

Utilizing PCI Express in QorIQ LS Series Processors FTF-SNT-F1121

Richard Nie | SMTS, Systems and Application Engineer J U N E . 2 0 1 5

External Use

Presexule, the Pressure tops, AIVAec, C-5, CodeTEST, CodeMercor, ColdPine, ColdPine, O-New, the Emergy Efficient Solutions tops, Kinetis, Magnin, mobileCT, PED, PowerGLACG, Processer Espen, Curicit, ContO Commeng, Curives, Ready Pag, Salohaman, the Salohaman tops, Ster Cine, Streptinery, Vertical, VyOrk and Xinneis are tradomarks of Pressoale Semiconductor, Inc., Reg. U.S. Pat, & Tim. Off. Antal, BeetC, BesStein, ComMet, Field, Layerscape, MXX, Parciner, Streptinery, Vertical, VyOrk and Xinneis and tradomarks of Pressoale Control (Semiconductor), Tex. All Units of Pressoale Control (Semiconductor), Tex. All Units of Pressoale Semiconductor, Tro, All Units and UMEMS are tradomarks of Pressoale Semiconductor, Tro, All Units of Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tro, All Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tex. All Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tex. All Units of Pressoale Semiconductor, Tex. All Pressoale Semiconductor, Tex.

Session Introduction

- Session Length: 2 hours
- This session will introduce the features and programming model of the new PCI Express controllers integrated in the Freescale QorIQ LS series processors. It will start with some key feature highlights, then dive into how to initialize the controller with the new programming model, establish the PCI Express link, and master outbound configuration and memory transactions to the downstream EPs.

External Use | 1

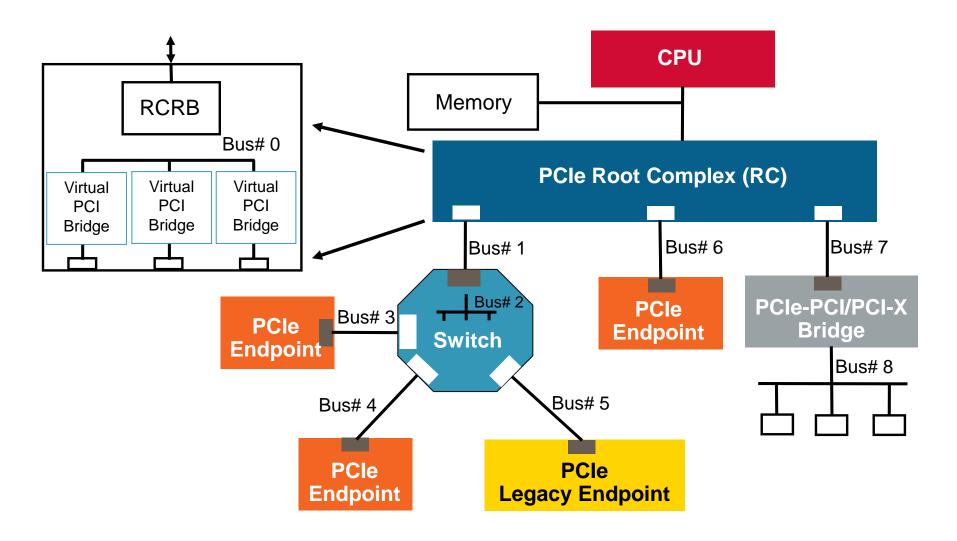
Agenda

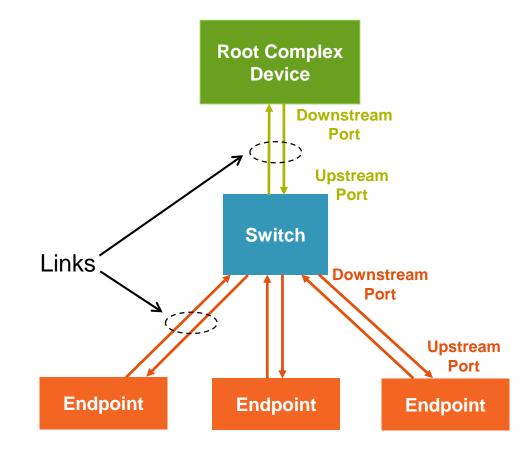
- PCI Express Architecture and Protocol Brief Overview
- LS2085A PCI Express Controller
 - Design Consideration Factors
 - RCW Configuration
 - Architecture Overview
 - Initialization and iATU Programming
- Summary
- Reference

External Use

| 2

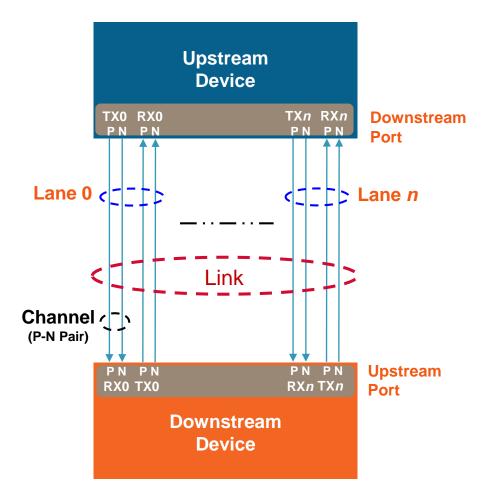
PCI Express Architecture & **Protocol Brief Overview**



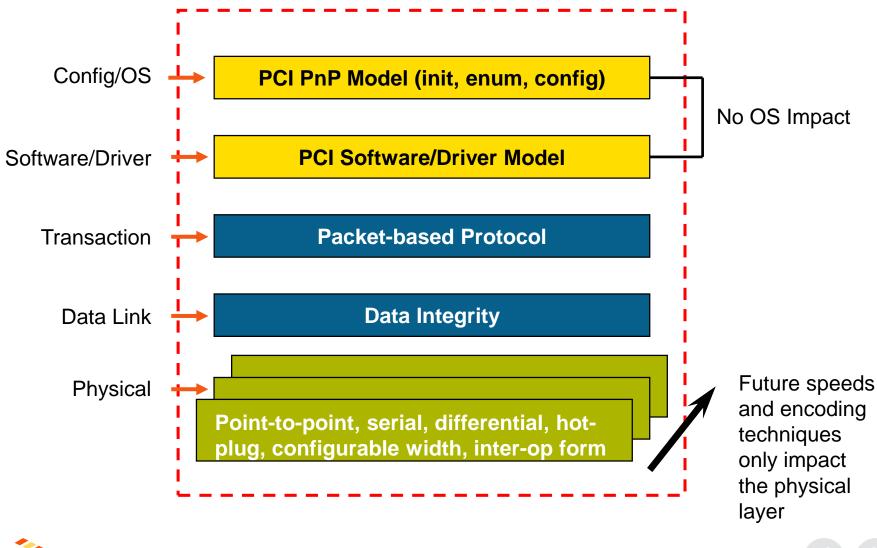

PCI Express Architecture Overview

External Use 4 #FTF

PCI Express Topology Related Terminology



External Use 5

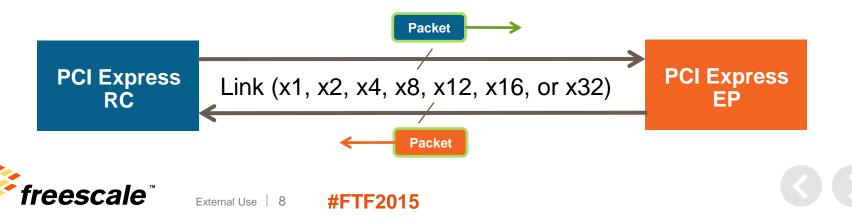

PCI Express Physical Layer Terminology

- Link
 - Collection of two ports and their interconnecting *lanes*
- Lane
 - A set of differential signal pairs: one pair for Tx and another for Rx.
- Port
 - Physically, a group of transmitters and receivers located on the same chip that define a link
 - Logically, an interface between a component and a PCI Express Link
- x1, x2, x4, x8, x16, xN (Link)
 A by-N link is composed of N lanes

PCI Express – Layered Architecture (Software and Hardware)

External Use 7 **#FTF2015**

eescale


 $\langle \rangle$

PCI Express Transaction Bandwidth

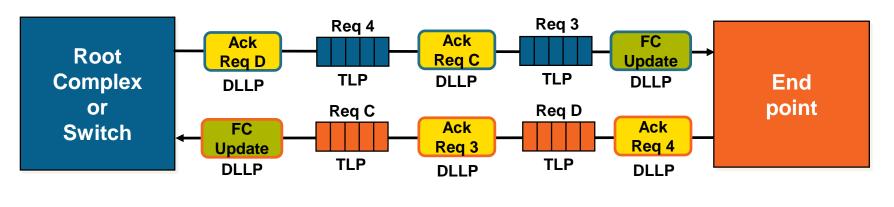
- Point-to-point connection
- Serial bus significantly reduces number of pins → requires only 4 pins for a x1 link
- Scalable: x1, x2, x4, x8, x16, x32
- Dual-simplex connection
- 2.5 GT/s per direction (Gen 1)
- Packet-based transaction protocol

Link Width		x2	x4	x8	x12	x16	x32
RAW Bandwidth <i>per direction</i> , Tx or Rx (Gbits/sec)	2.5	5	10	20	30	40	80
Effective Bandwidth <i>per direction</i> , Tx or Rx (Gbits/sec)	2	4	8	16	24	32	64

Note: Raw bandwidth reflects the maximum theoretical physical link speed with 8b/10b encoding

More About PCI Express Throughput

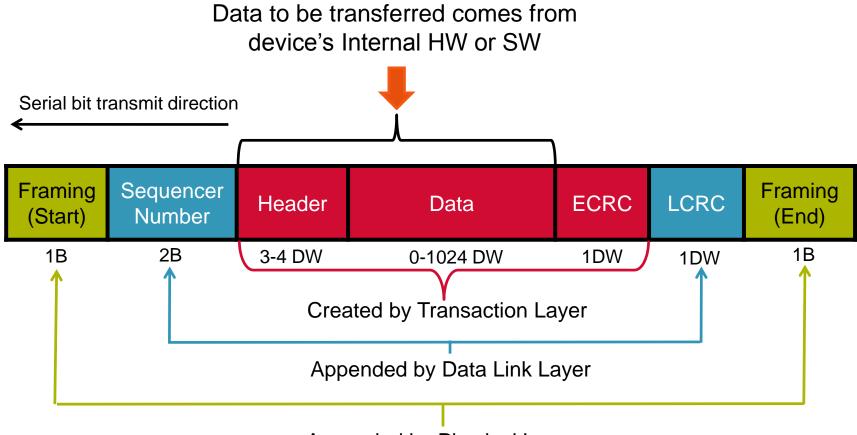
Effective Bandwidth	Link Width							
(per direction)	x1	x2	x4	x8	x12	x16	x32	
PCIe Gen 1 Bandwidth (Gbits/sec)	2	4	8	16	24	32	64	
PCIe Gen 2 Bandwidth (Gbits/sec)	4	8	16	32	48	64	128	
PCIe Gen 3 Bandwidth (Gbits/sec)	8	16	32	64	96	128	256	


Note:

- 1) These are the **Effective** bandwidth **per direction** excluding the 8b/10b encoding for Gen1 and Gen2, and 128b/130b encoding for Gen3
- 2) Gen1 x1 link raw data rate = 2.5 GT/s
- 3) Gen2 x1 link raw data rate = 5.0 GT/s
- 4) Gen3 x1 link raw data rate = 8.0 GT/s

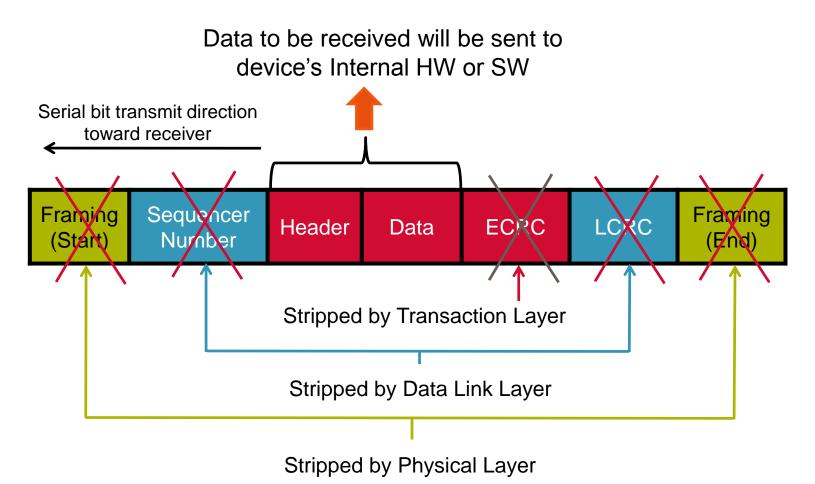
PCI Express Transaction Layer Highlights

- Packet-based split-transaction protocol
- Provides R/W logical transactions to software
- 4 basic transaction types: memory, I/O, configuration and message
- 32-bit and 64-bit memory addressing
- Three routing methods
 - Address routing (memory and I/O)
 - ID routing (configuration)
 - Implicit routing (messages)
- Transactions are carried by Transaction Layer Packets (TLPs)


 $\langle \rangle$

PCI Express Transaction Types

	Transaction		Com	pletion
Request Type	Request TLP	Non-Posted or Posted	Required	Packet Type
Memory Read	MRd	Non-Posted	Yes	CpID, CpI (error)
Memory Write	MVVr	Posted	NO	
Memory Read Lock	MRdLk	Non-Posted	Yes	CpID, CpI (error)
IO Read	IORd	Non-Posted	Yes	CpID, CpI (error)
IO Write	IOWr	Non-Posted	Yes	Cpl
Configuration Read	CfgRd0, CfgRd1	Non-Posted	Yes	CpID, CpI (error)
Configuration Write	CfgWr0, CfgWr1	Non-Posted	Yes	Cpl
Message w/o Data	Msg	Posted		
Message w/Data	MsgD	Posted		


PCI Express TLP (Transaction Layer Packet) Assembly

Appended by Physical Layer

PCI Express TLP Disassembly



 $\langle \rangle$

PCI Express TLP Generic Header Fields

*Only applicable for 4 DW TLP headers

PCI Express TLP Fmt[1:0] and Type Encoding

TLP Type	LP Type Fmt [1:0] ²		Description
MRd	00 01	0 0000	Memory Read Request
MRdLk	00 01	0 0001	Memory Read Request-Locked
MWr	10 11	0 0000	Memory Write Request
IORd	00	0 0010	I/O Read Request
IOWr	10	0 0010	I/O Write Request
CfgRd0	00	0 0100	Configuration Read Type 0
CfgWr0	10	0 0100	Configuration Write Type 0
CfgRd1	00	0 0101	Configuration Read Type 1
CfgWr1	10	0 0101	Configuration Write Type 1
Msg	01	1 Or ₂ r ₁ r ₀	Message Request – The sub-field r[2:0] specifies the Message routing mechanism (see Table 2-11).
MsgD	11	1 Or ₂ r ₁ r ₀	Message Request with data payload – The sub-field r[2:0] specifies the Message routing mechanism (see Table 2-11).
Cpl	00	0 1010	Completion without Data – Used for I/O and Configuration Write Completions and Read Completions (I/O, Configuration, or Memory) with Completion Status other than Successful Completion.
CpID	10	0 1010	Completion with Data – Used for Memory, I/O, and Configuration Read Completions.
CplLk	00	0 1011	Completion for Locked Memory Read without Data – Used only in error case.
CpIDLk	10	0 1011	Completion for Locked Memory Read – otherwise like CpID.
			All encodings not shown above are Reserved.

Table 2-3: Fmt[1:0] and Type[4:0] Field Encodings

LS2085A PCI Express Controller

PCIe Support on QorIQ LS2085A

LS2085A PCIe Controller Feature Highlights

- Four PCI Express Gen3-capable controllers :
 - One controller is SR-IOV EP capable (PEX3)
 - One controller supports up to Gen3 x8
 - Six system memory regions with programmable location and size
 - The size of each region can be from 4 KB to 4 GB
- Major changes compared to Power Architecture SoCs:
 - The PCI Express controllers feature an integrated AXI Bridge Module
 - Configuration space registers are memory mapped within CCSR space for easy access
 - All registers within the PCI Express controllers are little endian now!

LS2085A PCI Express Controller:

- Design Consideration Factors

19

PCIe Controller Design Considerations

- Major design consideration factors:
 - SerDes link width and lane mapping selection
 - Controller mode selection RC or EP?
 - SerDes reference clock frequency and clock chip selection
 - Form factor related board design consideration
 - EP Card's power rail requirement

SerDes Link Width and Lane Mapping Selection

- Consideration factors:
 - x1, x4, x8?
 - How many and which PCI Express controllers to use?
 - Sharing with other SerDes protocol on the same SerDes?
- Refer to Table 25-1 and 25-2 to plan for the SerDes usage

SRDS_PR CTL_S1	H	G	F	E	D	С	В	Α	PLL mapping
hex	SD1[0]	SD1[1]	SD1[2]	SD1[3]	SD1[4]	SD1[5]	SD1[6]	SD1[7]	H-A
03	PCle1					PCIe2			
05	SG1	SG2	SG3	SG4	PCle2				22222222
07	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8	22222222

Table 25-1. SerDes 1

Table 25-2. SerDes 2 (continued)

SRDS_PR CTL_S2	A	в	с	D	E	F	G	н	PLL mapping
1E	SG9	SG10	SG11	SG12	SG13	SG14	SG15	SG16	22212222
20	SG9	SG10	SG11	SG12	SG13	SG14	SG15	SG16	22122222
22	SG9	SG10	SG11	SG12	SG13	SG14	SG15	SG16	21222222
24	SG9	SG10	SG11	SG12	SG13	SG14	SG15	SG16	12222222
зD	3D PCle3								
ЗE	3E PCIe3								22222222
ЗF		PC	PCle3 PCle4				22222222		
40		PC	le3			PC	Cle4		22222222
41	PCIe3				PC	le4	SATA1	SATA2	11111122
42	PCIe3				PC	le4	SATA1	SATA2	11111122

PCIe Controller Mode Selection – RC or EP?

- Consideration factors:
 - Want the PCIe controller to act as host? \rightarrow RC!
 - RC is responsible to bus enumeration, resource planning, power management control as well as interrupt handling
 - RC's configuration space contains Type 1 Header registers
 - Designing an add-in card to be plugged into a host system? \rightarrow EP!
 - EP's configuration space contains Type 0 Header registers
 - Want some of the PCIe controllers as host/RC and others as EP?

PCIe SerDes Reference Clock Considerations

- Reference Clock Frequency consideration factors:
 - PCIe Base Spec and CEM Spec only call out 100 MHz!!!
 - QorIQ processors do support both 100 and 125 MHz
 - Use 100 MHz if possible!
 - For RC-mode design, think about the potential EP cards (especially offthe-shelf ones) to be plugged into your RC system's PCIe slot. What if that EP card follows PCIe CEM spec and only accepts 100-MHz Ref. Clock?
 - For EP-mode design, think about this consequence: your EP card is plugged into an unknown RC's (for example Windows PC's) PCIe slot offering only 100-MHz Ref. Clock by your customer, unfortunately, your EP card is designed to accept only 125-MHz Ref. Clock in POR or RCW and can't be changed due to the sharing with other SerDes protocol in the same SerDes bank!

PCIe SerDes Reference Clock Consideration (cont.)

- Using different SerDes Ref. Clock on two sides of the link?
 - Theoretically, it's okay to have 125-MHz +/-300ppm Ref. Clock at one end and 100MHz +/-300ppm Ref. Clock at the other end of the link
 - However, avoid this if possible to simplify the design
- PCI Express does support spread-spectrum clocking
 - Common clock must be used exactly same clock used for both sides of the link!
- SerDes Ref. Clock Driver Chip selection
 - Refer to the HSSI chapter of each Freescale device's hardware specification for detailed DC and AC specification requirement
 - Pay attention to the DC amplitude spec. Refer to AN4311 application note for recommended connection scheme
 - Common Connection scheme: HCSL DC-coupled, LVDS AC-coupled

The ultimate connection scheme should comes from clock driver chip vendor!

External Use | 24 **#FTF2015**

Form Factor Related Board Design Consideration

- For RC-mode design
 - Consider implementing PCIe slot if possible
 - If connecting RC and EP with direct PCB trace on the same board, consider implementing Mid-Bus Probe footprint for debug
 - Feed a common 100-MHz Ref. Clock to the slot to avoid surprise!
- For EP-mode design
 - Design for 100-MHz Ref. Clock if this is a PCIe plug-in card
- Follow PCI Express base and CEM specifications
 - Design and simulate the channel budget for transmitter and receiver
 - Jitter, insertion loss, skew (lane-to-lane and within a differential pair), crosstalk, equalization, trace impedance and propagation delay
 - Perform Tx and Rx eye measurement on the prototype board

EP Card's Power Rail Requirement

- Follow PCIe CEM Specification's requirement
 - Power consumption depends on card form factor
 - Refer to Section 4.2, "Power Consumption" of the PCIe CEM Spec Rev 3.0 for power dissipation and initial power draw requirement!

PCI EXPRESS CARD ELECTROMECHANICAL SPECIFICATION, REV. 3.0

Power Rail	10 W Slot	25 W Slot	150W-ATX Power Connector	75 W Slot
+3.3V				
Voltage tolerance	± 9% (max)	± 9% (max)	N/A	± 9% (max)
Supply Current	3.0 A (max)	3.0 A (max)		3.0 A (max)
Capacitive Load	1000 μF (max)	1000 μF (max)		1000 μF (max)
+12V				
Voltage tolerance	± 8%	± 8%	+5% / <mark>-</mark> 8% (max)	± 8%
Supply Current	0.5 A (max)	2.1 A (max)		5.5 A (max)
Capacitive Load	300 µF (max)	1000 μF (max)	6.25 A (max)	2000 µF (max)
+3.3Vaux			N/A	
Voltage tolerance	± 9% (max)	± 9% (max)		± 9% (max)
Supply Current		10 1110 A 28 1110 8		
Wakeup Enabled	375 mA (max)	375 mA (max)		375 mA (max)
Non-wakeup Enabled	20 mA (max)	20 mA (max)		20 mA (max)
Capacitive Load	150 µF (max)	150 μF (max)		150 μF (max)

Table 4-1: Power Supply Rail Requirements

EP Card's Power Rail Requirement (cont.)

External Use 27

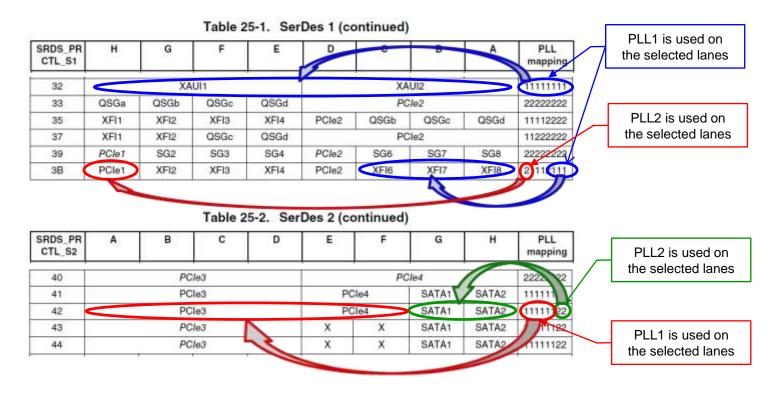
- Consideration factor when designing x4/x8 EP Cards
 - There are far fewer 75W slots in x86 PC motherboards than 25W slots, even though PCIe CEM Spec Rev 3.0 increases the maximum power dissipation for x4/x8 cards from 25W to 75W.
 - Therefore, the following old requirement from the PCIe CEM Spec Rev 2.0 is safer, although more conservative.

Table 4-2: Add-in Card Power Dissipation							
	X1		x4/x8	x16			
Standard height	10 W ¹ (max)	25 W ¹ (max)	25 W (max)	25 W ² (max)	75 W ^{2, 4} (max)		
Low profile card ³	10 W (n	nax)	25 W (max)	25 W (m	25 W (max)		

PCI EXPRESS CARD ELECTROMECHANICAL SPECIFICATION, REV. 2.0

LS2085A PCI Express Controller:

- RCW Configuration



RCW Configuration – Which SerDes PLL to Use

- Identify which PLL is used for the selected SRDS_PRTCL_Sn
 - Power down unused PLL.
 - For the PLL in use, select the valid SerDes Ref. Clock Frequency.

RCW Configuration – SerDes Ref. Clock Freq. and Divider

- Follow the following three steps to configure:
 - 1) Select the SRDS_PRTCL_Sn based on desired SerDes lane mapping
 - 2) Select & *Provide the SAME* valid SerDes Ref. Clock Frequency for the PLL in use!!!
 - 3) Power down the unused PLL
 - 4) Select the valid SRDS_DIV_PEX_Sn for the PLL in use

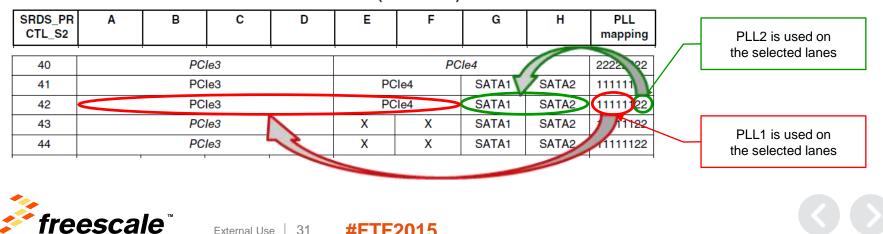

SerDes Protocol (given lane)	Valid reference clock frequency	Valid setting as determined by SRDS_PRTCL_Sn	Valid setting as deterraned by SRDS_PLL_REF_ CLK_SEL_Sn	Valid setting as determined by SRDS_DIV_ [prot]_Sn		If possible, ALWAYS choose 100 MHz
SGMII (1.25 Gbps)	100 MHz	SG @ 1.25 Gbps	0: 100 MHz	Don't Care		
	125 MHz		1: 125 MHz			
2.5x SGMII (3.125 Gbps)	125 MHz	SG @ 3.125 Gbps	0: 125 MHz	Don't Care		
	156.25 MHz		1: 156.25 MHz	1		
QSGMII (5.0 Gbps)	100 MHz	Any QSG	0: 100 MHz	Don't Care	1	
	125 MHz		1: 125 MHz	1 /		
XAUI (3.125 Gbps)	125 MHz	XAUI @ 3.125 Gbps	0: 125 MHz	Don't Care		
	156.25 MHz		1: 156.25 MHz			
XFI (10.3125 Gbps) or 10GBASE-KR	156.25 Mhz	XFI @ 10.3125 Gbps	0: 156.25 MHz	Don't Care		If possible, restrict the
XFI (10.3125 Gbps)	161.1328125 MHz	XFI @ 10.3125 Gbps	1: 161.1328125 MHz	Don't Care		maximum link speed
	(hidden from cust)					
PCI Express 2.5 Gbps	100 MHz ¹	Any PCIe	0: 100 MHz	2'b10: 2.5 G		
(docsn't negotiate upwards)	125 MHz1		1: 125 MHz			
PCI Express 5 Gbps	100 MHz ¹	Any PCle	0: 100 MHz	2'b01: 5.0 G		
can negotiate up to 5 Gbps)	125 MHz1		1: 125 MHz		/	
PCI Express 8 Gbps	100 MHz [†]	Any PCIe	0: 100 MHz	2'b00: 8.0 G		
(can negotiate up to 8 Gbps)	125 MHz1	0.0003556.0000016	1: 125 MHz			
SATA (1.5, 3 or 6 Gbps)	100 WH2	Any SATA	0. 100 MHz	Don't Care ²		
	125 MHz	21.52/00/2012/	1: 125 MHz	2 (18,2 × 55.0 (1995))		

Table 25-5. Valid SerDes Reference Clocks and RCW Encodings

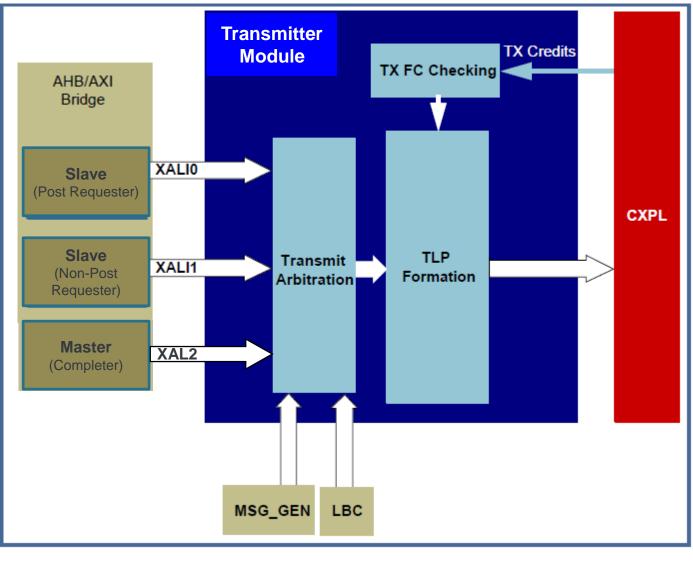
Case Study – RCW SerDes Parameter Configuration

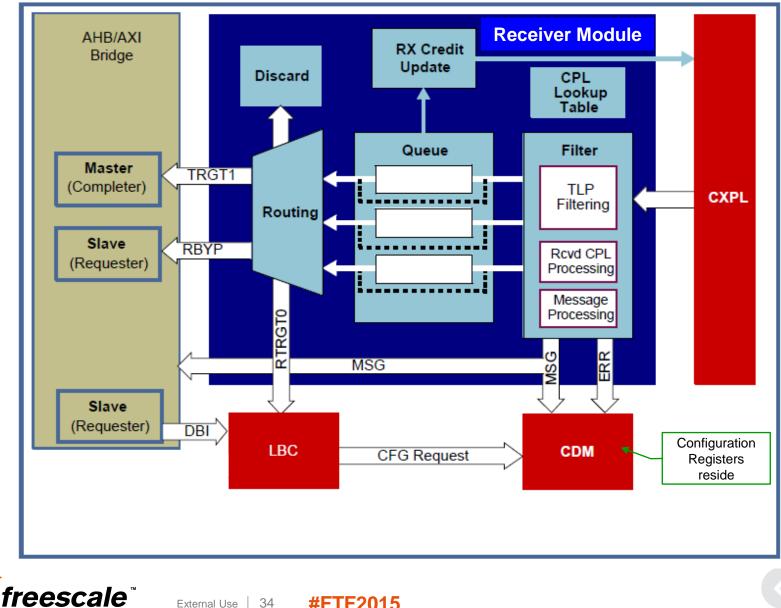
- Example: usage requires SerDes 2, SRDS_PRTCL_S2 = 0x42
 - 1) PEX3 is mapped to SerDes 2 Lane A-D, allowed to run up to Gen2 x4, using PLL1
 - 2) PEX4 is mapped to SerDes 2 Lane E-F, allowed to run up to Gen2 x2, using PLL1
 - 3) SATA1 or SATA2 is mapped to SerDes 2 Lane G or H respectively, allowed to run up to 6 Gbps, using PLL2
 - 4) In RCW (*little endian*), configure the parameters as below:
 - a) RCW [488:487] = HOST_AGT_PEX = 2'b00; //assume PEX4 & PEX3 run in host/RC mode
 - b) RCW [899:898] = SRDS_PLL_PD_PLL[4:3] = 2'b00; //SerDes 2 PLL2 & 1 not powered down
 - c) RCW [931:930] = SRDS_PLL_REF_CLK_SEL_S2 = 2'b00; //Use 100 MHz for SD2 PLL2 & 1
 - d) RCW [947:946] = SRDS_DIV_PEX_S2 = 2'b01; //PEX4 & PEX3 can run up to 5.0G

Table 25-2. SerDes 2 (continued)

LS2085A PCI Express Controller:

- Architecture Overview




LS2085A PCIe Controller Transmit Path Block Diagram

External Use 33

LS2085A PCIe Controller Receive Path Block Diagram

#FTF2015 External Use 34

iATU Address Translation Diagram

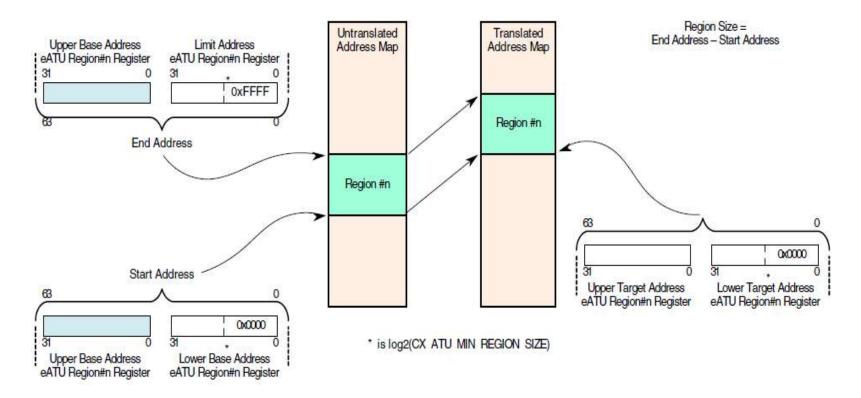


Figure 20-238. iATU Address Region Mapping: Outbound and Inbound (Address Match Mode), 64-bit Address

LS2085A PCIe Controller Register and Memory Space

Controller	Usage	Address	Note
PEX1	PEX1 Configure Registers	0x 340 _0000 – 0x 340 _FFFF	CCSR space
	PEX1 Lookup Table	0x <mark>348</mark> _0000 – 0x <mark>348</mark> _FFFF	CCSR space
	Usable memory space (8 GB)	0x 10 _0000_0000 – 0x 11 _FFFF_FFF	System Memory space
	PEX2 Configure Registers	0x 350 _0000 – 0x 350 _FFFF	CCSR space
PEX <mark>2</mark>	PEX2 Lookup Table	0x <mark>358</mark> _0000 – 0x <mark>358</mark> _FFFF	CCSR space
	Usable memory space (8 GB)	0x 12_ 0000_0000 – 0x 13_ FFFF_FFFF	System Memory space
PEX3	PEX3, PF0, 1 Configure Registers	0x 360 _0000 – 0x 360 _FFFF	CCSR space
(SR-IOV	PEX3 Lookup Table	0x <mark>368</mark> _0000 – 0x <mark>368</mark> _FFFF	CCSR space
Capable)	Usable memory space (8 GB)	0x 14 _0000_0000 - 0x 15 _FFFF_FFF	System Memory space
	PEX4 Configure Registers	0x 370 _0000 – 0x 370 _FFFF	CCSR space
PEX4	PEX4 Lookup Table	0x <mark>378</mark> _0000 – 0x <mark>378</mark> _FFFF	CCSR space
	Usable memory space (8 GB)	0x 16 _0000_0000 - 0x 17 _FFFF_FFF	System Memory space


LS2085A PCIe Internal System Memory Sample Usage

• Using PCIe Controller 1 (PEX1), RC Mode as example

Region Direction	Usable Internal System Memory	Possible Region Usage Example (up to 6 regions PER direction)	
		1 for generating CFG0 TLP	
Outbound Access	0x10_0000_0000 – 0x11_FFFF_FFF (8 GB total, using PEX1 as example)	1 for generating CFG1 TLP	
		4 left for outbound MWr & MRd TLPs	
Inbound Access	CCSR: 0x0100_0000 – 0x0FFF_FFF (assume allowing inbound CCSR access)	1 for inbound MWr & MRd to BAR0	
	Other internal system memory space (<i>Non-PEX!!!</i> Example: DDR and etc.)	5 left for other inbound MWr & MRd access	

iATU Address Match Mode Translation Example – for RC

External Use 38 **#FTF2015**

 $\langle \rangle$

LS2085A PCI Express Controller: - Initialization and iATU Programming

#FTF2015

LS2085A Major Power-On Reset Sequence & Stages

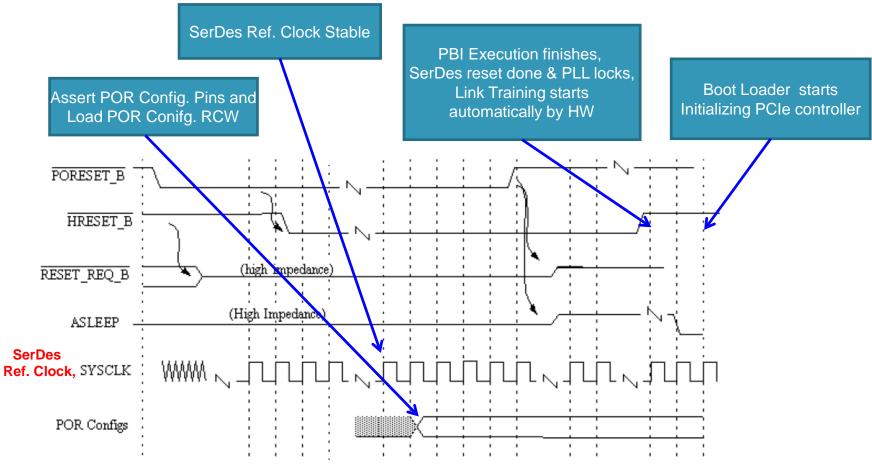


Figure 4-18. Power-On Reset Sequence

#FTF2015

Note: Only PCI Express related content is shown here.

PCIe Controller's Configuration Space defined by base spec

- The PCI Compatible Configuration Header :
 - The first 64 Bytes (0x00 0x3F) in the PCI/PCI Express Configure Space PCI Legacy Software compatible
 - Which Header Type to use?
 - RC: use Type 1 Header
 - EP: use Type 0 Header
- The PCI Compatible Device-Specific Configuration Space:
 - Power Management Capability Structure for both RC & EP
 - The PCI Express specific registers sit here for both RC & EP, some registers and/or bits have different definition or only applicable in either RC or EP.
 - MSI and MSI-X Message Capability Structure for EP Only!
- The PCI Express Extended Configuration Space:
 - PCI Express Advanced Error Reporting Capability Structure
 - PCI Express Extended ARI Capability Structure for ARI Forwarding Capable RC Only!
 - PCI Express SR-IOV Capability Structure for SR-IOV EP Only!

PCIe Controller Type 0 Configuration Header – for EP

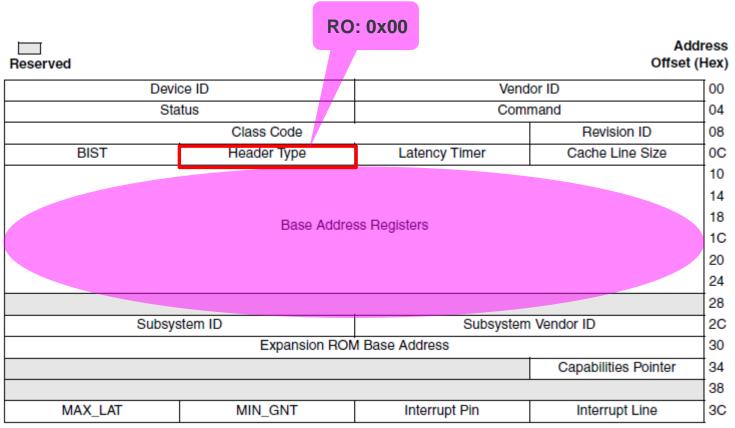


Figure 20-76. PCI Express PCI-Compatible Configuration Header—Type 0

#FTF2015

PCIe Controller Type 1 Configuration Header – for RC

Reserved	R	O: 0x01		Ado Offset	dress (Hex)
Device ID			Vend	lor ID	00
Sta	tus		Com	mand	04
	Class Code			Revision ID	08
BIST	Header Type	La	tency Timer	Cache Line Size	0C
	Base Add	ess Registe	r 0		10
					14
Secondary Latency Timer	Subordinate Bus Number	r Second	ary Bus Number	Primary Bus Number	18
Seconda	ry Status		I/O Limit	I/O Base	1C
Memory Limit Me			Memor	y Base	20
Prefetchable	Memory Limit		Prefetchable I	Memory Base	24
	Prefetchable E	Base Upper 3	32 Bits		28
	Prefetchable Limit Upper 32 Bits 20				
I/O Limit U	oper 16 Bits		I/O Base U	pper 16 Bits	30
				Capabilities Pointer	34
	Expansion ROM Base Address 3				38
Bridge Control		In	terrupt Pin	Interrupt Line	3C

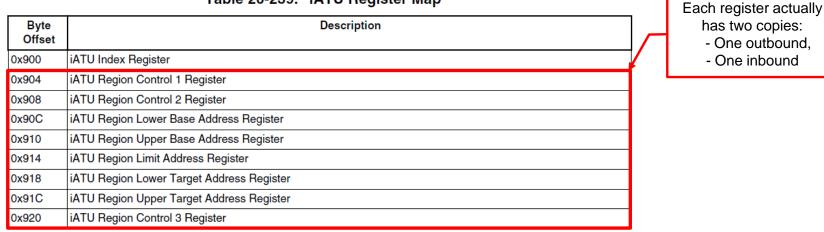
Figure 20-90. PCI Express PCI-Compatible Configuration Header—Type 1

PCIe Controller PCIe Device-Specific Configuration Header

PCI-Compati (See Section 20.3.9, "PCI Compatibl	ble Configuration Header le Configuration Headers," for moi	e information.)	00 3F	
Power Mgmt Capabilities	Next Pointer (0x50)	Power Mgmt Capability ID	40	
Data	Power Managem	ent Status & Control	40	Applicable to EP On
		¥	48 4C	
MSI Message Control	Next Pointer (70)	MSI Message Capability ID	50	
MSLM	Message Address	•	54	
MSI Upp	er Message Address		58	
	MSI Me	ssage Data	5C	
PCI Express Capabilities	Next Pointer	PCI Express Capability ID	60 6C 70	
	(0xB0—EP mode) (NULL—RC mode)			
Dev	vice Capabilities	·	74	
Device Status	Devic	e Control	7/5	Applicable to RC On
Lir	nk Capabilities		70	
Link Status		Control	80	
SI	ot Capabilities		84	
Slot Status		Slot Control		
		(RC mode only)	8C	
	Root Status		90	
	ce Capabilities 2		94	
Device Status 2		Control 2	98	
	k Capabilities 2		9C A0	
Link Status 2	Link C	Link Control 2		Applicable to
			A4	SR-IOV EP Only
		· · · · · · · · · · · · · · · · · · ·	AC	
MSI-X Message Control	Next Pointer (NULL)	MSI-X Message Capability ID	в0	
	Table Offset		B4	
PBA Offset				
			BC	
			FF	

PCIe Controller Extended Configuration Space

Reserved		Address Offset (Hex)		
PCI Compatible Configuration Header (See Section 20.3.9, "PCI Compatible Configuration Headers," for more information.)				
	ecific Configuration Space ecific Configuration Space," for more information.)	040 0FF		
Next Capability Offset (RC=NULL;EP=0x140)/ Capability Version	Advanced Error Reporting Capability ID	100		
	e Error Status	104		
	e Error Mask	108		
	Error Severity	10C		
	Error Status	110		
	Error Mask	114		
Advanced Error Cap	abilities and Control	118		
Head	er Log	11C 120 124 128	Applicable to RC Only	
Boot Error	Command	12C		
	or Status	130	A solition to the	
Error Source ID	Correctable Error Source ID	134 139 130	Applicable to ARI-Forwarding-Capable RC Only	
Next Capability Offset (0x158)/Capability Version	ARI Extended Capability	148	· · · ·	
ARI Control	ARI Capabilites	14C		
		150 154	Applicable to SR-IOV EP Only	
Next Capability Offset (NULL)/Capability Version	SR-IOV Extended Capability ID	178		
SR-IOV C	apabilities	17C		
SR-IOV Status	SR-IOV Control	180		
TotalVFs (RO)	InitialVFs (RO)	184		
Function Dependency Link	NumVFs (RW)	188		
VFStride (RO)	FirstVF Offset (RO)	18C		
VF Device ID				
Supported Pa	194			
System Pag	198			
VF BAF	19C			
VF BAF	1A0			
VF BAF	1A4			
VF BAF	1A8 1AC			
	VF BAR4 (RW)			
VF BAF	VF BAR5 (RW)			


#FTF2015

PCIe Controller Internal Configuration Space

Gen3 Control Register and DBI-Read-Only Write Enable Register

Byte Offset	Register Name
0x890 Gen3 Control Register	
0x8BC	DBI Read-Only Write Enable Register

- iATU (internal Address Translation Unit) registers
 - Accessed by using the Indirect Addressing scheme

Required POR Configuration Before Link Training

- POR configuration to be done before de-asserting HRESET# by loading RCW during HRESET# assertion period
 - 1) Host/Agent Mode Root Complex (RC) / Endpoint (EP) selection
 - 2) Where to boot from? boot ROM location
 - 3) Normal boot or boot hold-off?
 - 4) SerDes related RCW configuration:
 - Link Width and Lane Assignment SRDS_PRTCL_Sn
 - Power down unused PLL SRDS_PLL_PD_PLLn
 - Select valid SerDes Ref. Clock frequency SRDS_PLL_REF_CLK_SEL_Sn
 - Set desired link speed of the PCI Express controller SRDS_DIV_PEX_Sn
 - 5) Minimum CCB frequency selection
 - 6) PBI code execution if any
 - 7) Device can now proceed to de-assert HRESET#
 - □ SerDes will be released from reset and SerDes PLL locks.
 - □ This kicks off the PCI Express link training automatically

PCIe Controller Initialization After Link Training – RC Mode

- Internal configuration space registers PEXn Block Offset + Register Offset
 - 1) DBI Read-Only Write Enable Register (0x8BC)
 - 2) iATU Registers (0x900 0x 91C)
- Standard configuration space registers PEXn Block Offset + Register Offset
 - 1) PCI Compatible Configuration Header (Type 1): 0x00 0x3C
 - □ Minimum to configure:
 - Command Register,
 - BAR0 Register (if allowing EPs to access RC's internal CCSR space)
 - Bus Number Registers,
 - Mem_Base/Limit Register,
 - Prefetchable Mem_Base/Limit Register,
 - Bridge Control Register

PCIe Controller Initialization After Link Training – RC Mode

- Standard configuration space registers PEXn Block Offset + Register Offset (continue)
 - 2) PCI Compatible Device-Specific Configure Space: 0x40 0xFF
 - □ Power Management Capability Structure: 0x40 0x47
 - Used by OS/PM Driver, normally no need to configure
 - □ PCI Express Capability Structure: 0x70 0xA3
 - Minimum to configure:
 - Device Control Register
 - Link Control Register, Root Control Register
 - 3) PCI Express Advanced Error Report. Capability Structure: 0x100 0x137
 - □ Minimum to configure:
 - Uncorrectable Error Mask Register, Correctable Error Mask Register
 - Root Error Command Register
 - 4) PCI Express ARI Extended Capability Structure: 0x148 0x14F
 - Minimum to configure (for ARI Forwarding-Capable RC):
 - ARI Control Register

Caveat before initiating any transaction

- For RC
 - Always check & confirm that the link is up before issuing any outbound configuration cycle to downstream devices
 - Keep Command Register [Bus Master Enable, Memory Space] bits clear until bus scan is finished, all devices are fully configured and ready for memory transaction

For EP

- Boot loader needs to finish the EP initialization as fast as possible there is only 100 msec allowed between the de-assertion of Slot Reset and EP's readiness to accept configuration cycles from the remote host
- Always check & confirm that the link is up and Command Register [Bus Master Enable, Memory Space] bits are set by the remote RC before initiating any memory transactions

iATU (internal Address Translation Unit) Register Map

- Using an *Indirect Addressing scheme* to access the registers except the Index Register
 - Each register address actually has two registers implemented:
 - One Outbound and one Inbound
 - Always write to the Index Register first before touching ANY OTHER iATU registers
 - The Index Register only has two bit fields defined:
 - Bit [31], REGION_DIR → 0b for Outbound; 1b for Inbound
 - Bit [2:0], REGION_INDEX → valid setting = 000b to 101b to cover all 6 regions (windows)

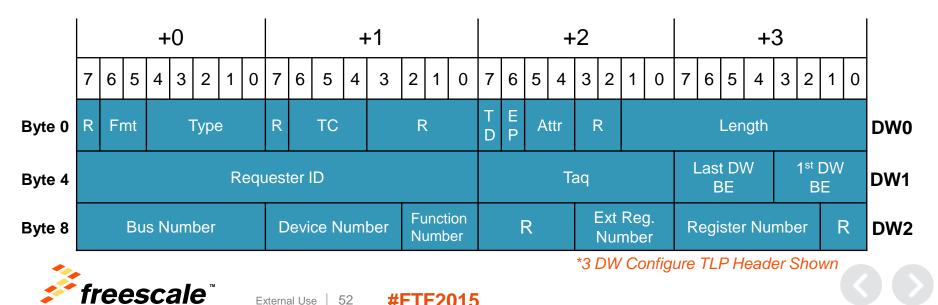

Byte Offset	Description		
0x900	iATU Index Register → Controls which particular region's registers to be accessed right after		which particular region's registers to be accessed right after
0x904	iATU Region Control 1 Register	Controls	some programmable bit fields of a TLP header DW0
0x908	iATU Region Control 2 Register → Select the MATCH_MODE to use and REGION_EN bit		
0x90C	iATU Region Lower Base Address Register \rightarrow Controls the start & end address of a region prior to		\rightarrow Controls the start & end address of a region prior to
0x910	iATU Region Upper Base Address Register - translation.		
0x914	iATU Region Limit Address Register J → The Limit is the bits [31:12] of the end address of base		
0x918	iATU Region Lower Target Address Register $2 \rightarrow$ Controls the start & end address of a region after the		
0x91C	iATU Region Upper Target Address Register 🦵 translation.		
0x920	iATU Region Control 3 Register → Used by SR-IOV EP		

Table 20-239. iATU Register Map

- · What do we need to generate an outbound 3DW Configuration TLP?
 - DW0: → Need to program the Type only!
 - Fmt = 00b for CfgRd0 and CfgRd1; 10b for CfgWr0 and CfgWr1 → derived from ARM core's instruction
 - Program the "Type" bit field in the IATU_REGION_CTRL_1_OFF_OUTBOUND_0 register: 00100 vs. 00101
 - DW1: \rightarrow No need to program! Controller hardware fills in the following:
 - Requester ID = RC's Bus# : Device# : Function# = 0x00
 - Last DW Byte Enable and First DW Byte Enable: determined by ARM core's instruction
 - DW2: → Completer's Bus#, Dev#, Function# and Register# to be accessed!
 - Completer's B:D:F is derived from the iATU region's translated Target Address bits [31:16]
 - Completer's Ext. Register Number and Register Number are derived from the iATU region's translated Target Address bits [11:2]

 The mapping of the translated Target Address [31:16] to the completer's Bus# : Device# : Function#

XALI0/1/2 or AHB/AXI Slave Interface Bits	CFG TLP Header Field
31:24	Bus Number
23:19	Device Number
18:16	Function Number
11:8	Extended Register Number
7:2	Register Number

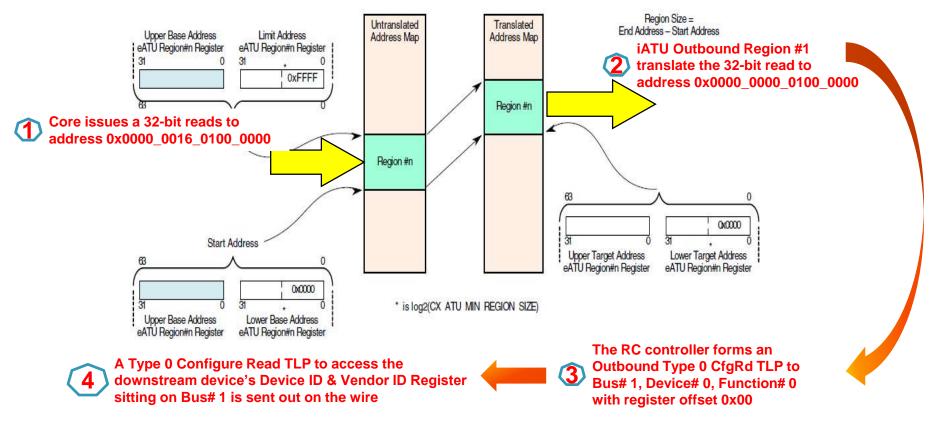
- iATU register programming procedure using PEX4 as example:
 - 1) Set up the Index Register
 - □ Write 0x0000_0001 to Index Register at offset 0x900
 - ♦ Note 1: This sets REGION_DIR = 0 and REGION_INDEX = 001 → use Region# 1 as outbound
 - Note 2: From now on until the next write to the Index Register, all the iATU registers touched between 0x904 and 0x920) are the "_OUTBOUND_" copies of the registers.

2) Set up the Region Base and Limit Address Registers (watch: max 40 bits)

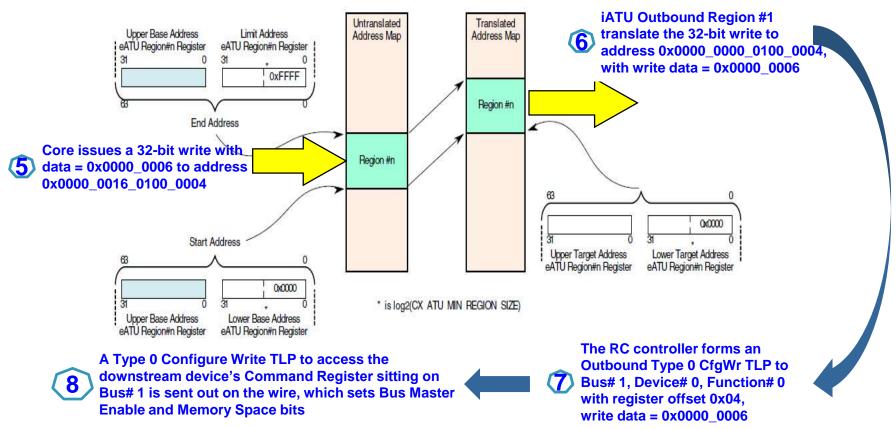
- □ Write 0x0000_0000 to Region# 1's Lower Base Address Register at offset 0x90C
- □ Write 0x0000_0016 to Region# 1's Upper Base Address Register at offset 0x910
- □ Write 0xFFFF_FFF to Region# 1's Limit Address Register at offset 0x914
 - Note: This configures the Region# 1 as an 4-Gbyte outbound region with the following base address:
 0x0000_0016_0000_0000 0x0000_0016_FFFF_FFFF (valid internal system address for PEX4)
- 3) Set up the Region Target Address Registers

External Use 54

- □ Write 0x0000_0000 to Region# 1's Lower Target Address Register at offset 0x918
- □ Write 0x0000_0000 to Region# 1's Upper Target Address Register at offset 0x91C
 - Note: This configures the 4-Gbyte outbound Region# 1's target address as 0x0000_0000_00000_0000 – 0x0000_0000_FFFF_FFFF (bottom 4 Gbytes)


- iATU register programming procedure using PEX4 as example (continue):
 - 4) Set up the Region Control 1 Register
 - □ Write 0x0000_0004 to Region# 1's Control 1 Register at offset 0x904
 - ♦ Note: This sets the TYPE = 00100b → Outbound Region# 1 will be used to generate Type 0 CFG TLP
 - 5) Enable the Region# 1 by writing to Region Control 2 Register

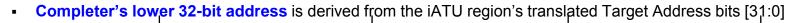
□ Write 0x8000_0000 to Region# 1's Control 2 Register at offset 0x908

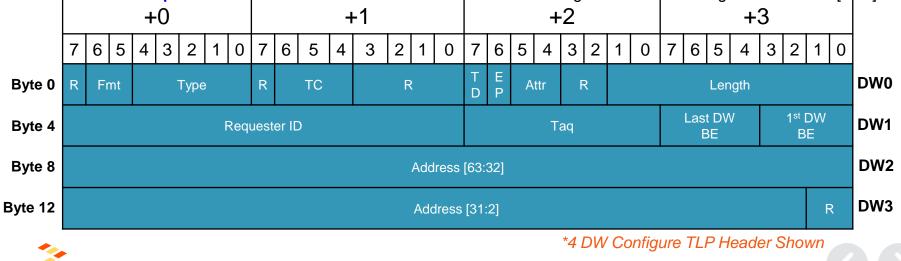


- PEX4 RC Outbound CfgRd0 TLP Generation Example
 - Type 0 Configure Read TLP to the Device ID & Vendor ID Register of the downstream device sitting on Bus# 1

- PEX4 RC Outbound CfgWr0 TLP Generation Example
 - Type 0 Configure Write TLP to set the Command Register [Bus Master Enable, Memory Space] bits of the downstream device sitting on Bus# 1

#FTF2015




iATU Programming Example #2 – RC, Outbound MRd

- What do we need to generate an outbound 4DW Memory Read TLP?
 - DW0: → Need to program the Type only!
 - Fmt = 00b for 32-bit MRd; 01b for 64-bit MRd → Rd is derived from the transaction type at AXI interface
 - Program the "Type" bit field in the IATU_REGION_CTRL_1_OFF_OUTBOUND_0 register: 00000b for Mem.
 - DW1: \rightarrow No need to program! Controller hardware fills in the following:
 - Requester ID = RC's Bus# : Device# : Function# = 0x00
 - Last DW Byte Enable and First DW Byte Enable: determined by internal bus master's transaction address
 - DW2: → Completer's upper 32-bit address!
 - Completer's upper 32-bit address is derived from the iATU region's translated Target Address bits [63:32]
 - DW3: → Completer's lower 32-bit address!

External Use 58

eescale

- iATU register programming procedure using PEX4 as example:
 - 1) Set up the Index Register
 - □ Write 0x0000_0002 to Index Register at offset 0x900
 - ♦ Note 1: This sets REGION_DIR = 0 and REGION_INDEX = 010 → use Region# 2 as outbound
 - Note 2: From now on until the next write to the Index Register, all the iATU registers touched between 0x904 and 0x920) are the "_OUTBOUND_" copies of the registers.

2) Set up the Region Base and Limit Address Registers (watch: max 40 bits)

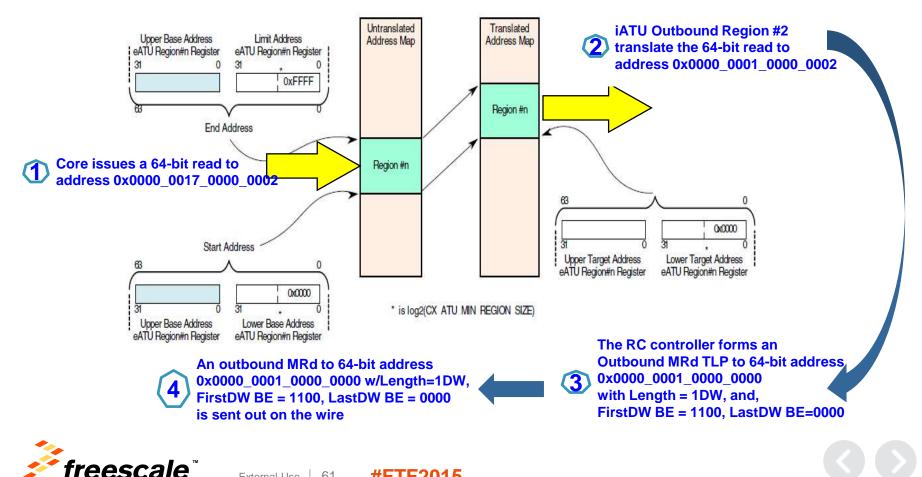
- □ Write 0x0000_0000 to Region# 2's Lower Base Address Register at offset 0x90C
- □ Write 0x0000_0017 to Region# 2's Upper Base Address Register at offset 0x910
- □ Write 0x0FFF_FFFF to Region# 2's Limit Address Register at offset 0x914
 - Note: This configures the Region# 2 as an 256-Mbyte outbound region with the following base address:
 0x0000_0017_0000_0000 0x0000_0017_0FFF_FFFF (valid internal system address for PEX4)

3) Set up the Region Target Address Registers

- □ Write 0x0000_0000 to Region# 2's Lower Target Address Register at offset 0x918
- □ Write 0x0000_0001 to Region# 2's Upper Target Address Register at offset 0x91C

Note: This configures the 256-Mbyte outbound Region# 2's target address as
 0x0000_0001_0000_0000 – 0x0000_0001_0FFF_FFFF (256 Mbyte right above the bottom 4 Gbyte)

- iATU register programming procedure using PEX4 as example (continue):
 - 4) Set up the Region Control 1 Register


External Use 60

- □ Write 0x0000_0000 to Region# 2's Control 1 Register at offset 0x904
 - ♦ Note: This sets the TYPE = 00000b → Outbound Region# 2 will be used to generate Memory Rd or Wr TLP
- 5) Enable the Region# 2 by writing to Region Control 2 Register

□ Write 0x8000_0000 to Region# 2's Control 2 Register at offset 0x908

- PEX4 RC Outbound 64-bit MRd TLP Generation Example
 - Outbound MRd TLP to read 2 bytes at PCIe 64-bit address 0x0000 0001 0000 0002

iATU Programming Example #3 – RC, Inbound MRd

- How do we handle an inbound 4DW Memory Read TLP received from the wire?
 - DW0: \rightarrow Need to program the Type only for the inbound region
 - Fmt = 00b for 32-bit MRd; 01b for 64-bit MRd → Rd is derived from the inbound MRd TLP
 - Program the "Type" bit field in the IATU_REGION_CTRL_1_OFF_INBOUND_0 register: 00000b for Mem.
 - DW1: \rightarrow No need to program! Controller hardware fills in the following:
 - Requester ID = RC's Bus# : Device# : Function# = This is now the downstream device's B#:D#:F#
 - Last DW Byte Enable and First DW Byte Enable: first and last DW byte offset address
 - DW2: → Completer's (LS2 RC's) upper 32-bit address!
 - Completer's upper 32-bit address will be compared/matched with iATU region's Base Address bits [63:32]
 - DW3: → Completer's (LS2 RC's) lower 32-bit address!

External Use | 62

reescale

iATU Programming Example #3 – RC, Inbound MRd (cont.)

• iATU register programming procedure – using PEX4 as example:

1) Set up the Index Register

- □ Write 0x8000_0001 to Index Register at offset 0x900
 - ♦ Note 1: This sets REGION_DIR = 1 and REGION_INDEX = 001 → use Region# 1 as inbound
 - Note 2: From now on until the next write to the Index Register, all the iATU registers touched between 0x904 and 0x920) are the "_INBOUND_" copies of the registers.

2) Set up the Region Base and Limit Address Registers (external side now)

- □ Write 0x0000_0000 to Region# 1's Lower Base Address Register at offset 0x90C
- □ Write 0xA000_0000 to Region# 1's Upper Base Address Register at offset 0x910
- Write 0x0FFF_FFFF to Region# 1's Limit Address Register at offset 0x914
 - Note: This configures the Region# 1 as an 256-Mbyte inbound region with the following base address at PCIe side: 0xA000_0000_0000 – 0xA000_0000_0FFF_FFFF

3) Set up the Region Target Address Registers (internal side now)

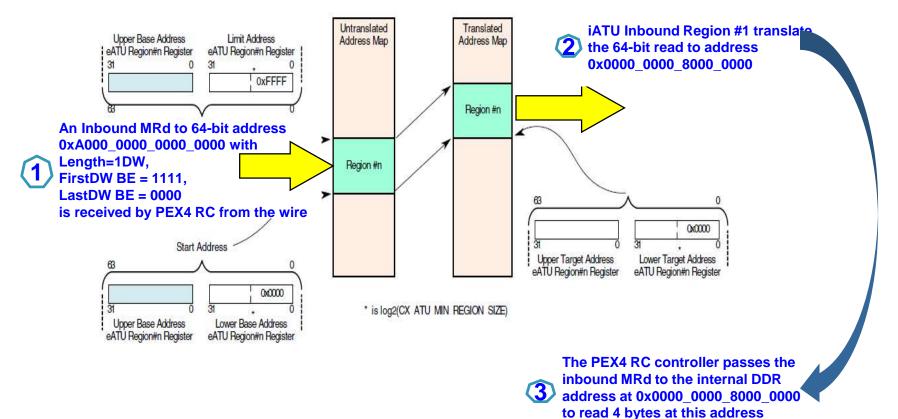
- □ Write 0x8000_0000 to Region# 1's Lower Target Address Register at offset 0x918
- □ Write 0x0000_0000 to Region# 1's Upper Target Address Register at offset 0x91C
 - Note: This configures the 256-Mbyte inbound Region# 1's target address at DDR as:

0x0000_0000_8000_0000 - 0x0000_0000_8FFF_FFFF (256 Mbyte above 0x8000_0000 in DDR)

iATU Programming Example #3 – RC, Inbound MRd (cont.)

- iATU register programming procedure using PEX4 as example (continue):
 - 4) Set up the Region Control 1 Register

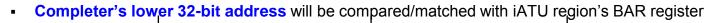
External Use | 64

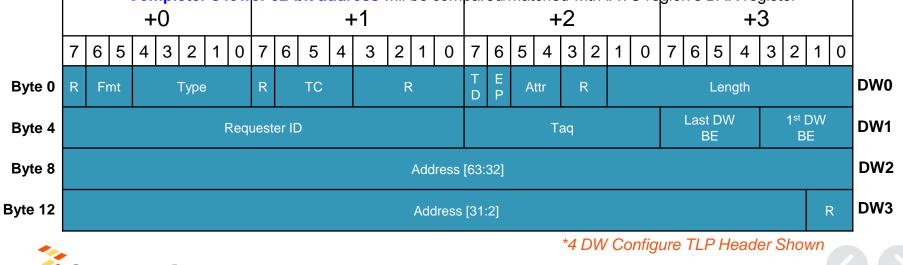

- □ Write 0x0000_0000 to Region# 1's Control 1 Register at offset 0x904
 - ♦ Note: This sets the TYPE = 00000b → Inbound Region# 1 will be used to generate Memory Rd or Wr TLP
- 5) Enable the Region# 1 by writing to Region Control 2 Register

□ Write 0x8000_0000 to Region# 1's Control 2 Register at offset 0x908

iATU Programming Example #3 – RC, Inbound MRd (cont.)

- Inbound 64-bit MRd TLP Handling by PEX4 RC Example
 - Inbound MRd TLP to read 4 bytes at internal DDR address 0x0000_0000_8000_0000




#FTF2015

- How do we handle an inbound 4DW Memory Read TLP received from the wire?
 - DW0: \rightarrow Need to program the Type for the inbound region
 - Fmt = 00b for 32-bit MRd; 01b for 64-bit MRd → Rd is derived from the inbound MRd TLP
 - Program the "Type" bit field in the IATU_REGION_CTRL_1_OFF_INBOUND_0 register: 00000b for Mem.
 - DW1: \rightarrow No need to program! Controller hardware fills in the following:
 - Requester ID = RC's Bus# : Device# : Function# = This is now the upstream remote RC's B#:D#:F#
 - Last DW Byte Enable and First DW Byte Enable: first and last DW byte offset address
 - DW2: → Completer's (LS2 EP's) upper 32-bit address!
 - Completer's upper 32-bit address will be compared/matched with iATU region's Upper BAR register
 - DW3: → Completer's (LS2 EP's) lower 32-bit address!

External Use | 66

reescale

- iATU register programming procedure using PEX1 as example:
 - 1) Set up the Index Register
 - □ Write 0x8000_0001 to Index Register at offset 0x900
 - ♦ Note 1: This sets REGION_DIR = 1 and REGION_INDEX = 001 → use Region# 1 as inbound
 - Note 2: From now on until the next write to the Index Register, all the iATU registers touched between 0x904 and 0x920) are the "_INBOUND_" copies of the registers.

2) Set up the Region Target Address Registers (internal side now)

- □ Write 0x8000_0000 to Region# 1's Lower Target Address Register at offset 0x918
- □ Write 0x0000_0000 to Region# 1's Upper Target Address Register at offset 0x91C
 - Note: This configures the 256-Mbyte inbound Region# 1's target address at DDR as:

0x0000_0000_8000_0000 - 0x0000_0000_8FFF_FFFF (256 Mbyte above 0x8000_0000 in DDR)

3) No need to set up Region Base and Limit Address Registers (external side)

 Note: Don't have to configure them since we will be using BAR Match Mode instead of Address Match Mode for EP's inbound memory access

5

- iATU register programming procedure using PEX1 as example (continue):
 - 4) Set up the Region Control 1 Register
 - □ Write 0x0000_0000 to Region# 1's Control 1 Register at offset 0x904
 - ♦ Note: This sets the TYPE = 00000b → Inbound Region# 1 will be used to generate Memory Rd or Wr TLP

5) Set up and Enable the Region# 1 by writing to Region Control 2 Register

- □ Write 0xC000_0200 to Region# 1's Control 2 Register at offset 0x908
 - Note: This configures the MATCH_MODE = 1b, BAR_NUM = 010b → Inbound Region# 1 is enabled and will be using BAR Match Mode (BAR2 at PEX1 EP's Type 0 Header offset 0x18) for inbound MRd and MWr access

- iATU register programming procedure using PEX1 as example (continue):
 - Note that the Step# 6 and 7 below are only required when the BAR is disabled and re-enabled again. By default, all BARs are enabled. The Prefetchable and Memory Space bits of the BAR2 and BAR4 are also set by default.
 - 6) Set up the PEX1 EP's BAR2_MASK_REG
 - □ Write 0x0000_0001 to PEX1 EP's BAR2_MASK_REG at offset 0x1018
 - Note 1: Uses the shadow mask register for BAR2 to enable the BAR2. Just enable it first. Don't set the mask yet.
 - Note 2: The BAR2_MASK_REG shadow register defines 2 bit fields: Bit [0] = BAR enable; Bit [31:1] = BAR Mask, Write-Only, writing 1 to a bit means it's part of the size.

7) Set up the PEX1 EP's BAR2 register's Prefetchable and 64-bit Mem. Bits

- □ Write 0x0000_0001 to PEX1 EP's configure offset 0x8BC.
 - Note: This turns on the DBI_RO_WR_EN bit, in order to write to BAR2 that is Read-Only in normal mode.
- □ Write 0x0000_000C to PEX1 EP's BAR2 Register at Type 0 Header offset 0x18
 - ✤ Note: This configures BAR2 as a pre-fetchable 64-bit memory BAR.
- □ Write 0x0000_0000 to PEX1 EP's configure offset 0x8BC
 - * Note: This turns off the DBI_RO_WR_EN bit to return BAR2 back as Read-Only register.

- iATU register programming procedure using PEX1 as example (continue):
 - 8) Set up the BAR Mask (Size) in PEX1 EP's BAR2_MASK_REG

 Write 0x0FFF FFFF to PEX1 EP's BAR2 MASK REG at offset 0x1018
 - ✤ Note 1: Keep enable bit turned on at the shadow mask register for BAR2.
 - Note 2: The BAR2_MASK_REG shadow register's BAR Mask Bits are at [31:1]. The above setting reflects a size mask of 0x0FFF_FFFF, which is 256 MB. The bits [31:28] = 0x0, which will be writeable by the remote RC to configure a BAR2's address later.

9) Set up the BAR Mask (Size) in PEX1 EP's BAR3_MASK_REG

□ Write 0x0000_0000 to PEX1 EP's BAR3_MASK_REG at offset 0x101C

 Note: This makes all the bits of BAR3 to be writable by the remote RC later to configure the BAR3 at PEX1 EP's Type 0 Header offset 0x1C. BAR3 becomes the upper 32-bit BAR address of this 64-bit BAR2 & BAR3 pair.

- Inbound 64-bit MRd TLP Handling by PEX1 EP Example
 - Inbound MRd TLP to read 4 bytes at internal DDR address 0x0000 0000 8000 0000 This is the PCIe BAR **PEX1 EP's Type 0 Header** Memory Translated iATU Inbound Region #1 translat Space Address Map BAR3 & 2 Pair Up-Limit the 64-bit read to address configured 31 0x0000 0000 8000 0000 31 0 by remote **0xA000 0000 0x0FFF FFFF** RC Region #n An Inbound MRd to 64-bit address 0xA000 0000 0000 0000 with Length=1DW, Region #n **FirstDW BE = 1111**, LastDW BE = 0000 is received by PEX1 EP from the wire, and hits its BAR2-3 pair 0x0000 Start Address Upper Target Address Lower Target Address eATU Region#n Register eATU Region#n Register 0xA000 0000 0x0000 0000 31 * is log2(CX ATU MIN REGION SIZE) 0 PEX1 PEX1 BAR3 BAR2 Register Register The PEX1 EP controller passes the inbound MRd to the internal DDR Configured address at 0x0000 0000 8000 0000 by remote RC to read 4 bytes at this address

Caveat for iATU Configuration

- Always start with programming the Index Register first and remember any further access to the rest of iATU registers is now tied to the copy of the "configured region direction and number"
- Understand the correct meaning of the Base and Target Registers
 - Base refers to the iATU side before address translation
 - Target refers to the iATU side after the address translation
- It's better to program the internal side registers (could be either Base or Target, depending on outbound or inbound).
- Region Control 2 Register [MATCH_MODE] usage guideline for inbound memory transactions
 - For RC mode, set MATCH_MODE = Address Match Mode
 - For EP mode, set MATCH_MODE = BAR Match Mode, then follow the Example #4 to configure the BARn_MASK_REG (shadow) and BARn registers.

Summary

#FTF2015

Summary

- PCI Express is a complicated high-speed serial data transmission protocol with 3 layers defined: Transaction Layer, Data Link Layer, and Physical Layer.
- A good understanding of the PCI and PCIe specification will speed up the development and debug process.
- Plan ahead with QCS to ensure the correct RCW configuration is used for SerDes Lanes & related PLLs, and PCI Express required reference clock frequency and maximum speed desired.
- The LS2085A integrated PCI Express controllers features a new internal programming model that needs to be followed.

Useful References

- Books:
 - PCI System Architecture, Fourth Edition, Tom Shanley, Don Anderson, MindShare, Inc., 2002
 - PCI Express System Architecture, Ravi Budruk, Don Anderson, Tom Shanley, MindShare, Inc., 2006
- Freescale AppNotes:
 - AN4311, SerDes Reference Clock Interfacing and HSSI Measurements Recommendations
- PCI-SIG Specifications:
 - PCI Local Bus Specification, Revision 2.3, March 29, 2002
 - PCI Bus Power Management Interface Specification, Revision 1.2, March 3, 2004
 - PCI Express Base Specification, Revision 1.0a, April 15, 2003
 - PCI Express Base Specification, Revision 1.1, March 28, 2005
 - PCI Express Base Specification, Revision 2.0, December 20, 2006
 - PCI Express Base Specification, Revision 2.1, March 04, 2009
 - PCI Express Base Specification, Revision 3.0, November 10, 2010
 - PCI Express Card Electromechanical Specification, Revision 1.1, March 28, 2005
 - PCI Express Card Electromechanical Specification, Revision 2.0, April 11, 2007
 - PCI Express Card Electromechanical Specification, Revision 3.0, July 21, 2013
- Tools
 - QCVS tool
 - <u>http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE&fsrch=1&sr=1</u>
 <u>&pageNum=1</u>

Freescale Has World Class Support....and MORE

Global Technical Information Center Design & Support Resource

Networking Applications Team Depth of Expertise & Knowledge

Design With Freescale, Freescale Technology Forum Training

Networking Software and Services Group

- Commercial Solutions
- Engineering Services
- Guaranteed Performance
- Service Level Agreement Support...and MORE
- Visit Pedestal 415 in the Technology Lab

External Use 76

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use