
Document Number: 924-76389
Rev. 2010.12

12/2010

i.MX28 EVK Linux
Reference Manual

Information in this document is provided solely to enable system and software implementers to

use Freescale Semiconductor products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits or integrated circuits based on

the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any

products herein. Freescale Semiconductor makes no warranty, representation or guarantee

regarding the suitability of its products for any particular purpose, nor does Freescale

Semiconductor assume any liability arising out of the application or use of any product or

circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Freescale

Semiconductor data sheets and/or specifications can and do vary in different applications and

actual performance may vary over time. All operating parameters, including “Typicals” must

be validated for each customer application by customer’s technical experts. Freescale

Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications

intended to support or sustain life, or for any other application in which the failure of the

Freescale Semiconductor product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Freescale Semiconductor products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Freescale

Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such unintended or

unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent

regarding the design or manufacture of the part.

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
 Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
 @hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks of
Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor iii

About This Book

Audience . xv
Conventions . xv
Definitions, Acronyms, and Abbreviations . xv
Suggested Reading . xviii

Chapter 1
Introduction

1.1 Software Base . 1-1
1.2 Features . 1-2

Chapter 2
Architecture

2.1 Linux BSP Block Diagram . 2-1
2.2 Kernel . 2-2
2.2.1 Kernel Configuration . 2-2
2.2.2 Machine Specific Layer (MSL) . 2-3
2.2.2.1 Memory Map . 2-3
2.2.2.2 Interrupts . 2-3
2.2.2.3 General Purpose Timer (GPT) . 2-3
2.2.2.4 DMA API . 2-4
2.2.2.5 Input/Output (I/O). 2-4
2.2.2.6 Pin Multiplexing . 2-4
2.2.2.7 Shared Peripheral Bus Arbiter (SPBA) . 2-5
2.3 Drivers . 2-5
2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver . 2-5
2.3.1.1 Debug Asynchronous Receiver/Transmitter (UART) . 2-5
2.3.1.2 Application Asynchronous Receiver/Transmitter (UART) . 2-6
2.3.2 Real-Time Clock (RTC) Driver . 2-6
2.3.3 Watchdog Timer (WDOG) Driver . 2-6
2.3.4 DCP. 2-7
2.3.5 i.MX28 Graphics . 2-7
2.3.5.1 LCDIF Driver . 2-8
2.3.5.2 LCD Panel Drivers . 2-8
2.3.5.3 Frame Buffer Driver . 2-8
2.3.5.4 Pixel Pipeline (PXP) Driver . 2-8
2.3.6 Sound Driver. 2-8
2.3.7 Keypad . 2-8
2.3.8 Memory Technology Device (MTD) Driver . 2-9
2.3.8.1 GPMI/NAND . 2-10
2.3.9 USB Driver . 2-10
2.3.9.1 USB Host-Side API Model. 2-10
2.3.9.2 USB Device-Side Gadget Framework . 2-11

Contents

i.MX28 EVK Linux Reference Manual

iv Freescale Semiconductor

2.3.9.3 USB OTG Framework . 2-11
2.3.10 General Drivers. 2-12
2.3.10.1 MMC/SD Host Driver . 2-12
2.3.10.2 Inter-IC (I2C) Bus Driver . 2-12
2.3.10.3 SPI Bus Driver . 2-13
2.3.10.4 Dynamic Power Management (DPM) Driver . 2-13
2.3.10.5 Low-Level Power Management Driver . 2-14
2.3.10.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver . 2-15
2.3.10.7 Backlight Driver . 2-15
2.3.10.8 LED Driver . 2-15
2.3.10.9 Power Source Manager and Battery Charger . 2-15
2.3.10.10 CPUFreq Driver . 2-16
2.4 Boot Loaders. 2-16
2.4.1 i.MX28 Boot Loader. 2-16
2.4.1.1 Boot Prep . 2-17
2.4.1.2 Linux Prep. 2-17
2.4.1.3 U-boot . 2-17

Chapter 3
Machine Specific Layer (MSL)

3.1 Interrupts . 3-1
3.1.1 Interrupt Hardware Operation. 3-1
3.1.2 Interrupt Software Operation . 3-2
3.1.3 Interrupt Source Code Structure . 3-2
3.1.4 Interrupt Programming Interface . 3-2
3.2 Timer. 3-3
3.2.1 Timer Hardware Operation . 3-3
3.2.2 Timer Software Operation . 3-3
3.2.3 Timer Features . 3-3
3.2.4 Timer Source Code Structure . 3-4
3.2.5 Timer Programming Interface . 3-4
3.3 Memory Map . 3-4
3.3.1 Memory Map Hardware Operation. 3-4
3.3.2 Memory Map Software Operation . 3-4
3.3.3 Memory Map Features . 3-4
3.3.4 Memory Map Source Code Structure . 3-4
3.3.5 Memory Map Programming Interface . 3-5
3.4 Pin Multiplexing . 3-5
3.4.1 Pin Multiplexing Hardware Operation . 3-5
3.4.2 Pin Multiplexing Software Operation. 3-5
3.4.3 Pin Multiplexing Source Code Structure . 3-5
3.4.4 Pin Multiplexing Programming Interface . 3-5
3.4.5 GPIO With Pin Multiplexing . 3-6

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor v

Chapter 4
Direct Memory Access Controller (DMAC) API

4.1 Hardware Operation . 4-1
4.2 Software Operation . 4-2
4.3 Source Code Structure . 4-2
4.4 Programming Interface . 4-2

Chapter 5
Persistent Bits Driver

5.1 Hardware Operation . 5-1
5.2 Software Operation . 5-1
5.3 Source Code Structure . 5-2
5.4 Menu Configuration Options . 5-2
5.5 Programming Interface . 5-2

Chapter 6
Unique ID on Boot Media

6.1 Software Operation . 6-1
6.2 Programming Interface . 6-1
6.3 Source Code Structure . 6-1
6.4 Menu Configuration Options . 6-2

Chapter 7
CPU Frequency Scaling (CPUFREQ) Driver

7.1 Software Operation . 7-1
7.2 Source Code Structure . 7-1
7.3 Menu Configuration Options . 7-2
7.3.1 Board Configuration Options . 7-2

Chapter 8
i.MX28 Static Power Management Driver

8.1 Hardware Operation . 8-1
8.2 Software Operation . 8-1
8.3 Source Code Structure . 8-2
8.4 Menu Configuration Options . 8-2

Chapter 9
Frame Buffer Driver

9.1 Hardware Operation . 9-1
9.2 Software Operation . 9-1
9.3 Menu Configuration Options . 9-2

i.MX28 EVK Linux Reference Manual

vi Freescale Semiconductor

9.4 Source Code Structure . 9-2

Chapter 10
LCD Interface (LCDIF) Driver

10.1 Hardware Operation . 10-1
10.2 Software Operation . 10-1
10.3 Source Code Structure . 10-1
10.4 Menu Configuration Options . 10-1
10.5 Programming Interface . 10-2

Chapter 11
Backlight Driver

11.1 Hardware Operation . 11-1
11.2 Software Operation . 11-1
11.3 Menu Configuration Options . 11-1
11.4 Source Code Structure . 11-2

Chapter 12
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

12.1 SoC Sound Card . 12-1
12.1.1 Stereo Codec Features . 12-2
12.1.2 Sound Card Information . 12-2
12.2 ASoC Driver Source Architecture . 12-3
12.3 Menu Configuration Options . 12-4
12.4 Hardware Operation . 12-4
12.4.1 Stereo Audio Codec . 12-4
12.5 Software Operation . 12-5
12.5.1 Sound Card Registration. 12-5
12.5.2 Device Open . 12-5

Chapter 13
Pixel Pipeline (PxP) Driver

13.1 Hardware Operation . 13-1
13.2 Software Operation . 13-1
13.3 Menu Configuration Options . 13-2
13.4 Source Code Structure . 13-3

Chapter 14
NAND GPMI Flash Driver

14.1 Hardware Operation . 14-1
14.2 Software Operation . 14-1

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor vii

14.2.1 Basic Operations: Read/Write . 14-1
14.2.2 Error Correction . 14-2
14.2.3 Boot Control Block Management . 14-2
14.2.4 Bad Block Handling . 14-2
14.2.5 Special NAND supporting . 14-2
14.3 Source Code Structure . 14-3
14.4 Menu Configuration Options . 14-3

Chapter 15
ENET IEEE-1588 Driver

15.1 Hardware Operation . 15-1
15.1.1 Transmit Timestamping . 15-1
15.1.2 Receive Timestamping . 15-2
15.2 Software Operation . 15-2
15.3 Source Code Structure . 15-2
15.4 Linux Menu Configuration Options . 15-2
15.5 Programming Interface . 15-3
15.5.1 IXXAT Specific Data structure Defines . 15-3
15.5.2 IXXAT IOCTL Commands Defines. 15-4

Chapter 16
Programmable 3-Port Ethernet Switch Driver

16.1 Hardware Operation . 16-2
16.1.1 Passthrough Mode. 16-3
16.1.2 Switch Mode . 16-4
16.2 Software Operation . 16-4
16.3 Source Code Structure . 16-5
16.4 Linux Menu Configuration Options . 16-5
16.5 Programming Interface . 16-5
16.5.1 Device Specific Defines . 16-5

Chapter 17
Low-Level Keypad Driver

17.1 Hardware Operation . 17-1
17.2 Software Operation . 17-1
17.3 Reassigning Keycodes . 17-1
17.4 Driver Features . 17-2
17.5 Source Code Structure . 17-2
17.6 Menu Configuration Options . 17-2
17.7 Programming Interface . 17-3
17.8 Interrupt Requirements . 17-3

i.MX28 EVK Linux Reference Manual

viii Freescale Semiconductor

Chapter 18
Touch Screen and ADC Drivers

18.1 Driver Overview . 18-1
18.2 Hardware Operation . 18-1
18.3 Software Operation . 18-2
18.4 Source Code Structure . 18-2
18.5 Menu Configuration Options . 18-2
18.6 Programming Interface (Exported API) . 18-2
18.7 Interrupt Requirements . 18-3

Chapter 19
Inter-IC (I2C) Driver

19.1 I2C Bus Driver Overview . 19-1
19.2 I2C Device Driver Overview . 19-1
19.3 Hardware Operation . 19-2
19.4 Software Operation . 19-2
19.4.1 I2C Bus Driver Software Operation . 19-2
19.4.2 I2C Device Driver Software Operation . 19-2
19.5 Driver Features . 19-3
19.6 Source Code Structure . 19-3
19.7 Menu Configuration Options . 19-3
19.8 Programming Interface . 19-3
19.9 Interrupt Requirements . 19-3

Chapter 20
Data Co-Processor (DCP) Driver

20.1 Hardware Operation . 20-1
20.2 Software Operation . 20-1
20.3 Source Code Structure . 20-2
20.4 Menu Configuration Options . 20-2
20.5 Programming Interface . 20-2
20.6 Unit Test . 20-2

Chapter 21
SPI Bus Driver

21.1 Hardware Operation . 21-1
21.2 Software Operation . 21-1
21.2.1 Transmitting Data . 21-1
21.2.2 Receiving Data . 21-2
21.3 Source Code Structure . 21-2
21.4 Menu Configuration Options . 21-2

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor ix

Chapter 22
MMC/SD/SDIO Host Driver

22.1 Hardware Operation . 22-1
22.2 Software Operation . 22-1
22.3 Driver Features . 22-2
22.4 Source Code Structure . 22-2
22.5 Menu Configuration Options . 22-2
22.6 Programming Interface . 22-2

Chapter 23
Universal Asynchronous Receiver-Transmitter (UART) Driver

23.1 Application UART . 23-1
23.1.1 Hardware Operation . 23-1
23.1.2 Software Operation . 23-1
23.1.3 Source Code Structure . 23-2
23.2 Debug UART . 23-2
23.2.1 Hardware Operation . 23-2
23.2.2 Software Operation . 23-2
23.2.3 Source Code Structure . 23-2
23.3 Menu Configuration Options . 23-2

Chapter 24
ARC USB Driver

24.1 Architectural Overview. 24-2
24.2 Hardware Operation . 24-2
24.3 Software Operation . 24-3
24.4 Driver Features . 24-3
24.5 Source Code Structure . 24-4
24.6 Menu Configuration Options . 24-5
24.7 Programming Interface . 24-7
24.8 Default USB Settings . 24-7
24.9 System WakeUp . 24-7
24.10 USB Wakeup usage . 24-7
24.10.1 How to enable usb wakeup system ability . 24-7
24.10.2 What kinds of wakeup event usb support . 24-8
24.10.3 How to close the usb child device power . 24-8

Chapter 25
Real Time Clock (RTC) Driver

25.1 Hardware Operation . 25-1
25.2 Software Operation . 25-1
25.3 Source Code Structure . 25-1

i.MX28 EVK Linux Reference Manual

x Freescale Semiconductor

25.4 Programming Interface . 25-2

Chapter 26
Watchdog (WDOG) Driver

26.1 Hardware Operation . 26-1
26.2 Software Operation . 26-1

Chapter 27
Battery Charger and Power Source Manager (PSM) Driver

27.1 Hardware Operation . 27-1
27.2 Software Operation . 27-1
27.3 Source Code Structure . 27-3
27.4 Menu Configuration Options . 27-4

Chapter 28
LED Pulse Width Modulator (PWM) Driver

28.1 Hardware Operation . 28-1
28.2 Software Operation . 28-1
28.3 Menu Configuration Options . 28-1
28.4 Source Code Structure . 28-1

Chapter 29
Frequently Asked Questions

29.1 NFS Mounting Root File System . 29-1
29.2 Using the Memory Access Tool . 29-1

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor xi

Tables
1-1 Linux BSP Supported Features ... 1-2
2-1 MSL Directories.. 2-3
3-1 Interrupt Files List... 3-2
3-2 Memory Map Files.. 3-4
3-3 IOMUX Through GPIO Files ... 3-5
3-4 Pin Multiplexing Source Files... 3-5
4-1 DMA API Files ... 4-2
5-1 Persistent Bits Driver Files ... 5-2
6-1 Unique ID Files ... 6-2
7-1 CPUFREQ Driver Files .. 7-2
8-1 Power Management Driver Files .. 8-2
9-1 Frame Buffer Driver Files ... 9-2
10-1 LCDIF Driver Files ... 10-1
11-1 Backlight Driver Files ... 11-2
12-1 External Stereo Codec ASoC Driver Source File ... 12-4
15-1 ENET 1588 File List ... 15-2
16-1 Port Assignment .. 16-2
16-2 Ethernet File List... 16-5
17-1 Keypad Driver Files .. 17-2
17-2 Keypad Interrupt Timer Requirements ... 17-3
18-1 Touch Screen Driver Files... 18-2
19-1 I2C Interrupt Requirements .. 19-3
24-1 USB Driver Files... 24-4
24-2 USB Platform Source Files ... 24-4
24-3 USB Platform Header Files... 24-4
24-4 USB Common Platform Files ... 24-5
24-5 Default USB Settings .. 24-7
25-1 RTC Driver File List ... 25-1
27-1 Battery Charger Driver Structure Fields ... 27-2
27-2 Battery Charger Driver Files ... 27-3

i.MX28 EVK Linux Reference Manual

xii Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor xiii

Figures
2-1 BSP Block Diagram .. 2-1
2-2 i.MX28 Kernel Graphic Components ... 2-7
2-3 MTD Architecture... 2-9
2-4 DPM High Level Design... 2-14
2-5 DPM Architecture Block Diagram ... 2-14
2-6 i.MX28 Boot Stream ... 2-17
12-1 ALSA SoC Software Architecture .. 12-1
12-2 ALSA Soc Source FIle Relationship .. 12-3
12-3 ... 12-3
15-1 IEEE 1588 Functions Overview ... 15-1
16-1 Switch Interface .. 16-2
16-2 Passthrough Mode Configuration Overview... 16-3
16-3 Switch Mode Configuration Overview ... 16-4
24-1 USB Block Diagram ... 24-2

i.MX28 EVK Linux Reference Manual

xiv Freescale Semiconductor

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor xv

About This Book
The Linux Board Support Package (BSP) represents a porting of the Linux Operating System (OS) to the
i.MX processors and its associated reference boards. The BSP supports many hardware features on the
platforms and most of the Linux OS features that are not dependent on any specific hardware feature.

Audience
This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific products.
The audience is expected to have a working knowledge of the Linux 2.6 kernel internals, driver models,
and i.MX processors.

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, and
file and directory names.

• Italic type indicates replaceable command or function parameters.
• Bold type indicates function names.

Definitions, Acronyms, and Abbreviations
The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address
translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm—used to encode and decode (or compress and
decompress) various types of data

CPU Central Processing Unit—generic term used to describe a processing core

i.MX50 ARM2 Linux Reference Manual

xvi Freescale Semiconductor

CRC Cyclic Redundancy Check—Bit error protection method for data communication

CSI Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is stored
in a lower address than the most significant byte. In big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling Federal
government requirements such as for security and interoperability but no acceptable industry standards

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, but Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes cleaning
the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message digest,
is a number generated from a string of text. The hash is substantially smaller than the text itself, and is generated
by a formula in such a way that it is extremely unlikely that some other text produces the same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to
video/still image sensors and displays

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication

ISR Interrupt Service Routine

Definitions and Acronyms (continued)

Term Definition

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor xvii

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices
on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port—16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used—a policy for line replacement in the cache

MMU Memory Management Unit—a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG
standards

Several standards of compression for moving pictures and video:
 • MPEG-1 is optimized for CD-ROM and is the basis for MP3
 • MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
 • MPEG-3 was merged into MPEG-2
 • MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high capacity
data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write, and read
capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths

physical
address

The address by which the memory in the system is physically accessed

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase angle
(a lock) on the frequency of an input, or reference, signal

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to create
other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the lighter
the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random
numbers as part of the security module

ROM Read Only Memory

Definitions and Acronyms (continued)

Term Definition

i.MX50 ARM2 Linux Reference Manual

xviii Freescale Semiconductor

Suggested Reading
The following documents contain information that supplements this guide:

•

ROM
bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-Time Integrity Checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—asynchronous serial communication to external devices

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of
480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

Definitions and Acronyms (continued)

Term Definition

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
The i.MX family Linux Board Support Package (BSP) supports the Linux Operating System (OS) on the
following processor:

• i.MX28 Applications Processor

The purpose of this software package is to support Linux on the i.MX family of Integrated Circuits (ICs)
and their associated platforms (EVK). It provides the necessary software to interface the standard
open-source Linux kernel to the i.MX hardware. The goal is to enable Freescale customers to rapidly build
products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-
specific drivers, hardware-independent software stacks, Graphical User Interface (GUI) components, Java
Virtual Machine (JVM), and applications required for a product. Some of these are made available in their
original open-source form as part of the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP
functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon
verification test suites.

1.1 Software Base
The i.MX BSP is based on version 2.6.35.3 of the Linux kernel from the official Linux kernel web site
(http://www.kernel.org). It is enhanced with the features provided by Freescale.

http://www.kernel.org

Introduction

i.MX53 EVK Linux Reference Manual

1-2 Freescale Semiconductor

1.2 Features
Table 1-1 describes the features supported by the Linux BSP for specific platforms.

Table 1-1. Linux BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine Specific Layer

MSL Machine Specific Layer (MSL) supports interrupts,
Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.
 • Interrupts (AITC/AVIC): The Linux kernel contains

common ARM code for handling interrupts. The MSL
contains platform-specific implementations of
functions for interfacing the Linux kernel to the
interrupt controller.

 • Timer (GPT): The General Purpose Timer (GPT) is
set up to generate an interrupt as programmed to
provide OS ticks. Linux facilitates timer use through
various functions for timing delays, measurement,
events, alarms, high resolution timer features, and so
on. Linux defines the MSL timer API required for the
OS-tick timer and does not expose it beyond the
kernel tick implementation.

 • GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction layer
between the various drivers and the configuration and
utilization of the system, including GPIO, IOMUX, and
external board I/O. The IO software module is
board-specific, and resides in the MSL layer as a
self-contained set of files. I/O configuration changes
are centralized in the GPIO module so that changes
are not required in the various drivers.

 • SPBA: The Shared Peripheral Bus Arbiter (SPBA)
provides an arbitration mechanism among multiple
masters to allow access to the shared peripherals.
The SPBA implementation under MSL defines the
API to allow different masters to take or release
ownership of a shared peripheral.

Chapter 3, “Machine Specific
Layer (MSL)”

All

DMAC Both AHB-to-APBH and AHB-to-APBX DMA support
configurable DMA descript chain.

Chapter 4, “Direct Memory Access
Controller (DMAC) API”

i.MX28

Power Management Drivers

Low-level PM
Drivers

The low-level power management driver is responsible
for implementing hardware-specific operations to meet
power requirements and also to conserve power on the
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.

Chapter 8, “i.MX28 Static Power
Management Driver”

i.MX28

CPU Frequency
Scaling

The CPU frequency scaling device driver allows the
clock speed of the CPUs to be changed on the fly.

Chapter 7, “CPU Frequency
Scaling (CPUFREQ) Driver”

i.MX28

Introduction

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-3

Multimedia Drivers

LCD The LCD interface driver supports the Samsung
LMS430xx 4.3” WQVGA LCD panel.

Chapter 10, “LCD Interface
(LCDIF) Driver”

i.MX28

Frame Buffer The frame buffer driver uses the Linux kernel frame
buffer driver framework. It implements the platform driver
for a frame buffer device. The implementation uses the
LCDIF API for generic LCD low-level operations.

Chapter 9, “Frame Buffer Driver” i.MX28

Back Light The LCD backlight driver uses the Linux kernel frame
buffer/backlight driver framework.

Chapter 11, “Backlight Driver” i.MX28

Pixel Pipeline The Pixel Pipeline (PxP) is a Linux kernel Video4Linux
driver.

Chapter 13, “Pixel Pipeline (PxP)
Driver”

i.MX28

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions. ALSA has a user-space
component called ALSAlib that can extend the features
of audio hardware by emulating the same in software
(user space), such as resampling, software mixing,
snooping, and so on. The ASoC Sound driver supports
stereo codec playback and capture through SSI.

Chapter 12, “Advanced Linux
Sound Architecture (ALSA)
System on a Chip (ASoC) Sound
Driver”

i.MX28

Memory Drivers

NAND MTD The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as UBIFS, CRAMFS and JFFS2. The driver
implementation supports the lowest level operations on
the external NAND Flash chip, such as block read, block
write and block erase as the NAND Flash technology
only supports block access. Because blocks in a NAND
Flash are not guaranteed to be good, the NAND MTD
driver is also able to detect bad blocks and feed that
information to the upper layer to handle bad block
management.

Chapter 14, “NAND Flash Driver i.MX28

Keypad The keypad driver interfaces Linux to the keypad
controller (KPP). The software operation of the keypad
driver follows the Linux keyboard architecture.

Chapter 17, “Low-Level Keypad
Driver”

i.MX28

Touch Screen
and ADC

A touch screen and associated add measurement
functions to the touch screen.

Chapter 18, “Touch Screen and
ADC Drivers”

i.MX28

DCP The DCP cryptography driver is used to accelerate
cryptography operations (AES) in the kernel space and
user-space.
The DCP support AES EBC encryption and decryption
by utilizing the hardware OTP KEY0 which is not
readable by software.

Chapter 20, “Data Co-Processor
(DCP) Driver”

i.MX28

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

Introduction

i.MX53 EVK Linux Reference Manual

1-4 Freescale Semiconductor

Bus Drivers

I2C The I2C bus driver is a low-level interface that is used to
interface with the I2C bus. This driver is invoked by the
I2C chip driver; it is not exposed to the user space. The
standard Linux kernel contains a core I2C module that is
used by the chip driver to access the bus driver to
transfer data over the I2C bus. This bus driver supports:
 • Compatibility with the I2C bus standard
 • Bit rates up to 400 Kbps
 • Standard I2C master mode
 • Power management features by suspending and

resuming I2C.

Chapter 19, “Inter-IC (I2C) Driver” i.MX28

CSPI The low-level Configurable Serial Peripheral Interface
(CSPI) driver interfaces a custom, kernel-space API to
both CSPI modules. It supports the following features:
 • Interrupt-driven transmit/receive of SPI frames
 • Multi-client management
 • Priority management between clients
 • SPI device configuration per client

Chapter 21, “SPI Bus Driver” i.MX28

MMC/SD/SDIO -
SDHC

The MMC/SD/SDIO Host driver is implemented using
the i.MX28 SSP component, which supports SD/MMC
mode.

Chapter 22, “MMC/SD/SDIO Host
Driver”

i.MX28

UART Drivers

Debug and
Application

UARTs

These are three serial UARTs. One that has no DMA
support and is intended to work as a debug console
(debug UART), and two are high-performance UARTs,
which are intended to be used by applications
(application UART, appUART).

Chapter 23, “Universal
Asynchronous
Receiver-Transmitter (UART)
Driver”

i.MX28

General Drivers

USB The USB driver implements a standard Linux driver
interface to the ARC USB-OTG controller.

Chapter 24, “ARC USB Driver” i.MX28

RTC This is the integrated Real Time Clock (RTC) module.
The RTC is used to keep the time and date while the
system is turned off. Additionally, it provides the PIE
(periodic interrupt at a specific frequency) and AIE (wake
up the system by providing an alarm) features.

Chapter 25, “Real Time Clock
(RTC) Driver”

i.MX28

WatchDog The Watchdog Timer module protects against system
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors. This
WDOG implements the following features:
 • Generates a reset signal if it is enabled but not

serviced within a predefined time-out value
 • Does not generate a reset signal if it is serviced within

a predefined time-out value

Chapter 26, “Watchdog (WDOG)
Driver”

i.MX28

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

Introduction

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-5

Battery Charger The battery charger device driver for Linux provides
support for controlling the battery interface circuits and
power source detection.

Chapter 27, “Battery Charger and
Power Source Manager (PSM)
Driver”

i.MX28

PWM LED The PWM LED driver provides a standard framework by
which to control LEDs attached to PWM interfaces.

Chapter 28, “LED Pulse Width
Modulator (PWM) Driver”

i.MX28

Bootloaders

uBoot uBoot is an open source boot loader. See uBoot User guide i.MX28

GUI

gnome gnome is a Network Object Model Environment
supported by the GUN.

See Gnome mobile Note i.MX28

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

Introduction

i.MX53 EVK Linux Reference Manual

1-6 Freescale Semiconductor

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Architecture
This chapter describes the overall architecture of the Linux port to the i.MX processor. The BSP supports
all platforms in a single development environment, but not every driver is supported by all processors.
Drivers that are common to all platforms are referred as i.MX drivers and drivers unique to a specific
platform are referred by the platform name.

2.1 Linux BSP Block Diagram
Figure 2-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user space
executables, standard kernel components that come from the Linux community, and hardware-specific
drivers and functions provided by Freescale for the i.MX processors.

Figure 2-1. BSP Block Diagram

SPI

PMIC Protocol

Battery/
Power
Mgmt

I2C

iM
ag

ic
Ca

m
er

a

SM
SC

91
xx

NO
R

MT
D

MX
C

UA
RT

16
55

0 U
AR

T

As
yn

cF
ra

m
eb

uf
fe

r

AVIC ClocksMem Map SDMA Pwr Mgt
(LPM/DPTC/DVFS)

Timer

Machine Specific Layer

ES
AI

SS
I/A

ud
m

ux

ALSA Sound

MMC/SD

ATA Driver

NA
ND

 M
TD

MU

V4
L2

 O
ut

pu
t Network

Stack

CramFS RamFS

FATExt2

NFS

JFFS2

Virtual File System
System Call Interface

Legend

Utilities, Libraries GUI (QT and GTK)Applications, Shell MM Framework &
Codecs

IPU

IO

Fa
st

 Ir
DA

USB
Host
Stack

USB
Gadget
Device
Stack

ARC
EHCI
Host

SAHARA

Fl
ex

CA
N

FSL H/W
Specifc Code

H/W
Independent
Kernel CodeARM Core

User space
apps and
libraries

MP
EG

4/H
.26

4 D
eb

lo
ck

Sy
nc

 F
ra

m
eb

uf
fe

r

IrDA
Stack

FSL Chip
Specific Code

V4L2 Capture

MTD Block Devices

LibATA
Subsystem

MMC/SD
Memory

MMC/SD/
SDIO

Subsystem

TTY
Subsystem

Ke
yp

ad

PM
IC

 T
ou

ch
sc

re
en

Input
Subsystem

Framebuffer

Serial Core

Video4Linux2

I2C Bus
Subsystem

Om
ni

vis
io

n
Ca

m
er

a
ARC

Device

USB OTG
Transceiver

Driver

SPI Bus
Subsystem

Au
di

o
Co

de
cs

ASRCRNGA/RNGC

GPIO

FSL Custom Drivers

Interrupt
Subsystem Clock API

Time
Subsystem DMA API

VTE Test Framework &
Unit Tests

OS
 S

er
vic

es
 –

th
re

ad
s,

sy
nc

hr
on

iza
tio

n,
 m

em
or

y m
gt

, e
tc

.

SCC

ALSA SOC

SP
DI

F

FE
C

TV
 O

ut
pu

t

GPU

Architecture

i.MX50 ARM2 Linux Reference Manual

2-2 Freescale Semiconductor

2.2 Kernel
The i.MX Linux port is based on the standard Linux kernel. The kernel supports most of the features
available in many modern embedded OSs such as:

• Process and thread management
• Memory management (memory mapping, allocation/deallocation, MMU, and L1/L2 cache

control)
• Resource management (interrupts)
• Power management
• File systems (VFS, cramfs, ext2, ramfs, NFS, devfs, JFFS2, FAT, UBIFS)
• Linux Device Driver model
• Standardized APIs
• Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel configuration and
MSL implementation.

2.2.1 Kernel Configuration
For this BSP release, kernel configuration is performed through the Linux Target Image Builder (LTIB).
See the LTIB documentation for details. The configuration settings available on some platforms that are
different from the standard features are as follows:

• Embedded mode
• Module loading/unloading
• ARM9
• Supported file formats: ELF binaries, a.out, and ECOFF
• Block devices: Loopback, Ramdisk
• i.MX internal UART
• File systems: ext2, dev, proc, sysfs, cramfs, ramfs, JFFS2, FAT, pramfs
• Frame buffer
• Kernel debugging
• Automatic kernel module loading
• Power management
• Memory Technology Device (MTD) support
• USB Host/device multiplexing
• Unsorted Block Images (UBI) support
• Flash Translation Layer (FTL)
• CPU frequency scaling

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-3

2.2.2 Machine Specific Layer (MSL)
The MSL provides a machine-dependent implementation as required by the Linux kernel, such as memory
map, interrupt, and timer. Each ARM platform has its own MSL directory under the arch/arm directory as
listed in Table 2-1.

See Chapter 4, “Machine Specific Layer (MSL),” for more information.

2.2.2.1 Memory Map
Before the kernel starts running in the virtual space, the physical-to-virtual address mapping for the I/O
peripherals needs to be provided for the MMU to do the translation for memory/register accesses. The
mapping is performed through a table structure in the MSL, specific to a particular platform, with each
entry specifying a peripheral starting address of virtual addresses, starting address of physical addresses,
and the size of the memory region and the type of the region.

2.2.2.2 Interrupts
The standard Linux kernel contains common ARM code for handling interrupts. The MSL contains
platform-specific implementations of functions for interfacing the Linux kernel to the ARM9 Interrupt
Controller (AITC).

Together, they support the following capabilities:
• AVIC initialization
• ARM Interrupt Controller (AITC) initialization
• Interrupt enable/disable control
• ISR binding
• ISR dispatch
• Interrupt chaining
• Standard Linux API for accessing interrupt functions

2.2.2.3 General Purpose Timer (GPT)
The GPT is configured to generate an interrupt every 10 ms to provide OS ticks. This timer is also used by
the kernel for additional timer events. Linux defines the MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick implementation. Linux facilitates timer use through various
functions for timing delays, measurement, events, and alarms. The GPT is also used as the source to
support the high resolution timer feature. The timer tick interrupt is disabled in low-power modes other
than idle.

Table 2-1. MSL Directories

Platform Directory

i.MX28 <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28

Architecture

i.MX50 ARM2 Linux Reference Manual

2-4 Freescale Semiconductor

2.2.2.4 DMA API
The i.MX28 device is equipped with two AHB-to-APBH/AHB-to-APBX bridges with built-in DMA
capability that allow programmed data transfers between SDRAM and peripheral devices. The DMA is
abstracted as a number of channels dedicated to on-chip peripheral devices such as UART, DAC/ADC,
GPMI and so on. Each DMA channel is programmed by a set of per-channel registers and special DMA
command structure located in memory. A command describes a single DMA transaction and may be
chained with other commands. The MSL implements an internal DMA API that allows other drivers to
initialize DMA channels and control DMA transfers. The following features are implemented:

• Command structures allocation/de-allocation
• Channel initialization
• Channel execution control: start/stop/freeze a channel
• Channel interrupts control

2.2.2.5 Input/Output (I/O)
The Input/Output (I/O) component in the MSL provides an abstraction layer between the various drivers
and the configuration and utilization of the system, including GPIO, IOMUX, pin multiplexing, and
external board I/O. The I/O software module is board-specific and resides in the MSL layer as a
self-contained set of files. It provides the following features as part of a custom kernel-space API:

• Initialization for the default I/O configuration after boot
• Functions for configuring the various I/O for active use
• Functions for configuring the various I/O for low power mode
• Functions for controlling and sampling GPIO and board I/O
• Functions for enabling, disabling, and binding callback functions to GPIO and EDIO interrupts
• Functions to support different priority levels during ISR registration for different modules; if more

than one interrupt occurs at the same time, the higher priority ISR callback gets called first
• Atomic helper functions for GPIO, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. This allows I/O configuration
changes to be centralized in the GPIO module without requiring changes in the various drivers. These
functions are used by other device drivers in the kernel space. User level programs do not have access to
the functions in the GPIO module.

The exact API and implementations are different on each platform to account for the differences in
hardware, drivers, and boards. This module is an evolving module. As more drivers are added, more
functions are required from this module. The additions to the module are included in every new release of
the BSP.

2.2.2.6 Pin Multiplexing
The pin multiplexing component is responsible for setting I/O pin configuration and routing. Each I/O pin
is shared between up to three different i.MX28 modules or can be configured as a GPIO pin and controlled

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-5

by software. The MSL implements a kernel-space API used by the MSL board specific components to set
pins configurations corresponding to a particular board. The following features are implemented:

• Pin resource manager to avoid conflicts on pin use
• Pin voltage control
• Pin strength control
• Pin pull-up resistor control
• Pin group configuration

2.2.2.7 Shared Peripheral Bus Arbiter (SPBA)
The SPBA provides an arbitration mechanism to allow multiple masters to have access to the shared
peripherals. The SPBA implementation under MSL defines the API to allow different masters to take or
release ownership of a shared peripheral. These functions are also exported so that they can be used by
other loadable modules.

2.3 Drivers
Many drivers are provided by Freescale that are specific to the peripherals on the i.MX family of
processors or to the development platforms. Many of these drivers are common across all of the platforms.
Most can be compiled into the kernel or compiled as object modules which can be dynamically loaded
from a file system through insmod or modprobe. Modules can be loaded automatically as required using
the kernel auto-load feature. The BSP contains a modules.dep file and a modprobe.conf file that contain the
dependency information for the modules.

The i.MX multimedia applications processors have several classes of drivers, explained in the following
sections.

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver
The i.MX family of processors support a Universal Asynchronous Receiver/Transmitter (UART) driver.

2.3.1.1 Debug Asynchronous Receiver/Transmitter (UART)
The Debug UART driver provides an interface to the i.MX28 Debug UART controller. It provides the
standard Linux serial driver API. The following features are supported:

• Interrupt driven transmit/receive of characters
• Standard Linux baud rates up to 115 Kbps
• Receive and transmit FIFOs support
• Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths
• Odd and even parity
• CTS/RTS hardware flow control
• Send and receive break characters through the standard Linux serial API
• Recognize break and parity errors

Architecture

i.MX50 ARM2 Linux Reference Manual

2-6 Freescale Semiconductor

• Supports the standard TTY layer IOCTL calls
• Console support required to bring up the command prompt through Debug serial port
• Power management features by suspending and resuming UART ports

Currently, the Debug UART driver is used by default to bring up the console. DMA is not supported by
this driver. The Debug UART can be accessed through the /dev/ttyAM0 device file.

2.3.1.2 Application Asynchronous Receiver/Transmitter (UART)
The Application UART driver provides an interface to the i.MX28 Debug UART controller. It provides
the standard Linux serial driver API. The following features are supported:

• Interrupt and DMA driven transmit/receive of characters
• Standard Linux baud rates up to 3 Mb/s
• Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths
• Odd and even parity
• CTS/RTS hardware flow control
• Send and receive break characters through the standard Linux serial API
• Recognize break and parity errors
• Supports the standard TTY layer IOCTL calls
• Includes console support required to bring up the command prompt through the Debug serial port
• Supports power management features by suspending and resuming UART ports

The application UART can be accessed through the /dev/ttySP0 device file.

2.3.2 Real-Time Clock (RTC) Driver
The RTC is the clock that keeps the date and time while the system is running and even when the system
is inactive. The RTC implementation supports IOCTL calls to read time, set time, set up periodic
interrupts, and set up alarms. Linux defines the RTC API.

2.3.3 Watchdog Timer (WDOG) Driver
The Watchdog timer protects against system failures by providing a method of escaping from unexpected
events or programming errors.

The WDOG software implementation provides routines to service the WDOG timer, so that the timeout
does not occur. The WDOG is serviced (at the same time for the platforms with two WDOGs) if it is
already enabled before the Linux kernel boots (enabled by boot loader or ROM) with a configurable
service interval. In addition, compile-time options specify whether the Linux kernel should enable the
watchdog, and if so, which parameters should be used. If the second WDOG is present (used to generate
an interrupt after the timeout occurs), the highest interrupt priority (number 16) is assigned to the WDOG
interrupt.

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported. This is supported under all i.MX platforms.

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-7

2.3.4 DCP
The DCP driver performs AES EBC decryption and encryption using the hardware OTP key that is not
accessible from user space. The driver configures the i.MX28 DCP engine to AES 128-bit EBC mode and
only supports encrypting/decrypting of a single 128-bit block.

The main purpose of this driver is to implement an interface to the DCP cryptography engine which is
necessary for boot stream image verification performed before writing the boot stream to NAND flash.
The driver implements a simple IOCTL interface to decrypt and encrypt a single 128-bit block.

2.3.5 i.MX28 Graphics
The graphics component consists of a number of Linux kernel drivers that implement the standard Linux
kernel interface to the i.MX28 hardware to manipulate video buffers and output them to an LCD panel or
TV screen. The graphic support includes the following components:

• Frame buffer driver
• LCDIF driver
• Pixel Pipeline (PxP) driver
• LCD panel driver

Figure 2-2 shows a block diagram of the i.MX28 Linux kernel graphic components and their relationship
to each other.

Figure 2-2. i.MX28 Kernel Graphic Components

Architecture

i.MX50 ARM2 Linux Reference Manual

2-8 Freescale Semiconductor

2.3.5.1 LCDIF Driver
The i.MX28 LCDIF driver implements the Linux kernel-space API for basic LCD interface operations
such as initialization, as well as LCD interface DMA abstraction for the callers. The interface is used by
other graphics components such as the LCD panel drivers or the Frame buffer driver.

2.3.5.2 LCD Panel Drivers
LCD panel drivers provide an abstraction of a video output device for the Frame buffer driver. The LCD
panel driver implements specific LCDIF initialization and exposes a set of API calls to the frame buffer
driver so that it can control video output devices and perform dynamic switching between them (for
example, run-time switching between the LCD panel and TV-output).

2.3.5.3 Frame Buffer Driver
The Frame buffer driver implements a standard Linux fbdev interface for user space applications and
controls dynamic switching between different video outputs per user request.

2.3.5.4 Pixel Pipeline (PXP) Driver
The PxP driver implements a Video for Linux (V4L2) interface to the i.MX28 PxP hardware capable of
performing various manipulations with video buffers such as scaling, cropping, rotation, alpha blending
and so on. The PxP module handles a video stream received from user space from the V4L interface, then
combines it with the frame buffer image and outputs the final image to the LCDIF module.

The graphics components can operate in two modes, with PxP enabled or disabled. Figure 2-2 shows the
different video data flows depending on different modes.

2.3.6 Sound Driver
The components of the audio subsystem are applications, the Advanced Linux Sound Architecture
(ALSA), the audio driver, and the hardware. Applications interface with the ALSA, and the ALSA
interfaces with the audio driver, which in turn controls the hardware of the audio subsystem. For more
information about ALSA, see www.alsa-project.org.

The sound driver runs on the ARM processor. Digital audio data is carried over the digital audio link
interface to the codec hardware. This is managed by the audio driver. There may be one or more audio
streams, depending on the codec, such as voice or stereo DAC. The audio driver configures sample rates,
formats, and audio clocks. The audio driver also manages the setup and control of the codec, DMA, and
audio accessories, such as headphones and microphone detection. Stream mixing may also be supported,
depending on the codec.

2.3.7 Keypad
The keypad driver interfaces Linux to the keypad ladder connected to the i.MX28 LRADC controller. The
software operation of the driver follows the Linux keyboard architecture.The driver is driven by interrupts
generated by the LRADC controller when changing a signal on the keypad ladder input pin. The driver

http://www.opensound.com

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-9

reads a current voltage on the LRADC pin, detects which key is being pressed and sends a key code to the
upper layer. The driver detects long key presses and reports them as multiple key press events.The keypad
driver may be used as a wake-up source for low-power standby mode.

2.3.8 Memory Technology Device (MTD) Driver
MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of Flashes. As each
memory device has its own idiosyncrasies in terms of read and write, the MTD subsystem provides a
unified and uniform access to the various memory devices.

Figure 2-3 shows the MTD architecture.

Figure 2-3. MTD Architecture

Figure 2-3 is excerpted from Building Embedded Linux Systems, which describes the MTD subsystem.
The user modules should not be confused with kernel modules or any sort of user-land software
abstraction. The term MTD user module refers to software modules within the kernel that enable access to
the low-level MTD chip drivers by providing recognizable interfaces and abstractions to the higher levels
of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
properties in the mtd_info argument to the add_mtd_device() function. The callbacks an MTD driver has
to provide are called by the MTD subsystem to carry out operations, such as erase, read, write, and sync.

Note: UBI and UBIFS User Modules
are supported in i.MX28

Architecture

i.MX50 ARM2 Linux Reference Manual

2-10 Freescale Semiconductor

2.3.8.1 GPMI/NAND
The GPMI/NAND driver interfaces with the i.MX28 GPMI/NAND module that is able to interact with a
variety of NAND flash chips with 2 Kbyte and 4 Kbyte page sizes. The driver implements a standard
interface for the upper MTD subsystem layer and supports various file systems, such as JFFS2, UBIFS or
different commodity file systems (for example, FAT or EXT2) created on top of the UBI FTL.

The GPMI/NAND driver supports the i.MX28 BCH HW Error Correcting Code (ECC) engine that speeds
up NAND flash read and write operations

2.3.9 USB Driver
The Linux kernel supports two main types of USB drivers: drivers on a host system and drivers on a
device. A common USB host is a desktop computer. The USB drivers for a host system control the USB
devices that are plugged into it. The USB drivers in a device, control how that single device looks to the
host computer as a USB device. Because the term “USB device drivers” is very confusing, the USB
developers have created the term “USB gadget drivers” to describe the drivers that control a USB device
that connects to a computer.

2.3.9.1 USB Host-Side API Model
Within the Linux kernel, host-side drivers for USB devices talk to the usbcore APIs. The two types of
public usbcore APIs, targeted at two different layers of USB driver:

• General purpose drivers, exposed through driver frameworks such as block, character, or network
devices.

• Drivers that are part of the core, which are involved in managing a USB bus.

Such core drivers include the hub driver, which manages trees of USB devices, and several different kinds
of Host Controller Drivers (HCDs), which control individual buses. See Chapter 2 of
http://www.kernel.org/doc/htmldocs/usb.html, for more information.

The device model seen by USB drivers is relatively complex:
• USB supports four kinds of data transfer (control, bulk, interrupt, and isochronous). Two transfer

types use bandwidth as it is available (control and bulk), while the other two types of transfer
(interrupt and isochronous) are scheduled to provide guaranteed bandwidth.

• The device description model includes one or more configurations per device, only one of which
is active at a time. Devices that are capable of high speed operation must also support full speed
configurations, along with a way to ask about the other speed configurations that might be used.

• Configurations have one or more interfaces. Interfaces may be standardized by USB Class
specifications, or may be specific to a vendor or device.

• Interfaces have one or more endpoints, each of which supports one type and direction of data
transfer such as bulk out or interrupt in.

• The only host-side drivers that actually touch hardware (reading/writing registers, handling IRQs,
and so on) are the HCDs.

http://www.kernel.org/doc/htmldocs/usb.html

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-11

2.3.9.2 USB Device-Side Gadget Framework
The Linux Gadget API can be used by peripherals, which act in the USB device (slave) role.

Components of the Gadget Framework (see http://www.linux-usb.org/gadget/) are as follows:
• Peripheral Controller Drivers—implement the Gadget API, and are the only layers that talk directly

to the hardware. Different controller hardware needs different drivers, which may also need
board-specific customization. These provide a software gadget device, visible in sysfs. This device
can be thought of as being the virtual hardware to which the higher-level drivers are written.

• Gadget Drivers—use the Gadget API, and can often be written to be hardware-neutral. A gadget
driver implements one or more functions, each providing a different capability to the USB host,
such as a network link or speakers.

• Upper Layers, such as the network, file system, or block I/O subsystems—generate and consume
the data that the gadget driver transfers to the host through the controller driver.

2.3.9.3 USB OTG Framework
Systems need specialized hardware support to implement OTG, including a special Mini-AB jack and
associated transceiver to support Dual-Role operation. They can act either as a host, using the standard
Linux-USB host side driver stack, or as a peripheral, using the Gadget framework. To do that, the system
software relies on small additions to those programming interfaces, and on a new internal component (here
called an OTG Controller) affecting which driver stack connects to the OTG port. In each role, the system
can re-use the existing pool of hardware-neutral drivers, layered on top of the controller driver interfaces
(usb_bus or usb_gadget). Such drivers need at most minor changes, and most of the calls added to support
OTG can also benefit non-OTG products.

• Gadget drivers test the is_otg flag, and use it to determine whether or not to include an OTG
descriptor in each of their configurations.

• Gadget drivers may need changes to support the two new OTG protocols, exposed in new gadget
attributes such as b_hnp_enable flag. HNP support should be reported through a user interface (two
LEDs could suffice), and is triggered in some cases when the host suspends the peripheral. SRP
support can be user-initiated just like remote wakeup, probably by pressing the same button.

• On the host side, USB device drivers need to be taught to trigger HNP at appropriate moments,
using usb_suspend_device(). That also conserves battery power, which is useful even for non-OTG
configurations.

• Also on the host side, a driver must support the OTG Targeted Peripheral List, a whitelist used to
reject peripherals not supported with a given Linux OTG host. This whitelist is
product-specific—each product must modify otg_whitelist.h to match its interoperability
specification.

Non-OTG Linux hosts, such as PCs and workstations, normally have some solution for adding drivers, so
that peripherals that are not recognized can eventually be supported. That approach is unreasonable for
consumer products that may never have their firmware upgraded, and where it is usually unrealistic to
expect traditional PC/workstation/server kinds of support model to work. For example, it is often
impractical to change device firmware after the product has been distributed, so driver bugs cannot
normally be fixed if they are found after shipment.

Architecture

i.MX50 ARM2 Linux Reference Manual

2-12 Freescale Semiconductor

Additional changes are required below those hardware-neutral usb_bus and usb_gadget driver interfaces
but those are not discussed here. Those affect the hardware-specific code for each USB Host or Peripheral
controller, and how the HCD initializes (since OTG can be active only on a single port). They also involve
what may be called an OTG Controller Driver, managing the OTG transceiver and the OTG state machine
logic as well as much of the root hub behavior for the OTG port. The OTG controller driver needs to
activate and deactivate USB controllers depending on the relevant device role. Some related changes were
required inside usbcore, so that it can identify OTG-capable devices and respond appropriately to HNP or
SRP protocols.

2.3.10 General Drivers
General drivers discussed in the following sections, include the following:

• Multimedia Card (MMC)/Secure Digital (SD) driver
• I2C Client and Bus drivers
• Dynamic Power Management (DPM) driver

2.3.10.1 MMC/SD Host Driver
The MMC/SD card driver implements a standard Linux MMC host driver SSP interface configured to
work in MMC/SD mode. The driver is an underlying layer for the Linux MMC block driver that follows
standard Linux driver API. The driver has the following features:

• MMC/SD cards
• Standard MMC/SD commands
• 1-bit or 4-bit operation
• Card insertion and removal events
• Write protection signal

2.3.10.2 Inter-IC (I2C) Bus Driver
The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This driver is invoked
by the I2C chip driver. It is not exposed to the user space. The standard Linux kernel contains a core I2C
module that is used by the chip driver to access the bus driver to transfer data over the I2C bus. The chip
driver uses a standard kernel space API that is provided in the Linux kernel to access the core I2C module.
The standard I2C kernel functions are documented in the files available under Documentation/i2c in the
kernel source tree. This bus driver supports the following features:

• Compatibility with the I2C bus standard
• Bit rates up to 400 Kbps
• Start and stop signal generation/detection
• Acknowledge bit generation/detection
• Interrupt-driven, byte-by-byte data transfer
• Standard I2C master mode
• Power management features by suspending and resuming I2C

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-13

The I2C slave mode is not supported by this driver.

2.3.10.3 SPI Bus Driver
This low-level SPI module provides an interface to the i.MX28 SSP interface configured to work in SPI
master mode. The driver implements standard kernel space API for the Linux SPI core driver that
implements a kernel-space interface for other drivers for various SPI devices, such as SPI Ethernet
Controller or Power Management Interface Controller (PMIC).

The i.MX28 implements a single DMA channel for SSP interface which does not allow full-duplex
bidirectional transfers over the SPI bus. This limitation should be taken into account when developing
drivers for SPI devices located on the i.MX28 based boards.

Both DMA and byte-to-byte transfers are supported.

2.3.10.4 Dynamic Power Management (DPM) Driver
DPM refers to power management schemes implemented while programs are running. DPM focuses on
system wide energy consumption while it is running. In any CPU-intensive application, lowering bus
frequencies from their maximum performance points can result in system wide energy savings. DPM
implementation includes the following data structures:

• Operating points
• Operating states
• Policies
• Policy manager

2.3.10.4.1 Policy Architecture

A DPM policy is a named data structure installed in the DPM implementation within the operating system,
and managed by the policy manager, which may be outside of the operating system. After a DPM system
is initialized and activated, the system is always executing a particular DPM policy.

2.3.10.4.2 Operating Points

At any given point in time, a system is said to be executing at a particular operating point. The operating
point is described using hardware parameters, such as core voltage, CPU and bus frequencies, and the
states of peripheral devices. A DPM system could properly be defined as the set of rules and procedures
that move the system from one operating point to another as events occur.

2.3.10.4.3 Operating States

As already mentioned, the system supports multiple operating points. Some rules and mechanisms are
required to move the system from one operating point to another. Each operating state is associated with
an operating point. The system at a particular operating point is said to be in an operating state.

Architecture

i.MX50 ARM2 Linux Reference Manual

2-14 Freescale Semiconductor

2.3.10.4.4 Policy Managers

A policy maps each operating state to a congruent class of operating points. The system supports multiple
operating states and hence multiple operating points. At any point in time, the system operates using a
single policy. For example, a power management strategy contains at least one policy, and may specify as
many different policies as necessary for different situations. If multiple policies are required, then a policy
manager must exist in the system to coordinate the activation of different policies.

Figure 2-4 shows the high level design for DPM.

Figure 2-4. DPM High Level Design

Figure 2-5 shows the DPM architecture block diagram.

Figure 2-5. DPM Architecture Block Diagram

2.3.10.5 Low-Level Power Management Driver
The low-level power management driver is responsible for implementing hardware-specific operations to
meet power requirements and also to conserve power. Driver implementation may be different for different
platforms. It is used by the DPM layer. This driver implements Dynamic Voltage and Frequency Scaling
(DVFS) or Dynamic Frequency Scaling (DFS) techniques, depending on the platform, and low-power
modes. The DVFS or DFS driver is used to change the frequency/voltage or frequency only when the DPM
layer decides to change the operating point to meet the power requirements. This is performed when the

Low-level PM driver
CRM

Policy monitor
Daemon

(monitors
system activity)

DPM

Request

Operating/task
State change

Software
Hardware

Device Drivers

Power mgmt
Requirements

Sets operating points, Changing
pow er-performance
levels

Raise or low er
Perform ance
levels

New Voltage
Frequency

PLL0 PLL2PLL1

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-15

system is in RUN mode which helps in conserving power while the system is running. Low-power modes,
such as WAIT and STOP are also implemented to save power. In all these cases, power consumption is
managed by reducing the voltage/frequency and the severity of clock gating.

2.3.10.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver
The DVFS driver is responsible for varying the frequency and voltage of the ARM core. Other software
modules interface to it through a custom, kernel-space API. The mode can be controlled manually through
the API and automatically on those processors with the required monitor hardware.

2.3.10.7 Backlight Driver
The backlight driver implements a standard Linux kernel-space interface for a Linux kernel backlight core
driver that, in turn, exposes LCD backlight control interface to user space applications by sysfs.

The backlight driver controls the LCD backlight though the i.MX28 PWM modules connected either
directly to the LCD panel backlight LED or to the intermediate backlight controller that sets backlight LED
brightness based on input PWM signal. The LCD panel driver implements a LCD specific part of backlight
control which is registered with the i.MX28 backlight driver. See Section 2.3.5, “i.MX28 Graphics,” for
more details about the LCD panel drivers

2.3.10.8 LED Driver
The LED driver controls on-board LEDs connected to the i.MX28 PWM module. The LED driver
implements a standard interface that is exposed to user space applications by sysfs and other kernel drivers
though the kernel space API, which may use LEDs to warn about different events, such as timer ticks or
MMC data transfers.

2.3.10.9 Power Source Manager and Battery Charger
Power Source Manager and Battery charger drivers controls the i.MX28 power supply module. The
i.MX28 may be powered from different power sources that include:

• 5 V wall power supply
• 5 V USB
• Li-Ion 3.7 V battery

Regardless of the power input, the power supply supplies voltage to several output voltage rails intended
to power various on-chip and on-board components, such as ARM CPU core, SDRAM, peripheral I/O
devices and so on. The way that these output voltages are generated depends on which power source is
used. When the device is powered from a 5 V source, it uses internal voltage regulators to convert input
voltage. When the device is powered from a battery source, it uses on-chip DC-DC converters. Certain
software operations are required during transition from one power source to another, for which the power
source manager driver is responsible. Also the power source manager notifies other drivers about power
source changes.

Architecture

i.MX50 ARM2 Linux Reference Manual

2-16 Freescale Semiconductor

Thei.MX28 power supply contains a built-in battery charger module capable of charging Li-Ion batteries.
The battery charger driver implements a state machine that controls charging current and protects the
battery from damage caused by under or overcharging.

Both drivers are implemented in a single standalone module and do not expose any interfaces to other
kernel or userspace components except subscribing for different events detected by the drivers.

2.3.10.10 CPUFreq Driver
The CPUFreq driver is built on top of the voltage regulators and clock framework and implements a set of
operating points that define clock speed of CPU, SDRAM and AHB bus along with appropriate CPU
voltage value. The CPUFreq driver is plugged into Linux kernel CPUFreq subsystem that, in turn,
implements a set of different policies (governors) that control transitions between different operating
points.

2.4 Boot Loaders
A boot loader is a small program that runs first after a CPU powers up. A boot loader is required to boot
an ARM Linux system. The boot loader for ARM Linux serves several purposes:

• Loads Linux kernel image to SDRAM
• Obtains proper information for the Linux kernel
• Passes control to the Linux kernel

NOTE
Not all boot loaders are supported on all boards.

2.4.1 i.MX28 Boot Loader
For the i.MX28, some boot loader functionality is delegated to the built-in ROM firmware that is capable
of loading a boot stream image containing the Linux kernel from different locations. The boot stream, in
turn, implements hardware initialization and an interface to the Linux kernel. Since the i.MX28 built-in
ROM is entirely implemented in hardware, it is not described in this document.

The i.MX28 boot image may contain the following bootlets implementing general boot loader functions:
• Boot prep
• Linux prep
• U-boot loader

Architecture

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 2-17

Figure 2-6 shows block diagrams of two boot stream images.

Figure 2-6. i.MX28 Boot Stream

2.4.1.1 Boot Prep
The boot prep bootlet implements basic power supply, EMI controller initialization and clock initialization
necessary to start the Linux kernel.

2.4.1.2 Linux Prep
This component provides a standard interface between ARM Linux kernel and boot loader, including:

• Generating a list of ARM tags containing necessary information, such as SDRAM size, ARM CPU
and machine identification and Linux kernel command line.

• Jumping to the Linux kernel that has already been downloaded to SDRAM by the i.MX28 ROM
firmware.

2.4.1.3 U-boot
U-boot is an open source universal boot loader for various embedded platforms including ARM, PowerPC,
MIPS and so on. For the i.MX28, U-boot is used to load Linux kernel image to SDRAM over a network
connection because the i.MX28 built-in ROM firmware does not implement a TCP/IP network stack.

The i.MX28 U-boot port implements a driver for the built-in FEC ethernet controller used to transfer data
over TCP/IP network.

Architecture

i.MX50 ARM2 Linux Reference Manual

2-18 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Machine Specific Layer (MSL)
The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent
components:

• Interrupts including GPIO and EDIO (only on certain platforms)
• Timer
• Memory map
• General Purpose Input/Output (GPIO) including IOMUX on certain platforms

These modules are normally available in the following directory:
<litb_dir>/rpm/BUILD/linux/arch/arm/mach-mx28 for imx28 platform

The header files are implemented under the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/include/mach

The MSL layer contains not only the modules common to all the boards using the same processor, such as
the interrupts and timer, but it also contains modules specific to each board, such as the memory map. The
following sections describe the basic hardware and software operation and the software interfaces for MSL
modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-specific
modules, such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on some
platforms) are detailed. Each of the following sections contains an overview of the hardware operation.
For more information, see the corresponding device documentation.

3.1 Interrupts
The i.MX28 uses an Interrupt Collector module. The following sections explain the hardware and software
operation for the interrupts.

3.1.1 Interrupt Hardware Operation
The Interrupt Collector module controls and prioritizes a maximum of 128 internal and external interrupt
sources. Each source can be enabled and disabled by configuring the ENABLE bit in the dedicated
Hardware Interrupt Collector Interrupt register. When an interrupt source is enabled and the corresponding
interrupt source is asserted, the Interrupt Collector asserts a normal or a fast interrupt request to the ARM
core depending on the ENFIQ bit value in the dedicated Hardware Interrupt Collector Interrupt register.

The Interrupt Collectors interrupt requests are prioritized in the order of fast interrupts and normal
interrupts in order of highest priority level. There are four normal interrupt levels, with zero level being
the lowest priority. The interrupt levels are configurable through the PRIORITY bits of the Hardware

Machine Specific Layer (MSL)

i.MX28 EVK Linux Reference Manual

3-2 Freescale Semiconductor

Interrupt collector Interrupt register. Only in supervisor mode can the Interrupt Collector registers be
accessed. A number of IRQ sources can be expanded by using GPIO lines to assert interrupts.

3.1.2 Interrupt Software Operation
In ARM based processors, normal interrupt and fast interrupt are two different exceptions. The exception
vector addresses can be configured to start at a low address (0x0) or at a high address (0xFFFF0000). The
ARM Linux implementation chooses the high vector address model. The following file has a detailed
description about the ARM interrupt architecture:
<ltib_dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the
irqchip structure and exports one initialization function, which is called during system startup.

3.1.3 Interrupt Source Code Structure
The MSL interrupt layer is implemented in the source files shown in Table 3-1, located in the directories
indicated at the beginning of this chapter:

3.1.4 Interrupt Programming Interface
The Machine Specific Layer implementation exports a single function that initializes the Interrupt
Collector and register interrupt manipulation routines for each interrupt source in the system. This
performs with the structures irq_chip and mxs_gpio_chip of the irq_chip type that contain functions to
enable, disable, and acknowledge interrupt sources.

The irq_chip is associated with i.MX28normal 128 interrupt sources while mxs_gpio_chi is used for
external GPIO interrupts. Each interrupt source is associated with one of the irq_chip structures with the
set_irq_chip call. After initialization, the interrupt can be used by the drivers through the request_irq()
and free_irq() functions to register device-specific interrupt handlers. Upon receiving the interrupt, the
interrupt code uses get_irqnr_and_base to detect the interrupt source, acknowledges the interrupt using
the registered irq_chip structure set by the MSL, and calls the registered device-specific interrupt handler.
Depending on the flags passed to the request_irq function, the code may disable the interrupt using an
irq_chip call before executing the device-specific handler.

Table 3-1. Interrupt Files List

File Description

icoll.c Interrupt manipulation functions

irqs.h Interrupt source numbers

regs-icoll.h Interrupt Collector registers

entry-macro.S Interrupt source detection

Machine Specific Layer (MSL)

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 3-3

3.2 Timer
The Linux kernel relies on the underlying hardware to provide support for both the system timer (which
generates periodic interrupts) and the dynamic timers (to schedule events). After the system timer interrupt
occurs, it does the following:

• Updates the system uptime
• Updates the time of day
• Reschedules a new process if the current process has exhausted its time slice
• Runs any dynamic timers that have expired
• Updates resource usage and processor time statistics

 The timer hardware consists of four 32-bit 32 KHz timers.

3.2.1 Timer Hardware Operation
Each of the four timers consists of a 32-bit fixed count value and a 32-bit free-running count value. In most
cases, the free-running count decrements to 0. When it decrements to 0, it sets an interrupt status bit
associated with the counter, which causes:

• If the RELOAD bit is set to 1, the count is automatically copied to the free-running counter and the
count continues

• If the RELOAD bit is not set, the timer stalls when it reaches 0

Each timer has an UPDATE bit that controls whether the free-running-counter is loaded at the same time
that the fixed-count register is written from the CPU. The output of each timer’s source select has a polarity
control that allows the timer to operate on either edge. The timers have multiple clock sources that include
the PWM output signals and the on-chip 32 KHz XTAL that, in turn, can be programmed to 32 KHz,
8 KHz, 4 KHz or 1 KHz timer update cycles.

Each of the four times have compare match register. When free-running counter equal match value, it issue
a interrupt.

3.2.2 Timer Software Operation
The timer software implementation provides an initialization function that initializes the GPT with the
proper clock source, interrupt mode and interrupt interval. The timer then registers its interrupt service
routine and starts timing. The interrupt service routine is required to service the OS for the purposes
mentioned in Section 3.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

3.2.3 Timer Features
The timer implementation supports the following features:

• Functions required by Linux to provide the system timer and dynamic timers.
• Generates an interrupt every 10 ms.

Machine Specific Layer (MSL)

i.MX28 EVK Linux Reference Manual

3-4 Freescale Semiconductor

3.2.4 Timer Source Code Structure
The timer module is implemented in the arch/arm/plat-mxs/timer-match.c file.

3.2.5 Timer Programming Interface
The timer module utilizes four hardware timers, to implement clock source and clock event objects. This
is done with the mxs_clocksource structure of struct clocksource type and mxs_clockevent structure of
struct mxs_clockevent type. Both structures provide routines required for reading current timer values
and scheduling the next timer event. The module implements a timer interrupt routine that services the
Linux OS with timer events for the purposes mentioned in the beginning of this chapter.

3.3 Memory Map
A predefined virtual-to-physical memory map table is required for the device drivers to access to the
device registers since the Linux kernel is running under the virtual address space with the Memory
Management Unit (MMU) enabled.

3.3.1 Memory Map Hardware Operation
The MMU, as part of the ARM core, provides the virtual to physical address mapping defined by the page
table. For more information, see the ARM Technical Reference Manual (TRM) from ARM Limited.

3.3.2 Memory Map Software Operation
A table mapping the virtual memory to physical memory is implemented for i.MX platforms as defined in
the <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28/ mx28evk.cfile.

3.3.3 Memory Map Features
The Memory Map implementation programs the Memory Map module to creates the physical to virtual
memory map for all the I/O modules.

3.3.4 Memory Map Source Code Structure
The Memory Map module implementation is in mx28evk.c under the platform-specific MSL directory. The
hardware.h header file is used to provide macros for all the IO module physical and virtual base addresses
and physical to virtual mapping macros. All of the memory map source code is in the in the following
directories:
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/include/mach
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-imx
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-

Table 3-2 lists the source file for the memory map.

Machine Specific Layer (MSL)

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 3-5

3.3.5 Memory Map Programming Interface
The Memory Map is implemented in the mx28evk.c file to provide the map between physical and virtual
addresses. It defines an initialization function to be called during system startup.

3.4 Pin Multiplexing
The i.MX28 implements a flexible pin multiplexing mechanism that permits using the same SoC I/O pins
for different purposes depending on the board hardware configuration. The following section describes the
Pin Multiplexing software and hardware operation

3.4.1 Pin Multiplexing Hardware Operation
The i.MX28 SoC implements 120 digital interface pins divided into four banks. The first three banks
implement multiplexed pins where each pin can be routed up to three different modules or serve as GPIO.
The fourth bank implements EMI pins which are not multiplexed.

The pin control interface has the following features:
• All digital pins have selectable output drive strengths
• All EMI pins have 1.8/2.5 V and 3.3 V selects
• Several digital pins can be programmed to enable pull up resistors

3.4.2 Pin Multiplexing Software Operation
The MSL contains board specific files that define I/O pin routing and provide functions for device drivers
to set up pin routing during the initialization stage. These mechanisms allow board-independent drivers
where all board-specific details are hidden within the MSL. The pin multiplexing implements a pin
resource manager intended to prevent conflicting access to shared I/O pins by different device drivers.

3.4.3 Pin Multiplexing Source Code Structure
The MSL Pin Multiplexing layer is implemented in the directories listed at the beginning of this chapter.
The files are listed in Table 3-4.

3.4.4 Pin Multiplexing Programming Interface
The MSL Pin Multiplexing module provides a kernel-space internal MSL interface to control I/O pins.
This interface is not exposed to other device drivers or kernel components. The interface indirectly sets up
pin configuration through driver-specific callbacks implemented by the MSL. Board-specific details are
hidden for easier driver migration.

Table 3-4. Pin Multiplexing Source Files

File Description

mx28_pinsh I/O pins definitions

pinctrl.c Pin Multiplexing API implementation

Machine Specific Layer (MSL)

i.MX28 EVK Linux Reference Manual

3-6 Freescale Semiconductor

The Pin Multiplexing API defines the following structures and functions:
enum pin_fun, enum pin_strength, enum pin_voltage

Define pin routing and configuration.
struct pin desc, struct pin group

Describe a group of pins.
int mxs_request_pin(unsigned id, enum pin_fun fun, char *label)

Request access to a pin. The label should be used later to configure pin parameters.
void mxs_release_pin(unsigned id, char *label)

Release the pin.
int mxs_request_pin_group(struct pin_group *pin_group, char *label)

Request access to a group of pins.
void mxs_release_pin_group(struct pin_group *pin_group, char *label

Release pin group.
void mxs_pin_strength(unsigned id, enum pin_strength strength, char *label)

Set pin output strength.
void mxs_pin_voltage(unsigned id, enum pin_voltage voltage, char *label)

Set pin output voltage.
void mxs_pin_pullup(unsigned id, int enable, char *label)

Control pull up resistor of a pin.

3.4.5 GPIO With Pin Multiplexing
The Pin Multiplexing module allows routing multiplexed pins to the general purpose input/output module
that provides an API to configure pins and a central place to configure GPIO interrupts. Once the i.MX28
pin is routed to the GPIO module, this pin can be manually configured by a set of the pin multiplexing
registers dedicated to the GPIO module. These registers allow setting pin direction (input or output), pin
output value, and pin configuration as an interrupt source by specifying an interrupt trigger mode (edge or
level, high or low).

Each Linux kernel driver or subsystem can request an external pin to be configured as GPIO and then
control the pin state using a kernel-space standard Linux GPIO API. The GPIO pins are handled with the
standard GPIO API as documented in Documentation/gpio.txt. The MSL GPIO module implementation
is contained in the gpio.c and gpio.h files in the directories indicated at the beginning of this chapter.

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Direct Memory Access Controller (DMAC) API
The Direct Memory Access Controller (DMAC) provides 16 channels supporting linear memory, 2D
memory, and FIFO transfers to provide support for a wide variety of DMA operations.

4.1 Hardware Operation
The i.MX28 device is equipped with two AHB-to-APBH/AHB-to-APBX bridges with built-in DMA
capability that allows programmed data transfers between SDRAM and peripheral devices. The DMA is
abstracted as a number of channels dedicated to on-chip peripheral devices such as UART, ADC/DAC,
GPMI and so on. Each DMA channel is programmed by a set of per-channel registers and a special DMA
command structure located in memory. A command describes a single DMA transaction and can be
chained with other commands to set up multiple DMA transfers.

Each DMA channel implements a semaphore used to start and stop the DMA channels. The semaphore
may contain values from 0 to 255 that are set by software. The DMA channel starts transferring data on
writing a semaphore value greater than zero and continues operation until the semaphore is decremented
to zero or an error occurs. The semaphore is decremented after completion of a single DMA transfer if the
corresponding flag is set within the command structure.

The DMA channel may generate interrupt events on command completion or on an error. This is
configurable through a set of DMA channel registers.

The DMA includes the following features:
• Sixteen channels support linear memory, 2D Memory, and FIFO for both source and destination
• DMA chaining for variable length buffer exchanges and high allowable interrupt latency

requirement
• Increment, decrement, and no-change support for source and destination addresses
• Each channel is configurable to response to any of the DMA request signals
• Supports 8, 16, or 32-bit FIFO and memory port size data transfers
• DMA burst length configurable up to a maximum of 16 words, 32 half-words, or 64 bytes for each

channel
• Bus utilization control for the channel that is not triggered by a DMA request
• Burst time-out errors terminate the DMA cycle when the burst cannot be completed within a

programmed time count
• Buffer overflow error terminates the DMA cycle when the internal buffer receives more than

64 bytes of data
• Transfer error terminates the DMA cycle when a transfer error is detected during a DMA burst

Direct Memory Access Controller (DMAC) API

i.MX50 ARM2 Linux Reference Manual

4-2 Freescale Semiconductor

4.2 Software Operation
Prior to using a DMA channel, the driver should register an interrupt handler for interrupts generated by
the DMA channel in order to receive DMA error or completion events.

The most used scenario of DMA operation is when a device driver wants to transfer a number of bytes to
or from a memory buffer located on SDRAM. First, it allocates and initializes a DMA command structure
or a list of command structures for multiple transfers. Then it resets the DMA channel and configures the
channel registers to point to a command structure for the first DMA transfer. When all the required
initialization is done, the DMA channel is started by setting a DMA channel semaphore.

The module provides an API for other drivers to control DMA channels. The DMA software operations
are as follows:

• Requesting DMA channel
• Initialization of the channel
• Setting configuration of DMA channel
• Enabling/Disabling DMA
• Getting DMA transfer status
• DMA IRQ handler

4.3 Source Code Structure
The header file, dmaengine.h, is available in the directory:
arch/arm/plat-mxs/include/mach/

Table 4-1 lists the source files available in the directory, arch/arm/plat-mxs/

4.4 Programming Interface
The module implements custom DMA API. Standard API is not supported. Refer to the doxygen files in
the release notes for more information on the methods implemented in the driver.

Table 4-1. DMA API Files

File Description

dma-apbh.c, dma-apbx.c Parameters of DMA channels

dmaengine.c DMA API functions

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Persistent Bits Driver
Persistent bits refers to a small number of registers that persist over power cycles.

5.1 Hardware Operation
The persistent bit block uses persistent storage and resides in a special power domain (crystal domain) that
remains powered up even when the rest of the device is in its powered-down state. Six 32-bit persistent bit
registers. They are as below:

• HW_RTC_PERSISTENT0—holds bits used to configure various hardware settings
• HW_RTC_PERSISTENT1—holds bits related to the ROM and redundant boot handling
• HW_RTC_PERSISTENT2–5—general purpose use

5.2 Software Operation
The persistent bit support code is implemented as a user-space accessible API, but with the configuration
of the bits done by the board setup code. The configuration structures map the name of a bit-field to a part
of a 32-bit hardware register; for example:
{ .reg = 1, .start = 1, .width = 1, .name = "NAND_SECONDARY_BOOT" }

declares that the name NAND_SECONDARY_BOOT is mapped to the HW_RTC_PERSISTENT1
register, starting at bit 1, having a width of 1 bit (a single bit register).

User space accesses the persistent bits by sysfs device attributes in the
/sys/devices/platform/mxs-persistent.0 directory. Access is done by reading and writing the attribute
files.

For example, to read:
cat sys/devices/platform/mxs-persistent.0/NAND_SECONDARY_BOOT
0
#

To write:
echo -n 1 > sys/devices/platform/mxs-persistent.0/NAND_SECONDARY_BOOT
#

Persistent Bits Driver

i.MX28 EVK Linux Reference Manual

5-2 Freescale Semiconductor

5.3 Source Code Structure
The persistent bit driver code listed in Table 5-1, is located in:
arch/arm/mach-mx28/include/mach/

arch/arm/mach-mx28

drivers/misc/

5.4 Menu Configuration Options
The persistent bit driver is unconditionally compiled into the kernel image.

5.5 Programming Interface
The kernel persistent bit API is defined by means of the following structures to facilitate persistent bit
configuration.

struct mxs_persistent_bit_config {
int reg;
int start;
int width;
const char *name;

};

struct mxs_platform_persistent_data {
const struct mxs_persistent_bit_config *bit_config_tab;
int bit_config_cnt;

};

The structure mxs_persistent_bit_config defines a single bit that always lies in a single hardware 32-bit
register. The structure mxs_platform_persistent_data contains all of the persistent bit definitions which
are valid for the given board.

Table 5-1. Persistent Bits Driver Files

File Description

mx28.h Device configuration structures

devices.c Device configuration

mxs-persistent.c Driver file

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Unique ID on Boot Media
The i.MX28 Unique ID (UID) storage feature allows customers to keep a limited sequence of bytes in a
secured place such as:

• One-Time-Programmed (OTP) bits

6.1 Software Operation
The Unique ID module provides a sysfs interface to end users. When the module is started, a new sys entry
is created: /sys/uid. It contains one or more subdirectories that match the UID provider registered in the
system. In turn, each of the subdirectories contains files id and id.bin. These files can be read from the
user space and written to with root privileges. Data that is read from or written to id is in human-readable
form, while id.bin provides access to the raw binary data. The UID provider can enable access to id,
id.bin or both.

Before a UID value can be written, the module must be unlocked. This is achieved by writing 1 to the file
/sys/modules/unique-id/parameters/unlock. The access is limited to three minutes. After three minutes,
the module is locked and must be enabled again.

The nature of UID storage forces some limits and assumptions:
• For OTP—bits can be written only once and the user has access to only three long words

(3 × 32 = 96 bits) of data

6.2 Programming Interface
A provider shall register the table of functions using a call to:

uid_provider_init(char *name, struct uid_ops *ops, void *context).

This function registers the table ops as a new UID provider with name name. When finished, the provider
should be unregistered using a call to:

uid_provider_remove(char *name)

It completely removes the UID provider from the system.

The structure uid_ops contains two pointers to functions id_show and id_store. Both of these functions
follow the conventions for attribute accessors, except for the added first parameter void *context, which
is passed to uid_provider_init.

6.3 Source Code Structure
The Unique ID module code listed in Table 6-1, is located in:
arch/arm/plat-mxs/include/mach/

Unique ID on Boot Media

i.MX28 EVK Linux Reference Manual

6-2 Freescale Semiconductor

arch/arm/plat-mxs/

6.4 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_MXS_UNIQUE_ID = y
• CONFIG_MXS_UNIQUE_ID_OTP = y

Table 6-1. Unique ID Files

File Description

unique-id.c Generic UID code

unique-id.h Header with function prototypes

otp.c Implementation of OTP UID provider

i.MX51 EVK Linux Reference Manual

Freescale Semiconductor 7-1

Chapter 7
CPU Frequency Scaling (CPUFREQ) Driver
The CPU frequency scaling device driver allows the clock speed of the CPU to be changed on the fly. Once
the CPU frequency is changed, the voltages VDDD, VDDD_BO, VDDIO, and VDDA are changed to the
voltage value defined in profiles[]. This method can reduce power consumption (thus saving battery
power), because the CPU uses less power as the clock speed is reduced.

7.1 Software Operation
The CPUFREQ device driver is designed to change the CPU frequency and voltage on the fly. If the
frequency is not defined in profile[], the CPUFREQ driver changes the CPU frequency to the nearest
frequency in the array. The CPU frequency 64 MHz and below in the array profiles[] can be changed
only if both USB clock usage and LCD clock usage are zero. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. By default, the userspace CPU
frequency governor is used with CPU frequency, which can be changed manually. To change CPU
frequency automatically, the conservative CPU frequency governor can be used. Refer to the API
document for more information on the functions implemented in the driver (in the doxygen folder of the
documentation package).

To view what values the CPU frequency can be changed to in KHz (The values in the first column are the
frequency values) use this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for example, to
392.727 MHz) use this command:
echo 392727 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 392727 is in KHz, which is 392.727 MHz.

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

Use the following command to change to conservative CPU frequency governor:
echo conservative > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

7.2 Source Code Structure
Table 7-1 shows the source files and headers available in the following directory:

CPU Frequency Scaling (CPUFREQ) Driver

i.MX51 EVK Linux Reference Manual

7-2 Freescale Semiconductor

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/

7.3 Menu Configuration Options
The following Linux kernel configuration is provided for this module:

• CONFIG_CPU__FREQ—In menuconfig, this option is located under
CPU Power Management > CPU Frequency scaling
The following options can be selected:
— CPU Frequency scaling
— CPU frequency translation statistics
— Default CPU frequency governor (userspace)
— Performance governor
— Powersave governor
— Userspace governor for userspace frequency scaling
— Conservative CPU frequency governor
— CPU frequency driver for i.MX CPUs

7.3.1 Board Configuration Options
There are no board configuration options for the CPUFREQ device driver.

Table 7-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 8-1

Chapter 8
i.MX28 Static Power Management Driver
Static Power Management refers to the system power management states set according to the operating
mode, as opposed to the dynamic power management where the state is changing according to the given
limitations, based on parameters such as system load. Static power management in Linux usually refers to
the power saving states. Linux power states are:

• Standby/power-on suspend (standby)
• Suspend-to-RAM (mem)
• Suspend-to-disk (disk)

Refer to Documentation/power/states.txt within the Linux kernel source tree for more information on
these states. Within the i.MX28 BSP only the standby state is supported.

8.1 Hardware Operation
Standby state, which is also sometimes referred to as Wait for Interrupt (WFI) mode, is entered when the
corresponding ARM co-processor instruction (mcr p15, 0, r0, c7, c0, 4) is executed. The i.MX28 also
has an additional feature for more power saving in WFI mode, called INTERRUPT_WAIT mode. This
mode is activated by setting a 1 in the INTERRUPT_WAIT bit of the CLKCTRL_CPU register. This
activation should be performed prior to WFI command execution. The coprocessor instruction sequence
enables an internal gating signal. This signal triggers the write buffers drain and guarantees that the CPU
is in the idle state. With the INTERRUPT_WAIT bit is set, after the WFI command execution, the CPU
halts on the mcr instruction. When an interrupt or a FIQ occurs, the mcr instruction completes and the
IRQ/FIQ handler is entered normally.

8.2 Software Operation
The standby state is implemented within the i.MX28 BSP to minimize the power consumption as much as
possible. Before issuing the WFI instruction, the following preparation steps are done:

• Interrupts are disabled except for those that are wakeup sources
• DMA is disabled
• CPU is switched to bypass mode (direct clocking from crystal)
• RAM is switched to bypass mode and put into self-refresh
• PLL is switched off; Xtal oscillator is switched on
• INTERRUPT_WAIT bit is set in the CPU Clock Control register (CLKCTRL_CPU)

i.MX28 Static Power Management Driver

i.MX28 EVK Linux Reference Manual

8-2 Freescale Semiconductor

The wakeup sources and the system state can be set by the sysfs interface. To activate a wakeup source,
write 1 to /sys/bus/platform/devices/<device>/power/wakeup.

For example:
echo 1 > /sys/bus/platform/devices/mxs-duart.0/power/wakeup

To put the entire system into standby mode, run the following command:
echo standby > /sys/power/state

8.3 Source Code Structure
The platform-specific static power management code listed in Table 8-1, is located in
arch/arm/mach-mx28/.

8.4 Menu Configuration Options
The following Linux kernel configurations are provided for this driver:

• CONFIG _PM [=Y]
Generic configuration option to enable static power management. Once it is enabled, the source
files listed above are automatically selected for compilation.

Table 8-1. Power Management Driver Files

File Description

pm.c High level code interfacing with the platform-independent static power management API

sleep.S Assembly code implementing the low-level part of standby mode

sleep.h Header file containing definitions and structures

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Frame Buffer Driver
The frame buffer driver is designed using the Linux kernel frame buffer driver framework. It implements
the platform driver for a frame buffer device. The implementation uses the LCDIF API for generic LCD
low-level operations. The LCD driver is organized in a flexible and extensible manner and is abstracted
from any specific LCD panel support. To support a LCD panel, implement the low-level panel handling
functions and pass the container structure to the frame buffer driver through platform_data. See
Chapter 10, “LCD Interface (LCDIF) Driver,” for more details on the panel handling interface.

9.1 Hardware Operation
The frame buffer driver uses the LCDIF API to interact with the hardware.

9.2 Software Operation
A frame buffer device is a memory device similar to /dev/mem and it has the same features. It can be read
from, written to, or some location in it can be seeked and mmap(). The difference is that the memory that
appears is not the whole memory, but only the frame buffer of the video hardware. The device is accessed
through special device nodes, usually located in the /dev directory, /dev/fb*. /dev/fb* also has several
IOCTLs which act on it, by which information about the hardware can be queried and set. The color map
handling operates through IOCTLs as well. See linux/fb.h for more information on what IOCTLs exist
and which data structures they use.

The frame buffer driver implementation for i.MX28 is abstracted from the actual hardware. It operates as
an arbiter, picking up the panel driver that matches the resolution and bit width selected and calling this
panel driver functions. All the panel driver structures are linked into a list that is passed to the frame buffer
driver through the platform_data parameter of the frame buffer platform device.

The default panel driver is picked up by name (using the mxs_lcd_iterate_pdata iterator function) during
probing, based on the lcd_panel command line parameter passed through the kernel command line (in the
case of the frame buffer driver compiled into the kernel) or during module probe (in the case of the frame
buffer driver compiled as a module). Later on, if another screen resolution and/or bit width is requested,
the frame buffer driver looks through the list of available panel drivers in order to find the one that supports
this resolution and bit width. Once found, the frame buffer driver switches to the new panel driver.

Frame Buffer Driver

i.MX28 EVK Linux Reference Manual

9-2 Freescale Semiconductor

9.3 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_FB_MXS_43WVF1G [=Y|N]
Configuration option to compile support for the SEIKO 4.3' WVGA(800x480) LCD panel into the
kernel.

9.4 Source Code Structure
The frame buffer driver source code is in drivers/video/mxs/mxsfb.c.

The panel support code is located in drivers/video/mxs.

The frame buffer driver includes the source/header files shown in Table 9-1.
Table 9-1. Frame Buffer Driver Files

File Description

lcd_43wvf1g.c Supports SEIKO 4.3’ WVF1G 800x480 LCD panel

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 10-1

Chapter 10
LCD Interface (LCDIF) Driver
The LCD Interface (LCDIF) driver supports the SEIKO 4.3” WVF1G LCD panels.

10.1 Hardware Operation
The LCDIF driver includes the following features:

• Bus master and DMA operating modes for LCD writes requiring minimal CPU overhead
• 8/16/18/24-bit LCD data bus support depending on the package size
• Programmable timing and parameters for system, VSYNC and DOTCLK LCD interfaces to

support a wide variety of displays
• ITU-R BT.656 mode (Digital Video Interface (DVI) mode) including a progressive-to-interlace

feature and RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operations

10.2 Software Operation
The LCDIF support code is implemented as a kernel space API. The API routines implements basic LCD
interface operations, such as initialization, as well as LCD DMA abstraction for the callers. The interface
is meant to be used by kernel entities such as LCD panel drivers and frame buffer drivers.

The LCDIF headers also define the LCD panel structure. This structure encapsulates data and functions to
provide flexible support for different LCD panels that can be attached to the LCD interface.

10.3 Source Code Structure
The LCDIF source code, shown in Table 10-1, is located in the following directories:
drivers/video/mxs/

arch/arm/mach-mx28/include/mach/

10.4 Menu Configuration Options
The LCDIF API is unconditionally compiled into the kernel image. The LCD panel can be selected by the
kernel command line options:

Table 10-1. LCDIF Driver Files

File Description

lcdif.h Header file

regs-lcdif.h Register definitions

lcdif.c Source code file

LCD Interface (LCDIF) Driver

i.MX28 EVK Linux Reference Manual

10-2 Freescale Semiconductor

• lcd_panel = 43wvf1g for SEIKO 43WVF1G

NOTE
If there is one panel, then do not need to pass this parameter.

10.5 Programming Interface
The following structures are defined to facilitate flexible LCD panel support:

struct mxs_platform_fb_entry {
char name[16];
u16 x_res;
u16 y_res;
u16 bpp;
u32 cycle_time_ns;
int lcd_type;
int (*init_panel)(struct device *dev,
dma_addr_t phys, int memsize,
struct mxs_platform_fb_entry *pentry);
void (*release_panel)(struct device *dev,
struct mxs_platform_fb_entry *pentry);
int (*blank_panel)(int blank);
void (*run_panel)(void);
void (*stop_panel)(void);
int (*pan_display)(dma_addr_t phys);
int (*update_panel)(void *p,
struct mxs_platform_fb_entry *pentry);
struct list_head link;
struct mxs_platform_bl_data *bl_data;

};

struct mxs_platform_fb_data {
struct list_head list;
struct mxs_platform_fb_entry *cur;

};

struct mxs_platform_bl_data {
struct list_head list;
int bl_gpio;
int bl_max_intensity;
int bl_default_intensity;
int (*init_bl)(struct mxs_platform_bl_data *data);
void (*set_bl_intensity)(struct mxs_platform_bl_data *data,

struct backlight_device *bd, int suspended);
void (*free_bl) (struct mxs_platform_bl_data *);

};

mxs_platform_fb_entry is the structure that completely defines a panel driver. Panel driver entries are then
linked into the list in the platform_data(struct mxs_platform_fb_data) of the frame buffer platform
device.

mxs_platform_bl_data is the structure that completely defines a backlight driver. Since the backlight
driver is panel-specific, it should be selected based on the panel selection. It is implemented using notifiers
described below.

LCD Interface (LCDIF) Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 10-3

The following functions are defined within the API:

Group 1 functions implement low-level LCD interface handling and are for panel driver usage.
• void mxs_init_lcdif(void);

• int mxs_lcdif_dma_init(struct device *dev, dma_addr_t phys, int memsize);

• void mxs_lcdif_dma_release(void);

• void mxs_lcdif_run(void);

• void mxs_lcdif_stop(void);

• int mxs_lcdif_pan_display(dma_addr_t addr);

Group 2 functions are used to manipulate panel drivers entries, for example to add a platform driver entry
to frame buffer platform devices platform_data and search through registered panel driver entries in order
to find a match. See Chapter 9, “Frame Buffer Driver,” for more information.

• void mxs_lcd_register_entry(struct mxs_platform_fb_entry *pentry,

struct mxs_platform_fb_data *pdata);

• int mxs_lcd_iterate_pdata(struct mxs_platform_fb_data *pdata,

int (*func)(struct mxs_platform_fb_entry *pentry,

void *data, int ret_prev),

void *data);

• void mxs_lcd_set_bl_pdata(struct mxs_platform_bl_data *pdata);

Group 3 functions are intended for backlight driver usage. The backlight driver registers its notifier client
to get updates on the LCD interface mode selected. When the mode selected is DVI mode, an external
display is used and the backlight should be turned off. See Chapter 11, “Backlight Driver,” for more
information.

• int mxs_lcdif_register_client(struct notifier_block *nb);

• void mxs_lcdif_unregister_client(struct notifier_block *nb);

• void mxs_lcdif_notify_clients(unsigned long event,

struct mxs_platform_fb_entry *pentry);

LCD Interface (LCDIF) Driver

i.MX28 EVK Linux Reference Manual

10-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Backlight Driver
The LCD backlight driver is designed using the Linux kernel frame buffer/backlight driver framework. It
implements the platform driver for a device. The driver is organized in a flexible and extensible manner
and is abstracted from any specific LCD panel. To support a backlight, the low-level backlight handling
functions are implemented and linked with the panel driver structures for which this backlight driver is
valid. See Chapter 10, “LCD Interface (LCDIF) Driver,” for more details on the panel handling interface.

11.1 Hardware Operation
The hardware operation for the backlight depends on the actual LCD panel. However, some issues are the
same for any implementation. The actual pin that drives the backlight is PWM2, and the PWM is
programmed depending on how backlight is implemented on the LCD panel.

11.2 Software Operation
A backlight device is controlled mainly by the sysfs interface. The sysfs backlight control directory
(assuming that sysfs is mounted at /sys) is /sys/class/backlight/mxs-bl. Backlight parameters such as
brightness and max_brightness can be queried and set (max_brightness is read-only). See
drivers/video/backlight/backlight.c and the bl_device_attributes array for more information.

The backlight driver is abstracted from the actual hardware. It subscribes to LCD panel change
notifications though the LCDIF API. Once the LCD panel is initialized, the driver receives notification
which contains the hardware-specific backlight support data and then starts using the data for backlight
programming.

11.3 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_BACKLIGHT_MXS [=M|Y]
Configuration option for the MXS frame buffer driver, which is dependent on the BACKLIGHT
CLASS DEVICE option.
This option can be found under:
Device Drivers > Graphics Support > Backlight & LCD device support

• CONFIG_FB_MXS_LMS430 [=M|Y]
Configuration option to compile support for Samsung LMS430 “dot clock” LCD panel and
backlight handling into the kernel.

Backlight Driver

i.MX28 EVK Linux Reference Manual

11-2 Freescale Semiconductor

11.4 Source Code Structure
The generic backlight driver source code is located in drivers/video/backlight/mxs_bl.c.

The panel support code which includes hardware-dependent backlight handling routines is located in
arch/arm/plat-mxs.

The backlight driver includes the source/header files shown in Table 11-1.
Table 11-1. Backlight Driver Files

File Description

lcd_lms430.c Hardware backlight support for the Samsung LMS430 “dot clock” LCD panel

i.MX51 EVK Linux Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver
This section describes the ASoC driver architecture and implementation. The ASoC architecture is
imported to provide a better solution for ALSA kernel drivers. ASoC aims to divide the ALSA kernel
driver into machine, platform (CPU), and audio codec components. Any modifications to one component
do not impact another components. The machine layer registers the platform and the audio codec device,
and sets up the connection between the platform and the audio codec according to the link interface, which
is supported both by the platform and the audio codec. More detailed information about ASoC can be
found at http://www.alsa-project.org/main/index.php/ASoC.

Figure 12-1. ALSA SoC Software Architecture

The ALSA SoC driver has the following components as shown in Figure 12-1:
• Machine driver—handles any machine specific controls and audio events, such as turning on an

external amp at the beginning of playback.
• Platform driver—contains the audio DMA engine and audio interface drivers (for example, I2S,

AC97, PCM) for that platform.
• Codec driver—platform independent and contains audio controls, audio interface capabilities, the

codec DAPM definition, and codec I/O functions.

12.1 SoC Sound Card
Currently, the stereo codec (sgtl5000), 5.1 codec (wm8580), 4-channel ADC codec (ak5702), 7.1
codec(cs42888), built-in ADC/DAC codec, and Bluetooth codec drivers are implemented using SoC
architecture. The five sound card drivers are built in independently. The stereo sound card supports stereo
playback and mono capture. The 5.1 sound card supports up to six channels of audio playback. The
4-channel sound card supports up to four channels of audio record. The Bluetooth sound card supports

Machine (board)

Platform
(cpu)

Codec DAI link

Soc-core.c

Cpu
DA

Codec
DAI

I

http://www.alsa-project.org/main/index.php/ASoC

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX51 EVK Linux Reference Manual

12-2 Freescale Semiconductor

Bluetooth PCM playback and record with Bluetooth devices. The built-in ADC/DAC codec supports
stereo playback and record.

NOTE

12.1.1 Stereo Codec Features
The stereo codec supports the following features:

• Sample rates for playback and capture are 32 KHz, 44.1 KHz, 48 KHz, and 96 KHz
• Channels:

— Playback: supports two channels. (stereo)
— Capture: supports two channels. (Only one channel has valid voice data due to hardware

connection)
• Audio formats:

— Playback:
– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

— Capture:
– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

12.1.2 Sound Card Information
The registered sound card information can be listed as follows using the commands aplay -l and arecord
-l.
root@freescale /$ aplay -l
**** List of PLAYBACK Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 0: mxsevk [mxs-evk], device 0: SGTL5000 SGTL5000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 1: mxsevk_1 [mxs-evk], device 0: MXS SPDIF mxs spdif-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

root@freescale /$ arecord -l
**** List of CAPTURE Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []
 Subdevices: 1/1
Subdevice #0: subdevice #0
card 0: mxsevk [mxs-evk], device 0: SGTL5000 SGTL5000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX51 EVK Linux Reference Manual

Freescale Semiconductor 12-3

12.2 ASoC Driver Source Architecture
As shown in Figure 12-1, imx-pcm.c is shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC driver
and the Bluetooth codec driver. This file is responsible for preallocating DMA buffers and managing DMA
channels.

The stereo codec is connected to the CPU through the SSI interface. imx-ssi.c registers the CPU DAI
driver for the stereo ALSA SoC and configures the on-chip SSI interface. sgtl5000.c registers the stereo
codec and hifi DAI drivers. The direct hardware operations on the stereo codec are in sgtl5000.c.
imx-3stack-sgtl5000.c is the machine layer code which creates the driver device and registers the stereo
sound card.

The stereo codec is connected to the CPU through the SAIF interface. mxs-dai.c registers the CPU DAI
driver for the stereo ALSA SoC and configures the on-chip SAIF interface. sgtl5000.c registers the stereo
codec and hifi DAI drivers. The direct hardware operations on the stereo codec are in sgtl5000.c.
mxs-devb.c is the machine layer code which creates the driver device and registers the stereo sound card.

Figure 17-2 shows the ALSA SoC source file relationship.

Figure 12-2 shows the ALSA SoC source file relationship.
Figure 12-2. ALSA Soc Source FIle Relationship

Figure 12-3.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX51 EVK Linux Reference Manual

12-4 Freescale Semiconductor

Table 12-1 shows the external stereo codec driver source files. These files are also under the
<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

12.3 Menu Configuration Options
The following Linux kernel configuration options are provided for this module. To get to these options,
use the ./ltib -c command when located in the <ltib dir>. Select Configure the Kernel on the screen
displayed and exit. When the next screen appears, select the following options to enable this module:

• SoC Audio support for i.MX SGTL5000. In menuconfig, this option is available under
Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC
audio support > SoC Audio for the Freescale i.MX CPU

• CONFIG_SND_MXC_SOC_IRAM: This config is used to allow audio DMA playback buffers in
IRAM. In menuconfig, this option is available under
Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC
audio support > Locate Audio DMA playback buffers in IRAM

• SoC Audio support for i.MX28 EVK Board. In menuconfig, this option is available under
Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC
audio support > SoC Audio support for MXS-EVK SGTL5000, MXS Digital Audio Interface SAIF

12.4 Hardware Operation
The following sections describe the hardware operation of the ASoC driver.

12.4.1 Stereo Audio Codec
The stereo audio codec is controlled by the I2C interface. The audio data is transferred from the user data
buffer to/from the SSI FIFO through the DMA channel. The DMA channel is selected according to the
audio sample bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode and provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate.

Table 12-1. External Stereo Codec ASoC Driver Source File

File Description

mxs/mxs-devb.c Machine layer

mxs/mxs-pcm.c Platform layer for ALSA SoC codec

mxs/mxs_pcm.h Header file for PCM driver

mxs/mxs-dai.c Platform DAI link

mxs/mxs-dai.h Platform DAI link header

codec/sgtl5000.c Codec layer

codecs/sgtl5000.h Header file

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX51 EVK Linux Reference Manual

Freescale Semiconductor 12-5

The stereo audio codec is controlled by the I2C interface. The audio data is transferred from the user data
buffer to/from the SAIF FIFO through the DMA channel. Playback uses SAIF0 and Record uses SAIF1.
SAIF0 works in master mode and provides the MCLK, BCLK and LRCLK, SAIF1 and SGTL5000 codec
work in slave mode, using clock of SAIF0. The BCLK and LRCLK are configured according to the audio
sample rate.

The SGTL5000 ASoC codec driver exports the audio record/playback/mixer APIs according to the ASoC
architecture. The ALSA related audio function and the FM loopback function cannot be performed
simultaneously.

The codec driver is generic and hardware independent code that configures the codec to provide audio
capture and playback. It does not contains code that is specific to the target platform or machine. The codec
driver handles:

• Codec DAI and PCM configuration
• Codec control I/O—using I2C
• Mixers and audio controls
• Codec audio operations
• DAC Digital mute control

The SGTL5000 codec is registered as an I2C client when the module initializes. The APIs are exported to
the upper layer by the structure snd_soc_dai_ops. The io_probe routine initializes the codec hardware to
the desired state.

Headphone insertion/removal can be detected through a MCU interrupt signal. The driver reports the event
to user space through sysfs.

12.5 Software Operation
The following sections describe the hardware operation of the ASoC driver.

12.5.1 Sound Card Registration
The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver, and their operation functions
2. The platform driver registers the PCM driver, CPU DAI driver and their operation functions,

preallocates buffers for PCM components and sets playback and capture operations as applicable
3. The machine layer creates the DAI link between codec and CPU registers the sound card and PCM

devices

12.5.2 Device Open
The ALSA driver:

• Allocates a free substream for the operation to be performed
• Opens the low level hardware device

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX51 EVK Linux Reference Manual

12-6 Freescale Semiconductor

• Assigns the hardware capabilities to ALSA runtime information. (the runtime structure contains all
the hardware, DMA, and software capabilities of an opened substream)

• Configures DMA read or write channel for operation
• Configures CPU DAI and codec DAI interface.
• Configures codec hardware
• Triggers the transfer

After triggering for the first time, the subsequent DMA read/write operations are configured by the DMA
callback.

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 13-1

Chapter 13
Pixel Pipeline (PxP) Driver
The Pixel Pipeline (PxP) is supported as a Linux kernel Video4Linux driver. The PxP driver is designed
and implemented to comply with version 2.0 of the Video4Linux API (V4L2). The software implements
a platform driver for a V4L2 output and output overlay device. The implementation interacts directly with
the PxP hardware block registers. The LCD driver is organized in a flexible and extensible manner. It
interacts with the i.MX28 frame buffer driver to accomplish frame buffer overlay of the video stream and
output to the display. See Chapter 9, “Frame Buffer Driver,” for more details on the frame buffer driver.

13.1 Hardware Operation
The PxP driver uses PxP registers to interact with the hardware. It also uses private APIs to gather frame
buffer information and send PxP output to the display using functions in the frame buffer driver.

13.2 Software Operation
A V4L2 driver utilizes the V4L2 driver framework to provide functionality by a standard character driver
model. The V4L2 API Specification (Revision 0.24) provides complete details of the API exported to user
space applications. The following V4L2 features are supported by the driver:

• RGB555, RGB565, RGB24, YUV420 (planar), and YUV422P (planar) input formats
• Programmable input pixel format and size
• Mmap streaming input buffers
• Direct PxP output to the display
• Overlay of the frame buffer on the PxP input stream
• Color keying and alpha blending of the overlay
• Horizontal and vertical flipping of the PxP output
• 90°, 180°, and 270° rotation of the PxP output
• Programmable scaling of YUV420 and YUV422P input formats
• Programmable default background color
• Selection of YCbCr or YUV color space

These features are supported using custom APIs:
• Output to mmap user buffer

The supported V4L2 IOCTLs include the following:
• VIDIOC_QUERYCAP
• VIDIOC_REQBUFS

Pixel Pipeline (PxP) Driver

i.MX28 EVK Linux Reference Manual

13-2 Freescale Semiconductor

• VIDIOC_QUERYBUF
• VIDIOC_QBUF
• VIDIOC_DQBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF
• VIDIOC_ENUMOUTPUT
• VIDIOC_G_OUTPUT
• VIDIOC_S_OUTPUT
• VIDIOC_ENUM_FMT
• VIDIOC_TRY_FMT
• VIDIOC_G_FMT
• VIDIOC_S_FMT
• VIDIOC_G_FBUF
• VIDIOC_S_FBUF
• VIDIOC_G_CROP
• VIDIOC_S_CROP
• VIDIOC_QUERYCTRL
• VIDIOC_G_CTRL
• VIDIOC_S_CTRL

The following V4L2 standard controls are implemented by the driver:
• V4L2_CID_HFLIP
• V4L2_CID_VFLIP

The following V4L2 custom controls have been added to the driver:
• V4L2_CID_PRIVATE_BASE—Rotation (0°, 90°, 180°, or 270°)
• V4L2_CID_PRIVATE_BASE + 1—Background Color
• V4L2_CID_PRIVATE_BASE + 2—Set S0 Chromakey
• V4L2_CID_PRIVATE_BASE + 3—Color space (0 - YCbCr, 1 - YUV)

13.3 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

• CONFIG_VIDEO_PXP [=M|Y]
Configuration option for the PxP V4L2 output overlay driver, which is dependent on the
VIDEO_DEV, VIDEO_V4L2, and ARCH_MXS options. In menuconfig, this option is available
under:
Multimedia devices > Video capture adapter > MXS PxP

Pixel Pipeline (PxP) Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 13-3

13.4 Source Code Structure
The PxP driver source code is located in drivers/media/video/mxs_pxp.c and
drivers/media/video/mxs_pxp.h.

Pixel Pipeline (PxP) Driver

i.MX28 EVK Linux Reference Manual

13-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 14-1

Chapter 14
NAND GPMI Flash Driver
The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-Purpose Media
Interface (GPMI) controller on the i.MX28. Only the hardware specific layer has to be implemented for
the NAND MTD driver to operate. The rest of the functionality such as Flash read/write/erase is
automatically handled by the generic layer provided by the Linux MTD subsystem for NAND devices.

14.1 Hardware Operation
NAND Flash is a nonvolatile storage device used for embedded systems. It does not support random
accesses of memory as in the case of RAM or NOR Flash. Reading or writing to NAND Flash must be
done through the GPMI. NAND Flash is a sequential access device appropriate for mass storage
applications. Code stored on NAND Flash can not be executed from there. Code must be loaded into RAM
memory and executed from there. The i.MX28 contains a hardware error-correcting block.

14.2 Software Operation
MTDs in Linux cover all memory devices such as RAM, ROM, and different kinds of NOR/NAND
Flashes. The MTD subsystem provides uniform access to all such devices. Above the MTD devices there
could be either MTD block device emulation with a Flash file system (JFFS2) or a UBI layer. The UBI
layer in turn, can have either UBIFS above the volumes or a Flash Translation Layer (FTL) with a regular
file system (FAT, Ext2/3) above it. The hardware specific driver interfaces with the GPMI module on
i.MX28. It implements the lowest level operations such as read, write and erase. If enabled, it also provides
information about partitions on the NAND device—this information has to be provided by platform code.

The NAND driver is the point where read/write errors can be recovered, if possible. Hardware error
correction is performed by BCH blocks and is driven by NAND drivers code.

Detailed information about NAND driver interfaces can be found at http://www.linux-mtd.infradead.org

14.2.1 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

• mil_ecc_read_page (with ECC)
• mil_ecc_write_page (with ECC)
• mil_read_byte (without ECC)
• mil_read_buf (without ECC)
• mil_write_buf (without ECC)
• mil_ecc_read_oob (with ECC)

http://www.linux-mtd.infradead.org

NAND GPMI Flash Driver

i.MX28 EVK Linux Reference Manual

14-2 Freescale Semiconductor

• mil_ecc_write_oob (with ECC)

These functions read the requested amount of data, with or without error correction. In the case of read,
the mil_incoming_buffer_dma_begin function is called, which creates the DMA chain, submits it to
execute, and waits for completion. The write case is a bit more complex: the data to be written is mapped
and flushed out by calling mil_incoming_buffer_dma_begin before processing the command
NAND_CMD_PAGEPROG.

14.2.2 Error Correction
When reading or writing data to Flash, some bits can be flipped. This is normal behavior, and NAND
drivers utilize various error correcting schemes to correct this. It could be resolved with software or
hardware error correction. The GPMI driver uses only a hardware correction scheme with the help of an
hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k + 218).

14.2.3 Boot Control Block Management
During startup, the NAND driver scans the first block for the presence of a NAND Control Block (NCB).
Its presence is detected by magic signatures. When a signature is found, the boot block candidate is
checked for errors using Hamming code. If errors are found, they are fixed, if possible. If the NCB is
found, it is parsed to retrieve timings for the NAND chip.

All boot control blocks are created when formatting the medium using the user space kobs application.

14.2.4 Bad Block Handling
When the driver begins, by default, it builds the bad block table. It is possible to determine if a block is
bad, dynamically, but to improve performance it is done at boot time. The badness of the erase block is
determined by checking a pattern in the beginning of the spare area on each page of the block. However,
if the chip uses hardware error correction, the bad marks falls into the ECC bytes area. Therefore, if
hardware error correction is used, the bad block mark should be moved. The driver decides if bad block
marks should be moved if there is no NAND control block. Then, to prevent another move of bad block
marks, the driver writes the default NCB to the Flash.

The following functions that deal with bad block handling are grouped together in the gpmi-nfc-mil.c file:
• mil_block_bad

• mil_scan_bbt

•

14.2.5 Special NAND supporting

NAND GPMI Flash Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 14-3

14.3 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/gpmi-nfc directory. The following files are included
in the NAND driver:

• gpmi-nfc-main.c

• gpmi-nfc-mil.c

• gpmi-nfc-hal-common.c

• gpmi-nfc-hal-v0.c
• gpmi-nfc-hal-v1.c
• gpmi-nfc-hal-v2.c
• gpmi-nfc-event-reporting.c
• gpmi-nfc-rom-v0.c
• gpmi-nfc-rom-v1.c
• gpmi-nfc-rom-common.c
• gpmi-nfc.h
• gpmi-nfc-gpmi-regs-v0.h

• gpmi-nfc-gpmi-regs-v2.h

• gpmi-nfc-gpmi-regs-v3.h
• gpmi-nfc-bch-regs-v0.h

• gpmi-nfc-bch-regs-v1.h

• gpmi-nfc-bch-regs-v2.h

14.4 Menu Configuration Options
To enable the NAND driver, the following options must be set:

• CONFIG_MTD_NAND_GPMI_NFC = [Y | M]

In addition, these MTD options must be enabled:
• CONFIG_MTD_NAND = [y | m]
• CONFIG_MTD = y
• CONFIG_MTD_PARTITIONS = y
• CONFIG_MTD_CHAR = y
• CONFIG_MTD_BLOCK = y

In addition, these UBI options must be enabled:
• CONFIG_MTD_UBI=y
• CONFIG_MTD_UBI_WL_THRESHOLD=4096
• CONFIG_MTD_UBI_BEB_RESERVE=1
• CONFIG_UBIFS_FS=y
• CONFIG_UBIFS_FS_LZO=y
• CONFIG_UBIFS_FS_ZLIB=y

NAND GPMI Flash Driver

i.MX28 EVK Linux Reference Manual

14-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 15-1

Chapter 15
ENET IEEE-1588 Driver
ENET IEEE-1588 driver performs a set of functions that enabling precise synchronization of clocks in
network communication. The driver requires a protocol stack to complete IEEE-1588 full protocol. It
complies with the IXXAT stack interfaces.

15.1 Hardware Operation
To allow for IEEE 1588 or similar time synchronization protocol implementations, the ENET MAC is
combined with a time-stamping module to support precise time stamping of incoming and outgoing
frames. 1588 Support is enabled when the register bit ENA_1588 is set to '1'.

Figure 15-1. IEEE 1588 Functions Overview

15.1.1 Transmit Timestamping
On transmit, only 1588 event frames need to be time-stamped. The Client application (for example, the
MAC driver) should detect 1588 event frames and set the signal ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0) with the frame
sequence number (tx_ts_id(3:0)) and the transmit status. The transmit status bit tx_ts_stat (5) indicates that
the application had the ff_tx_ts_frm signal asserted for the frame.

ENET IEEE-1588 Driver

i.MX28 EVK Linux Reference Manual

15-2 Freescale Semiconductor

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame in the register
TS_TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal when it transmits
the frame it needs a timestamp for and then waits on the EIR (TS_AVAIL) interrupt bit to know when the
timestamp is available. It then can read the timestamp from the TS_TIMESTAMP register. This is done
for all event frames; other frames do not use the ff_tx_ts_frm indicator and hence do not interfere with the
timestamp capture.

15.1.2 Receive Timestamping
When a frame is received, the MAC latches the value of the timer when the frame SFD field is detected
and provides the captured timestamp on ff_rx_ts(31:0). This is done for all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame into the
corresponding field within the receive descriptor for software access.

15.2 Software Operation
The 1588 Driver has the functions listed below:

• Module initialization—Initializes the module with the device specific structure, and registers a
character driver.

• IXXAT stack interface—Respond to protocol stackís command by IOCTL routine, such as
GET_TX_TIMESTAMP, SET_RTC_TIME.

• Interrupt servicing routine—Supports events, such as TS_AVAIL, TS_TIMER. The driver shares
interrupt servicing routine with FEC driver.

• Miscellaneous routines—Maintain the timestamp circle queue.

15.3 Source Code Structure
Table 15-1 lists the source files available in the <ltib_dir>/rpm/BUILD/linux/drivers/net directory.

.

For more information about the generic Linux driver, see the
<ltib_dir>/rpm/BUILD/linux/drivers/net/fec_1588.c source file.

15.4 Linux Menu Configuration Options
To get to the ENET 1588 configuration, use the command ./ltib -c when located in the <ltib dir>. In
the screen, select Configure Kernel, exit, and a new screen appears.

Table 15-1. ENET 1588 File List

File Description

fec_1588.h Header file defining registers

fec_1588.c Linux driver for ENET 1588 timer

ENET IEEE-1588 Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 15-3

The CONFIG_FEC_1588 Linux kernel configuration is provided for this module. This option is available
under Device Drivers > Network device support > Ethernet (10 or 100 Mbit) > Enable FEC 1588
timestamping.

15.5 Programming Interface
The 1588 driver complies with the IXXAT protocol stack interface. Stack-specific defines are added to the
header file (fec_1588.h).

15.5.1 IXXAT Specific Data structure Defines
Protocol-specific defines are added to the header file (fec_1588.h).

/* PTP standard time representation structure */
struct ptp_time{
u64 sec; /* seconds, unsigned */
u32 nsec;/* nanoseconds, signed */
};

/* interface for PTP driver command GET_TX_TIME */
struct ptp_ts_data {
/* PTP version */
u8 version;
/* PTP source port ID */
u8 spid[10];
/* PTP sequence ID */
u16 seq_ID;
/* PTP message type */
u8 message_type;
/* PTP timestamp */
ptp_time ts;
};

/* interface for PTP driver command SET_RTC_TIME/GET_CURRENT_TIME */
struct ptp_rtc_time {
ptp_time rtc_time;
};

/* interface for PTP driver command SET_COMPENSATION */
struct ptp_set_comp {
u32 drift;
};

/* interface for PTP driver command GET_ORIG_COMP */
struct ptp_get_comp {
/* the initial compensation value */
u32 dw_origComp;
/* the minimum compensation value */
u32 dw_minComp;
/*the max compensation value*/
u32 dw_maxComp;
/*the min drift applying min compensation value in ppm*/
u32 dw_minDrift;
/*the max drift applying max compensation value in ppm*/
u32 dw_maxDrift;

ENET IEEE-1588 Driver

i.MX28 EVK Linux Reference Manual

15-4 Freescale Semiconductor

};

/* PTP default message type */
#define DEFAULT_msg_Sync 0x0
#define DEFAULT_msg_Delay_Req 0x1
#define DEFAULT_msg_Peer_Delay_Req0x2
#define DEFAULT_msg_Peer_Delay_Resp0x3

/* PTP message version */
#define PTP_1588_MSG_VER_11
#define PTP_1588_MSG_VER_22

15.5.2 IXXAT IOCTL Commands Defines
Command: PTP_GET_TX_TIME
Description: command provides the timestamp of the transmit packet with specific PTP sequence
ID and returns the timestamp, the sender port-ID, the PTP version, and the message type through
the ptp_ts_data structure.

Command: PTP_GET_RX_TIME
Description: command provides the timestamp of the receive packet with specific PTP sequence
ID and returns the timestamp, the sender port-ID, the PTP version, and the message type, through
the ptp_ts_data structure.

Command: PTP_SET_RTC_TIME
Description: command sets the RTC time register with provided PTP time through the ptp_rtc_time
structure.

Command: PTP_SET_COMPENSATION
Description: command sets the drift compensation with provided compensation value through the
ptp_set_comp structure.

Command: PTP_GET_CURRENT_TIME
Description: command provides the current RTC time and returns the timestamp through the
ptp_rtc_time structure.

Command: PTP_FLUSH_TIMESTAMP
Description: command flushes the transmit and receive timestamp queues.

Command: PTP_GET_ORIG_COMP
Description: command provides the original frequency compensation, minimum frequency
compensation, maximum frequency compensation, minimum drift and maximum drift of RTC
through the ptp_get_comp structure.

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 16-1

Chapter 16
Programmable 3-Port Ethernet Switch Driver
The SWITCH driver performs the full set of switch interface functions. The switch requires an external
interface adaptor and transceiver function to complete the interface to the Ethernet media. It supports half
or full-duplex operation on 10 Mbps or 100 Mbps related Ethernet networks.

The Switch driver has the following features:
• Support Input Port selection.
• Supports IP Snooping and TCP/UDP port number snooping.
• Supports VLAN Input and Output Processing.
• Supports Frame Classification & Priority Resolution.
• Supports L2 MAC address look-up.
• Support Vlan domain Verification in the Frame Forwarding task.
• Support Broadcast/Multicast/VLAN Domain Resolution in the Frame Forwarding task.
• Support Port Mirroring in the Frame Forwarding task.
• Support Bridge Protocol Frame Resolution in the Frame Forwarding task.
• Support Congestion Resolution in the Frame Forwarding tack.

This switch can be accessed through the ifconfig command with interface name (eth0). The driver shall
auto-probe the external adaptor (PHY device).

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

16-2 Freescale Semiconductor

16.1 Hardware Operation
The Switch Core is designed to be seamlessly connected to the MorethanIP MAC-NET Core and DMA
controllers. For control and configuration, the switch implements an APB Register interface and multiple
maskable interrupts. See the Figure 16-1.

Figure 16-1. Switch Interface

The switch port assignment is listed in Table 16-1 and should be strictly followed when programming and
integrating the Switch Core.

Table 16-1. Port Assignment

Switch port Assignment

0 DMA0

1 MAC-NET 0

2 MAC-NET 1

3(bypass port) DMA1

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 16-3

The Switch, controlled with the configuration pin sx_ena, can be programmed to operate is two modes:
• Passthrough mode: The switch logic is disabled and bypassed.
• Switch mode: The switch logic is enabled.

16.1.1 Passthrough Mode
When configuration signal sx_ena is set to '0', the switch logic is bypassed and can be totally powered
down and disabled with, for example, the Switch clocks clk and pclk stopped and the Switch reset signals
reset_clk and reset_pclk set to '1'.

The Switch APB interface and interrupt signals are disabled and should not be used. To control the Frame
transfer from DMA0 and DMA1, the MAC-NET 0 and the MAC-NET 1 APB interfaces and interrupt
signals should be used.

Figure 16-2. Passthrough Mode Configuration Overview

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

16-4 Freescale Semiconductor

16.1.2 Switch Mode
When the Switch is programmed to operate in Switch Mode (sx_ena set to '1'), the Bypass Mode (Port 1)
interface is disabled and should not be used.

Frame transfers to and from the Line are performed on Port 0 only (DMA 0). The Transmit status signals
are generated from the Switch Port 0 Receive Buffer and the DMA control signals from the Switch
Register Space. The MAC-NET 0 and MAC-NET 1 Transmit status and DMA control signals are not used.

The MAC-NET 0 and MAC-NET 1 APB interfaces and interrupts are enabled and can be used to monitor
the line activity and gather the line statistic information.

Figure 16-3. Switch Mode Configuration Overview

16.2 Software Operation
The FEC Driver has the functions listed below:

• Module initialization—Initializes the module with the device specific structure.
• Driver entry points—Provides standard entry points for transmission, such as

switch_enet_start_xmit and for reception of Ethernet packets through the ISR, such as
switch_enet_interrupt.

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 16-5

• Interrupt servicing routine—Supports events, such as TXF, RXF and MII.
• Miscellaneous routines—Different routines come under this category, such as switch_timeout for

waking up network stack.

16.3 Source Code Structure
 Table 16-2 lists the source files available in the <ltib_dir>/rpm/BUILD/linux/drivers/net directory.

.

For more information about the generic Linux driver, see the
<ltib_dir>/rpm/BUILD/linux/drivers/net/fec_switch.c source file.

16.4 Linux Menu Configuration Options
To get to the Switch configuration, use the command ./ltib -c when located in the <ltib dir>. In the
screen, select Configure Kernel, exit, and a new screen appears.

The CONFIG_FEC_L2SWITCH Linux kernel configuration is provided for this module. This option is
available under Device Drivers > Network device support > Ethernet (10 or 100 Mbit) > L2 Switch
Ethernet Controller.

If want to use Switch Ethernet controller, disable the FEC Ethernet controller config in the menuconfig.

16.5 Programming Interface
Table 16-2 lists the source files for the Switch Driver. The following sections show modifications that were
required in the original Ethernet driver source for porting it to the i.MX family multimedia application
processors.

16.5.1 Device Specific Defines
Device-specific defines are added to the header file (fec_switch.h).

fec_switch.h defines the struct for the register access and the struct for the buffer descriptor.
struct switch_t {
 unsigned long ESW_REVISION; /* Revision Register*/
 unsigned long ESW_SCRATCH; /* Scratch Register*/
 unsigned long ESW_PER; /* Port Enable Register*/
 unsigned long reserved0[1];
 unsigned long ESW_VLANV; /* VLAN Verify*/
 unsigned long ESW_DBCR; /*Default Broadcast Resolution*/
 unsigned long ESW_DMCR; /*Default Multicast Resolution*/
 unsigned long ESW_BKLR; /*Blocking and Learning Enable*/
 unsigned long ESW_BMPC; /*Bridge Management Port*/

Table 16-2. Ethernet File List

File Description

fec_switch.h Header file defining registers

fec_switch.c Linux driver for 3-Port Ethernet Switch

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

16-6 Freescale Semiconductor

 unsigned long ESW_MODE; /*Mode Configuration Register*/
 unsigned long ESW_VIMSEL; /* VLAN Input Manipulation Select*/
 unsigned long ESW_VOMSEL; /*VLAN Output Manipulation Select*/
 unsigned long ESW_VIMEN; /*VLAN input manipulation enable*/
 unsigned long ESW_VID;/* VLAN Tag ID*/
 unsigned long esw_reserved0[2];
 unsigned long ESW_MCR;/* Mirror control register*/
 unsigned long ESW_EGMAP; /* Egress Port Definitions*/
 unsigned long ESW_INGMAP; /* Ingress Port Definitions*/
 unsigned long ESW_INGSAL; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_INGSAH; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_INGDAL; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_INGDAH; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_ENGSAL; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_ENGSAH; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_ENGDAL; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_ENGDAH; /* Ingress and Egress MAC Address Registers*/
 unsigned long ESW_MCVAL;/* Mirror Count Value*/
 /*from 0x70--0x7C*/
 unsigned long esw_reserved1[4];
 unsigned long ESW_MMSR;/* Memory Manager Status Register*/
 unsigned long ESW_LMT; /* Low Memory Threshold*/
 unsigned long ESW_LFC; /* Lowest Number of Free Cells*/
 unsigned long ESW_PCSR; /* Port Congestion Status*/
 unsigned long ESW_IOSR; /* Input/Output Interface Status Register*/
 unsigned long ESW_QWT;/* Queue Weights*/
 unsigned long esw_reserved2[1];/*0x98*/
 unsigned long ESW_P0BCT;/* Port 0 Backpressure Congestion Threshold*/
 unsigned long esw_reserved3[7];
 unsigned long ESW_P0FFEN;/* Port 0 Forced Forwarding Enable*/
 unsigned long ESW_PSNP[8]; /* Port Snooping Registers*/
 unsigned long ESW_IPSNP[8]; /* IP snooping registers*/
 unsigned long ESW_PVRES[3]; /* Port 0ñ2 VLAN Priority Resolution Map*/
 unsigned long esw_reserved4[13];
 unsigned long ESW_IPRES;/* IPv4/v6 Priority Resolution Table*/
 /*from 0x144-0x17C*/
 unsigned long esw_reserved5[15];
 unsigned long ESW_PRES[3]; /* Port n Priority Resolution Configuration*/
 /*from 0x18C-0x1FC*/
 unsigned long esw_reserved6[29];
 unsigned long ESW_PID[3]; /* Port n VLAN ID*/
 /*from 0x20C-0x27C*/
 unsigned long esw_reserved7[29];
 unsigned long ESW_VRES[32]; /* VLAN Domain Resolution 0ñ31*/
 unsigned long ESW_DISCN;/* Statistics Registers*/
 unsigned long ESW_DISCB; /* Statistics Registers*/
 unsigned long ESW_NDISCN; /* Statistics Registers*/
 unsigned long ESW_NDISCB;/* Statistics Registers*/
 struct esw_port_statistics_status port_statistics_status[3]; /*Port Statistics
Registers*/
 /*from 0x340-0x400*/
 unsigned long esw_reserved8[48];

 /*0xFC0DC400---0xFC0DC418*/
 /*unsigned long MCF_ESW_ISR;*/
 unsigned long switch_ievent; /* Interrupt event reg */
 /*unsigned long MCF_ESW_IMR;*/

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 16-7

 unsigned long switch_imask; /* Interrupt mask reg */
 /*unsigned long MCF_ESW_RDSR;*/
 unsigned long fec_r_des_start; /* Receive descriptor ring */
 /*unsigned long MCF_ESW_TDSR;*/
 unsigned long fec_x_des_start; /* Transmit descriptor ring */
 /*unsigned long MCF_ESW_MRBR;*/
 unsigned long fec_r_buff_size; /* Maximum receive buff size */
 /*unsigned long MCF_ESW_RDAR;*/
 unsigned long fec_r_des_active; /* Receive descriptor reg */
 /*unsigned long MCF_ESW_TDAR;*/
 unsigned long fec_x_des_active; /* Transmit descriptor reg */
 /*from 0x420-0x4FC*/
 unsigned long esw_reserved9[57];

 /*0xFC0DC500---0xFC0DC508*/
 unsigned long ESW_LREC0; /* aaaa */
 unsigned long ESW_LREC1; /* aaaa */
 unsigned long ESW_LSR; /* aaaa */
};

/*
 * Define the buffer descriptor structure.
 */
struct cbd_t {
#if defined(CONFIG_ARCH_MXC) || defined(CONFIG_ARCH_MXS)
 unsigned short cbd_datlen; /* Data length */
 unsigned short cbd_sc; /* Control and status info */
#else
 unsigned short cbd_sc; /* Control and status info */
 unsigned short cbd_datlen; /* Data length */
#endif
 unsigned long cbd_bufaddr; /* Buffer address */
#ifdef ENHANCE_BUFFER
 unsigned long ebd_status;
 unsigned short length_proto_type;
 unsigned short payload_checksum;
 unsigned long bdu;
 unsigned long timestamp;
 unsigned long reserverd_word1;
 unsigned long reserverd_word2;
#endif
};

Programmable 3-Port Ethernet Switch Driver

i.MX28 EVK Linux Reference Manual

16-8 Freescale Semiconductor

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Low-Level Keypad Driver
The low-level keypad driver interfaces with the Keypad Port Hardware (KPP) in the i.MX device. The
MXS keypad driver interfaces with LRADC channel. The keypad driver is implemented as a standard
Linux 2.6 keyboard driver, modified for the i.MX device.

The keypad driver supports the following features:
• Interrupt-driven scan code generation for keypress and release on a keypad matrix
• Keypad as a standard input device

The keypad driver can be accessed through the /dev/input/event0 device file. The numbering of the event
node depends on whether other input devices are loaded or not.

17.1 Hardware Operation
The keypad sends data using LRADC channel. At the end of each conversion, LRADC triggers an
interrupt which allows retrieval of the scan-code of pressed/released buttons.

17.2 Software Operation
The keypad driver generates scancodes for key-press and key-release events on the keypad matrix. The
operation is as follows:

• When LRADC finishes conversion on selected channel, the keypad interrupt handler is called
• In the keypad interrupt handler, the conversion result is debounced and compared against a table

of keycodes
• If found, the scan code is reported to the Linux input subsystem

The keypad driver registers the input device structure using the input register device. The driver sets the
input bit fields and conveys all the events that can be generated by the keypad to other parts of the input
subsystem. The keypad driver generates the EV KEY, EV REL and EV REP events. All the events are
reported by calling the input report key. The reported event is passed up to the event interface. The event
interface is implemented in the Evdev driver, if it is compiled in or built as a module. It implements a
generic event interface, and passes timestamped input events from the kernel to the userspace. Userspace
can read (either blocking or nonblocking) on the /dev/input/eventX device node.

17.3 Reassigning Keycodes
The keypad driver takes advantage of the input subsystem’s ability to remap key codes. A user space
application can use the EVIOCGKEYCODE and EVIOCSKEYCODE IOCTLs on the device node (for example
/dev/input/event0) to get and set key codes. Applications such as keyfuzz and input-kbd (from the

Low-Level Keypad Driver

i.MX50 RDP Linux Reference Manual

17-2 Freescale Semiconductor

input-utils package) use these IOCTLs which are handled by the input subsystem. See the kernel
Documentation/input/input-programming.txt for details on remapping codes.

17.4 Driver Features
The keypad driver supports the following features:

• Returns the input keycode for every key that is pressed or released
• Interrupt driver for keypress or release
• Blocking and nonblocking reads
• Implemented as a standard input device

17.5 Source Code Structure
Table 17-1 shows the keypad driver source files that are available in the following directories:
<ltib_dir>/rpm/BUILD/linux/drivers/input/keyboard
<ltib_dir>/rpm/BUILD/linux/include/linux

17.6 Menu Configuration Options
The following Linux kernel configuration options are provided for this module. To get to these options,
use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure
the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MXC_KEYBOARD—MXC Keypad driver used for the MXC KPP. In menuconfig this
option is available under
Device Drivers > Input device support > Keyboards > MXC Keypad Driver.

• CONFIG_KEYBOARD_MXS—Keypad ladder driver. In menuconfig this option is available
under Device Drivers > Input device support > Keyboards > MXS keyboard.

• CONFIG_INPUT_EVDEV—Enabling this option creates the device node /dev/input/event0. In
menuconfig, this option is available under
Device Drivers > Input device support > Event interface.

Table 17-1. Keypad Driver Files

File Description

mxc_keyb.c Low-level driver implementation

mxc_keyb.h Driver structures, control register address definitions

mxs-kbd.c Keypad ladder driver

input.h Generic Linux keycode definitions

arch/arm/mach-mx28/device.
c

Contains the platform-specific keymapping keycode array

Low-Level Keypad Driver

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 17-3

The following source code configuration options are available for this module:
• Matrix config—The keypad matrix can be configured for up to eight rows and eight columns. The

keypad matrix configuration can be done by changing the rowmax and colmax members in the
keypad_plat_data structure in the platform specific file (see Table 17-1).

• Debounce delay—The user can configure the debounce delay by changing the variable KScanRate
defined in mxc_keyb.c.

17.7 Programming Interface
User space applications can get information about the keypad driver through the standard proc and sysfs
files such as /proc/bus/input/devices and the files under /sys/class/input/event0/.

17.8 Interrupt Requirements
Table 17-2 lists the keypad interrupt timer requirements.

.

Table 17-2. Keypad Interrupt Timer Requirements

Parameter Equation Typical Worst-Case

Key scanning interrupt (X number of instruction/MHz) × 64 (X/MHz) × 64 (X/MHz) × 64

Alarm for key polling None 10 ms 10 ms

Low-Level Keypad Driver

i.MX50 RDP Linux Reference Manual

17-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 18-1

Chapter 18
Touch Screen and ADC Drivers

18.1 Driver Overview
The Touch Screen controller and the associated Analog to Digital Converter (ADC) together provide a
resistive touch screen solution for low cost PDAs, cell phones, ePOS devices, and multi-media players.
The module implements simultaneous touch screen control and auxiliary ADC operation for temperature,
voltage and other measurement functions. It includes the driver switches for controlling the screen and an
input multiplexer to allow one of four additional inputs to be supported. The ADC reference voltage can
be configurable in differential and single ended modes. The controller supports pen touching screen
detection for automatically interrupting the processor to measure only as required.

The touch screen driver interfaces with the channels 2, 3, 4 and 5 of LRADC. It is implemented within the
standard Linux kernel touch screen framework. The touch screen can be accessed through
the/dev/input/eventX device node.

18.2 Hardware Operation
The touch screen controller includes the following features:

• Supports 12-bit, 125 KHz ADC
• Supports ratiometric measurements drivers configurable in single ended or differential

(ratiometric) topologies
• Supports either built-in voltage reference generator or external reference voltage
• Supports 4-wire and 5-wire touch screens with five input channels for touch screen purpose

measurement (x+, x–, y+, y–, w)
• Supports general purpose measurements (for example, temperature, voltage) with three input

channels (aux0, aux1, aux2)
• Two independent measurement queues (TCQ for touch screen purpose, GCQ for general purpose

measurement)
• Includes two independent FIFOs, each with 16 entries × 16 bits, for storing TCQ and GCQ

conversion results
• Supports a touch detection interrupt feature to awaken the system from sleep mode
• Supports three power modes: always-off mode, power-saving mode, always-on mode
• Configurable pen down de-bounce logic
• Configurable LCD noise reducing logic
• Configurable settling time before each measurement
• Configurable multi-sample for each measurement

Touch Screen and ADC Drivers

i.MX28 EVK Linux Reference Manual

18-2 Freescale Semiconductor

The touch screen driver is divided into two parts:
• Touch detection—triggers an interrupt
• Movement capture—implemented using LRADC channel conversions

18.3 Software Operation
The ADC driver implements a complete IOCTL interface. Applications use the IOCTL interface to operate
the ADC. The supported operations of the IOCTL interface are init, deinit, conversion with single channel,
and conversion with multiple channels. The touch screen driver is designed as a Linux standard input
device. It uses some functions provided by the ADC driver to get the samples of the X and Y values, and
then transfers these values to the Linux input subsystem.

The touch screen driver implements a finite state machine to facilitate touch detection and movement
capture. The initial state is touch detection and once a touch is detected, the state machine goes into
X-coordinate movement detection. When enough samples are captured, Y-coordinate movement detection
state is entered, and the full picture is formed.

18.4 Source Code Structure
Table 18-1 shows the touch screen driver source files found in the directory
<ltib_dir>/rpm/BUILD/linux/drivers/input/touchscreen.

/

18.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module. To get to these options,
use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure
the Kernel and exit. When the next screen appears, select the following options to enable this module:

• TOUCHSCREEN_MXS—Provided for the Touch screen driver. In menuconfig, this option is
found under
Device Driver > Input device support > Touchscreens > MXS LRADC-based touchscreen driver.

18.6 Programming Interface (Exported API)
The ADC driver, imx_adc_ts.c, provides a complete IOCTL programming interface to control the ADC
hardware. The application interface to the ADC driver is the standard POSIX device interface (for
example, open, close IOCTL). The application interface to the touch screen driver is the standard Linux
input device interface.

Table 18-1. Touch Screen Driver Files

File Description

mxs-ts.c Touch screen driver implementation file

Touch Screen and ADC Drivers

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 18-3

18.7 Interrupt Requirements
The touch screen module generates interrupts when the pen is down. The ADC driver does not generate
interrupts.

Touch Screen and ADC Drivers

i.MX28 EVK Linux Reference Manual

18-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 19-1

Chapter 19
Inter-IC (I2C) Driver
I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange,
minimizing the interconnection between devices. The I2C driver for Linux has two parts:

• I2C bus driver—low level interface that is used to talk to the I2C bus
• I2C chip driver—acts as an interface between other device drivers and the I2C bus driver

19.1 I2C Bus Driver Overview
The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user space. The standard
Linux kernel contains a core I2C module that is used by the chip driver to access the I2C bus driver to
transfer data over the I2C bus. The chip driver uses a standard kernel space API that is provided in the
Linux kernel to access the core I2C module. The standard I2C kernel functions are documented in the files
available under Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

• Compatible with the I2C bus standard
• Bit rates up to 400 Kbps
• Starts and stops signal generation/detection
• Acknowledge bit generation/detection
• Interrupt-driven, byte-by-byte data transfer
• Standard I2C master mode

19.2 I2C Device Driver Overview
The I2C device driver implements all the Linux I2C data structures that are required to communicate with
the I2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer data to the
device that is connected to the I2C bus. Internally, these API functions use the standard I2C kernel space
API to call the I2C core module. The I2C core module looks up the I2C bus driver and calls the appropriate
function in the I2C bus driver to transfer data. This driver provides the following functions to other device
drivers:

• Read function to read the device registers
• Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

19-2 Freescale Semiconductor

19.3 Hardware Operation
The I2C module provides the functionality of a standard I2C master and slave. It is designed to be
compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock
frequencies that can be programmed by setting a value to the Frequency Divider Register (IFDR). It also
generates an interrupt when one of the following occurs:

• One byte transfer is completed
• Address is received that matches its own specific address in slave-receive mode
• Arbitration is lost

19.4 Software Operation
The I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver.

19.4.1 I2C Bus Driver Software Operation
The I2C bus driver is described by a structure called i2c_adapter. The most important field in this
structure is struct i2c_algorithm *algo. This field is a pointer to the i2c_algorithm structure that
describes how data is transferred over the I2C bus. The algorithm structure contains a pointer to a function
that is called whenever the I2C chip driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is loaded. Certain
architectures have more than one I2C module. If so, the driver registers separate i2c_adapter structures for
each I2C module with the I2C core. These adapters are unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end of a data
transmission before transmitting the next byte. It times out and returns an error if the transfer complete
signal is not received. Because the I2C bus driver uses wait queues for its operation, other device drivers
should be careful not to call the I2C API methods from an interrupt mode.

19.4.2 I2C Device Driver Software Operation
The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver, describes the I2C
chip driver. The fields of interest in this structure are flags and attach_adapter. The flags field is set to a
value I2C_DF_NOTIFY so that the chip driver can be notified of any new I2C devices, after the driver is
loaded. The attach_adapter callback function is called whenever a new I2C bus driver is loaded in the
system. When the I2C bus driver is loaded, this driver stores the i2c_adapter structure associated with this
bus driver so that it can use the appropriate methods to transfer data.

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 19-3

19.5 Driver Features
The I2C driver supports the following features:

• I2C communication protocol
• I2C master mode of operation

NOTE
The I2C driver do not support the I2C slave mode of operation.

19.6 Source Code Structure
The I2C bus driver source code is available in:

• drivers/i2c/busses/i2c-mxs.c
• drivers/i2c/busses/i2c-mxs.h

• arch/arm/mach-mx28/include/mach/regs-i2c.h

19.7 Menu Configuration Options

• CONFIG_I2C_MXS

19.8 Programming Interface
The I2C device driver can use the standard SMBus interface to read and write the registers of the device
connected to the I2C bus. For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

19.9 Interrupt Requirements
The I2C module generates many kinds of interrupts. The highest interrupt rate is associated with the
transfer complete interrupt as shown in Table 19-1.

.

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a baud rate of
400 Kbps (the maximum supported by the I2C interface).

Table 19-1. I2C Interrupt Requirements

Parameter Equation Typical Best Case

Rate Transfer Bit Rate/8 25,000/sec 50,000/sec

Latency 8/Transfer Bit Rate 40 µs 20 µs

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

19-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Data Co-Processor (DCP) Driver
The Data Co-Processor (DCP) cryptography driver is used to accelerate cryptographic operations in the
kernel space and user-space (Linux Crypto API).

20.1 Hardware Operation
The DCP provides support for general encryption functions typically used for security algorithms. The
supported modes are:

• Advanced Encryption Standard (AES)
• Electronic Code Book (ECB)
• Cipher Block Chaining (CBC)
• SHA-1
• SHA-256

The driver uses DMA to process the data in place.

20.2 Software Operation
The software implementation of the DCP driver conforms with the Linux Crypto driver model. It registers
a number of ciphers and block ciphers. Refer to the documentation located in the folder
Documentation/crypto/ (kernel source tree) for full information about the Linux Crypto API.

The following ciphers are registered in the DCP driver module:
• AES

The following block ciphers are registered in the DCP driver module:
• AES (ECB)
• AES (CBC)

The following hashing algorithms are registered in the DCP driver module:
• SHA-1
• SHA-256

In addition, the DCP can perform 128-bit AES crypto using the OTP KEY0 which is not accessible by
software, and therefore not usable through the Crypto APIs. The driver permits a user application to use
AES 128-bit/ECB mode but only supports encrypting/decrypting a single 128-bit block. The ROM uses
the OTP key during boot. Therefore, it is possible to verify that a bootstream is valid before committing it
to Flash. While the bootstream uses AES/CBC mode, it is far simpler to use the ECB mode. The user space

Data Co-Processor (DCP) Driver

i.MX28 EVK Linux Reference Manual

20-2 Freescale Semiconductor

access is performed by means of a miscellaneous device character file (under /proc/misc: dcpboot), and
two IOCTLs: DBS_ENC for encryption and DBS_DEC for decryption.

Typical usage scenarios for encrypting/decrypting using the OTP key is as follows:
uint8_t mac[16];
int r, fd;

fd = open(<character-device-file>, O_RDWR);
/* check fd for successful open call */
/* load vector to mac */
r = ioctl(fd, DBS_ENC, mac); /* encrypt */
/* check r for failure (!=0) */
r = ioctl(fd, DBS_DEC, mac); /* decrypt */
/* check r for failure (!=0) */
close(fd);

20.3 Source Code Structure
The DCP cryptography module is implemented in the following files:

drivers/crypto/dcp.c
drivers/crypto/dcp.h
drivers/crypto/dcp-bootstream-ioctl.h

20.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module:

• CONFIG_CRYPTO_DEV_DCP [=M|Y]
Configuration option for the DCP cryptography driver, which is dependent on ARCH_MX28 and
automatically selects CRYPTO_ALGAPI and CRYPTO_BLKCIPHER.
In menuconfig, this option is available under:
Cryptographic API > Hardware crypto devices > Support for the DCP engine

20.5 Programming Interface
This driver is integrated into the Linux Crypto API.

20.6 Unit Test
1. Boot the board & login as root.
2. Run the AES crypto test module:

root:~# modprobe tcrypt mode=10

3. Output should not contain any error messages related to ECB or CBC

NOTE
It is normal to have failures with a code -2 like:

testing lrw(aes) decryption
failed to load transform for lrw(aes): -2

It is also expected that modprobe fails to load the module, such as:

Data Co-Processor (DCP) Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 20-3

modprobe: failed to load module tcrypt.
4. Run the SHA-1 cryto test module:

root:~# modprobe tcrypt mode=2

5. Output should not contain any error messages related to SHA-1

NOTE
It is normal to have failure related to loading the module:

modprobe: failed to load module tcrypt.

6. Run the SHA-256 cryto test module:
root:~# modprobe tcrypt mode=6

7. Output should not contain any error messages related to SHA-256

NOTE
It is normal to have failure related to loading the module:

modprobe: failed to load module tcrypt.
8. Run the boostream verification test:

kobs-ng imgverify -d imx28_linux.sb
echo $?
0

If the return value is non-zero, then some error occurred during verification of the boostream using the
OTP key. Use the “-v” option for a verbose output from kobs-ng.

Data Co-Processor (DCP) Driver

i.MX28 EVK Linux Reference Manual

20-4 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 21-1

Chapter 21
SPI Bus Driver
The i.MX28 board provides two synchronous ports for inter-IC communication as well as removable
media control and communication. The SPI driver controls the SSP in SPI master mode.

21.1 Hardware Operation
The SPI bus is inherently a full-duplex bidirectional interface. However, the i.MX28 has a single DMA
channel for SSP; therefore, the SSP must be programmed for either transmit or receive. In receive mode,
the SSP continuously transfers the word written to its data register. In transmit mode, the SSP ignores
incoming data.

21.2 Software Operation
During startup, the driver allocates, populates, and registers the structure spi_master. Along with other
data, the structure contains pointers to the following functions:

• mxs_spi_setup
• mxs_spi_transfer
• mxs_spi_cleanup

When the driver is opened by the SPI device driver, mxs_spi_setup is called. This function configures the
SSP hardware to the mode requested by the SPI device driver. When the SPI device driver wants to
exchange data with the SPI device, the function mxs_spi_transfer is called as part of processing the
spi_sync/spi_async request. The transmitting/receiving process is described in Section 21.2.1,
“Transmitting Data,” and Section 21.2.2, “Receiving Data.” When the SPI device driver is finished with
its activity, mxs_spi_cleanup is called. It releases the hardware acquired by mxs_spi_setup. The driver can
work either in PIO mode (slow, not recommended) or DMA mode (the default, faster). The driver cannot
send and receive data in the same transfer—this is a hardware limitation.

21.2.1 Transmitting Data
In PIO mode, the driver writes the data byte-by-byte to the HW_SSP_DATA register. Before transferring,
the first byte driver manually raises the SS pin. Before transferring the last byte, the driver clears the SS
pin.

In DMA mode, the DMA channel is programmed to send the exact number of bytes, and the driver waits
for completion of the DMA operation.

SPI Bus Driver

i.MX28 EVK Linux Reference Manual

21-2 Freescale Semiconductor

21.2.2 Receiving Data
In PIO mode, the driver reads data byte-by-byte, and polls the HW_SSP_STATUS register for the
FIFO_EMPTY bit. When the bit is clear, the driver reads the next byte and puts it in the buffer.

In DMA mode, the DMA channel is programmed to receive the exact number of bytes. The driver then
waits for completion of the DMA operation.

21.3 Source Code Structure
The driver consists of the following files:

drivers/spi/spi_mxs.c

drivers/spi/spi_mxs.h

21.4 Menu Configuration Options
To enable the SPI bus driver, the following options must be set:

• CONFIG _SPI = Y
• CONFIG_SPI_MXS = [y | m]

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 22-1

Chapter 22
MMC/SD/SDIO Host Driver
The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO) Host driver
implements a standard Linux driver interface to the SSP SD/MMC module. The host driver is part of the
Linux kernel MMC framework.

The MMC driver has the following features:
• 1-bit or 4-bit operation for SD and SDIO cards
• Supports card insertion and removal detections
• Supports the standard MMC commands
• DMA data transfers
• Power management
• Supports 1/4/8-bit operations for MMC cards

22.1 Hardware Operation
The new high speed MMC communication is based on a 711-pin serial bus designed to operate in a low
voltage range. The host controller module controls the card by sending commands and running data
accesses from/to the card. The two communication protocols defined by the MMC specifications: SD and
SPI. Only SD mode is supported.

22.2 Software Operation
The host controller driver is responsible for implementing the mmc_host_ops structure, with request,
set_ios, and get_ro functions. These functions are called by the bus protocol driver. The host controller
driver talks directly to the hardware.

The mxs_mmc_request function handles both read and write requests that come from the protocol driver. It
calls the function mxs_mmc_start_cmd which configures the proper hardware registers depending on the
command type, then runs the DMA operation, and waits for completion.

The mxs_mmc_set_ios function sets the bus width, voltage level, and clock rate according to the bus
protocol driver requirements.

MMC/SD/SDIO Host Driver

i.MX28 EVK Linux Reference Manual

22-2 Freescale Semiconductor

The mxs_mmc_get_ro function returns the status of the write-protection signal. This signal is retrieved using
a helper function provided by the platform data callback, otherwise the driver assumes the card is
read-write.

22.3 Driver Features
The MMC driver supports the following features:

• Provides all the entry points to interface with the Linux MMC core driver
• MMC and SD cards
• Recognizes data transfer errors such as command time outs and CRC errors
• Power management

22.4 Source Code Structure
The driver consists only of the file: drivers/mmc/mxs-mmc.c

22.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module. To get to these options,
use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure
the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MMC—Build support for the MMC bus protocol. In menuconfig, this option is
available under
Device Drivers > MMC/SD/SDIO Card support
By default, this option is Y.

• CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to
mount the file system. In menuconfig, this option is available under
Device Drivers > MMC/SD Card Support > MMC block device driver
By default, this option is Y.

• CONFIG_MMC_MXS—i.MX23/i.MX28 driver. In menuconfig, this option is available under
Device Drivers > MMC/SD Card Support > Freescale MXC Multimedia Card Interface support.

• CONFIG_MMC_UNSAFE_RESUME—Used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under
Device drivers > MMC/SD/SDIO Card Support > Allow unsafe resume.

22.6 Programming Interface
This driver implements the functions required by the MMC bus protocol to interface with the i.MX SSP
SD/MMC mode module. See the BSP API document (in the doxygen folder of the documentation
package), for additional information.

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 23-1

Chapter 23
Universal Asynchronous Receiver-Transmitter (UART)
Driver
Thei.MX28 board contains six serial Universal Asynchronous Receiver-Transmitters (UARTs). One
UART has no DMA support and is intended to be used as a debug console (Debug UART). Five UARTs
are a high-performance UARTs, which are intended to be used by applications (Application UART,
appUART). They offers similar functionality to the industry-standard 16C550 UART device and support
baud rates of up to 3.25 Mbits/s. Unlike the debug UART, the application UARTs cannot be used as a serial
console.

23.1 Application UART
The following sections describe the hardware and software operation as well as the code structure of the
Application UARTs.

23.1.1 Hardware Operation
The CPU or the DMA controller reads and writes data and control/status information through the APBX
interface. The transmit and receive paths are buffered with internal FIFO memories, enabling up to
16-bytes to be stored independently in both transmit and receive modes. Two DMA channels are
supported, one for transmit and one for receive. If a time-out condition occurs in the middle of a receive
DMA block transfer, then the UART ends the DMA transfer and signals the end of the DMA block transfer.
A receive DMA can be set up to get the status of the previous receive DMA block transfer. The status
indicates the amount of valid data bytes in the previous receive DMA block transfer.

If a framing, parity, or break error occurs during reception, the appropriate error bit is set and stored in the
FIFO. If an overrun condition occurs, the overrun register bit is set immediately and FIFO data is prevented
from being overwritten. The FIFOs can be programmed to be one-byte deep, providing a conventional
double-buffered UART interface. The modem status input signal Clear To Send (CTS) and output modem
control line Request To Send (RTS) are supported. A programmable hardware flow control feature uses
the nUARTCTS input and the nUARTRTS output to automatically control the serial data flow.

23.1.2 Software Operation
The application UART driver is implemented as a UART driver registered with a UART core in the Linux
kernel and thus provides a standard serial driver interface to Linux. The driver can operate in both PIO
mode and DMA mode. DMA mode is the default and it allows the use of the FIFO in an optimum manner.
For more details, refer to Documentation/serial/driver. The driver does not support a console on the
application UART port.

Universal Asynchronous Receiver-Transmitter (UART) Driver

i.MX28 EVK Linux Reference Manual

23-2 Freescale Semiconductor

23.1.3 Source Code Structure
The application UART driver consists of the following files:

drivers/serial/mxs-auart.c
drivers/serial/mxs-auart.h

23.2 Debug UART
The following sections describe the hardware and software operation as well as the code structure of the
Debug UART.

23.2.1 Hardware Operation
The debug UART performs:

• Serial-to-parallel conversion on data received from a peripheral device
• Parallel-to-serial conversion on data transmitted to the peripheral device

The CPU reads and writes data and control/status information through the APBX interface. The transmit
and receive paths are buffered with internal FIFO memories.

23.2.2 Software Operation
The debug UART driver is implemented as a UART driver registered with UART core in the Linux kernel
and thus provides a standard serial driver interface to Linux. The driver operates in interrupt mode and uses
the FIFO in an optimum manner. Refer to Documentation/serial/driver for more details. The driver
supports a console on the debug UART port.

23.2.3 Source Code Structure
The debug UART driver consists of the following files:

drivers/serial/mxs-duart.c
drivers/serial/mxs-duart.h

23.3 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_SERIAL_MXS_AUART = [y|m]
Configuration option to enable the application UART driver.

• CONFIG_SERIAL_MXS_DUART = [y|m]
Configuration option to enable the debug UART driver.

• CONFIG_SERIAL_MXS_DBG_CONSOLE
Configuration option to enable the console on the debug UART.

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-1

Chapter 24
ARC USB Driver
The universal serial bus (USB) driver implements a standard Linux driver interface to the ARC USB-HS
OTG controller. The USB provides a universal link that can be used across a wide range of
PC-to-peripheral interconnects. It supports plug-and-play, port expansion, and any new USB peripheral
that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This USB driver has the
following features:

• High Speed/Full Speed Host Only core (HOST1)
• Host mode—Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP (Still

Image) drivers
• Peripheral mode—Supports MSC, and CDC (Communication Devices Class) drivers
• Embedded DMA controller

ARC USB Driver

i.MX53 EVK Linux Reference Manual

24-2 Freescale Semiconductor

24.1 Architectural Overview
A USB host system is composed of a number of hardware and software layers. Figure 24-1 shows a
conceptual block diagram of the building block layers in a host system that support USB 2.0.

Figure 24-1. USB Block Diagram

24.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at
http://www.usb.org/developers/docs/.

The i.MX28 EVK has a single Micro-AB receptacle and standard A. Mirco-AB can accept either a type
Micro-A (i.MX28 acts as a USB host) or Micro-B (i.MX28 acts as an USB gadget) plug. The A-type
receptacle has the 5th pin grounded while this pin on the B-type is floating. The state of this pin can be
read from the USBPHY STATUS register. When the pin state is changed, the USB control interrupt is
triggered. The standard A port is dedicate USB host only port

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-3

24.3 Software Operation
The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only
implements the hardware specified initialization functions. For the USB peripheral, it implements the
gadget framework.
static struct usb_ep_ops fsl_ep_ops = {

.enable = fsl_ep_enable,

.disable = fsl_ep_disable,

.alloc_request = fsl_alloc_request,

.free_request = fsl_free_request,

.queue = fsl_ep_queue,

.dequeue = fsl_ep_dequeue,

.set_halt = fsl_ep_set_halt,

.fifo_status = arcotg_fifo_status,

.fifo_flush = fsl_ep_fifo_flush, /* flush fifo */
};

static struct usb_gadget_ops fsl_gadget_ops = {
.get_frame = fsl_get_frame,
.wakeup = fsl_wakeup,

/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */
.vbus_session = fsl_vbus_session,
.vbus_draw = fsl_vbus_draw,
.pullup = fsl_pullup,
};

• fsl_ep_enable—configures an endpoint making it usable
• fsl_ep_disable—specifies an endpoint is no longer usable
• fsl_alloc_request—allocates a request object to use with this endpoint
• fsl_free_request—frees a request object
• arcotg_ep_queue—queues (submits) an I/O request to an endpoint
• arcotg_ep_dequeue—dequeues (cancels, unlinks) an I/O request from an endpoint
• arcotg_ep_set_halt—sets the endpoint halt feature
• arcotg_fifo_status—get the total number of bytes to be moved with this transfer descriptor

For OTG, an OTG finish state machine (FSM) is implemented.

24.4 Driver Features
The USB stack supports the following features:

• USB device mode
• Mass storage device profile—subclass 8-1 (RBC set)
• USB host mode
• HID host profile—subclasses 3-1-1 and 3-1-2. (USB mouse and keyboard)
• Mass storage host profile—subclass 8-1
• Ethernet USB profile—subclass 2
• DC PTP transfer

ARC USB Driver

i.MX53 EVK Linux Reference Manual

24-4 Freescale Semiconductor

24.5 Source Code Structure
Table 24-1 shows the source files available in the source directory,
<ltib_dir>/rpm/BUILD/linux/drivers/usb.

/

Table 24-2 shows the platform related source files.

Table 24-3 shows the platform-related source files in the
directory:<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28/

Table 24-1. USB Driver Files

File Description

host/ehci-hcd.c Host driver source file

host/ehci-arc.c Host driver source file

host/ehci-mem-iram.c Host driver source file for IRAM support

host/ehci-hub.c Hub driver source file

host/ehci-mem.c Memory management for host driver data structures

host/ehci-q.c EHCI host queue manipulation

host/ehci-q-iram.c Host driver source file for IRAM support

gadget/arcotg_udc.c Peripheral driver source file

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file

otg/fsl_otg.h OTG driver header file

otg/otg_fsm.c OTG FSM implement source file

otg/otg_fsm.h OTG FSM header file

gadget/fsl_updater.c FSL manufacture tool usb char driver source file

gadget/fsl_updater.h FSL manufacture tool usb char driver header file

Table 24-2. USB Platform Source Files

File Description

arch/arm/plat-mxs/include/mach/arc_otg.h USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table 24-3. USB Platform Header Files

File Description

usb_dr.c Platform-related initialization

usb_h1.c Platform-related initialization

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-5

Table 24-4 shows the common platform source files in the directory:
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs

24.6 Menu Configuration Options
The following Linux kernel configuration options are provided for this module. To get to these options,
use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure
the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_USB—Build support for USB
• CONFIG_USB_EHCI_HCD—Build support for USB host driver. In menuconfig, this option is

available under
Device drivers > USB support > EHCI HCD (USB 2.0) support.
By default, this option is M.
CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In menuconfig,
this option is available underDevice drivers > USB support > Support for Freescale controller.
By default, this option is Y.

• CONFIG_USB_EHCI_ARC_H1—Build support for selecting the USB Host1. In menuconfig, this
option is available underDevice drivers > USB support > Support for Host1 port on Freescale
controller. By default, this option is Y.

• CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In
menuconfig, this option is available under
Device drivers > USB support > Support for Host-side USB > EHCI HCD (USB 2.0) support >
Support for Freescale controller.
By default, this option is N.

• CONFIG_USB_STATIC_IRAM—Build support for selecting the IRAM usage for host. In
menuconfig, this option is available under
Device drivers > USB support > Use IRAM for USB.
By default, this option is N.

• CONFIG_USB_EHCI_ROOT_HUB_TT—Build support for OHCI or UHCI companion. In
menuconfig, this option is available under
Device drivers > USB support > Root Hub Transaction Translators.
By default, this option is Y selected by USB_EHCI_FSL && USB_SUPPORT.

• CONFIG_USB_STORAGE—Build support for USB mass storage devices. In menuconfig, this
option is available under

Table 24-4. USB Common Platform Files

File Description

utmixc.c Internal UTMI transceiver driver

usb_common.c Common platform related part of USB driver

usb_wakeup.c Handle usb wakeup events

ARC USB Driver

i.MX53 EVK Linux Reference Manual

24-6 Freescale Semiconductor

Device drivers > USB support > USB Mass Storage support.
By default, this option is Y.

• CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is
available under
Device drivers > HID Devices > USB Human Interface Device (full HID) support.
By default, this option is Y.

• CONFIG_USB_GADGET—Build support for USB gadget. In menuconfig, this option is
available under
Device drivers > USB support > USB Gadget Support.
By default, this option is M.

• CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this
option is available under
Device drivers > USB support > USB Gadget Support > USB Peripheral Controller (Freescale
USB Device Controller).
By default, this option is Y.

• CONFIG_USB_OTG—OTG Support, support dual role with ID pin detection.
By default, this option is N.

• CONFIG_UTMI_MXC_OTG—USB OTG pin detect support for UTMI PHY, enable UTMI PHY
for OTG support.
By default, this option is N.

• CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, this option is available
under
Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet
Support).
By default, this option is M.

• CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDIS protocol. In menuconfig, this
option is available under
Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet
Support) > RNDIS support.
By default, this option is Y.

• CONFIG_USB_FILE_STORAGE—Build support for Mass Storage gadget. In menuconfig, this
option is available under
Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.
By default, this option is M.

• CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is
available under
Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC ACM support).
By default, this option is M.

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-7

24.7 Programming Interface
This driver implements all the functions that are required by the USB bus protocol to interface with the
i.MX USB ports. See the BSP API document, for more information.

24.8 Default USB Settings
Table 24-5 shows the default USB settings.

By default, both usb device and host function are build-in kernel, otg port is used for device mode, and
host 1 is used for host mode.

The default configuration does not enable OTG port for both device and host mode. To enable USB-OTG
for both host and device mode, configure the kernel as follows and rebuild the kernel and modules:

• CONFIG_USB_EHCI_ARC_OTG—Enable support for the USB OTG port in HS/FS Host
mode.built as Y

• CONFIG_USB_GADGET—USB Gadget Support: built as y
• CONFIG_USB_OTG —OTG Support: built as Y
• CONFIG_MXC_OTG—USB OTG pin detect support for UTMI PHY: built as Y
• build USB GADGET driver as M, for example:

CONFIG_USB_ETH CONFIG_USB_FILE_STORAGEthen , if you want to use EVK as mass
storage device, insmod g_file_storage.ko file=/dev/mmcblk0p2
if you want to use the otg as ethernet, insmod g_ether.ko , then you can use ifconfig usb0 to
configure the ip

24.9 System WakeUp
• Both host and device connect/disconnect event can be system wakeup source

24.10 USB Wakeup usage

24.10.1 How to enable usb wakeup system ability
For otg port:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

For device-only port:
echo enabled > /sys/devices/platform/fsl-usb2-udc/power/wakeup

For host-only port:

Table 24-5. Default USB Settings

Platform OTG HS OTG FS Host1 Host2(HS) Host2(FS)

i.MX28 EVK enalbed NA enable N/A —

ARC USB Driver

i.MX53 EVK Linux Reference Manual

24-8 Freescale Semiconductor

echo enabled > /sys/devices/platform/fsl-ehci.x/power/wakeup
(x is the port num)

For usb child device
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

24.10.2 What kinds of wakeup event usb support
Take USBOTG port as the example.

Device mode wakeup:

- connect wakeup: when usb line connects to usb port, the other port is connected to PC (Wakeup signal:
vbus change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

Host mode wakeup:

- connect wakeup: when usb device connects to host port (Wakeup signal: ID/(dm/dp) change)
echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

- disconnect wakeup: when usb device disconnects to host port (Wakeup signal: ID/(dm/dp) change)
echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

- remote wakeup: press usb device (such as press usb key at usb keyboard) when usb device connects to
host port (Wakeup signal: ID/(dm/dp) change):

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE: For the hub on board, it needs to enable hub's wakeup first. for remote wakeup, it needs to do below
three steps:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup (enable the roothub's
wakeup)
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup (enable the second level hub's
wakeup)
(1-1 is the hub name)

echo enabled > /sys/bus/usb/devices/1-1.1/power/wakeup (enable the usb device's wakeup,
that device connects at second level hub)
(1-1.1 is the usb device name)

24.10.3 How to close the usb child device power
echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at usb device)

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 25-1

Chapter 25
Real Time Clock (RTC) Driver
The i.MX processor includes an integrated Real Time Clock (RTC) module. The RTC is used to keep the
time and date while the system is turned off. The driver can also:

• Provide periodic interrupts at certain frequencies (PIE)
• Wake up the system by providing an alarm feature (AIE)

25.1 Hardware Operation
The RTC prescaler converts the incoming crystal reference clock to a 1 Hz signal, which is used to
increment seconds, minutes, hours, and days Time-Of-Day (TOD) counters. The alarm functions, when
enabled, generate RTC interrupts when the TOD settings reach programmed values. The sampling timer
generates fixed-frequency interrupts, and the minutes stopwatch allows efficient interrupts on minute
boundaries.

25.2 Software Operation
The RTC module software implementation is through the RTC driver. Besides the initialization function,
it provides IOCTL functions to set up the RTC timer, interrupt, and so on. The periodic interrupt is
supported at fixed frequencies of 2, 4, 8, 16, 32, 64, 128, 256, and 512 Hz given the clock input of
32.768 KHz (other clock input frequencies are not supported by the driver). The 1 Hz periodic interrupt is
also called the update interrupt (UIE). See the Linux documentation in
<ltib_dir>/rpm/BUILD/linux/Documentation/rtc.txt for information on the RTC API.

NOTE
The i.MX RTC driver implementation follows what is stated in the rtc.txt
file that programming and/or enabling interrupt frequencies greater than
64 Hz is only allowed by root.

25.3 Source Code Structure
The RTC module is implemented in the <ltib_dir>/rpm/BUILD/linux/drivers/rtc directory. Table 25-1
shows the RTC module files. The source file for the RTC specifies the RTC function implementations.

Table 25-1. RTC Driver File List

File Description

rtc-mxs.c RTC driver

Real Time Clock (RTC) Driver

i.MX28 EVK Linux Reference Manual

25-2 Freescale Semiconductor

25.4 Programming Interface
All the Linux RTC functions are based on rtclib. The include/linux/rtc.h file specifies all the IOCTLs
for the RTC. Table 25-1 shows the IOCTLs that are listed in include/linux/rtc.h and which are supported
by the RTC driver.

API documentation for the programming interface is in the doxygen folder of the documents package.

The following Linux kernel configuration options are provided for this module:
• CONFIG_RTC_DRV_MXS [=M|Y]

This is the configuration option for the RTC driver, which is dependent on the RTC_CLASS
option. In menuconfig, this option is available under: Real Time Clock > Freescale MXS series
SoC RTC

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 26-1

Chapter 26
Watchdog (WDOG) Driver
The Watchdog Timer module protects against system failures by providing an escape from unexpected
hang, infinite loop situations or programming errors.

26.1 Hardware Operation
Once the watchdog timer is activated, it must be serviced by software on a periodic basis. If servicing does
not take place in time, the watchdog times out. Upon a time-out, the watchdog resets the chip

26.2 Software Operation
The Watchdog module software implementation conforms with the Linux watchdog driver model. Besides
the initialization function, it provides IOCTL and write functions to set up and maintain the watchdog
timer. Refer to Documentation/watchdog/watchdog-api.txt for full information on the Linux Watchdog
API.

Watchdog (WDOG) Driver

i.MX23 EVK Linux Reference Manual

26-2 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 27-1

Chapter 27
Battery Charger and Power Source Manager (PSM) Driver
The Battery Charger Device Driver for Linux provides support for controlling the battery interface circuits
and power source detection. The battery charger features include:

• Circuits to automatically detect the presence of a USB or AC power source and to recharge the
system battery

• Prevents overcharging circuits
• Bad battery detection
• Die temperature monitoring
• Battery voltage measurement

27.1 Hardware Operation
The i.MX28 device includes charging of a Li-Ion battery from a 5 V source. The battery charger is
essentially a linear regulator with current and voltage limits. Charge current is software-programmable.
Li-Ion batteries can be charged at the lower of 1 C (where C is the charging rate of a battery; in other words,
transfer of all of the stored energy in one hour), 785 mA, or the VDD5V current limit. USB charging is
typically limited to 500 mA or less to meet compliance requirements.

Typical charge times for a Li-Ion battery are 1.5 to 3 hours with more than 70% of the charge delivered in
the first hour. The battery charge voltage limit is determined by the battery type. The Li-Ion charge is
typically stopped after a certain time limit or when the charging current drops below 10% of the charge
current setting. It includes controls for the maximum charge current and for the stop charge current. The
charger avoids exceeding the charge voltage limit on the battery.

The battery voltage can be monitored using the Low Resolution ADC (LRADC). The charger has its own
(very robust) voltage limiting that operates independently of the LRADC. The battery charger is capable
of generating a large amount of heat within the i.MX28, especially at currents above 400 mA. The
dissipated power can be estimated as: (5 V – battery_voltage) × current. At maximum current (785 mA)
and a 3 V battery, the charger can dissipate 1.57 W, raising the die temp as much as 80 °C. To ensure that
the system operates correctly, the die temperature sensor should be monitored every 100 ms. If the die
temperature exceeds 115 °C (the maximum value for the chip temperature sensor), then the battery charge
current must be reduced.

27.2 Software Operation
The function ddi_bc_Init() configures the battery charger and moves the state machine from uninitialized
to disabled. This is the only way to move the state machine out of the uninitialized state. This function is
used to start up the battery charger after a system reset or when reloading it into memory.

Battery Charger and Power Source Manager (PSM) Driver

i.MX28 EVK Linux Reference Manual

27-2 Freescale Semiconductor

The structure below shows the configuration information for the ddi_bc_Init():
typedef struct _ddi_bc_Cfg_t
{

uint32_t u32StateMachinePeriod;
uint16_t u16CurrentRampSlope;
uint16_t u16ConditioningThresholdVoltage;
uint16_t u16ConditioningMaxVoltage;
uint16_t u16ConditioningCurrent;
uint32_t u32ConditioningTimeout;
uint16_t u16ChargingVoltage;
uint16_t u16ChargingCurrent;
uint16_t u16ChargingThresholdCurrent;
uint32_t u32ChargingTimeout;
uint32_t u32TopOffPeriod;
uint8_t useInternalBias:1;
uint8_t monitorDieTemp:1;
uint8_t monitorBatteryTemp:1;
int8_t u8DieTempHigh;
int8_t u8DieTempLow;
uint16_t u16DieTempSafeCurrent;
uint8_t u8BatteryTempChannel;
uint16_t u16BatteryTempHigh;
uint16_t u16BatteryTempLow;
uint16_t u16BatteryTempSafeCurrent;

} ddi_bc_Cfg_t;

Table 27-1 shows the structure field definitions.
Table 27-1. Battery Charger Driver Structure Fields

Field Units Description

u32StateMachinePeriod ms Expected period between calls to ddi_bc_StateMachine. If die temperature
monitoring is enabled, then this period should be around 100 ms or less.

u16CurrentRampSlope mA/s Configures the slope of the current ramp. When the battery charger increases its
current draw, it ramps up the current to this rate.

u16ConditioningThresholdVoltage mV Configures the threshold conditioning voltage. If the battery voltage is below this
value, it is conditioned until its voltage rises above the maximum conditioning
voltage (ConditioningMaxVoltage). After that, the battery is charged normally.

u16ConditioningMaxVoltage mV Configures the maximum conditioning voltage. Normal charging begins when the
voltage rises above this value. This value should be slightly higher than the
threshold conditioning voltage because it is measured while a conditioning
current is actually owing to the battery. With a conditioning current of 0.1×C
(where C is the battery capacity), reasonable values for the threshold and
maximum conditioning voltages are 2.9 V and 3.0 V respectively.

u16ConditioningCurrent mA Configures the maximum conditioning current. This is the maximum current that
is offered to a battery while it is being conditioned. A typical value is 0.1×C.

u16ConditioningTimeout ms Configures the conditioning time-out. This is the maximum amount of time that a
battery is conditioned before the battery charger declares it to be broken.

u16ChargingVoltage mV Configures the final charging voltage. Only two values are permitted: 4100 or
4200.

u16ChargingCurrent mA Configures the maximum current offered to a charging battery.

Battery Charger and Power Source Manager (PSM) Driver

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 27-3

27.3 Source Code Structure
The battery charger driver code listed in Table 27-2, is located in:
drivers/power/stmp37xx/

arch/arm/mach-stmp3xxx/include/mach/

u16ChargingThresholdCurrent mA Configures the current flow below which a charging battery is regarded as fully
charged (typical 0.1×C). At this point, the battery is topped off.

u32ChargingTimeout ms Configures the charging time-out. This is the maximum amount of time that a
battery is charged before the battery charger declares it to be broken.

u32TopOffPeriod ms Configures the top-off period. This is the amount of time a battery is held in the
Topping Off state before it is declared fully charged.

useInternalBias — A value of zero causes the battery charger to use an externally generated bias
current, which is expected to be quite precise. Any other value cause the battery
charger to generate a lesser-quality bias current internally.

monitorDieTemp — If set, this field indicates that the battery charger is to monitor the die temperature.
See below for fields that configure the details.

monitorBatteryTemp — If set, this field indicates that the battery charger has to monitor the battery
temperature. See below for fields that configure the details.

u8DieTempHigh °C If the battery charger is monitoring the die temperature, and it rises to a range that
includes a temperature greater than or equal to this value, the charging current is
clamped to the safe current.

u8DieTempLow °C If the charging current is being clamped because of high die temperature, and it
falls to a range that does not include a temperatures greater than or equal to this
value, the charging current clamp is released.

u16DieTempSafeCurrent mA If the battery charger detects a high die temperature, it clamps the charging
current at or below this value.

u8BatteryTempChannel — If the battery charger is monitoring the battery temperature, this field indicates the
LRADC channel to read.

u8BatteryTempHigh — If the battery charger is monitoring the battery temperature, and it rises to a
measurement greater than or equal to this value, the charging current is clamped
to the corresponding safe current.

u8BatteryTempLow — If the charging current is being clamped because of a high battery temperature,
and it falls below this value, the charging current clamp is released.

u16BatteryTempSafeCurrent mA If the battery charger detects a high battery temperature, it clamps the charging
current at or below this value.

Table 27-2. Battery Charger Driver Files

File Description

ddi_bc_api.c Battery charger API

ddi_bc_hw.c Battery charger hardware operations

Table 27-1. Battery Charger Driver Structure Fields (continued)

Field Units Description

Battery Charger and Power Source Manager (PSM) Driver

i.MX28 EVK Linux Reference Manual

27-4 Freescale Semiconductor

27.4 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_POWER_SUPPLY = [y | m]
Configuration option to enable power supply class support in the kernel.

• CONFIG_BATTERY_STMP3XXX = [y | m]
Configuration option to enable the battery charger driver.

ddi_bc_hw.h Declarations for battery charger hardware operations

ddi_bc_init.c Battery charger initialization function

ddi_bc_internal.h Declarations for the battery charger driver

ddi_bc_ramp.c Battery charger current ramp controller

ddi_bc_ramp.h Declarations for battery current ramp controller

ddi_bc_sm.c Battery charger state machine

ddi_bc_sm.h Declarations for the battery charger state machine

ddi_power_battery.c Power manipulations for the battery charger driver

ddi_power_battery.h Declarations for ppower manipulations

linux.c Linux glue driver to the battery state machine

ddi_bc.h Header file with externally visible declarations for the battery charger driver

Table 27-2. Battery Charger Driver Files (continued)

File Description

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 28-1

Chapter 28
LED Pulse Width Modulator (PWM) Driver
The MXS Pulse Width Modulator (PWM) module provides eight PWM interfaces for system use. The
PWM LED driver provides a standard framework to control LEDs attached to PWM interfaces.

28.1 Hardware Operation
The PWM interface is clocked from a 24 MHz reference clock. Each PWM channel can be independently
programmed with the following characteristics:

• Reference clock divider
• Pulse active on and off time based on the divided reference clock
• Pulse period based on the divided reference clock

28.2 Software Operation
The PWM LED driver software implementation conforms with the Linux LED driver model. The driver
provides the functions necessary to register as a standard Linux LED class driver. Refer to
Documentation/leds-class.txt for full information on the Linux LED Class API. The driver uses the
PWM active time and period registers to implement an 8-bit resolution brightness control.

28.3 Menu Configuration Options
The following Linux kernel configuration options are provided for this module:

• CONFIG_LEDS_MXS [= M|Y]
This is the configuration option for the PWM LED driver, which is dependent on the
LEDS_CLASS option.
In menuconfig, this option is available under:
LED Support > Support for PWM LEDs on MXS

28.4 Source Code Structure
The PWM LED driver is implemented in the following files:

drivers/leds/leds-mxs-pwm.c

LED Pulse Width Modulator (PWM) Driver

i.MX28 EVK Linux Reference Manual

28-2 Freescale Semiconductor

i.MX28 EVK Linux Reference Manual

Freescale Semiconductor 29-1

Chapter 29
Frequently Asked Questions

29.1 NFS Mounting Root File System
1. Assuming the root file system is under, modify the /etc/exports file on the Linux host by adding

the following line:
/tmp/fs *(rw,no_root_squash)/tools/rootfs *(rw,sync,no_root_squash)

2. Make sure the NFS service is started on the Linux host machine. To start it on the host machine,
issue:

Install if not already installed.

29.2 Using the Memory Access Tool
The Memory Access Tool is used to access kernel memory space from user space. The tool can be used to
dump registers or write registers for debug purposes.

To use this tool, run the executable file memtool located in /unit_test:
• Type memtool without any arguments to print the help information
• Type memtool [-8 | -16 | -32] addr count to read data from a physical address
• Type memtool [-8 | -16 | -32] addr=value to write data to a physical address

If a size parameter is not specified, the default size is 32-bit access. All parameters are in hexadecimal.

Frequently Asked Questions

i.MX28 EVK Linux Reference Manual

29-2 Freescale Semiconductor

	i.MX28 EVK Linux
	Contents
	Tables
	Figures
	About This Book
	Chapter 1 Introduction
	1.1 Software Base
	1.2 Features

	Chapter 2 Architecture
	2.1 Linux BSP Block Diagram
	2.2 Kernel
	2.2.1 Kernel Configuration
	2.2.2 Machine Specific Layer (MSL)

	2.3 Drivers
	2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver
	2.3.2 Real-Time Clock (RTC) Driver
	2.3.3 Watchdog Timer (WDOG) Driver
	2.3.4 DCP
	2.3.5 i.MX28 Graphics
	2.3.6 Sound Driver
	2.3.7 Keypad
	2.3.8 Memory Technology Device (MTD) Driver
	2.3.9 USB Driver
	2.3.10 General Drivers

	2.4 Boot Loaders
	2.4.1 i.MX28 Boot Loader

	Chapter 3 Machine Specific Layer (MSL)
	3.1 Interrupts
	3.1.1 Interrupt Hardware Operation
	3.1.2 Interrupt Software Operation
	3.1.3 Interrupt Source Code Structure
	3.1.4 Interrupt Programming Interface

	3.2 Timer
	3.2.1 Timer Hardware Operation
	3.2.2 Timer Software Operation
	3.2.3 Timer Features
	3.2.4 Timer Source Code Structure
	3.2.5 Timer Programming Interface

	3.3 Memory Map
	3.3.1 Memory Map Hardware Operation
	3.3.2 Memory Map Software Operation
	3.3.3 Memory Map Features
	3.3.4 Memory Map Source Code Structure
	3.3.5 Memory Map Programming Interface

	3.4 Pin Multiplexing
	3.4.1 Pin Multiplexing Hardware Operation
	3.4.2 Pin Multiplexing Software Operation
	3.4.3 Pin Multiplexing Source Code Structure
	3.4.4 Pin Multiplexing Programming Interface
	3.4.5 GPIO With Pin Multiplexing

	Chapter 4 Direct Memory Access Controller (DMAC) API
	4.1 Hardware Operation
	4.2 Software Operation
	4.3 Source Code Structure
	4.4 Programming Interface

	Chapter 5 Persistent Bits Driver
	5.1 Hardware Operation
	5.2 Software Operation
	5.3 Source Code Structure
	5.4 Menu Configuration Options
	5.5 Programming Interface

	Chapter 6 Unique ID on Boot Media
	6.1 Software Operation
	6.2 Programming Interface
	6.3 Source Code Structure
	6.4 Menu Configuration Options

	Chapter 7 CPU Frequency Scaling (CPUFREQ) Driver
	7.1 Software Operation
	7.2 Source Code Structure
	7.3 Menu Configuration Options
	7.3.1 Board Configuration Options

	Chapter 8 i.MX28 Static Power Management Driver
	8.1 Hardware Operation
	8.2 Software Operation
	8.3 Source Code Structure
	8.4 Menu Configuration Options

	Chapter 9 Frame Buffer Driver
	9.1 Hardware Operation
	9.2 Software Operation
	9.3 Menu Configuration Options
	9.4 Source Code Structure

	Chapter 10 LCD Interface (LCDIF) Driver
	10.1 Hardware Operation
	10.2 Software Operation
	10.3 Source Code Structure
	10.4 Menu Configuration Options
	10.5 Programming Interface

	Chapter 11 Backlight Driver
	11.1 Hardware Operation
	11.2 Software Operation
	11.3 Menu Configuration Options
	11.4 Source Code Structure

	Chapter 12 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	12.1 SoC Sound Card
	12.1.1 Stereo Codec Features
	12.1.2 Sound Card Information

	12.2 ASoC Driver Source Architecture
	12.3 Menu Configuration Options
	12.4 Hardware Operation
	12.4.1 Stereo Audio Codec

	12.5 Software Operation
	12.5.1 Sound Card Registration
	12.5.2 Device Open

	Chapter 13 Pixel Pipeline (PxP) Driver
	13.1 Hardware Operation
	13.2 Software Operation
	13.3 Menu Configuration Options
	13.4 Source Code Structure

	Chapter 14 NAND GPMI Flash Driver
	14.1 Hardware Operation
	14.2 Software Operation
	14.2.1 Basic Operations: Read/Write
	14.2.2 Error Correction
	14.2.3 Boot Control Block Management
	14.2.4 Bad Block Handling
	14.2.5 Special NAND supporting

	14.3 Source Code Structure
	14.4 Menu Configuration Options

	Chapter 15 ENET IEEE-1588 Driver
	15.1 Hardware Operation
	15.1.1 Transmit Timestamping
	15.1.2 Receive Timestamping

	15.2 Software Operation
	15.3 Source Code Structure
	15.4 Linux Menu Configuration Options
	15.5 Programming Interface
	15.5.1 IXXAT Specific Data structure Defines
	15.5.2 IXXAT IOCTL Commands Defines

	Chapter 16 Programmable 3-Port Ethernet Switch Driver
	16.1 Hardware Operation
	16.1.1 Passthrough Mode
	16.1.2 Switch Mode

	16.2 Software Operation
	16.3 Source Code Structure
	16.4 Linux Menu Configuration Options
	16.5 Programming Interface
	16.5.1 Device Specific Defines

	Chapter 17 Low-Level Keypad Driver
	17.1 Hardware Operation
	17.2 Software Operation
	17.3 Reassigning Keycodes
	17.4 Driver Features
	17.5 Source Code Structure
	17.6 Menu Configuration Options
	17.7 Programming Interface
	17.8 Interrupt Requirements

	Chapter 18 Touch Screen and ADC Drivers
	18.1 Driver Overview
	18.2 Hardware Operation
	18.3 Software Operation
	18.4 Source Code Structure
	18.5 Menu Configuration Options
	18.6 Programming Interface (Exported API)
	18.7 Interrupt Requirements

	Chapter 19 Inter-IC (I2C) Driver
	19.1 I2C Bus Driver Overview
	19.2 I2C Device Driver Overview
	19.3 Hardware Operation
	19.4 Software Operation
	19.4.1 I2C Bus Driver Software Operation
	19.4.2 I2C Device Driver Software Operation

	19.5 Driver Features
	19.6 Source Code Structure
	19.7 Menu Configuration Options
	19.8 Programming Interface
	19.9 Interrupt Requirements

	Chapter 20 Data Co-Processor (DCP) Driver
	20.1 Hardware Operation
	20.2 Software Operation
	20.3 Source Code Structure
	20.4 Menu Configuration Options
	20.5 Programming Interface
	20.6 Unit Test

	Chapter 21 SPI Bus Driver
	21.1 Hardware Operation
	21.2 Software Operation
	21.2.1 Transmitting Data
	21.2.2 Receiving Data

	21.3 Source Code Structure
	21.4 Menu Configuration Options

	Chapter 22 MMC/SD/SDIO Host Driver
	22.1 Hardware Operation
	22.2 Software Operation
	22.3 Driver Features
	22.4 Source Code Structure
	22.5 Menu Configuration Options
	22.6 Programming Interface

	Chapter 23 Universal Asynchronous Receiver-Transmitter (UART) Driver
	23.1 Application UART
	23.1.1 Hardware Operation
	23.1.2 Software Operation
	23.1.3 Source Code Structure

	23.2 Debug UART
	23.2.1 Hardware Operation
	23.2.2 Software Operation
	23.2.3 Source Code Structure

	23.3 Menu Configuration Options

	Chapter 24 ARC USB Driver
	24.1 Architectural Overview
	24.2 Hardware Operation
	24.3 Software Operation
	24.4 Driver Features
	24.5 Source Code Structure
	24.6 Menu Configuration Options
	24.7 Programming Interface
	24.8 Default USB Settings
	24.9 System WakeUp
	24.10 USB Wakeup usage
	24.10.1 How to enable usb wakeup system ability
	24.10.2 What kinds of wakeup event usb support
	24.10.3 How to close the usb child device power

	Chapter 25 Real Time Clock (RTC) Driver
	25.1 Hardware Operation
	25.2 Software Operation
	25.3 Source Code Structure
	25.4 Programming Interface

	Chapter 26 Watchdog (WDOG) Driver
	26.1 Hardware Operation
	26.2 Software Operation

	Chapter 27 Battery Charger and Power Source Manager (PSM) Driver
	27.1 Hardware Operation
	27.2 Software Operation
	27.3 Source Code Structure
	27.4 Menu Configuration Options

	Chapter 28 LED Pulse Width Modulator (PWM) Driver
	28.1 Hardware Operation
	28.2 Software Operation
	28.3 Menu Configuration Options
	28.4 Source Code Structure

	Chapter 29 Frequently Asked Questions
	29.1 NFS Mounting Root File System
	29.2 Using the Memory Access Tool

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

