
1 Overview
Contemporary electronic gadgets often have opportunities to
do a system upgrade. The upgrade is so convenient that the
end user can retrieve the updated image and do it themselves.
But this also opens a back-door for malware writers. They
may provide updated image which contains virus and rootkit.
Once such system is upgraded and used, bad consequences
can be expected, such as theft of critical personal information,
anonymous monitor on personal activities, etc.

For security consideration, it is necessary that the hardware
have some mechanism to ensure that the software it is running
can be trusted. Freescale i.MX 6 series chip provides High
Assurance Boot (HAB) feature which meets such a
requirement. OEM can utilize it to make their product reject
any system image which is not authorized for running.

2 Mechanism
An asymmetric encryption is adopted to implement the HAB
feature. The OEM can use an utility provided by Freescale to
generate private key and corresponding public key pairs. For
any system image they want to release, the private key is used
to do the encryption. This encryption generates a unique
identifier for the image which is called a certificate. The
public key is also attached to the image. Before applying the

Freescale Semiconductor Document Number:IMX6HABUG

User Guide Rev L3.10.17_1.0.0-ga, 05/2014

i.MX 6 Linux High Assurance Boot
(HAB) User's Guide

© 2014 Freescale Semiconductor, Inc.

Contents

1 Overview..1

2 Mechanism..1

3 Implementation...3

4 Test Procedure...5

5 Dynamically Allocate HAB Data...........................11

new system, the public key is used to decrypt the certificate. Then, a comparison is performed to check if the certificate and
the image match. The image is considered "trusted" only if a match occurs. Otherwise the image is deemed as "unsafe" and
will not be permitted to be loaded and run. This process is called authentication.

A hacker can only have access to the public key. Per the property of asymmetric encryption, private key, which the OEM
uses, cannot be deduced from that. Without the private key, the hacker cannot attach a valid certificate for his malicious
system image. HAB will reject it in a very early stage.

The OEM will burn the digest (hash) of the public key to the eFuses of i.MX 6 chip. Once burned, it cannot be modified. This
prevents the possibility that the hacker use another pair of private and public key to cheat.

Figures below provide a more precise illustration.

Figure 1. Generation of Public/Private Key

Figure 2. Certificate Generation

Mechanism

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

2 Freescale Semiconductor, Inc.

Figure 3. Authenticate process (Run time)

3 Implementation
The first stage of HAB is the authentication of U-Boot. A CST tool is used to generate the CSF data, which includes public
key, certificate, and instruction of authentication process. The CSF data is attached to the original u-boot.bin. The process is
called Signature.

The IVT should be modified to contain a pointer to the CSF data. The original u-boot.bin image size is around 0x27000 to
0x28000. For convenience, we first extend its size to 0x2F000 (with fill 0x5A). Then concatenate it with the CSF data. The
combined image is again extended to a fixed length (0x31000), which is used as the IVT image size parameter.

The new memory layout is shown in the following image.

Implementation

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

Freescale Semiconductor, Inc. 3

Figure 4. HAB U-Boot Layout

HAB APIs are ROM implemented. The entry table is located in a fixed location in the ROM. We export them so that we can
have some information about the secure boot process and utilize it in a subsequent boot phase. For convenience, some
wrapper APIs are implemented based on the HAB APIs.

- get_hab_status is used to dump information of authentication result.

- authenticate_image is used by U-Uoot to authenticate uImage.

For security hardware to work, CAAM related clocks (CG0[4~6]) must be open. In the original U-Boot, these clocks are
closed by default. hab_caam_clock_enable and hab_caam_clock_disable are created to open and close them.

The generation of CSF data is not in the scope of this document. CST tool will be used for this purpose. The tool is
introduced in "HAB Code-Signing Tool User's Guide", which is included in the CST tool package.

The second stage is the authentication of uImage by U-Boot. authenticate_image is called by U-Boot to verify uImage
when executing bootm. At this time, the uImage, together with its CSF data, should have been located in DDR. The new
uImage layout is shown in Figure 5:

Implementation

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

4 Freescale Semiconductor, Inc.

Figure 5. HAB uImage Layout

The uImage will be read from boot medium to DDR location 0x10800000. The CSF data pointer in IVT should consider this
extra offset.

4 Test Procedure
The following procedures suppose you have a PC running Ubuntu and a i.MX 6 SABRE-SD board. For a different
environment, the steps may differ.

1. Retrieve the CST Tool.

http://www.freescale.com/webapp/sps/download/mod_download.jsp?
colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device
%20Driver%20Code
%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Paren
t_nodeId=1255017883505753547804&Parent_pageType=product

NOTE
- It may take several days before Freescale sends you the download link.

2. Unzip "BLN_CST_MAIN_02.00.00.zip".
3. chmod u+x linux/* keys/*
4. fromdos keys/*.sh
5. cd keys

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

Freescale Semiconductor, Inc. 5

http://www.freescale.com/webapp/sps/download/mod_download.jsp?colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device%20Driver%20Code%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Parent_nodeId=1255017883505753547804&Parent_pageType=product
http://www.freescale.com/webapp/sps/download/mod_download.jsp?colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device%20Driver%20Code%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Parent_nodeId=1255017883505753547804&Parent_pageType=product
http://www.freescale.com/webapp/sps/download/mod_download.jsp?colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device%20Driver%20Code%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Parent_nodeId=1255017883505753547804&Parent_pageType=product
http://www.freescale.com/webapp/sps/download/mod_download.jsp?colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device%20Driver%20Code%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Parent_nodeId=1255017883505753547804&Parent_pageType=product
http://www.freescale.com/webapp/sps/download/mod_download.jsp?colCode=IMX_CST_TOOL&appType=moderatedWithoutFAE&fpsp=1&WT_TYPE=Initialization/Boot/Device%20Driver%20Code%20Generation&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Downloads&sr=15&Parent_nodeId=1255017883505753547804&Parent_pageType=product

• Create a text file called serial, which contains 8 digits.
• Create a text file called key_pass.txt, which contains two lines of identical text, such as "cst_test".
• ./hab4_pki_tree.sh
• For question prompt, enter "n", "2048", "10", "4" one by one.
• This script will generate private key and public key pairs in the working directory.

6. cd ../crts

../linux/srktool -h 4 -t SRK_1_2_3_4_table.bin -e SRK_1_2_3_4_fuse.bin -d sha256 -c

./SRK1_sha256_2048_65537_v3_ca_crt.pem,./SRK2_sha256_2048_65537_v3_ca_crt.pem,./
SRK3_sha256_2
048_65537_v3_ca_crt.pem,./SRK4_sha256_2048_65537_v3_ca_crt.pem -f 1

- This command will generate root public key file "SRK_1_2_3_4_table.bin" and its corresponding hash
"SRK_1_2_3_4_fuse.bin". The content of the latter will be later on burned to chip eFuse.

NOTE
Don't leave space between the pem file names. Otherwise the generated SRK table
and fuse file will not be correct.

7. Create a "u-boot" directory in "BLN_CST_MAIN_02.00.00", make an "u-boot.csf" file in it

------------- file content begin -------------

[Header]
 Version = 4.0
 Security Configuration = Open
 Hash Algorithm = sha256
 Engine Configuration = 0
 Certificate Format = X509
 Signature Format = CMS
[Install SRK]
 File = "../crts/SRK_1_2_3_4_table.bin"
 Source index = 0
[Install CSFK]
 File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Install Key]
 Verification index = 0
 Target index = 2
 File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
Sign padded u-boot starting at the IVT through to the end with
length = 0x2F000 (padded u-boot length) - 0x400 (IVT offset) = 0x2EC00
This covers the essential parts: IVT, boot data and DCD.
Blocks have the following definition:
Image block start address on i.MX, Offset from start of image file,
Length of block in bytes, image data file
[Authenticate Data]
 Verification index = 2
 Blocks = 0x27800400 0x400 0x2EC00 "u-boot-pad.bin"

------------- file content end -------------

ROM code copies U-Boot to DDR location 0x27800000, which is added with 0x400 (the initiated blank area size in U-
Boot image) to form the authenticated start address 0x27800400. 0x400 and 0x2EC00 is the start address and the length
of data to be authenticated in the binary file.

8. Create a secure U-Boot image generation script "habimagegen" in "u-boot" directory

------------- file content begin -------------

#! /bin/bash
echo "extend u-boot to 0x2F000..."
objcopy -I binary -O binary --pad-to 0x2f000 --gap-fill=0x5A u-boot.bin u-boot-pad.bin

echo "generate csf data..."
../linux/cst --o u-boot_csf.bin < u-boot.csf

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

6 Freescale Semiconductor, Inc.

echo "merge image and csf data..."
cat u-boot-pad.bin u-boot_csf.bin > u-boot-signed.bin

echo "extend final image to 0x31000..."
objcopy -I binary -O binary --pad-to 0x31000 --gap-fill=0x5A u-boot-signed.bin
u-boot-signed-pad.bin

echo "u-boot-signed-pad.bin is ready"

------------- file content end -------------

9. chmod u+x habimagegen
10. Build secure U-Boot. The building process is the same as generating normal U-Boot.

NOTE
Make sure the macro "CONFIG_SECURE_BOOT" is defined in "include/configs/
mx6qsabre_common.h"

11. Copy "u-boot.bin" to "BLN_CST_MAIN_02.00.00/u-boot" directory.
12. ./habimagegen

This will create certified U-Boot image "u-boot-signed-pad.bin"

NOTE
Step 7 to step 12 generate secure U-Boot image using a static HAB DATA
allocation method. It is only used to demonstrate the signature process. For
practical usage, a dynamic HAB DATA allocation method must be employed.
Please refer to Dynamically Allocate HAB Data for details.

13. Create an "uImage" directory in "BLN_CST_MAIN_02.00.00"

Make "habUimagegen" and "genIVT" script in it. An "uImage.csf" should also be created.

File genIVT

------------- file content begin -------------

#! /usr/bin/perl -w
use strict;
open(my $out, '>:raw', 'ivt.bin') or die "Unable to open: $!";
print $out pack("V", 0x402000D1); # Signature
print $out pack("V", 0x10801000); # Jump Location
print $out pack("V", 0x0); # Reserved
print $out pack("V", 0x0); # DCD pointer
print $out pack("V", 0x0); # Boot Data
print $out pack("V", 0x10BFDFE0); # Self Pointer
print $out pack("V", 0x10BFE000); # CSF Pointer
print $out pack("V", 0x0); # Reserved
close($out);

------------- file content end -------------

0x10BFDFE0 is the IVT self address after uImage is copied to DDR. 0x10BFE000 is where the CSF data begins.
0x10801000 is jump location. However, U-boot has its own mechanism to jump into the kernel so this jump location is
not actually being used. The HAB ROM code requires that it must be an address inside the authentication range, in our
case, between 0x10800000 and 0x10BFE000.

File habUimagegen

------------- file content begin -------------

#! /bin/bash
echo "extend uImage to 0x3FDFE0..."
objcopy -I binary -O binary --pad-to 0x3fdfe0 --gap-fill=0x5A uImage uImage-pad.bin

echo "generate IVT"
./genIVT

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

Freescale Semiconductor, Inc. 7

echo "attach IVT..."
cat uImage-pad.bin ivt.bin > uImage-pad-ivt.bin

echo "generate csf data..."
../linux/cst --o uImage_csf.bin < uImage.csf

echo "merge image and csf data..."
cat uImage-pad-ivt.bin uImage_csf.bin > uImage-signed.bin

echo "extend final image to 0x400000..."
objcopy -I binary -O binary --pad-to 0x400000 --gap-fill=0x5A uImage-signed.bin
uImage-signed-pad.bin

------------- file content end -------------

File uImage.csf

------------- file content begin -------------

[Header]
 Version = 4.0
 Security Configuration = Open
 Hash Algorithm = sha256
 Engine Configuration = 0
 Certificate Format = X509
 Signature Format = CMS
[Install SRK]
 File = "../crts/SRK_1_2_3_4_table.bin"
 Source index = 0
[Install CSFK]
 File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Install Key]
 Verification index = 0
 Target index = 2
 File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
Sign padded uImage start at address 0x10800000
length = 0x3FE0000
This covers the essential parts: original uImage and the attached IVT
Blocks have the following definition:
Image block start address on i.MX, Offset from start of image file,
Length of block in bytes, image data file [Authenticate Data]
 Verification index = 2
 Blocks = 0x10800000 0x0 0x003FE000 "uImage-pad-ivt.bin"

------------- file content end -------------

0x10800000 is where the uImage starts in DDR. 0x0 and 0x003FE000 is the start address and length to be
authenticated in the binary.

14. chmod u+x habUimagegen genIVT
15. Build uImage as you normally would and copy it to "BLN_CST_MAIN_02.00.00/uImage" directory.
16. ./habUimagegen

This will create certified uImage "uImage-signed-pad.bin"

NOTE
Step 13 to step 16 generate secure uImage using a static HAB DATA allocation
method. It is only used to demonstrate the signature process. For practical usage, a
dynamic HAB DATA allocation method should be employed. Please refer to
Dynamically Allocate HAB Data for details.

17. Burn the "u-boot-signed-pad.bin" and "uImage-signed-pad.bin" to SD card.

The kernel should start up successfully by now.

At this point the whole HAB chain is not actually enabled, because the default chip secure config is "open" which
ignores any authentication error and continues the boot process. We will enable it in the next step.

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

8 Freescale Semiconductor, Inc.

18. Burn the chip fuse to enable HAB boot

NOTE
!!! CAUTION!!! Make sure you perform all the steps correctly. Otherwise you may
damage a chip permanently. It is strongly recommended that a socket board is used,
so in the worst case scenario, we can change a chip without totally damaging the
board.

• Burn the SRK table. Take this fuse file as example (Remember, you may have totally different fuse value).
• Dump the content of the eFuse file

>
hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin
>
0xFDF28547
0x270D6AC6
0xEE44AD7B
0x58B0724
0x49DA1948
0xB4374A3F
0xFFEFED48
0x4247C04F

They will be burned to chip with kernel utilities.

• Normal boot into kernel.
• cd /sys/fsl_otp
• Use the 8 dwords generated in last step and burn them to SRK fuse one by one.

>
echo 0xfdf28547 > HW_OCOTP_SRK0
echo 0x270d6ac6 > HW_OCOTP_SRK1
echo 0xee44ad7b > HW_OCOTP_SRK2
echo 0x058b0724 > HW_OCOTP_SRK3
echo 0x49da1948 > HW_OCOTP_SRK4
echo 0xb4374a3f > HW_OCOTP_SRK5
echo 0xffefed48 > HW_OCOTP_SRK6
echo 0x4247c04f > HW_OCOTP_SRK7

• Verify that the correct value has been burned.

>
ls | grep "SRK.$" | xargs cat

• Burn OTPMK. These fuse values are necessary to enable the hardware secure logic in the chip.

>
echo 0x975b69a7 > HW_OCOTP_OTPMK0
echo 0xafae0b5d > HW_OCOTP_OTPMK1
echo 0x6f780499 > HW_OCOTP_OTPMK2
echo 0x3dda7a47 > HW_OCOTP_OTPMK3
echo 0x76fcba3c > HW_OCOTP_OTPMK4
echo 0x6d5c9ef6 > HW_OCOTP_OTPMK5
echo 0xb166b40a > HW_OCOTP_OTPMK6
echo 0x8f449c5d > HW_OCOTP_OTPMK7

NOTE
This step is only required for preproduction parts where the fuses that are
normally programmed by Freescale are not programmed. On production
parts, the OTPMK are be burned by Freescale prior to shipping the device.
The value burned by Freescale is random and not recorded. The intent of the
OTPMK is to be a secret key that is only known to CAAM so the value
below is only meant for testing purposes. In order to use HAB, these fuses
should be programmed. One can determine if a valid OTPMK has been
burned by checking the OTPMK_ZERO bit in the SNVS_HP Status Register.

• Turn on chip HAB

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

Freescale Semiconductor, Inc. 9

NOTE
!!! CAUTION !!! Make sure you perform all the steps correctly. After this
step, there will be no way back, and a chip may permanently be bricked.

• Turn on RNG_TRIM

>
echo 0x00040000 > HW_OCOTP_MEM0

• Put SEC_CONFIG to close (turn on chip security).

>
echo 0x2 > HW_OCOTP_CFG5

19. Boot the board again, the security patch should work now.

Successful authentication will give the following dump message in U-Boot load:

Boot Device: SD
HAB Configuration: 0xcc, HAB State: 0x99
No HAB Events Found!
I2C: ready

in uImage load

Verifying Checksum ... OK

Authenticate uImage from DDR location 0x10800000...

HAB Configuration: 0xcc, HAB State: 0x99
No HAB Events Found!

Loading Kernel Image ... OK

"No HAB Events Found!" means no problem is found in authentication and the image can be trusted.

20. Do a corruption experiment to verify that HAB actually works.
• Corrupt u-boot-signed-pad.bin

Make a backup first. Use hex editor tools, such as ghex2, to open the u-boot-signed-pad.bin, and go to some byte
before 0x2F000. The value should be "0x5A". Change it to something else and save it. Now the U-Boot has been
changed, but the certificate does not change accordingly. A mismatch will occur during the authentication.

• Flash the corrupted u-boot-signed-pad.bin to SD card, and try to boot the board again. This time, ROM code will
meet an authentication failure and will not jump into U-Boot. So there will be nothing shown on the terminal.

• Change back to the original u-boot-signed-pad.bin.
• Do the same thing to uImage-signed-pad.bin corrupt value before location "0x003F_DFE0".
• Flash the corrupted uImage to SD card, and try to boot it. U-Boot will find an authentication fail and break the

boot process. Some dump information like the following will show in the terminal.

Verifying Checksum ... OK
Authenticate uImage from DDR location 0x10800000...
HAB Configuration: 0xcc, HAB State: 0x99
--------- HAB Event 1 -----------------
event data:
 0xdb 0x00 0x1c 0x41 0x33 0x18 0xc0 0x00
 0xca 0x00 0x14 0x00 0x02 0xc5 0x00 0x00
 0x00 0x00 0x0d 0x34 0x10 0x80 0x00 0x00
 0x00 0x3f 0xe0 0x00

Test Procedure

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

10 Freescale Semiconductor, Inc.

Authenticate UImage Fail, Please check
i.MX 6Quad U-Boot >

An event data is dumped out. This means an authentication failure.

• Change back to uncorrupted uImage. The boot will work again.

After step 1 through step 20, we can verify that the secure boot works fine.

5 Dynamically Allocate HAB Data
The implementation described earlier has some limitations. If you take U-Boot as example, an important assumption is that
the original U-Boot size is less than 0x2F000. On this premise, we can statically allocate HAB Data to 0x2F000 without
causing any problem. However, when this assumption doesn’t hold, the static way is not a good idea.

To avoid this issue, we turn to use a dynamic way of putting the HAB Data. With this method, the the 'mkimage' tool for
i.MX images uses the Flash header logic to derive the start address of HAB data aligned to 0z1000 immediately after all U-
Boot sections, preventing the overlap introduced by static address assignment.

With this change, the U-Boot layout can be revised as shown in the figure below.

Figure 6. HAB U-Boot Layout - Dynamic Way

Similarly, uImage layout can be revised as shown in the figure below.

Dynamically Allocate HAB Data

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

Freescale Semiconductor, Inc. 11

Figure 7. HAB uImage Layout – Dynamic Way

With these layout changes, all the CSF configuration file and signature scripts should be changed accordingly. We have made
this procedure automatic with a set of file templates and scripts. They make the generation of secure U-Boot and uImage
quite simple. All you need to provide is the ddr location where the U-Boot and uImage is located. All other signature works
are performed automatically.

1. Generation of secure U-Boot

> ./mk_secure_uboot 0x27800000

0x27800000 is the ddr location where the U-Boot image is copied to by ROM code. u-boot-signed-pad.bin will be
generated, which is the U-Boot image with signature.

2. Generation of secure uImage

> ./mk_secure_uimage 0x10800000

0x10800000 is the ddr location where the uImage is copied to by U-Boot code. uImage-signed-pad.bin will be
generated, which is the uImage with signature.

The scripts mk_secure_uboot and mk_secure_uimage can be got from the Linux BSP release package, which is located under
the doc package and name called the secureboot_scripts.tar.gz. Please read the README file first before you are using it .

Dynamically Allocate HAB Data

i.MX 6 Linux High Assurance Boot (HAB) User's Guide, Rev L3.10.17_1.0.0-ga, 05/2014

12 Freescale Semiconductor, Inc.

Document Number: IMX6HABUG
Rev. L3.10.17_1.0.0-ga
05/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. ARM and ARM Cortex-A9 are registered trademarks of ARM

Limited.

© 2014 Freescale Semiconductor, Inc.

	Overview
	Mechanism
	Implementation
	Test Procedure
	Dynamically Allocate HAB Data

