

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Manufacturing Tool V2 (MFGTool2) Linux or

Android Firmware Development Guide

Contents
How to Configure U-Boot and Kernel Image for MFG. .. 2

U-Boot: ... 2

Kernel: ... 3

How to Generate U-Boot and Kernel Image for MFG ... 3

Please refer to the BSP User Guide, chapter Build Manufacturing Firmware. 3

How to Add UUC into Rootfs for MFGTool. ... 4

MFG Linux Structure Demonstration .. 4

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

MFGTool2 Linux or Android Firmware Development Guide

2 Freescale Semiconductor

How to Configure U-Boot and Kernel Image for MFG.

U-Boot:
1. Add Mfgtool configuration header file in : ${u_boot_root}\include\configs

The file name should align with existing configuration file name. Ex. mx6q_sabresd.h is used

to generate normal U-Boot and mx6q_sabresd_mfg.h is used to generate the U-Boot for

MFGTool firmware.

Generally, you can create it from the existing configuration file.

The following MACROS must be defined:

 #define CONFIG_MFG

 #define CONFIG_CMDLINE_TAG

 #define CONFIG_REVISION_TAG

 #define CONFIG_SETUP_MEMORY_TAGS

 #define CONFIG_INITRD_TAG

 #define CONFIG_BOOTDELAY 0

 #define CONFIG_BOOTARGS "console=ttymxc0,115200 "\

 "rdinit=/linuxrc"

 #define CONFIG_BOOTCOMMAND "bootm 0x10800000 0x10c00000"

 ; 0x10800000 is the load address of the kernel image. It neesd to be changed according

to your specific platform memory configuration.

 ; 0x10c00000 is the initrd address. It needs to be changed according to your specific

platform memory configuration.

 #define CONFIG_ENV_IS_NOWHERE 1;avoid reading U-Boot command from storage.

If a new bsp arg needs to be added, one can add it by following the contents in

CONFIG_BOOTARGS, for instance:

 #define CONFIG_BOOTARGS "console=ttymxc0,115200 "\

 "rdinit=/linuxrc arm_freq=800"

2. Build the uboot bin for MFGTool V2.

3. Copy the uboot bin to the “Profiles\${TARGET_PROFILE_NAME}\OS Firmware”, such as:

“Profiles\MX6Q Linux Update\OS Firmware”. This uboot bin file must be located in this

directory.

4. Rename the uboot bin to what you want. Please note that it should align with the file name

assigned in the ucl2.xml operation list.

For example, in your operation list, there should be a <CMD/> as below:

<CMD state="BootStrap" type="boot" body="BootStrap" file ="u-boot-mx6q-

arm2.bin" >Loading U-boot</CMD>

The name of your uboot bin should be “u-boot-mx6q-arm2.bin”.

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

MFGTool2 Linux or Android Firmware Development Guide

3 Freescale Semiconductor

Kernel:
1. Add new configuration for MFG firmware. Normally, you can copy it from the existing

configuration file.

If you take the i.MX 6 for instance, the configuration file is usually located in

arch/arm/configs/. There is an imx6_defconfig which is used for i.MX 6 serial. We can add an

imx6_updater_defconfig for MFG firmware. Note the following for the

imx6_updater_defconfig:

 Must build in USB and storage related driver, such as SD Card ...

 Must build in mass storage gadget class driver

 Must define CONFIG_FSL_UTP=y

 Build in initramfs support

 Enable watchdog

CONFIG_WATCHDOG=y

CONFIG_SOFT_WATCHDOG=y

2. Build the kernel image for MFGTool V2.

3. Copy kernel image to the “Profiles\${TARGET_PROFILE_NAME}\OS Firmware”, such as:

“Profiles\MX6Q Linux Update\OS Firmware”. This kernel image file must be located in this

directory.

4. Rename kernel image to what you want. Please note that it should align with the file name

assigned in the ucl2.xml operation list.

For example, in your operation list, there should be a <CMD/> as below:

<CMD state="BootStrap" type="load" file="uImage" address="0x10800000"

loadSection="OTH" setSection="OTH" HasFlashHeader="FALSE" >Loading

Kernel.</CMD>

The name of your uboot bin should be “uImage”.

How to Generate U-Boot and Kernel Image for MFG

Please refer to the BSP User Guide, chapter Build Manufacturing Firmware.

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

MFGTool2 Linux or Android Firmware Development Guide

4 Freescale Semiconductor

How to Add UUC into Rootfs for MFGTool.
UUC is an application which is running firmware on the target device. It is based on the UTP/USB,

receiving and executing the commands from Host side transferred through the <CMD/> defined

in ucl2.xml. It should be added into rootfs for MFGTool.

1. Configuration file:

 Add new configuration file in config\platform\imx, such as mx6q_arm2_mfg_config.

 Please refer to config\platform\imx\mx6q_arm2_mfg_config as an example.

2. Add config/platform/imx/imxXX_updater.cf

 config/plaftorm/imx/main.lkc , add U-Boot new configuration when PKG_KERNEL_UPDATER

is defined.

 config/platform/imx/main.lkc, add kernel new configuration when PKG_KERNEL_UPDATER

is defined.

 Add CONFIG_PKG_UUC=y in imxXX_updater.cf to enable "UUC" package.

 Add new cf at config/platform/imx/preconfigs.lkc, default imx6q_updater.cf if

(PCF_PLATFORM_IMX6Q && PCF_UPDATER_PROFILE) is selected.

3. ./ltib, choose your platform and "mfg firmware profile", then config/platform/imx/.config

imxXX_updater.cf

MFG Linux Structure Demonstration

UTP Device Driver

Kernel driver works in UTP protocol. It is located in:

KERNEL_ROOT/drivers/usb/gadget/file_storage.c

KERNEL_ROOT/drivers/usb/gadget/fsl_updater.c

utp_handle_message is the entry of each UTP command. The command is defined in file_storage.c

It is a char (in fact, it is registered as misc driver) device driver, and combines with usb mass storage driver

file_storage. It mainly handles UTP messages according to freescale UTP protocol and kinds of message

types. It supplies the read/write interface for user application to get the UTP message and returns its

execution results.

There are two wait queues, utp_context.wq and utp_context.list_full_wq. The utp_context.wq is used to

sync read/write UTP messages, and the utp_context.list_full_wq is used to avoid so many unhandled UTP

PUT(the data from the host to device) messages.

At the very beginning of utp_handle_command defined in uu.c, a function utp_can_busy is called to

decide if a command needs a busy stage. If the command needs it, then UUC sends busy state to UTP

device.

There are two double-linked lists for read/write UTP message. The UTP message will be listed at these two

double-linked lists.

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

MFGTool2 Linux or Android Firmware Development Guide

5 Freescale Semiconductor

UUC

UUC is responsible for command execution in a shell. It is located in: uuc-xxx-version/uu.c

It is the user program that decodes the UTP message and executes it. It is blocked when reading UTP

message. The device driver will unblock the UUC process after it gets the UTP message from the host.

The UUC returns error message with non-zero value in UTP message to the device driver.

Below is the work flow for UTP message handling. EXEC and PUT data are taken as examples:

Freescale Semiconductor Document Number: MFGTool V2 (MFGTool2) Linux or Android Firmware Development Guide

MFGTool2 Linux or Android Firmware Development Guide

6 Freescale Semiconductor

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine,
Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their
respective owners. The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks licensed by
Power.org. The ARM Powered Logo is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2012. All rights reserved.

