
Part Number: 924-76374
Rev.10.10.01

10/2010

i.MX53 EVK Linux
Reference Manual

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)

+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.

Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000

support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks

of Freescale Semiconductor, Inc. in the U.S. and other countries. All other

product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004-2010. All rights reserved.

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor iii

Contents

About This Book

Audience . xix

Conventions . xix

Definitions, Acronyms, and Abbreviations . xix

Suggested Reading . xxii

Chapter 1
Introduction

1.1 Software Base . 1-1

1.2 Features . 1-2

Chapter 2
Architecture

2.1 Linux BSP Block Diagram . 2-1

2.2 Kernel . 2-2

2.2.1 Kernel Configuration . 2-2

2.2.2 Machine Specific Layer (MSL) . 2-3

2.2.2.1 Memory Map . 2-3

2.2.2.2 Interrupts . 2-3

2.2.2.3 General Purpose Timer (GPT) . 2-3

2.2.2.4 Smart Direct Memory Access (SDMA) API . 2-4

2.2.2.5 Callback mechanism at the end of script executionInput/Output (I/O) 2-4

2.2.2.6 Shared Peripheral Bus Arbiter (SPBA) . 2-5

2.3 Drivers . 2-5

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver . 2-5

2.3.1.1 UART Driver . 2-5

2.3.2 Real-Time Clock (RTC) Driver . 2-6

2.3.3 Watchdog Timer (WDOG) Driver . 2-6

2.3.4 SDMA API Driver . 2-6

2.3.5 Image Processing Unit (IPU) Driver . 2-7

2.3.6 Video for Linux 2 (V4L2) Driver . 2-7

2.3.7 Figure 2-2Figure 2-2 Sound Driver . 2-7

2.3.8 Memory Technology Device (MTD) Driver . 2-7

2.3.8.1 NAND MTD Driver . 2-8

2.3.8.2 SPI-NOR MTD driver . 2-9

i.MX53 EVK Linux Reference Manual

iv Freescale Semiconductor

2.3.9 Networking Drivers . 2-9

2.3.9.1 FEC driver. 2-9

2.3.10 USB Driver . 2-9

2.3.10.1 USB Host-Side API Model. 2-9

2.3.10.2 USB Device-Side Gadget Framework . 2-10

2.3.10.3 USB OTG Framework . 2-10

2.3.11 General Drivers. 2-11

2.3.11.1 MMC/SD Host Driver . 2-11

2.3.11.2 Inter-IC (I2C) Bus Driver . 2-11

2.3.11.3 Configurable Serial Peripheral Interface (CSPI) Driver. 2-12

2.3.11.4 Dynamic Power Management (DPM) Driver . 2-12

2.3.11.5 Low-Level Power Management Driver . 2-14

2.3.11.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver . 2-14

2.4 Boot Loaders. 2-14

Chapter 3
Machine Specific Layer (MSL)

3.1 Interrupts . 1-1

3.1.1 Interrupt Hardware Operation. 1-1

3.1.2 Interrupt Software Operation . 1-2

3.1.3 Interrupt Features . 1-2

3.1.4 Interrupt Source Code Structure . 1-2

3.1.5 Interrupt Programming Interface . 1-3

3.2 Timer. 1-3

3.2.1 Timer Hardware Operation . 1-3

3.2.2 Timer Software Operation . 1-3

3.2.3 Timer Features . 1-3

3.2.4 Timer Source Code Structure . 1-4

3.3 Memory Map . 1-4

3.3.1 Memory Map Hardware Operation. 1-4

3.3.2 Memory Map Software Operation . 1-4

3.3.3 Memory Map Features . 1-4

3.3.4 Memory Map Source Code Structure . 1-4

3.3.5 Memory Map Programming Interface . 1-5

3.4 IOMUX. 1-5

3.4.1 IOMUX Hardware Operation . 1-5

3.4.2 IOMUX Software Operation . 1-5

3.4.3 IOMUX Features . 1-6

3.4.4 IOMUX Source Code Structure . 1-6

3.4.5 IOMUX Programming Interface. 1-6

3.5 General Purpose Input/Output(GPIO) . 1-6

3.5.1 GPIO Software Operation. 1-6

3.5.1.1 API for GPIO . 1-6

3.5.2 GPIO Features. 1-7

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor v

3.5.3 GPIO Source Code Structure . 1-7

3.5.4 GPIO Programming Interface . 1-7

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview. 2-1

4.2 Hardware Operation . 2-1

4.3 Software Operation . 2-1

4.4 Source Code Structure . 2-3

4.5 Menu Configuration Options . 2-3

4.6 Programming Interface . 2-4

4.7 Usage Example . 2-4

Chapter 3
MC13892 Regulator Driver

3.1 Hardware Operation . 3-1

3.2 Driver Features . 3-1

3.3 Software Operation . 3-1

3.4 Regulator APIs . 3-2

3.5 Driver Architecture . 3-3

3.6 Driver Interface Details . 3-3

3.7 Source Code Structure . 3-4

3.8 Menu Configuration Options . 3-4

Chapter 4
MC13892 RTC Driver

4.1 Driver Features . 4-1

4.2 Software Operation . 4-1

4.3 Driver Implementation Details . 4-1

4.3.1 Driver Access and Control . 4-1

4.4 Source Code Structure . 4-2

4.5 Menu Configuration Options . 4-2

Chapter 5
MC13892 Digitizer Driver

5.1 Driver Features . 5-1

5.2 Software Operation . 5-2

5.3 Source Code Structure . 5-3

5.4 Menu Configuration Options . 5-3

i.MX53 EVK Linux Reference Manual

vi Freescale Semiconductor

Chapter 6
CPU Frequency Scaling (CPUFREQ) Driver

6.1 Software Operation . 6-1

6.2 Source Code Structure . 6-1

6.3 Menu Configuration Options . 6-2

6.3.1 Board Configuration Options . 6-2

Chapter 7
Low-level Power Management (PM) Driver

7.1 Hardware Operation . 7-1

7.2 Software Operation . 7-1

7.3 Source Code Structure . 7-2

7.4 Menu Configuration Options . 7-2

7.5 Programming Interface . 7-2

Chapter 8
Dynamic Voltage Frequency Scaling (DVFS) Driver

8.1 Hardware Operation . 8-1

8.2 Software Operation . 8-1

8.3 Source Code Structure . 8-1

8.4 Menu Configuration Options . 8-2

8.4.1 Board Configuration Options . 8-2

Chapter 9
Software Based Peripheral Domain Frequency Scaling

9.1 Software based Bus Frequency Scaling . 9-1

9.1.1 Low Power Audio Playback Mode (LPAPM) . 9-1

9.1.2 Medium Frequency setpoint . 9-2

9.1.3 High Frequency setpoint . 9-2

9.2 Source Code Structure . 9-2

9.3 Menu Configuration Options . 9-2

9.3.1 Board Configuration Options . 9-2

Chapter 10
Image Processing Unit (IPU) Drivers

10.1 Hardware Operation . 10-2

10.2 Software Operation . 10-2

10.2.1 IPU Frame Buffer Drivers Overview . 10-4

10.2.1.1 IPU Frame Buffer Hardware Operation . 10-4

10.2.1.2 IPU Frame Buffer Software Operation . 10-4

10.2.1.3 Synchronous Frame Buffer Driver . 10-5

10.3 Source Code Structure . 10-6

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor vii

10.4 Menu Configuration Options . 10-6

10.5 Programming Interface . 10-9

Chapter 11
Video for Linux Two (V4L2) Driver

11.1 V4L2 Capture Device . 11-2

11.1.1 V4L2 Capture IOCTLs . 11-2

11.1.2 Use of the V4L2 Capture APIs . 11-4

11.2 V4L2 Output Device. 11-5

11.2.1 V4L2 Output IOCTLs. 11-5

11.2.2 Use of the V4L2 Output APIs. 11-6

11.3 Source Code Structure . 11-6

11.4 Menu Configuration Options . 11-7

11.5 V4L2 Programming Interface . 11-7

Chapter 12
LVDS Display Bridge(LDB) Driver

12.1 Hardware Operation . 12-1

12.2 Software Operation . 12-1

12.3 Source Code Structure . 12-2

12.4 Menu Configuration Options . 12-2

12.5 Programming Interface . 12-2

Chapter 13
i.MX5 Dual Display

13.1 Hardware Operation . 13-1

13.2 Software Operation . 13-1

13.3 Examples. 13-3

Chapter 14
Video Processing Unit (VPU) Driver

14.1 Hardware Operation . 14-1

14.2 Software Operation . 14-2

14.3 Source Code Structure . 14-3

14.4 Menu Configuration Options . 14-4

14.5 Programming Interface . 14-4

14.6 Defining an Application . 14-5

Chapter 15
Graphics Processing Unit (GPU)

15.1 Driver Features . 15-1

15.2 Hardware Operation . 15-1

i.MX53 EVK Linux Reference Manual

viii Freescale Semiconductor

15.3 Software Operation . 15-1

15.4 Source Code Structure . 15-2

15.5 API References . 15-2

15.6 Menu Configuration Options . 15-2

Chapter 16
TV Decoder (TV-In) Driver

16.1 Hardware Operation . 16-1

16.2 Software Operation . 16-1

16.3 Source Code Structure Configuration. 16-1

16.4 Linux Menu Configuration Options . 16-1

Chapter 17
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

17.1 SoC Sound Card . 17-1

17.1.1 Stereo Codec Features . 17-2

17.1.2 Multi-channel Codec Feature . 17-2

17.1.3 Sound Card Information . 17-3

17.2 ASoC Driver Source Architecture . 17-3

17.3 Menu Configuration Options . 17-5

17.4 Hardware Operation . 17-6

17.4.1 Stereo Audio Codec . 17-6

17.5 Software Operation . 17-7

17.5.1 Sound Card Registration . 17-7

17.5.2 Device Open . 17-7

Chapter 18
The Sony/Philips Digital Interface (S/PDIF) Tx Driver

18.1 S/PDIF Overview . 18-1

18.1.1 Hardware Overview . 18-2

18.1.2 Software Overview . 18-2

18.2 S/PDIF Tx Driver . 18-2

18.2.1 Driver Design . 18-3

18.2.2 Provided User Interface . 18-3

18.3 Source Code Structure . 18-4

18.4 Menu Configuration Options . 18-4

Chapter 19
SPI NOR Flash Memory Technology Device (MTD) Driver

19.1 Hardware Operation . 19-1

19.2 Software Operation . 19-1

19.3 Driver Features . 19-2

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor ix

19.4 Source Code Structure . 19-2

19.5 Menu Configuration Options . 19-2

Chapter 20
NAND Flash Memory Technology Device (MTD) Driver

20.1 Overview. 20-1

20.1.1 Hardware Operation . 20-1

20.1.2 Software Operation . 20-1

20.2 Requirements . 20-2

20.3 Source Code Structure . 20-2

20.4 Linux Menu Configuration Options . 20-2

20.5 Programming Interface . 20-2

Chapter 21
SATA Driver

21.1 Hardware Operation . 21-1

21.2 Software Operation . 21-1

21.3 Source Code Structure Configuration. 21-1

21.4 Linux Menu Configuration Options . 21-1

21.5 Board Configuration Options . 21-1

21.6 Programming Interface . 21-2

21.7 Usage Example . 21-2

21.8 Usage Example . 21-3

Chapter 22
Low-Level Keypad Driver

22.1 Hardware Operation . 22-1

22.2 Software Operation . 22-1

22.3 Reassigning Keycodes . 22-3

22.4 Driver Features . 22-3

22.5 Implemented as a standard input deviceMX53 EVK Keypad . 22-3

22.6 Source Code Structure . 22-5

22.7 Menu Configuration Options . 22-5

22.8 Programming Interface . 22-6

22.9 Interrupt Requirements . 22-6

Chapter 23
Fast Ethernet Controller (FEC) Driver

23.1 Hardware Operation . 23-1

23.2 Software Operation . 23-3

23.3 Source Code Structure . 23-3

23.4 Menu Configuration Options . 23-4

i.MX53 EVK Linux Reference Manual

x Freescale Semiconductor

23.5 Programming Interface . 23-4

23.5.1 Device-Specific Defines . 23-4

23.5.2 Getting a MAC Address . 23-5

Chapter 24
Inter-IC (I2C) Driver

24.1 I2C Bus Driver Overview . 24-1

24.2 I2C Device Driver Overview . 24-1

24.3 Hardware Operation . 24-2

24.4 Software Operation . 24-2

24.4.1 I2C Bus Driver Software Operation . 24-2

24.4.2 I2C Device Driver Software Operation . 24-2

24.5 Driver Features . 24-3

24.6 Source Code Structure . 24-3

24.7 Menu Configuration Options . 24-3

24.8 Programming Interface . 24-3

24.9 Interrupt Requirements . 24-3

Chapter 25
Configurable Serial Peripheral Interface (CSPI) Driver

25.1 Hardware Operation . 25-1

25.2 Software Operation . 25-1

25.2.1 SPI Sub-System in Linux . 25-1

25.2.2 Software Limitations. 25-3

25.2.3 Standard Operations . 25-3

25.2.4 CSPI Synchronous Operation . 25-4

25.3 Driver Features . 25-4

25.4 Source Code Structure . 25-4

25.5 Menu Configuration Options . 25-4

25.6 Programming Interface . 25-5

25.7 Interrupt Requirements . 25-5

Chapter 26
MMC/SD/SDIO Host Driver

26.1 Hardware Operation . 26-1

26.2 Software Operation . 26-2

26.3 Driver Features . 26-3

26.4 Source Code Structure . 26-4

26.5 Menu Configuration Options . 26-4

26.6 Programming Interface . 26-4

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xi

Chapter 27
Universal Asynchronous Receiver/Transmitter (UART) Driver

27.1 Hardware Operation . 27-1

27.2 Software Operation . 27-2

27.3 Driver Features . 27-2

27.4 Source Code Structure . 27-3

27.5 Configuration . 27-3

27.5.1 Menu Configuration Options . 27-3

27.5.2 Source Code Configuration Options. 27-4

27.5.2.1 Chip Configuration Options . 27-4

27.5.2.2 Board Configuration Options . 27-4

27.6 Programming Interface . 27-4

27.7 Interrupt Requirements . 27-4

27.8 Device Specific Information . 27-5

27.8.1 UART Ports . 27-5

27.8.2 Board Setup Configuration . 27-5

27.9 Early UART Support . 27-7

Chapter 28
ARC USB Driver

28.1 Architectural Overview. 28-2

28.2 Hardware Operation . 28-2

28.3 Software Operation . 28-2

28.4 Driver Features . 28-3

28.5 Source Code Structure . 28-4

28.6 Menu Configuration Options . 28-5

28.7 Programming Interface . 28-7

28.8 Default USB Settings . 28-7

28.9 Remote WakeUp. 28-7

28.10 System WakeUp . 28-7

28.11 USB Wakeup usage . 28-8

28.11.1 How to enable usb wakeup system ability . 28-8

28.11.2 What kinds of wakeup event usb support . 28-8

28.11.3 How to close the usb child device power . 28-9

Chapter 29
Secure Real Time Clock (SRTC) Driver

29.1 Hardware Operation . 29-1

29.2 Software Operation . 29-1

29.2.1 IOCTL. 29-1

29.2.2 Keep Alive in the Power Off State . 29-2

29.3 Driver Features . 29-2

29.4 Source Code Structure . 29-2

i.MX53 EVK Linux Reference Manual

xii Freescale Semiconductor

29.5 Menu Configuration Options . 29-2

Chapter 30
Watchdog (WDOG) Driver

30.1 Hardware Operation . 30-1

30.2 Software Operation . 30-1

30.3 Generic WDOG Driver . 30-1

30.3.1 Driver Features . 30-1

30.3.2 Menu Configuration Options . 30-1

30.3.3 Source Code Structure . 30-2

30.3.4 Programming Interface . 30-2

Chapter 31
Pulse-Width Modulator (PWM) Driver

31.1 Hardware Operation . 31-1

31.2 Clocks . 31-2

31.3 Software Operation . 31-2

31.4 Driver Features . 31-3

31.5 Source Code Structure . 31-3

31.6 Menu Configuration Options . 31-3

Chapter 32
FlexCAN Driver

32.1 Driver Overview . 32-1

32.2 Hardware Operation . 32-1

32.3 Software Operation . 32-1

32.4 Source Code Structure . 32-2

32.5 Linux Menu Configuration Options . 32-2

Chapter 33
Media Local Bus Driver

33.1 Overview. 33-1

33.1.1 MLB Device Module . 33-1

33.1.1.1 Supported Feature . 33-2

33.1.1.2 Modes of Operation . 33-2

33.1.2 MLB Driver Overview . 33-2

33.2 MLB Driver . 33-2

33.2.1 Supported Features . 33-2

33.2.2 MLB Driver Architecture . 33-3

33.2.3 Software Operation . 33-4

33.3 Driver Files . 33-5

33.4 Menu Configuration Options . 33-5

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xiii

Chapter 34
OProfile

34.1 Overview. 34-1

34.2 Features . 34-1

34.3 Hardware Operation . 34-1

34.4 Software Operation . 34-2

34.4.1 Architecture Specific Components . 34-2

34.4.2 oprofilefs Pseudo Filesystem . 34-2

34.4.3 Generic Kernel Driver . 34-2

34.4.4 OProfile Daemon . 34-3

34.4.5 Post Profiling Tools . 34-3

34.5 Requirements . 34-3

34.6 Source Code Structure . 34-3

34.7 Menu Configuration Options . 34-4

34.8 Programming Interface . 34-4

34.9 Interrupt Requirements . 34-4

34.10 Example Software Configuration . 34-4

Chapter 35
Frequently Asked Questions

35.1 Downloading a File. 35-1

35.2 Creating a JFFS2 Mount Point . 35-1

35.3 NFS Mounting Root File System . 35-2

35.4 Error: NAND MTD Driver Flash Erase Failure . 35-3

35.5 Error: NAND MTD Driver Attempt to Erase a Bad Block . 35-3

35.6 Using the Memory Access Tool . 35-3

35.7 How to Make Software Workable when JTAG is Attached. 35-4

i.MX53 EVK Linux Reference Manual

xiv Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xv

Tables

1-1 Linux BSP Supported Features ... 1-2

2-1 MSL Directories.. 2-3

3-1 Interrupt Files .. 1-2

3-2 Memory Map Files.. 1-4

3-3 IOMUX Files .. 1-6

3-4 GPIO Files... 1-7

4-1 SDMA Channel Usage.. 2-3

4-2 SDMA API Source Files... 2-3

4-3 SDMA Script Files.. 2-3

3-1 MC13892 Power Management Driver Files ... 3-4

4-1 MC9S08DZ60 RTC Driver Files .. 4-2

5-1 MC13892 Digitizer Driver Files ... 5-3

6-1 CPUFREQ Driver Files .. 6-2

7-1 Low Power Modes .. 7-1

7-2 PM Driver Files... 7-2

8-1 DVFS Driver Files .. 8-1

9-1 Bus Frequency Scaling Driver Files ... 9-2

10-1 IPU Driver Files .. 10-6

10-2 IPU Global Header Files ... 10-6

11-1 V2L2 Driver Files ... 11-6

13-1 ... 13-1

14-1 VPU Driver Files .. 14-3

14-2 VPU Library Files ... 14-4

14-3 VPU firmware Files .. 14-4

15-1 GPU Driver Files .. 15-2

16-1 TV-In Driver Source File .. 16-1

17-1 Stereo Codec SoC Driver Files ... 17-5

17-2 CS42888 ASoC Driver Source File .. 17-5

18-1 S/PDIF Driver Files .. 18-4

19-1 SPI NOR MTD Driver Files ... 19-2

20-1 NAND MTD Driver Files ... 20-2

22-1 Keypad Driver Files .. 22-5

22-2 Keypad Interrupt Timer Requirements ... 22-6

23-1 Pin Usage in MIIRMII and SNI Modes .. 23-1

23-2 FEC Driver Files ... 23-3

24-1 I2C Bus Driver Files ... 24-3

24-2 I2C Interrupt Requirements .. 24-3

25-1 CSPI Driver Files .. 25-4

i.MX53 EVK Linux Reference Manual

xvi Freescale Semiconductor

25-2 CSPI Interrupt Requirements .. 25-5

26-1 eSDHC Driver FilesMMC/SD Driver Files.. 26-4

27-1 UART Driver Files.. 27-3

27-2 UART Global Header Files... 27-3

27-3 UART Interrupt Requirements.. 27-5

27-4 UART General Configuration ... 27-5

27-5 UART Active/Inactive Configuration ... 27-5

27-6 UART IRDA Configuration.. 27-5

27-8 UART Shared Peripheral Configuration ... 27-6

27-9 UART Hardware Flow Control Configuration ... 27-6

27-10 UART DMA Configuration .. 27-6

27-11 UART DMA RX Buffer Size Configuration .. 27-6

27-12 UART UCR4_CTSTL Configuration ... 27-6

27-13 UART UFCR_RXTL Configuration... 27-6

27-7 UART Mode Configuration .. 27-6

27-14 UART UFCR_TXTL Configuration ... 27-7

27-15 UART Interrupt Mux Configuration ... 27-7

27-16 UART Interrupt 1 Configuration... 27-7

27-17 UART Interrupt 2 Configuration... 27-7

27-18 UART interrupt 3 Configuration... 27-7

28-1 USB Driver Files... 28-4

28-2 USB Platform Source Files ... 28-4

28-3 USB Platform Header Files... 28-4

28-4 USB Common Platform Files ... 28-5

28-5 Default USB Settings .. 28-7

29-1 RTC Driver Files ... 29-2

30-1 WDOG Driver Files .. 30-2

31-1 PWM Driver Summary ... 31-2

31-2 PWM Driver Files ... 31-3

32-1 FlexCAN Driver Files ... 32-2

33-1 MLB Driver Source File List .. 33-5

34-1 OProfile Source Files .. 34-3

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xvii

Figures

2-1 BSP Block Diagram .. 2-1

2-2 MTD Architecture... 2-8

2-3 DPM High Level Design... 2-13

2-4 DPM Architecture Block Diagram ... 2-13

4-1 SDMA Block Diagram.. 2-2

3-1 MC13892 Regulator Driver Architecture ... 3-3

11-1 Video4Linux2 Capture API Interaction .. 11-4

14-1 VPU Hardware Data Flow .. 14-2

17-1 ALSA SoC Software Architecture .. 17-1

17-2 ALSA Soc Source FIle Relationship .. 17-4

18-1 S/PDIF Transceiver Data Interface Block Diagram.. 18-1

19-1 Components of a Flash-Based File System... 19-1

22-1 Keypad Driver State Machine... 22-2

25-1 SPI Subsystem... 25-2

25-2 Layering of SPI Drivers in SPI Subsystem... 25-2

25-3 CSPI Synchronous Operation ... 25-4

26-1 MMC Drivers Layering .. 26-3

28-1 USB Block Diagram ... 28-2

31-1 PWM Block Diagram.. 31-1

33-1 MLB Device Top-Level Block Diagram... 33-1

33-2 MLB Driver Architecture Diagram... 33-3

i.MX53 EVK Linux Reference Manual

xviii Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xix

About This Book

The Linux Board Support Package (BSP) represents a porting of the Linux Operating System (OS) to the

i.MX processors and its associated reference boards. The BSP supports many hardware features on the

platforms and most of the Linux OS features that are not dependent on any specific hardware feature.

Audience

This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific products.

The audience is expected to have a working knowledge of the Linux 2.6 kernel internals, driver models,

and i.MX processors.

Conventions

This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, and

file and directory names.

• Italic type indicates replaceable command or function parameters.

• Bold type indicates function names.

Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address

translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous data routing

between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm—used to encode and decode (or compress and

decompress) various types of data

CPU Central Processing Unit—generic term used to describe a processing core

i.MX53 EVK Linux Reference Manual

xx Freescale Semiconductor

CRC Cyclic Redundancy Check—Bit error protection method for data communication

CSI Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all the

masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is stored

in a lower address than the most significant byte. In big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at

regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by the

National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling Federal

government requirements such as for security and interoperability but no acceptable industry standards

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS

140-2) is a standard that describes US Federal government requirements that IT products should meet for

Sensitive, but Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes cleaning

the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message digest,

is a number generated from a string of text. The hash is substantially smaller than the text itself, and is generated

by a formula in such a way that it is extremely unlikely that some other text produces the same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to

video/still image sensors and displays

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications for

infrared wireless communication

ISR Interrupt Service Routine

Definitions and Acronyms (continued)

Term Definition

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor xxi

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices

on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port—16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used—a policy for line replacement in the cache

MMU Memory Management Unit—a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression and

audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG

standards

Several standards of compression for moving pictures and video:

 • MPEG-1 is optimized for CD-ROM and is the basis for MP3

 • MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD

 • MPEG-3 was merged into MPEG-2

 • MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to

configure radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR) used

in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high capacity

data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write, and read

capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has developed

a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that

have the same rectangular size (85.6 by 54 millimeters), but different widths

physical

address

The address by which the memory in the system is physically accessed

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase angle

(a lock) on the frequency of an input, or reference, signal

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to create

other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is

unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the lighter

the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random

numbers as part of the security module

ROM Read Only Memory

Definitions and Acronyms (continued)

Term Definition

i.MX53 EVK Linux Reference Manual

xxii Freescale Semiconductor

Suggested Reading

The following documents contain information that supplements this guide:

• i.MX50_RDP_Linux_BSP_UserGuide.pdf

• MCIMX50 Multimedia Applications Processor Reference Manual (MCIMX50RM)

ROM

bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-Time Integrity Checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting low-/medium-bandwidth

external devices using four wires. SPI devices communicate using a master/slave relationship over two data

lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—asynchronous serial communication to external devices

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1

specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of

480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and

keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.

USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves

depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

Definitions and Acronyms (continued)

Term Definition

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction

The i.MX family Linux Board Support Package (BSP) supports the Linux Operating System (OS) on the

following processor:

• i.MX53 Applications Processor

The purpose of this software package is to support Linux on the i.MX family of Integrated Circuits (ICs)

and their associated platforms (EVK). It provides the necessary software to interface the standard

open-source Linux kernel to the i.MX hardware. The goal is to enable Freescale customers to rapidly build

products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-

specific drivers, hardware-independent software stacks, Graphical User Interface (GUI) components, Java

Virtual Machine (JVM), and applications required for a product. Some of these are made available in their

original open-source form as part of the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP

functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon

verification test suites.

1.1 Software Base

The i.MX BSP is based on version 2.6.35.3 of the Linux kernel from the official Linux kernel web site

(http://www.kernel.org). It is enhanced with the features provided by Freescale.

http://www.kernel.org

Introduction

i.MX53 EVK Linux Reference Manual

1-2 Freescale Semiconductor

1.2 Features

Table 1-1 describes the features supported by the Linux BSP for specific platforms.

Table 1-1. Linux BSP Supported Features

Feature Description Chapter Source
Applicable

Platform

Machine Specific Layer

MSL Machine Specific Layer (MSL) supports interrupts,

Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

 • Interrupts (AITC/AVIC): The Linux kernel contains

common ARM code for handling interrupts. The MSL

contains platform-specific implementations of

functions for interfacing the Linux kernel to the

interrupt controller.

 • Timer (GPT): The General Purpose Timer (GPT) is

set up to generate an interrupt as programmed to

provide OS ticks. Linux facilitates timer use through

various functions for timing delays, measurement,

events, alarms, high resolution timer features, and so

on. Linux defines the MSL timer API required for the

OS-tick timer and does not expose it beyond the

kernel tick implementation.

 • GPIO/EDIO/IOMUX: The GPIO and EDIO

components in the MSL provide an abstraction layer

between the various drivers and the configuration and

utilization of the system, including GPIO, IOMUX, and

external board I/O. The IO software module is

board-specific, and resides in the MSL layer as a

self-contained set of files. I/O configuration changes

are centralized in the GPIO module so that changes

are not required in the various drivers.

 • SPBA: The Shared Peripheral Bus Arbiter (SPBA)

provides an arbitration mechanism among multiple

masters to allow access to the shared peripherals.

The SPBA implementation under MSL defines the

API to allow different masters to take or release

ownership of a shared peripheral.

Chapter 3, “Machine Specific

Layer (MSL)”

All

SDMA API The Smart Direct Memory Access (SDMA) API driver

controls the SDMA hardware. It provides an API to other

drivers for transferring data between MCU, DSP and

peripherals. The SDMA controller is responsible for

transferring data between the MCU memory space,

peripherals, and the DSP memory space. The SDMA

API allows other drivers to initialize the scripts, pass

parameters and control their execution. SDMA is based

on a microRISC engine that runs channel-specific

scripts.

Chapter 4, “Smart Direct Memory

Access (SDMA) API”

i.MX53

MC13892

Regulator

MC13892 regulator driver provides the low-level control

of the power supply regulators, setting voltage level and

enable/disable regulators.

Chapter 3, “MC13892 Regulator

Driver”

 i.MX53

MC13892 RTC MC13892 RTC driver for Linux provides the access to

PMIC RTC control circuits

Chapter 4, “MC13892 RTC Driver” i.MX53

Introduction

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-3

MC13892

Digitizer Driver

MC13892 digitizer driver for Linux that provides

low-level access to the PMIC analog-to-digital

converters

Chapter 5, “MC13892 Digitizer

Driver”

 i.MX53

Power Management Drivers

Low-level PM

Drivers

The low-level power management driver is responsible

for implementing hardware-specific operations to meet

power requirements and also to conserve power on the

development platforms. Driver implementations are

often different for different platforms. It is used by the

DPM layer.

”Chapter 7, “Low-level Power

Management (PM) Driver”

i.MX53

CPU Frequency

Scaling

The CPU frequency scaling device driver allows the

clock speed of the CPUs to be changed on the fly.

Chapter 6, “CPU Frequency

Scaling (CPUFREQ) Driver”

i.MX53

DVFS The Dynamic Voltage Frequency Scaling (DVFS) device

driver allows simple dynamic voltage frequency scaling.

The frequency of the core clock domain and the voltage

of the core power domain can be changed on the fly with

all modules continuing their normal operations.

Chapter 8, “Dynamic Voltage

Frequency Scaling (DVFS) Driver

i.MX53

Multimedia Drivers

IPU The Image Processing Unit (IPU) is designed to support

video and graphics processing functions and to interface

with video/still image sensors and displays. The IPU

driver is a self-contained driver module in the Linux

kernel. It contains a custom kernel-level API to

manipulate logical channels. A logical channel

represents a complete IPU processing flow. The IPU

driver includes a frame buffer driver, a V4L2 device

driver, and low-level IPU drivers.

Chapter 10, “Image Processing

Unit (IPU) Drivers”

 i.MX53

TV-IN (ADV7180) The ADV7180 TV-IN driver is designed under Linux

V4L2 architecture. It implements the V4L2 capture

interface.

Chapter 16, “TV Decoder (TV-In)

Driver”

i.MX53

V4L2 Output The Video for Linux 2 (V4L2) output driver uses the IPU

post-processing functions for video output. The driver

implements the standard V4L2 API for output devices.

Chapter 11, “Video for Linux Two

(V4L2) Driver”

i.MX53

V4L2 Capture The Video for Linux 2 (V4L2) capture device includes

two interfaces: the capture interface and the overlay

interface. The capture interface records the video

stream. The overlay interface displays the preview

video.

Chapter 11, “Video for Linux Two

(V4L2) Driver”

i.MX53

VPU The Video Processing Unit (VPU) is a multi-standard

video decoder and encoder that can perform decoding

and encoding of various video formats.

Chapter 14, “Video Processing

Unit (VPU) Driver”

i.MX53

AMD GPU The Graphics Processing Unit (GPU) is a graphics

accelerator targeting embedded 2D/3D graphics

applications.

Chapter 15, “Graphics Processing

Unit (GPU)”

i.MX53

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX53 EVK Linux Reference Manual

1-4 Freescale Semiconductor

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a

sound driver that provides ALSA and OSS compatible

applications with the means to perform audio playback

and recording functions. ALSA has a user-space

component called ALSAlib that can extend the features

of audio hardware by emulating the same in software

(user space), such as resampling, software mixing,

snooping, and so on. The ASoC Sound driver supports

stereo codec playback and capture through SSI.

Chapter 17, “Advanced Linux

Sound Architecture (ALSA)

System on a Chip (ASoC) Sound

Driver”

i.MX53

S/PDIF The S/PDIF driver is designed under the Linux ALSA

subsystem. It implements one playback device for Tx

and one capture device for Rx.

Chapter 18, “The Sony/Philips

Digital Interface (S/PDIF) Tx

Driver”

i.MX53

Memory Drivers

SPI NOR MTD The SPI NOR MTD driver provides the support to the

Atmel data Flash using the SPI interface.

Chapter 19, “SPI NOR Flash

Memory Technology Device (MTD)

Driver”

i.MX53

NAND MTD The NAND MTD driver interfaces with the integrated

NAND controller. It can support various file systems,

such as . The driver implementation supports the lowest

level operations on the external NAND Flash chip, such

as block read, block write and block erase as the NAND

Flash technology only supports block access. Because

blocks in a NAND Flash are not guaranteed to be good,

the NAND MTD driver is also able to detect bad blocks

and feed that information to the upper layer to handle

bad block management.

Chapter 20, “NAND Flash Memory

Technology Device (MTD) Driver

i.MX53

SATA The SATA AHCI driver is based on the LIBATA layer of

the block device infrastructure of the Linux kernel

Chapter 21, “SATA Driver i.MX53

Input Device Drivers

Keypad The keypad driver interfaces Linux to the keypad

controller (KPP). The software operation of the keypad

driver follows the Linux keyboard architecture.

Chapter 22, “Low-Level Keypad

Driver”

i.MX53

Touch Screen The touch screen driver with MC13892 ADC is designed

as a standard Linux input device driver.

Chapter 5, “MC13892 Digitizer

Driver

i.MX53

Networking Drivers

FEC The FEC Driver performs the full set of IEEE

802.3/Ethernet CSMA/CD media access control and

channel interface functions. The FEC requires an

external interface adaptor and transceiver function to

complete the interface to the Ethernet media. It supports

half or full-duplex operation on 10 Mbps- or 100

Mbps-related Ethernet networks.

Chapter 23, “Fast Ethernet

Controller (FEC) Driver”

i.MX53

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 1-5

Bus Drivers

MLB MediaLB is an on-PCB or inter-chip communication bus,

specifically designed to standardize a common

hardware interface and software API library.

Chapter 33, “Media Local Bus

Driver”

i.MX53

I2C The I2C bus driver is a low-level interface that is used to

interface with the I2C bus. This driver is invoked by the

I2C chip driver; it is not exposed to the user space. The

standard Linux kernel contains a core I2C module that is

used by the chip driver to access the bus driver to

transfer data over the I2C bus. This bus driver supports:

 • Compatibility with the I2C bus standard

 • Bit rates up to 400 Kbps

 • Standard I2C master mode

 • Power management features by suspending and

resuming I2C.

Chapter 24, “Inter-IC (I2C) Driver” i.MX53

CSPI The low-level Configurable Serial Peripheral Interface

(CSPI) driver interfaces a custom, kernel-space API to

both CSPI modules. It supports the following features:

 • Interrupt-driven transmit/receive of SPI frames

 • Multi-client management

 • Priority management between clients

 • SPI device configuration per client

Chapter 21, “SPI Bus Driver” i.MX53

MMC/SD/SDIO -

eSDHC

The MMC/SD/SDIO Host driver implements the

standard Linux driver interface to eSDHC.

Chapter 26, “MMC/SD/SDIO Host

Driver”

i.MX53

UART Drivers

MXC UART The Universal Asynchronous Receiver/Transmitter

(UART) driver interfaces the Linux serial driver API to all

of the UART ports. A kernel configuration parameter

gives the user the ability to choose the UART driver and

also to choose whether the UART should be used as the

system console.

Chapter 27, “Universal

Asynchronous

Receiver/Transmitter (UART)

Driver”

i.MX53

General Drivers

USB The USB driver implements a standard Linux driver

interface to the ARC USB-OTG controller.

Chapter 28, “ARC USB Driver” i.MX53

FlexCAN The FlexCAN driver is designed as a network device

driver. It provides the interfaces to send and receive

CAN messages. The CAN protocol was primarily

designed to be used as a vehicle serial data bus,

meeting the specific requirements of this field: real-time

processing, reliable operation in the EMI environment of

a vehicle, cost-effectiveness and required bandwidth.

Chapter 32, “FlexCAN Driver” i.MX53

SRTC The SRTC driver is designed to support MXC Secure

RTC module to keep the time and date

Chapter 29, “Secure Real Time

Clock (SRTC) Driver” i.MX53

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX53 EVK Linux Reference Manual

1-6 Freescale Semiconductor

WatchDog The Watchdog Timer module protects against system

failures by providing an escape from unexpected hang

or infinite loop situations or programming errors. This

WDOG implements the following features:

 • Generates a reset signal if it is enabled but not

serviced within a predefined time-out value

 • Does not generate a reset signal if it is serviced within

a predefined time-out value

Chapter 26, “Watchdog (WDOG)

Driver”

i.MX53

MXC PWM driver The MXC PWM driver provides the interfaces to access

MXC PWM signals

Chapter 31, “Pulse-Width

Modulator (PWM) Driver”

i.MX53

Bootloaders

uBoot uBoot is an open source boot loader. See uBoot User guide i.MX53

GUI

OProfile OProfile is a system-wide profiler for Linux systems,

capable of profiling all running code at low overhead.

Chapter 34, “OProfile” i.MX53

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Machine Specific Layer (MSL)

The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent

components:

• Interrupts including GPIO

• Timer

• Memory map

• General Purpose Input/Output (GPIO) including IOMUX

• Smart Direct Memory Access (SDMA)

• Direct Memory Access(DMA)

These modules are normally available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5 for MX5 platform

The header files are implemented under the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

The MSL layer contains not only the modules common to all the boards using the same processor, such as

the interrupts and timer, but it also contains modules specific to each board, such as the memory map. The

following sections describe the basic hardware and software operation and the software interfaces for MSL

modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-specific

modules, such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX) are

detailed. Because of the complexity of the SDMA module, its design is explained in Chapter 4, “Smart

Direct Memory Access (SDMA) API.”

Each of the following sections contains an overview of the hardware operation. For more information, see

the corresponding device documentation.

3.1 Interrupts

The following sections explain the hardware and software operation of interrupts on the device.

3.1.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or using the Interrupt

Enable/Disable Number Registers. When an interrupt source is enabled and the corresponding interrupt

source is asserted, the Interrupt Controller asserts a normal or a fast interrupt request depending on the

associated Interrupt Type Register setting.

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

3-2 Freescale Semiconductor

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt Controller interrupt

requests are prioritized in the order of fast interrupts, and normal interrupts in order of highest priority

level, then highest source number with the same priority. There are sixteen normal interrupt levels for all

interrupt sources, with level zero being the lowest priority. The interrupt levels are configurable through

eight normal interrupt priority level registers. Those registers, along with the Normal Interrupt Mask

Register, support software-controlled priority levels for normal interrupts and priority masking.

3.1.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different exception types. The

exception vector addresses can be configured to start at low address (0x0) or high address (0xFFFF0000).

The ARM Linux implementation chooses the high vector address model.

The following file has a description of the ARM interrupt architecture.

<ltib_dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the

irq_chip structure and exports one initialization function, which is called during system startup.

3.1.3 Interrupt Features

The interrupt implementation supports the following features:

• Interrupt Controller interrupt disable and enable

• Functions required by the Linux interrupt architecture as defined in the standard ARM interrupt

source code (mainly the <ltib_dir>/rpm/BUILD/linux/arch/arm/kernel/irq.c file)

3.1.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/tzic.c

There are also two header files (located in the include directory specified at the beginning of this chapter):

hardware.h

irqs.h

Table 3-1 lists the source files for interrupts.

Table 3-1. Interrupt Files

File Description

hardware.h Register descriptions

irqs.h Declarations for number of interrupts supported

tzic.c Actual interrupt functions for TZIC modules

tzic.c Actual interrupt functions for TZIC modules

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 3-3

3.1.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function. This function initializes the

Interrupt Controller hardware and registers functions for interrupt enable and disable from each interrupt

source. This is done with the global structure irq_desc of type struct irq_desc. After the initialization,

the interrupt can be used by the drivers through the request_irq() function to register device-specific

interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the number of interrupts is

also expanded to support GPIO interrupt. This allows drivers to use the standard interrupt interface

supported by ARM Linux, such as the request_irq() and free_irq() functions.

3.2 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system timer (which

generates periodic interrupts) and the dynamic timers (to schedule events). After the system timer interrupt

occurs, it does the following:

• Updates the system uptime

• Updates the time of day

• Reschedules a new process if the current process has exhausted its time slice

• Runs any dynamic timers that have expired

• Updates resource usage and processor time statistics

The timer hardware on most i.MX platforms consists of either Enhanced Periodic Interrupt Timer (EPIT)

or general purpose timer (GPT) or both. GPT is configured to generate a periodic interrupt at a certain

interval (every 10 ms) and is used by the Linux kernel.

3.2.1 Timer Hardware Operation

The General Purpose Timer (GPT) has a 32 bit up-counter. The timer counter value can be captured in a

register using an event on an external pin. The capture trigger can be programmed to be a rising or falling

edge. The GPT can also generate an event on ipp_do_cmpout pins, or can produce an interrupt when the

timer reaches a programmed value. It has a 12-bit prescaler providing a programmable clock frequency

derived from multiple clock sources.

3.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the

proper clock source, interrupt mode and interrupt interval. The timer then registers its interrupt service

routine and starts timing. The interrupt service routine is required to service the OS for the purposes

mentioned in Section 3.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

3.2.3 Timer Features

The timer implementation supports the following features:

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

3-4 Freescale Semiconductor

• Functions required by Linux to provide the system timer and dynamic timers.

• Generates an interrupt every 10 ms.

3.2.4 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxc/time.c file.

3.3 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to access to the

device registers since the Linux kernel is running under the virtual address space with the Memory

Management Unit (MMU) enabled.

3.3.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping defined by the page

table. For more information, see the ARM Technical Reference Manual (TRM) from ARM Limited.

3.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX platforms as defined in

the <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mm.c file.

3.3.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the physical to virtual

memory map for all the I/O modules.

3.3.4 Memory Map Source Code Structure

The Memory Map module implementation is in mm.c under the platform-specific MSL directory. The

hardware.h header file is used to provide macros for all the IO module physical and virtual base addresses

and physical to virtual mapping macros. All of the memory map source code is in the in the following

directories:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5

Table 3-2 lists the source file for the memory map.

Table 3-2. Memory Map Files

File Description

mm.c Memory map definition file

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 3-5

3.3.5 Memory Map Programming Interface

The Memory Map is implemented in the mm.c file to provide the map between physical and virtual

addresses. It defines an initialization function to be called during system startup.

3.4 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes. The IOMUX

module controls a pin usage so that the same pin can be configured for different purposes and can be used

by different modules. This is a common way to reduce the pin count while meeting the requirements from

various customers. Platforms that do not have the IOMUX hardware module can do pin muxing through

the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be configured either as a

functional pin or as a GPIO pin. A functional pin can be subdivided into either a primary function or

alternate functions. The pin operation is controlled by a specific hardware module. A GPIO pin, is

controlled by the user through software with further configuration through the GPIO module. For example,

the UART1_TXD pin might have the following functions:

• UART1_TXD—internal UART1 Transmit Data. This is the primary function of this pin.

• GPIO6[6]—alternate mode 1

• USBPHY1 DATAOUT[14]—alternate mode 7

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose

and cannot be changed by software. Otherwise, the IOMUX module needs to be configured to serve a

particular purpose that is dictated by the system (board) design. If the pin is connected to an external UART

transceiver and therefore to be used as the UART data transmit signal, it should be configured as the

primary function. If the pin is connected to an external Ethernet controller for interrupting the ARM core,

then it should be configured as GPIO input pin with interrupt enabled. Again, be aware that the software

does not have control over what function a pin should have. The software only configures pin usage

according to the system design.

3.4.1 IOMUX Hardware Operation

The IOMUX controller registers are briefly described here. For detailed information, refer to the pin

multiplexing section of the IC Reference Manual.

• SW_MUX_CTL—Selects the primary or alternate function of a pin. Also enables loopback mode

when applicable.

• SW_SELECT_INPUT—Controls pin input path. This register is only required when multiple pads

drive the same internal port.

• SW_PAD_CTL—Control pad slew rate, driver strength, pull-up/down resistance, and so on.

3.4.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and pad features.

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

3-6 Freescale Semiconductor

3.4.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are supported by the

hardware.

3.4.4 IOMUX Source Code Structure

Table 3-3 lists the source files for the IOMUX module. The files are in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc

3.4.5 IOMUX Programming Interface

The iomux api is in arch/arm/plat-mxc/include/mach/iomux-v3.h. Read the comments at the head of this

file to understand the iomux scheme.

3.5 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs or outputs. When

configured as an output, the pin state (high or low) can be controlled by writing to an internal register.

When configured as an input, the pin input state can be read from an internal register.

3.5.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX processor

external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly accessing the GPIO

registers. The GPIO interrupt implementation contains functions, such as the interrupt service routine

(ISR) registration/un-registration and ISR dispatching once an interrupt occurs. All driver-specific GPIO

setup functions should be made during device initialization in the MSL layer to provide better portability

and maintainability. This GPIO interrupt is initialized automatically during the system startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since it is not initialized

by a dedicated hardware module.

3.5.1.1 API for GPIO

The GPIO implementation supports the following features:

• An API for registering an interrupt service routine to a GPIO interrupt. This is made possible as

the number of interrupts defined by NR_IRQS is expanded to accommodate all the possible GPIO

Table 3-3. IOMUX Files

File Description

iomux-v3.c IOMUX function implementation

include/mach/iomux-mx5

3.h

Pin definitions in the iomux pins

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

Freescale Semiconductor 3-7

pins that are capable of generating interrupts. The macro IOMUX_TO_IRQ_V3() or gpio_to_irq() is

used to convert GPIO pin to irq number,

• Functions to set an IOMUX pin, named mxc_iomux_v3_setup_pad(). If a pin is used as GPIO,

another set of request/free function calls are provided, named gpio_request() and gpio_free().

The user should check the return value of the request calls to see if the pin has already been

reserved before modifying the pin state. The free function calls should be made when the pin is not

needed. Furthermore, functions gpio_direction_input() and gpio_direction_output() are

provided to set GPIO when it’s used as input or output. See the API document and

Documentation/gpio.txt for more details.

3.5.2 GPIO Features

This GPIO implementation supports the following features:

• Implements the functions for accessing the GPIO hardware modules

• Provides a way to control GPIO signal direction and GPIO interrupts

3.5.3 GPIO Source Code Structure

GPIO driver is implemented based on general gpiolib framework. The MSL-layer codes defines and

registers gpio_chip instances for each bank of on-chip GPIOs, in the following files, located in the

directories indicated at the beginning of this chapter:
.

3.5.4 GPIO Programming Interface

For more information, see the API documents and Documentation/gpio.txt for the programming

interface.

Table 3-4. GPIO Files

File Description

gpio.h GPIO public header file

gpio.c Function implementation

Machine Specific Layer (MSL)

i.MX50 RDP Linux Reference Manual

3-8 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview

The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware. It provides an API

to other drivers for transferring data between MCU memory space and the peripherals. It supports the

following features:

• Loading channel scripts from the MCU memory space into SDMA internal RAM

• Loading context parameters of the scripts

• Loading buffer descriptor parameters of the scripts

• Controlling execution of the scripts

• Callback mechanism at the end of script execution

4.2 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory space and peripherals

and includes the following features.

• Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels

• Powered by a 16-bit Instruction-Set microRISC engine

• Each channel executes specific script

• Very fast context-switching with two-level priority based preemptive multi-tasking

• 4 Kbytes ROM containing startup scripts (that is, boot code) and other common utilities that can

be referenced by RAM-located scripts

• 8 Kbyte RAM area is divided into a processor context area and a code space area used to store

channel scripts that are downloaded from the system memory.

4.3 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels run dedicated

scripts, according to peripheral and transfer types. The SDMA API driver is responsible for loading the

scripts into SDMA memory, initializing the channel descriptors, and controlling the buffer descriptors and

SDMA registers.

Smart Direct Memory Access (SDMA) API

i.MX53 EVK Linux Reference Manual

4-2 Freescale Semiconductor

Complete support for SDMA is provided in three layers (see Figure 4-1):

• I.API

• Linux DMA API

• TTY driver or DMA-capable drivers, such as ATA, SSI and the UART driver.

Figure 4-1. SDMA Block Diagram

The first two layers are part of the MSL and customized for each platform. I.API is the lowest layer and it

interfaces with the Linux DMA API with the SDMA controller. The Linux DMA API interfaces other

drivers (for example, MMC/SD, Sound) with the SDMA controller through the I.API.

Table 4-1 provides a list of drivers that use SDMA and the number of SDMA physical channels used by

each driver. A driver can specify the SDMA channel number that it wishes to use (static channel allocation)

or can have the SDMA driver provide a free SDMA channel for the driver to use (dynamic channel

Smart Direct Memory Access (SDMA) API

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 4-3

allocation). For dynamic channel allocation, the list of SDMA channels is scanned from channel 32 to

channel 1. On finding a free channel, that channel is allocated for the requested DMA transfers.

4.4 Source Code Structure

The source file, sdma.h (header file for SDMA API) is available in the directory

/<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach.

Table 4-2 shows the source files available in the directory,

/<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/sdma.

Table 4-3 shows the header files available in the directory,

/<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/.

4.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this options, use

the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• CONFIG_MXC_SDMA_API—This is the configuration option for the SDMA API driver. In

menuconfig, this option is available under

System type > Freescale MXC implementations > MX5x Options: > Use SDMA API.

By default, this option is Y.

Table 4-1. SDMA Channel Usage

Driver Name

Number of

SDMA

Channels

SDMA Channel Used

SDMA CMD 1 Static Channel allocation—uses SDMA channels 0

SSI 2 per device Dynamic channel allocation

UART 2 per device Dynamic channel allocation

SPDIF 2 per device Dynamic channel allocation

Table 4-2. SDMA API Source Files

File Description

sdma.c SDMA API functions

sdma_malloc.c SDMA functions to get memory that allows DMA

iapi/ iAPI source files

Table 4-3. SDMA Script Files

File Description

sdma_script_code_mx53.h SDMA RAM scripts

Smart Direct Memory Access (SDMA) API

i.MX53 EVK Linux Reference Manual

4-4 Freescale Semiconductor

• CONFIG_SDMA_IRAM—This is the configuration option to support Internal RAM as SDMA

buffer or control structures. This option is available under System type > Freescale MXC

implementations > MX5x Options > Use Internal RAM for SDMA transfer.

4.6 Programming Interface

The module implements custom API and partially standard DMA API. Custom API is needed for

supporting non-standard DMA features such as loading scripts, interrupts handling and DVFS control.

Standard API is supported partially. It can be used along with custom API functions only. Refer to the API

document for more information on the functions implemented in the driver (in the doxygen folder of the

documentation package).

4.7 Usage Example

Refer to one of the drivers from Table 4-1 that uses the SDMA API driver for a usage example.

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 3-1

Chapter 3
MC13892 Regulator Driver

The MC13892 regulator driver provides the low-level control of the power supply regulators, selection of

voltage levels, and enabling/disabling of regulators. This device driver makes use of the PMIC protocol

driver to access the PMIC hardware control registers.

3.1 Hardware Operation

The MC13892 provides reference and supply voltages for the application processor as well as peripheral

devices. Four buck (step down) converters and two boost (step up) converters are included. The buck

converters provide the power supply to processor cores and to other low voltage circuits such as I/O and

memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor

cores and/or other circuitry. Two DVS control pins are provided for pin controlled DVS on the buck

switchers targeted for processor core supplies.

Linear regulators are directly supplied from the battery or from the switchers and include supplies for I/O

and peripherals, audio, camera, BT, WLAN, and so on. Naming conventions are suggestive of typical or

possible use case applications, but the switchers and regulators may be utilized for other system power

requirements within the guidelines of specified capabilities. General Purpose Outputs (GPO) can be used

for enabling external functions or supplies, thermistor biasing, and/or a muxed ADC input.

3.2 Driver Features

The MC13892 PMIC regulator driver is based on the PMIC protocol driver and regulator core driver. It

provides the following services for regulator control of the PMIC component:

• Switch ON/OFF all voltage regulators

• Switch ON/OFF for GPO regulators

• Set the value for all voltage regulators

• Get the current value for all voltage regulators

3.3 Software Operation

The PMIC power management driver and the MC13892 PMIC regulator client driver perform operations

by reconfiguring the PMIC hardware control registers. This is done by calling protocol driver APIs with

the required register settings.

Some of the PMIC power management operations depend on the system design and configuration. For

example, if the system is powered by a power source other than the PMIC, then turning off or adjusting

the PMIC voltage regulators has no effect. Conversely, if the system is powered by the PMIC, then any

MC13892 Regulator Driver

i.MX53 EVK Linux Reference Manual

3-2 Freescale Semiconductor

changes that use the power management driver and the regulator client driver can affect the operation or

stability of the entire system.

3.4 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and current

regulators within the Linux 2.6 kernel. It is intended to provide voltage and current control to client or

consumer drivers and also provide status information to user space applications through a sysfs interface.

The intention is to allow systems to dynamically control regulator output to save power and prolong

battery life. This applies to both voltage regulators (where voltage output is controllable) and current sinks

(where current output is controllable).

For more details visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API calls:

• regulator_get—lookup and obtain a reference to a regulator

struct regulator *regulator_get(struct device *dev, const char *id);

• regulator_put—free the regulator source

void regulator_put(struct regulator *regulator, struct device *dev);

• regulator_enable—enable regulator output

int regulator_enable(struct regulator *regulator);

• regulator_disable—disable regulator output

int regulator_disable(struct regulator *regulator);

• regulator_is_enabled—is the regulator output enabled

int regulator_is_enabled(struct regulator *regulator);

• regulator_set_voltage—set regulator output voltage

int regulator_set_voltage(struct regulator *regulator, int uV);

• regulator_get_voltage—get regulator output voltage

int regulator_get_voltage(struct regulator *regulator);

Find more APIs and details in the regulator core source code inside the Linux kernel at:

<ltib_dir>/rpm/BUILD/linux/drivers/regulator/core.c.

MC13892 Regulator Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 3-3

3.5 Driver Architecture

Figure 3-1 shows the basic architecture of the MC13892 regulator driver.

Figure 3-1. MC13892 Regulator Driver Architecture

3.6 Driver Interface Details

Access to the MC13892 regulator is provided through the API of the regulator core driver. The MC13892

regulator driver provides the following regulator controls:

• Buck switch supplies

— Four buck switch regulators on normal mode: SWx, where x = 1–4

— Four buck switch regulators on standby mode: SWx_ST, where x = 1–4

— Four buck switch regulators on DVFS mode: SWx_ST, where x = 1–4

• Linear Regulators

VVIDEO, VAUDIO, VCAM, VSD, VGEN1, VGEN2, and VGEN3

• Power gating controls

PWGT1 and PWGT2

• General purpose outputs

GPOx, where x = 1–4

All of the regulator functions are handled by setting the appropriate PMIC hardware register values. This

is done by calling the PMIC protocol driver APIs to access the PMIC hardware registers.

Regulator Core Driver

MC13892 Regulator Driver

PMIC Protocol Driver

I2C Driver or SPI Driver

MC13892 Regulator Driver

i.MX53 EVK Linux Reference Manual

3-4 Freescale Semiconductor

3.7 Source Code Structure

The MC13892 regulator driver is located in the regulator device driver directory:

<ltib_dir>/rpm/BUILD/linux/drivers/regulator.

The MC13892 regulators for MX53 EVK board are registered under

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx53_evk_pmic_mc13892.c.

The MC13892 regulators for MX50 ARM2 board are registered under

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx50_arm2_pmic_mc13892.c.

The MC13892 regulators for MX53 EVK board are registered under

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx53_evk_pmic_mc13892.c.

The MC13892 regulators for MX50 RDP board are registered under

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx50_rdp_pmic_mc13892.c.

3.8 Menu Configuration Options

The following Linux kernel configurations are provided for the MC13892 Regulator driver. To get to the

PMIC power configuration, use the command ./ltib -c when located in the <ltib dir>. On the

configuration screen select Configure Kernel, exit, and when the next screen appears, choose.

• Device Drivers > Voltage and Current regulator support > MC13892 Regulator Support.

Table 3-1. MC13892 Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

reg-mc13892.c Implementation of the MC13892 regulator client driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 4-1

Chapter 4
MC13892 RTC Driver

The Linux MC13892 RTC driver provides access to the MC13892 RTC control circuits. This device driver

makes use of the MC13892 protocol driver to access the MC13892 hardware control registers. The

MC13892 device is used for real-time clock control and wait alarm events.

4.1 Driver Features

The MC13892 RTC driver is a client of the MC13892 protocol driver. It provides the services for real time

clock control of MC13892 components. The driver is implemented under the standard RTC class

framework.

4.2 Software Operation

The MC13892 RTC driver performs operations by reconfiguring the MC13892 hardware control registers.

This is done by calling protocol driver APIs with the required register settings.

4.3 Driver Implementation Details

Configuring the MC13892 RTC driver includes the following parameters:

• Set time of day and day value

• Get time of day and day value

• Set time of day alarm and day alarm value

• Get time of day alarm and day alarm value

• Report alarm event to the client

4.3.1 Driver Access and Control

To access this driver, open the /dev/rtcN device to allow application-level access to the device driver using

the IOCTL interface, where the N is the RTC number. /sys/class/rtc/rtcN sysfs attributes support read only

access to some RTC attributes.

MC13892 RTC Driver

i.MX53 EVK Linux Reference Manual

4-2 Freescale Semiconductor

4.4 Source Code Structure

Table 4-1 lists the source files for MC13892 RTC driver that are available in the

<ltib_dir>/rpm/BUILD/linux/drivers/rtc directory.

4.5 Menu Configuration Options

The following Linux kernel configurations are provided for this module. To get to the MC13892 RTC

configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure

Kernel, exit, and a new screen appears.

• Device Drivers > Realtime Clock > Freescale MC13892 Real Time Clock.

Table 4-1. MC9S08DZ60 RTC Driver Files

File Description

rtc-mc13892.c Implementation of the RTC driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 5-1

Chapter 5
MC13892 Digitizer Driver

This chapter describes the Linux PMIC Digitizer Driver that provides low-level access to the PMIC

analog-to-digital converters (ADC). This capability includes taking measurements of the X-Y coordinates

and contact pressure from an attached touch panel. This device driver uses the PMIC protocol driver to

access the PMIC hardware control registers that are associated with the ADC.

The PMIC digitizer driver is used to provide access to and control of the analog-to-digital converter (ADC)

that is available with the PMIC. Multiple input channels are available for the ADC, and some of these

channels have dedicated functions for various system operations. For example:

• Sampling the voltages on the touch panel interfaces to obtain the (X,Y) position and pressure

measurements

• Battery voltage level monitoring

• Measurement of the voltage on the USB ID line to differentiate between mini-A and mini-B plugs

Some of these functions (for example the battery monitoring and USB ID functions) are handled separately

by other PMIC device drivers.

The PMIC ADC has a 10-bit resolution and supports either a single channel conversion or automatic

conversion of all input channels in succession. The conversion can also be triggered by issuing a command

or by detecting the rising edge on a special signal line.

A hardware interrupt can be generated following the completion of an ADC conversion. A hardware

interrupt can also be generated if the ADC conversion results are outside of previously defined high and

low level thresholds. Some PMIC chips also provide a pulse generator that is synchronized with the ADC

conversion. The pulse generator can enable or drive external circuits in support of the ADC conversion

process.

The PMIC ADC components are subject to arbitration rules as documented in the documentation for each

PMIC. These arbitration rules determine how requests from both primary and secondary SPI interfaces are

handled. SPI bus arbitration configuration and control is not part of this driver because the platform has

configured arbitration settings as part of the normal system boot procedure. There is no need to

dynamically reconfigure the arbitration settings after the system has been booted.

5.1 Driver Features

The PMIC Digitizer Driveris a client of the PMIC protocol driver. The PMIC protocol driver provides

hardware control register reads and writes through the SPI bus interface and also register/deregister event

notification callback functions. The PMIC protocol driver requires access to ADC-specific event

notifications.

MC13892 Digitizer Driver

i.MX53 EVK Linux Reference Manual

5-2 Freescale Semiconductor

The PMIC Digitizer Driver supports the following features for supporting a touch panel device:

• Selects either a single ADC input channel or an entire group of input channels to be converted

• Specifies high and low level thresholds for each ADC conversion

• Starts an ADC conversion by issuing the appropriate start conversion command

• Starts an ADC conversion immediately following the rising edge of the ADTRIG input line or after

a predefined delay following the rising edge

• Enable/disables hardware interrupts for all ADC-related event notifications

• Provides an interrupt handler routine that receives and properly handles all ADC

end-of-conversion or exceeded high/low level threshold event notifications

• Other device drivers register/deregister additional callback functions to provide custom handling

of all ADC-related event notifications

• Provides a read-only device interface for passing touchpanel (X,Y) coordinates and pressure

measurements to applications

• Provides the ability to read out one or more ADC conversion results

• Implements the appropriate input scaling equations so that the ADC results are correct

• Specifies the delay between successive ADC conversion operations, if supported by the PMIC. For

PMIC chips that do not support this feature, the device driver returns a NOT_SUPPORTED status

• Provides support for a pulse generator that is synchronized with the ADC conversion. For PMIC

chips that do not support this feature, returns a NOT_SUPPORTED status

• Provides a complete IOCTL interface to initiate an ADC conversion operation and to return the

conversion results

• Provides support for a polling method to detect when the ADC conversion has been completed

This digitizer driver is not responsible for any additional ADC-related activities such as battery level or

USB ID handling. Such functions are handled by other PMIC-related device drivers. Also, this device

driver is not responsible for SPI bus arbitration configuration. The appropriate arbitration settings that are

required in order for this device driver to work properly are expected to have been set during the system

boot process.

5.2 Software Operation

Most of the required operations for this device driver simply involve writing the correct configuration

settings to the appropriate PMIC control registers. This can be done by using the APIs that are provided

with the PMIC protocol driver.

Once an ADC conversion has been started, suspend the calling thread until the conversion has been

completed. Avoid using a busy loop since this negatively impacts processor and overall system

performance. Instead, the use of a wait queue offers a much better solution. Therefore, any potentially

time-consuming operations results in the calling thread being placed into a wait queue until the operation

is completed.

The PMIC ADC conversion can take a significant amount of time. The delay between a start of conversion

request and a conversion completed event may even be open ended, if the conversion is not started until

the appropriate external trigger signal is received. Therefore, all ADC conversion requests must be placed

MC13892 Digitizer Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 5-3

in a wait queue until the conversion is complete. Once the ADC conversion has completed, the calling

thread can be removed from the wait queue and reawakened.

Avoid the use of any polling loops or other thread delay tactics that would negatively impact processor

performance. Also, avoid doing anything that prevents hardware interrupts from being handled, because

the ADC end-of-conversion event is typically signalled by a hardware interrupt.

5.3 Source Code Structure

Table 5-1 lists the source files for the MC13892-specific version of this driver. These are contained in the

following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/pmic/mc13892/pmic_adc.c

<ltib_dir>/rpm/BUILD/linux/include/linux/pmic_adc.h

<ltib_dir>/rpm/BUILD/linux/drivers/input/touchscreen/mxc_ts.c

5.4 Menu Configuration Options

The following Linux kernel configurations are provided. To get to the configurations, use the command

./ltib -c when located in the <ltib dir>. In the screen select Configure Kernel, exit, and a new screen

appears.

• Choose the MC13892 (MC13892) specific digitizer driver for the PMIC ADC. In menuconfig, this

option is available under:

Device Drivers > MXC Support Drivers > MXC PMIC Support > MC13892 ADC support

• Driver for the MXC touch screen. In menuconfig, this option is available under:

Device Drivers > Input device support > Touchscreens > MXC touchscreen input driver

Table 5-1. MC13892 Digitizer Driver Files

File Description

pmic_adc.c Implementation of the MC13892 ADC client driver

pmic_adc.h Define names of IOCTL user space interface

mxc_ts.c Common interface to the input driver system

MC13892 Digitizer Driver

i.MX53 EVK Linux Reference Manual

5-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 6-1

Chapter 6
CPU Frequency Scaling (CPUFREQ) Driver

The CPU frequency scaling device driver allows the clock speed of the CPU to be changed on the fly. Once

the CPU frequency is changed, the voltage VDDGP is changed to the voltage value defined in

cpu_wp_auto[]. This method can reduce power consumption (thus saving battery power), because the

CPU uses less power as the clock speed is reduced.

6.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on the fly. If the

frequency is not defined in cpu_wp_auto[], the CPUFREQ driver changes the CPU frequency to the nearest

frequency in the array. The frequencies are manipulated using the clock framework API, while the voltage

is set using the regulators API. The CPU frequencies in the array are based on the boot CPU frequency

which can be changed by using the clock command in U-Boot. Refer to the API document for more

information on the functions implemented in the driver (in the doxygen folder of the documentation

package).

To view what values the CPU frequency can be changed to in KHz (The values in the first column are the

frequency values) use this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for example, to 160

MHz) use this command:

echo 160000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 160000 is in KHz, which is 160 MHz.

The maximum frequency can be checked using this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Use the following command to view the current CPU frequency in KHz:

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

6.2 Source Code Structure

Table 6-1 shows the source files and headers available in the following directory:

CPU Frequency Scaling (CPUFREQ) Driver

i.MX53 EVK Linux Reference Manual

6-2 Freescale Semiconductor

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/

6.3 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

• CONFIG_CPU__FREQ—In menuconfig, this option is located under

CPU Power Management > CPU Frequency scaling

The following options can be selected:

— CPU Frequency scaling

— CPU frequency translation statistics

— Default CPU frequency governor (userspace)

— Performance governor

— Powersave governor

— Userspace governor for userspace frequency scaling

— Conservative CPU frequency governor

— CPU frequency driver for i.MX CPUs

6.3.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

Table 6-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Low-level Power Management (PM) Driver

This section describes the low-level Power Management (PM) driver which controls the low-power

modes.

7.1 Hardware Operation

The i.MX5 supports four low power modes: RUN, WAIT, STOP, and LPSR (low power screen).

Table 7-1 lists the detailed clock information for the different low power modes.

For the detailed information about lower power modes, see the MCIMX50 Multimedia Applications

Processor Reference Manual (MCIMX50RM).MX53 IC spec.

7.2 Software Operation

The i.MX5 PM driver maps the low-power modes to the kernel power management states as listed below:

• Standby—maps to WAIT mode which offers minimal power saving, while providing a very

low-latency transition back to a working system

• Mem (suspend to RAM)—maps to STOP mode which offers significant power saving as all blocks

in the system are put into a low-power state, except for memory, which is placed in self-refresh

mode to retain its contents

• System idle—maps to WAIT mode

The i.MX5 PM driver performs the following steps to enter and exit low power mode:

1. Enable the gpc_dvfs_clk

2. Allow the Coretex-A8 platform to issue a deep sleep mode request

3. If STOP mode:

a) Program CCM CLPCR register to set low power control register.

b) Request switching off ARM/NENO power when pdn_req is asserted. For MX53, ARM power

down is disabled to workaround stop failure.

Table 7-1. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL

RUN Active Active, Idle or Disable On On On

WAIT Disable Active, Idle or Disable On On On

STOP Disable Disable Off Off On

LPSR Disable Disable Off On On

Low-level Power Management (PM) Driver

i.MX53 EVK Linux Reference Manual

7-2 Freescale Semiconductor

c) Request switching off embedded memory peripheral power when pdn_req is asserted.

d) Program TZIC wakeup register to set wakeup interrupts

4. Call cpu_do_idle to execute WFI pending instructions for wait mode

5. If STOP mode, execute cpu_do_suspend_workaround in RAM. Change the drive strength of DDR

SDCLK as “low” to minum the power leakage in SDCLK. Execute WFI pending instructions for

stop mode

6. Generate a wakeup interrupt and exit low power mode. If STOP mode, restore DDR drive strength.

7. Disable gpc_dvfs_clk

7.3 Source Code Structure

Table 7-2 shows the PM driver source files. These files are available in

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/

7.4 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_PM—Build support for power management. In menuconfig, this option is available

under

Power management options > Power Management support

By default, this option is Y.

• CONFIG_SUSPEND—Build support for suspend. In menuconfig, this option is available under

Power management options > Suspend to RAM and standby

7.5 Programming Interface

The mxc_cpu_ip_set API in the system.c function is provided for low-power modes. This implements all

the steps required to put the system into WAIT and STOP modes.

Table 7-2. PM Driver Files

File Description

pm.c Supports suspend operation

system.c Supports low-power modes

wfi.S Assemble file for cpu_cortexa8_do_idle

suspend.S Assemble file for cpu_do_suspend_workaround

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Dynamic Voltage Frequency Scaling (DVFS) Driver

The Dynamic Voltage Frequency Scaling (DVFS) device driver allows simple dynamic voltage frequency

scaling. The frequency of the core (CPU) clock domain and the voltage of the core power domain can be

changed on the fly with all modules continuing their normal operations. The voltage of the core power

domain can be changed through the PMIC. The frequency of the core clock domain can be changed by

switching temporarily to an alternate PLL clock, and then returning to the updated PLL, already locked at

a specific frequency, or by merely changing the post dividers division factors.

8.1 Hardware Operation

The DVFS core module is a power management module. The purpose of the DVFS module is to detect the

appropriate operation frequency for the IC. DVFS core is operated under control of the GPC (General

Power Controller) block. The hardware DVFS core interrupt is served by GPC IRQ. The DVFS core

domain performance update procedure includes both voltage and frequency changes in appropriate order

by the GPC controller (hardware). For more information on the HW DVFS Core block refer to the DVFS

chapter in the Multimedia Applications Processor documentation.

8.2 Software Operation

The DVFS device driver allows the frequency of the core clock domain and the voltage of the core power

domain to be changed on the fly. The frequency of the core clock domain and the voltage of the core power

domain are changed by switching between defined freq-voltage operating points. The frequencies are

manipulated using the clock framework API, while the voltage is set using the regulators API.

To Enable the DVFS core use this command:

echo 1 > /sys/devices/platform/mxc_dvfs_core.0/enable

To Disable The DVFS core use this command:

echo 0 > /sys/devices/platform/mxc_dvfs_core.0/enable

8.3 Source Code Structure

Table 8-1 lists the source files and headers available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/

.

Table 8-1. DVFS Driver Files

File Description

dvfs_core.c Linux DVFS functions

Dynamic Voltage Frequency Scaling (DVFS) Driver

i.MX53 EVK Linux Reference Manual

8-2 Freescale Semiconductor

8.4 Menu Configuration Options

There are no menu configuration options for this driver. The DVFS core is included by default.

8.4.1 Board Configuration Options

There are no board configuration options for the Linux DVFS core device driver.

i.MX50 ARM2 Linux Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Software Based Peripheral Domain Frequency Scaling

The frequency of the clocks in the peripheral domain can be changed using the software based Bus

Frequency Scaling driver. Enabling this driver can significantly lower the power numbers in the LP

domain. Depending on the platform, the voltage of the peripheral domain can also be dropped using the

on board PMIC.

9.1 Software based Bus Frequency Scaling

The SW will automatically lower the frequency of the various clocks in the peripheral domain based on

which drivers are active (it is assumed that the drivers will use the clock API to enable/disable their

clocks). Two setpoints are defined for the peripheral bus clock:

AHB_HIGH_SET_POINT - The module requires the AHB clock to be at the highest

frequency (133MHz).

AHB_MED_SET_POINT - The module requires the AHB clock be above 66.5MHz.

The Bus Frequency Scaling driver will take into account the above two associations for the various clocks

in the system before changing the peripheral clock.

To enable the SW based Bus Frequency Scaling (not needed to enter LPAPM mode) use this command:

echo 1 > /sys/devices/platform/busfreq.0/enable

To disable the SW based Bus Frequency Scaling use this command:

echo 0 > /sys/devices/platform/busfreq.0/enable

Based on which clocks are active, the system can be in any of the three modes specified below:

9.1.1 Low Power Audio Playback Mode (LPAPM)

When all the clocks that need either of the above two mentioned setpoints are disabled, the system can

enter an ultra low power mode where the AHB clock and other main clocks in the LP domain are dropped

down to 24MHz. On certain platforms and depending on the type of memory used, the DDR frequency is

also dropped down to 24MHz. This mode is most commonly entered when the system is idle and the

display is turned off. The implementation automatically detects when this mode can be entered and calls

into the Bus Frequency driver to change the clocks (and voltages if it can be done) appropriately. On

certain platforms, the entire SoC is clocked off the 24MHz oscillator and all PLLs are turned off to save

more power.

If any driver that needs the higher AHB clock enables its clock, LPAPM mode will be exited. Entry and

exit from the LPAPM mode does not require the Bus Frequency Scaling driver to be enabled.

Software Based Peripheral Domain Frequency Scaling

i.MX50 ARM2 Linux Reference Manual

9-2 Freescale Semiconductor

9.1.2 Medium Frequency setpoint

In this mode the AHB and some of the LP domain clocks are divided down such that the AHB clock is

above 66.5MHz. In this mode all drivers that require AHB_HIGH_SET_POINT are disabled. Depending

on the platform, the voltage can also be dropped.

9.1.3 High Frequency setpoint

In this mode none of the frequencies on the peripheral domain are scaled since drivers that need the

AHB_HIGH_SETPOINT are active.

9.2 Source Code Structure

Table 9-1 lists the source files and headers
.

9.3 Menu Configuration Options

There is no option for the SW based Bus Frequency Scaling driver, it included by default.

9.3.1 Board Configuration Options

There are no board configuration options for the Linux Bus Frequency Scaling device driver.

Table 9-1. Bus Frequency Scaling Driver Files

File directory Description

bus_freq.c arch/arm/mach-mx5 SW bus frequency driver

functions

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Image Processing Unit (IPU) Drivers

The image processing unit (IPU) is designed to support video and graphics processing functions and to

interface with video and still image sensors and displays. The IPU driver provides a kernel-level API to

manipulate logical channels. A logical channel represents a complete IPU processing flow. For example,

a complete IPU processing flow (logical channel) might consist of reading a YUV buffer from memory,

performing post-processing, and writing an RGB buffer to memory. A logical channel maps one to three

IDMA channels and maps to either zero or one IC tasks. A logical channel can have one input, one output,

and one secondary input IDMA channel. The IPU API consists of a set of common functions for all

channels. Its functions are to initialize channels, set up buffers, enable and disable channels, link channels

for auto frame synchronization, and set up interrupts.

Typical logical channels include:

• CSI direct to memory

• CSI to viewfinder pre-processing to memory

• Memory to viewfinder pre-processing to memory

• Memory to viewfinder rotation to memory

• CSI to encoder pre-processing to memory

• Memory to encoder pre-processing to memory

• Memory to encoder rotation to memory

• Memory to post-processing to memory

• Memory to post-processing rotation to memory

• Memory to synchronous frame buffer background

• Memory to synchronous frame buffer foreground

• Memory to synchronous frame buffer DC

• Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and are specific to

an IPU sub-module. The types of functions for the IPU sub-modules are as follows:

• Synchronous frame buffer functions

— Panel interface initialization

— Set foreground and background plane positions

— Set local/global alpha and color key

— Set backlight level

• CSI functions

— Sensor interface initialization

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

10-2 Freescale Semiconductor

— Set sensor clock

— Set capture size

The higher level drivers are responsible for memory allocation, chaining of channels, and providing

user-level API.

10.1 Hardware Operation

The detailed hardware operation of the IPU is discussed in the . shows the IPU hardware modules.

10.2 Software Operation

The IPU driver is a self-contained driver module in the Linux kernel. It consists of a custom kernel-level

API for the following blocks:

• Synchronous frame buffer driver

• Display Interface (DI)

• Image DMA Controller (IDMAC)

• CMOS Sensor Interface (CSI)

• Image Converter (IC)

D is p la y

In te r fa c e

(D I)
Im ag e

D M A

C o n tro lle r

(ID M A C)

Im a g e

C o n v e rte r

(IC)

C o ntr o l

M o d ule

(C M)

D IS P B

C N T B

M E M B

Im ag e

R o ta to r

(IR T)

D is p la y

M u lt i F IF O

C o n tro l

(D M F C)

D is p la y

Inte r fa c e

(D I)

D is p la y

P ro c e s s o r

(D P)D is p la y

C o n tro l

(D C)

S E N S B C M O S

S en s o r

In te rfa c e

(C S I)

D is p la y

M u lt i F IF O

C on tro l

(D M F C)

V id eo D e - Inte r la c e r

(V D I)

Im a ge S ig n a l P r o c .

(IS P)

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 10-3

 shows the interaction between the different graphics/video drivers and the IPU.

The IPU drivers are sub-divided as follows:

• Device drivers—include the frame buffer driver for the synchronous frame buffer, the frame buffer

driver for the displays, V4L2 capture drivers for IPU pre-processing, and the V4L2 output driver

for IPU post-processing. The frame buffer device drivers are available in the

<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc

directory of the Linux kernel. The V4L2 device drivers are available in the

<ltib_dir>/rpm/BUILD/linux/drivers/media/video

directory of the Linux kernel.

• Low-level library routines—interface to the IPU hardware registers. They take input from the

high-level device drivers and communicate with the IPU hardware. The low-level libraries are

available in the

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3 directory of the Linux kernel.

DI

V4L
Capure Plugin

MXC V 4L
Capture Driver

I2C IPU

SDC

FrameBuf
Driv er 1

Middleware

(User Mo de)

Kernel Mode

Hardware

Con trol Calls

IDMA channe l transfer Other Data Flo w

Op tional

Cam era

Sensor Driver

I2C
Driver

VPU

VP U Kernel
Driver

Camera App

CSI

PRPE NC

SDC

PF PRPVF P P

IPU Com mon API

IPU Userspace Proxy S DC

FrameBuf
Driver 0

Video Conf App Application

(User Mo de)

Media Player
App

Video Sink
Plugin

H.264
Dec oder

A DC

ADC
Fram eBuf

VPU Lib
(User Driver)

VPU P lugin

IP U Lib

Multimedia Fram ework
Producer

Camera

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

10-4 Freescale Semiconductor

10.2.1 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents the frame buffer

video hardware, and allows application software to access the graphics hardware through a well-defined

interface, so that the software is not required to know anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters in the kernel

configuration. To supplement the frame buffer driver, the kernel builder may also include support for fonts

and a startup logo. This device depends on the virtual terminal (VT) console to switch from serial to

graphics mode. The device is accessed through special device nodes, located in the /dev directory, as

/dev/fb*. fb0 is generally the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common kernel video API

is utilized for setting colors, palette registration, image blitting, and memory mapping. The IPU reads the

raw pixel data from the frame buffer memory and sends it to the panel for display.

10.2.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the IPU hardware driver module.

10.2.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar to a memory

device. Users can read it, write to it, seek to some location in it, and mmap() it (the main use). The difference

is that the memory that appears in the special file is not the whole memory, but the frame buffer of some

video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set information about the

hardware. The color map is also handled through IOCTLs. For more information on what IOCTLs exist

and which data structures they use, see <ltib_dir>/rpm/BUILD/linux/include/linux/fb.h. The following

are a few of the IOCTLs functions:

• Request general information about the hardware, such as name, organization of the screen memory

(planes, packed pixels, and so on), and address and length of the screen memory.

• Request and change variable information about the hardware, such as visible and virtual geometry,

depth, color map format, timing, and so on. The driver suggests values to meet the hardware

capabilities (the hardware returns EINVAL if that is not possible) if this information is changed.

• Get and set parts of the color map. Communication is 16 bits-per-pixel (values for red, green, blue,

transparency) to support all existing hardware. The driver does all the calculations required to

apply the options to the hardware (round to fewer bits, possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and more portable.

The only thing that must be built into the application programs is the screen organization (bitplanes or

chunky pixels, and so on), because it works on the frame buffer image data directly.

The MXC frame buffer driver (<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc/mxc_ipuv3_fb.c)

interacts closely with the generic Linux frame buffer driver

(<ltib_dir>/rpm/BUILD/linux/drivers/video/fbmem.c).

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 10-5

10.2.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer driver API for

synchronous LCD panels or those without memory. The synchronous frame buffer screen driver is the top

level kernel video driver that interacts with kernel and user level applications. This is enabled by selecting

the Synchronous Panel Frame buffer option under the graphics support device drivers in the kernel

configuration. To supplement the frame buffer driver, the kernel builder may also include support for fonts

and a startup logo. This depends on the VT console for switching from serial to graphics mode.

Except for physical memory allocation and LCD panel configuration, the common kernel video API is

utilized for setting colors, palette registration, image blitting and memory mapping. The IPU reads the raw

pixel data from the frame buffer memory and sends it to the panel for display.

The frame buffer driver supports different panels as a kernel configuration option. Support for new panels

can be added by defining new values for a structure of panel settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

• Initialization of panel interface settings

• Initialization of IPU channel settings for LCD refresh

• Changing the frame buffer address for double buffering support

The following features are supported:

• Configurable screen resolution

• Configurable RGB 16, 24 or 32 bits per pixel frame buffer

• Configurable panel interface signal timings and polarities

• Palette/color conversion management

• Power management

• LCD power off/on

User applications utilize the generic video API (the standard Linux frame buffer driver API) to perform

functions with the frame buffer. These include the following:

• Obtaining screen information, such as the resolution or scan length

• Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

10-6 Freescale Semiconductor

10.3 Source Code Structure

Table 10-1 lists the source files associated with the IPU, Sensor, V4L2 and Panel drivers. These files are

available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3

<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc

<ltib_dir>/rpm/BUILD/linux/drivers/video/backlight
.

Table 10-2 lists the global header files associated with the IPU and Panel drivers. These files are available

in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3/

<ltib_dir>/rpm/BUILD/linux/include/linux/

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/

10.4 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module. To get to these options

use the command ./ltib -c when located in the <ltib dir>. On the screen displayed, select Configure

the kernel and exit. When the next screen appears select the options to configure.

• CONFIG_MXC_IPU—Includes support for the Image Processing Unit. In menuconfig, this option

is available under:

Table 10-1. IPU Driver Files

File Description

ipu_capture.c Asynchronous frame buffer configuration driver

ipu_common.c Configuration functions for asynchronous and synchronous frame buffers

ipu_device.c IPU driver device interface and fops functions

ipu_disp.c IPU display functions

ipu_ic.c IPU library functions

mxcfb.c Driver for synchronous frame buffer

mxcfb_epson_vga.c Driver for synchronous framebuffer for VGA

mxcfb_claa_wvga.c Driver for synchronous frame buffer for WVGA

mxcfb_modedb.c Parameter settings for Framebuffer devices

Table 10-2. IPU Global Header Files

File Description

ipu_param_mem.h Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers

ipu_regs.h IPU register definitions

mxc_pf.h Header file for Post filtering driver

mxcfb.h Header file for the synchronous framebuffer driver

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 10-7

Device Drivers > MXC support drivers > Image Processing Unit Driver

By default, this option is Y for all architectures.

• CONFIG_MXC_CAMERA_MICRON_111—Option for both the Micron mt9v111 sensor driver

and the use case driver. This option is dependent on the MXC_IPU option. In menuconfig, this

option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera

> MXC Camera/V4L2 PRP Features support > Micron mt9v111 Camera support

Only one sensor should be installed at a time.

• CONFIG_MXC_CAMERA_OV2640—Option for both the OV2640 sensor driver and the use

case driver. This option is dependent on the MXC_IPU option. In menuconfig, this option is

available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera

> MXC Camera/V4L2 PRP Features support > OmniVision ov2640 camera support

Only one sensor should be installed at a time.

• CONFIG_MXC_CAMERA_OV3640—Option for both the OV3640 sensor driver and the use

case driver. This option is dependent on the MXC_IPU option. In menuconfig, this option is

available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera

> MXC Camera/V4L2 PRP Features support > OmniVision ov3640 camera support

Only one sensor should be installed at a time.

• CONFIG_MXC_IPU_PRP_VF_SDC—Option for the IPU (here the > symbols illustrates data

flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menuconfig, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera > MXC

Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.

• CONFIG_MXC_IPU_PRP_ENC—Option for the IPU:

Use case driver for dumb sensors

CSI > IC > MEM MEM > IC (PRP ENC) > MEM

or for smart sensors

CSI > IC(PRP ENC) > MEM.

In menuconfig, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For Linux Camera

> MXC Camera/V4L2 PRP Features support > Pre-processor Encoder library

By default, this option is set to M for all.

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

10-8 Freescale Semiconductor

• CONFIG_VIDEO_MXC_CAMERA—This is configuration option for V4L2 capture Driver. This

option is dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC && MXC_IPU_PRP_ENC

In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera

By default, this option is M for all.

• CONFIG_VIDEO_MXC_OUTPUT—This is configuration option for V4L2 output Driver. This

option is dependent on VIDEO_DEV && MXC_IPU option. In menuconfig, this option is

available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for Linux Video

Output

By default, this option is Y for all.

• CONFIG_FB—This is the configuration option to include frame buffer support in the Linux

kernel. In menuconfig, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices

By default, this option is Y for all architectures.

• CONFIG_FB_MXC—This is the configuration option for the MXC Frame buffer driver. This

option is dependent on the CONFIG_FB option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support

By default, this option is Y for all architectures.

• CONFIG_FB_MXC_SYNC_PANEL—This is the configuration option that chooses the

synchronous panel framebuffer. This option is dependent on the CONFIG_FB_MXC option. In

menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer

By default this option is Y for all architectures.

• CONFIG_FB_MXC_EPSON_VGA_SYNC_PANEL—This is the configuration option that

chooses the Epson VGA panel. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL

option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer

> Epson VGA Panel

• CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL —This is the configuration option that

chooses the CLAA WVGA panel. This option is dependent on

CONFIG_FB_MXC_SYNC_PANEL option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer

> CLAA WVGA Panel.

• CONFIG_FB_MXC_TVOUT_CH7024 —This configuration option selects the CH7024 TVOUT

encoder. This option is dependent on the CONFIG_FB_MXC_SYNC_PANEL option. In

menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer

> CH7024 TV Out Encoder

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 10-9

• CONFIG_FB_MXC_TVOUT —This configuration option selects the FS453 TVOUT encoder.

This option is dependent on CONFIG_FB_MXC_SYNC_PANEL option. In menuconfig, this

option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer

> FS453 TV Out Encoder

10.5 Programming Interface

For more information, see the API Documents for the programming interface.

Image Processing Unit (IPU) Drivers

i.MX53 EVK Linux Reference Manual

10-10 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Video for Linux Two (V4L2) Driver

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable support for

camera and preprocessing functions, as well as video and post-processing functions. The V4L2 camera

driver implements support for all camera related functions. The V4l2 capture device takes incoming video

images, either from a camera or a stream, and manipulates them. The output device takes video and

manipulates it, then sends it to a display or similar device. The V4L2 Linux standard API specification is

available at http://v4l2spec.bytesex.org/spec/.

The features supported by the V4L2 driver are as follows:

• Direct preview and output to SDC foreground overlay plane (with no processor intervention and

synchronized to LCD refresh)

• Direct preview to graphics frame buffer (with no processor intervention, but not synchronized to

LCD refresh)

• Color keying or alpha blending of frame buffer and overlay planes

• Simultaneous preview and capture

• Streaming (queued) capture from IPU encoding channel

• Direct (raw Bayer) still capture (sensor dependent)

• Programmable pixel format, size, frame rate for preview and capture

• Programmable rotation and flipping using custom API

• RGB 16-bit, 24-bit, and 32-bit preview formats

• Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar,

YUV 4:2:2 interleaved, and JPEG formats for capture

• Control of sensor properties including exposure, white-balance, brightness, contrast, and so on

• Plug-in of different sensor drivers

• Linking post-processing resize and CSC, rotation, and display IPU channels with no ARM

processing of intermediate steps

• Streaming (queued) input buffer

• Double buffering of overlay and intermediate (rotation) buffers

• Configurable 3+ buffering of input buffers

• Programmable input and output pixel format and size

• Programmable scaling and frame rate

• RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved input formats

• TV output

http://v4l2spec.bytesex.org/spec

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

11-2 Freescale Semiconductor

The driver implements the standard V4L2 API for capture, output, and overlay devices. The command

modprobe mxc_v4l2_capture must be run before using these functions.

11.1 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

• Capture interface—uses IPU pre-processing ENC channels to record the YCrCb video stream

• Overlay interface—uses the IPU pre-processing VF channels to display the preview video to the

SDC foreground panel without ARM processor interaction.

V4L2 capture support can be selected during kernel configuration. The driver includes two layers. The top

layer is the common Video for Linux driver, which contains chain buffer management, stream API and

other ioctl interfaces. The files for this device are located in

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/.

The V4L2 capture device driver is in the mxc_v4l2_capture.c file. The lowest layer is in the ipu_prp_enc.c

file.

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, ipu_prp_vf_sdc_bg.c interfaces with

the IPU VF hardware, and ipu_still.c interfaces with the IPU CSI hardware. Sensor frame rate control

is handled by VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and AWB

turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/

11.1.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include the following:

• VIDIOC_QUERYCAP

• VIDIOC_G_FMT

• VIDIOC_S_FMT

• VIDIOC_REQBUFS

• VIDIOC_QUERYBUF

• VIDIOC_QBUF

• VIDIOC_DQBUF

• VIDIOC_STREAMON

• VIDIOC_STREAMOFF

• VIDIOC_OVERLAY

• VIDIOC_G_FBUF

• VIDIOC_S_FBUF

• VIDIOC_G_CTRL

• VIDIOC_S_CTRL

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 11-3

• VIDIOC_CROPCAP

• VIDIOC_G_CROP

• VIDIOC_S_CROP

• VIDIOC_S_PARM

• VIDIOC_G_PARM

• VIDIOC_ENUMSTD

• VIDIOC_G_STD

• VIDIOC_S_STD

• VIDIOC_ENUMOUTPUT

• VIDIOC_G_OUTPUT

• VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is

V4L2_CID_PRIVATE_BASE. Supported values include:

• 0—Normal operation

• 1—Vertical flip

• 2—Horizontal flip

• 3—180° rotation

• 4—90° rotation clockwise

• 5—90° rotation clockwise and vertical flip

• 6—90° rotation clockwise and horizontal flip

• 7—90° rotation counter-clockwise

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

11-4 Freescale Semiconductor

Figure 11-1 shows a block diagram of V4L2 Capture API interaction.

Figure 11-1. Video4Linux2 Capture API Interaction

11.1.2 Use of the V4L2 Capture APIs

This section describes a sample V4L2 capture process. The application completes the following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.

3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver creates a chain

of buffers (currently the maximum number of frames is 3).

4. Memory maps the buffer to its user space.

5. Queues buffers using the IOCTL command VIDIOC_QBUF.

6. Starts the stream using the IOCTL VIDIOC_STREAMON. This IOCTL enables the IPU tasks and

the IDMA channels. When the processing is completed for a frame, the driver switches to the

buffer that is queued for the next frame. The driver also signals the semaphore to indicate that a

buffer is ready.

7. Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL blocks until it

has been signaled by the ISR driver.

8. Stores the buffer to a YCrCb file.

9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF again.

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 11-5

For the V4L2 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the IOCTL VIDIOC_S_FMT.

2. Reads one frame still image with YUV422.

FOr the V4L2 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.

2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.

3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

11.2 V4L2 Output Device

The V4L2 output driver uses the IPU post-processing functions for video output. The driver implements

the standard V4L2 API for output devices. V4L2 output device support can be selected during kernel

configuration. The driver is available at

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/output/mxc_v4l2_output.c.

11.2.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include the following:

• VIDIOC_QUERYCAP

• VIDIOC_REQBUFS

• VIDIOC_G_FMT

• VIDIOC_S_FMT

• VIDIOC_QUERYBUF

• VIDIOC_QBUF

• VIDIOC_DQBUF

• VIDIOC_STREAMON

• VIDIOC_STREAMOFF

• VIDIOC_G_CTRL

• VIDIOC_S_CTRL

• VIDIOC_CROPCAP

• VIDIOC_G_CROP

• VIDIOC_S_CROP

• VIDIOC_S_PARM

• VIDIOC_G_PARM

The V4L2 control code has been extended to provide support for rotation. For this use, the ID is

V4L2_CID_PRIVATE_BASE. Supported values include the following:

• 0—Normal operation

• 1—Vertical flip

• 2—Horizontal flip

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

11-6 Freescale Semiconductor

• 3—Horizontal and vertical flip

• 4—90° rotation

• 5—90° rotation and vertical flip

• 6—90° rotation and horizontal flip

• 7—90° rotation with horizontal and vertical flip

11.2.2 Use of the V4L2 Output APIs

This section describes a sample V4L2 capture process that uses the V4L2 output APIs. The application

completes the following steps:

1. Sets the capture pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation.

3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver creates a chain

of buffers (currently the maximum number of frames is 3).

4. Memory maps the buffer to its user space.

5. Executes the IOCTL VIDIOC_DQBUF.

6. Passes the data that requires post-processing to the buffer.

7. Queues the buffer using the IOCTL command VIDIOC_QBUF.

8. Starts the stream by executing IOCTL VIDIOC_STREAMON.

9. VIDIOC_STREAMON and VIDIOC_OVERLAY cannot be enabled simultaneously.

11.3 Source Code Structure

Table 11-1 lists the source and header files associated with the V4L2 drivers. These files are available in

the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc
.

Table 11-1. V2L2 Driver Files

File Description

capture/mxc_v4l2_capture.c V4L2 capture device driver

output/mxc_v4l2_output.c V4L2 output device driver

capture/mxc_v4l2_capture.h Header file for V4L2 capture device driver

output/mxc_v4l2_output.h Header file for V4L2 output device driver

capture/ipu_prp_enc.c Pre-processing encoder driver

capture/ipu_prp_vf_adc.c Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c Pre-processing view finder (synchronous background) driver

capture/ipu_still.c Pre-processing still image capture driver

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 11-7

Drivers for specific cameras can be found in

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/

11.4 Menu Configuration Options

The Linux kernel configuration options are provided in the chapter on the IPU module. See Section 10.4,

“Menu Configuration Options.”

11.5 V4L2 Programming Interface

For more information, see the V4L2 Specification and the API Documents for the programming interface.

The API Specification is available at http://v4l2spec.bytesex.org/spec/.

Video for Linux Two (V4L2) Driver

i.MX53 EVK Linux Reference Manual

11-8 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 12-1

Chapter 12
LVDS Display Bridge(LDB) Driver

This section describes the LVDS Display Bridge(LDB) driver which controls LDB module to connect with

external display devices with LVDS interface.

12.1 Hardware Operation

The purpose of the LDB is to support flow of synchronous RGB data from the IPU to external display

devices through LVDS interface. This support covers all aspects of these activities:

1) Connectivity to relevant devices - Displays with LVDS receivers.

2) Arranging the data as required by the external display receiver and by LVDS display standards.

3) Synchronization and control capabilities.

For the detailed information about LDB, see the .

12.2 Software Operation

The LDB driver will be functional if the driver is built-in and the user add ‘ldb’ option to boot-up command

line. Adding more options with ‘ldb=’ prefixed can configure the LDB when the device is probed,

including the LVDS channel mapping mode and bit mapping mode of LDB.

When the LDB device is probed properly, the driver will configure the LDB’s reference resistor mode and

LDB’s regulator by using platform data information. The LDB driver probe function will also try to match

video modes for external display devices with LVDS interface. The display signals’ polarities control bits

of LDB will be set according to the matched video modes, and, LVDS channel mapping mode and bit

mapping mode of LDB will be set according to the bootup LDB option chosen by user if there is any,

otherwise, an appropriate LDB setting will be chosen by the driver if the video mode can be found in local

video mode database. If no video mode is matched, nothing will be done in probe function and the user

can set up the LDB later by using ioctrls. LDB will be fully enabled in probe function if the driver finds

that one display device with LVDS interface is the primary display device.

The steps the driver takes to enable a LVDS channel are:

1. Set ldb_di_clk’s parent clk and the parent clk’s rate.

2. Set ldb_di_clk’s rate.

3. Enable both ldb_di_clk and its parent clk.

4. Set the LDB in a proper mode, including display signals’ polarities, LVDS channel mapping mode,

bit mapping mode, reference resistor mode.

5. Enable related LVDS channels.

LVDS Display Bridge(LDB) Driver

i.MX53 EVK Linux Reference Manual

12-2 Freescale Semiconductor

The LDB driver also defines several ioctrls. Each ioctrl controls a LDB unit setting so that users may set

LDB in various modes as they want.

12.3 Source Code Structure

The source code is available in

<ltib_dir>/rpm/BUILD/linux/

12.4 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options as build-in status to enable

this module:

Device Drivers -> Graphics support -> MXC Framebufer support -> Synchronous Panel

Framebuffer -> MXC LDB

12.5 Programming Interface

The APIs in the mxc_ldb_ioctl() function controls every other LDB unit setting. The user may call these

APIs to set LDB modes or enable/disable LDB.

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 13-1

Chapter 13
i.MX5 Dual Display

This section describes how to setup dual-display on i.MX53 EVK platform.

13.1 Hardware Operation

i.MX53 multimedia application processes incorporate the Image Processing Unit(IPUv3) hardware image

processing accelerator. There are two Display Interfaces(DI) within IPUv3, which provide connection to

external display devices and related devices. The external display devices can be a LCD display panel,

which connects with DI directly. The related devices may be embedded in chip or integrated on EVK

boards. i.MX53 chips embed the LVDS Display Birdge(LDB) module so that external display devices with

LVDS interfaces can be connected with the chips directly. TVE is not supported in i.MX53 chips now.

There is a connector on i.NX53 EVK platform which leads the legacy parallel signals of DI0 out so that a

LCD display panel can be connected to it directly or a connected DVI convertor can provide an interface

for a DVI monitor.

As there are two DIs within IPUv3, we can support dual-display feature, i.e., each of the two DIs can

support an externel display device simultanously. As long as the hardware bandwidth is not exceeded,

MX5 EVK platform can drive every possible dual-display feature provided the board design.

Table 8.1 shows all the external display devices can be connected with i.MX51 EVK platform and i.MX53

EVK platform:

For the detailed information about the external display devices on MX5 EVK platform, see the relevant

EVK board schematics.

13.2 Software Operation

The user should setup a correct bootup command line if he or she wants to enable dual-display feature. The

user may follow these steps to set the bootup command line for display related options:

Table 13-1.

EVK Platform DI Number External display device

i.MX53 0 1) DVI connector

2) CLAA WVGA display panel

3) LVDS display panel(driven by LDB)

1 1) LVDS display panel(driven by LDB)

i.MX5 Dual Display

i.MX53 EVK Linux Reference Manual

13-2 Freescale Semiconductor

1) Add ‘tve’ or ‘ldb’ to bootup command line if the use case involves TVE or LDB, otherwise, the options

should not be added.

2) Add ‘di1_primary’ to bootup command line if the device connected with DI1 is the primary device, i.e.,

/dev/fb0 will be mapped to this device after the system boots up. If the device connected with DI0 is the

primary device, no specific option is needed.

3) For each of the devices connected with DI, provide a specific video mode in bootup command line in

this format: video=mxcdixfb:DI_pixel_format, video_mode,bpp=bits_per_pixel_of_frame_buffer.

The ‘x’ stands for DI number.

The ‘DI_pixel_format’ stands for the output pixel format of the related DI. Usually, ‘RGB565’ is used for

CLAA WVGA LCD display panel, ‘RGB24’ is used for DVI monitor and VGA and ‘YUV444’ is used

for TVout.

The ‘bits_per_pixel_of_frame_buffer’ stands for the pixel format of the related framebuffer.

The ‘video_mode’ can be found here:

1) DVI connector and VGA: The video mode is in this format:

<xres>x<yres>[M][-<bpp>][@<refresh>

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string. If 'M' is present after

yres (and before refresh/bpp if present), the framebuffer driver will compute the timings using VESA(tm)

Coordinated Video Timings (CVT).

Note, if the dislplay resolution is 720P, then ‘720P60’ should be used as ‘video_mode’, and if the display

resolution is UXGA(only supported on i.MX53 EVK platform), then ‘UXGA’ should be used as

‘video_mode’.

2) LVDS display panel: Use ‘XGA’ for XGA LVDS display panel and use ‘1080P60’ for 1080P LVDS

display panel.

3) CLAA WVGA LCD display panel: Use ‘CLAA-WVGA’.

4) TV: Use ‘720P60’ for 720P TVout, use ‘TV-PAL’ for PAL TVout and use ‘TV-NTSC’ for NTSC TVout.

As the primary display device will be unblanked automatically after the system boots up but the secondary

is still blank, the user needs to unblank the secondary by himself or herself either with framebuffer ioctrls

or command line. Here is the command line the user may use on PDK to unblank the secondary display

device in an ordinary case:

echo 0 > /sys/class/graphics/fb1/blank

The user may also swith the primary display device and secondary display device by command lines on

PDK. For example, fb0 is the primary device’s framebuffer and fb1 is the secondary device’s framebuffer.

To switch the primary display device and secondary display device, the user may use these command lines:

1)echo 1 > /sys/class/graphics/fb0/blank

2)echo 1 > /sys/class/graphics/fb1/blank

3)echo 1 > /sys/class/graphics/fb2/blank

4)echo 1-layer-fb > /sys/class/graphics/fb0/fsl_disp_property

i.MX5 Dual Display

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 13-3

5)echo 0 > /sys/class/graphics/fb0/blank

6)echo 0 > /sys/class/graphics/fb1/blank

To switch them back, ther user may use these command lines:

1)echo 1 > /sys/class/graphics/fb0/blank

2)echo 1 > /sys/class/graphics/fb1/blank

3)echo 1 > /sys/class/graphics/fb2/blank

4)echo 1-layer-fb > /sys/class/graphics/fb1/fsl_disp_property

5)echo 0 > /sys/class/graphics/fb0/blank

6)echo 0 > /sys/class/graphics/fb1/blank

13.3 Examples

Examples for i.MX53 EVK platform:

1) DI0:CLAA-WVGA LCD display panel, DI1:XGA LVDS display panel(primary)

video=mxcdi0fb:RGB565,CLAA-WVGA video=mxcdi1fb:RGB24,XGA di1_primary ldb

2) DI0: XGA DVI monitor(primary) DI1:XGA LVDS display panel

video=mxcdi0fb:RGB24,1024x768M-16@60 video=mxcdi1fb:RGB24,XGA ldb

i.MX5 Dual Display

i.MX53 EVK Linux Reference Manual

13-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 14-1

Chapter 14
Video Processing Unit (VPU) Driver

14.1 Hardware Operation

The VPU hardware performs all of the codec computation and most of the bitstream parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex and efficient

multimedia codec system.

Video Processing Unit (VPU) Driver

i.MX53 EVK Linux Reference Manual

14-2 Freescale Semiconductor

The VPU hardware data flow is shown in the MPEG4 decoder example in Figure 14-1.

Figure 14-1. VPU Hardware Data Flow

14.2 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space library as well as the

application in user space. The kernel driver takes responsibility for system control and reserving resources

(memory/IRQ). It provides an IOCTL interface for the application layer in user-space as a path to access

system resources. The application in user-space calls related IOCTLs and codec library functions to

implement a complex codec system.

Start

 Bit Code Download

 Set Initial Parameters

 Bit Run Start

BusyFlag = 0?

Set SEQ_INIT Parameters

SEQ_INIT Command
RunIndex = 0

RunCodStd = 0 (MP4_DEC)

RunCommand = 1

BusyFlag = 0?

Read Return Parameters

 Set PIC_RUN Parameters

PIC_RUN Command
RunIndex = 0

RunCodStd = 0

RunCommand = 3

BusyFlag = 0?

Check Return Status

SEQ_END Command
RunIndex = 0

RunCodStd = 0

RunCommand = 2

BusyFlag = 0?

 End

Y Y

Y
Y

N

N

N

N

Video Processing Unit (VPU) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 14-3

The VPU kernel driver include the following functions:

• Module initialization—Initializes the module with the device specific structure

• Device initialization—Initializes the VPU clock and hardware, and request the IRQ

• Interrupt servicing routine—Supports events that one frame has been finished

• File operation routines— Provides the following interfaces to user space

— File open

— File release

— File synchronization

— File IOCTL to provide interface for memory allocating and releasing

— Memory map for register and memory accessing in user space

• Device Shutdown—Shutdowns the VPU clock and hardware, and release the IRQ

The VPU user space driver has the following functions:

• Codec lib

— Downloads executable bitcode for hardware

— Initializes codec system

— Sets codec system configuration

— Controls codec system by command

— Reports codec status and result

• System I/O operation

— Requests and frees memory

— Maps and unmaps memory/register to user space

— Device management

14.3 Source Code Structure

 Table 14-1 lists the kernel space source files available in the following directories:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/vpu/

Table 14-1. VPU Driver Files

File Description

mxc_vpu.h Header file defining IOCTLs and memory structures

mxc_vpu.c Device management and file operation interface implementation

Video Processing Unit (VPU) Driver

i.MX53 EVK Linux Reference Manual

14-4 Freescale Semiconductor

Table 14-2 lists the user-space library source files available in the

<ltib_dir>/rpm/BUILD/imx-lib-10.10.01/vpu directory:

Table 14-3 lists the firmware files available in the following directories:

<ltib_dir>/rpm/BUILD/firmware-imx-10.10.01/lib/firmware/vpu/ directory

NOTE

To get the to files in Table 14-2, run the command: ./ltib -m prep -p

imx-lib in the console

14.4 Menu Configuration Options

To get to the VPU driver, use the command ./ltib -c when located in the <ltib dir>. On the screen

displayed, select Configure the kernel and exit. When the next screen appears select the following options

to enable the VPU driver:

• CONFIG_MXC_VPU—Provided for the VPU driver. In menuconfig, this option is available

under

Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit) support

14.5 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the application layer

cannot access the kernel driver interface directly. The VPU library access the kernel driver interface for

users.

The codec library APIs are listed below:

RetCode vpu_EncOpen(EncHandle* pHandle, EncOpenParam* pop);

RetCode vpu_EncClose(EncHandle encHandle);

RetCode vpu_EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);

RetCode vpu_EncRegisterFrameBuffer(EncHandle encHandle, FrameBuffer* pBuffer, int num,

Table 14-2. VPU Library Files

File Description

vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory

vpu_io.h Header file for IOCTLs

vpu_lib.c Core codec implementation in user space

vpu_lib.h Header file of the codec

vpu_reg.h Register definition of VPU

vpu_util.c File implementing common utilities used by the codec

vpu_util.h Header file

Table 14-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

Video Processing Unit (VPU) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 14-5

int stride);

RetCode vpu_EncGetBitstreamBuffer(EncHandle handle, PhysicalAddress* prdPrt,

PhysicalAddress* pwrPtr, Uint32* size);

RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);

RetCode vpu_EncStartOneFrame(EncHandle encHandle, EncParam* pParam);

RetCode vpu_EncGetOutputInfo(EncHandle encHandle, EncOutputInfo* info);

RetCode vpu_EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam);

RetCode vpu_DecOpen(DecHandle* pHandle, DecOpenParam* pop);

RetCode vpu_DecClose(DecHandle decHandle);

RetCode vpu_DecGetBitstreamBuffer(DecHandle pHandle, PhysicalAddress* pRdptr,

PhysicalAddress* pWrptr, Uint32* size);

RetCode vpu_DecUpdateBitstreamBuffer(DecHandle decHandle, Uint32 size);

RetCode vpu_DecSetEscSeqInit(DecHandle pHandle, int escape);

RetCode vpu_DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);

RetCode vpu_DecRegisterFrameBuffer(DecHandle decHandle, FrameBuffer* pBuffer, int num,

int stride, DecBufInfo* pBufInfo);

RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam* param);

RetCode vpu_DecGetOutputInfo(DecHandle decHandle, DecOutputInfo* info);

RetCode vpu_DecBitBufferFlush(DecHandle handle);

RetCode vpu_DecClrDispFlag(DecHandle handle, int index);

RetCode vpu_DecGiveCommand(DecHandle pHandle, CodecCommand cmd, void* pParam);

int vpu_WaitForInt(int timeout_in_ms);

RetCode vpu_SWReset(DecHandle handle, int index);

System I/O operations are listed below:

int IOSystemInit(void);

int IOSystemShutdown(void);

int IOGetPhyMem(vpu_mem_desc* buff);

int IOFreePhyMem(vpu_mem_desc* buff);

int IOGetVirtMem (vpu_mem_desc* buff);

int IOFreeVirtMem(vpu_mem_desc* buff);

14.6 Defining an Application

The most important definition for an application is the codec memory descriptor. It is used for request,

free, mmap and munmap memory as follows:

typedef struct vpu_mem_desc

{

int size; /*request memory size*/

unsigned long phy_addr; /*physical memory get from system*/

unsigned long cpu_addr; /*address for system usage while freeing, user doesn't need

to handle or use it*/

unsigned long virt_uaddr; /*virtual user space address*/

} vpu_mem_desc;

Video Processing Unit (VPU) Driver

i.MX53 EVK Linux Reference Manual

14-6 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Graphics Processing Unit (GPU)

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D graphics

applications. The GPU3D (3D graphics processing unit) is based on the AMD Z430 core, which is an

embedded engine that accelerates user level graphics APIs (Application Programming Interface) such as

OpenGL ES 1.1 and 2.0. The GPU2D (2D graphics processing unit) is based on the AMD Z160 core,

which is an embedded 2D and vector graphics accelerator targeting the OpenVG 1.1 graphics API and

feature set. The GPU driver kernel module source is in kernel source tree, but the libs are delivered as

binary only.

15.1 Driver Features

The GPU driver enables this board to provide the following software and hardware support:

• EGL (EGL™ is an interface between Khronos rendering APIs such as OpenGL ES or OpenVG

and the underlying native platform window system) 1.3 API defined by Khronos Group

• OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D and 3D

graphics on embedded systems) 1.1 API defined by Khronos Group

• OpenGL ES 2.0 API defined by Khronos Group

• OpenVG (OpenVG™ is a royalty-free, cross-platform API that provides a low-level hardware

acceleration interface for vector graphics libraries such as Flash and SVG) 1.1 API defined by

Khronos Group

15.2 Hardware Operation

Refer to the GPU chapter in the MCIMX51 Multimedia Applications Processor Reference Manual

(MCIMX51RM) for detailed hardware operation and programming information.

15.3 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and acts as the base

driver for the whole stack . This layer provides the essential hardware access, device management,

memory management, command stream management, context management and power management. The

second layer is running in user mode, implementing the stack logic and providing the following APIs to

the upper layer applications:

• OpenGL ES 1.1 and 2.0 API

• EGL 1.3 API

• OpenVG 1.1 API

Graphics Processing Unit (GPU)

i.MX53 EVK Linux Reference Manual

15-2 Freescale Semiconductor

15.4 Source Code Structure

Table 15-1 lists GPU driver kernel module source structure:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/amd-gpu

15.5 API References

Refer to the following web sites for detailed specifications:

• OpenGL ES 1.1 and 2.0 API: http://www.khronos.org/opengles/

• EGL 1.3 API: http://www.khronos.org/egl/

• OpenVG 1.1 API: http://www.khronos.org/openvg/

15.6 Menu Configuration Options

The following Linux kernel configurations are provided for GPU driver:

• CONFIG_MXC_AMD_GPU —Configuration option for GPU driver. In the menuconfig this

option is available under Device Drivers > MXC support drivers > MXC GPU support > MXC

GPU support.

To get to the GPU library package in LTIB, use the command ./ltib -c when located in the <ltib dir>.

On the screen displayed, select Configure the kernel and select “Device Drivers” > “MXC support

drivers” > “MXC GPU support” > “MXC GPU support”and exit. When the next screen appears select the

following options to enable the GPU driver:

• Package list > amd-gpu-bin-mx51

This package provides proprietary binary kernel modules, libraries, and test code built from the

GPU for framebuffer

• Package list > amd-gpu-x11-bin-mx51

This package provides proprietary binary kernel modules, libraries, and test code built from the

GPU for X-Window

Table 15-1. GPU Driver Files

File Description

 Kconfig Makefile kernel configure file and makefile

include header files

common common and core code

os os specific code

platform platform specific code

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 16-1

Chapter 16
TV Decoder (TV-In) Driver

The ADV7180 is a versatile one-chip multi-format video decoder that automatically detects and converts

PAL, NTSC, and SECAM standards in the form of composite, S-video, and component video into a digital

ITU-R BT.656 format.

The TV-In driver is located under the Linux V4L2 architecture. It is based on the V4L2 capture interface.

Applications cannot use the TV-In driver directly; instead, the applications use the V4L2 capture driver to

open and close the TV-In for starting the video preview.

16.1 Hardware Operation

The ADV7180 is programmed through a 2-wire, serial, bidirectional port (I2C compatible). It works as an

I2C client and the IPU does not control the TV-In chip. The function has to be performed by the MCU

through the I2C interface and GPIO pins connected to the TV-In decoder chip. The ADV7180 output

digital signal format is ITU-R BT.656. This video protocol uses an embedded timing syntax to replace the

VSYNC and HSYNC signals.

Refer to the analog device ADV7180 datasheet to get more information for the video decoder. Refer to the

datasheet of the platform to get more information of CSI and IPU.

16.2 Software Operation

The TV-In driver implements the V4L2 capture interface and applications use V4L2 capture interface to

operate the TV-In chip.

16.3 Source Code Structure Configuration

Table 16-1 describes the source files associated with the TVIN driver, which are available in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

.

16.4 Linux Menu Configuration Options

The Linux kernel provides the configuration option for the TV-In driver. In the menuconfig, this option is

available under

Table 16-1. TV-In Driver Source File

File Description

adv7180.c Source file for TV-In driver

TV Decoder (TV-In) Driver

i.MX53 EVK Linux Reference Manual

16-2 Freescale Semiconductor

Device Drivers > Multimedia device > Video Capture Adapters > MXC Camera/V4L2 PRP Features

support.

This option is dependent on the CONFIG_MXC_TVIN_ADV7180 option. By default, this option is M.

NOTE

The TV-In and Camera share the same CSI hardware interface; therefore,

the TV-In and Camera modules cannot be built-in into the kernel at the same

time.

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

This section describes the ASoC driver architecture and implementation. The ASoC architecture is

imported to provide a better solution for ALSA kernel drivers. ASoC aims to divide the ALSA kernel

driver into machine, platform (CPU), and audio codec components. Any modifications to one component

do not impact another components. The machine layer registers the platform and the audio codec device,

and sets up the connection between the platform and the audio codec according to the link interface, which

is supported both by the platform and the audio codec. More detailed information about ASoC can be

found at http://www.alsa-project.org/main/index.php/ASoC.

Figure 17-1. ALSA SoC Software Architecture

The ALSA SoC driver has the following components as shown in Figure 17-1:

• Machine driver—handles any machine specific controls and audio events, such as turning on an

external amp at the beginning of playback.

• Platform driver—contains the audio DMA engine and audio interface drivers (for example, I2S,

AC97, PCM) for that platform.

• Codec driver—platform independent and contains audio controls, audio interface capabilities, the

codec DAPM definition, and codec I/O functions.

17.1 SoC Sound Card

Currently, the stereo codec (sgtl5000), 5.1 codec (wm8580), 4-channel ADC codec (ak5702), 7.1

codec(cs42888), built-in ADC/DAC codec, and Bluetooth codec drivers are implemented using SoC

architecture. The five sound card drivers are built in independently. The stereo sound card supports stereo

playback and mono capture. The 5.1 sound card supports up to six channels of audio playback. The

4-channel sound card supports up to four channels of audio record. The Bluetooth sound card supports

Machine (board)

Platform

(cpu)

Codec DAI link

S
o

c-co
re.c Cpu

DA

I

Codec

DAI I

http://www.alsa-project.org/main/index.php/ASoC

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

17-2 Freescale Semiconductor

Bluetooth PCM playback and record with Bluetooth devices. The built-in ADC/DAC codec supports

stereo playback and record.

NOTE

The Stereo Codec and multiple-channel codec are supported on i.MX53

platform.

Only the Stereo Codec is supported on the i.MX50 platform.

17.1.1 Stereo Codec Features

The stereo codec supports the following features:

• Sample rates for playback and capture are 32 KHz, 44.1 KHz, 48 KHz, and 96 KHz

• Channels:

— Playback: supports two channels. (stereo)

— Capture: supports two channels. (Only one channel has valid voice data due to hardware

connection)

• Audio formats:

— Playback:

– SNDRV_PCM_FMTBIT_S16_LE

– SNDRV_PCM_FMTBIT_S20_3LE

– SNDRV_PCM_FMTBIT_S24_LE

— Capture:

– SNDRV_PCM_FMTBIT_S16_LE

– SNDRV_PCM_FMTBIT_S20_3LE

– SNDRV_PCM_FMTBIT_S24_LE

17.1.2 Multi-channel Codec Feature

• Sample rates for playback and capture are 44.1kHz, 88.2kHz and 176.4kHz, as there is only a

22.579MHz Osc on the board. If playback the multiple of 48kHz bit streams, the ALSA plugin is

needed to convert the sample rate.

• Channels:

— Playback: supports 6 channels. (5.1)

— Capture: supports 4 channels.

• Audio formats:

— Playback:

– SNDRV_PCM_FMTBIT_S16_LE

– SNDRV_PCM_FMTBIT_S24_LE

— Capture

– SNDRV_PCM_FMTBIT_S16_LE

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 17-3

– SNDRV_PCM_FMTBIT_S24_LE

17.1.3 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay -l and arecord

-l.

root@freescale /$ aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: imx3stack_1 [imx-3stack], device 0: cs42888 cs42888-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

root@freescale /$ arecord -l

**** List of CAPTURE Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []

 Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: imx3stack_1 [imx-3stack], device 0: cs42888 cs42888-0 []

 Subdevices: 1/1

Subdevice #0: subdevice #0

17.2 ASoC Driver Source Architecture

As shown in Figure 17-1, imx-pcm.c is shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC driver

and the Bluetooth codec driver. This file is responsible for preallocating DMA buffers and managing DMA

channels.

The stereo codec is connected to the CPU through the SSI interface. imx-ssi.c registers the CPU DAI

driver for the stereo ALSA SoC and configures the on-chip SSI interface. sgtl5000.c registers the stereo

codec and hifi DAI drivers. The direct hardware operations on the stereo codec are in sgtl5000.c.

imx-3stack-sgtl5000.c is the machine layer code which creates the driver device and registers the stereo

sound card.

The multi-channel codec is connected to the CPU through the ESAI interface. imx-esai.c registers the

CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI interface. cs42888.c registers

the multi-channel codec and hifi DAI drivers. The direct hardware operations on the multi-channel codec

are in cs42888.c. imx-3stack-cs42888.c is the machine layer code which creates the driver device and

registers the stereo sound card.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

17-4 Freescale Semiconductor

Figure 17-2 shows the ALSA SoC source file relationship.

Figure 17-2. ALSA Soc Source FIle Relationship

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 17-5

Table 17-1 shows the stereo codec SoC driver source files. These files are under the

<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 17-2 shows the multiple-channel ADC SoC driver source files. These files are also under the

<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

17.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. Select Configure the Kernel on the screen

displayed and exit. When the next screen appears, select the following options to enable this module:

• SoC Audio support for i.MX SGTL5000. In menuconfig, this option is available under

Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC

audio support > SoC Audio for the Freescale i.MX CPU

• CONFIG_SND_MXC_SOC_IRAM: This config is used to allow audio DMA playback buffers in

IRAM. In menuconfig, this option is available under

Table 17-1. Stereo Codec SoC Driver Files

File Description

imx/imx-3stack-sgtl5000.c Machine layer for stereo codec ALSA SoC

imx/imx-pcm.c Platform layer for stereo codec ALSA SoC

imx/imx-pcm.h Header file for PCM driver and AUDMUX register definitions

imx/imx-ssi.c Platform DAI link for stereo codec ALSA SoC

imx/imx-ssi.h Header file for platform DAI link and SSI register definitions

imx/imx-ac97.c AC97 driver for i.MX chips

codecs/sgtl5000.c Codec layer for stereo codec ALSA SoC

codecs/sgtl5000.h Header file for stereo codec driver

Table 17-2. CS42888 ASoC Driver Source File

File Description

imx-3stack-cs42888.c Machine layer for mutliple-channel ADC ALSA SoC

imx/imx-pcm.c Platform layer for mutliple-channel ADC ALSA SoC

imx/imx-pcm.h Header file for pcm driver

imx/imx-esai.c Platform DAI link for mutliple-channel ADC ALSA

SoC

imx/imx-esai.h Header file for platform DAI link

codecs/cs42888.c codec layer for mutliple-channel ADC ALSA SoC

codecs/cs42888.j Header file for mutliple-channel ADC driver

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

17-6 Freescale Semiconductor

Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC

audio support > Locate Audio DMA playback buffers in IRAM

• SoC Audio supports for i.MX cs42888. In menuconfig, this is option is available under Device

drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC audio

support > SoC Audio support for IMX - CS42888

• CONFIG_MXC_SSI_DUAL_FIFO: This config is used to enable 2 ssi fifo for audio transfer. In

menuconfig, this is option is avaiable under Device drivers > Sound card support > Advanced

Linux Sound Architecture > ALSA for SoC audio support > MXC SSI enable dual fifo.

17.4 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

MX53 EVK boards need re-work, due to the conflict between the FEC PHY and ESAI.

17.4.1 Stereo Audio Codec

The stereo audio codec is controlled by the I2C interface. The audio data is transferred from the user data

buffer to/from the SSI FIFO through the DMA channel. The DMA channel is selected according to the

audio sample bits. AUDMUX is used to set up the path between the SSI port and the output port which

connects with the codec. The codec works in master mode and provides the BCLK and LRCLK. The

BCLK and LRCLK can be configured according to the audio sample rate.

The SGTL5000 ASoC codec driver exports the audio record/playback/mixer APIs according to the ASoC

architecture. The ALSA related audio function and the FM loopback function cannot be performed

simultaneously.

The codec driver is generic and hardware independent code that configures the codec to provide audio

capture and playback. It does not contains code that is specific to the target platform or machine. The codec

driver handles:

• Codec DAI and PCM configuration

• Codec control I/O—using I2C

• Mixers and audio controls

• Codec audio operations

• DAC Digital mute control

The SGTL5000 codec is registered as an I2C client when the module initializes. The APIs are exported to

the upper layer by the structure snd_soc_dai_ops. The io_probe routine initializes the codec hardware to

the desired state.

Headphone insertion/removal can be detected through a MCU interrupt signal. The driver reports the event

to user space through sysfs.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 17-7

17.5 Software Operation

The following sections describe the hardware operation of the ASoC driver.

17.5.1 Sound Card Registration

The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver, and their operation functions

2. The platform driver registers the PCM driver, CPU DAI driver and their operation functions,

preallocates buffers for PCM components and sets playback and capture operations as applicable

3. The machine layer creates the DAI link between codec and CPU registers the sound card and PCM

devices

17.5.2 Device Open

The ALSA driver:

• Allocates a free substream for the operation to be performed

• Opens the low level hardware device

• Assigns the hardware capabilities to ALSA runtime information. (the runtime structure contains all

the hardware, DMA, and software capabilities of an opened substream)

• Configures DMA read or write channel for operation

• Configures CPU DAI and codec DAI interface.

• Configures codec hardware

• Triggers the transfer

After triggering for the first time, the subsequent DMA read/write operations are configured by the DMA

callback.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX53 EVK Linux Reference Manual

17-8 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 18-1

Chapter 18
The Sony/Philips Digital Interface (S/PDIF) Tx Driver

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that allows the processor

to receive and transmit digital audio. The S/PDIF transceiver allows the handling of both S/PDIF channel

status (CS) and User (U) data and includes a frequency measurement block that allows the precise

measurement of an incoming sampling frequency.

18.1 S/PDIF Overview

Figure 18-1 shows the block diagram of the S/PDIF interface.

Figure 18-1. S/PDIF Transceiver Data Interface Block Diagram

The Sony/Philips Digital Interface (S/PDIF) Tx Driver

i.MX53 EVK Linux Reference Manual

18-2 Freescale Semiconductor

18.1.1 Hardware Overview

The S/PDIF is composed of two parts:

• The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the data in the

S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are also extracted from each

frame and placed in the corresponding registers. The S/PDIF receiver provides a bypass option for

direct transfer of the S/PDIF input signal to the S/PDIF transmitter.

• For the S/PDIF transmitter, the audio data is provided by the processor through the SPDIFTxLeft

and SPDIFTxRight registers. The Channel Status bits are provided through the corresponding

registers. The S/PDIF transmitter generates a S/PDIF output bitstream in the biphase mark format

(IEC958), which consists of audio data, channel status and user bits.

In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of the S/PDIF

Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF internal clock generate module and

the sources are from outside of the S/PDIF block. For the S/PDIF receiver, it can recover the S/PDIF Rx

clock. Figure 18-1 shows the clock structure of the S/PDIF transceiver. MX53 supports S/PDIF Rx and

Tx. But MX53 EVK board can only support S/PDIF Tx.

18.1.2 Software Overview

The S/PDIF driver is designed under Linux ALSA subsystem. It provides hardware access ability to

support the ALSA driver. The ALSA driver for S/PDIF provides one playback device for Tx and one

capture device for Rx. The playback output audio format can be linear PCM data or compressed data with

16-bit default, up to 24-bit expandable support and the allowed sampling bit rates are 44.1, 48 or 32 KHz.

The capture input audio format can be linear PCM data or compressed data with 16-bit or 24-bit and the

allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface for PCM and

compressed data transmission.

18.2 S/PDIF Tx Driver

The S/PDIF Tx driver supports the following features:

• 32, 44.1 and 48 KHz sample rates. MX53 EVK only support 44.1KHZ sample rate. To support 48K

and 32KHZ sample rate require to connect 24.576MHZ OSC to CKIH2.

• Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the 24-bit output

sample file must have 32-bits in one channel per frame, and only the 24 LSBs are valid

In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

• Two channels

• Driver installation and information query

By default, the driver is built as a kernel module, run modprobe to install it:

#modprobe snd-spdif

After the module had been installed, the S/PDIF ALSA driver information can be exported to user

by /sys and /proc file system

— Get card ID and name

For example:

The Sony/Philips Digital Interface (S/PDIF) Tx Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 18-3

#cat /proc/asound/cards

0 [imx3stack]: SGTL5000 - imx-3stack

imx_3stack (SGTL5000)

1 [TXRX]: MXC_SPDIF - MXC SPDIF TX/RX

MXC Freescale with SPDIF

The number at the beginning of the MXC_SPDIF line is the card ID. The string in the square

brackets is the card name

— Get Playback PCM device info

#cat /proc/asound/TXRX/pcm[card id]p/info

• Software operation

The ALSA utility provides a common method for user spaces to operate and use ALSA drivers

#aplay -D "hw:2,0" -t wav audio.wav

NOTE

The -D parameter of aplay indicates the PCM device with card ID and PCM

device ID: hw:[card id],[pcm device id]

18.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers should be initialized.

Clock settings are the same for specific hardware connections. During S/PDIF playback, the channel status

bits are fixed. The resync, underrun/overrun, empty interrupt and DMA transmit request should be

enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel respectively. When both FIFOs are

empty, an empty interrupt is generated if the empty interrupt is enabled. If no data are refilled in the 20.8 µs

(1/48000), an underrun interrupt is generated. Overrun is avoided if only 16 sample FIFOs are filled for

each channel every time. If auto re-synchronization is enabled, the hardware checks if the left and right

FIFO are in sync, and if not, it sets the filling pointer of the right FIFO to be equal to the filling pointer of

the left FIFO and an interrupt is generated.

18.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the user besides the

common PCM operations interface. It provides the interface for the user to write S/PDIF channel status

codes into the driver so they can be sent in the S/PDIF stream. The input parameter of this interface is the

IEC958 digital audio structure shown below, and only status member is used:

struct snd_aes_iec958 {

unsigned char status[24]; /* AES/IEC958 channel status bits */

unsigned char subcode[147]; /* AES/IEC958 subcode bits */

unsigned char pad; /* nothing */

unsigned char dig_subframe[4]; /* AES/IEC958 subframe bits */

};

•

The Sony/Philips Digital Interface (S/PDIF) Tx Driver

i.MX53 EVK Linux Reference Manual

18-4 Freescale Semiconductor

18.3 Source Code Structure

Table 18-1 lists the source file that is available in the directory:

<ltib_dir>/rpm/BUILD/linux/sound/arm/.

18.4 Menu Configuration Options

The following Linux kernel configurations are provided for this module:

• CONFIG_SND—Configuration option for the Advanced Linux Sound Architecture (ALSA)

subsystem. This option is dependent on CONFIG_SOUND option. In the menuconfig this option

is available under

Device Drivers > Sound card support > Advanced Linux Sound Architecture

By default, this option is Y.

• CONFIG_SND_MXC_SPDIF—Configuration option for the S/PDIF driver. This option is

dependent on CONFIG_SND option. In the menuconfig this option is available under

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ARM sound

devices > MXC SPDIF sound card support

By default, this option is M.

Table 18-1. S/PDIF Driver Files

File Description

mxc-alsa-spdif.c Source file for S/PDIF ALSA driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 19-1

Chapter 19
SPI NOR Flash Memory Technology Device (MTD) Driver

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to the Atmel data

Flash though the SPI interface. By default, the SPI NOR Flash MTD driver creates static MTD partitions

to support Atmel data Flash. If RedBoot partitions exist, they have higher priority than static partitions,

and the MTD partitions can be created from the RedBoot partitions.

19.1 Hardware Operation

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The AT45DB321D serial

interface is SPI compatible for frequencies up to 66 MHz. The memory is organized as 8,192 pages of

512 bytes or 528 bytes. The AT45DB321D also contains two SRAM buffers of 512/528 bytes each which

allow receiving of data while a page in the main memory is being reprogrammed, as well as writing a

continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the AT45DB321D accesses data

sequentially. The AT45DB321D operates from a single 2.7–3.6 V power supply for program and read

operations. The AT45DB321D is enabled through a chip select pin and accessed through a three-wire

interface: Serial Input, Serial Output, and Serial Clock.

19.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a

file system. Figure 19-1 illustrates the relationships between some of the standard components.

Figure 19-1. Components of a Flash-Based File System

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash and RAM,

providing simple read, write and erase access to physical memory devices. Devices called mtdblock

SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 EVK Linux Reference Manual

19-2 Freescale Semiconductor

devices can be mounted by JFFS, JFFS2 and CRAMFS file systems. The SPI NOR MTD driver is based

on the MTD data Flash driver in the kernel by adding SPI access. In the initialization phase, the SPI NOR

MTD driver detects a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI

NOR MTD driver also provides the interfaces to read, write, erase NOR Flash.

19.3 Driver Features

This NOR MTD implementation supports the following features:

• Provides necessary information for the upper layer MTD driver

19.4 Source Code Structure

The SPI NOR MTD driver is implemented in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/

Table 19-1 shows the driver files:

19.5 Menu Configuration Options

To get to the SPI NOR MTD driver, use the command ./ltib -c when located in the <ltib dir>. On the

screen displayed, select Configure the kernel and exit. When the next screen appears select the following

options to enable the SPI NOR MTD driver:

• CONFIG_MTD_MXC_DATAFLASH: This config enables the access to AT DataFlash chips,

using FSL SPI. In menuconfig, this option is available under

Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD device

drivers > Support for AT DataFlash via FSL SPI interface

Table 19-1. SPI NOR MTD Driver Files

File Description

mxc_dataflash.c Source file

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 20-1

Chapter 20
NAND Flash Memory Technology Device (MTD) Driver

20.1 Overview

The NAND Flash MTD driver is for the NAND Flash Controller (NFC) on the i.MX series processor. For

the NAND MTD driver to work, only the hardware specific layer has to be implemented. The rest of the

functionality, such as Flash read/write/erase, is automatically handled by the generic layer provided by the

Linux MTD subsystem for NAND devices.

20.1.1 Hardware Operation

NAND Flash is a non-volatile storage device used for embedded systems. It does not support random

access of memory as in the case of RAM or NOR Flash. Reading or writing to NAND Flash has to be

through the NFC in the i.MX processors. It uses a multiplexed I/O interface with some additional control

pins. It is a sequential access device appropriate for mass storage applications. Code stored on NAND

Flash cannot be executed from the NAND Flash. It must be loaded into RAM memory and executed from

there.

The NFC in the i.MX processors implements the interface to standard NAND Flash devices. It provides

access to both 8-bit and 16-bit NAND Flash. The NAND Flash Control block of the NFC generates all the

control signals that control the NAND Flash. The NFC hardware versions vary across i.MX platforms.

20.1.2 Software Operation

The Linux MTD covers all memory devices, such as RAM, ROM, and different kinds of NOR and NAND

Flash devices. The MTD subsystem provides a unified and uniform access to the various memory devices.

There are three layers of NAND MTD drivers:

• MTD driver

• Generic NAND driver

• Hardware specific driver

The MTD driver provides a mount point for the file system. It can support various file systems, such as

YAFFS2, UBIFS, CRAMFS and JFFS2.

The hardware specific driver interfaces with the integrated NFC on the i.MX processors. It implements the

lowest level operations on the external NAND Flash chip, such as read and write. It defines the static

partitions and registers it to the kernel. This partition information is used by the upper filesystem layer. It

initializes the nand_chip structure to be used by the generic layer.

NAND Flash Memory Technology Device (MTD) Driver

i.MX53 EVK Linux Reference Manual

20-2 Freescale Semiconductor

The generic layer provides all functions, which are necessary to identify, read, write and erase NAND

Flash. It supports bad block management, because blocks in a NAND Flash are not guaranteed to be good.

The upper layer of the file system uses this feature of bad block management to manage the data on the

NAND Flash. NAND MTD driver is part of the kernel image. For detailed information on the NAND

MTD driver architecture and the NAND API documentation refer to http://www.linux-mtd.infradead.org/.

20.2 Requirements

This NAND Flash MTD driver implementation meets the following requirements:

• Provides necessary hardware-specific information to the generic layer of the NAND MTD driver

• Provides software Error Correction Code (ECC) support

• Supports both 16-bit and 8-bit NAND Flash

• Conforms to the Linux coding standard

20.3 Source Code Structure

Table 20-1 shows the source files available for the NAND MTD driver. These files are under the

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/nand directory.

20.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

The following options are available under Device Driver > Memory Technology Device (MTD) support >

NAND Device Support > MXC NAND Version 3 support.

20.5 Programming Interface

The generic NAND driver nand_base.c provides all functions that are necessary to identify, read, write,

and erase NAND Flash. The hardware-dependent functions are provided by the hardware driver

mxc_nd.c/mxc_nd2.c depending on the NFC version. It mainly provides the hardware access information

and functions for the generic NAND driver. Refer to the API documents for the programming interface.

http://www.linux-mtd.infradead.org/

i.MX53 EVK Linux Reference Manual, Rev.10.10.01

Freescale Semiconductor 21-1

Chapter 21
SATA Driver

21.1 Hardware Operation

The detailed hardware operation of SATA is detailed in the Synopsys DesignWare Cores SATA AHCI

documentation, named SATA_Data_Book.pdf.

21.2 Software Operation

The details about the libata APIs, see the libATA Developer’s Guide named libata.pdf pulished by Jeff

Gazik.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure of the Linux

kernel . FSL integrated AHCI linux driver combined the standard AHCI drivers handle the details of the

integrated freescale’s SATA AHCI controller, while the LIBATA layer understands and executes the SATA

protocols. The SATAdevice, such as a hard disk, is exposed to the application in user space by the

/dev/sda* interface. Filesystems are built upon the block device. The AHCI specified integrated DMA

engine, which assists the SATA controller hardware in the DMA transfer modes.

21.3 Source Code Structure Configuration

The source codes of freescale’s AHCI sata driver is integrated into the i.MX53 platform related files.

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx53_evk.c.

The standard AHCI and AHCI platform drivers are used to do the actual sata operations.

The source codes of the standard AHCI and AHCI platform drivers are located in drivers/ata/ folder,

named as ahci.c and ahci-platform.c.

21.4 Linux Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

• CONFIG_SATA_AHCI_PLATFORM: Configure options for SATA driver. In the menuconfig this

option is available under "Device Drivers --->Serial ATA (prod) and Parallel ATA (experimental)

drivers -> Platform AHCI SATA support”.

In busybox, enable "fdisk" under "Linux System Utilities".

21.5 Board Configuration Options

With the power off, install the SATA cable and hard drive.

SATA Driver

i.MX53 EVK Linux Reference Manual, Rev.10.10.01

21-2 Freescale Semiconductor

21.6 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for example: open,

close, read, write, and ioctl) on /dev/sda*.

21.7 Usage Example

NOTE

There would be a known error message when the SATA disk is initialized,

such as:

ata1.00: serial number mismatch '090311PB0300QKG3TB1A' != ''

ata1.00: revalidation failed (errno=-19)

pls ignore that.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target, and log in as

root.

2. Make sure that the AHCI and AHCI paltform drivers are built in kernel or loaded into kernel. Use

the following commands to load the drivers into kernel.

insmod libata.ko

insmod libahci.ko

insmod ahci-platform.ko

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci.0: AHCI 0001.0100 32 slots 1 ports 3 Gbps 0x1 impl platform mode

ahci ahci.0: flags: ncq sntf stag pm led clo only pmp pio slum part ccc

scsi0 : ahci

ata1: SATA max UDMA/133 irq_stat 0x00000040, connection status changed irq 28

ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300)

ata1.00: ATA-8: Hitachi HTS545032B9A300, PB3OC60G, max UDMA/133

ata1.00: 625142448 sectors, multi 0: LBA48 NCQ (depth 31/32)

ata1.00: serial number mismatch '090311PB0300QKG3TB1A' != ''

ata1.00: revalidation failed (errno=-19)

ata1: limiting SATA link speed to 1.5 Gbps

ata1.00: limiting speed to UDMA/133:PIO3

ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310)

ata1.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA Hitachi HTS54503 PB3O PQ: 0 ANSI: 5

sd 0:0:0:0: [sda] 625142448 512-byte logical blocks: (320 GB/298 GiB)

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or

FUA

 sda: sda1 sda2 sda3

sd 0:0:0:0: [sda] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for example: fdisk

and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to check basic

kernel settings for the drive, execute hdparm /dev/sda.

SATA Driver

i.MX53 EVK Linux Reference Manual, Rev.10.10.01

Freescale Semiconductor 21-3

21.8 Usage Example

Create Partitons

The following command can be used to find out the capacities of the hard disk. If the hard disk is

pre-formatted, this command shows the size of the hard disk, partitions, and filesystem type:

$fdisk -l /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

Block Read/Write Test:

The command, dd, is used for for reading/writing blocks. Note this command can corrupt the partitions and

filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:

$dd if=/dev/zero of=/dev/sda1 bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the file to be written

for file_name, do the following:

$dd if=file_name of=/dev/sda1

To read 1KB of data from the card enter the following text, substituting the name of the file to be written

for output_file, do the following:

$dd if=/dev/sda1 of=output_file bs=1024 count=1

Files System Tests

Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

$mkfs.ext2 /dev/sda1

$mkfs.vfat /dev/sda1

Mount the file system as follows:

$mkdir /mnt/sda1

$mount -t ext2 /dev/sda1 /mnt/sda1

After mounting, file/directory, operations can be performed in /mnt/sda1.

Unmount the filesystem as follows:

$umount /mnt/sda1

SATA Driver

i.MX53 EVK Linux Reference Manual, Rev.10.10.01

21-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 22-1

Chapter 22
Low-Level Keypad Driver

The low-level keypad driver interfaces with the Keypad Port Hardware (KPP) in the i.MX device. The

keypad driver is implemented as a standard Linux 2.6 keyboard driver, modified for the i.MX device.

The keypad driver supports the following features:

• Interrupt-driven scan code generation for keypress and release on a keypad matrix

• Keypad as a standard input device

The keypad driver can be accessed through the /dev/input/event0 device file. The numbering of the event

node depends on whether other input devices are loaded or not.

22.1 Hardware Operation

The KPP driver supports a keypad matrix with as many as eight rows and eight columns. Any pins that are

not being used for the keypad are available as general purpose input/output pins. The actual keypad matrix

is dependent on hardware connection.

The keypad port interfaces with a keypad matrix. On a keypress, the intersecting row and column lines are

shorted together. The keypad has two mode of operation, Run mode and Low Power mode. In both modes

the KPP detects any keypress event, but in low power mode the keypress event is detected even when the

MCU clock is not running.

22.2 Software Operation

The keypad driver generates scan-codes for key press and release events on the keypad matrix. The

operation is as follows:

1. When a key is pressed on the keypad, the keypad interrupt handler is called

2. In the keypad interrupt handler, the mxc_kpp_scan_matrix function is called to scan for key-presses

and releases

3. The keypad scan timer function is called every 10 ms to scan for any keypress or release on the

keypad

4. The scan-code for the keypress or release is generated by the mxc_kpp_scan_matrix function

5. The generated scancodes are converted to input device keycodes using the mxckpd_keycodes array

Low-Level Keypad Driver

i.MX53 EVK Linux Reference Manual

22-2 Freescale Semiconductor

Every keypress or release follows the debounce state machine shown in Figure 22-1. The

mxc_kpp_scan_matrix function is called for every keypress and release interrupt.

Figure 22-1. Keypad Driver State Machine

The keypad driver registers the input device structure within the __init function by calling

input_register_device(&mxckbd_dev).

The driver sets input bit fields and conveys all the events that can be generated by this input device to other

parts of the input systems. The keypad driver can generate only EV_KEY type events. This can be indicated

using __set_bit(EV_KEY, mxckbd_dev.evbit).

The keypress key codes are reported by calling input_event(). The reported key press/release events are

passed to the event interface (/dev/input/event0). This event interface is created when the evdev.c

executable, located in <ltib_dir>/rpm/BUILD/linux/drivers/input, is compiled. The event interface is a

generic input event interface. It passes the events generated in the kernel to the user space with timestamps.

Blocking reads, non-blocking reads and select() can be done on /dev/input/event0.

The structure of input_event is as follows:

struct input_event {

struct timeval time;

unsigned short type;

unsigned short code;

unsigned int value;

};

Low-Level Keypad Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 22-3

where:

• time is the timestamp at which the key event occurred

• code is the i.MX keycode for keypress or release

• value equals 0 for key release and 1 for keypress

The functions mentioned in this section are implemented as a low-level interface between the Linux OS

and the KPP hardware. They cannot be called from other drivers or from a user application.

The keypress and release scancodes can be derived using the following formula,

scancode (press) = (row × 8) + col;

scancode (release) = (row × 8) + col + 128;

22.3 Reassigning Keycodes

The keypad driver takes advantage of the input subsystem’s ability to remap key codes. A user space

application can use the EVIOCGKEYCODE and EVIOCSKEYCODE IOCTLs on the device node (for example

/dev/input/event0) to get and set key codes. Applications such as keyfuzz and input-kbd (from the

input-utils package) use these IOCTLs which are handled by the input subsystem. See the kernel

Documentation/input/input-programming.txt for details on remapping codes.

22.4 Driver Features

The keypad driver supports the following features:

• Returns the input keycode for every key that is pressed or released

• Interrupt driver for keypress or release

• Blocking and nonblocking reads

22.5 Implemented as a standard input deviceMX53 EVK Keypad

MX51 accessory card can be connected with MX53 EVK board to support keypad functions. However,

the keypad codes can not be merged into current BSP because the keypad PINs conflict with CAN and

audio features. Here one example is given to share how to support keypad in MX53:

• Add the platform data in to mx53_evk.c and register keypad device. Remove CAN device register.

--- a/arch/arm/mach-mx5/mx53_evk.c

+++ b/arch/arm/mach-mx5/mx53_evk.c

@@ -545,6 +545,20 @@ static struct mxc_mlb_platform_data mlb_data = {

 .mlb_clk = "mlb_clk",

 };

+static u16 keymapping[] = {

+ KEY_UP, KEY_DOWN, KEY_MENU, KEY_BACK,

+ KEY_RIGHT, KEY_LEFT, KEY_SELECT, KEY_ENTER,

+ KEY_F1,

+};

+

+static struct keypad_data keypad_plat_data = {

+ .rowmax = 3,

+ .colmax = 3,

Low-Level Keypad Driver

i.MX53 EVK Linux Reference Manual

22-4 Freescale Semiconductor

+ .learning = 0,

+ .delay = 2,

+ .matrix = keymapping,

+};

/*!

 * Board specific fixup function. It is called by \b setup_arch() in

 * setup.c file very early on during kernel starts. It allows the user to

@@ -684,10 +698,12 @@ static void __init mxc_board_init(void)

 mxc_register_device(&mxc_pwm2_device, NULL);

 mxc_register_device(&mxc_pwm_backlight_device, &mxc_pwm_backlight_data);

 }

+#if 0

 mxc_register_device(&mxc_flexcan0_device, &flexcan0_data);

 mxc_register_device(&mxc_flexcan1_device, &flexcan1_data);

+#endif

-/* mxc_register_device(&mxc_keypad_device, &keypad_plat_data); */

+ mxc_register_device(&mxc_keypad_device, &keypad_plat_data);

• Configure Keypad PINs in mx53_evk_gpio.c

--- a/arch/arm/mach-mx5/mx53_evk_gpio.c

+++ b/arch/arm/mach-mx5/mx53_evk_gpio.c

@@ -160,19 +160,19 @@ static struct mxc_iomux_pin_cfg __initdata mxc_iomux_pins[] = {

 PAD_CTL_DRV_HIGH | PAD_CTL_SRE_FAST),

 },

 {

- MX53_PIN_KEY_COL0, IOMUX_CONFIG_ALT2,

+ MX53_PIN_KEY_COL0, IOMUX_CONFIG_ALT0,

 },

 {

- MX53_PIN_KEY_ROW0, IOMUX_CONFIG_ALT2,

+ MX53_PIN_KEY_ROW0, IOMUX_CONFIG_ALT0,

 },

 {

- MX53_PIN_KEY_COL1, IOMUX_CONFIG_ALT2,

+ MX53_PIN_KEY_COL1, IOMUX_CONFIG_ALT0,

 },

- MX53_PIN_KEY_COL3, IOMUX_CONFIG_ALT4,

+ MX53_PIN_KEY_COL3, IOMUX_CONFIG_ALT0,

 },

 {

 MX53_PIN_CSI0_D7, IOMUX_CONFIG_ALT5,

@@ -225,6 +225,13 @@ static struct mxc_iomux_pin_cfg __initdata mxc_iomux_pins[] = {

 {

 MX53_PIN_GPIO_10, IOMUX_CONFIG_GPIO,

 },

+ { /* KEY COL2 */

+ MX53_PIN_KEY_COL2, IOMUX_CONFIG_ALT0,

+ },

+ { /* KEY_ROW2 */

+ MX53_PIN_KEY_ROW2, IOMUX_CONFIG_ALT0,

+ },

+#if 0

 { /* CAN1-TX */

 MX53_PIN_KEY_COL2, IOMUX_CONFIG_ALT2,

 (PAD_CTL_DRV_HIGH | PAD_CTL_HYS_ENABLE | PAD_CTL_PKE_ENABLE |

Low-Level Keypad Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 22-5

@@ -281,6 +288,7 @@ static struct mxc_iomux_pin_cfg __initdata mxc_iomux_pins[] = {

 (PAD_CTL_DRV_HIGH | PAD_CTL_HYS_ENABLE | PAD_CTL_PKE_ENABLE |

 PAD_CTL_PUE_PULL | PAD_CTL_100K_PU | PAD_CTL_ODE_OPENDRAIN_NONE),

 },

+#endif

 {

• MX53_PIN_GPIO_11, IOMUX_CONFIG_GPIO,

22.6 Source Code Structure

Table 22-1 shows the keypad driver source files that are available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/input/keyboard

<ltib_dir>/rpm/BUILD/linux/include/linux

22.7 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MXC_KEYBOARD—MXC Keypad driver used for the MXC KPP. In menuconfig this

option is available under

Device Drivers > Input device support > Keyboards > MXC Keypad Driver.

• CONFIG_INPUT_EVDEV—Enabling this option creates the device node /dev/input/event0. In

menuconfig, this option is available under

Device Drivers > Input device support > Event interface.

The following source code configuration options are available for this module:

• Matrix config—The keypad matrix can be configured for up to eight rows and eight columns. The

keypad matrix configuration can be done by changing the rowmax and colmax members in the

keypad_plat_data structure in the platform specific file (see Table 22-1).

• Debounce delay—The user can configure the debounce delay by changing the variable KScanRate

defined in mxc_keyb.c.

Table 22-1. Keypad Driver Files

File Description

mxc_keyb.c Low-level driver implementation

mxc_keyb.h Driver structures, control register address definitions

input.h Generic Linux keycode definitions

arch/arm/mach-mx5/mx53_e

vk.cmx50_rdp.c

arch/arm/mach-mx5/device.c

Contains the platform-specific keymapping keycode array

Low-Level Keypad Driver

i.MX53 EVK Linux Reference Manual

22-6 Freescale Semiconductor

22.8 Programming Interface

User space applications can get information about the keypad driver through the standard proc and sysfs

files such as /proc/bus/input/devices and the files under /sys/class/input/event0/.

22.9 Interrupt Requirements

Table 22-2 lists the keypad interrupt timer requirements.
.

Table 22-2. Keypad Interrupt Timer Requirements

Parameter Equation Typical Worst-Case

Key scanning interrupt (X number of instruction/MHz) × 64 (X/MHz) × 64 (X/MHz) × 64

Alarm for key polling None 10 ms 10 ms

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 23-1

Chapter 23
Fast Ethernet Controller (FEC) Driver

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet CSMA/CD media

access control and channel interface functions. The FEC requires an external interface adapter and

transceiver function to complete the interface to the Ethernet media. It supports half or full-duplex

operation on 10 Mbps or 100 Mbps related Ethernet networks.

The FEC driver supports the following features:

• Full/Half duplex operation

• Link status change detect

• Auto-negotiation (determines the network speed and full or half-duplex operation)

• Transmit features such as automatic retransmission on collision and CRC generation

• Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name ethx. The driver

auto-probes the external adaptor (PHY device).

23.1 Hardware Operation

The FEC is an Ethernet controller that interfaces the system to the LAN network. The FEC supports

different standard MAC-PHY (physical) interfaces for connection to an external Ethernet transceiver. The

FEC supports the 10/100 Mbps MII and the 10 Mbps-only 7-wire serial network interface (SNI), which

uses a subset of the MII pins.

A brief overview of the device functionality is provided here. For details see the FEC chapter of the i.MX53

MX50Multimedia Applications Processor Reference Manual.

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by the EMAC. SNI

and RMIImode uses a subset of the 18 signals. These signals are listed in Table 23-1.

Table 23-1. Pin Usage in MIIRMII and SNI Modes

Direction
EMAC Pin

Name
MII Usage SNI Usage RMII Usage

In/Out FEC_MDIO Management Data Input/Output General I/O Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 General output Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 General output Not Used

Out FEC_TXD[3] Data out, bit 3 General output Not Used

Fast Ethernet Controller (FEC) Driver

i.MX53 EVK Linux Reference Manual

23-2 Freescale Semiconductor

The MII management interface consists of two pins, FEC_MDIO and FEC_MDC. The FEC hardware

operation can be divided in the following parts. For detailed information consult the

i.MX53MX50Multimedia Applications Processor Reference Manual.

• Transmission—The Ethernet transmitter is designed to work with almost no intervention from

software. Once ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet

MAC is able to transmit onto the network. When the transmit FIFO fills to the watermark (defined

by the TFWR), the MAC transmit logic asserts FEC_TX_EN and starts transmitting the preamble

(PA) sequence, the start frame delimiter (SFD), and then the frame information from the FIFO.

However, the controller defers the transmission if the network is busy (FEC_CRS asserts).

Before transmitting, the controller waits for carrier sense to become inactive, then determines if

carrier sense stays inactive for 60 bit times. If the transmission begins after waiting an additional

36 bit times (96 bit times after carrier sense originally became inactive). Both buffer (TXB) and

frame (TXF) interrupts may be generated as determined by the settings in the EIMR.

• Reception—The FEC receiver is designed to work with almost no intervention from the host and

can perform address recognition, CRC checking, short frame checking, and maximum frame

length checking. When the driver enables the FEC receiver by asserting ECR[ETHER_EN], it

immediately starts processing receive frames. When FEC_RX_DV asserts, the receiver checks for

a valid PA/SFD header. If the PA/SFD is valid, it is stripped and the frame is processed by the

receiver. If a valid PA/SFD is not found, the frame is ignored. In MII mode, the receiver checks for

at least one byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is

detected prior to the SFD byte, the frame is ignored.

After the first six bytes of the frame have been received, the FEC performs address recognition on

the frame. During reception, the Ethernet controller checks for various error conditions and once

the entire frame is written into the FIFO, a 32-bit frame status word is written into the FIFO. This

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error General output Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Collision Not Used

In FEC_TX_CLK Transmit Clock Transmit Clock Synchronous clock reference (REF_CLK)

In FEC_RX_ER Receive Error General input Receive Error

In FEC_RX_CLK Receive Clock Receive Clock Not Used

In FEC_RX_DV Receive Data Valid Receive Data Valid Not Used

In FEC_RXD[0] Data in, bit 0 Data in Data in, bit 0

In FEC_RXD[1] Data in, bit 1 General input Data in, bit 1

In FEC_RXD[2] Data in, bit 2 General input Not Used

In FEC_RXD[3] Data in, bit 3 General input Not Used

Table 23-1. Pin Usage in MIIRMII and SNI Modes (continued)

Direction
EMAC Pin

Name
MII Usage SNI Usage RMII Usage

Fast Ethernet Controller (FEC) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 23-3

status word contains the M, BC, MC, LG, NO, CR, OV, and TR status bits, and the frame length.

Receive Buffer (RXB) and Frame Interrupts (RXF) may be generated if enabled by the EIMR

register. When the receive frame is complete, the FEC sets the L bit in the RxBD, writes the other

frame status bits into the RxBD, and clears the E bit. The Ethernet controller next generates a

maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that a frame has

been received and is in memory. The Ethernet controller then waits for a new frame.

• Interrupt management—When an event occurs that sets a bit in the EIR, an interrupt is generated

if the corresponding bit in the interrupt mask register (EIMR) is also set. The bit in the EIR is

cleared if a one is written to that bit position; writing zero has no effect. This register is cleared

upon hardware reset. These interrupts can be divided into operational interrupts,

transceiver/network error interrupts, and internal error interrupts. Interrupts which may occur in

normal operation are GRA, TXF, TXB, RXF, RXB. Interrupts resulting from errors/problems

detected in the network or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting

from internal errors are HBERR and UN. Some of the error interrupts are independently counted

in the MIB block counters. Software may choose to mask off these interrupts as these errors are

visible to network management through the MIB counters.

• PHY management—phylib was used to manage all the FEC phy related operation such as phy

discovery, link status, state machine etc.MDIO bus will be created in FEC driver and registered into

the system.You can refer to Documentation/networking/phy.txt under linux source directory for

more information.

23.2 Software Operation

The FEC driver supports the following functions:

• Module initialization—Initializes the module with the device specific structure

• Rx/Tx transmition

• Interrupt servicing routine

• PHY management

• FEC management such init/start/stop

23.3 Source Code Structure

 Table 23-2 shows the source files available in the

<ltib_dir>/rpm/BUILD/linux/drivers/net directory.
.

For more information about the generic Linux driver, see the

<ltib_dir>/rpm/BUILD/linux/drivers/net/fec.c source file.

Table 23-2. FEC Driver Files

File Description

fec.h Header file defining registers

fec.c Linux driver for Ethernet LAN controller

Fast Ethernet Controller (FEC) Driver

i.MX53 EVK Linux Reference Manual

23-4 Freescale Semiconductor

23.4 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• CONFIG_FEC—Provided for this module. This option is available under

Device Drivers > Network device support > Ethernet (10 or 100Mbit) > FEC Ethernet controller.

To mount NFS-rootfs through FEC, disable the other Network config in the menuconfig if need.

23.5 Programming Interface

Table 23-2 lists the source files for the FEC driver. The following section shows the modifications that

were required to the original Ethernet driver source for porting it to the i.MX device.

23.5.1 Device-Specific Defines

Device-specific defines are added to the header file (fec.h) and they provide common board configuration

options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For example,

/*

 * Define the buffer descriptor structure.

 */

struct bufdesc {

unsigned short cbd_datlen; /* Data length */

unsigned short cbd_sc; /* Control and status info */

unsigned long cbd_bufaddr; /* Buffer address */

};

/*

 * Define the register access structure.

 */

#define FEC_IEVENT 0x004 /* Interrupt event reg */

#define FEC_IMASK 0x008 /* Interrupt mask reg */

#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */

#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */

#define FEC_ECNTRL 0x024 /* Ethernet control reg */

#define FEC_MII_DATA 0x040 /* MII manage frame reg */

#define FEC_MII_SPEED 0x044 /* MII speed control reg */

#define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */

#define FEC_R_CNTRL 0x084 /* Receive control reg */

#define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */

#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */

#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */

#define FEC_OPD 0x0ec /* Opcode + Pause duration */

#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */

#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */

#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */

#define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */

#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */

#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */

#define FEC_R_FSTART 0x150 /* FIFO receive start reg */

#define FEC_R_DES_START 0x180 /* Receive descriptor ring */

Fast Ethernet Controller (FEC) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 23-5

#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */

#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */

#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK config register */

#define FEC_MIIGSK_ENR 0x308 /* MIIGSK enable register */

23.5.2 Getting a MAC Address

.

The MAC address can be set through bootloader such as u-boot.FEC driver will use it to confiure the MAC

address for network devices.

Fast Ethernet Controller (FEC) Driver

i.MX53 EVK Linux Reference Manual

23-6 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-1

Chapter 24
Inter-IC (I2C) Driver

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange,

minimizing the interconnection between devices. The I2C driver for Linux has two parts:

• I2C bus driver—low level interface that is used to talk to the I2C bus

• I2C chip driver—acts as an interface between other device drivers and the I2C bus driver

24.1 I2C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user space. The standard

Linux kernel contains a core I2C module that is used by the chip driver to access the I2C bus driver to

transfer data over the I2C bus. The chip driver uses a standard kernel space API that is provided in the

Linux kernel to access the core I2C module. The standard I2C kernel functions are documented in the files

available under Documentation/i2c in the kernel source tree. This bus driver supports the following

features:

• Compatible with the I2C bus standard

• Bit rates up to 400 Kbps

• Starts and stops signal generation/detection

• Acknowledge bit generation/detection

• Interrupt-driven, byte-by-byte data transfer

• Standard I2C master mode

24.2 I2C Device Driver Overview

The I2C device driver implements all the Linux I2C data structures that are required to communicate with

the I2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer data to the

device that is connected to the I2C bus. Internally, these API functions use the standard I2C kernel space

API to call the I2C core module. The I2C core module looks up the I2C bus driver and calls the appropriate

function in the I2C bus driver to transfer data. This driver provides the following functions to other device

drivers:

• Read function to read the device registers

• Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

24-2 Freescale Semiconductor

24.3 Hardware Operation

The I2C module provides the functionality of a standard I2C master and slave. It is designed to be

compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock

frequencies that can be programmed by setting a value to the Frequency Divider Register (IFDR). It also

generates an interrupt when one of the following occurs:

• One byte transfer is completed

• Address is received that matches its own specific address in slave-receive mode

• Arbitration is lost

24.4 Software Operation

The I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver.

24.4.1 I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important field in this

structure is struct i2c_algorithm *algo. This field is a pointer to the i2c_algorithm structure that

describes how data is transferred over the I2C bus. The algorithm structure contains a pointer to a function

that is called whenever the I2C chip driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is loaded. Certain

architectures have more than one I2C module. If so, the driver registers separate i2c_adapter structures for

each I2C module with the I2C core. These adapters are unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end of a data

transmission before transmitting the next byte. It times out and returns an error if the transfer complete

signal is not received. Because the I2C bus driver uses wait queues for its operation, other device drivers

should be careful not to call the I2C API methods from an interrupt mode.

24.4.2 I2C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver, describes the I2C

chip driver. The fields of interest in this structure are flags and attach_adapter. The flags field is set to a

value I2C_DF_NOTIFY so that the chip driver can be notified of any new I2C devices, after the driver is

loaded. The attach_adapter callback function is called whenever a new I2C bus driver is loaded in the

system. When the I2C bus driver is loaded, this driver stores the i2c_adapter structure associated with this

bus driver so that it can use the appropriate methods to transfer data.

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 24-3

24.5 Driver Features

The I2C driver supports the following features:

• I2C communication protocol

• I2C master mode of operation

NOTE

The I2C driver do not support the I2C slave mode of operation.

24.6 Source Code Structure

Table 24-1 shows the I2C bus driver source files available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/i2c/busses.
.

24.7 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following options to enable this module:

Device Drivers > I2C support > I2C Hardware Bus support > IMX I2C interface.

•

24.8 Programming Interface

The I2C device driver can use the standard SMBus interface to read and write the registers of the device

connected to the I2C bus. For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

24.9 Interrupt Requirements

The I2C module generates many kinds of interrupts. The highest interrupt rate is associated with the

transfer complete interrupt as shown in Table 24-2.
.

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a baud rate of

400 Kbps (the maximum supported by the I2C interface).

Table 24-1. I2C Bus Driver Files

File Description

i2c-imx.c I2C bus driver source file

Table 24-2. I2C Interrupt Requirements

Parameter Equation Typical Best Case

Rate Transfer Bit Rate/8 25,000/sec 50,000/sec

Latency 8/Transfer Bit Rate 40 µs 20 µs

Inter-IC (I2C) Driver

i.MX53 EVK Linux Reference Manual

24-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 25-1

Chapter 25
Configurable Serial Peripheral Interface (CSPI) Driver

The CSPI driver implements a standard Linux driver interface to the CSPI controllers. It supports the

following features:

• Interrupt- and SDMA-driven transmit/receive of bytes

• Multiple master controller interface

• Multiple slaves select

• Multi-client requests

25.1 Hardware Operation

CSPI is used for fast data communication with fewer software interrupts than conventional serial

communications. Each CSPI is equipped with a data FIFO and is a master/slave configurable serial

peripheral interface module, allowing the processor to interface with external SPI master or slave devices.

The primary features of the CSPI includes:

• Master/slave-configurable

• Two chip selects allowing a maximum of four different slaves each for master mode operation

• Up to 32-bit programmable data transfer

• 8 × 32-bit FIFO for both transmit and receive data

• Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

25.2 Software Operation

The following sections describe the CSPI software operation.

25.2.1 SPI Sub-System in Linux

The CSPI driver layer is located between the client layer (PMIC and SPI Flash are examples of clients)

and the hardware access layer. Figure 25-1 shows the block diagram for SPI subsystem in Linux.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in FIFO order, and

complete asynchronously through completion callbacks. There are also some simple synchronous

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX53 EVK Linux Reference Manual

25-2 Freescale Semiconductor

wrappers for those calls, including ones for common transaction types like writing a command and then

reading its response.

Figure 25-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they must all be sharing the same

controller driver. Only the controller driver can interact with the underlying SPI hardware module.

Figure 25-2 shows how the different SPI drivers are layered in the SPI subsystem.

Figure 25-2. Layering of SPI Drivers in SPI Subsystem

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host

Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver

Interface

Client Driver

Interface

Freescale SPI
driver (mxc_spi.c)

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host

Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver

Interface

Client Driver

Interface

Freescale SPI
driver (mxc_spi.c)

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 25-3

25.2.2 Software Limitations

The CSPI driver limitations are as follows:

• Does not currently have SPI slave logic implementation

• Does not support a single client connected to multiple masters

• Does not currently implement the user space interface with the help of the device node entry but

supports sysfs interface

25.2.3 Standard Operations

The CSPI driver is responsible for implementing standard entry points for init, exit, chip select and

transfer. The driver implements the following functions:

• Init function mxc_spi_init()—Registers the device_driver structure.

• Probe function mxc_spi_probe()—Performs initialization and registration of the SPI device

specific structure with SPI core driver. The driver probes for memory and IRQ resources.

Configures the IOMUX to enable CSPI I/O pins, requests for IRQ and resets the hardware.

• Chip select function mxc_spi_chipselect()—Configures the hardware CSPI for the current SPI

device. Sets the word size, transfer mode, data rate for this device.

• SPI transfer function mxc_spi_transfer()—Handles data transfers operations.

• SPI setup function mxc_spi_setup()—Initializes the current SPI device.

• SPI driver ISR mxc_spi_isr()—Called when the data transfer operation is completed and an

interrupt is generated.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX53 EVK Linux Reference Manual

25-4 Freescale Semiconductor

25.2.4 CSPI Synchronous Operation

Figure 25-3 shows how the CSPI provides synchronous read/write operations.

Figure 25-3. CSPI Synchronous Operation

25.3 Driver Features

The CSPI module supports the following features:

• Implements each of the functions required by a CSPI module to interface to Linux

• Multiple SPI master controllers

• Multi-client synchronous requests

25.4 Source Code Structure

Table 25-1 shows the source files available in the devices directory:

<ltib_dir>/rpm/BUILD/linux/drivers/spi/
.

25.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_SPI—Build support for the SPI core. In menuconfig, this option is available under

Table 25-1. CSPI Driver Files

File Description

mxc_spi.c SPI Master Controller driver

Client

Driver

SPI Core

Driver

CSPI

Hardware

spi_read/write

SPI Controller

Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Client

Driver

SPI Core

Driver

CSPI

Hardware

spi_read/write

SPI Controller

Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 25-5

Device Drivers > SPI Support.

• CONFIG_BITBANG—Library code that is automatically selected by drivers that need it.

SPI_MXC selects it. In menuconfig, this option is available under

Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.

• CONFIG_SPI_MXC—Implements the SPI master mode for MXC CSPI. In menuconfig, this

option is available under

Device Drivers > SPI Support > MXC CSPI controller as SPI Master.

• CONFIG_SPI_MXC_SELECTn—Selects the CSPI hardware modules into the build (where n = 1

or 2). In menuconfig, this option is available under

Device Drivers > SPI Support > CSPIn.

• CONFIG_SPI_MXC_TEST_LOOPBACK—To select the enable testing of CSPIs in loop back

mode. In menuconfig, this option is available under

Device Drivers > SPI Support > LOOPBACK Testing of CSPIs.

By default this is disabled as it is intended to use only for testing purposes.

25.6 Programming Interface

This driver implements all the functions that are required by the SPI core to interface with the CSPI

hardware. For more information, see the API document generated by Doxygen (in the doxygen folder of

the documentation package).

25.7 Interrupt Requirements

The SPI interface generates interrupts. CSPI interrupt requirements are listed in Table 25-2.

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl) of 1 and a 32-bit

transfer length. The worst-case is based on a baud rate of 12 Mbps (max supported by the SPI interface)

with a 8-bits transfer length.

Table 25-2. CSPI Interrupt Requirements

Parameter Equation Typical Worst Case

BaudRate/

Transfer Length

(BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX53 EVK Linux Reference Manual

25-6 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 26-1

Chapter 26
MMC/SD/SDIO Host Driver

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO) Host driver

implements a standard Linux driver interface to the enhanced MMC/SD host controller (eSDHC). The host

driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:

• 1-bit or 4-bit operation for SD and SDIO cards

• Supports card insertion and removal detections

• Supports the standard MMC commands

• PIO and DMA data transfers

• Power management

• Supports 1/4/8-bit operations for MMC cards

• Support eMMC4.4 SDR and DDR mode

26.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate in a low voltage

range. The eSDHC module support MMC along with SD memory and I/O functions. The eSDHC controls

the MMC, SD memory, and I/O cards by sending commands to cards and performing data accesses to and

from the cards. The SD memory card system defines two alternative communication protocols: SD and

SPI. The eSDHC only support the SD bus protocol.

The eSDHC command transfer type and eSDHC command argument registers allow a command to be

issued to the card. The eSDHC command, system control and protocol control registers allow the users to

specify the format of the data and response and to control the read wait cycle.

The block length register defines the number of bytes in a block (block size). As the Stream mode of MMC

is not supported, the block length must be set for every transfer.

There are four 32-bit registers used to store the response from the card in the eSDHC. The eSDHC reads

these four registers to get the command response directly. The eSDHC uses a fully configurable

128×32-bit FIFO for read and write. The buffer is used as temporary storage for data being transferred

between the host system and the card, and vice versa. The eSDHC data buffer access register bits hold

32-bit data upon a read or write transfer.

For receiving data, the steps are as follows:

1. The eSDHC controller generates a DMA request when there are more words received in the buffer

than the amount set in the RD_WML register

MMC/SD/SDIO Host Driver

i.MX53 EVK Linux Reference Manual

26-2 Freescale Semiconductor

2. Upon receiving this request, DMA engine starts transferring data from the eSDHC FIFO to system

memory by reading the data buffer access register

To transmitting data, the steps are as follows:

1. The eSDHC controller generates a DMA request whenever the amount of the buffer space exceeds

the value set in the WR_WML register

2. Upon receiving this request, the DMA engine starts moving data from the system memory to the

eSDHC FIFO by writing to the Data Buffer Access Register for a number of pre-defined bytes

The read-only eSDHC Present State and Interrupt Status Registers provide eSDHC operations status,

application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set the

corresponding Status Register bits. The eSDHC interrupt status enable and signal enable registers allow

the user to control if these interrupts occur.

26.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols. The MMC block

driver handles the file system read/write calls and uses the low level MMC host controller interface driver

to send the commands to the eSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit, request, and set_ios.

The driver implements the following functions:

• The init function sdhci_drv_init()—Registers the device_driver structure.

• The probe function sdhci_probe and sdhci_probe_slot()—Performs initialization and

registration of the MMC device specific structure with MMC bus protocol driver. The driver

probes for memory and IRQ resources. Configures the IOMUX to enable eSDHC I/O pins and

resets the hardware.

• sdhci_set_ios()—Sets bus width, voltage level, and clock rate according to core driver

requirements.

• sdhci_request()—Handles both read and write operations. Sets up the number of blocks and block

length. Configures an DMA channel, allocates safe DMA buffer and starts the DMA channel.

Configures the eSDHC transfer type register eSDHC command argument register to issue a

command to the card. This function starts the SDMA and starts the clock.

• MMC driver ISR sdhci_cd_irq()—Called when the MMC/SD card is detected or removed.

• MMC driver ISR sdhci_irq()—Interrupt from eSDHC called when command is done or errors

like CRC or buffer underrun or overflow occurs.

• DMA completion routine sdhci_dma_irq()—Called after completion of a DMA transfer. Informs

the MMC core driver of a request completion by calling mmc_request_done() API.

MMC/SD/SDIO Host Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 26-3

Figure 26-1 shows how the MMC-related drivers are layered.

Figure 26-1. MMC Drivers Layering

26.3 Driver Features

The MMC driver supports the following features:

• Supports multiple eSDHC modules

• Provides all the entry points to interface with the Linux MMC core driver

• MMC and SD cards

• Recognizes data transfer errors such as command time outs and CRC errors

• Power management

 File System (Ext2fs/FAT driver)

Block Client Driver (Storage)

Kinds of Bus Protocol Drivers

Host Controller Driver

MMC/SD/SDIO/CE-ATA Devices

Host Controller

Application/Server interface

block.c: block

driver for

peripheral media.

core.c, sd.c,

Freescale MMC driver

mx_sdhci.c or

mxc_mmc.c

Client Driver interface

Host controller Driver interface

Local Bus Interface

Slot Electrical interface

Etc sd, mmc,

sdio, ce-ata

and so on.

......

MMC/SD/SD

IO/CE-ATA

Devices

SDIO APP

MMC/SD/SDIO Host Driver

i.MX53 EVK Linux Reference Manual

26-4 Freescale Semiconductor

26.4 Source Code Structure

Table 26-1 shows the eSDHC source files available in the source directory:

<ltib_dir>/rpm/BUILD/linux/drivers/mmc/host/.

26.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MMC—Build support for the MMC bus protocol. In menuconfig, this option is

available under

Device Drivers > MMC/SD/SDIO Card support

By default, this option is Y.

• CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to

mount the file system. In menuconfig, this option is available under

Device Drivers > MMC/SD Card Support > MMC block device driver

By default, this option is Y.

• CONFIG_MMC_IMX_ESDHCI—Driver used for the i.MX eSDHC ports. In menuconfig, this

option is found under

Device Drivers > MMC/SD Card Support > Freescale i.MX Secure Digital Host Controller

Interface support

• CONFIG_MMC_IMX_ESDHCI_PIO_MODE—Sets i.MX Multimedia card Interface to PIO

mode. In menuconfig, this option is found under

Device Drivers > MMC/SD Card support > Freescale i.MX Secure Digital Host Controller

Interface PIO mode

This option is dependent on CONFIG_MMC_IMX_ESDHCI. By default, this option is not set and

DMA mode is used.

• CONFIG_MMC_UNSAFE_RESUME—Used for embedded systems which use a

MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under

Device drivers > MMC/SD/SDIO Card Support > Allow unsafe resume.

26.6 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with the i.MX

eSDHCmodule. See the BSP API document (in the doxygen folder of the documentation package), for

additional information.

Table 26-1. eSDHC Driver FilesMMC/SD Driver Files

File Description

mx_sdhci.h Header file defining registers

mx_sdhci.c eSDHC driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 27-1

Chapter 27
Universal Asynchronous Receiver/Transmitter (UART)
Driver

The low-level UART driver interfaces the Linux serial driver API to all the UART ports. It has the

following features:

• Interrupt-driven and SDMA-driven transmit/receive of characters

• Standard Linux baud rates up to 4 Mbps

• Transmit and receive characters with 7-bit and 8-bit character lengths

• Transmits one or two stop bits

• Supports TIOCMGET IOCTL to read the modem control lines. Only supports the constants TIOCM_CTS

and TIOCM_CAR, plus TIOCM_RI in DTE mode only

• Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants TIOCM_RTS and

TIOCM_DTR only

• Odd and even parity

• XON/XOFF software flow control. Serial communication using software flow control is reliable

when communication speeds are not too high and the probability of buffer overruns is minimal

• CTS/RTS hardware flow control—both interrupt-driven software-controlled hardware flow and

hardware-driven hardware-controlled flow

• Send and receive break characters through the standard Linux serial API

• Recognizes frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY IOCTL. Some

programs like setserial and dip use this feature to make sure that the baud rate was set properly

and to get general information on the device.The UART type should be set to 52 as defined in the

serial_core.h header file.

• Serial IrDA

• Power management feature by suspending and resuming the URT ports

• Standard TTY layer IOCTL calls

All the UART ports can be accessed through the device files /dev/ttymxc0 through /dev/ttymxc4,

where /dev/ttymxc0 refers to UART 1. Autobaud detection is not supported.

27.1 Hardware Operation

Refer to the i.MX53MX50 Multimedia Applications Processor Reference Manual to determine the number

of UART modules available in the device. Each UART hardware port is capable of standard RS-232 serial

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

27-2 Freescale Semiconductor

communication and has support for IrDA 1.0. Each UART contains a 32-byte transmitter FIFO and a

32-half-word deep receiver FIFO. Each UART also supports a variety of maskable interrupts when the data

level in each FIFO reaches a programmed threshold level and when there is a change in state in the modem

signals. Each UART can be programmed to be in DCE or DTE mode.

27.2 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations that are common

across UART drivers for various platforms. The low-level UART driver is responsible for supplying

information such as the UART port information and a set of control functions to this core UART driver.

These functions are implemented as a low-level interface between the Linux OS and the UART hardware.

They cannot be called from other drivers or from a user application. The control functions used to control

the hardware are passed to the core driver through a structure called uart_ops, and the port information is

passed through a structure called uart_port. The low level driver is also responsible for handling the

various interrupts for the UART ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration options are provided

in the mxc_uart.h header file. The user can specify the size of the DMA receive buffer. The minimum size

of this buffer is 512 bytes. The size should be a multiple of 256. The driver breaks the DMA receive buffer

into smaller sub-buffers of 256 bytes and registers these buffers with the DMA system. The DMA transmit

buffer size is fixed at 1024 bytes. The size is limited by the size of the Linux UART transmit buffer (1024).

The driver requests two DMA channels for the UARTs that need DMA transfer. On a receive transaction,

the driver copies the data from the DMA receive buffer to the TTY Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer to the DMA

transmit buffer and sends this buffer to the DMA system. The user should use hardware-driven hardware

flow control when using DMA data transfer. For more information, see the Linux documentation on the

serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow control and

hardware-driven hardware flow control. The hardware flow control method can be configured using the

options provided in the header file. The user has the capability to de-assert the CTS line using the available

IOCTL calls. If the user wishes to assert the CTS line, then control is transferred back to the receiver, as

long as the driver has been configured to use hardware-driven hardware flow control.

27.3 Driver Features

The UART driver supports the following features:

• Baud rates up to 4 Mbps

• Recognizes frame and parity errors only in interrupt-driven mode; does not recognize these errors

in DMA-driven mode

• Sends, receives and appropriately handles break characters

• Recognizes the modem control signals

• Ignores characters with frame, parity and break errors if requested to do so

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 27-3

• Implements support for software and hardware flow control (software-controlled and

hardware-controlled)

• Get and set the UART port information; certain flow control count information is not available in

hardware-driven hardware flow control mode

• Implements support for Serial IrDA

• Power management

• Interrupt-driven and DMA-driven data transfer

27.4 Source Code Structure

Table 27-1 shows the UART driver source files that are available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/serial.

Table 27-2 shows the header files associated with the UART driver.

The source files, serial.c and serial.h, are associated with the UART driver that is available in the

directory: <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx55. The source file contains UART

configuration data and calls to register the device with the platform bus.

27.5 Configuration

This section discusses configuration options associated with Linux, chip configuration options, and board

configuration options.

27.5.1 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_SERIAL_MXC—Used for the UART driver for the UART ports. In menuconfig, this

option is available under

Table 27-1. UART Driver Files

File Description

mxc_uart.c Low level driver

serial_core.c Core driver that is included as part of standard Linux

mxc_uart_reg.h Register values

mxc_uart_early.c Source file to support early serial console for UART

Table 27-2. UART Global Header Files

File Description

<ltib_dir>/rpm/BUILD/linux/

arch/arm/plat-mxc/include/mach/mxc_uart.h

UART header that contains UART configuration data structure definitions

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

27-4 Freescale Semiconductor

Device Drivers > Character devices > Serial drivers > MXC Internal serial port support.

By default, this option is Y.

• CONFIG_SERIAL_MXC_CONSOLE—Chooses the Internal UART to bring up the system

console. This option is dependent on the CONFIG_SERIAL_MXC option. In the menuconfig this

option is available under

Device Drivers > Character devices > Serial drivers > MXC Internal serial port support > Support

for console on a MXC/MX27/MX21 Internal serial port.

By default, this option is Y.

27.5.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

27.5.2.1 Chip Configuration Options

The following chip-specific configuration options are provided in mxc_uart.h. The x in UARTx denotes the

individual UART number. The default configuration for each UART number is listed in Table 27-5.

27.5.2.2 Board Configuration Options

The following board specific configuration options for the driver can be set within

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx/board-mx_.h:

• UART Mode (UARTx_MODE)—Specifies DTE or DCE mode

• UART IR Mode (UARTx_IR)—Specifies whether the UART port is to be used for IrDA.

• UART Enable / Disable (UARTx_ENABLED)—Enable or disable a particular UART port; if disabled,

the UART is not registered in the file system and the user can not access it

For i.MX508i.MX53, the board specific configuration options for the driver is set within

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/serial.c

27.6 Programming Interface

The UART driver implements all the methods required by the Linux serial API to interface with the UART

port. The driver implements and provides a set of control methods to the Linux core UART driver. For

more information about the methods implemented in the driver, see the API document.

27.7 Interrupt Requirements

The UART driver interface generates many kinds of interrupts. The highest interrupt rate is associated with

transmit and receive interrupt.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 27-5

The system requirements are listed in Table 27-3.

The baud rate is set in the mxcuart_set_termios function. The typical values are based on a baud rate of

57600 with a receiver trigger level (Rxtl) of one and a transmitter trigger level (Txtl) of two. The worst

case is based on a baud rate of 1.5 Mbps (maximum supported by the UART interface) with an Rxtl of one

and a Txtl of 31. There is also an undetermined number of handshaking interrupts that are generated but

the rates should be an order of magnitude lower.

27.8 Device Specific Information

27.8.1 UART Ports

The UART ports can be accessed through the device files /dev/ttymxc0, /dev/ttymxc1, and so on, where

/dev/ttymxc0 refers to UART 1. The number of UART ports on a particular platform are listed in

Table 27-4.

27.8.2 Board Setup Configuration

Table 27-4. UART General Configuration

Table 27-3. UART Interrupt Requirements

Parameter Equation Typical Worst Case

Rate (BaudRate/(10))*(1/Rxtl + 1/(32–Txtl)) 5952/sec 300000/sec

Latency 320/BaudRate 5.6 ms 213.33 µs

Platform Number of UARTs Max Baudrate

i.MX508 3 4Mbps

i.MX53 5 4 Mbps

Table 27-5. UART Active/Inactive Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 1 1 1 0 0 0

i.MX53 1 1 1 1 1 —

Table 27-6. UART IRDA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 NO_IRDA NO_IRDA NO_IRDA

i.MX53 NO_IRDA NO_IRDA NO_IRDA NO_IRDA NO_IRDA —

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

27-6 Freescale Semiconductor

.

Table 27-7. UART Mode Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 MODE_DCE MODE_DCE MODE_DCE

i.MX53 MODE_DCE MODE_DCE MODE_DCE MODE_DCE MODE_DCE —

Table 27-8. UART Shared Peripheral Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 -1 -1 -1

i.MX53 -1 -1 SPBA_UART3 -1 -1 —

Table 27-9. UART Hardware Flow Control Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 0 0 0

i.MX53 1 1 1 1 1 —

Table 27-10. UART DMA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 0 0 1

i.MX53 0 1 0 0 0 —

Table 27-11. UART DMA RX Buffer Size Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 1024 512 1024

i.MX53 1024 512 1024 512 512 —

Table 27-12. UART UCR4_CTSTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 16 -1 16

i.MX53 16 -1 16 -1 -1 —

Table 27-13. UART UFCR_RXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 16 16 16

i.MX53 16 16 16 16 16 —

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 27-7

27.9 Early UART Support

The kernel starts logging messages on a serial console when it knows where the device is located. This

happens when the driver enumerates all the serial devices, which can happen a minute or more after the

kernel begins booting.

Linux kernel 2.6.10 and later kernels have an early UART driver that operates very early in the boot

process. The kernel immediately starts logging messages, if the user supplies an argument as follows:

console=mxcuart,0xphy_addr,115200n8

Where phy_addr represents the physical address of the UART on which the console is to be used and

115200n8 represents the baud rate supported.

Table 27-14. UART UFCR_TXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 16 16 16

i.MX53 16 16 16 16 16 —

Table 27-15. UART Interrupt Mux Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 INTS_MUXED INTS_MUXED INTS_MUXED

i.MX51 INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED —

Table 27-16. UART Interrupt 1 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 MXC_INT_UART1 MXC_INT_UART2 MXC_INT_UART3

i.MX53 MXC_INT_UART1 MXC_INT_UART2 MXC_INT_UART3 MXC_INT_U

ART4

MXC_INT_U

ART5

—

Table 27-17. UART Interrupt 2 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 -1 -1 -1

i.MX53 -1 -1 -1 -1 -1 —

Table 27-18. UART interrupt 3 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX508 -1 -1 -1

i.MX53 -1 -1 -1 -1 -1 —

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX53 EVK Linux Reference Manual

27-8 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 28-1

Chapter 28
ARC USB Driver

The universal serial bus (USB) driver implements a standard Linux driver interface to the ARC USB-HS

OTG controller. The USB provides a universal link that can be used across a wide range of

PC-to-peripheral interconnects. It supports plug-and-play, port expansion, and any new USB peripheral

that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This USB driver has the

following features:

• High Speed/Full Speed Host Only core (HOST1)

• High speed and Full Speed OTG core

• Host mode—Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP (Still

Image) drivers

• Peripheral mode—Supports MSC, and CDC (Communication Devices Class) drivers

• Embedded DMA controller

ARC USB Driver

i.MX53 EVK Linux Reference Manual

28-2 Freescale Semiconductor

28.1 Architectural Overview

A USB host system is composed of a number of hardware and software layers. Figure 28-1 shows a

conceptual block diagram of the building block layers in a host system that support USB 2.0.

Figure 28-1. USB Block Diagram

28.2 Hardware Operation

For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at

http://www.usb.org/developers/docs/.

28.3 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only

implements the hardware specified initialization functions. For the USB peripheral, it implements the

gadget framework.

static struct usb_ep_ops fsl_ep_ops = {

.enable = fsl_ep_enable,

.disable = fsl_ep_disable,

.alloc_request = fsl_alloc_request,

.free_request = fsl_free_request,

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 28-3

.queue = fsl_ep_queue,

.dequeue = fsl_ep_dequeue,

.set_halt = fsl_ep_set_halt,

.fifo_status = arcotg_fifo_status,

.fifo_flush = fsl_ep_fifo_flush, /* flush fifo */

};

static struct usb_gadget_ops fsl_gadget_ops = {

.get_frame = fsl_get_frame,

.wakeup = fsl_wakeup,

/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */

.vbus_session = fsl_vbus_session,

.vbus_draw = fsl_vbus_draw,

.pullup = fsl_pullup,

};

• fsl_ep_enable—configures an endpoint making it usable

• fsl_ep_disable—specifies an endpoint is no longer usable

• fsl_alloc_request—allocates a request object to use with this endpoint

• fsl_free_request—frees a request object

• arcotg_ep_queue—queues (submits) an I/O request to an endpoint

• arcotg_ep_dequeue—dequeues (cancels, unlinks) an I/O request from an endpoint

• arcotg_ep_set_halt—sets the endpoint halt feature

• arcotg_fifo_status—get the total number of bytes to be moved with this transfer descriptor

For OTG, an OTG finish state machine (FSM) is implemented.

28.4 Driver Features

The USB stack supports the following features:

• USB device mode

• Mass storage device profile—subclass 8-1 (RBC set)

• USB host mode

• HID host profile—subclasses 3-1-1 and 3-1-2. (USB mouse and keyboard)

• Mass storage host profile—subclass 8-1

• Ethernet USB profile—subclass 2

• DC PTP transfer

ARC USB Driver

i.MX53 EVK Linux Reference Manual

28-4 Freescale Semiconductor

28.5 Source Code Structure

Table 28-1 shows the source files available in the source directory,

<ltib_dir>/rpm/BUILD/linux/drivers/usb.
/

Table 28-2 shows the platform related source files.

Table 28-3 shows the platform-related source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx5/

Table 28-1. USB Driver Files

File Description

host/ehci-hcd.c Host driver source file

host/ehci-arc.c Host driver source file

host/ehci-mem-iram.c Host driver source file for IRAM support

host/ehci-hub.c Hub driver source file

host/ehci-mem.c Memory management for host driver data structures

host/ehci-q.c EHCI host queue manipulation

host/ehci-q-iram.c Host driver source file for IRAM support

gadget/arcotg_udc.c Peripheral driver source file

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file

otg/fsl_otg.h OTG driver header file

otg/otg_fsm.c OTG FSM implement source file

otg/otg_fsm.h OTG FSM header file

gadget/fsl_updater.c FSL manufacture tool usb char driver source file

gadget/fsl_updater.h FSL manufacture tool usb char driver header file

Table 28-2. USB Platform Source Files

File Description

arch/arm/plat-mxc/include/mach/arc_otg.h

arch/arm/plat-mxs/include/mach/arc_otg.h

USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table 28-3. USB Platform Header Files

File Description

usb_dr.c Platform-related initialization

usb_h1.c Platform-related initialization

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 28-5

Table 28-4 shows the common platform source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc.

28.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_USB—Build support for USB

• CONFIG_USB_EHCI_HCD—Build support for USB host driver. In menuconfig, this option is

available under

Device drivers > USB support > EHCI HCD (USB 2.0) support.

By default, this option is M.

CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In menuconfig,

this option is available underDevice drivers > USB support > Support for Freescale controller.

By default, this option is Y.

• CONFIG_USB_EHCI_ARC_H1—Build support for selecting the USB Host1. In menuconfig, this

option is available underDevice drivers > USB support > Support for Host1 port on Freescale

controller. By default, this option is Y.

• CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In

menuconfig, this option is available under

Device drivers > USB support > Support for Host-side USB > EHCI HCD (USB 2.0) support >

Support for Freescale controller.

By default, this option is N.

• CONFIG_USB_STATIC_IRAM—Build support for selecting the IRAM usage for host. In

menuconfig, this option is available under

Device drivers > USB support > Use IRAM for USB.

By default, this option is N.

• CONFIG_USB_EHCI_ROOT_HUB_TT—Build support for OHCI or UHCI companion. In

menuconfig, this option is available under

Device drivers > USB support > Root Hub Transaction Translators.

By default, this option is Y selected by USB_EHCI_FSL && USB_SUPPORT.

• CONFIG_USB_STORAGE—Build support for USB mass storage devices. In menuconfig, this

option is available under

Table 28-4. USB Common Platform Files

File Description

isp1504xc.c ULPI PHY driver (USB3317 uses the same driver as ISP1504)

utmixc.c Internal UTMI transceiver driver

usb_common.c Common platform related part of USB driver

ARC USB Driver

i.MX53 EVK Linux Reference Manual

28-6 Freescale Semiconductor

Device drivers > USB support > USB Mass Storage support.

By default, this option is Y.

• CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is

available under

Device drivers > HID Devices > USB Human Interface Device (full HID) support.

By default, this option is Y.

• CONFIG_USB_GADGET—Build support for USB gadget. In menuconfig, this option is

available under

Device drivers > USB support > USB Gadget Support.

By default, this option is M.

• CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > USB Peripheral Controller (Freescale

USB Device Controller).

By default, this option is Y.

• CONFIG_USB_OTG—OTG Support, support dual role with ID pin detection.

By default, this option is N.

• CONFIG_UTMI_MXC_OTG—USB OTG pin detect support for UTMI PHY, enable UTMI PHY

for OTG support.

By default, this option is N.

• CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, this option is available

under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet

Support).

By default, this option is M.

• CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDIS protocol. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet

Support) > RNDIS support.

By default, this option is Y.

• CONFIG_USB_FILE_STORAGE—Build support for Mass Storage gadget. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.

By default, this option is M.

• CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is

available under

Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC ACM support).

By default, this option is M.

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 28-7

28.7 Programming Interface

This driver implements all the functions that are required by the USB bus protocol to interface with the

i.MX USB ports. See the BSP API document, for more information.

28.8 Default USB Settings

Table 28-5 shows the default USB settings.

•

By default, both usb device and host function are build-in kernel, otg port is used for device mode, and

host 1 is used for host mode.

The default configuration does not enable OTG port for both device and host mode. To enable USB-OTG

for both host and device mode, configure the kernel as follows and rebuild the kernel and modules:

• CONFIG_USB_EHCI_ARC_OTG—Enable support for the USB OTG port in HS/FS Host

mode.built as Y

• CONFIG_USB_GADGET—USB Gadget Support: built as y

• CONFIG_USB_OTG —OTG Support: built as Y

• CONFIG_MXC_OTG—USB OTG pin detect support for UTMI PHY: built as Y

• build USB GADGET driver as M, for example:

CONFIG_USB_ETH — usb ethernet gadget , build as M

CONFIG_USB_FILE_STORAGE—usb mass storage gadget, build as M

then , if you want to use EVK as mass storage device, insmod g_file_storage.ko

file=/dev/mmcblk0p2

if you want to use the otg as ethernet, insmod g_ether.ko , then you can use ifconfig usb0 to

configure the ip

28.9 Remote WakeUp

• OTG device do not support SET/CLEAR_FEATURE Remote-wakeup

• HOST support Remote-wakeup by usb device

28.10 System WakeUp

• Both host and device connect/disconnect event can be system wakeup source

Table 28-5. Default USB Settings

Platform OTG HS OTG FS Host1 Host2(HS) Host2(FS)

i.MX53 EVK enable N/A enable (HS) N/A N/A

i.MX50 EVK enable N/A enable (HS) N/A N/A

ARC USB Driver

i.MX53 EVK Linux Reference Manual

28-8 Freescale Semiconductor

28.11 USB Wakeup usage

28.11.1 How to enable usb wakeup system ability

For otg port:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

For device-only port:

echo enabled > /sys/devices/platform/fsl-usb2-udc/power/wakeup

For host-only port:

echo enabled > /sys/devices/platform/fsl-ehci.x/power/wakeup

(x is the port num)

For usb child device

echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

28.11.2 What kinds of wakeup event usb support

Take USBOTG port as the example.

Device mode wakeup:

- connect wakeup: when usb line connects to usb port, the other port is connected to PC (Wakeup signal:

vbus change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

Host mode wakeup:

- connect wakeup: when usb device connects to host port (Wakeup signal: ID/(dm/dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

- disconnect wakeup: when usb device disconnects to host port (Wakeup signal: ID/(dm/dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

- remote wakeup: press usb device (such as press usb key at usb keyboard) when usb device connects to

host port (Wakeup signal: ID/(dm/dp) change):

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE: For the hub on board, it needs to enable hub's wakeup first. for remote wakeup, it needs to do below

three steps:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup (enable the roothub's

wakeup)

echo enabled > /sys/bus/usb/devices/1-1/power/wakeup (enable the second level hub's

wakeup)

(1-1 is the hub name)

ARC USB Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 28-9

echo enabled > /sys/bus/usb/devices/1-1.1/power/wakeup (enable the usb device's wakeup,

that device connects at second level hub)

(1-1.1 is the usb device name)

28.11.3 How to close the usb child device power

echo auto > /sys/bus/usb/devices/1-1/power/control

echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at usb device)

ARC USB Driver

i.MX53 EVK Linux Reference Manual

28-10 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 29-1

Chapter 29
Secure Real Time Clock (SRTC) Driver

The Secure Real Time Clock (SRTC) module is used to keep the time and date. It provides a certifiable

time to the user and can raise an alarm if tampering with counters is detected. The SRTC is composed of

two sub-modules: Low power domain (LP) and High power domain (HP). The SRTC driver only supports

the LP domain with low security mode.

29.1 Hardware Operation

The SRTC is a real time clock with enhanced security capabilities. It provides an accurate, constant time,

regardless of the main system power state and without the need to use an external on-board time source,

such as an external RTC. The SRTC can wake up the system when a pre-set alarm is reached.

29.2 Software Operation

The following sections describe the software operation of the SRTC driver.

29.2.1 IOCTL

The SRTC driver complies with the Linux RTC driver model. See the Linux documentation in

<ltib_dir>/rpm/BUILD/linux/Documentation/rtc.txt for information on the RTC API.

Besides the initialization function, the SRTC driver provides IOCTL functions to set up the RTC timers

and alarm functions. The following RTC IOCTLs are implemented by the SRTC driver:

• RTC_RD_TIME

• RTC_SET_TIME

• RTC_AIE_ON

• RTC_AIE_OFF

• RTC_ALM_READ

• RTC_ALM_SET

In addition, the following IOCTLS were added to allow user application such as DRM to track changes in

the time, which is user settable. The DRM application needs a way to track how much the time changed

by so that it can manage its own secure clock = SRTC + secureclk_offset. The secureclk_offset should be

calculated by the DRM application based on changes to the SRTC time counter.

• RTC_READ_TIME_47BIT: allows a read of the 47-bit LP time counter on SRTC

• RTC_WAIT_FOR_TIME_SET: allows user thread to block until 47-bit LP time counter is set. At

which point, the user thread is woken up and is provided the SRTC offset (which is the difference

between the new and old LP counter)

Secure Real Time Clock (SRTC) Driver

i.MX53 EVK Linux Reference Manual

29-2 Freescale Semiconductor

The driver information can be access by the proc file system. For example,

root@freescale /unit_tests$ cat /proc/driver/rtc

rtc_time : 12:48:29

rtc_date : 2009-08-07

alrm_time : 14:41:16

alrm_date : 1970-01-13

alarm_IRQ : no

alrm_pending : no

24hr : yes

29.2.2 Keep Alive in the Power Off State

To keep preserve the time when the device is in the power off state, the SRTC clock source should be set

to CKIL and the voltage input, NVCC_SRTC_POW, should remain active. Usually these signals are

connected to the PMIC and software can configure the PMIC registers to enable the SRTC clock source

and power supply. Ordinarily, when the main battery is removed and the device is in power off state, a

coin-cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of the coin-cell

battery should be sufficient to power the SRTC. If the coin-cell battery is chargeable, it is recommend to

automatically enable the coin-cell charger so that the SRTC is properly powered.

29.3 Driver Features

The SRTC driver includes the following features:

• Implements all the functions required by Linux to provide the real time clock and alarm interrupt

• Reserves time in power off state

• Alarm wakes up the system from low power modes

29.4 Source Code Structure

The RTC module is implemented in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/rtc

Table 29-1 shows the RTC module files.

The source file for the SRTC specifies the SRTC function implementations.

29.5 Menu Configuration Options

To get to the SRTC driver, use the command ./ltib -c when located in the <ltib dir>. On the screen

displayed, select Configure the kernel and exit. When the next screen appears select the following options

to enable the SRTC driver:

• Device Drivers > Real Time Clock > Freescale MXC Secure Real Time Clock

Table 29-1. RTC Driver Files

File Description

rtc-mxc_v2.c SRTC driver implementation file

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 30-1

Chapter 30
Watchdog (WDOG) Driver

The Watchdog Timer module protects against system failures by providing an escape from unexpected

hang or infinite loop situations or programming errors. Some platforms may have two WDOG modules

with one of them having interrupt capability.

30.1 Hardware Operation

Once the WDOG timer is activated, it must be serviced by software on a periodic basis. If servicing does

not take place in time, the WDOG times out. Upon a time-out, the WDOG either asserts the wdog_b signal

or a wdog_rst_b system reset signal, depending on software configuration. The watchdog module cannot

be deactivated once it is activated.

30.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for a specific

platform. WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently. Since

some bits of the WGOD registers are only one-time programmable after booting, ensure these registers are

written correctly.

30.3 Generic WDOG Driver

The generic WGOD driver is implemented in the

<ltib_dir>/rpm/BUILD/linux/drivers/watchdog/mxc_wdt.c file. It provides functions for various IOCTLs

and read/write calls from the user level program to control the WDOG.

30.3.1 Driver Features

This WDOG implementation includes the following features:

• Generates the reset signal if it is enabled but not serviced within a predefined timeout value

(defined in milliseconds in one of the WDOG source files)

• Does not generate the reset signal if it is serviced within a predefined timeout value

• Provides IOCTL/read/write required by the standard WDOG subsystem

30.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

Watchdog (WDOG) Driver

i.MX53 EVK Linux Reference Manual

30-2 Freescale Semiconductor

• CONFIG_MXC_WATCHDOG—Enables Watchdog timer module. This option is available under

Device Drivers > Watchdog Timer Support > MXC watchdog.

30.3.3 Source Code Structure

Table 30-1 shows the source files for WDOG drivers that are in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/watchdog.
.

Watchdog system reset function is located under

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/wdog.c

30.3.4 Programming Interface

The following IOCTLs are supported in the WDOG driver:

• WDIOC_GETSUPPORT

• WDIOC_GETSTATUS

• WDIOC_GETBOOTSTATUS

• WDIOC_KEEPALIVE

• WDIOC_SETTIMEOUT

• WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see

<ltib_dir>/rpm/BUILD/linux/Documentation/watchdog.

Table 30-1. WDOG Driver Files

File Description

mxc_wdt.c WDOG function implementations

mxc_wdt.h Header file for WDOG implementation

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 31-1

Chapter 31
Pulse-Width Modulator (PWM) Driver

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored

sample audio images and generate tones. The PWM has 16-bit resolution and uses a 4×16 data FIFO to

generate sound. The software module is composed of a Linux driver that allows privileged users to control

the backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

31.1 Hardware Operation

Figure 31-1 shows the PWM block diagram.

Figure 31-1. PWM Block Diagram

Pulse-Width Modulator (PWM) Driver

i.MX53 EVK Linux Reference Manual

31-2 Freescale Semiconductor

The PWM follows IP Bus protocol for interfacing with the processor core. It does not interface with any

other modules inside the device except for the clock and reset inputs from the Clock Control Module

(CCM) and interrupt signals to the processor interrupt handler. The PWM includes a single external output

signal, PMWO. The PWM includes the following internal signals:

• Three clock inputs

• Four interrupt lines

• One hardware reset line

• Four low power and debug mode signals

• Four scan signals

• Standard IP slave bus signals

31.2 Clocks

The clock that feeds the prescaler can be selected from:

• High frequency clock—provided by the CCM. The PWM can be run from this clock in low power

mode.

• Low reference clock—32 KHz low reference clock provided by the CCM. The PWM can be run

from this clock in the low power mode.

• Global functional clock—for normal operations. In low power modes this clock can be switched

off.

The clock input source is determined by the CLKSRC field of the PWM control register. The CLKSRC

value should only be changed when the PWM is disabled.

31.3 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width of a series of

pulses to the power source. One common and effective use of the PWM is controlling the backlight of a

QVGA panel with a variable duty cycle.

Table 31-1 provides a summary of the interface functions in source code.

The function pwm_config() includes most of the configuration tasks for the PWM module, including the

clock source option, and period and duty cycle of the PWM output signal. It is recommended to select the

Table 31-1. PWM Driver Summary

Function Description

struct pwm_device *pwm_request(int pwm_id, const char *label) Request a PWM device

void pwm_free(struct pwm_device *pwm) Free a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration

int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

Pulse-Width Modulator (PWM) Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 31-3

peripheral clock of the PWM module, rather than the local functional clock, as the local functional clock

can change.

31.4 Driver Features

The PWM driver includes the following software and hardware support:

• Duty cycle modulation

• Varying output intervals

• Two power management modes—full on and full of

31.5 Source Code Structure

Table 31-2 lists the source files and headers available in the following directories:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/pwm.c

<ltib_dir>/rpm/BUILD/linux/include/linux/pwm.h
.

31.6 Menu Configuration Options

To get to the PWM driver, use the command ./ltib -c when located in the <ltib dir>. On the screen

displayed, select Configure the kernel and exit. When the next screen appears select the following option

to enable the PWM driver:

• System Type > Enable PWM driver

• Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic PWM based

Backlight Driver

Table 31-2. PWM Driver Files

File Description

pwm.h Functions declaration

pwm.c Functions definition

Pulse-Width Modulator (PWM) Driver

i.MX53 EVK Linux Reference Manual

31-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 32-1

Chapter 32
FlexCAN Driver

32.1 Driver Overview

FlexCAN is a communication controller implementing the CAN protocol according to the CAN 2.0B

protocol specification. The CAN protocol was primarily designed to be used as a vehicle serial data bus,

meeting the specific requirements of this field such as real-time processing, reliable operation in the EMI

environment of a vehicle, cost-effectiveness and required bandwidth. The standard and extended message

frames are supported. The maximum message buffer is 64. The driver is a network device driver of

PF_CAN protocol family.

For the detailed information, see http://lwn.net/Articles/253425 or Documentation/networking/can.txt in

Linux source directory.

32.2 Hardware Operation

For the information on hardware operations, see the i.MX53 Multimedia Applications Processor Reference

Manual.

32.3 Software Operation

The CAN driver is a network device driver. For the common information on software operation, refer to

the documents in the kernel source directory Documentation/networking/can.txt.

The driver includes parameters that need to be set by the user to use CAN such as the bitrate, clock source,

and so on. Currently the driver only supports the configuration when the device is not activated. To

configure the CAN parameters, enter directory /sys/devices/platform/FlexCAn.x/ (x is the device

number):

• br_clksrc configures the clock source

• bitrate configures the bitrate. Currenlty, this parameter only shows the bitrate that is supported.

To ensure bitrate exactly, set the individual parameters:

— br_presdiv configures prescale divider

— br_rjw configures RJW

— br_propseg configures the length of the propagation segment

— br_pseg1 configures the length of phase buffer segment 1

— br_pseg2 configures the length of phase buffer segment 2

• abort enables or disables abort feature

• bcc sets backwards compatibility with previous FlexCAN versions

FlexCAN Driver

i.MX53 EVK Linux Reference Manual

32-2 Freescale Semiconductor

• boff_rec configures support of recover from bus off state

• fifo enables or disables FIFO work mode

• listen enables or disables listen only mode

• local_priority enables or disables the local priority. In current version, this parameter is not used

• loopback sets hardware at loopback mode or not

• maxmb sets the maximum message buffers

• smp sets the sampling mode

• srx_dis disables or enables the self-reception

• state shows the device status

• ext_msg configures support for extended message

• std_msg configures support for standard message

• tsyn enables or disables timer synchronization feature

• wak_src sets wakeup source

• wakeup enables or disables self-wakeup

• xmit_maxmb sets the maximum message buffer for the transmission

There are two operations to activate or deactivate CAN interface. Using the CAN0 interfaces as an

example:

• ifconfig can0 up

• ifconfig can0 down

32.4 Source Code Structure

Table 32-1 shows the driver source file available in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/net/can/flexcan.

/

32.5 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_CAN – Build support for PF_CAN protocol family. In menuconfig, this option is

available under

Networking > CAN bus subsystem support.

Table 32-1. FlexCAN Driver Files

File Description

dev.c Operation about parameters

drv.c Network device driver

mbm.c Management of message buffer

flexcan.h Head file of FlexCAN

FlexCAN Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 32-3

• CONFIG_CAN_RAW – Build support for Raw CAN protocol. In menuconfig, this option is

available under

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with CAN-ID

filtering).

• CONFIG_CAN_BCM – Build support for Broadcast Manager CAN protocol. In menuconfig, this

option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol (with content

filtering).

• CONFIG_CAN_VCAN – Build support for Virtual Local CAN interface (also in Ethernet

interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local CAN Interface

(vcan).

• CONFIG_CAN_DEBUG_DEVICES – Build support to produce debug messages to the system

log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices debugging

messages.

• CONFIG_CAN_FLEXCAN – Build support for FlexCAN device driver. In menuconfig, this

option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale FlexCAN.

FlexCAN Driver

i.MX53 EVK Linux Reference Manual

32-4 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 33-1

Chapter 33
Media Local Bus Driver

MediaLB is an on-PCB or inter-chip communication bus specifically designed to standardize a common

hardware interface and software API library. This standardization allows an application or multiple

applications to access the MOST Network data, or to communicate with other applications, with minimum

effort. MediaLB supports all the MOST Network data transport methods: synchronous stream data,

asynchronous packet data, and control message data. MediaLB also support an isochronous data transport

method. For detailed information about the MediaLB, see the Media Local Bus Specification.

33.1 Overview

33.1.1 MLB Device Module

Figure 33-1. MLB Device Top-Level Block Diagram

The MediaLB module implements the Physical Layer and Link Layer of the MediaLB specification,

interfacing the i.MX to the MediaLB controller. The MLB implements the 3-pin MediaLB mode and can

run at speeds up to 1024Fs. It does not implement MediaLB controller functionality. All MediaLB devices

Media Local Bus Driver

i.MX53 EVK Linux Reference Manual

33-2 Freescale Semiconductor

support a set of physical channels for sending data over the MediaLB. Each physical channel is 4 bytes in

length (quadlet) and grouped into logical channels with one or more physical channels allocated to each

logical channel. These logical channels can be any combination of channel type (synchronous,

asynchronous, control, or isochronous) and direction (transmit or receive).

The MLB provides support for up to 16 logical channels and up to 31 physical channels with a maximum

of 124 bytes of data per frame. Each logical channel is referenced using an unique channel address and

represents a unidirectional data path between a MediaLB device transmitting the data and the MediaLB

device(s) receiving the data.

33.1.1.1 Supported Feature

• Synchronous, asynchronous, control and isochronous channel.

• Up to 16 logical channels and 31 physical channels running at a maximum speed of 1024Fs

• Transmission of commands and data and reception of receive status when functioning as the

transmitting device associated with a logical channel address

• Reception of commands and data and transmission as receive status responses when functioning

as the receiving device associated with a logical channel address

• MediaLB lock detection

• System channel command handling

33.1.1.2 Modes of Operation

• Normal mode. The MediaLB Device dictates two particular methods:

— Ping-Pong Buffering mode

— Circular Buffering mode (only used on synchronous type transfer)

• Loop-Back test mode

33.1.2 MLB Driver Overview

The MLB driver is designed as a common linux character driver. It implements one asynchronous and one

control channel device with Ping-Pong buffering operation mode. The supported frame rates are 256, 512,

and 1024Fs. The MLB driver uses common read/write interfaces to receive/send packets and uses the

ioctl interface to configure the MLB device module.

33.2 MLB Driver

33.2.1 Supported Features

• 256Fs, 512Fs and 1024Fs frame rates

• Asynchronous and control channel types

• The following configurations to MLB device module:

— Frame rate

— Device address

Media Local Bus Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 33-3

— Channel address

• MLB channel exception get interface. All the channel exceptions are sent and handled by the

application.

33.2.2 MLB Driver Architecture

The MLB driver is a common linux character driver and the architecture is shown in Figure 33-2.

Figure 33-2. MLB Driver Architecture Diagram

The MLB driver creates two minor devices, one for control tx/rx channel and the other for asynchronous.

Their device files are /dev/ctrl and /dev/async. Each minor device has the same interfaces, and handle

both Tx and Rx operation. The following description is for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission and reception

between module and IRAM is handled by the MLB module DMA. The driver is responsible for

configuring the buffer start and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a packet arrives,

the MLB module puts the received packet into the IRAM Rx buffer, and notifies the driver by interrupt.

The driver then copy the packet from the IRAM to one ring buffer node indicated by the write position,

and updates the write position with the next empty node. Finally the packet reader application is notified,

and it gets one packet from the node indicated by the read position of ring buffer. After the read completed,

it updates the read position with the next available buffer node. There is no received packet in the ring

buffer when the read and write position is the same.

For transmission, the driver writes the packet given by the writer application into the IRAM Tx buffer,

updates the Tx status and sets MLB device module Tx buffer pointer to start transmission. After

transmission completes, the driver is notified by interrupt and updates the Tx status to accept the next

packet from the application.

T
x

R
x IRAM

MLB DIM

read()

MLB settings:
[speed]

[device address]
[channel address]

[channel start/shutdown]
exception

event

ioctl() write()

ISR memcpy

poll()

poll

TX status

ISR write pos

read pos

dma tx/rx

User space

Kernel

MX35
T

x

R
x IRAM

MLB DIM

read()

MLB settings:
[speed]

[device address]
[channel address]

[channel start/shutdown]
exception

event

ioctl() write()

ISR memcpy

poll()

poll

TX status

ISR write pos

read pos

write pos

read pos

dma tx/rx

User space

Kernel

MX35

Media Local Bus Driver

i.MX53 EVK Linux Reference Manual

33-4 Freescale Semiconductor

The driver supports NON BLOCK I/O. User applications can poll to check if there are packets or exception

events to read, and also they can check if a packet can be sent or not. If there are exception events, the

application can call ioctl to get the event. The ioctl also provides the interface to configure the frame rate,

device address and channel address.

33.2.3 Software Operation

The MLB driver provides a common interface to application.

• Packet read/write–BLOCK and NONBLOCK Packet I/O modes are supported. Only one packet

can be read or written at once. The minimum read length must be greater or equal to the received

packet length, meanwhile the write length must be shorter than 1024Bytes.

• Polling–The MLB driver provide polling interface which polls for three status, application can use

select to get current I/O status:

— Packet available for read (ready to read)

— Driver is ready to send next packet (ready to write)

— Exception event comes (ready to read)

• ioctl–MLB driver provides the following ioctl:

— MLB_SET_FPS

Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

— MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the i.MX35.

— MLB_SET_DEVADDR

Argument type: unsigned char

Set MLB device address, which is used by the system channel MlbScan command.

— MLB_CHAN_SETADDR

Argument type: unsigned int

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx channel

address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1]

— MLB_CHAN_STARTUP

Startup the corresponding type of channel for transmit and reception.

— MLB_CHAN_SHUTDOWN

Shutdown the corresponding type of channel.

— MLB_CHAN_GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of enumeration:

MLB_EVT_TX_PROTO_ERR_CUR

MLB_EVT_TX_BRK_DETECT_CUR

MLB_EVT_RX_PROTO_ERR_CUR

MLB_EVT_RX_BRK_DETECT_CUR

Media Local Bus Driver

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 33-5

33.3 Driver Files

Table 33-1 lists the source file associated with the MLB driver that are found in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/mlb/.

33.4 Menu Configuration Options

To get to the MediaLB configuration, use the command ./ltib -c when located in the <ltib dir>. In the

screen, select Configure Kernel, exit, and a new screen appears. This option is available under:

• Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support.

Table 33-1. MLB Driver Source File List

File Description

mxc_mlb.c Source file for MLB driver

include/linux/mxc_mlb.h Include file for MLB driver

Media Local Bus Driver

i.MX53 EVK Linux Reference Manual

33-6 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 34-1

Chapter 34
OProfile

OProfile is a system-wide profiler for Linux systems, capable of profiling all running code at low

overhead. OProfile is released under the GNU GPL. It consists of a kernel driver, a daemon for collecting

sample data, and several post-profiling tools for turning data into information.

34.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of a wide variety of

interesting statistics, which can also be used for basic time-spent profiling. All code is profiled: hardware

and software interrupt handlers, kernel modules, the kernel, shared libraries, and applications.

34.2 Features

The features of the OProfile are as follows:

• Unobtrusive—No special recompilations or wrapper libraries are necessary. Even debug symbols

(-g option to gcc) are not necessary unless users want to produce annotated source. No kernel patch

is needed; just insert the module.

• System-wide profiling—All code running on the system is profiled, enabling analysis of system

performance.

• Performance counter support—Enables collection of various low-level data and association for

particular sections of code.

• Call-graph support—With an 2.6 kernel, OProfile can provide gprof-style call-graph profiling data.

• Low overhead—OProfile has a typical overhead of 1–8% depending on the sampling frequency

and workload.

• Post-profile analysis—Profile data can be produced on the function-level or instruction-level

detail. Source trees, annotated with profile information, can be created. A hit list of applications

and functions that utilize the most CPU time across the whole system can be produced.

• System support—Works with almost any 2.2, 2.4 and 2.6 kernels, and works on based platforms.

34.3 Hardware Operation

OProfile is a statistical continuous profiler. In other words, profiles are generated by regularly sampling

the current registers on each CPU (from an interrupt handler, the saved PC value at the time of interrupt is

stored), and converting that runtime PC value into something meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of which task was

running at the time of the interrupt, and converting the values into a file offset against a particular binary

file. Each PC value is thus converted into a tuple (group or set) of binary-image offset. The userspace tools

OProfile

i.MX53 EVK Linux Reference Manual

34-2 Freescale Semiconductor

can use this data to reconstruct where the code came from, including the particular assembly instructions,

symbol, and source line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and how often and

more often than not, this statistical approximation is good enough to reflect reality. In common operation,

the time between each sample interrupt is regulated by a fixed number of clock cycles. This implies that

the results reflect where the CPU is spending the most time. This is a very useful information source for

performance analysis.

The ARM CPU provides hardware performance counters capable of measuring these events at the

hardware level. Typically, these counters increment once per each event and generate an interrupt on

reaching some pre-defined number of events. OProfile can use these interrupts to generate samples and the

profile results are a statistical approximation of which code caused how many instances of the given event.

34.4 Software Operation

34.4.1 Architecture Specific Components

If OProfile supports the hardware performance counters available on a particular architecture. Code for

managing the details of setting up and managing these counters can be located in the kernel source tree in

the relevant <ltib_dir>/rpm/BUILD/linux/arch/arm/oprofile directory. The architecture-specific

implementation operates through filling in the oprofile_operations structure at initialization. This

provides a set of operations, such as setup(), start(), stop(), and so on, that manage the hardware-specific

details the performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample(). This is where a

particular sample taken at interrupt time is fed into the generic OProfile driver code.

34.4.2 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from userspace at

/dev/oprofile. This consists of small files for reporting and receiving configuration from userspace, as

well as the actual character device that the OProfile userspace receives samples from. At setup() time, the

architecture-specific code may add further configuration files related to the details of the performance

counters. The filesystem also contains a stats directory with a number of useful counters for various

OProfile events.

34.4.3 Generic Kernel Driver

The generic kernel driver resides in <ltib_dir>/rpm/BUILD/linux/drivers/oprofile/, and forms the core

of how OProfile operates in the kernel. The generic kernel driver takes samples delivered from the

architecture-specific code (through oprofile_add_sample()), and buffers this data (in a transformed

configuration) until releasing the data to the userspace daemon through the /dev/oprofile/buffer

character device.

OProfile

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 34-3

34.4.4 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to the disk. It takes

the single data stream from the kernel and logs sample data against a number of sample files (available in

/var/lib/oprofile/samples/current/). For the benefit of the separate functionality, the names and paths

of these sample files are changed to reflect where the samples were from. This can include thread IDs, the

binary file path, the event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that is, changes in the running of

the system do not invalidate stored data). This enables the post-profiling tools to run on this data at any

time (assuming the original binary files are still available and unchanged).

34.4.5 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the post-profiling tools.

In general, they collate a subset of the available sample files, load and process each one correlated against

the relevant binary file, and produce user readable information.

34.5 Requirements

The requirements of OProfile are as follows:

• Add Oprofile support with Cortex-A8 Event Monitor

34.6 Source Code Structure

Oprofile platform-specific source files are available in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/oprofile/

The generic kernel driver for Oprofile is located under <ltib_dir>/rpm/BUILD/linux/drivers/oprofile/

Table 34-1. OProfile Source Files

File Description

op_arm_model.h Header File with the register and bit definitions

common.c Source file with the implementation required for all platforms

op_model_v7.c Source file for ARM V7 (Cortex A8) Event Monitor Driver

op_model_v7.h Header file for ARM V7 (Cortex A8) Event Monitor Driver

OProfile

i.MX53 EVK Linux Reference Manual

34-4 Freescale Semiconductor

34.7 Menu Configuration Options

The following Linux kernel configurations are provided for this module. To get to the Oprofile

configuration, use the command ./ltib -c from the <ltib dir>. On the screen, first go to Package list

and select oprofile. Then return to the first screen and, select Configure Kernel, then exit, and a new

screen appears.

• CONFIG_OPROFILE—configuration option for the oprofile driver. In the menuconfig this option

is available under

General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling

(EXPERIMENTAL)

34.8 Programming Interface

This driver implements all the methods required to configure and control PMU and L2 cache EVTMON

counters. Refer to the doxygen documentation for more information (in the doxygen folder of the

documentation package).

34.9 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The latency

requirements are not needed. The rate at which interrupts are generated depends on the event.

34.10 Example Software Configuration

The following steps show and example of how to configure the OProfile:

1. Use the command ./ltib -c from the <ltib dir>. On the screen, first go to Package list and select

oprofile. The current version in ltib is 0.9.5.

2. Then return to the first screen and select Configure Kernel, follow the instruction from

Section 34.7, “Menu Configuration Options,” to enable Oprofile in the kernel space.

3. Save the configuration and start to build.

4. Copy Oprofile binaries to target rootfs. Copy vmlinux to /boot directory and run Oprofile

root@ubuntu:/boot# opcontrol --separate=kernel --vmlinux=/boot/vmlinux

root@ubuntu:/boot# opcontrol --reset

Signalling daemon... done

root@ubuntu:/boot# opcontrol --setup --event=CPU_CYCLES:100000

root@ubuntu:/boot# opcontrol --start

Profiler running.

root@ubuntu:/boot# opcontrol --dump

root@ubuntu:/boot# opreport

Overflow stats not available

CPU: ARM V7 PMNC, speed 0 MHz (estimated)

Counted CPU_CYCLES events (Number of CPU cycles) with a unit mask of 0x00 (No un

it mask) count 100000

CPU_CYCLES:100000|

 samples| %|

 4 22.2222 grep

 CPU_CYCLES:100000|

OProfile

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 34-5

 samples| %|

 4 100.000 libc-2.9.so

 2 11.1111 cat

 CPU_CYCLES:100000|

 samples| %|

 1 50.0000 ld-2.9.so

 1 50.0000 libc-2.9.so

...

root@ubuntu:/boot# opcontrol --stop

Stopping profiling.

OProfile

i.MX53 EVK Linux Reference Manual

34-6 Freescale Semiconductor

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 35-1

Chapter 35
Frequently Asked Questions

35.1 Downloading a File

There are various ways to download files onto a Linux system. The following procedure gives instructions

on how to do this through a serial download.

To download a file through the serial port using a Windows host system, follow these steps:

1. Make sure the Linux serial prompt goes to the Windows terminal. For more information about how

to set this up, see the User Guide.

2. Make sure Linux boots to the serial prompt and log in using root

3. Type rz under the serial prompt at /mnt/ramfs/root

4. Under Hyper Terminal, click on Transfer > Send File > Browse... >, then go to the directory with

the file to download.

5. Click on Open and then Send. The protocol should be Zmodem with Crash Recovery, which is the

default.

This should start the downloading process. For the file transfer, the lrzsz package is required. Another way

to transfer a file is to use FTP which makes the download much faster than through the serial port. To use

FTP, the Ethernet interface has to be set up first.

35.2 Creating a JFFS2 Mount Point

To mount a pre-built JFFS2 file system onto the target, mkfs.jffs2 can be used to generate the JFFS2 file

system on the development system (the host) first and then mount it on the target. The following steps

describe how to do this. If an empty JFFS2 file system is sufficient, then only step 2 is required.

1. Generate the JFFS2 file system under the host:

Create a temporary directory on the host, for example jffs2 under /tmp and then move all the files

and directories to place inside the JFFS2 file system into the jffs2 directory. Issue the following

command from /tmp:

mkfs.jffs2 -d jffs2 -o fs.jffs2 -e 0x20000 --pad=0x400000

jffs2 is the source directory. -e: erase block size. --pad=0x400000 is to pad 0xff up to 4 Mbytes.

The output file is fs.jffs2.

NOTE

• Make sure the fs.jffs2 file is within this size limit of 4 Mbyte.

• Download the prebuilt version of the mkfs.jffs2 from

ftp://sources.redhat.com/pub/jffs2/mkfs.jffs2.

Frequently Asked Questions

i.MX53 EVK Linux Reference Manual

35-2 Freescale Semiconductor

2. Mount the JFFS2 file system on the target system:

The JFFS2 file system can be mounted on one of the MTD partitions. The partition table is set up

in two ways: static and dynamic. If no RedBoot partition is created when Linux boots on the target,

a static partition table is used from the MTD map driver source code (mxc_nor.c for example).

Otherwise, the RedBoot partition is used instead of the static one.

In most cases, it is more flexible to set up a partition in RedBoot for JFFS2 that can be used by

Linux. To do this, use RedBoot to program (use fis create) the newly created JFFS2 image into

the Flash on some unused space and then create a partition using fis create.

The following example illustrates how to do this in more detail.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point

RedBoot 0xA0000000 0xA0000000 0x00040000 0x00000000

kernel 0xA0100000 0x00100000 0x00200000 0x00100000

root 0xA0300000 0x00300000 0x00D00000 0x00300000

jffs2 0xA1200000 0xA1200000 0x00200000 0xFFFFFFFF

FIS directory 0xA1FE0000 0xA1FE0000 0x0001F000 0x00000000

RedBoot config 0xA1FFF000 0xA1FFF000 0x00001000 0x00000000

The above shows that a RedBoot partition called jffs2 is created which contains the JFFS2 image

inside the Flash. When booting Linux, the kernel is able to recognize the RedBoot partitions and

create MTD partitions correspondingly when CONFIG_MTD_REDBOOT_PARTS=y is in the kernel

configuration (it is the default configuration on all i.MX platforms). With the above example, the

Linux kernel boot message shows:

Searching for RedBoot partition table in phys_mapped_flash at offset0x1fe0000

6 RedBoot partitions found on MTD device phys_mapped_flash

Creating 6 MTD partitions on "phys_mapped_flash":

0x00000000-0x00040000 : "RedBoot"

0x00100000-0x00300000 : "kernel"

0x00300000-0x01000000 : "root"

0x01200000-0x01400000 : "jffs2"

0x01fe0000-0x01fff000 : "FIS directory"

The JFFS2 is the fourth MTD partition under Linux in this case. To mount this MTD partition after

booting Linux, type:

cd /tmp

mkdir jffs2

mount -t jffs2 /dev/mtdblock/3 /tmp/jffs2

This mounts /dev/mtdblock/3 to the /tmp/jffs2 directory as the JFFS2 file system (directory name can be

something other than jffs2). The static partition method uses the partition table defined in the NOR MTD

map driver source code. The way to mount it is very similar to what is described above.

35.3 NFS Mounting Root File System

1. Assuming the root file system is under/tmp/fs, modify the /etc/exports file on the Linux host by

adding the following line:

/tmp/fs *(rw,no_root_squash)

2. Make sure the NFS service is started on the Linux host machine. To start it on the host machine,

issue:

service nfs start

InstallNFS RPM if not already installed.

Frequently Asked Questions

i.MX53 EVK Linux Reference Manual

Freescale Semiconductor 35-3

3. To boot with a NFS mounted file system under RedBoot, use the following command:

exec -b 0x100000 -l 0x200000 -c "noinitrd console=tty0 console=ttymxc1 root=/dev/nfs

nfsroot=1.1.1.1:/tmp/fs rw init=/linuxrc ip=dhcp"

The above example assumes the Linux host IP address is 1.1.1.1. This needs to be modified in the

command line used.

NOTE

The /etc/fstab mounts several ramfs drives in places like /root and /mnt

(see /etc/fstab for the complete list). This is desirable when the root file

system is burned into Flash as it provides some read/write disk space.

However, this causes problems when doing an NFS mount of the root file

system because any files added or modified on these directories exists only

in RAM, not on the NFS mount. In addition, these drives hide any contents

of their respective directories on the host NFS mount. Not all directories of

the root file system are affected by this, only the ones that fstab loads a ramfs

on top of. This can be fixed by editing /etc/fstab and deleting or

commenting out all lines that have the word “ramfs” in them.

35.4 Error: NAND MTD Driver Flash Erase Failure

The NAND MTD driver may report an error while erasing/writing the NAND Flash. One possible reason

for this failure is the NAND Flash is write protected.

35.5 Error: NAND MTD Driver Attempt to Erase a Bad Block

This error indicates that a block marked as bad is attempting to be erased, which the MTD layer does not

allow. Sometimes many or all the blocks of the NAND Flash are reported as bad. This could be because

garbage was written to the block OOB area, possibly during testing of the board. To overcome this, the

Flash must be erased at a low level, bypassing the MTD layer. For this, the NAND driver needs to be

recompiled by enabling MXC_NAND_LOW_LEVEL_ERASE definition in the mxc_nd.c file. This

produces an MXC NAND driver, which upon loading, erases the entire NAND Flash during initialization.

Be careful when using this feature. Loading the NAND driver causes the entire NAND device to be erased

at a low-level, without obeying the manufacturer-marked bad block information.

35.6 Using the Memory Access Tool

The Memory Access Tool is used to access kernel memory space from user space. The tool can be used to

dump registers or write registers for debug purposes.

To use this tool, run the executable file memtool located in /unit_test:

• Type memtool without any arguments to print the help information

• Type memtool [-8 | -16 | -32] addr count to read data from a physical address

• Type memtool [-8 | -16 | -32] addr=value to write data to a physical address

If a size parameter is not specified, the default size is 32-bit access. All parameters are in hexadecimal.

Frequently Asked Questions

i.MX53 EVK Linux Reference Manual

35-4 Freescale Semiconductor

35.7 How to Make Software Workable when JTAG is Attached

When the JTAG is attached, add option jtag=on in the command line when launching the kernel.

	i.MX53 EVK Linux
	Reference Manual
	Contents
	Tables
	Figures
	About This Book
	Chapter 1 Introduction
	1.1 Software Base
	1.2 Features

	Chapter 3 Machine Specific Layer (MSL)
	3.1 Interrupts
	3.1.1 Interrupt Hardware Operation
	3.1.2 Interrupt Software Operation
	3.1.3 Interrupt Features
	3.1.4 Interrupt Source Code Structure
	3.1.5 Interrupt Programming Interface

	3.2 Timer
	3.2.1 Timer Hardware Operation
	3.2.2 Timer Software Operation
	3.2.3 Timer Features
	3.2.4 Timer Source Code Structure

	3.3 Memory Map
	3.3.1 Memory Map Hardware Operation
	3.3.2 Memory Map Software Operation
	3.3.3 Memory Map Features
	3.3.4 Memory Map Source Code Structure
	3.3.5 Memory Map Programming Interface

	3.4 IOMUX
	3.4.1 IOMUX Hardware Operation
	3.4.2 IOMUX Software Operation
	3.4.3 IOMUX Features
	3.4.4 IOMUX Source Code Structure
	3.4.5 IOMUX Programming Interface

	3.5 General Purpose Input/Output(GPIO)
	3.5.1 GPIO Software Operation
	3.5.2 GPIO Features
	3.5.3 GPIO Source Code Structure
	3.5.4 GPIO Programming Interface

	Chapter 4 Smart Direct Memory Access (SDMA) API
	4.1 Overview
	4.2 Hardware Operation
	4.3 Software Operation
	4.4 Source Code Structure
	4.5 Menu Configuration Options
	4.6 Programming Interface
	4.7 Usage Example

	Chapter 3 MC13892 Regulator Driver
	3.1 Hardware Operation
	3.2 Driver Features
	3.3 Software Operation
	3.4 Regulator APIs
	3.5 Driver Architecture
	3.6 Driver Interface Details
	3.7 Source Code Structure
	3.8 Menu Configuration Options

	Chapter 4 MC13892 RTC Driver
	4.1 Driver Features
	4.2 Software Operation
	4.3 Driver Implementation Details
	4.3.1 Driver Access and Control

	4.4 Source Code Structure
	4.5 Menu Configuration Options

	Chapter 5 MC13892 Digitizer Driver
	5.1 Driver Features
	5.2 Software Operation
	5.3 Source Code Structure
	5.4 Menu Configuration Options

	Chapter 6 CPU Frequency Scaling (CPUFREQ) Driver
	6.1 Software Operation
	6.2 Source Code Structure
	6.3 Menu Configuration Options
	6.3.1 Board Configuration Options

	Chapter 7 Low-level Power Management (PM) Driver
	7.1 Hardware Operation
	7.2 Software Operation
	7.3 Source Code Structure
	7.4 Menu Configuration Options
	7.5 Programming Interface

	Chapter 8 Dynamic Voltage Frequency Scaling (DVFS) Driver
	8.1 Hardware Operation
	8.2 Software Operation
	8.3 Source Code Structure
	8.4 Menu Configuration Options
	8.4.1 Board Configuration Options

	Chapter 9 Software Based Peripheral Domain Frequency Scaling
	9.1 Software based Bus Frequency Scaling
	9.1.1 Low Power Audio Playback Mode (LPAPM)
	9.1.2 Medium Frequency setpoint
	9.1.3 High Frequency setpoint

	9.2 Source Code Structure
	9.3 Menu Configuration Options
	9.3.1 Board Configuration Options

	Chapter 10 Image Processing Unit (IPU) Drivers
	10.1 Hardware Operation
	10.2 Software Operation
	10.2.1 IPU Frame Buffer Drivers Overview

	10.3 Source Code Structure
	10.4 Menu Configuration Options
	10.5 Programming Interface

	Chapter 11 Video for Linux Two (V4L2) Driver
	11.1 V4L2 Capture Device
	11.1.1 V4L2 Capture IOCTLs
	11.1.2 Use of the V4L2 Capture APIs

	11.2 V4L2 Output Device
	11.2.1 V4L2 Output IOCTLs
	11.2.2 Use of the V4L2 Output APIs

	11.3 Source Code Structure
	11.4 Menu Configuration Options
	11.5 V4L2 Programming Interface

	Chapter 12 LVDS Display Bridge(LDB) Driver
	12.1 Hardware Operation
	12.2 Software Operation
	12.3 Source Code Structure
	12.4 Menu Configuration Options
	12.5 Programming Interface

	Chapter 13 i.MX5 Dual Display
	13.1 Hardware Operation
	13.2 Software Operation
	13.3 Examples

	Chapter 14 Video Processing Unit (VPU) Driver
	14.1 Hardware Operation
	14.2 Software Operation
	14.3 Source Code Structure
	14.4 Menu Configuration Options
	14.5 Programming Interface
	14.6 Defining an Application

	Chapter 15 Graphics Processing Unit (GPU)
	15.1 Driver Features
	15.2 Hardware Operation
	15.3 Software Operation
	15.4 Source Code Structure
	15.5 API References
	15.6 Menu Configuration Options

	Chapter 16 TV Decoder (TV-In) Driver
	16.1 Hardware Operation
	16.2 Software Operation
	16.3 Source Code Structure Configuration
	16.4 Linux Menu Configuration Options

	Chapter 17 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	17.1 SoC Sound Card
	17.1.1 Stereo Codec Features
	17.1.2 Multi-channel Codec Feature
	17.1.3 Sound Card Information

	17.2 ASoC Driver Source Architecture
	17.3 Menu Configuration Options
	17.4 Hardware Operation
	17.4.1 Stereo Audio Codec

	17.5 Software Operation
	17.5.1 Sound Card Registration
	17.5.2 Device Open

	Chapter 18 The Sony/Philips Digital Interface (S/PDIF) Tx Driver
	18.1 S/PDIF Overview
	18.1.1 Hardware Overview
	18.1.2 Software Overview

	18.2 S/PDIF Tx Driver
	18.2.1 Driver Design
	18.2.2 Provided User Interface

	18.3 Source Code Structure
	18.4 Menu Configuration Options

	Chapter 19 SPI NOR Flash Memory Technology Device (MTD) Driver
	19.1 Hardware Operation
	19.2 Software Operation
	19.3 Driver Features
	19.4 Source Code Structure
	19.5 Menu Configuration Options

	Chapter 20 NAND Flash Memory Technology Device (MTD) Driver
	20.1 Overview
	20.1.1 Hardware Operation
	20.1.2 Software Operation

	20.2 Requirements
	20.3 Source Code Structure
	20.4 Linux Menu Configuration Options
	20.5 Programming Interface

	Chapter 21 SATA Driver
	21.1 Hardware Operation
	21.2 Software Operation
	21.3 Source Code Structure Configuration
	21.4 Linux Menu Configuration Options
	21.5 Board Configuration Options
	21.6 Programming Interface
	21.7 Usage Example
	21.8 Usage Example

	Chapter 22 Low-Level Keypad Driver
	22.1 Hardware Operation
	22.2 Software Operation
	22.3 Reassigning Keycodes
	22.4 Driver Features
	22.5 Implemented as a standard input deviceMX53 EVK Keypad
	22.6 Source Code Structure
	22.7 Menu Configuration Options
	22.8 Programming Interface
	22.9 Interrupt Requirements

	Chapter 23 Fast Ethernet Controller (FEC) Driver
	23.1 Hardware Operation
	23.2 Software Operation
	23.3 Source Code Structure
	23.4 Menu Configuration Options
	23.5 Programming Interface
	23.5.1 Device-Specific Defines
	23.5.2 Getting a MAC Address

	Chapter 24 Inter-IC (I2C) Driver
	24.1 I2C Bus Driver Overview
	24.2 I2C Device Driver Overview
	24.3 Hardware Operation
	24.4 Software Operation
	24.4.1 I2C Bus Driver Software Operation
	24.4.2 I2C Device Driver Software Operation

	24.5 Driver Features
	24.6 Source Code Structure
	24.7 Menu Configuration Options
	24.8 Programming Interface
	24.9 Interrupt Requirements

	Chapter 25 Configurable Serial Peripheral Interface (CSPI) Driver
	25.1 Hardware Operation
	25.2 Software Operation
	25.2.1 SPI Sub-System in Linux
	25.2.2 Software Limitations
	25.2.3 Standard Operations
	25.2.4 CSPI Synchronous Operation

	25.3 Driver Features
	25.4 Source Code Structure
	25.5 Menu Configuration Options
	25.6 Programming Interface
	25.7 Interrupt Requirements

	Chapter 26 MMC/SD/SDIO Host Driver
	26.1 Hardware Operation
	26.2 Software Operation
	26.3 Driver Features
	26.4 Source Code Structure
	26.5 Menu Configuration Options
	26.6 Programming Interface

	Chapter 27 Universal Asynchronous Receiver/Transmitter (UART) Driver
	27.1 Hardware Operation
	27.2 Software Operation
	27.3 Driver Features
	27.4 Source Code Structure
	27.5 Configuration
	27.5.1 Menu Configuration Options
	27.5.2 Source Code Configuration Options

	27.6 Programming Interface
	27.7 Interrupt Requirements
	27.8 Device Specific Information
	27.8.1 UART Ports
	27.8.2 Board Setup Configuration

	27.9 Early UART Support

	Chapter 28 ARC USB Driver
	28.1 Architectural Overview
	28.2 Hardware Operation
	28.3 Software Operation
	28.4 Driver Features
	28.5 Source Code Structure
	28.6 Menu Configuration Options
	28.7 Programming Interface
	28.8 Default USB Settings
	28.9 Remote WakeUp
	28.10 System WakeUp
	28.11 USB Wakeup usage
	28.11.1 How to enable usb wakeup system ability
	28.11.2 What kinds of wakeup event usb support
	28.11.3 How to close the usb child device power

	Chapter 29 Secure Real Time Clock (SRTC) Driver
	29.1 Hardware Operation
	29.2 Software Operation
	29.2.1 IOCTL
	29.2.2 Keep Alive in the Power Off State

	29.3 Driver Features
	29.4 Source Code Structure
	29.5 Menu Configuration Options

	Chapter 30 Watchdog (WDOG) Driver
	30.1 Hardware Operation
	30.2 Software Operation
	30.3 Generic WDOG Driver
	30.3.1 Driver Features
	30.3.2 Menu Configuration Options
	30.3.3 Source Code Structure
	30.3.4 Programming Interface

	Chapter 31 Pulse-Width Modulator (PWM) Driver
	31.1 Hardware Operation
	31.2 Clocks
	31.3 Software Operation
	31.4 Driver Features
	31.5 Source Code Structure
	31.6 Menu Configuration Options

	Chapter 32 FlexCAN Driver
	32.1 Driver Overview
	32.2 Hardware Operation
	32.3 Software Operation
	32.4 Source Code Structure
	32.5 Linux Menu Configuration Options

	Chapter 33 Media Local Bus Driver
	33.1 Overview
	33.1.1 MLB Device Module
	33.1.2 MLB Driver Overview

	33.2 MLB Driver
	33.2.1 Supported Features
	33.2.2 MLB Driver Architecture
	33.2.3 Software Operation

	33.3 Driver Files
	33.4 Menu Configuration Options

	Chapter 34 OProfile
	34.1 Overview
	34.2 Features
	34.3 Hardware Operation
	34.4 Software Operation
	34.4.1 Architecture Specific Components
	34.4.2 oprofilefs Pseudo Filesystem
	34.4.3 Generic Kernel Driver
	34.4.4 OProfile Daemon
	34.4.5 Post Profiling Tools

	34.5 Requirements
	34.6 Source Code Structure
	34.7 Menu Configuration Options
	34.8 Programming Interface
	34.9 Interrupt Requirements
	34.10 Example Software Configuration

	Chapter 35 Frequently Asked Questions
	35.1 Downloading a File
	35.2 Creating a JFFS2 Mount Point
	35.3 NFS Mounting Root File System
	35.4 Error: NAND MTD Driver Flash Erase Failure
	35.5 Error: NAND MTD Driver Attempt to Erase a Bad Block
	35.6 Using the Memory Access Tool
	35.7 How to Make Software Workable when JTAG is Attached

