's memory space
. uint32_t cfg_hdr_base = pcie_map_space(PCIE_IATU_VIEWPORT_0,
 TLP_TYPE_CfgRdWr0,
 PCIE_ARB_BASE_ADDR, 0, SZ_64K);
 //Enumerate endpoint's resource.
 pcie_enum_resources((uint32_t *) cfg_hdr_base, ep1_resources, &res_num);
 //Allocate resources for the endpoint.
pcie_cfg_ep_bar(cfg_hdr_base, bar, *ep_base, ~(size - 1));
 ep1_resources[i].base = pcie_map_space(viewport, tlp_type, base_cpu_side,
*ep_base,
size);
 …
 Write-then-read the endpoint's first space to verify the access to the endpoint
}.

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

272 Freescale Semiconductor, Inc.

Chapter 27
Configuring the PWM driver

27.1 Overview
The pulse width modulator (PWM) generates various modulated waveforms with a
specified pulse width and duty cycle. This chapter provides an overview of how to write
the device driver for the PWM controller.

This chip has four instances of the PWM controller, which are located in the memory
map at:

• PWM1 base address - 0208 0000h
• PWM2 base address - 0208 4000h
• PWM3 base address - 0208 8000h
• PWM4 base address - 0208 C000h

The PWM has only one external signal: ipp_do_pwmo. This signal is a clock signal
whose period and duty cycle vary based on the different PWM settings. For full details,
see the external signals table in the "Pulse Width Modulation (PWM)" chapter in the
reference manual.

27.2 Feature summary
The PWM has the following features:

• 16-bit up-counter with clock source selection
• 4 x 16 FIFO to minimize interrupt overhead
• 12-bit prescaler for division of clock
• Sound and melody generation
• Active-high or active-low configured output
• Programmeable for active in low power and debug modes
• Interrupts at compare and rollover

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 273

27.3 Clocks
If the eCSPI clock is gated, ungate it in the clock control module (CCM) as follows:

• For PWM1, set CG8 (bits 16-17) of CCM_CCGR4.
• For PWM2, set CG9 (bits 18-19) of CCM_CCGR4.
• For PWM3, set CG10 (bits 20-21) of CCM_CCGR4.
• For PWM4, set CG11 (bits 22-23) of CCM_CCGR4.

According to the PWM controller configuration, the clock can be selected from one of
three sources: CKIL, CKIH, and IPG_CLK.

ckll
(32K)

12

Sync 14 CKIL_SYNC_CLK_ROOT (32 Khz)

Figure 27-1. CKIL clock source

pll3_sw_clk

OBC_clk
burn_In_bist

PLL2 bypass clk

CBCMR:
parlph_clk2_sel

3 bit divider
default=1CBCDR: perlph_clk2_podf

PLL2
400M
352M
200M

CBCMR:
pre_perlph_clk_sel

CBCDR:
Perlph_clk_sel

PLL_bypass_enZ[from]tag]
CBCDR:lpg_podf

IPG_CLK_ROOT(66 Mhz)

3 bit divider
default=2

3 bit divider
default=4

3 bit divider
default=1

3 bit divider
default=2

12

CBCDR: ahb_podf

11

9

1

0 132_CLK_ROOT
(132 Mhz, AHB)

7
AXI_CLK_ROOT
(264 Mhz)CBCDR: axI_a_podf

P
er

ip
h_

cl
k1

03
4

1
0

1
0

2
3

2
21
12
3

MMDC_CH0_AXI_CLK_ROOT
(520 Mhz)

cg2

CBCDR:mmdc_ch0_axI_podf

Figure 27-2. IPG_CLK clock source

The CKIH clock source is the external oscillator (22 MHz-27 MHz)

27.4 IOMUX pin mapping
The PWM driver only requires configuration of one external signal: PWM0. Because the
PWMO is an output signal, it does not require an input source and daisy chain
configuration is not necessary.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

274 Freescale Semiconductor, Inc.

Table 27-1. PWM IOMUX pin mapping

Signals PAD MUX SION

PWM1_PWMO DISP0_DAT8 ALT2 0

GPIO_9 ALT4 0

SD1_DAT3 ALT3 0

PWM2_PWMO DISP0_DAT9 ALT2 0

GPIO_1 ALT4 0

SD1_DAT2 ALT3 0

PWM3_PWMO SD1_DAT1 ALT2 0

SD4_DAT1 ALT2 0

PWM4_PWMO SD1_CMD ALT2 0

SD4_DAT2 ALT2 0

27.5 Resets and interrupts
The general interrupt controller (GIC) supports the PWM interrupt. The IRQ IDs are as
follows:

• ID115-PWM-1
• ID116-PWM-2
• ID117-PWM-3
• ID118-PWM-4

See the "ARM Domain Interrupts Summary" table in the "Interrupts and DMA Events"
chapter in the reference manual for the full description of the PWM interrupt source.

The PWM interrupt supports three additional types of interrupts-CIE, RIE, and FIE-
according to the value of the fields in PWMIR as below:

Table 27-2. Interrupt summary

Field Name Description Enable Disable

CIE Interrupt generated when compare event happens 1 0

RIE Interrupt generated when rollover event happens 1 0

FIE Interrupt generated when sample FIFO is empty 1 0

Clear the respective status bit (CMP, ROV, or FE) in PWMSR in the interrupt service
routine to avoid the redundant interrupts. See the "PWM Status Register" status in the
"Pulse Width Modulation (PWM)" chapter in the reference manual for the full
description of the status bits.

Chapter 27 Configuring the PWM driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 275

27.6 Initializing the driver
The necessary initialization process can be summarized as:

1. Pin-mux configuration
2. Clock configuration and controller initialization
3. Controller ready to enable the output

To configure the PWM output, configure the following registers:

• PWMCR - configures clock source, pre-scale
• PWMSAR - configures samples into PWM FIFO
• PWMPR - configures the period of the output waveform

For details about the registers, see the "Programmable Registers" section in the "Pulse
Width Modulation (PWM)" chapter in the reference manual.

27.6.1 Configuring the PWM output

The PWM controller generates modulated waveforms with different pulse width and duty
cycle according to the values of configuration registers.

27.6.1.1 Generating the pulse width

The pulse width is generated according to the following equation:

Pulse width = (period + 1) ÷ PCLK = (period + 1) x prescale ÷ Fsrc

The following figure shows the source selection and division of the input clock.

CKIH

IPG_CLK

CKIL

Clock
Source

Selection

12 bit
prescaler

PVWCR. CLKSRC

PCLK

PVWCR. PRESCALER

Figure 27-3. Input clock flow chart

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

276 Freescale Semiconductor, Inc.

27.6.1.2 Generating the duty cycle

PWMCR[POUTC] controls the PWM output voltage based on the following settings:

• 00, output pin is set at a rollover event and cleared at a comparison event.
• 01, output pin is cleared at a rollover event and set at a comparison event.
• 10 and 11, PWM output is disconnected.

A comparison event means that the incremented counter is equal to the sample value, and
a rollover event means that the counter is equal to period + 1. Therefore, the following
equations provide the duty cycle:

Duty cycle = sample ÷ (period + 1), if PWMCR.POUTC == 00b

Duty cycle = 1 - sample ÷ (period + 1), if PWMCR.POUTC == 01b

27.6.2 Enabling PWM output

Setingt PWMCR[EN] enables the PWM output and clearing PWMCR[EN] disables the
PWM output.

27.7 Application program interface
All the external function calls and variables are located in inc/ecspi_ifc.h. The following
table explains the APIs.

Table 27-3. PWM APIs

API Description Parameters Return

int pwm_init(struct hw_module
*port, uint16_t freq, uint16_t prd,
uint16_t *smp, uint16_t cnt);

Initializes the PWM controller
that is specified by the device
with the specified parameters

port: PWM instance

freq: frequency pre-scale

prd: period of pulse width

smp: sample list

cnt: number of samples in list

• TRUE on
success

• FALSE on fail

void pwm_setup_interrupt (struct
hw_module *port, uint8_t enable,
uint8_t mask);

Enables or disables the PWM
interrupt

port: PWM instance

enable: enable or disable

mask: interrupt mask, could
be FIE, CIE, RIE or ORed of
them

-

Table continues on the next page...

Chapter 27 Configuring the PWM driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 277

Table 27-3. PWM APIs (continued)

API Description Parameters Return

void pwm_clear_int_status (struct
hw_module *port, uint32_t mask);

Clears the respective bits of the
PWMSR register

port: PWM instance

mask: status mask, could be
FIE, CIE, RIE or ORed of
them

-

void pwm_enable(struct hw_module
*port);

Enables the PWM output port: PWM instance -

void pwm_disable(struct hw_module
*port);

Disables the PWM output port: PWM instance -

Application program interface

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

278 Freescale Semiconductor, Inc.

Chapter 28
Using the SATA SDK

28.1 Overview

SATA
Devices

PHY0

AHCI HBA
PHY

Interface
DWC_ahsata

Port0

B
us

 In
te

rf
ac

e AHB Master

AHB Slave

S
ys

te
m

 B
us

PHY1

PHY2

PHY3

Port1

Port2

Port3

Figure 28-1. SATA system block diagram

This chapter explains how to use the SATA SDK, which provides the most basic
instructions for initializing, identifying, and reading/writing of SATA. The SDK does not
support all SATA features

The DWC_ahsata is an AHCI-compliant SATA AHCI host bus adaptor (HBA) that is
used with a corresponding multi-port physical layer (PHY) to form a complete AHCI
HBA interface. Although the block diagram shows four ports, this chip only uses PORT0
and PHY0.

28.2 Feature summary
DWC_ahsata supports the following:

• SATA 1.5-Gbps Generation 1
• Power management features including automatic partial to slumber transition
• BIST loopback modes
• One SATA device (port 0)
• Hardware-assisted native command queuing for up to 32 entries

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 279

• Port multiplier with command-based switching
• Disabling Rx and Tx Data clocks during power down modes

It also features:

• Conformity to Serial ATA Specification 2.6 and AHCI Revision 1.1 specifications.
• A highly configurable PHY interface
• Additional user defined PHY status and control ports
• Configurable AMBA AHB interface (one master and one slave).
• Internal DMA engine per port.

It has the option of featuring:

• Rx Data Buffer for recovered clock systems
• Data alignment circuitry (when Rx Data Buffer is included)
• OOB signaling detection and generation.
• Gen2 speed negotiation (when Tx OOB signaling is included)
• Asynchronous Signal Recovery, including retry polling (when Tx OOB signalling is

included)
• 8b/10b encoding/decoding

28.3 Modes of operation
Table 28-1. Modes of operation

Mode What it does

DMA DMA mode of SATA

PIO PIO mode of SATA

28.4 Clocks

Clock Name Description

Ethernet PLL Ethernet PLL The PLL outputs a 500 MHz clock. It also generates
the SATA clock (100 MHz).

CCGR5 SATA clock gate SATA clock gate

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

280 Freescale Semiconductor, Inc.

28.5 IOMUX pin mapping
Table 28-2. SATA pin mapping

Signals PAD MUX SION Description

IOMUXC_IOMUXC_GPR13 - - - SATA PHY control

MAX7310 U19 CTRL_0 - - - SATA power

28.6 Resets and Interrupts
SATA IRQ number is 71.

The SDK did not implement an interrupt mode.

28.7 Initializing the driver
sata_return_t sata_init(sata_ahci_regs_t * ahci)
{
sata_power_on(); /*1. Power on SATA*/
sata_clock_init(); /*2. Initialize the clock of SATA*/
/*3. Initialize SATA controller and PHY*/
}

28.8 Testing the driver
int main(void)
{
 sata_init(); /*1. Initialize SATA*/
 sata_identify() /*2. Identify SATA*/
 /*3. Read and Write test*/
}

Chapter 28 Using the SATA SDK

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 281

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

282 Freescale Semiconductor, Inc.

Chapter 29
Configuring the SDMA Driver

29.1 Overview
The smart direct memory access (SDMA) controller is composed of a RISC core, ROM,
RAM, and a scheduler. It is used for programs dedicated for various kinds of DMA
transfer. The SDMA controller helps maximize system performance by off-loading the
ARM core in dynamic data routing.

This chapter uses an engineering sample board's schematics for pin assignments. For
other board types refer to the respective schematics.

There is one instance of SDMA, which is located in the memory map at the SDMA base
address of 020E C000h.

29.2 IOMUX pin mapping
Configure the IOMUX for SDMA into the iomux_config() function located in ./src/
mx6dq/hardware.c.

Table 29-1. SDMA IOMUX pin assignments

Signal IOMUXC Setting for SDMA

PAD MUX SION

DEBUG_BUS_DEVICE[0] DISP0_DAT21 ALT4 1

DEBUG_BUS_DEVICE[1] DISP0_DAT22 ALT4 1

DEBUG_BUS_DEVICE[2] DISP0_DAT23 ALT4 1

DEBUG_BUS_DEVICE[3] ENET_MDIO ALT3 1

DEBUG_BUS_DEVICE[4] ENET_REF_CLK ALT3 1

SDMA_EXT_EVENT[0] GPIO_17 ALT3 1

SDMA_EXT_EVENT[0] DISP0_DAT16 ALT4 1

SDMA_EXT_EVENT[1] GPIO_18 ALT3 1

Table continues on the next page...

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 283

Table 29-1. SDMA IOMUX pin assignments (continued)

Signal IOMUXC Setting for SDMA

PAD MUX SION

SDMA_EXT_EVENT[1] DISP0_DAT17 ALT4 1

DEBUG_EVT_CHN_LINES[0] DISP0_DAT13 ALT4 1

DEBUG_EVT_CHN_LINES[1] DISP0_DAT14 ALT4 1

DEBUG_EVT_CHN_LINES[2] DISP0_DAT15 ALT4 1

DEBUG_EVT_CHN_LINES[3] EIM_DA12 ALT4 1

DEBUG_EVT_CHN_LINES[4] EIM_DA13 ALT4 1

DEBUG_EVT_CHN_LINES[5] EIM_DA14 ALT4 1

DEBUG_EVT_CHN_LINES[6] EIM_DA11 ALT4 1

DEBUG_EVT_CHN_LINES[7] DISP0_DAT20 ALT4 1

DEBUG_PC[0] CSI0_PIXCLK ALT4 1

DEBUG_PC[1] CSI0_MCLK ALT4 1

DEBUG_PC[2] CSI0_DATA_EN ALT4 1

DEBUG_PC[3] CSI0_VSYNC ALT4 1

DEBUG_PC[4] CSI0_DAT10 ALT4 1

DEBUG_PC[5] CSI0_DAT11 ALT4 1

DEBUG_PC[6] CSI0_DAT12 ALT4 1

DEBUG_PC[7] CSI0_DAT13 ALT4 1

DEBUG_PC[8] CSI0_DAT14 ALT4 1

DEBUG_PC[9] CSI0_DAT15 ALT4 1

DEBUG_PC[10] CSI0_DAT16 ALT4 1

DEBUG_PC[11] CSI0_DAT17 ALT4 1

DEBUG_PC[12] CSI0_DAT18 ALT4 1

DEBUG_PC[13] CSI0_DAT19 ALT4 1

DEBUG_CORE_STATE[0] DI0_DISP_CLK ALT4 1

DEBUG_CORE_STATE[1] DI0_PIN15 ALT4 1

DEBUG_CORE_STATE[2] DI0_PIN2 ALT4 1

DEBUG_CORE_STATE[3] DI0_PIN3 ALT4 1

DEBUG_YIELD DI0_PIN4 ALT4 1

DEBUG_CORE_RUN DISP0_DAT0 ALT4 1

DEBUG_EVENT_CHANNEL_SEL DISP0_DAT1 ALT4 1

DEBUG_MODE DISP0_DAT2 ALT4

DEBUG_BUS_ERROR DISP0_DAT3 ALT4 1

DEBUG_BUS_RWB DISP0_DAT4 ALT4 1

DEBUG_MATCHED_DMBUS DISP0_DAT5 ALT4 1

DEBUG_RTBUFFER_WRITE DISP0_DAT6 ALT4 1

DEBUG_EVENT_CHANNEL[0] DISP0_DAT7 ALT4 1

DEBUG_EVENT_CHANNEL[1] DISP0_DAT8 ALT4 1

DEBUG_EVENT_CHANNEL[2] DISP0_DAT9 ALT4 1

Table continues on the next page...

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

284 Freescale Semiconductor, Inc.

Table 29-1. SDMA IOMUX pin assignments (continued)

Signal IOMUXC Setting for SDMA

PAD MUX SION

DEBUG_EVENT_CHANNEL[3] DISP0_DAT10 ALT4 1

DEBUG_EVENT_CHANNEL[4] DISP0_DAT11 ALT4 1

DEBUG_EVENT_CHANNEL[5] DISP0_DAT12 ALT4 1

29.3 Scripts
The SoC reference manual provides a set of scripts to perform DMA transfers among the
memories and peripherals. Each of these scripts support one type of transfer, such as
memory to peripheral and peripheral to memory. Some scripts are dedicated to specific
peripherals with some feature turned on. See Appendix A in the IMX6DQRM for details.

The SoC supports three types of access:

• Burst access-to internal or external AP memories
• Per DMA through the functional unit bus-to AP peripherals
• Through the SPBA bus-to AP peripherals

Note that some peripherals reside on the Trust Zone off platform. Users need to turn off
the Trust Zone to enable the SDMA access.

The scripts reside in two different places: the ROM and the RAM. The ROM contains
startup scripts (boot code) and other common utilities which are referenced by the scripts
in the RAM. The internal RAM is divided into a context area and a script area. Users
need to download the RAM scripts into SDMA RAM through channel 0. According to
the input parameters, the channel 0 script can also download other channel's context data
to SDMA RAM.

29.4 Channels and channel descriptor
SDMA has up to 32 virtual DMA time-division multiplexed channels. They are executed
based on channel status, its priority, DMA event map, context area (Every transfer
channel requires one context area to keep the contents of all the core and unit registers
while inactive) and channel control blocks (CCBs) supported. The scheduler provides
hardware-based coordination among the active channels. A context area stores the SDMA
core's context, and the CCB manages the buffer descriptor list.

Chapter 29 Configuring the SDMA Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 285

The SDMA API provides a data structure named sdma_chan_desc_t to describe the
channels.

typedef struct {
 unsigned int script_addr;
 unsigned int gpr[8];
 unsigned int dma_mask[2];
 unsigned char priority;
 unsigned int nbd;
} sdma_chan_desc_t, *sdma_chan_desc_p;

script_addr Script's address

gpr[8] Some parameters that the script uses, such as watermark. Refer to the "SDMA
script" appendix in the i.MX53 reference manual (IMX53RM) for each script's details.

dma_mask[2] the event if the channel is triggered; refer to the "Interrupts and DMA
Events" chapter in the SOC's reference manual for the details.

priority Priority of the channel (0-7)

nbd Number of buffer descriptors

Set up this structure before requesting a channel. The SDMA API needs this structure and
a buffer descriptor to request a channel.

29.5 Buffer descriptor and BD chain
SDMA scripts use the CCB to manage the buffer descriptors. In AP software, the
SDMAARM_MC0PTR register should be set to the address of CCB table of all 32
channels. In the channel script, the script knows the base address of its CCB based on the
address in the SDMAARM_MC0PTR and the channel number. Because the base address
of buffer descriptors is provided in the CCB, the script can read and process the
commands and parameters in the buffer descriptors in order to perform the transfer. Refer
to Appendix A in the i.MX6DQRM for the detailed description of the buffer descriptor
usage for each script.

Typically, in the buffer descriptor data structure, the first 32 bit word is called mode
word; the next two words are base and extended buffer address. The following table
shows the field layout:

Figure 29-1. Buffer descriptor format

Buffer descriptor and BD chain

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

286 Freescale Semiconductor, Inc.

Field descriptions are as follows:

Count Number of bytes for this transfer

D If D = 0, SDMA has finished the transfer for this buffer descriptor. If D = 1, SDMA
has not.

W Wrap. If W = 1, wraps to the base BD (pointed to by basdBDptr in CCB).

C Continuous. If C = 1 moves to the next BD after current BD is done.

I Interrupt. If I = 1 sets the corresponding bit (according to the channel number) in
SDMA interrupt register after current BD is done.

R Error. If R = 1, an error occurred during the current BD transfer

L Last buffer descriptor. This bit is set in the SDMA IPC scripts to tell the receiving core
that the transfer has ended.

Command This field is used to differentiate operations performed in the script. Usage of
this field varies from script to script. Typically, bit 24 and 25 indicate the bus width.

If the continuous bit is set (in buffer descriptor [C]), the SDMA script finishes processing
one buffer descriptor and then immediately processes the next buffer descriptor, creating
a buffer descriptor chain. One channel can support up to 64 buffer descriptors in the
chain. The continuous bit of the last buffer descriptor in the chain should be cleared.

29.6 Application programming interface
The API shown in this section is for the SDMA transfer control. See Using the API, for
usage information.

int sdma_init(sdma_env_p envp, unsigned int base_addr)

Description: Initialize the system environment for SDMA. This function will reset
SDMA controller

Setup configurations like AP DMA/SDMA clock ratio, CCB base address etc

Use channel 0 script to load the RAM scripts into SDMA RAM

Parameters: envp (uncacheable and unbufferable buffer allocated by user)

base_addr (base address of SDMA registers in AP)

Returns : 0 on success

-1 when fail to download RAM scripts to SDMA RAM

Chapter 29 Configuring the SDMA Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 287

-2 when environment pointer is NULL

void sdma_deinit(void)

Description: De-initialize the SDMA environment. This function will close and free all
the channels, clear all the EP and overrides of channels

Parameters: none

Return: none

int sdma_channel_
 request(sdma_chan_desc_p cdp, sdma_bd_p bdp)

Description: Allocates a free channel and opens it. This function will validate the input
parameters, find and allocate a free channel, setup the channel overrides, DMA masks,
buffer descriptors, channel priority etc, It also writes the channel context to SDMA RAM

Parameters: cdp (A pointer to user provided data. It includes necessary channel
descriptors of: script_addr (script address) in SDMA defined in sdma_script_code.h.

gpr[8] (normally it includes the FIFO address, DMA mask, watermark etc. User could
refer to the script manual released with the sdma_script_code.h for details.

dma_mask[2] (DMA mask to set in register of channel enable. Normally it's also
provided in gpr[8]. We separate it here to support some special script that may have some
different usage of GPRs priority the channel priority

bdp (A pointer to the user provided buffer descriptor table.)

Return: return the channel number on success

-2: at least one of the user provided pointers is NULL

-3: channel priority exceeds limitation (1-7)

-4: no free channel that could be allocated

-5: got failure when download channel context to SDMA RAM

-6: too many buffer descriptors in table (>64)

-7: SDMA is not yet initialized

int sdma_channel_release(unsigned int channel)

Application programming interface

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

288 Freescale Semiconductor, Inc.

Description: Close the channel selected. This function stops and frees the channel clear
the EP if set, resets the channel override, resets the channel control block

Parameters: channel (channel number)

Return: 0 on success,

-1 when channel number is not in range (0-31) or SDMA is not yet initialized

int sdma_channel_start(unsigned int channel)

Description: Starts the channel selected.

Parameters: channel (channel number)

Return: 0 on success,

-1 when channel number is out of range (0-31) or channel is free

int sdma_channel_stop(unsigned int channel)

Description: Stops the channel selected.

Parameters: channel (channel number)

Return: 0 on success,

-1 when channel number is out of range (0-31)

int sdma_channel_status(unsigned int channel, unsigned int *status)

Description:

Parameters: channel (channel number)

status (the pointer holds the channel's status: error, done or busy)

Return: 0 on success,

-1 on failure

int sdma_lookup_script(script_name_e script, unsigned int *addr)

Description:

Parameters: script (script name to lookup)

addr (the pointer holds the script's address if the function return 0)

Return: 0 on success,

Chapter 29 Configuring the SDMA Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 289

-1 on failure

29.7 Using the API
The following example shows the typical usage of the API. To save space, some
pseudocode is used.

SDMA_demo{
 Allocate uncacheable and unbuffereable memory for BDs, buffers,etc.
 sdma_init();
 Set up channel descriptors and BDs;
 sdma_channel_request();
 sdma_channel_start();
 Wait for channel done;
 sdma_channel_stop();
 sdma_channel_release();
 sdma_deinit();
}

Use the following sequence:

1. Allocate a static or dynamic buffer to store the global variable used by the API.
2. • Note that this buffer is accessed by DMA and must be uncacheable and

unbufferable.
3. Initialize the SDMA environment with sdma_init.
4. To Initiate an SDMA transfer, use sdma_channel_request to allocate a channel with

the necessary inputs provided. These inputs are bundled in two data structures, a
channel descriptor and a buffer descriptor.

5. • Provide the buffer to store these data structures and buffer descriptors. This
buffer is also accessed by the SDMA and must be uncacheable and unbufferable.

• Use sdma_script_lookup to find the script's address.
• Set the channel attributes and necessary context contents (such as channel

priority, which script to use, and GPRs) in the channel descriptor structure.
• Refer to IMX6DQRM, Appendix A for full details of each script.

6. While initializing an SDMA transfer without DMA event (memory to memory
transfer triggered by SDMAARM_HSTART register), start the SDMA transfer with
sdma_channel_start. If a DMA event is involved, configure and start the peripheral
as well as enable peripheral DMA control. This opens up the channel. Then use
sdma_channel_start to start the transfer.

7. To initiate this transfer again, change the data in the buffer descriptor and then restart
the channel with sdma_channel_start again.

8. Use sdma_channel_release to free the channel or stop the ongoing transfer with
sdma_channel_stop.

9. sdma_deinit provides a way to re-initialize the SDMA together with the sdma_init.

Using the API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

290 Freescale Semiconductor, Inc.

Chapter 30
Configuring the SPDIF Driver

30.1 Overview
This chapter describes module-level operation and programming for the Sony/Philips
digital interface (SPDIF) audio block driver. The SPDIF audio block is a stereo
transceiver that allows the processor to receive and transmit digital audio. The SPDIF
transceiver allows the handling of both SPDIF channel status (CS) and user (U) data. It
also includes a frequency measurement block that allows the precise measurement of an
incoming sampling frequency. The pseudocode supplied in the document is based on the
SPDIF driver in the diag-sdk repository.

SPDIF is typically used to transfer samples in a periodic manner. It consists of
independent transmitter and receiver sections with independent FIFOs and control blocks.

SPDIF is compatible with the IEC60958 standard. Refer to IEC60958 for further details.

NOTE
This chapter uses an engineering sample board's schematics for
pin assignments. For other board types, refer to the respective
schematics.

30.2 Feature summary
The SPDIF driver supports:

• A simple framework for audio
• SPDIF APIs

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 291

30.3 Clocks

Bit ClockSPDIF_STC[TxCLK_SOURCE] SPDIF_STC[TxCLK_DF]

SPDIF

CCM

1

0

2

3

CDCDR: SPDIFn_CLK_PODFPLL4

CDCDR: SPDIFn_CLK_SEL

cg

CDCDR: SPDIFn_CLK_PRED

3 bit divider
default=8

3 bit divider
default=2

OTHER CLOCK
SOURCES

SPDIFn_CLK_ROOT
PLL3

PLL3
PFD2

PLL3
PFD3

Figure 30-1. SPDIF clock tree (default)

Before using SPDIF, use CCM[CCGRx] to gate on the spdif_clock. Refer to the "Clock
Controller Module" chapter in the chip reference manual for details.

By default, spdif_clk_root is sourced from PLL3, whose default value is 480 MHz. The
default spdif_clk_pred value is 2 and the default spdif_clk_podf value is 8; therefore,
spdif_clk_root is divided to 30 MHz.

NOTE
Any change of spdif_clk_root affects modules for which it is
the source clock (such as ESAI). Therefore, we recommended
using the default spdif_clk_root value (30 MHz) for the SPDIF
module.

The transmit clock can be selected from several clock sources, such as ASRC_CLK or
ESAI_CLK. Set SPDIF_STC[TxClk_Source] to select a specific clock source. The
selected source is divided by SPDIF_STC[TxClk_DF] to generate the bit clock.

Because the SPDIFIN signal carries both clock and data, no receive clock is needed.

30.4 IOMUX pin mapping
The following table lists the IOMUX configurations based on an engineering sample
board as an example. For other boards, refer to the appropriate board schematics for
correct pin assignments.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

292 Freescale Semiconductor, Inc.

Table 30-1. IOMUX pin mapping for SPDIF

Signals PAD MUX

SPDIFIN KEY_COL3 ALT6

SPDIFOUT GPIO_19 ALT2

30.5 Audio framework
Because this chip uses multiple audio controllers and audio codecs, an audio framework
is needed to manage all audio modules (controllers and codecs) and to provide a uniform
APIs for application programmers.

The following three data structures create the audio framework:

• audio_card_t—describes the audio card
• audio_ctrl_t—describes the audio controller (for example, SSI or ESAI module)
• audio_codec_t—describes the audio codec (for example sgtl5000 or CS42888)

In addition, audio_dev_ops_t is the data member for the three audio framework data
structures and audio_dev_para_t describes the audio parameter passed to the configuration
function.

The audio card consists of one audio controller and one audio codec. audio_card_t is the
only data structure that applications can access and manage.

30.5.1 audio_card_t data structure

This data structure describes the audio card. It is as follows:

typedef struct {
 const char *name;
 audio_codec_p codec; //audio codec which is included
 audio_ctrl_p ctrl; //audio controller which is included
 audio_dev_ops_p ops; //APIs
} audio_card_t, *audio_card_p;

This driver defines a global variable audio_card_t snd_card_spdif to represent the SPDIF
module within the chip:

audio_card_t snd_card_spdif = {
 .name = "i.MX SPDIF sound card",
 .codec = NULL,
 .ctrl = &imx_spdif,
 .ops = &snd_card_ops,
};

Chapter 30 Configuring the SPDIF Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 293

30.5.2 audio_ctrl_t data structure

This data structure describes the audio controller. It is as follows:

typedef struct {
 const char *name;
 uint32_t base_addr; // the io base address of the controller
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the controller supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the controller supports
 int irq; //the irq number
 int sdma_ch; //Will be used for SDMA
 audio_dev_ops_p ops; //APIs
} audio_ctrl_t, *audio_ctrl_p;

30.5.3 audio_codec_t data structure

This data structure describes the audio codec. It is as follows:

typedef struct {
 const char *name;
 uint32_t i2c_base; //the i2c connect with the codec
 uint32_t i2c_freq; // i2c operate freq;
 uint32_t i2c_dev_addr; //Device address for I2C bus
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the codec supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the codec supports
 audio_dev_ops_p ops; //APIs
} audio_codec_t, *audio_codec_p;

30.5.4 audio_dev_ops_t data structure

This data structure describes the APIs of the audio devices (codec, controller, and card).
It is as follows:

 typedef struct {
 int (*init) (void *priv);
 int (*deinit) (void *priv);
 int (*config) (void *priv, audio_dev_para_p para);
 int (*ioctl) (void *priv, uint32_t cmd, void *para);
 int (*write) (void *priv, uint8_t * buf, uint32_t byte2write, uint32_t *bytewrittern);
 int (*read) (void *priv, uint8_t * buf, uint32_t byte2read, uint32_t byteread);
} audio_dev_ops_t, *audio_dev_ops_p;

30.5.5 audio_dev_para_t data structure

This data structure describes the audio parameter passed to the configuration function. It
is as follows:

typedef struct {
 audio_bus_mode_e bus_mode; //Master or slave
 audio_bus_protocol_e bus_protocol; //I2S, AC97 and so on
 audio_trans_dir_e trans_dir; //Tx, Rx or both

Audio framework

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

294 Freescale Semiconductor, Inc.

 audio_samplerate_e sample_rate; //32K, 44.1K , 48K, and so on
 audio_word_length_e word_length;
 unsigned int channel_number;
} audio_dev_para_t, *audio_dev_para_p;

30.6 Using SPDIF driver functions
The SPDIF driver has both local functions and public APIs.

The local functions are used to:

• Soft reset the driver
• Dump the SPDIF registers
• Obtain the SPDIF setting and status

The public APIs are used to:

• Initialize and de-initialize the SPDIF
• Configure the SPDIF
• Play data back through the SPDIF

30.6.1 Soft resetting SPDIF

The SPDIF_SCR [soft_reset] bit is used to soft reset the SPDIF module. When the soft
reset completes, this bit is cleared automatically.

static int32_t spdif_soft_reset(audio_ctrl_p ctrl)
/*!
 * Get the spdif's settings.
 * @param ctrl a pointer of audio controller (audio_ctrl_t) that presents the spdif
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */

30.6.2 Dumping readable SPDIF registers

This function dumps all readable SPDIF registers.

/*!
 * Dump spdif readable registers.
 * @param ctrl a pointer of audio controller (audio_ctrl_t) that presents the spdif
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */
static int32_t spdif_dump(audio_ctrl_p ctrl)
/*!

Chapter 30 Configuring the SPDIF Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 295

 * Put the spdif to soft-reset mode, and then can be configured.
 * @param ctrl a pointer of audio controller (audio_ctrl_t) that presents the spdif
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */

30.6.3 Obtaining SPDIF setting and status

The function can be called after SPDIF has been initialized.

static uint32_t spdif_get_hw_setting(audio_ctrl_p ctrl, uint32_t type)
/*!
 * Calucate the spdif's tx clock divider according the sample rate.
 * @param ctrl a pointer of audio controller(audio_ctrl_t) that presents the spdif
module
 * sample_rate sample rate to be set
 *
 * @return the divider value
 */
static uint32_t spdif_cal_txclk_div(audio_ctrl_p ctrl, uint32_t sample_rate)

It returns the SPDIF setting values and status values according to the setting type:

• SPDIF_GET_FREQMEAS = 0
• SPDIF_GET_GAIL_SEL
• SPDIF_GET_RX_CCHANNEL_INFO_H
• SPDIF_GET_RX_CCHANNEL_INFO_L
• SPDIF_GET_RX_UCHANNEL_INFO
• SPDIF_GET_RX_QCHANNEL_INFO
• SPDIF_GET_INT_STATUS

30.6.4 Initializing SPDIF

Before use, SPDIF module must be initialized. Initialization requires the following:

• IOMUX setting for SPDIF signals.
• Clock setting, such as selecting the clock source, gating on clocks for SPDIF.
• Resetting the SPDIF module.

This function can be called to initialize the SPDIF module.

/*!
 * Initialize the spdif module and set the spdif to default status.
 * This function will be called by the snd_card driver.
 *
 * @param priv a pointer passed by audio card driver, spdif driver should change it
 * to an audio_ctrl_p pointer that presents the spdif controller.
 *
 * @return 0 if succeeded
 * -1 if failed

Using SPDIF driver functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

296 Freescale Semiconductor, Inc.

 */
int32_t spdif_init(void *priv)

30.6.5 Configuring SPDIF

The function configures the SPDIF parameters according to the audio_dev_para provided
by the audio card driver. This function:

• Writes transmit channel data to SPDIF_STCSCH and SPDIF_STCSCL.
• Configures the FIFO mode, watermark, and other settings
• Sets the transmit clock rate according the audio'ssample rate

/*!
 * Configure the spdif module according to the parameters that were passed by audio_card
driver.
 *
 * @param priv a pointer passed by audio card driver, spdif driver should change it
 * to an audio_ctrl_p pointer that presents the spdif controller.
 * para a pointer passed by audio card driver, consists of configuration
parameters
 * for spdif controller.
 *
 * @return 0 if succeeded
 * -1 if failed
*/
int32_t spdif_config(void *priv, audio_dev_para_p para)

30.6.6 Playback through SPDIF

After initialization and configuration, data can be written to SPDIF_STL and
SPDIF_STR in interleaved order to play back audio. SPDIF_SIS[TX_EMPTY] is
continuously polled to determine whether TX FIFO is full. If TX FIFO is not full, data
can be written to it with the following function.

/*!
 * Write datas to the spdif fifo in polling mode.
 * @param priv a pointer passed by audio card driver, spdif driver should change it
 * to a audio_ctrl_p pointer which presents the spdif controller.
 * buf points to the buffer which hold the data to be written to the spdif tx fifo
 * size the size of the buffer pointed by buf.
 * bytes_written bytes be written to the spdif tx fifo
 *
 * @return 0 if succeeded
 * -1 if failed
 */
int32_t spdif_write_fifo(void *priv, uint8_t * buf, uint32_t size, uint32_t * bytes_written)

30.6.7 De-initializing SPDIF

This function de-initializes SPDIF and frees the resources that SPDIF uses.

Chapter 30 Configuring the SPDIF Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 297

/*!
 * Close the spdif module
 * @param priv a pointer passed by audio card driver, spdif driver should change it
 * to a audio_ctrl_p pointer which presents the spdif controller.
 *
 * @return 0 if succeeded
 * -1 if failed
 */

30.7 Testing the SPDIF driver
The SPDIF test unit demonstrates how to play back music using the audio framework.
The test unit works as follows:

1. Initialize snd_card_spdif
2. Configure snd_card_spdif
3. Write the music file to snd_card_spdif, that is, play back music.
4. If "exit" is selected by the user, de-initialize snd_card_spdif and return

To build the SPDIF test, the SDK uses the following command:

./tools/build_sdk -target mx6dq -board evb -board_rev a -test audio

This generates the following ELF and binary files:

• output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-audio-sdk.elf

• output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-audio-sdk.bin

To run the test:

1. Download mx6dq_evb_rev_a.elf using RV-ICE or Lauterbach or burn
mx6dq_evb_rev_a.bin to an SD card with the following command (entered in the
Windows's command prompt window):

cfimager-imx -o 0 -f mx6dq_evb_rev_a-audio-sdk.bin -d g: (SD drive name in your PC)

2. Ensure the following:
a. The board is mounted on the MX6QVPC board.
b. A rework was done to connect TP6[SPDIF_OUT] with PORT2_P98 on the

MX6QVPC board.
c. The SPDIF_OUT socket and your PC are connected using a SPDIF recording

device, such as M-AUDIO.
3. Power-up the board
4. Run the test by selecting "spdif playback" according to the prompt in the terminal.

When playback is finished, a record file should be generated on your PC.

Testing the SPDIF driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

298 Freescale Semiconductor, Inc.

Chapter 31
Using the SNVS RTC/SRTC Driver

31.1 Overview
This chapter explains how to use the SNVS RTC/SRTC driver, which demonstrates the
use of the timer alarm and periodic interrupt features of the SNVS RTC/SRTC functions.
Note that because the driver is loaded with the firmware library binary in a non-secured
boot environment, the high assurance boot (HAB) configures the SNVS in non-secure
mode. Therfore, features that require secure boot, such as programming the zeroizable
master key or validating the one-time programmable master key, cannot be demonstrated
unless the user signed the firmware library binary for secure boot authentication.

SNVS is partitioned into two sections: a low power part (SNVS_LP) and a high power
part (SNVS_HP).

The SNVS_LP block is in the always powered up domain. It is isolated from the rest of
the logic by means of isolation cells, which are library-instantiated cells that ensure that
the powered up logic is not corrupted when power goes down in the rest of the chip.

SNVS_LP has the following functional units:

• Secure non-rollover real time counter (STRC) with alarm
• Security-related functions (see the chip security reference manual for details)

SNVS_HP is in the chip power supply domain. SNVS_HP provides an interface between
SNVS_LP and the rest of the system. Access to SNVS_LP registers can only be gained
through the SNVS_HP when it is powered up according to access permission policy. See
the chip security reference manual for details.

SNVS_HP has the following functional units:

• IP bus interface
• SNVS_LP interface
• Non-secure real time counter (RTC) with alarm and periodic interrupt

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 299

• Control and status registers
• Security-related functions (see the chip security reference manual for details)

The single SNVS module is located on the memory map at: 020C C000h.

Refer to the SNVS chapter of the device reference manual for the description of SNVS
HP and LP registers and further documentation of the SNVS module.

31.2 Feature summary
The SNVS module does the following:

• Provides a non-volatile real-time clock maintained by a coin-cell during system
power-down for use in both secure and non-secure platforms

• Protects the real-time clock against rollback attacks in time-sensitive protocols such
as DRM and PKI

• Deters replay attacks in time-independent protocols such as certificate or firmware
revocation

• Other security-related functions (see the chip security reference manual for details)

31.3 Modes of operation
SNVS operates in one of two modes of operation: system power-down and system
power-up.

During system power-down, SNVS_HP is powered-down and SNVS_LP is powered
from the backup power supply and is electrically isolated from the rest of the SoC. In this
mode, SNVS_LP continues to keep its register values and monitor the SNVS_LP tamper
detection inputs.

NOTE
Backup supply mode has not been tested and depends on the
hardware used.

During system power-up, SNVS_HP and SNVS_LP are both powered-up and all SNVS
functions are operational.

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

300 Freescale Semiconductor, Inc.

31.4 Clocks
Table 31-1. SNVS clock sources

Clock What it does

System Peripheral Clock This clock is used by the SNVS internal logic, e.g. System Security Monitor. This clock
can be gated outside of the module when SNVS indicates that it is not in use.

System IP Bus Access Clock This clock is used by SNVS for clocking its registers during read/write accesses. This
clock is active only during IP Bus access cycle. This clock is synchronized with System
Peripheral Clock.

LP SRTC Clock This clock is used by the secure real time counter.

HP RTC Clock This clock is used by the real time counter.

NOTE
The counters for RTC and SRTC are incremented by the low
frequency clock from the 32 KHz oscillator, which is
asynchronous to the system clock.

31.5 Counters
SNVS has the following counters:

• Non-secured real time counter (RTC)
• Secured real time counter (SRTC)

NOTE
The driver does not demonstrate the clock calibration capability
of the RTC and SRTC.

31.5.1 Non-Secured Real Time Counter

The SNVS_HP has an autonomous non-secured real time counter. The counter is not
active and is reset when the system is powered down. The HP RTC can be used by any
application and it has no privileged software access restrictions. The counter can be
synchronized with the SNVS_LP SRTC by setting the HP_TS bit of SNVS_HP Control
Register.

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 301

31.5.1.1 Non-Secured Real Time Counter Alarm

The SNVS_HP non-secure Real Time Counter has its own Time Alarm register. This
register can be updated by any application. The SNVS_HP time alarm can generate
interrupts to alert the host processor and can wake-up the host processor from one of its
low-power modes (e.g. wait, doze, and stop). Note that this alarm cannot wake-up the
entire system if it is powered off since this alarm would also be powered off.

31.5.1.2 Non-Secured Real Periodic Interrupt

HP RTC Clock
HP Real Time Counter

HP Time Alarm Registers

Compare

Interrupt Source
Select and Gen.

Logic

16/ HP Periodic Interrupt

HP Time Alarm

Figure 31-1. SNVS_HP real time counter, alarm, and interrupts

The SNVS_HP non-secure Real Time Counter incorporates periodic interrupt. The
periodic interrupt is generated when a zero-to-one or one-to-zero transition occurs on the
selected bit of the Real Time Counter. The periodic interrupt source is chosen from 16
bits of the HP Real Time Counter according to the PI_FREQ field setting in the HP
Control Register. The frequency of the periodic interrupt is also defined by this bit
selection.

SNVS_HP Real Time Counter and its interrupts are shown in Figure 31-1 2.

31.5.2 Secure Real Time Counter

The SNVS_LP incorporates an autonomous Secure Real Time Counter (SRTC). This is a
non-rollover counter. This means that if the SRTC reaches the maximum value of all
ones it will not rollover. In this case a time rollover indication is generated to the
SNVS_LP Tamper Monitor, which can generates security violation and interrupt.

Counters

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

302 Freescale Semiconductor, Inc.

LP SRTC Clock

FFF ... FFF
(all ones value)

Secure Real Time Counter

32/

32/
LP Time Alarm Value

Compare
SRTC Rollover Violation

SRTC Time Alarm
Compare

Figure 31-2. SNVS_LP secure real time counter

The SNVS_LP section has its own 32-bit Time Alarm Register. Time Alarm is generated
when SRTC 32-most significant bits match with Time Alarm Register. The SNVS_LP
time alarm can generate an interrupt to alert the host processor and can wake-up the host
processor from one of its low-power modes (e.g. wait, doze, stop). This alarm can also
wake-up the entire system in the power-down mode by asserting the wake-up external
output signal.

31.6 Driver API
This driver has the following categories of APIs:

• SNVS lower level driver APIs
• RTC upper layer driver APIs
• SRTC upper layer driver APIs

31.6.1 SNVS lower level driver APIs

These low level driver API are defined in snvs.c file and are called by upper layer driver
API in rtc.c and srtc.c files. These API reads or programs SNVS registers.

31.6.1.1 Enable/Disable SNVS non-secured real time counter

The API snvs_rtc_counter is used to enable or disable non-secure real time counter. The
API either sets or clears RTC_EN bit of SNVS_HP control register. The API loops until
the value of the register changed to the new value.

/*!
 * Enable or disable non-secured real time counter
 *
 * @param port - pointer to the SNVS module structure.

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 303

 *
 * @param state - 1 to enable the counter and any other value to disable it.
 */
void snvs_rtc_counter(struct hw_module *port, uint8_t state)
{
 volatile struct mx_snvs *psnvs =
 (volatile struct mx_snvs *)port->base;
 if(state == ENABLE)
 {
 /* Set RTC_EN bit in hpcr register */
 psnvs->hpcr |= HPCR_RTC_EN;
 /* Wait until the bit is set */
 while((psnvs->hpcr & HPCR_RTC_EN) == 0);
 }
 else
 {
 /* Clear RTC_EN bit in hpcr register */
 psnvs->hpcr &= ~HPCR_RTC_EN;
 /* Wait until the bit is cleared */
 while(psnvs->hpcr & HPCR_RTC_EN);
 }
}

31.6.1.2 Enable/Disable SNVS non-secured time alarm

The API snvs_rtc_alarm is used to enable or disable non-secure time alarm. The API
either sets or clears HPTA_EN bit of SNVS_HP control register. The API loops until the
value of the register changed to the new value.

/*!
 * Enable or disable non-secured time alarm
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param state - 1 to enable the alarm and any other value to disable it.
 */
void snvs_rtc_alarm(struct hw_module *port, uint8_t state)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 if(state == ENABLE)
 {
 /* Set HPTA_EN bit of hpcr register */
 psnvs->hpcr |= HPCR_HPTA_EN;
 /* Wait until the bit is set */
 while((psnvs->hpcr & HPCR_HPTA_EN) == 0);
 }
 else
 {
 /* Clear HPTA_EN bit of hpcr register */
 psnvs->hpcr &= ~HPCR_HPTA_EN;
 /* Wait until the bit is cleared */
 while(psnvs->hpcr & HPCR_HPTA_EN);
 }
}

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

304 Freescale Semiconductor, Inc.

31.6.1.3 Enable/Disable SNVS periodic interrupt

The API snvs_rtc_periodic_interrupt is used to enable or disable non-secure periodic
interrupt. The API either sets or clears PI_EN bit of SNVS_HP control register. The API
loops until the value of the register changed to the new value. The API also needs the freq
parameter to program PI_FREQ bits of HP control register. PI_FREQ can be any value
from 0 to 15. CPU is interrupted whenever real time counter value at bit PI_FREQ
toggles.

/*!
 * Enable or disable non-secured periodic interrupt
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param freq - frequence for periodic interrupt, valid values 0 to 15,
 * a value greater than 15 will be regarded as 15.
 *
 * @param state - 1 to enable the alarm and any other value to disable it.
 */
void snvs_rtc_periodic_interrupt(struct hw_module *port, uint8_t freq, uint8_t state)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 if(state == ENABLE)
 {
 if(freq > 15)
 freq = 15;
 /* First clear the periodic interrupt frequency bits */
 psnvs->hpcr &= ~HPCR_PI_FREQ_MASK;
 /* Set freq, SNVS interrupts the CPU whenever the
 * frequency (0-15) bit of RTC counter toggles.
 * The counter is incremented by the slow 32KHz clock.
 */
 psnvs->hpcr |= ((freq << HPCR_PI_FREQ_SHIFT) & HPCR_PI_FREQ_MASK);
 psnvs->hpcr |= HPCR_PI_EN;
 while((psnvs->hpcr & HPCR_PI_EN) == 0);
 }
 else
 {
 /* Clear freq and PI_EN bit to disable periodic interrupt */
 psnvs->hpcr &= ~HPCR_PI_FREQ_MASK;
 psnvs->hpcr &= ~HPCR_PI_EN;
 while(psnvs->hpcr & HPCR_PI_EN);
 }
}

31.6.1.4 Set SNVS non-secure real time counter registers

The API snvs_rtc_set_counter sets the 47-bit real time counter, it sets lower 32-bit of 64-
bit argument count to HPRTCLR register and next 15 bits to HPRTCMR register. The
function disables the RTC before changing the value of the counter so that the change can
take effect.

/*!
 * Programs non-secured real time counter
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param count - 64-bit integer to program into 47-bit RTC counter register;
 * only 47-bit LSB will be used

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 305

 */
void snvs_rtc_set_counter(struct hw_module *port, uint64_t count)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 /* Disable RTC otherwise below write operation to counter registers
 * will not work
 */
 snvs_rtc_counter(port, DISABLE);
 /* Program the counter */
 psnvs->hprtclr = (uint32_t)count;
 psnvs->hprtcmr = (uint32_t)(count >> 32);
 /* Reenable RTC */
 snvs_rtc_counter(port, ENABLE);
}

31.6.1.5 Set SNVS non-secure RTC time alarm registers

The API snvs_rtc_set_alarm_timeout sets least significant 47-bits of timeout argument to
time alarm registers. It sets lower 32-bits of 64-bit argument timeout to HPTALR register
and next 15 bits to hptamr register. The function disables the RTC alarm function before
changing the value of the alarm register to comply with the SNVS specifications as
described in the chip reference manual. The CPU will be interrupt by SNVS when the
value of counter register matches the alarm register value, the alarm is also indicated by
setting of bit HPTA of status register (hpsr).

/*!
 * Sets non-secured RTC time alarm register
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param timeout - 64-bit integer to program into 47-bit time alarm register;
 * only 47-bit LSB will be used
 */
void snvs_rtc_set_alarm_timeout(struct hw_module *port, uint64_t timeout)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 /* Disable alarm */
 snvs_rtc_alarm(port, DISABLE);
 /* Program time alarm registers */
 psnvs->hptalr = (uint32_t)timeout;
 psnvs->hptamr = (uint32_t)(timeout >> 32);
 /* Reenable alarm */
 snvs_rtc_alarm(port, ENABLE);
}

31.6.1.6 Enable/Disable SNVS secure real time counter

The API snvs_rtc_counter is used to enable or disable secure real time counter. The API
can set or clear RTC_EN bit of SNVS_HP control register. The API loops until the value
of the register changed to the new value.

/*!
 * Enable or disable secure real time counter
 *
 * @param port - pointer to the SNVS module structure.
 *

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

306 Freescale Semiconductor, Inc.

 * @param state - 1 to enable the counter and any other value to disable it.
 */
void snvs_srtc_counter(struct hw_module *port, uint8_t state)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 if(state == ENABLE)
 {
 psnvs->lpcr |= LPCR_RTC_EN;
 while((psnvs->lpcr & LPCR_RTC_EN) == 0);
 }
 else
 {
 psnvs->lpcr &= ~LPCR_RTC_EN;
 while(psnvs->lpcr & LPCR_RTC_EN);
 }
}

31.6.1.7 Enable/Disable SNVS secure time alarm

The API snvs_rtc_alarm is used to enable or disable secure time alarm. The API either
sets or clears HPTA_EN bit of SNVS_HP control register. The API loops until the value
of the register changed to the new value.

/*!
 * Enable or disable secure time alarm
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param state - 1 to enable the alarm and any other value to disable it.
 */
void snvs_srtc_alarm(struct hw_module *port, uint8_t state)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 if(state == ENABLE)
 {
 psnvs->lpcr |= LPCR_LPTA_EN;
 while((psnvs->lpcr & LPCR_LPTA_EN) == 0);
 }
 else
 {
 psnvs->lpcr &= ~LPCR_LPTA_EN;
 while(psnvs->lpcr & LPCR_LPTA_EN);
 }
}

31.6.1.8 Set SNVS secured real time counter registers

The API snvs_srtc_set_counter sets the 47-bit real time counter, it sets lower 32-bit of
64-bit argument count to the LPRTCLR register and next 15 bits to the LPRTCMR
register. The function disables the SRTC before changing the value of the counter so that
the change can take effect.

/*!
 * Programs secure real time counter
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param count - 64-bit integer to program into 47-bit SRTC counter register;

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 307

 * only 47-bit LSB will be used
 */
void snvs_srtc_set_counter(struct hw_module *port, uint64_t count)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 /* Disable RTC */
 snvs_srtc_counter(port, DISABLE);
 /* Program the counter */
 psnvs->lpsrtclr = (uint32_t)count;
 psnvs->lpsrtcmr = (uint32_t)(count >> 32);
 /* Reenable RTC */
 snvs_srtc_counter(port, ENABLE);
}

31.6.1.9 Set SNVS non-secure time alarm register

The API snvs_rtc_set_alarm_timeout sets 32-bit timeout argument to 32-bit time alarm
register. The function disables the RTC alarm function before changing the value of the
alarm register to comply with the SNVS specifications as described in the chip reference
manual. The CPU is interrupted by SNVS when the 32 MSB of counter register matches
the alarm register value. The alarm is also indicated by the setting of bit LPTA of status
register (LPSR).

/*!
 * Set secured RTC time alarm register
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param timeout - 32-bit integer to program into 32-bit time alarm register;
 */
void snvs_srtc_set_alarm_timeout(struct hw_module *port, uint32_t timeout)
{
 volatile struct mx_snvs *psnvs = (volatile struct mx_snvs *)port->base;
 /* Disable alarm */
 snvs_srtc_alarm(port, DISABLE);
 /* Program time alarm register */
 psnvs->lptar = timeout;
 /* Reenable alarm */
 snvs_srtc_alarm(port, ENABLE);
}

31.6.2 RTC upper layer driver APIs

The upper layer API calls into lower layer SNVS API to perform tasks like setting up
periodic alarm to periodically interrupt the CPU, set up one-time alarm and also accepts
callback routine to callback to higher layer application (test application) function from
interrupt service routine.

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

308 Freescale Semiconductor, Inc.

31.6.2.1 Initialize RTC

This API will be called from application layer (unit test) to start the RTC counter and
prepare to service requests to set one-time alarm or periodic time alarm

/*!
 * Initializes RTC by enabling non-secured real time counter,
 * disables alarm and periodic interrupt. It also calls internal
 * API snvs_rtc_setup_interrupt to register interrupt service handler
 */
void rtc_init(void)
{
 /* Initialize SNVS driver */
 snvs_init(snvs_rtc_module.port);
 /* Start rtc counter */
 snvs_rtc_counter(snvs_rtc_module.port, ENABLE);
 /* Keeps alarms disabled */
 snvs_rtc_alarm(snvs_rtc_module.port, DISABLE);
 snvs_rtc_periodic_interrupt(snvs_rtc_module.port, 0, DISABLE);
 /* Enable interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, ENABLE);
}

31.6.2.2 De-initialize RTC

This API will be called from application layer (like unit test code) to disable the real time
counter.

/*!
 * Disables interrupt, counter, alarm and periodic alarm
 */
void rtc_deinit(void)
{
 /* Disable the interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, DISABLE);
 snvs_rtc_module.onetime_timer_callback = NULL;
 snvs_rtc_module.periodic_timer_callback = NULL;

 /* Disable the counter and alarms*/
 snvs_rtc_counter(snvs_rtc_module.port, DISABLE);
 snvs_rtc_alarm(snvs_rtc_module.port, DISABLE);
 snvs_rtc_periodic_interrupt(snvs_rtc_module.port, 0, DISABLE);
 /* Deinitialize SNVS */
 snvs_deinit(snvs_rtc_module.port);
}

31.6.2.3 Setup RTC one time alarm

This API will be called from application layer (like the unit test code) to set up the one
time alarm, using non-secured RTC. The caller to supply the pointer to callback function.
Callback will be called from interrupt service routine when SNVS interrupts CPU when
alarm sets off.

/*!
 * Calls in appropriate low level API to setup one-time timer
 *
 * @param port - pointer to the SNVS module structure.

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 309

 *
 * @param callback - callback function to be called from isr.
 */
void rtc_setup_onetime_timer(uint64_t timeout, funct_t callback)
{
 /* Disables interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, DISABLE);
 /* Set secure real time counter to 0 */
 snvs_rtc_set_counter(snvs_rtc_module.port, 0);
 /* Disables interrupt */
 snvs_rtc_set_alarm_timeout(snvs_rtc_module.port, timeout);
 /* Set callback pointer */
 snvs_rtc_module.onetime_timer_callback = callback;
 /* Enable the interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, ENABLE);
}

31.6.2.4 Setup RTC periodic time alarm

This API will be called from application layer (like unit test code) to setup periodic time
alarm using non-secured RTC. The caller to supply the pointer to callback function.
Callback will be called from interrupt service routine whenever SNVS interrupts CPU
when periodic alarm sets off.

/*!
 * Calls in appropriate low level API to setup periodic timer
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param periodic_bit - periodic interrupt freq (valid values 0-15)
 *
 * @param callback - pointer to callback function
 */
void rtc_setup_periodic_timer(uint32_t periodic_bit, funct_t callback)
{
 /* Disable interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, DISABLE);

 /* Disable periodic interrupt */
 snvs_rtc_periodic_interrupt(snvs_rtc_module.port, 0, DISABLE);
 /* Set the callback pointer */
 snvs_rtc_module.periodic_timer_callback = callback;
 /* Enable counter and periodic interrupt */
 snvs_rtc_counter(snvs_rtc_module.port, ENABLE);
 snvs_rtc_periodic_interrupt(snvs_rtc_module.port, periodic_bit, ENABLE);
 /* Enable interrupt */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, ENABLE);
}

31.6.2.5 Disable RTC periodic alarm

This API will be called from application layer (like unit test code) to disable periodic
alarm. In our example unit test the callback function to periodic alarm counts upto 10
periodic alarm interrupts and calls this API to disable periodic time alarm.

/*!
 * Calls in appropriate low level API to disable periodic timer
 */

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

310 Freescale Semiconductor, Inc.

void rtc_disable_periodic_timer(void)
{
 /* Disable interrupts */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, DISABLE);
 /* Disable RTC periodic interrupt */
 snvs_rtc_periodic_interrupt(snvs_rtc_module.port, 0, DISABLE);
 /* Remove callback */
 snvs_rtc_module.periodic_timer_callback = NULL;
 /* Reenable interrupts */
 snvs_rtc_setup_interrupt(snvs_rtc_module.port, ENABLE);
}

31.6.3 SRTC upper layer driver APIs

The upper layer API calls into lower layer SNVS API to perform tasks like setting up
one-time alarm and also accepts callback routine to callback to higher layer application
(unit test) function from interrupt service routine.

31.6.4 Initialize SRTC

This API will be called from application layer (unit test) to start SRTC counter and
prepare to service requests to set one-time alarm.

/*!
 * Initializes SRTC by enabling secure real time counter and
 * disables time alarm. It also calls internal API snvs_rtc_setup_interrupt
 * to register interrupt service handler
 */
void srtc_init(void)
{
 /* Initialize SNVS driver */
 snvs_init(snvs_srtc_module.port);
 /* Start SRTC counter */
 snvs_srtc_counter(snvs_srtc_module.port, ENABLE);
 /* Keep time alarm disabled */
 snvs_srtc_alarm(snvs_srtc_module.port, DISABLE);
}

31.6.5 De-initialize SRTC

This API will be called from application layer (like unit test code) to disable the secure
real time counter.

/*!
 * Disables interrupt, counter and time alarm
 */
void srtc_deinit(void)
{
 /* Disable the interrupt */
 snvs_srtc_setup_interrupt(snvs_srtc_module.port, DISABLE);
 /* Disable the counter */
 snvs_srtc_counter(snvs_srtc_module.port, DISABLE);
 snvs_srtc_alarm(snvs_srtc_module.port, DISABLE);
 /* Deinitialize SNVS */

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 311

 snvs_deinit(snvs_srtc_module.port);
}

31.6.6 Setup SRTC one time alarm

This API will be called from application layer (like unit test code) to setup one time
alarm using secured RTC. The caller to supply the pointer to callback function. Callback
will be called from interrupt service routine when SNVS interrupts CPU when alarm sets
off.

/*!
 * Calls in appropriate low level API to setup SRTC one-time timer
 *
 * @param port - pointer to the SNVS module structure.
 *
 * @param callback - callback function to be called from isr.
 */
void srtc_setup_onetime_timer(uint32_t timeout, funct_t callback)
{
 /* Disables the interrupt */
 snvs_srtc_setup_interrupt(snvs_srtc_module.port, DISABLE);
 /* Clear the SRTC counter */
 snvs_srtc_set_counter(snvs_srtc_module.port, 0);
 /* Program the timeout value */
 snvs_srtc_set_alarm_timeout(snvs_srtc_module.port, timeout);
 /* Set the callback function */
 snvs_srtc_module.onetime_timer_callback = callback;
 /* Reanable the interrupt */
 snvs_srtc_setup_interrupt(snvs_srtc_module.port, ENABLE);
}

31.6.7 Testing the SNVS SRTC/RTC driver

There are two separate unit tests included with platform SDK code:

• snvs_rtc_test.c-demonstrates how to call into RTC driver API to setup one-time and
periodic time alarms

• snvs_srtc_test_.c-demonstrates how to call into SRTC driver API to setup one-time
alarm.

These unit tests demonstrate the use of callback function passed as a pointer to RTC and
SRTC API and driver's interrupt service routine calls these callback function whenever
an alarm is set.

Here is one example of unit test implementation that calls RTC driver API, the function
initialized RTC and calls API to setup one time timer and pass in pointer to callback
function. When alarm occurs the driver's interrupt service routine will call the callback
function. The unit test function waits in a loop for global onetime_tick to be set by the

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

312 Freescale Semiconductor, Inc.

callback function and once it is set it breaks off from the loop and sends text on uart
indicating the test has passed otherwise if loop counter reaches 0 the test function will
send text on uart to indicate the test failed.

void one_time_timer_test(void)
{
 int loop = 0xFFFFFF;
 onetime_tick = 0;
 rtc_init();

 rtc_setup_onetime_timer(10, one_time_tick_callback);
 while(loop--)
 {
 if(onetime_tick)
 break;
 }
 if(onetime_tick == 0)
 printf("SNVS RTC Timer Test Failed!!\n");
 else
 printf("SNVS RTC Timer Test Passed!!\n");
 rtc_deinit();
}

Below shows an implementation of callback one_time_tick_callback function where in it
initializes global variable onetime_tick indicating that one time alarm was successful and
the test function can break from the wait loop.

void one_time_tick_callback(void)
{
 onetime_tick = 1;
}

Chapter 31 Using the SNVS RTC/SRTC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 313

Driver API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

314 Freescale Semiconductor, Inc.

Chapter 32
Configuring the SSI Driver

32.1 SSI overview
This chapter explains how to configure the synchronous serial interface (SSI) driver.

The synchronous serial interface (SSI) is a full-duplex, serial port that allows the chip to
communicate with serial devices such as standard coder-decoders (CODECs), digital
signal processors (DSPs), microprocessors, peripherals, or popular industry audio
CODECs that implement the inter-IC sound bus standard (I2S) and Intel AC97 standard.

SSI typically transfers samples in a periodic manner. The SSI consists of independent
transmitter and receiver sections with independent clock generation and frame
synchronization.

The following figure illustrates the SSI organization.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 315

STCCR

SRCCR

STCR

SRCR

SCRControl Reg

Receive
Config Reg

Tx and RX
Control

Tx Clock
Generator

Tx Sync
Generator

Rx Clock
Generator

Rx Sync
Generator

SRFS

SRCK or
network clocks

STPS

STCK

Peripheral Bus

32-bit

Transmit
Config Reg

Receive Clock
Control Reg

Transmit Clock
Control Reg

Tx and Rx FIFO
and shift

register logi

STXD

SRXD

Figure 32-1. SSI block diagram

The SSI consists of:

• Control registers to set up the port
• A status register
• Two sets of transmit and receive FIFOs. Each of the four FIFOs is 15 x 32 bits. The

two sets of Tx/Rx FIFOs can be used in network mode to provide two independent
channels for transmission and reception. The second set of Tx and Rx FIFOs
replicates the logic used for the first set of FIFOs.

• Separate serial clock and frame sync generation for transmit and receive sections

There are three SSI modules within the chip: SSI1, SSI2, and SSI3. The SSI signals
connect to the AUDMUX, which is another module within the chip. For AUDMUX
details, see AUDMUX.

32.2 Feature summary
The SSI driver supports the following features:

• A simple framework for audio
• SSI driver supporting I2S protocol
• sgtl5000 driver supporting I2S protocol

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

316 Freescale Semiconductor, Inc.

32.3 Clocks

PLL3 (508M) /4 /2

CCM

SSI_CLK_ROOT

DIV2 PSR PM

SSI
SSI_STCR

bit clock

Clock from Ext
codec

Figure 32-2. SSI clock tree

Before using SSI, gate ssi_ipg and ssi_ssi_clk on CCM_CCGR5 as follows:

• For SSI1, set CCM_CCGR5[CG9]
• For SSI2, set CCM_CCGR5[CG10]
• For SSI3, set CCM_CCGR5[CG11]

Refer to the Clock Controller Module (CCM) chapter in the chip reference manual for
details.

By default, the SSI_CLK_ROOT is sourced from PLL3 which is 508 MHz. When the
default ssi_clk_pred value (default 4) and ssi_clk_podf value (default 2) are used, the
ssi_clk_root is divided to 63.5 MHz.

NOTE
The SSI_CLK_ROOT is the source clock for other modules,
such as ESAI. Therefore, any change to SSI_CLK_ROOT can
affect those modules. It is recommended that users use the
default SSI_CLK_ROOT value (63.5 MHz) for the SSI module.

The bit clock (transmit bit clock or receive bit clock) can be internal
(SSI_STCR[TXDIR] = 1b) or external (SSI_STCR[TXDIR] = 0b). When the bit clock is
internal, it is sourced from SSI_CLK_ROOT and can be divided by SSI_STCCR[DIV2],
SSI_STCCR[PSR], and SSI_STCCR[PM]. When external, the external audio codec
provides the bit clock.

32.4 IOMUX pin mapping
The following figure shows the SSI signal routing.

Chapter 32 Configuring the SSI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 317

SSI1 Port 1

SSI2

SSI3

Port 2

Port 7

Port 3 Audio Device 1

Port 4 Audio Device 2

Port 5 Audio Device 3

Port 6 Audio Device 4

Mux

Matrix

AUDMUX Block

Figure 32-3. SSI signal routing

The SSI signals connect to the internal ports of the AUDMUX, which then routes them to
the external pins. From there, the AUDMUX connects the signals to the external audio
codec.

The following table is based on an engineering sample board in which PORT5 was
connected with the SSI codec sgtl5000 in SYN mode. When using another board, check
the board schematic for the specific pin assignments.

Table 32-1. IOMUX configuration of SSI2 on mx53-smd board

SSI Signal name AUDMUX Signal name Pin name ALT

SSI2_SRXD AUD5_RXD KEY_ROW1 ALT2

SSI2_STXD AUD5_TXD KEY_ROW0 ALT2

SSI2_STXC AUD5_TXC KEY_COL0 ALT2

SSI2_STXFS AUD5_TXFS KEY_COL1 ALT2

32.5 Audio framework
The chip contains multiple audio controllers and audio codecs. The following three data
structures are used to create an audio framework that abstracts all audio modules
(controllers and codecs) and provides a uniform API for applications:

• audio_card_t—describes the audio card
• audio_ctrl_t—describes the audio controller (SSI, ESAI module, or other)
• audio_codec_t—describes the audio codec (sgtl5000, CS428888, or other)

Audio framework

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

318 Freescale Semiconductor, Inc.

The audio card consists of one audio controller and one audio codec. The audio_card_t
data structure is the only data structure that an application can access and manage.

32.5.1 audio_card_t data structure

The audio_card_t data structure describes the audio card. It is as follows:

typedef struct {
 const char *name;
 audio_codec_p codec; //audio codec which is included
 audio_ctrl_p ctrl; //audio controller which is included
 audio_dev_ops_p ops; //APIs
} audio_card_t, *audio_card_p;

32.5.2 audio_ctrl_t data structure

The data structure audio_ctrl_t describes the audio controller. It is as follows:

typedef struct {
 const char *name;
 uint32_t base_addr; // the io base address of the controller
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the controller supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the controller
supports
 int irq; //the irq number
 int sdma_ch; //Will be used for SDMA
 audio_dev_ops_p ops; //APIs
} audio_ctrl_t, *audio_ctrl_p;

32.5.3 audio_codec_t data structure

The data structure audio_codec_t describes the audio codec. It is as follows:

typedef struct {
 const char *name;
 uint32_t i2c_base; //the i2c connect with the codec
 uint32_t i2c_freq; // i2c operate freq;
 uint32_t i2c_dev_addr; //Device address for I2C bus
 audio_bus_type_e bus_type; //The bus type(ssi, esai or spdif) the codec supports
 audio_bus_mode_e bus_mode; //the bus mode(master, slave or both)the codec supports
 audio_dev_ops_p ops; //APIs
} audio_codec_t, *audio_codec_p;

32.5.4 audio_dev_ops_t data structure

The data structure audio_dev_ops_t describes the APIs of the codec, controller, and card.
It is as follows:

 typedef struct {
 int (*init) (void *priv);

Chapter 32 Configuring the SSI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 319

 int (*deinit) (void *priv);
 int (*config) (void *priv, audio_dev_para_p para);
 int (*ioctl) (void *priv, uint32_t cmd, void *para);
 int (*write) (void *priv, uint8_t * buf, uint32_t byte2write, uint32_t *bytewrittern);
 int (*read) (void *priv, uint8_t * buf, uint32_t byte2read, uint32_t byteread);
} audio_dev_ops_t, *audio_dev_ops_p;

32.5.5 audio_dev_para_t data structure

The data structure audio_dev_para_t describes the audio parameters to be passed to the
configuration function. It is as follows:

typedef struct {
 audio_bus_mode_e bus_mode; //Master or slave
 audio_bus_protocol_e bus_protocol; //I2S, AC97 and so on
 audio_trans_dir_e trans_dir; //Tx, Rx or both
 audio_samplerate_e sample_rate; //32K, 44.1K , 48K, and so on
 audio_word_length_e word_length;
 unsigned int channel_number;
} audio_dev_para_t, *audio_dev_para_p;

The engineering sample board uses sgtl5000 and SSI2, so the SSI sound card should like:

audio_card_t snd_card_ssi = {
 .name = "i.MX SSI sound card",
 .codec = &sgtl5000, // the codec sgtl5000
 .ctrl = &imx_ssi_2, //For imx53_smd, the SSI2 was used.
 .ops = &snd_card_ops,
};

NOTE
This section is based on an engineering sample board. Check
your board schematic for the correct pin assignments.

32.6 SSI driver functions
The SSI driver has both local functions and public APIs.

The local functions are used to:

• Reset the SSI
• Obtain the SSI setting and status values
• Set SSI parameters
• Enable SSI sub-modules

The public APIs are used to:

• Initialize the SSI driver
• Configure the SSI
• Playback through the SSI

SSI driver functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

320 Freescale Semiconductor, Inc.

32.6.1 Resetting the SSI

SSI_SCR[SSIEN] enables and disables the SSI. When the SSI is disabled, all SSI status
bits are preset to the same state produced by the power-on reset. However, all control bits
are unaffected because disabling the SSI puts it into self-reset mode and clears the
contents of the Tx and Rx FIFOs.

When the SSI is disabled, all internal clocks except the register access clock are also
disabled. The control registers should be modified on self-reset mode (SSI_SCR[SSIEN]
= 0b).

32.6.2 Obtaining SSI setting and status values

The function uint32_t ssi_get_hw_setting(audio_ctrl_p ctrl, uint32_t type) returns the SSI
setting and status values according to the setting type as follows:

typedef enum {
 SSI_SETTING_TX_FIFO1_DATAS_CNT,
 SSI_SETTING_TX_FIFO2_DATAS_CNT,
 SSI_SETTING_RX_FIFO1_DATAS_CNT,
 SSI_SETTING_RX_FIFO2_DATAS_CNT,
 SSI_SETTING_TX_WATERMARK,
 SSI_SETTING_RX_WATERMARK,
SSI_SETTING_TX_WORD_LEN,
SSI_SETTING_RX_WORD_LEN,
 SSI_SETTING_TX_FRAME_LENGTH,
 SSI_SETTING_RX_FRAME_LENGTH,
 SSI_SETTING_CLK_FS_DIR,
} ssi_setting_type_e;

The function can be called once SSI has been initialized.

32.6.3 Setting SSI parameters

The function static uint32_t ssi_set_hw_setting(audio_ctrl_p ctrl, uint32_t type, uint32_t
val) sets SSI parameters according to setting type. The supported setting types are:

SSI_SETTING_TX_WATERMARK
SSI_SETTING_RX_WATERMARK
SSI_SETTING_TX_WORD_LEN
SSI_SETTING_RX_WORD_LEN
SSI_SETTING_TX_FRAME_LENGTH
SSI_SETTING_RX_FRAME_LENGTH
SSI_SETTING_TX_BIT_CLOCK
SSI_SETTING_RX_BIT_CLOCK
SSI_SETTING_CLK_FS_DIR

The function must be called when SSI is in self-reset mode (SCR[SSIEN] = 0).

Chapter 32 Configuring the SSI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 321

32.6.4 Enabling SSI sub-modules

The SSI and its sub-modules can be enabled or disabled individually using the function
static uint32_t ssi_hw_enable(audio_ctrl_p ctrl, uint32_t type, bool enable), which
enables or disables SSI or its sub-modules according to enabling type as follows:

typedef enum {
 SSI_HW_ENABLE_SSI,
 SSI_HW_ENABLE_TX,
 SSI_HW_ENABLE_RX,
 SSI_HW_ENABLE_TXFIFO1,
 SSI_HW_ENABLE_TXFIFO2,
 SSI_HW_ENABLE_RXFIFO1,
 SSI_HW_ENABLE_RXFIFO2,
} ssi_hw_enable_type_e;

32.6.5 Initializing the SSI driver

Before using, initialize the SSI module as follows:

• Configure the IOMUX for external SSI signals.
• Configure the clock, including selecting the clock source and gating on clocks for

SSI. Enable the external oscillator if SSI_CLK_ROOT is sourced from an external
oscillator.

• Reset the SSI module and put all the registers into reset value.

The function int ssi_init(void *priv) can be called to initialize the SSI module.

32.6.6 Configuring the SSI

The function int ssi_config(void *priv, audio_dev_para_p para) configures the SSI
parameters according to the descriptions in audio_dev_para. This function:

• Sets the direction of the bit clock and the frame sync clock (SSI_STCR[TXDIR] and
SSI_STCR[TFDIR])

• Sets the attributes, such as polarity and frame sync length, of the bit clock and the
frame sync clock.

• Sets bit clock dividers if an internal bit clock was used (SSI_STCCR[DIV2],
SSI_STCCR[PSR], and SSI_STCCR[PM])

• Sets frame length (SSI_STCCR[DC])
• Sets word length (SSI_STCCR[WL])
• Sets FIFO's watermarks
• Enables SSI, FIFOs, and TX/RX

SSI driver functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

322 Freescale Semiconductor, Inc.

32.6.6.1 Playback through SSI

After initialization and configuration, data can be written to the SSI TX FIFO (SSI →
stx0) to play back music. SSI_SFCSR[TFCNT0] polls to determine whether TX FIFO is
full or not. If TX FIFO is not full, data can be written to it according to the word length
(SSI_STCCR_WL).

32.7 sgtl5000 driver
The sgtl5000 is one of many codecs that have an SSI interface and thus can be used as an
external audio codec. Discussion of the sgtl5000 is beyond the scope of this chapter. See
the sgtl5000 driver for details.

32.8 Testing the unit
The SSI test unit demonstrates how to playback music using the audio framework. The
test unit works as follows:

audmux_route(AUDMUX_PORT_2, AUDMUX_PORT_5, AUDMUX_SSI_SLAVE);
Initialize the snd_card_ssi, which includes SSI2 and sgtl5000
Configure the snd_card_ssi
Write the music file to the snd_card_ssi, that is, playback music
If "exit" selected by the user, de-initialize the snd_card_ssi and return

To run the SSI test, the SDK uses the following command:

./tools/build_sdk -target mx6dq -board smart_device -board_rev a -test audio

The command generates the following binary and ELF files:

• output/mx6dq/smart_device_ai_rev_a/bin/mx6dq_smart_device_rev_a-audio-sdk.elf

• output/mx6dq/smart_device_ai_rev_a/bin/mx6dq_smart_device_rev_a-audio-sdk.bin

After the files have been generated, perform the following steps:

1. Download mx6dq_smart_device_rev_a-audio-sdk.elf using RV-ICE or Lauterbach or burn
mx6dq_smart_device_rev_a-audio-sdk.bin to SD card with the following command in
Windows's Command Prompt window:

cfimager-imx -o 0 -f mx6dq_smart_device_rev_a-audio-sdk.bin -d g:(SD drive name
in your PC)

2. Power up the board.

Chapter 32 Configuring the SSI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 323

3. Select "ssi playback" according to the prompt in the terminal. This runs the SSI test
unit.

If the test passes, you will hear a voice in the headphones.

NOTE
This example test is based on an engineering sample board.
Refer to your board's schematics for the correct pin
assignments.

32.9 Functions

32.9.1 Local functions
/*!
 * Dump the ssi registers which can be readable.
 * @param ctrl a pointer of audio controller (audio_ctrl_t) which presents the ssi
 * module itself
 * @return 0 if succeeded
 * -1 if failed
 */
static int ssi_dump(audio_ctrl_p ctrl)
/*!
 * Put the ssi to soft-reset mode, and then can be configured.
 * @param ctrl a pointer of audio controller(audio_ctrl_t) which presents the ssi
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */
static int ssi_soft_reset(audio_ctrl_p ctrl)
/*!
 * Set all the registers to reset values, called by ssi_init.
 * @param ctrl a pointer of audio controller(audio_ctrl_t) which presents the ssi
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */
static int ssi_registers_reset(audio_ctrl_p ctrl)
/*!
 * Get the ssi's settings.
 * @param ctrl a pointer of audio controller(audio_ctrl_t) which presents the ssi
module
 *
 * @return 0 if succeeded
 * -1 if failed
 */
static uint32_t ssi_get_hw_setting(audio_ctrl_p ctrl, uint32_t type)
/*!
 * Set the ssi's settings.
 * @param ctrl a pointer of audio controller(audio_ctrl_t) which presents the ssi
module
 *
 * @return 0 if succeeded
 * -1 if failed

Functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

324 Freescale Semiconductor, Inc.

 */
static uint32_t ssi_set_hw_setting(audio_ctrl_p ctrl, uint32_t type, uint32_t val)

32.9.2 APIs
/*!
 * Initialize the ssi module and set the ssi to default status.
 * This function will be called by the snd_card driver or application.
 *
 * @param priv a pointer passed by audio card driver, SSI driver should change it
 * to a audio_ctrl_p pointer which presents the SSI controller.
 *
 * @return 0 if succeeded
 * -1 if failed
 */
int ssi_init(void *priv)
/*!
 * Configure the SSI module according the parameters which was passed by audio_card driver.
 *
 * @param priv a pointer passed by audio card driver, SSI driver should change it
 * to a audio_ctrl_p pointer which presents the SSI controller.
 * para a pointer passed by audio card driver, consists of configuration
parameters
 * for SSI controller.
 *
 * @return 0 if succeeded
 * -1 if failed
 */
int ssi_config(void *priv, audio_dev_para_p para)
/*!
 * Write datas to the ssi fifo in polling mode.
 * @param priv a pointer passed by audio card driver, SSI driver should change it
 * to a audio_ctrl_p pointer which presents the SSI controller.
 * buf points to the buffer which hold the data to be written to the SSI tx
fifo
 * size the size of the buffer pointed by buf.
 * bytes_written bytes be written to the SSI tx fifo
 *
 * @return 0 if succeeded
 * -1 if failed
 */
int ssi_write_fifo(void *priv, uint8_t * buf, uint32_t size, uint32_t * bytes_written)
/*!
 * Close the SSI module
 * @param priv a pointer passed by audio card driver, SSI driver should change it
 * to a audio_ctrl_p pointer which presents the SSI controller.
 *
 * @return 0 if succeeded
 * -1 if failed
 */
int ssi_deinit(void *priv)

Chapter 32 Configuring the SSI Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 325

Functions

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

326 Freescale Semiconductor, Inc.

Chapter 33
Configuring the UART Driver

33.1 Overview
This chapter explains how to configure the UART driver, which is a low-level driver that
is able to handle most common uses of a RS-232 serial interface. All UART ports are
controlled through this driver and all functions can be called from any place in the code.

The console/debug UART of the SDK is a usage example of this driver. Another example
demonstrates the usage of the SDMA to transfer data through the UART port.

33.2 Feature summary
The UART low-level driver supports:

• Interrupt-driven and SDMA-driven TX/RX of characters
• Various baud rates within the limit of the controller (4.0 Mbits/s), depending on its

input clock
• Parity check and one/two stop bits
• 7-bit and 8-bit character lengths
• RTS/CTS hardware driven flow control

33.3 Modes of operation
The following table explains the UART modes of operation:

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 327

Table 33-1. Modes of operation

Mode What it does Related functions

DCE/DTE mode UART can be configured for terminal mode (DTE) or device mode
(DCE). The default mode is set to DCE (for example, when UART
is used to output a message to a console). It is transparent from a
software point of view.

-

Hardware flow control RTS and CTS are entirely controlled by the UART. While the
module allows them to be enabled or disabled, the driver does not
allow using only RTS or CTS for single direction control.

The FIFO trigger level that
controls CTS can be
configured with the function
uart_set_FIFO_mode()

DMA support The driver allows setting the way the FIFOs are handled, though
both the RX FIFO and TX FIFO could be managed by the SDMA.
Above or below a certain watermark level, the FIFOs trigger a DMA
request when there's sufficient data to retrieve or empty room. The
watermark level of each FIFO can be set independently, and can
also be enabled on only TX or RX. The external application
configures the SDMA by calling the SDMA driver.

The function
uart_set_FIFO_mode()
allows the configuration of
automatic DMA transfers
on the UART side.

Interrupt support The driver allows setting the way the FIFOs are handled, though
both the RX FIFO and TX FIFO could be managed by interrupts.
Above or below a certain watermark level, the FIFOs trigger an
interrupt when there's sufficient data to retrieve or empty room. The
watermark level of each FIFO can be set independently, and can
also be enabled on only TX or RX. The external application is
responsible for creating the interrupt subroutine. The address of
this routine is passed through the structure hw_module, defined
in .src/include/io.h. It is initialized by the application and used by
the driver for various configurations.

The function
uart_set_FIFO_mode()
allows the configuration of
the watermark level
parameters.

33.4 Clocks

CCM Clock Switcher

PLL3_SW_CLK
(480 MHz)

CCM

/ 6

PLL3
(80 MHz)

CCM_CSCDR1[UART_CLK_PODF]

UART

UART_UFCR[RFDIV] ref_clk

Figure 33-1. UART reference clock

The UART reference clock is used to generate the baud rate clock. This clock is derived
through various dividers from the PLL3, which typically provides a 480 MHz clock.
Please refer to the "Clocks" section of the UART block in the chip reference manual.

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

328 Freescale Semiconductor, Inc.

The output of PLL3 is divided with a fix divider of 6. The post divider,
UART_CLK_PODF, is located in the CCM_CSCDR1 Register. The pre-divider, RFDIV,
is located in the UART_UFCR Register.

The output is the ref_clk used to generate the baud rate clock according to the formula
available in the section Binary Rate Multiplier (BRM) of the UART block.

33.5 IOMUX pin mapping
Although the driver calls the function that configures the IOMUX for the UART port,
this is external to the driver because it depends on the board connections.

Configure the IOMUX for the UART using the iomux_config() function located in ./src/
mxdq/iomux/board_name/uart_iomux_config.c.

33.6 Resets and interrupts
The driver resets the module during the initialization by setting UART_UCR2[SRST] in
the function uart_init().

The external application is responsible for creating the interrupt subroutine. The address
of this routine is passed through the structure hw_module defined in .src/include/io.h. It
is initialized by the application and used by the driver for various configurations.

All interrupt sources are listed in the "Interrupts and DMA Events" chapter in the chip
reference manual. In the SDK, the list is provided in ./src/include/mx6dq/
soc_memory_map.h.

33.7 Initializing the UART driver
Before using the UART port in a system, prepare a structure that provides the essential
system parameters to the driver. This is done through the hw_module structure defined
into ./src/include/io.h.

Example:

struct hw_module g_debug_uart = {
 "UART4 for debug",
 UART4_BASE_ADDR,
 27000000,
 IMX_INT_UART4,
 &default_interrupt_routine,
};

Chapter 33 Configuring the UART Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 329

The address of this structure is used by most functions listed below.

/*!
 * Initialize the UART port
 *
 * @param port - pointer to the UART module structure.
 * @param baudrate - serial baud rate such 9600, 57600, 115200, etc.
 * @param parity - enable parity checking: PARITY_NONE, PARITY_EVEN,
 * PARITY_ODD.
 * @param stopbits - number of stop bits: STOPBITS_ONE, STOPBITS_TWO.
 * @param datasize - number of bits in a data: SEVENBITS, EIGHTBITS,
 * NINEBITS (like RS-485 but not supported).
 * @param flowcontrol - enable (RTS/CTS) hardware flow control:
 * FLOWCTRL_ON, FLOWCTRL_OFF.
 */
void uart_init(struct hw_module *port, uint32_t baudrate, uint8_t parity,
 uint8_t stopbits, uint8_t datasize, uint8_t flowcontrol)

/*!
 * Configure the RX or TX FIFO level and trigger mode
 *
 * @param port - pointer to the UART module structure
 * @param fifo - FIFO to configure: RX_FIFO or TX_FIFO.
 * @param trigger_level - set the trigger level of the FIFO to generate
 * an IRQ or a DMA request: number of characters.
 * @param service_mode - FIFO served with DMA or IRQ or polling (default).
 */
void uart_set_FIFO_mode(struct hw_module *port, uint8_t fifo, uint8_t trigger_level, uint8_t
service_mode)

/*!
 * Setup UART interrupt. It enables or disables the related HW module
 * interrupt, and attached the related sub-routine into the vector table.
 *
 * @param port - pointer to the UART module structure.
 */
void uart_setup_interrupt(struct hw_module *port, uint8_t state)

/*!
 * Receive a character on the UART port
 *
 * @return a character received from the UART port; if the RX FIFO
 * is empty or errors are detected, it returns NONE_CHAR
 */
uint8_t uart_getchar(struct hw_module * port)

/*!
 * Output a character to UART port
 *
 * @param ch - pointer to the character for output
 * @return the character that has been sent
 */
uint8_t uart_putchar(struct hw_module * port, uint8_t * ch)

/*!
 * Enables UART loopback test mode.
 *
 * @param port - pointer to the UART module structure
 * @param state - enable/disable the loopback mode
 */
void uart_set_loopback_mode(struct hw_module *port, uint8_t state)

Initializing the UART driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

330 Freescale Semiconductor, Inc.

33.8 Testing the UART driver
The UART driver runs the following tests:

• Echo test
• SDMA test

33.8.1 Echo test

The tested UART is configured in loopback mode. Because the connection is made
internally, it does not require any specific hardware.

When a character is sent through the terminal console by the user, the UART console
receives it and forwards it to the tested UART TX FIFO. Once the data ready interrupt is
generated, the interrupt routine reads the character from the tested UART RX FIFO and
displays it through the UART console.

This test shows how to initialize the UART, how to configure the FIFO behavior, and
how to set the interrupt routine.

33.8.2 SDMA test

The tested UART is configured in loopback mode. Data is sent to the TX FIFO through a
DMA channel, and read from the RX FIFO through a different DMA channel.

This test shows how to initialize the UART, how to configure the FIFO behavior, and
how to configure the SDMA to take care of the data transfers.

This test is available in the SDMA unit test: ./src/sdk/sdma/test/sdma_test.c.

33.8.3 Running the UART test

To run the UART tests, the SDK uses the following command to build the test:

./tools/build_sdk -target mx6dq -board sabre_ai -board_rev a -test uart

This command generates the following ELF and binary files:

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-uart-sdk.elf

• ./output/mx6dq/sabre_ai_rev_a/bin/mx6dq_sabre_ai_rev_a-uart-sdk.bin

Chapter 33 Configuring the UART Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 331

Testing the UART driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

332 Freescale Semiconductor, Inc.

Chapter 34
Configuring the USB Host Controller Driver

34.1 Overview
This chapter explains how to configure and use the USB controller driver.

The USB controller module contains four independent controllers: one dual role and 3
host-only controllers. In addition, there are two on-chip UTMI transceivers-one for the
OTG controller and one for the HOST1 controller. Each transceiver has an associated
PLL for generating the USB clocks.

The HOST2 and HOST3 controllers have an HSIC (high-speed interchip) interface for
connecting to compatible on-board peripherals.

The modules related to USB are located in the memory map at the following base
addresses:

• USBOTG base address = 0218 4000h
• USBH1 base address = 0218 4200h
• USBH2 base address = 0218 4400h
• USBH3 base address = 0218 4600h
• USBPLL1 base address = 020C 8010h
• USBPLL2 base address = 020C 8020h
• USBPHY1 base address = 020C 9000h
• USBPHY2 base address = 020C A000h

34.2 Feature summary
This low-level driver demonstrates the configuration and basic functionality of the USB
controller. It supports:

• Initialization of controllers and basic data structures
• Initialization of the PHY and clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 333

• Host-side device enumeration
• Device-side device enumeration
• Control transfers
• Low-level bulk transfers
• Low-level interrupt transfers

34.3 Modes of operation
The OTG controller can operate as either host or device. Software chooses the operating
mode when the controller is initialized. The host controllers - USBH1, USBH2, and
USBH3 - do not have device capability.

This driver does not support the OTG Host Negotiation Protocol (HNP) or Session
Request Protocol (SRP).

34.4 Clocks

System PLL
(PLL1)

usbotgh3_clk_enable

USB1_PLL
(PLL3)

CCM
CCGR6

USBOTG
PHY_CLK

USB1PHY

USB2_PLL
(PLL7)

USBH1

USBH2

USBH3

PHY_CLK

PHY_CLK

PHY_CLK

USB2PHY

HSIC

HSIC

Figure 34-1. USB module clocks

The USB module uses three independent clocks: one shared clock for the control logic
and DMA transfers and two independent dedicated transceiver clocks (PHY_CLK). The
clocks are derived as follows:

• The shared clock is derived from the system PLL.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

334 Freescale Semiconductor, Inc.

• The USBOTG, USBH2, and USBH3 controllers derive PHY_CLK from USB1_PLL.
• USBH1 and its associated PHY derive PHY_CLK from USB2_PLL.

USB1_PLL and USB2_PLL generate the PHY's 480 MHz clock., which is used for serial
transmission on the USB bus. A divided version of this 480 MHz clock is used by the
USB controller for the UTMI interface and protocol control logic.

34.5 IOMUX pin mapping
The pin descriptions in this section apply to the SABRE for Automotive Infotainment
based on the i.MX 6 series. Vbus power control is implemented on I2C port expanders,
and OverCurrent inputs are implemented as GPIO. The following table shows the
IOMUX settings:

Table 34-1. USB IOMUX pin mapping

Signals Option 1

PAD MUX SION

USB_OTG_OC_B SD4_DAT0

GPIO2[8]

ALT5 0

USB_OTG_ID ENET_RX_ER ALT0 0

USB_HOST1_OC_B EIM_WAIT

GPIO5[0]

ALT5 0

NOTE
USB data signals Dm/Dp and Vbus have dedicated pin
functions and do not pass through the IOMUX.

Vbus PWR enable and Overcurrent I/O pass through the
IOMUX, but these functions do not need to be connected to the
USB controller. They can be implemented using GPIO, as is the
case on the SABRE for Automotive Infotainment based on the
i.MX 6 Series design.

34.6 Resets and interrupts
All controllers in the USB module are reset to their default state by power-on reset. The
driver resets each controller individually during the initialization procedure.

Chapter 34 Configuring the USB Host Controller Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 335

Each controller has a single interrupt vector in the vector table. The UTMI transceivers
each have an interrupt vector in the main vector table. Vector numbers are assigned as
indicated in the following table.

Table 34-2. Vector numbers

ID number Description

ID72 USB host1 interrupt

ID73 USB host2 interrupt

ID74 USB host3 interrupt

ID75 USB OTG interrupt

ID76 USBPHY (UTMI0) interrupt

ID77 USBPHY (UTMI1) interrupt

Each USB provides control over its interrupt sources through its USBINTR and USBSTS
registers.

• Interrupt request flags are located in the USBSTS register.
• Each individual source can be enabled or disabled for interrupt generation in the

USBINTR register.

The controller also allows adjustment of the maximum rate at which the controller can
issue interrupts. The interrupt rate can be programmed in the ITC field of the USBCMD
register. Values range from immediate through 1 interrupt per 64 micro frames (8 ms).

This driver does not use interrupts. Instead, it polls the interrupt flag where an interrupt is
expected.

34.7 Initializing the host driver
The driver's API contains initialization calls for host mode operation of the controller.
These init routines initialize the controller as well as the tables and data structures (queue
heads and transfers descriptor) that the controller needs. The data structure initialization
provides the controller with valid pointers but does not schedule any activity. At the end
of the initialization, the controller is started.

The driver's init routine performs the following steps to start the controller:

1. Enable USB clock in CCM module.
2. Configure and start USB PLL.
3. Configure and enable the PHY.
4. Set PHY type in controller's PORTSC register (UTMI for on-chip HS PHY).
5. Reset the USB controller.

Initializing the host driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

336 Freescale Semiconductor, Inc.

6. Set the controller mode to host operation.
7. Enable Vbus power.
8. Start the controller.

At this point, the controller is running and generates SOF tokens on the bus, but the
periodic and asynchronous schedule are not yet enabled. Therefore, no data transfers are
attempted.

To initialize the asynchronous schedule, the init routine creates a queue head with a
dummy transfer descriptor for the control endpoint (endpoint 0). This provides an empty
queue to which the application can add transfer descriptors. Additional queues can be
linked to the initial queue head by the application as required.

For the synchronous schedule, the init routine creates a frame list with dummy transfer
descriptors to which the application can link transfer descriptors for interrupt and
isochronous transfers.

The application is responsible for allocating memory for tables, data structures, and
buffers. Data structures and buffers must be aligned as defined in the EHCI specification.

Please refer to PHY and clocks API and USB host API for more details.

34.8 Initializing the device driver
Like the host driver, the device driver has an init routine that enables the clock and PHY
and also configures the OTG controller for device operation. The routine initializes the
device endpoint list, creates the IN and OUT queue heads for endpoint 0, and starts the
controller.

The driver's init routine performs the following steps:

1. Disable Vbus power – Devices are not allowed to drive Vbus.
2. Start clocks
3. Enable transceiver
4. Reset controller
5. Set controller’s mode to device mode
6. Set up endpoint list
7. Configure endppoint 0
8. Start controller

The controller is now running and ready to detect the USB bus reset.

Chapter 34 Configuring the USB Host Controller Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 337

34.9 Testing the host mode
The host mode has two applications for testing: usbh0_host_test and
usbh0_host_testmodes_test.

Test application usbh0_host_test waits for a device to connect and enumerates the device.
If the device is a mouse, it polls the interrupt endpoint for mouse movement data.
Clicking the right-mouse button ends the test application.

Test application usbh0_host_testmodes_test shows how to configure the EHCI test modes
on a host controller. These test modes are used for electrical measurements in high-speed
mode. The application initializes the clocks, controller, and PHY and then presents a
menu on a terminal connected to the UART port where the user can select the test mode.
Supported modes are:

• Test_J: forces a J state on the port t for DC measurements.
• Test_K: forces a K state on the port.
• Test_SE0/NAK: forces SE0 on the port.
• Test_packet: sends out the test packet for eye diagram measurements.
• Suspend: suspends the bus to measure suspend timing.
• Resume: resumes the bus to measure resume timing.
• Reset: sends reset on the USB bus to measure reset timing.

34.10 Testing the device mode
The device mode application emulates a mouse peripheral. When connected to a PC, it
sends mouse movement data to make the cursor move in a circle. This application
demonstrates the following:

• How to set up the device controller
• Provide enumeration responses
• How to add transfers on an active pipe

The application also supports setting test modes on the device controller for electrical
measurements. It responds to commands sent by the USBHSET tool, which is available
from the USB-IF web site (http://www.usb.org/developers/tools/).

Testing the host mode

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

338 Freescale Semiconductor, Inc.

34.11 PHY and clocks API
The functions for initializing transceivers and clocks are device specific. The API is
common for all devices, but the implementation differs.

/*!
 * This function enables the clocks needed for USB operation.
 * @param port
 * @return
 */
int usbEnableClocks(usb_module_t *port)

/*!
 * Enable USB transceiver\n
 * This function enables the USB transceiver for the selected USB port.
 *
 * @param port USB module to initialize
 */
int usbEnableTransceiver(usb_module_t *port)

/*!
 * This function enables Vbus for the given USB port\n
 * The procedure to enable Vbus depends on both the Chip and board hardware\n
 * This implementation is for the SABRE for Automotive Infotainment based on the i.MX 6
Series.\n
 *
 * @param port USB module to initialize
 */
void usbEnableVbus(usb_module_t *port)

/*!
 * This function disables Vbus for the given USB port\n
 * The procedure to enable Vbus depends on both the Chip and board hardware\n
 * This implementation is for the SABRE for Automotive Infotainment based on the i.MX 6
Series\n
 *
 * @param port USB module to initialize
 */
void usbDisableVbus(usb_module_t *port)

34.12 USB host API
The following routines are used to initialize a controller for host operation and schedule
transfers on the USB bus.

/*!
 * Initialize the USB host for operation.
 * This initialization sets up the USB host to detect a device connection.
 *
 * @param port USB module to initialize
 */
int usbh_init(struct usb_module *port)

/*!
 * Initialize the periodic schedule.
 * This function creates an empty
 * frame list for the periodic schedule, points the periodic base
 * address to the empty frame list, and enables the periodic schedule.

Chapter 34 Configuring the USB Host Controller Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 339

 *
 * @param port USB module to initialize
 * @param frame_list_size size of the frame list for the periodic schedule
 * @param frame_list pointer to the start of the allocated frame list
 */
uint32_t usbh_periodic_schedule_init(struct usb_module *port, uint32_t frame_list_size,
uint32_t * frame_list)

/*!
 * Enable the asynchronous schedule\n
 * This function enables the Asynchronous schedule.\n
 * The application code must create descriptors and queue heads and\n
 * set the Asynchronous list address before calling this function.
 */
void usbh_enable_asynchronous_schedule(usb_module_t *port)

/*!
 * Disable the asynchronous schedule.
 *
 * @param port USB module
 */
void usbh_disable_asynchronous_schedule(struct usb_module *port)
 uint32_t *queue head)

/*!
* Disable the periodic list.
*
* @param port USB module
*/
void usbh_disable_Periodic_list (struct usb_module *port)

/*!
 * Initialize the QH.
 * This function assumes the QH is the only one in the horizontal list so
 * the horizontal link pointer points to the queue head. This function
 * doesn't initialize the qTD pointer either. This must be done later.
 *
 * Parameters:
 * @param max_packet maximum packet length for the endpoint
 * @param head used to mark the QH as the first in the linked list (not used for
interrupt QHs)
 * @param eps end point speed
 * @param epnum end point number
 * @param dev_addr device address
 * @param smask interrupt schedule mask (only used for periodic schedule QHs)
 */

usbhQueueHead_t * usbh_qh_init(uint32_t max_packet, uint32_t head, uint32_t eps, uint32_t
epnum, uint32_t dev_addr, uint32_t smask)

/*!
 * Issue a USB reset to the specified port.
 *
 * @param port USB module to send reset
 */
void usbh_bus_reset(struct usb_module *port)

/*!
 * Initialize the qTD.
 * This function initializes a transfer descriptor.
 * the next qTD and alternate next qTD pointers are initialized with the terminate bit set.
 *
 * @param transferSize number of bytes to be transferred
 * @param ioc interrupt on complete flag
 * @param pid PID code for the transfer
 * @param bufferPointer pointer to the data buffer
 */
usbhTransferDescriptor_t * usbh_qtd_init(uint32_t transferSize, uint32_t ioc, uint32_t pid,
uint32_t *bufferPointer)

USB host API

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

340 Freescale Semiconductor, Inc.

34.13 USB device API
//! Function to initialize the USB controller for device operation.
/*! This initialization performs basic configuration to prepare the device for connection to
a host.
 *
 * @param port The USB module to use
 * @param endpointList pointer to list with endpoint queue heads
 */
uint32_t usbd_device_init(usb_module_t *port, usbdEndpointPair_t *endpointList)

//! Function to initialize the controller after the USB bus reset
/*!
 * USB device response to a USB bus reset.
 *
 * @param portUSB controller to use
 * @returnreturns the operating speed of the port
 */
usbPortSpeed_t usbd_bus_reset(usb_module_t *port)

/*!
 * USB device function to return the data from a setup packet.
 * NOTE: We assume only endpoint 0 is a control endpoint
 *
 * @paramendpointListpointer to the device endpoint list address
 * @paramportpointer to controller info structure
 * @paramsetupPacketSetup data of the setup packet
 */
void usbd_get_setup_packet(usb_module_t *port, usbdEndpointPair_t *endpointList,
usbdSetupPacket_t *setupPacket)

//! Function to send an IN control packet to the host.
/*! NOTE: this function uses the default control endpoint (0).\n
 * The endpoint number is hard-coded.
 *
 * @paramportController to use
 * @paramendpointListpointer to the device endpoint list
 * @parambufferData to be sent to host
 * @paramsizeAmount of data to be transferred in bytes
 */
void usbd_device_send_control_packet(usb_module_t *port, usbdEndpointPair_t *endpointList,
uint8_t* buffer, uint32_t size)

//! Function to send an zero length IN packet to the host.
 /*!
 * Zero Length packets are used as completion handshake in control transfers.\n
 * They can also be used to signal the end of a variable length transfer.\n
 *
 * @param portUsb controller to use
 * @param endpointListpointer to the device endpoint list
 * @param endpointNumberendpoint info data structure for the endpoint to use
 */
void usbd_device_send_zero_len_packet(usb_module_t *port, usbdEndpointPair_t *endpointList,
uint32_t endpointNumber)

//! Function to initialize an endpoint queue head
/*!
 * Initialize an endpoint queue head. The space for the endpoint queue heads was
 * allocated when the endpoint list was created, so this function does not
 * call malloc.
 *
 * @param endpointListlocation of the endpoint list
 * @param usbdEndpoint Pointer to the endpoint characteristics
 * @param nextDtdpointer to the first transfer descriptor for the queue head
 */

Chapter 34 Configuring the USB Host Controller Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 341

void usbd_endpoint_qh_init(usbdEndpointPair_t *endpointList, usbdEndpointInfo_t
*usbdEndpoint, uint32_t nextDtd)

//! Function to create a new transfer descriptor
/*!
 * This functions allocate memory for a device transfer descriptor (dTD) and
 * initializes the dTD. This function assumes the dTD is the last in the list so
 * the next dTD pointer is marked as invalid.
 *
 * @param transferSizenumber of bytes to be transferred
 *@param interruptOnCompleteinterrupt on complete flag
 *@param multOverrideOverride the queue head multiplier setting (0 for default)
 *@param bufferPointerpointer to the data buffer
 *
 *@return pointer to the transfer descriptor
 *
 */
usbdEndpointDtd_t *usbd_dtd_init(uint32_t transferSize, uint32_t interruptOnComplete,
uint32_t multOverride, uint32_t *bufferPointer)

//! Function to add a transfer descriptor or a list of transfer descriptors to an active
endpoint
/*! This function places a new transfer on the linked list of transfer descriptors.\n
 * If the list was empty, the new transfer descriptor is placed on the queue head.
 *
 * @param portPointer to controller info structure.
 * @param usbdEndpointEndpoint
 *@param endpointListPointer to the endpoint list
 *@param new_dtdpointer to the descriptor to add
 *
 */
void usbd_add_dtd(usb_module_t *port, usbdEndpointPair_t *endpointList, usbdEndpointInfo_t
*usbdEndpoint, usbdEndpointDtd_t *new_dtd)

//! Function to reclaim used transfer descriptors.
/*! This function parses the list of transfer descriptors, starting\n
 * at the Head pointer and up to the currently active descriptor.\n
 * It removes retired descriptors from the list and returns memory used by the descriptor to
the heap.
 *
 * @param portPointer to controller info structure.
 * @param usbdEndpointEndpoint
 *@param endpointListPointer to the endpoint list
 *@param headpointer to the head of the list
 *
 *@returnPointer to the new list head.
 *
 */
usbdEndpointDtd_t *usbd_reclaim_dtd(usb_module_t *port, usbdEndpointPair_t *endpointList,
usbdEndpointInfo_t *usbdEndpoint, usbdEndpointDtd_t *head)

34.14 Source code and structure
Table 34-3. Source code file locations

Description Location

Source files

Host mode low-level driver ./src/sdk/usb/host/usbh_drvr.c

Device mode driver ./src/sdk/usb/drv/usbd_drv.c

Common routines ./src/sdk/usb/common/usb_common.c

Table continues on the next page...

Source code and structure

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

342 Freescale Semiconductor, Inc.

Table 34-3. Source code file locations (continued)

Platform specific initialization ./src/sdk/usb/common/usb_mx61.c

Chip-specific USB registers ./src/include/mx61/usb_regs.h

Bit definitions ./src/include/usb_defines.h

USB controller registers ./src/include/usb_registers.h

Prototypes, structures, and enum ./ src/include/usb.h

Test programs

USB test startup ./src/sdk/usb/test/usb_test.c

Host mode test ./src/sdk/usb/test/usbh_host_test.c

Host mode EHCI test modes ./src/sdk/usb/test/usbh_host_testmodes_test.c

Device mode test - mouse emulation ./src/sdk/usb/test/usbd_device_mouse_test.c

Chapter 34 Configuring the USB Host Controller Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 343

Source code and structure

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

344 Freescale Semiconductor, Inc.

Chapter 35
Configuring the uSDHC Driver

35.1 Overview
This chapter provides a guide for firmware developers about how to write the device
driver for the uSDHC controller. It uses an engineering sample board's schematics for pin
assignments. For other board types, refer to their respective schematics.

The ultra secured digital host controller (uSDHC) provides the interface between the host
system and the SD(LC/HC/XC)/SDIO/MMC cards. The uSDHC acts as a bridge, passing
host bus transactions to the SD(LC/HC/XC)/SDIO/MMC cards by sending commands
and performing data accesses to and from the cards. It handles the SD(LC/HC/XC)/
SDIO/MMC protocols at the transmission level.

There are four instances of uSDHC in the chip. They are located in the memory map at
the following addresses:

• uSDHC1 base address = 0219 0000h
• uSDHC2 base address = 0219 4000h
• uSDHC3 base address = 0219 8000h
• uSDHC4 base address = 0219 C000h

35.2 Clocks

PLL2

PFD2
(396 MHz)

PFD0
(352 MHz)

0

1

CCM_CSCMR1[USDHCn_CLK_SEL]

CCM_CSCDR1[USDHCn_PODF]

USDHCn_CLK_ROOT

000: / 1
001: / 2
010: / 3
011: / 4(Default)
:
111: / 8

Figure 35-1. uSDHC clock tree

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 345

If the uSDHC clock is gated, ungate it in the clock control module (CCM) as follows:

• For uSDHC1, set CCM_CCGR6[CG1]
• For uSDHC2, set CCM_CCGR6[CG2]
• For uSDHC3, set CCM_CCGR6[CG3]
• For uSDHC4, set CCM_CCGR6[CG4]

Refer to the CCM chapter of the chip reference manual for more information about
programming clocks.

35.3 IOMUX pin mapping
The following table is based on an engineering sample board and is shown as an example.
Refer to your board's schematics for the board's specific pin assignments.

Table 35-1. uSDHC3 configuration

Port Pad Mode

CLK SD3_CLK ALT0

CMD SD3_CMD ALT0

DAT0 SD3_DAT0 ALT0

DAT1 SD3_DAT1 ALT0

DAT2 SD3_DAT2 ALT0

DAT3 SD3_DAT3 ALT0

DAT4 SD3_DAT4 ALT0

DAT5 SD3_DAT5 ALT0

DAT6 SD3_DAT6 ALT0

DAT7 SD3_DAT7 ALT0

RST SD3_RST ALT0

VSELECT GPIO_18 ALT2

NANDF_CS1 ALT2

NOTE
In addition to configuring the MUX control, configure the pad
control of each pin. Because the pins of data and command
should have pull-up resistors, they can be configured to open-
drain if the board schematic already contains external pull-up
resistors for them. Otherwise, they have to be configured to
push-pull with a specified pull-up resistor value.

For more information about the IOMUX controller, refer to the IOMUXC chapter of the
chip reference manual.

IOMUX pin mapping

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

346 Freescale Semiconductor, Inc.

35.4 Initializing the uSDHC controller
To initialize the uSDHC controller, set up pin configuration for two uSDHC signals:
clock initialization and card initialization to transfer state.

35.4.1 Initializing the SD/MMC card

Enable clock Rating
Set IOMUX

reset controller
set bus width/endianness

set uSDHC clock to 400KHz
(identification frequency)

send init 80 clocks

send CMD0 to card
(reset card)

SD voltage validation Init fail

MMC carad Initialization

success?

Y

MMC voltage validation

N

SD card initialization

success?

Y

N

Figure 35-2. Initialization process flow chart

To initialize the SD/MMC card, perform the following procedures:

1. Controller clock setup
2. IOMUX setup
3. Controller setup and sending command to SD/MMC card for CID, RCA, bus width
4. Set the card to transfer state

35.4.2 Frequency divider configuration

The following figure shows the flow chart for the frequency divider configuration
process.

Chapter 35 Configuring the uSDHC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 347

clear SDCLKEN wait for clock stable

clear DTOCV, SDCLKFS, DVFS

clear PEREN, HCKEN, IPGEN

set SDCLKFS, DVFS to proper value

set SDCLKEN

clear DTOESEN

set DTOESEN

set DTOCV

wait for clock stable

wait for clock stable

Figure 35-3. Frequency divider configuration process

For the card initialization process, configure the uSDHC clock as follows:

• Identification frequency ≤ 400 KHz
• Operating frequency ≤ 25 MHz
• High frequency ≤ 50 MHz.

Because the clock source is 200 MHz, the divider must be set to obtain the expected
frequency. Use the following equation to configure the divider in the system control
register (USDHC_SYS_CTRL):

Fusdhc = Fsource ÷ (DVS x SDCLKFS)

The DVS and SDCLKFS fields are set according to the value of
USDHC_SYS_CTRL[DVS] and USDHC_SYS_CTRL[SDCLKFS]. See the description
of the system control register for the relationship.

Initializing the uSDHC controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

348 Freescale Semiconductor, Inc.

35.4.3 Send command to card flow chart

start

clear interrupt
status

fail

CIHB
cleared?

command
with data?

CDIHB
clered?

timeout?

timeout?

configure
command

DMA
command?

transfer
complete?

command
complete? timeout?

timeout?

check response

error
found?done

CIHB or
CDIHB set?

reset controller

enable interrupt
status

N

N

N

N

N

N

N N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

clear interrupt
status

Figure 35-4. Send command to card flow chart

Chapter 35 Configuring the uSDHC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 349

35.4.4 SD voltage validation flow chart

Issue CMD8 with HV
(3.3V)

Command
Successful?

Card is HC/LC HV SD
Ver 2x

Set ACMD41 ARG to
HV and HC

Issue CMD8 with LV
(1.8V)

FAST_BOOT
selected?

SetACMD41 ARG to LV
and HC

1

SetACMD41 ARG bit 29
and FAST BOOT

SetAGPT delay of 1s
for ACMD41

Issue CMD55

SetACMD41 ARG to HV
and LC

Card is LC SD
ver 2x

Card is LC SD
ver 1x

Command
Successful?

Command
Successful?

Issue ACMD41

Command
Successful?

Busy bit==1

Card is LC SD Is Responce
OCR for HC Card is HC SD

7

No
No

No

No

No

No

No No

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Loop Cntr <300
and looping
period <1s

Issue ACMD41

2

Figure 35-5. SD boot voltage validation flow chart

Initializing the uSDHC controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

350 Freescale Semiconductor, Inc.

35.4.5 SD card initialization flow chart

Get CID
(CMD2)

success
?

N

Y

Get RCA
(CMD3)

Success
?

Set uSDHC clock
to 20MHz

Y

N

Enter Transfer
State (CMD7)

SD init fail

Set controller
bus width

Y

N

success
?

Set card bus width
(ACMDG)

N

Y

success
?

Prepare APP CMD
(CMD55)

N

Y

card
state==
TRANS

Check card status
(CMD13)

Ysuccess
?

N

Figure 35-6. SD card initialization flow chart

Chapter 35 Configuring the uSDHC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 351

35.4.6 MMC voltage validation flow chart

Start GPT with 1s delay
for CMD1

Issue CMD1 with HV

Command
Successful?

Busy Bit==1

Is Responce
OCR for HC

Card Is LC MMC

Card Is HC MMC

Loop Cntr < 300
and looping period < 1s

Increment loop counter

No

Yes

Yes

Yes

Yes

No

No

Yes

5

Figure 35-7. MMC voltage validation flow chart

35.4.7 MMC card initialization flow chart

success?

success?

success?

success?

Set RCA

(CMD3)

Set uSDHC clock

to 20MHz

Enter transfer State

(CMD7)

Check card status

(CMD13)

card state

== TRANS

Set card bus width

(CMD6)

Set controller

bus width

Get CID

(CMD2)

SD init fail

Y

N

Y

N

N

N

N

Y

Y

Y

Figure 35-8. MMC card initialization flow chart

Initializing the uSDHC controller

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

352 Freescale Semiconductor, Inc.

35.5 Transferring data with the uSDHC
This section describes how to read data from and write data to the SD/MMC card.
Pseudocode is provided when needed.

35.5.1 Reading data from the card

start

set block length
(CMD16)

success? fail

clear Rx FIFO

set BLK LEN,
NOB, WML

ADMA? setup BD chain

read multi-block
(CMD18)

error?

read data from
FIFO

end

Y

N

success?

ADMA?

Y

N

N

Y

Y

N

N

Y

Figure 35-9. Reading data flow chart

Before reading data, use CMD16 to specify the block length to card. If the command is
successful, it should also align the block length of the controller.

To read data from card, send CMD17 for one block read or CMD18 for multiblock read.
The driver code uses CMD18 for reading.

The driver code supports the data transfer of polling IO and ADMA2. When using
ADMA2 mode, set the buffer descriptor chain before sending the data reading command.

Chapter 35 Configuring the uSDHC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 353

The buffer descriptor format is as follows:

typedef struct {
 unsigned char attribute; //BD attributes
 unsigned char reserved;
 unsigned short int length; //length in bytes
 unsigned int address; //destination address
} adma_bd_t;

The attributes are as follows:

#define ESDHC_ADMA_BD_ACT ((unsigned char)0x20)
#define ESDHC_ADMA_BD_END ((unsigned char)0x02)
#define ESDHC_ADMA_BD_VALID ((unsigned char)0x01)

For further details about the usage of ADMA2 over uSDHC, refer to the chip reference
manual.

35.5.2 Writing data to the card

start

set block length

(CMD16)

success? fail

set BLK LEN,
NOB, WML

ADMA? setup BD chain

write multi-block
(CMD25)

error?

write data to
FIFO

end

Y

N

success?

ADMA?

Y

N

N

Y

Y

N

N

Y

Figure 35-10. Writing data flow chart

Transferring data with the uSDHC

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

354 Freescale Semiconductor, Inc.

To write data to SD/MMC card, CMD24 and CMD25 are sent. CMD24 is used to write
one block while CMD25 is used to write multiblocks. In the driver code, CMD25 is used
for writing.

The driver code supports polling IO and ADMA2 for writing data to the card.

35.6 Application programming interfaces
All external function calls and variables are inside inc/usdhc_ifc.h:

35.6.1 card_init API
int card_init(int base_address, int bus_width);

Description: Initialize the uSDHC controller that specified by the base_address, validate
the card if inserted, initialize the card and put the card into R/W ready state.

Parameter: base_address: base address of uSDHC registers

bus_width: bus width that card will be accessed

Return: 0 on success; 1 on fail.

35.6.2 card_data_read API
int card_data_read(int base_address, int *dest_addr, int length, int offset);

Description: Read data from card to memory.

Parameter: base_address: base address of uSDHC registers

dest_addr: non-cacheable and non-bufferable area that will store the data read from card

length: number of data in bytes to be read

offset: offset in bytes that will the data be started to read from card

Return: 0 on success; 1 on fail.

35.6.3 card_data_write API
int card_data_write(int base_address, int *dest_addr, int length, int offset);

Description: Write data from memory to card.

Chapter 35 Configuring the uSDHC Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 355

Parameter: base_address: base address of uSDHC registers

dest_addr: non-cacheable and non-bufferable area that stores the data to write

length: number of data in bytes to write

offset: offset in bytes that will the data be started to write to card

Return: 0 on success; 1 on fail.

Application programming interfaces

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

356 Freescale Semiconductor, Inc.

Chapter 36
Configuring the VDOA Driver

36.1 Overview
This chapter describes the video processing unit (VPU) for the i.MX 6Dual/6Quad and
i.MX 6Solo/6DualLite products. The VPU module can output data in tiled mode to
increase the decoding performance. However, the image processing unit (IPU) cannot
post process the data layout in tiled mode. The video data order adapter (VDOA) is a
DMA whose purpose is to convert the data from tiled mode to raster mode, which the
IPU can accept.

The VDOA is located at 021E 4000h in the system memory map.

36.2 Feature summary
VDOA supports the following features:

• Data conversion from tiled to raster mode
• High resolution support for frame sizes of up to 8192 x 4096 pixels
• High speed

• At 264 MHz, the burst size is 64 bits.
• In YUV420 partial interleaved mode, the peak conversion speed is 3 pixels x 264

MHz, or 792 Mpixels.
• Support for data conversion of up to 3 buffers concurrently

36.3 Modes of operation
The VDOA supports two modes for conversion: sync or non-sync.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 357

The VDOA uses sync mode to work with the IPU when it is in band mode, a mode in
which the IPU divides a complete frame into bands for transfer. In sync mode, the VDOA
handshakes with the IPU after a band of data has been transferred to notify the IPU to
resume work. However, the IPU driver does not currently support band mode because the
chip has enough memory that band mode provides no advantage over frame based mode.

In non-sync mode, the VDOA works on a frame basis. The VPU output is fixed to
YUV420 partial interleaved mode, which then serves as the input for the VDOA. The
VDOA output serves as the input for the IPU and can be either YUV422 interleaved
mode or YUV420 partial interleaved mode.

36.4 Clocks
VDOA root clock is derived from the AXI clock. By default, its frequency is 264 MHz.

36.5 Resets and interrupts
VDOA has no reset mechanism.

VDOA use interrupt 50 to notify the CPU when a transfer is complete.

36.6 Initializing the driver
The vdoa_setup() function initializes the VDOA. This function requires setting the
following parameters:

• Frame width and height
• Stride line of the VPU output, which is also the input of VDOA
• Stride line of the IPU input, which is also the output of VDOA
• Interlaced mode selection.

• If the VPU output is interlaced, three buffers are used to transfer the sequential
three fields of the stream for deinterlacing purposes.

• If the VPU output is not interlaced, only one frame buffer is used.
• Band mode settings

• If the VDOA is in sync mode, the driver needs to set the band size and which
IPU to use for the handshake.

• In non-sync mode, these two parameters are ignored.
• Pixel format selection

Clocks

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

358 Freescale Semiconductor, Inc.

• This sets whether the VDOA outputs in YUV420 partial interleaved mode or in
YUV422 interleaved mode.

• This parameter is used in the IPU post processing.

36.7 Testing the driver
The VDOA is tested inside the VPU decoding test.

When the map type of the VPU is set to TILED_FRAME_MB_RASTER_MAP, the
VDOA must be enabled as follows:

1. Before starting a new VDOA tranfer, the VDOA must be in idle state. Ensure that the
input and output address are all 3 LSB aligned.

2. When running the VPU decoding test, a prompt asks whether VDOA should be
enabled.

3. Enter 'Y' or 'y' to confirm, and the VDOA is enabled.

Chapter 36 Configuring the VDOA Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 359

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

360 Freescale Semiconductor, Inc.

Chapter 37
Configuring the VPU Driver

37.1 Overview
The video processing unit (VPU) is a high performance multi-standard video codec in the
i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite products. It is located in the memory map
at 0204 0000h.

BIT DSP

Host I/F

BPU

DMA

HW
accelerator APB-to-IPB

wrapper
GDI-to-AXI

wrapper

Macroblock
Sequencer

Post-processor
(Deringing/Rotation/

Mirror

APB 1st AXI 2nd AXI

JPEG codec

DMADMADMA

Reconstruction

Sub-
sampler

Deblocking Filter

Intra
Prediction

AC/DC
Prediction

2-D Cyclic Cache

DMA DMA

Source Loader
(with built-in rotator)

Intra Mode Decision

DMA DMA

Residual

Transform/Quantization

Motion Compensation
Multi-resolutional Motion

Estiamtion

GDI bus

IPB (Internal Peripheral Bus)

Figure 37-1. VPU block diagram

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 361

The VPU has an embedded BIT processor, which controls internal video processing
subblocks and communicates with the host processor through the IP bus. The VPU can
directly access the memory through the AXI bus for data throughput.

37.2 Feature summary
The VPU supports the following features:

• Video/image encode for the following
• H.264 BP/CBP/MP/HP
• VC-1 SP/MP/AP
• MPEG-4 SP/ASP
• H.263 P0/P3
• MPEG-1/2 MP/HP
• Divx (Xvid) HP/PP/HTP/HDP
• RV8/9/10
• Sorenson Spark
• VP8(1280 x 720)
• AVS
• H.264-MVC (1280 x 720)
• MJPEG BP

• Video/image decode for the following
• H.264 BP/CBP
• MPEG-4 SP
• H.263 P0/P3
• MJPEG BP encoding

• Multi-instance
• VPU can support infinite instances of decoder plus encoder concurrently by

switching the contexts of codec in frame based mode which are stored in the
memory. It is very helpful for multi-channel decoder applications.

• Performance
• full HD video decoder up to 1920 x 1088 at 30 fps plus D1 at 303 fps
• full HD encoder up to 1920 x 1088 at 30 fps
• MJPEG codec up to 8192 x 8192

The firmware driver supports H264/VC-1 decoding, H264 encoding, and dual video
decoder plus display.

Feature summary

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

362 Freescale Semiconductor, Inc.

37.3 Modes of operation
As described in the following tables, the VPU input stream and output stream each have
two modes of operation.

Table 37-1. VPU input modes of operation

Mode What it does

Stream Places the raw bitstream into the stream buffer. For full
details, see Using the input stream modes.

File play Processes one frame at a time. For full details, see Using the
input stream modes.

Table 37-2. VPU output modes of operation

Mode What it does

Linear The video output is in frame mode, meaning a complete
frame is produced and stored in the registered frame buffer.
For full details, see Using the output stream modes.

Tiled The video output is in 16 x 16 block format. For full details,
see Using the output stream modes.

37.3.1 Using the input stream modes

In streaming mode, the raw bitstream enter the stream buffer as there is space. The VPU's
read and write pointer records and indicates the current status. Tihe stream buffer is in
ring-buffer mode, and so the write pointer returns to the start after it reaches the end. In
the decoder, the VPU analyzes the bitstream and starts decoding by checking the start
sequence. In the encoder, the size of a frame is fixed. The VPU obtains the YUV
bitstream from the buffer and all encoder configuration parameters from user input.

In file play mode, one complete frame is placed into the frame buffer at a time. The next
frame is not placed into the frame buffer until after the current frame is processed.
Currently, the VPU firmware does not support file play mode.

Chapter 37 Configuring the VPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 363

37.3.2 Using the output stream modes

In linear mode, video is output in frame mode, meaning that a complete frame is
produced and stored in the registered frame buffer. The output is put into a continuous
frame buffer regardless of whether it is in progressive or interlaced mode. The output
data appears as shown in the following figure.

Frame
Height

Cb/Cr

Y

Frame
Width

Figure 37-2. YUV420 partial interleaved data format layout

For YUV420 partial interleaved mode, which is also known as NV12, the data lies as:

• Y(0,0)Y(0,1)..Y(0,fw-1)Y(1,0)..Y(fh-1,fw-1)
• Cb(0,0)Cr(0,0)Cb(0,1)Cr(0,1)..Cb(0,fw/2-1)Cr(0,fw/2-1)Cb(1,0)Cr(1,0)..Cb(fh/

2-1,fw/2-1)Cr(fh/2-1,fw/2-1)

In tiled mode, the video is output in a 16 x 16 block format, which permits faster loading
than in frame mode. 16 x 16 is the size of macroblocks for some codec standards, such as
AVC, and these macroblocks are frequently exchanged between the VPU internal ram/
cache and the external memory. With tiled mode enabled, the decoding performance can
increase by approximately 10%.

The following figure shows the data arrangement in the memory for progressive
YCbCr4:2:0. The M-N-O-P format indicates the position of a pixel component:

• M means the component name (Y, Cb or Cr)
• N means the block number
• O means the line number inside the block

• For Luma, it varies from 0~7
• For Chroma, it varies from 0~3

• P means the pixel index inside the line.

Modes of operation

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

364 Freescale Semiconductor, Inc.

base offset
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x00 Y0-0-0 Y0-0-1 Y0-0-2 Y0-0-3 Y0-0-4 Y0-0-5 Y0-0-6 Y0-0-7 Y0-1-0 Y0-1-1 Y0-1-2 Y0-1-3 Y0-1-4 Y0-1-5 Y0-1-6 Y0-1-7

0x10 Y0-2-0 Y0-2-1 Y0-2-2 Y0-2-3 Y0-2-4 Y0-2-5 Y0-2-6 Y0-2-7 Y0-3-0 Y0-3-1 Y0-3-2 Y0-3-3 Y0-3-4 Y0-3-5 Y0-3-6 Y0-3-7

0x20 Y0-4-0 Y0-4-1 Y0-4-2 Y0-4-3 Y0-4-4 Y0-4-5 Y0-4-6 Y0-4-7 Y0-5-0 Y0-5-1 Y0-5-2 Y0-5-3 Y0-5-4 Y0-5-5 Y0-5-6 Y0-5-7

0x70 Y0-14-0 Y0-14-1 Y0-14-2 Y0-14-3 Y0-14-4 Y0-14-5 Y0-14-6 Y0-14-7 Y0-15-0 Y0-15-1 Y0-15-2 Y0-15-3 Y0-15-4 Y0-15-5 Y0-15-6 Y0-15-7

0x80 Y0-0-8 Y0-0-9 Y0-0-10 Y0-0-11 Y0-0-12 Y0-0-13 Y0-0-14 Y0-0-15 Y0-1-8 Y0-1-9 Y0-1-10 Y0-1-11 Y0-1-12 Y0-1-13 Y0-1-14 Y0-1-15

0x90 Y0-2-8 Y0-2-9 Y0-2-10 Y0-2-11 Y0-2-12 Y0-2-13 Y0-2-14 Y0-2-15 Y0-3-8 Y0-3-9 Y0-3-10 Y0-3-11 Y0-3-12 Y0-3-13 Y0-3-14 Y0-3-15

0xA0 Y0-4-8 Y0-4-9 Y0-4-10 Y0-4-11 Y0-4-12 Y0-4-13 Y0-4-14 Y0-4-15 Y0-5-8 Y0-5-9 Y0-5-10 Y0-5-11 Y0-5-12 Y0-5-13 Y0-5-14 Y0-5-15

0xF0 Y0-14-8 Y0-14-9 Y0-14-10Y0-14-11Y0-14-12Y0-14-13Y0-14-14 Y0-14-15Y0-15-8 Y0-15-9 Y0-15-10 Y0-15-11Y0-15-12Y0-15-13Y0-15-14Y0-15-15

0x100 Y1-0-0 Y1-0-1 Y1-0-2 Y1-0-3 Y1-0-4 Y1-0-5 Y1-0-6 Y1-0-7 Y1-1-0 Y1-1-1 Y1-1-2 Y1-1-3 Y1-1-4 Y1-1-5 Y1-1-6 Y1-1-7

...

...

...

Figure 37-3. Luma data layout in VPU output tiled mode

base offset

0x00

0x10

0x20

0x30

0x40

...

0x70

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0 1 2 3 4

CB0-0-0 CR0-0-0

5 6 7 8 9 10 11 12 13 14 15

CB0-2-0 CR0-2-0

CB0-4-0 CR0-4-0

CB0-6-0 CR0-6-0

CB0-0-4 CR0-0-4

CB0-6-4 CR0-6-4

CB0-0-1 CR0-0-1

CB0-2-1 CR0-2-1

CB0-4-1 CR0-4-1

CB0-6-1 CR0-6-1

CB0-0-5 CR0-0-5

CB0-6-5 CR0-6-5

CB0-0-2 CR0-0-2

CB0-2-2 CR0-2-2

CB0-4-2 CR0-4-2

CB0-6-2 CR0-6-2

CB0-0-6 CR0-0-6

CB0-6-6 CR0-6-6

CR0-0-3

CR0-2-3

CR0-4-3

CR0-6-3

CR0-0-7

CR0-6-7

CR0-0-3

CR0-2-3

CR0-4-3

CR0-6-3

CR0-0-7

CR0-6-7

CR0-1-0

CR0-3-0

CR0-5-0

CR0-7-0

CR0-1-4

CR0-7-4

CR0-1-0

CR0-3-0

CR0-5-0

CR0-7-0

CR0-1-4

CR0-7-4

CR0-1-1

CR0-3-1

CR0-5-1

CR0-7-1

CR0-1-5

CR0-7-5

CR0-1-1

CR0-3-1

CR0-5-1

CR0-7-1

CR0-1-5

CR0-7-5

CR0-1-2

CR0-3-2

CR0-5-2

CR0-7-2

CR0-1-6

CR0-7-6

CR0-1-2

CR0-3-2

CR0-5-2

CR0-7-2

CR0-1-6

CR0-7-6

CR0-1-3

CR0-3-3

CR0-5-3

CR0-7-3

CR0-1-7

CR0-7-7

CR0-1-3

CR0-3-3

CR0-5-3

CR0-7-3

CR0-1-7

CR0-7-7

Figure 37-4. Chroma data layout in VPU output tiled mode

37.4 Clocks

1

0

2

3 bit divider
default=1cg

CBCDR1: vpu_axi_podf

CBCMR: vpu_axi_clk_sel

VPU_AXI_CLK_ROOT (352M)

AXI

PLL2
PFD 2

(352M)
PLL2
PFD 0

(396M)

Figure 37-5. VPU working root clock path

The VPU works on 264 MHz. The clock source can be either the AXI clock or the PLL2
PFD0/PFD2.

Chapter 37 Configuring the VPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 365

37.5 Resets and interrupts
The VPU can be reset either by using the BIT_SW_RESET register to reset the internal
VPU bus and modules or through the system reset controller. To reset the VPU with the
system reset controller, set VPU_SW_RESET in the SRC register and wait for it to self-
clear.

The VPU supports interrupts by setting the register BIT_INT_ENABLE. The most useful
is DEC_PIC_RUN/ENC_PIC_RUN, which indicates that the current frame for decoding/
encoding has been finished.

37.6 Initializing the driver

37.6.1 Initializing the VPU for the first time

Before starting the codec tasks, VPU must be initialized for the first time. The host
processor performs the following operations step by step in VPU_Init() automatically.

1. Set the IO system. Reserve enough chunks of memory for the VPU work buffer and
DMA usage.

2. Initialize the codec instances.
3. Check whether the VPU has been initialized by checking the PC pointer of the BIT

processor.
4. If the PC does not equal zero, the VPU has been initialized, and the initialization

procedure is complete. If the PC equals zero, continue with the next steps.
5. Download the firmware to the VPU work buffer, which the VPU can access directly

during runtime.
6. Download the first 4 Kbytes of the microcode (firmware) to the program memory in

the BIT processor.
7. Set the BIT processor buffer pointers for the working buffer, the parameter buffer,

and the code buffer.

The working buffer stores the context of codec instances, so its size needs to be
increased by as many instances. The common parts takes 210 Kbytes and for an extra
instance, 47 Kbyte is needed. That means the working buffer size should be no less
than:

210 Kbytes + MAX_NUM_INSTANCES x 47 Kbytes.

Resets and interrupts

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

366 Freescale Semiconductor, Inc.

The code buffer stores the firmware binary. It should be no smaller than the firmware
size of the VPU, which varies according to the different versions of firmware or VPU
products. Use the sizeof() function to obtain the size of the array which stores the
firmware.

8. Set the control options (full/empty check) and endian mode of bitstream buffer. The
VPU supports both little-endian and big-endian modes.

9. Set the frame buffer endian and chrominance option (CbCr Interleave or plannar).
Note that if VDOA is enabled, the output data must be in CbCr interleaved mode.

10. Set the Interrupt Enable register.
11. Enable the BIT Processor by setting the register BIT_CODE_RUN to be 1.

37.6.2 Initializing the VPU decoder

Calling decoder_setup() creates a decoding instance as follows:

1. Call VPU_DecOpen, which allocates and configures a codec instance.
2. Set the following parameters: the codec standard (AVC, VC-1, MPEG4), instance

index, and data map. Note that to support multi-instances, the context of the instance
is saved for future task switches. The following registers should be backed up and
restored before switching instances:

• BIT_BIT_STREAM_CTRL
• BIT_FRAME_MEM_CTRL
• BIT_BIT_STREAM_PARAM
• BIT_RD_PTR
• BIT_WR_PTR
• BIT_AXI_SRAM_USE
• BIT_FRM_DIS_FLAG

3. Feed the bitstream into the bitstream buffer, and update BIT_WR_PTR.
4. Parse the bitstream, which performs sequence initialization as follows:

• The VPU searches for the start code.
• The VPU obtains all required configuration information from the stream, such as

picture size and frame rate. Note that each encoder standard requires different
configuration information.

5. Allocate the buffers and register them to the VPU. All registered buffers are used for
the VPU output. The number of buffers can be greater than the minimum required,
but must be no fewer.

Now we can start the video decoding by calling VPU_DecStartOneFrame.

Chapter 37 Configuring the VPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 367

37.6.3 VPU encoder initialization

Calling encoder_setup() creates an encoding instance as follows:

1. Call VPU_EncOpen, which allocates and configures a codec instance. The user
must set the following parameters in this step: picture size (width and height), codec
stardard, data format, GOP size and frame rate.

2. Feed the bitstream into the bitstream buffer, using either ring buffer mode or line-
buffer mode.

• In ring buffer mode, a single fixed-size buffer is used as if it were connected end
to end. A read and a write pointer indicates the usage of the buffer. This mode is
useful when the system memory is very limited.

• In line-buffer mode, a whole frame is be put into the bitstream buffer, and VPU
encodes from the start to the end of the frame without exchanging data with the
host.

3. Perform sequence initialization. Applications should reserve a minimum number of
frame buffers to VPU for proper encoding operation, using the returned parameter
from VPU_EncGetInitialInfo() to identify the minimum number of frame buffers
required.

4. Allocate the buffers and register them to the VPU. All registered buffers are used for
the VPU output. The number of buffers can be greater than the minimum required,
but must be no fewer.

5. When opening an encoder instance is completed by calling
VPU_EncGetInitialInfo(), applications must use VPU_EncGiveCommand() to
generate the high-level header syntaxes, such as VOS/VO/VOL headers in MPEG-4
and SPS/PPS in AVC.

• The recommended way for obtaining header syntaxes is to use the
ENC_PUT_AVC/MP4_HEADER command by means of the bitstream buffer. If
applications use this set of commands, the header syntaxes are stored in the
bitstream buffer according to the given endian setting.

• The other way for generating header syntaxes is to use the PARA_BUF.
Regardless of streaming mode, this command generates header syntaxes and
writes them to PARA_BUF instead of the bitstream buffer. However, endian
setting is always big endian, so endian conversion must be performed by the host
processor for little-endian systems. Perform endian conversion as follows:

• For MPEG-4, use ENC_GET_VOS_HEADER, ENC_GET_VO_HEADER,
or ENC_GET_VOL_HEADER.

• For H.264, use ENC_GET_SPS_RBSP or ENC_GET_PPS_RBSP.

Now we can call VPU_EncStartOneFrame to initiate the video encoding. After the
frame encoding is finished, the host processor can obtain the output from either the ring
or line stream buffer and store the output to the destination.

Initializing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

368 Freescale Semiconductor, Inc.

37.6.4 Using the multi-instance operation

To support the multi-instance operation, the BIT processor uses an internal context
parameter set for each decoder instance. While creating a new instance and starting
picture processing, the VPU automatically creates and updates a set of these context
parameters. Because of this internal context management scheme, different decoder tasks
running on the host processor can use their own instance numbers to control VPU
operations independently.

When creating a new instance, the application task is given a new handle to specify an
instance as long as a new handle is available on the VPU. The application task can then
handle all of it subsequent operations separately on the VPU by using this task-specific
handle. If no new handle is available, instance creation fails.

Because the VPU can only perform one picture processing task at a time, each
application shares the unique hardware resources in time-division mode. As a result, each
task should check whether the VPU is ready before starting a new picture operation.

By calling a function for closing a certain instance, the application can terminate a single
video operation task on the VPU.

37.7 Testing the driver
The VPU has tests for the encoder and decoder as well as a multi-instance demo (dual
video decoder + display).

37.7.1 Testing the decoder

The decoder test has two modes:

• Endless test
• Play the file to end

To run the test, the user enters either "1" for the endless test or "2" to play the file to end.
If the user selects 1, the video plays repeatedly once it reaches the end. if the user selects
2, the video plays to the end and then exits the decoding processing, just like a normal
movie view.

Chapter 37 Configuring the VPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 369

37.7.2 Testing the encoder

In the encoder test, the default encode stardard is AVC, and the default input size is 320 x
240. The output is stored in the memory.

Run the test as follows:

1. Load a yuv420 file onto the SD card with FAT32 formatted. Note that extension
must be ".YUV" (case sensitive).

2. Set the user input parameters in encode_test(), the cmdl structure. Oay attention to
the enc_width and enc_height, format, and fps.

3. The output is stored in the memory.

After the test has completed done, the user can choose to either start a decoding process
to play the encoded file or to check the data in PC side by using debug tools to dumping
the data to files.

37.7.3 Running the multi-instance demo

This section explains how to set up and run the dual video + dual display demo on an
engineering sample board. See your board's schematics for your board's specific settings.

• The default video standard is AVC.
• The first display is the Hannstar LVDS panel.
• The second display is an embedded HDMI display.

First, use the following procedure to create the image on the SD card. In Linux, use fidsk/
mkfs.vfat/dd to create a bootable image on the same SD card as the FAT32 file system.

1. Enter sudo fdisk /dev/sdb at the command line. sudo fidsk /dev/sdx , sdx is the device
name of your SD card.

2. Delete the existing partition if there is one, as follows.

Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1023, default 1): 256

NOTE
The start address should be larger than 2 Mbytes so that
there is space reserved to burn the test binary. For one
cylinder, it is 4 Kbytes. This demo shows a 1-Gbyte space.

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

370 Freescale Semiconductor, Inc.

Last cylinder or +size or +sizeM or +sizeK (256-1023, default 1023): 1023
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

3. Now there is one partition on the SD card.
4. Enter cat /proc/partitions

cat /proc/partitions
major minor #blocks name
8 0 78125000 sda
 8 1 104391 sda1
 8 2 78019672 sda2
 253 0 75956224 dm-0
 253 1 2031616 dm-1
 8 16 3872256 sdb
 8 17 2904576 sdb1

5. Enter sudo mkfs.vfat /dev/sdb1 to format the partition.
6. Copy two video clips to the SD card.

• Note that the filenames for the video clips should contain fewer than 8 characters
and have a .264 extension.

• The video should be RAW h264 encoded files with no container; the program
finds the first two valid 264 files.

7. Enter sudo dd if=output/mx6dq/evb_rev_a/bin/mx6dq_evb_rev_a-vdec-sdk.bin of=/
dev/sdb seek=2 skip=2 & sync to burn the image to the SD card.

NOTE
Seek=2 skip=2 is mandatory. Without them, the MBR of the
file system will be overwritten.

Once the SD card is created, set up the demo according to the following sequence (see
Figure 37-6):

1. Put the SD card into SLOT4.
2. Set the boot switch to boot from SD4.
3. Plug the Hannstar LVDS panel into LVDS0 connector.
4. Plug the HDMI cable to J5 for the secondary display.
5. Connect the serial cable and 5 V power supply, which powers on the board.

Chapter 37 Configuring the VPU Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 371

SD card with
all video files

HDMI Cable

LVDS connection
on the backside

Figure 37-6. Demo connections

Testing the driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

372 Freescale Semiconductor, Inc.

Chapter 38
Configuring the Watchdog Driver

38.1 Overview
This chapter explains how to configure the watchdog driver. The watchdog timer
(WDOG-1) protects against system failures by providing a way to escape unexpected
events or programming errors.

Once the WDOG-1 is activated, it must be serviced by the software on a periodic basis. If
servicing does not take place, the timer times out. Upon a timeout, the WDOG-1 asserts
the internal system reset signal, wdog_rst, which goes to the system reset controller.

The watchdog also has a provision for WDOG-1 signal assertion by timeout counter
expiration and programmable interrupt generation before the counter actually times out.

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 373

idle

start counter

decrement counter

suspend counter
suspend counter

Reload counter

Assert wdog_rst

WDT set?

Assert WDOG-1

Y

count=0?

Y

N

watchdog
enabled?

Y

N

Time-out
value?

Y

N

reset
nagated?

Y N

WDOG
service?

Y

N

debug
mode?

Y

N

low power
mode? Y

N

Suspend
counter?

Y

N

Suspend
counter?

Y

N

Exit debug
mode?

Y

N

Exit low
power mode?

Y

N

Figure 38-1. Watchdog flow diagram

Overview

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

374 Freescale Semiconductor, Inc.

38.2 Feature summary
The watchdog timer has the following features:

• Configurable timeout counter with timeout periods from 0.5 seconds up to 128
seconds; timeout expiration results in the assertion of of the wdog_rst reset signal.

• Time resolution of 0.5 seconds
• Configurable timeout counter that can be programmed to run or stop during low

power modes
• Configurable timeout counter that can be programmed to run or stop during debug

mode
• Programmable interrupt generation prior to timeout
• Programmable time duration between interrupt and timeout events, from 0 to 127.5

seconds in steps of 0.5 seconds.
• Power down counter with fixed time-out period of 16 seconds; if not disabled, asserts

WDOG-1 signal low after reset

38.3 Modes of operation
Table 38-1. Watchdog modes of operation

Mode What it does

Low-power modes The WDOG-1 timer operation can be suspended in low power mode

Debug mode The WDOG-1 timer operation can be suspended in debug mode

Normal mode Normal operation

38.4 Signals
Table 38-2. Watchdog signals

signals IO Description

WDOG-1 O This signal powers down the chip.

wdog_rst O This signal is a reset source for the chip.

Chapter 38 Configuring the Watchdog Driver

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 375

38.5 Resets and interrupts
The SDK only implements the watchdog's software reset function and did not implement
interrupt mode.

The Watchdog IRQ numbers are 112 and 113.

38.6 Initializing the driver
Initialize the driver as follows:

1. Set the counter to 3h, which means 2 seconds.
2. Disable software reset and power down.

38.7 Testing the driver
Test the driver as follows:

1. Run the test code to initialize and enable watchdog.
2. The test code feeds watchdog in an endless loop.
3. Enter "Y" to stop the feeding.
4. The system resets in 2 seconds.

Resets and interrupts

i.MX 6 Series Firmware Guide, Rev. 0, 11/2012

376 Freescale Semiconductor, Inc.

Document Number: IMX6FG
Rev. 0, 11/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Chapter 1: About This Guide
	About this content
	Devices supported
	Essential reference
	Suggested reading
	General information
	Related documentation

	Notational conventions
	Acronyms and abbreviations

	Chapter 2: Register Macro Usage
	Register macro usage overview
	Register macro usage advantages
	Overview of SCT registers
	Using an SCT register
	Using a clear-set (CS) operation

	Naming conventions for include files and macros
	Include file naming conventions
	Register macro name conventions
	Bitfield macro name conventions
	Register struct naming conventions
	Register struct usage

	Examples
	Summary examples

	Chapter 3: Multicore Startup
	Overview
	Boot ROM process
	Activating the secondary cores
	Multicore hello world example
	System Reset Controller enable CPU function
	Hello multicore world

	Chapter 4: Configuring the GIC Driver
	Overview
	Feature summary
	ARM interrupts and exceptions
	GIC interrupt distributor
	GIC core interfaces

	Sample code
	Handling interrupts using C
	Enabling the GIC distributor
	Enabling interrupt sources
	Configuring interrupt priority
	Targeting interrupts to specific cores
	Using software generated interrupts (SGIs)
	Enabling the GIC processor interface
	Setting the CPU priority level
	Reading the GIC IRQ Acknowledge
	Writing the end of IRQ
	GIC "hello world" example
	GIC test code

	Initializing and using the GIC driver

	Chapter 5: Configuring the AUDMUX Driver
	Overview
	Feature summary
	Clocks
	IOMUX pin mapping
	Modes of operation
	Port timing mode
	Port receive mode

	Port configuration
	Signal direction
	AUDMUX default setting
	Example: Port2 to Port5

	Port configuration for SSI sync mode
	Pseudocode for audmux_route
	Pseudocode for audmux_port_set

	Chapter 6: Configuring the eCSPI Driver
	Overview
	Feature summary
	I/O signals
	eCSPI controller initialization
	eCSPI IOMUX pin mapping
	Clocks
	Controller initialization
	eCSPI data transfers
	Application program interface

	Chapter 7: Configuring the EIM Driver
	EIM overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Testing the driver

	Chapter 8: Configuring the EPIT Driver
	Overview
	Feature summary
	Modes of operation
	Output compare event
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the EPIT driver
	Testing the EPIT driver
	Delay test
	Tick test

	Chapter 9: Configuring the ESAI Driver
	ESAI overview
	Feature summary
	Clocks
	IOMUX pin mapping
	External ESAI signal description
	Audio framework
	audio_card_t data structure
	audio_ctrl_t data structure
	audio_codec_t data structure
	audio_dev_ops_t data structure
	audio_dev_para_t data structure

	ESAI driver functions
	Resetting the ESAI
	Obtaining ESAI parameters
	Setting ESAI parameters
	Obtaining ESAI status
	Enabling ESAI submodules
	Initializing the ESAI
	Configuring the ESAI
	Playback through ESAI
	ESAI de-initialization

	CS42888 driver
	Testing the unit

	Chapter 10: Configuring the Ethernet Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Testing the driver

	Chapter 11: Configuring the FlexCAN Modules
	Overview
	Feature summary
	Modes of operation
	Clocks
	Module timing
	IOMUX pin mapping
	Resets and interrupts
	Module reset
	Module interrupts

	Initializing the FlexCAN module
	Testing the driver

	Chapter 12: Configuring the GPU3D Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the GPU3D driver
	Testing the GPU3D driver

	Chapter 13: Configuring the GPMI Controller
	Overview
	Feature summary
	Modes of operation
	Basic NAND timing
	Clocks
	IOMUX pin mapping
	APBH DMA
	BCH ECC
	NAND FLASH WRITE example code
	NAND FLASH READ example code
	NAND FLASH ERASE example code

	Chapter 14: Configuring the GPT Driver
	Overview
	Feature summary
	Modes of operation
	Events
	Output compare event
	Input capture event
	Rollover event

	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the GPT driver
	Testing the GPT driver
	Output compare test
	Input compare test

	Chapter 15: Configuring the HDMI Tx Module
	Overview
	Feature summary
	Modes of operation
	Events
	Clocks
	Video input interface clock
	System and slave register interface clocks
	EDID I2C E-DDC interface clock
	CEC interface clock
	HDMI Tx PHY interface

	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Setting up the video input
	Setting up the video sampler
	Setting up the CSC (color space converter)
	Setting up the video packetizer
	Setting up the frame composer
	Setting up HDMI Tx PHY

	Testing the driver

	Chapter 16: Configuring the I2C Controller as a Master Device
	Overview
	Initializing the I2C controller
	IOMUX pin configuration
	Clocks
	Configuring the programming frequency divider register (IFDR)

	I2C protocol
	START signal
	Slave address transmission
	Data transfer
	STOP signal
	Repeat start

	Programming controller registers for I2C data transfers
	Function to initialize the I2C controller
	Programming the I2C controller for I2C Read
	Code used for I2C read operations
	Programming the I2C controller for I2C Write
	Code used for I2C write operations

	Chapter 17: Configuring the I2C Controller as a Slave Device
	Overview
	Feature summary
	Modes of operation
	Clocks
	Resets and interrupts
	Initializing the driver
	Testing the driver
	Running the test

	Chapter 18: Configuring the IPU Driver
	Overview
	IPU task management
	Image rendering
	IDMAC
	DMFC
	Display Processor (DP)
	Display controller (DC)
	Display interface (DI)

	Image processing
	Downsizing
	Main processing
	Rotation

	CSI preview
	CSI interfaces
	Parallel interface
	High-speed serial interface-MIPI (mobile industry processor interface)

	CSI modes
	Gated mode
	Non-gated mode
	BT656 mode
	BT1120 mode

	CSI capture
	Mixed task
	Clocks
	High-speed processing clock (HSP_CLK)
	Display interface clocks (DI_CLKn)

	IOMUX pin mapping
	Use cases
	Single image rendering example
	Configuring the IPU DMA channel (single image rendering)
	Allocating the DMFC block
	Configuring the DP block
	Configuring the DC block
	Configuring the DI block
	Enabling the blocks involved in the display flow

	Image combining example
	Configuring the IPU DMA channel
	Allocating the DMFC
	Configuring the DP module
	Other modules

	Image rotate example
	Configuring IDMAC channels for IC tasks (IC rotate)
	Configuring the IC task
	Setting IDMAC buffer ready
	Image rendering process (IDMAC)

	Image resizing example
	IPU process flow
	Configuring IDMAC channels for IC resize tasks
	Configuring the IC resize tasks
	Setting IDMAC buffer ready (image rotation)
	Image rendering process

	Color space conversion example
	IPU process flow (color space conversion)
	Configuring IDMAC channels for IC tasks
	Configuring IC tasks
	IPU configurations for the DP task

	Chapter 19: Configuring the Keypad Controller
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Closing the keypad port
	Waiting for or obtaining a key press event
	Waiting for all keys to release

	Testing the driver

	Chapter 20: Configuring the LDB Driver
	Overview
	Feature summary
	Input and output ports
	Modes of operation
	Single display mode
	Dual display mode
	Separate display mode
	Split mode

	LDB Processing
	SPWG mapping
	JEIDA mapping

	Clocks
	Data serialization clocking

	Configuring the LDB_CTRL register
	Use cases

	Chapter 21: Configuring the Camera Preview Driver
	Overview
	Feature summary
	Synchronization performance details
	Simultaneous functionality support
	Data rate support

	Modes of operation
	Interface modes
	Work modes

	Clocks
	IOMUX pin mapping
	IOMUX pin mapping for CSI0/CIS1 parallel interface
	IOMUX pin mapping for the MIPI CSI-2 interface

	Resets and interrupts
	Resets
	Interrupts

	Initializing the driver
	Configuring the IDMAC channel for CSI
	Allocating SMFC
	Configuring CSI
	Configuring the sensor
	Image rendering

	Testing the driver

	Chapter 22: Configuring the MIPI CSI-2 Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	Output clock
	Input clock

	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Testing the driver

	Chapter 23: Configuring the MIPI DSI driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and Interrupts
	Initializing the driver
	Initializing the DSI controller
	Global configuration
	Configure the DPI interface
	Select the video transmission mode
	Define the DPI horizontal timing configuration
	Define the vertical line configuration

	Initializing the D-PHY

	Testing the driver

	Chapter 24: Configuring the Power Modes
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Using the driver
	Testing the driver
	Running the test

	Chapter 25: Configuring the OCOTP Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Testing the driver
	Running the test

	Chapter 26: Configuring the PCI Express Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Testing the driver

	Chapter 27: Configuring the PWM driver
	Overview
	Feature summary
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the driver
	Configuring the PWM output
	Generating the pulse width
	Generating the duty cycle

	Enabling PWM output

	Application program interface

	Chapter 28: Using the SATA SDK
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and Interrupts
	Initializing the driver
	Testing the driver

	Chapter 29: Configuring the SDMA Driver
	Overview
	IOMUX pin mapping
	Scripts
	Channels and channel descriptor
	Buffer descriptor and BD chain
	Application programming interface
	Using the API

	Chapter 30: Configuring the SPDIF Driver
	Overview
	Feature summary
	Clocks
	IOMUX pin mapping
	Audio framework
	audio_card_t data structure
	audio_ctrl_t data structure
	audio_codec_t data structure
	audio_dev_ops_t data structure
	audio_dev_para_t data structure

	Using SPDIF driver functions
	Soft resetting SPDIF
	Dumping readable SPDIF registers
	Obtaining SPDIF setting and status
	Initializing SPDIF
	Configuring SPDIF
	Playback through SPDIF
	De-initializing SPDIF

	Testing the SPDIF driver

	Chapter 31: Using the SNVS RTC/SRTC Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	Counters
	Non-Secured Real Time Counter
	Non-Secured Real Time Counter Alarm
	Non-Secured Real Periodic Interrupt

	Secure Real Time Counter

	Driver API
	SNVS lower level driver APIs
	Enable/Disable SNVS non-secured real time counter
	Enable/Disable SNVS non-secured time alarm
	Enable/Disable SNVS periodic interrupt
	Set SNVS non-secure real time counter registers
	Set SNVS non-secure RTC time alarm registers
	Enable/Disable SNVS secure real time counter
	Enable/Disable SNVS secure time alarm
	Set SNVS secured real time counter registers
	Set SNVS non-secure time alarm register

	RTC upper layer driver APIs
	Initialize RTC
	De-initialize RTC
	Setup RTC one time alarm
	Setup RTC periodic time alarm
	Disable RTC periodic alarm

	SRTC upper layer driver APIs
	Initialize SRTC
	De-initialize SRTC
	Setup SRTC one time alarm
	Testing the SNVS SRTC/RTC driver

	Chapter 32: Configuring the SSI Driver
	SSI overview
	Feature summary
	Clocks
	IOMUX pin mapping
	Audio framework
	audio_card_t data structure
	audio_ctrl_t data structure
	audio_codec_t data structure
	audio_dev_ops_t data structure
	audio_dev_para_t data structure

	SSI driver functions
	Resetting the SSI
	Obtaining SSI setting and status values
	Setting SSI parameters
	Enabling SSI sub-modules
	Initializing the SSI driver
	Configuring the SSI
	Playback through SSI

	sgtl5000 driver
	Testing the unit
	Functions
	Local functions
	APIs

	Chapter 33: Configuring the UART Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the UART driver
	Testing the UART driver
	Echo test
	SDMA test
	Running the UART test

	Chapter 34: Configuring the USB Host Controller Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	IOMUX pin mapping
	Resets and interrupts
	Initializing the host driver
	Initializing the device driver
	Testing the host mode
	Testing the device mode
	PHY and clocks API
	USB host API
	USB device API
	Source code and structure

	Chapter 35: Configuring the uSDHC Driver
	Overview
	Clocks
	IOMUX pin mapping
	Initializing the uSDHC controller
	Initializing the SD/MMC card
	Frequency divider configuration
	Send command to card flow chart
	SD voltage validation flow chart
	SD card initialization flow chart
	MMC voltage validation flow chart
	MMC card initialization flow chart

	Transferring data with the uSDHC
	Reading data from the card
	Writing data to the card

	Application programming interfaces
	card_init API
	card_data_read API
	card_data_write API

	Chapter 36: Configuring the VDOA Driver
	Overview
	Feature summary
	Modes of operation
	Clocks
	Resets and interrupts
	Initializing the driver
	Testing the driver

	Chapter 37: Configuring the VPU Driver
	Overview
	Feature summary
	Modes of operation
	Using the input stream modes
	Using the output stream modes

	Clocks
	Resets and interrupts
	Initializing the driver
	Initializing the VPU for the first time
	Initializing the VPU decoder
	VPU encoder initialization
	Using the multi-instance operation

	Testing the driver
	Testing the decoder
	Testing the encoder
	Running the multi-instance demo

	Chapter 38: Configuring the Watchdog Driver
	Overview
	Feature summary
	Modes of operation
	Signals
	Resets and interrupts
	Initializing the driver
	Testing the driver

