I.MX Linux® Reference Manual

Document Number: IMXLXRM
Rev. 0, 12/2015

<&,

Z“ freescale

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

Contents
Section number Title Page
Chapter 1
About this Book
| N 1<) T OO OSSOSO PRSP 29
1.1.1 CONVENLIONS. ...ttt ettt sttt ettt et et eae bbbt sa e ae et ettt ea e st eneebeebesueea e b e 29
1.1.2 Definitions, Acronyms, and ADDI@VIAtIONS.c...coiuiiriiritiiiiieiierie ettt sttt et et esareebee e 29
Chapter 2
Introduction
2.1 OVEIVIBW ..ttt e et h bbb bbb e a e s e s 33
2.1.1 SOFEWATE BASE.......eetieiietieie ettt ettt ettt e bt et e s bt et e s b e e a e e bt eat e eb e e bt e st e bt eneeebeeneesaeenaeanean 33
2012 FRALUIES ...ttt ettt e h bbb bbbttt et et eae e 33
Chapter 3
Machine Specific Layer (MSL)
3.1 INEEOAUCTION. ...ttt e bbbttt e st et ea e bt b sae et b snens 39
3.2 INLETTUPLS (OPETALION)....eeutieirieieeniitetteette et te ettt et e e sttt e bt e sate e bt e eaeeeabeesabeeabeesabe e bt e eute e beeeaseeabeesabeenatesabeesseesabeebaesnseeseens 39
32.1 Interrupt HardwWare OPETation..........cceecuirierieruierieiieteeitesteette it ete et esteete e eesaeetesseenbeestesbeessenbeentesbeensesseenseane 40
322 Interrupt SOFtWAre OPEIatiON........coeetirtiriiriieiirteeie ettt ettt ettt et st et sttt ebee bt estesaeestesbeensesbeeanesbeens 40
323 TNEETTUPE FRALUTES.eetieiie ettt ettt et et e e st et e s bt e et e e sbbeenbeenbeesabeansaesaneas 40
3.2.4 Interrupt SOUICE COAE SIIUCLUIE.c.utiriirtiiritieiteite ettt ettt ettt et ettt e bttt e bt e st esbeesabeenbeeeabeenee s 41
3.2.5 Interrupt Programming INTEITACE.cc.evuiiiiiiiiiiiiiieie ettt e 41
3.3 THIMIE . b e e a e s 42
331 Timer SOftWAre OPEIALION.ccueeuiitietietieieetieteetiente et et et e st e et e steeatesbeeateebeenbeeseenteesee bt eaeenbeeneesaeeneesneensennean 42
332 TIMET FEAUIES.oiiiiiiiiieiiiicee ettt sttt et et eb e saa 42
3.3.3 Timer Source Code STIUCTUIE.c.oiuiiiiiiiiiiiiiiiiie it eb e 43
334 Timer Programming INtEITACE.c.oouiiiiiiiiiiieieecee ettt ettt sttt eaeas 43
34 MEIMOTY MAAP. ittt ettt ettt et h et b et sh et eh e bt et h e et b et h et eb et eatesae st nbe et nue s 43
34.1 Memory Map Hardware OPETation..........c.c.eeiueeruierierieeniieettesite et et eteesite st esieesabeesieesateesbaesaseebeesaseeseens 43
342 Memory Map SOftWare OPEIatiOn..........cereiieruirieriieiertieteetteteette et eteesteeeesteeste s bt enbesbeenbeeseenteeseenbeeneesaeenees 43
343 MemOTy Map FEATUIES.coouiiiiiiiitirieiteiteet ettt ettt et et b et b et b et b et ebe et st e naeeneenaes 43

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 3

Section number Title Page
344 Memory Map Source Code SIIUCTUIE........coutiiiririiriietintieteettete ettt ettt et eee st e e st et st et ebe et ebeeseeae 44
3.5 TOMUX .ttt sttt ee 44
3.5.1 TOMUX Hardware OPEIatiOn.........cceerueeeerteruerteeienteeteateenteeteetesteenteeseesaesseessesseesteensesseensesseentesseeseeseensennes 45
352 TOMUX SOftWare OPETatiON.......cc.cecvertertiriietenieeienieetenitetesieerte st estesttetestteteetsenteeseesteestesueestesseeneesaeensenseen 45
353 TIOMUX FEALULES........oiuiiiiiiiiiiiicic ettt st ea e 45
354 TOMUX SOUICE COE SIIUCIUIR.eruieutietieieetiete ettt ettt eete st et e bt este et eneeeaee st eseesaeentesbeenseabeentesbeensesseeneeans 46
3.5.5 IOMUX Programming INtEITACE.cccuiriiriiriiniiiiiicit ettt sttt ettt 46
3.5.6 IOMUX Control Through GPIO MOAUIE..........cooiiiiiiiiiiiiiiieteeee ettt 46
3.5.6.1 GPIO HardwWare OPEration.ccueeueerueeiertieienteeiesteete st ete st etesteeste st enbesseebeeseenteeneeseeneeneeenes 47
3.5.60.1.1 MUXING CONLIOL..cutiiiiiiiiiiiiiiiteieeteeet ettt sttt sttt ettt et sae e 47
3.5.6.1.2 PULLUP CONIOL. ..ottt 47
3.5.6.2 GPIO Software Operation (ZENEral)...........ceoerieriiiereiiereeierteee ettt 47
3.5.63 GPIO IMPIeMENTAION.eotiiiiiiriiiiieiieteetett ettt sttt ettt ettt ettt et sae e 47
3.6 General Purpose Input/OUtput(GPIO)........c.coiiiiiiiiiiiie ettt ettt st ettt e s st e baeeabeenaee s 48
3.6.1 GPIO SOFtWAIE OPEIALION. .. .eueeutieueitietieteeieetterteetterteeitesteeete bt eate e st enteeseenteesee st eaeesseeseesbeessesbeensesseensesseenseane 48
3.6.1.1 APLOT GPIO ..ottt sttt 48
3.6.2 GPIO FEALUIES. ...ttt 49
3.6.3 GPIO Module Source Code STIUCLUIE.eeuirtieiirtierteeiteieettentesite e ette st et et e esee et eneesbeeneesaeeseesaeesesaeesesnean 49
3.6.4 GPIO Programming INTEITACE 2........cccueoiiriiiiiniiiiiiieieiteteecee ettt ettt ettt 49
Chapter 4
Smart Direct Memory Access (SDMA) API
4.1 OVEIVIBW. ..ottt et a ettt et e a e b e bt e a e e b b sa et b e st e et et eae e st e st eu e et e b suebebenens 51
4.1.1 HardwWare OPETALION.coiuiiiiiriiieiieeie ettt ettt ettt e b e st e e bt e s bt e s bt e sabeesbbeeabeenbeesabeesabesabeesatesnseens 51
T BN 1) 2Vl 0 0TS 15 o) 1 OO TSRS UPRRSRT 51
4.1.3 SoUICE COE STIUCTUTR.cuviuiiiiiiiiiiitietiete ettt ettt sttt ettt et ea e b sae e ebesbesaeanes 52
4.1.4 Programming INLETTACE.coouiiiiiiiiiiiieiie ettt ettt st e bt st e bt e sateesbbesaneenae 53
415 USAZE EXAMIPIE. ...cueiiiiiiiiiieiieet ettt ettt b ettt a et a e bt et ae et she e bt bt et e ene et ententeens 53

i.MX Linux® Reference Manual, Rev. 0, 12/2015

4 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
ST B O) 7 () 2SO USROS SRRSO 55
5.1.1 HardWare OPEIatiON........c..evuteiiriieriiiterte ettt ettt ettt ettt ettt et e bt e bt sbtesaeeatesaeebtesbeeabesbeesbesbeeanesbeenneane 55
5.1.2 SOEWATE OPETAION.eiitieiieeiiieitte ettt ettt ettt et ettt e bt e sttt e bt e sateeabeesabeeaseesabeeabeeestesabeesabeenbeesaseenseenasean 56
5.1.3 SOUICE COAE SIITUCTULE.......eettenieitiete ettt ettt ettt et et e bt et e s te et e s beesee s b e eateeseenteeseenteesee bt eneesbeeneesneensesnean 56
5.1.4 Menu Configuration OPHONS.couereeierierieriteteeit ettt ettt ettt ettt sbte st eaae bt esbesbeesbesbeestesbeeseeneenaeenees 57
5.1.5 Programming INEETTACE.c..ueiiuiiiiiiiie ettt sttt e b e e et e st ebeesanes 57
5.1.6 USAZE EXAMPIL......iuiiiieiiiiieett ettt ettt ettt et e h et e a et e e st e bt e et e bt en b e bt en b e bt et e eneebeeaee 57
Chapter 6
Image Processing Unit (IPU) Drivers
(2 B Vi (o L1 17 5 (o) 3 OSSO RSP SUSU SRR 59
6.1.1 HardWare OPEIatiON........c..evuteiirieiirtertt ettt ettt ettt ettt ettt ettt e bt satestesatesaeesaesbeeabesbeesbesbeeabesueenneene 60
0.2 SOFtWATE OPETALION. .. utieutieiiiieiteeite ettt sttt ettt e et e e bt e st e e bee s st e ebtesate e bt eeabeeabtesabeeabeesabeeastesateenbeesabeebaesnseaseenas 61
6.2.1 IPU Frame Buffer DITVErs OVEIVIBW.cc.ecuteiiriieiieiieieetieriestente et et et et eit et et e saeeteseeetesaeesaeeseenbeeseennens 62
6.2.1.1 IPU Frame Buffer Hardware Operation...........cocecueeierierienirieneeienieeieneeiesieeteeie e 63
6.2.1.2 IPU Frame Buffer Software OpPeration............cueeuerriierieriiienieeiienie ettt st st 63
6.2.1.3 Synchronous Frame Buffer DIivVer..........cooiiiiiiiiiiiieee e 64
6.2.2 TPU BaCKII@NE DITVET...c..eiiiiiiiiiiiiiceiceeee ettt sttt ettt ettt s bttt ebe et saee e eaees 65
6.2.3 TPU DEVICE DIIVET.....ciiiiiiiiiiiiiiiiiiiii et sa e 65
6.3 SOUICE COUE STIUCLUIReutieuiiiieieetiete ettt ettt ettt et et e e eb e et e et e e st e es e e bt es e e st eaeeabeemeesbeenseebeembeebeenteeseenteeneenseeneaneeenee 66
6.3.1 Menu Configuration OPLIONS.coueeuerteriieierteeterte ettt ettt ettt ettt et et e bt et e et ebeesbeestesbeentesbeensesbeensenanens 67
6.4 UNIETESE.ceiiiiiiii e e e 71
6.4.1 FramebUTTEr TESTS. ..c.uiiuieitieieit ettt b et b et b et e e s et e e st e sbeemeesbeeaeesaeensesbeensesnnans 71
6.4.2 VIdeoALINUX AP LESE....c.eiiiiiiiiiiiiiiiicre et 71
6.4.3 TPU DeVICE UNIL LEST....cuiiuiiiiiiiiiiiiiiiiiiiii i e e 73
Chapter 7
MIPI DSI Driver
Tl INEEOQUCTION. c...eiiiiiiiict e s st a e b b s a e 77
7.1.1 MIPI DST IP DITVET OVEIVIEW.....cueitieiiitieiietieie ettt eite st eite st te st te bt et e s b e es e st e et e ebeenteeseenteeseenbeeneesaeeneenees 77

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 5

Section number Title Page
7.1.2 MIPI DSI Display Panel DIiver OVEIVIEW......c..coverueriiriirieniieienieete sttt sttt ettt ettt sbee e saee e saees 78
7.1.3 Hardware OPETALION.cciuiiriiiriiieiteeie ettt ettt et et e b e s bt e bt e st e e st e eabeesbbeeabeenbeesabeesatesabeesanesnseens 78

7.2 SOTEWATE OPEIALION.euteutieeietieiteeteete et ettt et et e s bt et ee bt ea e et e en e e et e em e e eaeenbeesee bt emeesbeemeeabeemte st emteebeanteeseenseeseenseeneeneeeneas 78
7.2.1 MIPI DSI IP Driver Software OPeration..........c..cccueeierierieriiriinienienieetenieete st etesieetesieetesseesaesieessesseenaeenee 78
7.2.2 MIPI DSI Display Panel Driver Software OpPeration.............coceevueeriieriieinienieeitenieeenieesieeesieeseesieesiresiee e 79

B T B 4 A gl 211113 (OO OO RUPORSRRRRPR 79
7.3.1 SOUICE COAE STIUCTUTE. ...ttt sttt sttt ettt ettt e sae b b s sa e e 80
7.3.2 Menu Configuration OPLIOMNS.c..ueeuieritritierieette st et ettt et e sttt e bt esateebeesabeebeesateesbeesateebeesaseebeesnseenseesasean 80
7.3.3 Programming INTEITACE.cc.oviiiiiiiiie ettt et et b et b et e st e e b et ese et eee 80

Chapter 8
LVDS Display Bridge(LDB) Driver

T8 O 0313 (o4 11 (e o) | OO OO OO TSROSO 81
8.1.1 HardWare OPEIatiON........c..evuteiirieiirtertt ettt ettt ettt ettt ettt ettt e bt satestesatesaeesaesbeeabesbeesbesbeeabesueenneene 81
8.1.2 SOFIWATE OPETALION.eeutiiuiieiieette ittt ettt ettt et e et e bt e sab e e bt e sut e e beesate e bt e sabeeabeesabeenseesateebeeesseenbeesabeenseenas 81
8.1.3 SOUICE COAE SIITUCTULE.......eetieiieitiete ettt ettt ettt ettt ettt e bt st e s ae et e s beesee s b e emteebeeneeebeenteesee bt eneenbeeneesneensesnean 82
8.1.4 Menu Configuration OPLIONS........co.eeuiriieiirtieitiettete ettt ettt ste ettt et stt et ettt ebee s bt estesbeestesbeensesbeensesanens 82

Chapter 9
Video for Linux Two (V4L2) Driver

9.1 INEEOAUCTION. ...ttt et e eb b st a e et e et ea et ea e b e e b sa et e b snens 83

0.2 VAL CaAPLUIE DEVICE. .. .eeiuiiiiiieiieeitt ettt ettt ettt bttt e b e st e et e s et e e bt e sab e e bt e sabeeabeesabeeabeesabeenbeessbeebeesabeenses 84
9.2.1 VAL2 Capture TOCTLS. ..o st s s s 84
9.2.2 Use of the VAL Capture APIS......ccccooiiiiiiiiiiiiiiceet ettt ettt sttt ettt sbe et e 86

0.3 VAL OULPUL DIEVICE. ...ceueieniieiitieeiteeitteette ettt ettt sttt e bt e bt e et e e bt e sabe e bt e sab e e satesabe e bt e ease e beesabeeabeesabeestesabeenbaesaneenne 87
0.3.1 VAL OULPUL IOCTLS ...ttt bttt ettt be e 87
9.3.2 Use of the VAL OULPUL APIS.....cuiiiiiiiiiiieeeeeete ettt ettt et et nae s 88

9.4 S0UICE COUE SIIUCTUIEoouiiuiiiiiiiiiiitiitii it d bt ea s eae b b s ea e 88
9.4.1 Menu Configuration OPLIONS........cc.evieuirirerertintententetetete ettt et ettt sttt st see st et see e ese st et e e eaeeaeeueeueeseene 89
9.4.2 VAL2 Programming INTEITACE.cccueiiiiiiiiiiiriiiiietct ettt et 89

i.MX Linux® Reference Manual, Rev. 0, 12/2015
6 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 10
Electrophoretic Display Controller (EPDC) Frame Buffer Driver
020 B Ui (0T 1117 510) 3 OO TR PRU SRR 91
10.2 HAardwWare OPEIAtION........couerueriirtietertieteeteete ettt ettt ettt ettt et e s bt eet et e eab e et e esteebeeateeb e e bt ebtesbeestesbeeasesbeenbesbeenbenbeenteene 92
10.3 SOFEWATE OPETAON. ..c.utiiuiieiieitieeite ettt ettt et e sttt et e e st e bt e eabe e bt e s bt eabtesate e bt e eabeeabeeeabeeabeesabeebeesabeenbeessseebeesabeeseenas 92
10.3.1 EPDC Frame Buffer DIivVer OVEIVIEW........ccceruiiiiriiiiierieiieiteeteste ettt ettt ettt eeee st st eseessaesbeeneesbeennesaeans 92
10.3.2 EPDC Frame Buffer Driver EXtENSIONS.cccccueviiiiiiiiiiiiiiiiecicieieseceeeteeeeer et s 93
10.3.3 EPDC Panel CONfIGUIAION.c...oiitiiiiiiiieniiieiieeiie ettt sttt st ettt et e st st e st e e bt e sabe e bt e saeesbeesnsesaneas 93
10.3.3.1 Boot Command Line Parameters..........cc.cecuiruieriiruiiniieieie ettt 94
10.3.4 EPDC Waveform LOading........cc.coviririiniiiineiieieeentetesit ettt sttt sttt st sttt sae e eae 94
10.3.4.1 Using a Default Waveform File...........cooiiiiiiiiiiiiiieeeee ettt 95
10.3.4.2 Using a Custom Waveform File...........cocooiiiriiiiiiiiiiiiiese sttt 95
10.3.5 EPDC Panel INItalIZAtION.cc.couiiiiiiiiiiiiiieicieiiceeeeeee sttt st st st 96
10.3.6 Grayscale Framebuffer SEIECTION.cccuiiiiiiiiiiiieie ettt sttt ettt s eree s 97
10.3.7 Enabling an EPDC SpPIash SCIEEM........ccceeiririiriiniiriiiiieieieietet ettt sttt ettt ettt 97
10.4 SOUICE COE STIUCTUIRcvvviiiiiiiiiiiiiitietiete ettt ettt ettt st bbb st b et ese et et eaeeseeaeeaeebeebesaesaenes 98
10.5 Menu ConfigUuration OPLIOMS.cc.ueeruierieeitieeiteite et et ettt e et e stte s bt e teesateesttesabeesbeeesseesbeesabeesseesabeesssessseenbaesseenseenns 98
10.6 Programming INTEITACE.c.couiitiriiiiiiieiiieteee ettt st sttt ettt et eb e b b s nen 99
10.6.1 TOCTLS/FUNCHOMS. ...ttt ettt sttt ettt b e st s a ettt ettt et be b saeenesbesnean 99
10.6.2 Structures and DefINes..........ccocoiiiiiiiiiiiiii e 102
Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver
T1.1 INErOQUCTION. c...iiiiiiiiici e st sa b saesa et aesnn 105
11.2 HAardWare OPETALION.cc.eeuteruieiertieteetteteeteete et et et e bt etteeteeaeesteeaeesseeabesseenbeeseenbeeseenbeea s et e eneeeseenteeseansesmeeaesneenseeneenneas 105
11.3 SOFEWAIE OPETALION.eouiiiiriiiiiiiteteet ettt ettt ettt ettt eat e bt et s bt et s bt e st e e bt ea b e bt et e eb e e bt eb e e bt eatesbeentesbeenbesbeebesanens 105
L1301 KEY DAt SIIUCES. ...eeeteeiiieeiieetese ettt sttt ettt e bt st e bt e st e e sateea bt e sbbeeabeenbtesabeesstesabeesasesaneens 105
11.3.2 Channel ManQ@EIMIENL..........ccuiiuieiiiieieetiete ettt et et te st es e et e e e ete e bt sat e be s st enbeeseesaeemee st e enseebeenseeseenseeneeneeenee 106
11.3.3 DeSCriptor MANQZEIMENL......c..eoteruiriierieitentieitestt ettt ettt ettt et bt esbe s bt et e ebt et e ebt e bt eatesbeentesbeeaesbeenaesanenbens 107
11.3.4 Completion NOtFICALION. ...ccviiiiiiiiiiiieiie ettt ettt st e bt st e sabesabeesbbeebeenbeeenbeenaeesases 107

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 7

Section number Title Page
T1.3.5 LINMEEATIONS. ¢ttt ettt ettt sttt et s b et s bttt eb e bt ea b e bt et b e bt e st e sbeeatesbtentesbeenaesbeenbesbnebesunens 107
11.4 Menu Configuration OPLIOMNS.cc.ueeruieritiitieeieerite st et et et e et estee s bt estte s bt esttesabeesbeeeabeesbeesabeesseesabeesssessbeenbaesseenseenns 107
L1.5 SOUICE COE STIUCLUIR.eutieuiitieiteetieie et ettt ettt ettt e et e e eb e en et e st e bt ea e e bt e st e sbeeatesbeemeeebeembeebeanbeeseenteeseeneeeneenseenes 108
Chapter 12
ELCDIF Frame Buffer Driver
00 B U1 (0T 1117 510) 3 OO OO TSP SUUOS PRSPPI 109
12.2 HAardwWare OPEIAtION........coueruiriirtietentieteete ettt ettt ettt ettt e it e s bt eet e st e e st eeb e esteebeeateebeenteebtesbeeatesbeeasesbeeabesbeennesbeenteane 109
12.3 SOFEWATE OPETAON.tiiuiieiitetieeite et ettt ettt e sttt e bt e sate e bt e sa bt et e e s abe e bt e sa et e beeeab e e beeeabeeabeesabeenbeesabeebaessbeebeesaseeseenas 109
12.4 Menu Configuration OPLIOMS.eueruieiiruieieeieerte ettt ettt et et et e et esteete e et eseenteeseesteeatesbeemseabeenseeseenteeseenseeneenseeneesaeenees 110
12,5 SOUICE COUE STIUCTUIE.eueeuiiiteieiteeteett ettt ettt ettt ettt ettt sb e et e s bt et e sbe e bt eb e e bt et s e bt ebs et e eb e e bt eatesbe et e sbeenaesbeenaenneen 110
Chapter 13
Graphics Processing Unit (GPU)
I3.1 TIEFOAUCTION. ...ttt ettt ettt et b et et s bt e st bt et bt et eb e et e bt e sbeebtesbe e st e sbe e tesbeenbesbnebeeunenteann 111
13,11 DIIVEI FEALUIES. ...c..eouiiiieiiiiieiieieee ettt ettt et et st s e s b et e b e b et eeaeeneeae 111
13.1.1.1 HardWare OPEIation..........cecueeuieruerierieriienteeitesteete st eteeteeneeettetesseenteestessesseesbeeseesbeensenseensenseeneeans 112
[3.1.1.2 SOftWare OPEIatiON.cccuirueeriiriteriiriieieniteieeit ettt ettt et st e it bttt st e bt st e bt seb e beeane bt eneenaeenee 112
13.1.1.3 S0UICE COAE SIUCTULEuveiieuiieiietieieeteete sttt ettt ettt ettt ettt e sae e e esnesaeennesaees 113
13.1. 1.4 LADIAIY SEIUCKUIE ...ouviiuiiiiiiieitieiieet ettt ettt et e sttt e et et s bt et e e b et e e bt enbesbe et e ese e bt esee bt emeenneeneenaes 113
[3.1.1.5 API REICIEICES. ...c vttt ettt ettt ettt sb et et sae et st eaaesbeas 114
13.1.1.6 Menu Configuration OPLOMNS.eccueeriiiriienie ettt ettt et e siee st esitesabeesiaessbeesbeesbeenseenas 115
Chapter 14
Wayland
T4 T INEFOAUCTION. c..coutiiieiteeit ettt ettt et e a et sa e a e s et e bt e ae e st e s e bt e s eebeeaseebe et e euee st eanesaeennenaeennenueen 117
14.2 HAardWare OPETALION.cc.eeuieruieierteetertteteeteete et te et e e bt eteesteeseeeaeeaeeseeensesseenbeeseenteeseenbeessa st enseeseenteeseansesmeesesaeenseeneeneas 117
14.3 SOFEWATE OPETALION.eoueiuiiriiiiieitenieet ettt ettt ettt ettt ettt et e st e ea e s bt esa e s bt et e ebeeab e bt et e eb e e bt eb e e bt eatesbeentesbeentesbeenbesanens 117
14.4 YOCto BUIld INSEIUCTIONS.iouiiiiiiiiiiiieieet ettt ettt ettt ettt et et s e sae et e b e st eaeeneeanenaeeanenaee 117
14.5 CUSLOMIZING WESLOM.eiiiitieiietieitett ettt ettt et tte et es e e s bt eaee bt eseeabeemte bt embeeb e emeeeseentees e e bt emtesseemtenbeemteabeensenbeenseaneenteans 118
14.5.1 Multi display SUPPOITEd 1N WESTOM....c..eiiiritiiiriietieiteie ettt sttt ettt ettt et et sbe et s naesae e 118
14.5.2 Multi buffer SUPPOTLEd N WESTOM.eiiuiiiiieiieiiie ettt sttt e st e bt esate s bt e saeesabeesasesnbeens 118
14.6 RUNNINZ WESLOM.....cuviuiiitiiiiieiieiieiteit ettt ettt sttt ettt et ettt eae et e bt e ae bt e bt s ae e et et se et et et et essenteatebee bt ebesaeebeebenee 119
i.MX Linux® Reference Manual, Rev. 0, 12/2015
8 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 15
On-Chip High Definition Multimedia Interface (HDMI) Driver

S B (1 (0T 1117 510) 3 OO TSP S PSRRRTO 121
I5.1.1 Hardware OPeIatiOn........coccereiierertirieeientieitentt ettt ettt ettt st et bt eabe s bt et e s bt e bt ebt e bt eatesbeestesbeentesbeeaesanenbens 121

15.2 SOFEWATE OPETAON.eiiuiieiiieiiieeite ettt ettt ettt e et e bt e eabe et e e s ab e e bt e sa et e bt e eabeeabeesabeeabeesabeenbeesabeenbaesabeebeesaseeseesas 123
I5.2.1 Ottt ettt h ettt ettt e a et e a e e bt a e e et et eh e e bt ekt e bt eR e e bt en e e bt et e eh e e bt eht e bt ente bt ennennean 123
1522 VIO ..ttt n et n et 124
15.2.3 Display Device Registration and InitialiZation...........cc.ceceevuiriiiniriiniiniinieicieceneeese et 125
15.2.4 Hotplug Handling and Video Mode Changes...........ccceeueruerieriirieniieiesiteie sttt sttt sie e eee 126
I5.2.5 AUAIO ...ttt ettt h ekttt b ettt sttt a et 126
I5.2.6 CEC ...ttt 128

15.3 SOUICE COUE STIUCLUTR.eutieutiiieitietiete ettt ettt ettt ettt et et e e et e ea et e st e bt ea e e bt e st e sbeeaeesbeemeeebeenseebeenbeeseenbeeseenseeneeseenes 128
15.3.1 Linux Menu Configuration OPLiONS...........coeeiiriieriirieniinieieeitente ettt et sttt ettt sie et bt e et eaeenaeeaee 130

I5.:4 UL TSE. .ttt st ettt b e e b e st st s a e e a et b et bbbt 131
IS4 T VIOt b e bbb bbbttt b et 131
I5:4. 2 AUAIO. ... ettt ettt ettt h e h ekt b et be sttt a ettt 132
I5.4.3 CEC ...ttt ettt 132
I5.4.4 HDICP...o.ciiiiiieee ettt b bbbt bbbt h bbbt b bbbt b et 132

Chapter 16
External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloLite

LO. 1 TIEEOQUCTION. ¢ ceutetieiteette ettt ettt ettt ettt e e et e et e bt e et eeh e em et ea e e bt e et e bt eaee st em b e bt em s e b e enteeseembeeaeenbeemeenbeeneenseennennean 135

16.2 SOFEWATE OPETALION.eoueiuiiriiiiieititeet ettt ettt ettt ettt ettt e s bt et s bt e e e s bt et e s bt eab e bt et e eb e e bt eu e e bt eatesbeentesbeentesbeebesanens 135
16.2.1 Hotplug Handling and Video Mode CRANgES.........ccovuteriieiiiiriienieeriteeieeite sttt ettt et e e e 135

16.3 SOUICE COUE STIUCLUIR.eutieutitieitietieie ettt et ettt e et e st e et e s e et e emtees e e bt es e e bt eaeesaeeaeesbeemeesbeembeebeemteeseanbeeseenseeneeseenes 136
16.3.1 Linux Menu Configuration OPLiONS...........co.eetirierierieiiinieieeiiente ettt ettt et st ettt s et sbe et eeeenaeeaee 137

L60.4 UL TSE. .ttt st ettt b e e h e s st e a ettt b et et b et 137
LOA. T VIO ettt bbbt e b bbbt bbb st bbbttt bbbt 137
TO.4.2 AUGIO.c..eiteiiieicet ettt ettt ettt ettt bbbttt a et 138

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 9

Section number Title Page
Chapter 17
X Windows Acceleration
0 T U1 (0T 1117 510) 3 OO OO TSRS U RS PRU S PSRRRTO 139
17.2 HAardware OPEIAtION........couerueriirtietertieteeteete ettt ette e sttt eit e st e et e s bt eet et e eab e et e esteebeeateebeenteebtenbeestesbeeasesbeenbenbeenbesueentene 139
17.3 SOFEWATE OPETAON.tiiuiieiiieitieeitt ettt ee ettt et et e et e bt e eabe et e e s abeeabeesa et e bt e eabeeabeeeabeeabeesabeenbeesabeenbeessbeebaesaseenseenas 139
17.3.1 X-Windows Acceleration ATCRItECIUIE.couiitiriiitieietiee ettt ettt st e e e e e eae 140
17.3.2 1i.MX 6 Driver for X-WindoWs SYSIEIM......c..cecuiriiiiriiiiniieiiniieteeteie ettt ettt st a e 141
17.3.3 1.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows SysStem...........ccecverieriienniiniieenienieeneenen 143
17.3.4 EGL- X LIDTAIY ...ttt ettt b ettt sttt b et b ettt b et b et bt st ebe st e bt saebesaenenaenea 144
17.3.5 XOT@.CONT 0T 1.IMX Bttt ettt et b et sttt sb e bt et e beeese bt et e sbeeseenae 145
17.3.6 Setup X-Windows System AcCCEleration 0N YOCLO......cccueriierieriieniieeieeite st esite sttt ebe et ebeesbeesreesaee e 147
17.3.7 Setup X Window SyStem ACCEIETALIONceuiiuiriiiiieiietieieet ettt ettt et e st e neeene 148
17.3.8 TTOUDIESROOTING ...uveiiiniiiiiiieitciteit ettt ettt ettt ettt et b et s bt et sbeetesbeebesbeebesanens 148
Chapter 18
Video Processing Unit (VPU) Driver
18.1 HArdWAare OPEIAtION.c.eiutirtiritirtieitetieit ettt ettt ettt et e b et e b e ee e sb e et e bt e st e ebeeateebeenaeebeenbeestenbeeaaesbeensesbeenbesbeenteene 151
I8. 1.1 SOFIWAIE OPETALION. c...eiutieiiieiieeiteette ettt sit et ettt et e st e e bt e sat e e bt e s bt e eabe e btesabeenbeesa bt enbeesabeeabtesabeebeesabeenseesas 152
18.1.2 SOUICE COUE STITUCTUIE. ... eeutieuietieuieettete et tet ettt et et et e bt es e et e e s e eteenbesae e beestebeestesaeemeenbeenseebeenseeseenteeneeneeenee 153
18.1.3 Menu Configuration OPtIONS.cc.eetirieetineeierteeie ettt sttt stt et ettt ettesteestesbeentesbeetesbeesbesbeenbesbeensesanens 154
18.1.4 Programming INEETTACE.ccueiiuiiiiiiiieiit ettt st ettt e sbe e et e bt st ebeesabeenseesanes 155
18.1.5 Defining an APPIICALION.ccuiitieiiitietietiete ettt ettt ettt eh et e b et e et e et e ea e e bt esee bt eaeesbeeneesbeeneesaeennennean 156
Chapter 19
OmniVision Camera Driver
19.1 OVS5640 USing MIPI CSI-2 INETTACE.c..cveuiririiriietinierieetestestet ettt st ettt ettt st et 157
19.1.1 Hardware OPeIatiOn........coceeruiiieruertirieetenteeitent et ettt ettt ettt et bt esbe s bt et e s bt et e ebt e bt eatesbeeatesbeenaesbeebesanenbens 157
19.1.2 SOFWATE OPETALION. ¢ e eutieiieiiieeite et ettt sit et e sttt e bt e s tte e bt e sateeabeesbteeabeesbeesabeenbeesabeesseesateesbtesabeebaesaseeseesas 158
19.1.3 SOUICE COUE STITUCTUIE.eutieuietieuieettete et tete ettt et et eet et e es e et e et e ete e bt sae e be e st e bt estesaeemeenbeensenbeenseeseenseeneeneeenee 158
19.1.4 Linux Menu Configuration OPLiONS...........coeeierierieriieiinieienitente ettt ettt et st ettt sieene b e et eaeenaeenee 158
19.2 OVS5642 USING PATAllE] TNLETTACE.eeiuiiiiiiiiiiiiiteeieecte ettt ettt ettt st e st et e sbb e e bt e sbeeeabeesaeeeanes 159
19.2.1 Hardware OPEIatiOn........c.coeeuirueruerteteteieteiteiteitettett ettt ete s sae st s see s e sest et eae et esteueeaesaesaeebesbesaesaensenaensennenne 159
i.MX Linux® Reference Manual, Rev. 0, 12/2015
10 Freescale Semiconductor, Inc.

Section number Title Page
19.2.2 SOFEWAIE OPETALION. ... ceutiiiiiiieiiitieitett ettt ettt ettt ettt ettt s bt et ebt et e e bt e bt e st esbeeatesaeentesbeentesbeenbesbeensesbnens 159
19.2.3 Source Code SIIUCTULE.ccoiiiiiiiiiiiiitiie et 160
19.2.4 Linux Menu Configuration OPIONS.........c.eeiruietirierientinienieieietetettettete st ete s e stesessesesseseseeseeueesessessesueseens 160
Chapter 20
MIPI CSI2 Driver
20,1 IEFOAUCTION. ¢ttt ettt ettt et b e ea e b e st e et e ea et sheen et eae e bt ea e e bt es e e bt eate b e emteeseenteeaeenseeseenbeemeenbeemeesaeensennean 163
20.1.1 MIPT CSI2 DIIVET OVEIVIEW....cviiiiiiiiiiiiiieiieiieiieit ettt ettt sttt ettt ettt 163
20.1.2 HAardware OPETAION..........eeuterutertteriteeteestteeteesitesteestteeteestaeeseesbeesabeesseesabeesateesbeesbbeenseenseesabeenstesabeessnesseens 164
20.2 SOTEWATE OPEIALION.euteutieetetietteeteete et ettt et e et e bt este bt ea s e ebeemte et e emteeaeenteesee bt eaeeabeemeeabeemte st enteebeenteeseenseeseenseeneenaeeneas 164
20.2.1 MIPI CSI2 Driver Initialize OPeration..........cccueeeerierieriertenienitenieeitenieeiteste ettt et siee e sieesaesiaesaesesesbeeanenieens 164
20.2.2 MIPI CSI2 CoMMON APT OPETAtION.....cccuiirtiiriiiiiieitieeieeite ettt sttt ettt ettt et e st enbeesaeeebeesaneeanes 165
20.3 DIIVET FRATUIES.eeeeitieiietieiet ettt ettt e h ettt et e a et eae et e em e e et e eaeeee e emeeseeemtesheembeeseembeebeenbeeseenbeentenseeneeneeenee 165
20.3.1 SoUICe COde SIIUCLUIE.cuviuiiiiiiiiiiiiiitietiete sttt sttt ettt e ae e sae st saen 166
20.3.2 Menu Configuration OPLIOMNS.c..ueeruteruiteiteeriieeteesteetee st et e sttt e bt e ssteebeesabeebeesateesbeesaseesbaesaseeseesnseesseesasean 166
20.3.3 Programming INTEITACE.ccuiiuiiiiiiiiie ettt et b st b et b et e b et e bt et eeseebeeee 166
20.3.4 Tnterrupt REQUITEIMENES. «...ooueitiitiiiiiiteteiitete ettt ettt ettt s b et s bt bt st sbe et e s bt et e bt et e sbe et e ebeeneeeae 167
Chapter 21
Low-level Power Management (PM) Driver
21,1 HardwWare OPEIATION.c..coueruirtirtietentieite ettt ettt ettt et e ste et e e sbeeat e s bt eate et e eateebeesteebt e bt ebeesbeeatesbeeatesbeenbesbeentesbeennesbeentene 169
21101 SOEWATE OPETALION. .c...eiiitieiieeiiieiite ettt ettt ettt et e s bt e bt e sttt e bt e sateeabeesabeeabtesabe e bt esatesabeesabeenbeesabeenseesasean 169
21.1.2 SOUICE COUE STIUCTUIE.eutieuiitieieeteeie ettt ettt et et eat et e eeteeteentese e e et es e e bt esee bt emeesbeenee bt enseebeanseeseenseeneenseenee 170
21.1.3 Menu Configuration OPHONS.c.uerueeierterieritetertente ettt ettt ettt st bt saeeaaesbeeebesbeesbesbeestesbeeaesaeenaeenees 171
21.1.4 Programming INEETTACE.c.cueiiiiiiiiiiieeieet ettt st ettt e b e st e bt e s b e ebeesabeeseesanes 171
2115 UIE TSEu ittt ettt etttk b et bbbt st eb et b et es e b et e bt b et eb et eb et e bt st ebeneebe st st st enentenea 171
Chapter 22
PF100 Regulator Driver
B2 B Vi (0T L1 11 5 (o) 3 OSSO OO PR URUSORRPPTO 173
222 HAardWare OPEIATION.c..couerttetirtieteetietteettet ettt et este et esue et tesbeeateebeeate st e eabeebeesteebtente s bt e bt eatesbeeatesbeenbesbeesbesbeennesbeentenne 173
2221 DIIVET FEAUIES.cviiiiiiiiiiiiiici bbb 174

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 11

Section number Title Page
22.3 SOFEWATE OPETALION.eoueitiiiiiiieiteite ettt ettt ettt ettt et st e eat e s bt et e s bt e st e sb e e st e sb e ea bt e bt et e eb e et e eatesbeemtesaeentesbeenaesbsenbesbnens 174
22301 REGUIALOT APIS ..ottt ettt e b e s at e et e st e bt e sab e e bt e at e e bt e e at e e beesabeebee s 174
22,4 DIIVET ATCHITECIUIR.eiuieutieeieteeiteet ettt ettt et et e et et et et ea et ea et eheen b e e st ete e et e bt eseenbeemse bt embeebeenteeseenteeneenseeneenaeeneas 175
22.4.1 Driver Interface DEalS..........ccueoiiiiiiiiiiiiiiiiieeceeee et 177
2242 Source Code SIIUCLULE.cocouiiiiiiiiiiiiiitiie ettt sa e 177
22.4.3 Menu Configuration OPTIOMS.eueeuteriereeieeiteteet et ette et et e steeteeteetesaeesteeseesseestesbeente st eenbeeseenteeseenseeneenaeenees 178
Chapter 23
CPU Frequency Scaling (CPUFREQ) Driver
B2 T B Vi (0T L1 17 5 (o) OO OSSO OO ST SUSRSOSRRPPO 179
2311 SOFEWATE OPETALION.euiiuiiriieiiriteteete ettt ettt ettt ettt e s e sb et sbt e aesbte bt ebs et e ee b et e eatesbeestesbeentesaeenaeeanes 179
23.1.2 Source Code SIIUCTULE.c..ccuiiiiiiiiiiiiiiitiie ettt st s sa e 180
23.2 Menu Configuration OPLIOMS.ccueeuteueruteieeitertteie st ete et ete et eate et e e et esee bt eseesteeeesbeeseeaseenseaseenteeseanseeseenseeneesseeneesaeeneas 181
23.2.1 Board Configuration OPTIONS.cc.eetetirteriieienieetenieete sttt sttt sttt sttt stt et e ett et eaee bt eseesaeestesaeeneesbeenaenaean 181
Chapter 24
Dynamic Bus Frequency Driver
241 INEPOQUCTION. c..uiiiiietitiite ettt et ettt et e h bt bt et b e s bbb s ettt et eae e bt enesa e b e b saesn b ne 183
B O B O 1S5 15 () FO OO OO OO STUPOTUPROPRN 183
24.1.2 SOFEWAIE OPETALION. ... c..eeuiieeieteeiieete ettt ettt et et et et e bt esee e bt eseeebeenteeaeebees e e bt eseenbeentenseanseeseenteeseenseeneenaeenees 183
24.1.3 SoUICe COde SIIUCLUIE.cuiuiiuiiiiiiiiiiitietiete sttt sttt sttt et es e sae b b saens 184
242 Menu ConfigUration OPLIOMNS.ccueeiuriereeriieeieerite et site et e sttt eteestee bt esttesebeesbtesabeesbaeasbeebeesabeesstesabeesstesabeenbaesnseenseenns 184
24.2.1 Board Configuration OPTIOMS.ccueeuuertieiertieierteete st ete st etesteestesteetesstenbeeseeteeseenteeneeaseeneesseeneesseensesaeensessean 184
Chapter 25
Thermal Driver
25,1 IETOQUCTION. ¢ttt et ettt et e e bt ea et e st e eh e a et e et et e e et e bt s et e bt em e e bt emte bt emteeseemteeseenteesee bt eneenbeemeesaeensennean 187
25.1.1 Thermal DITVEr OVEIVIEW.......ccuiiuiiiiiiiiieiiiiiieieiet ettt ettt st st 187
252 HArdWAare OPETAtION.couvteruieritieriieeiteertteeteesttesteestte sttt esbeesute e beesase e beesabe e stesateeseesaseeabtesaseeabeesabeenbeesaseensaessseenbeesasennne 187
25.2.1 Thermal Driver SOftWare OPEIatiOn.........cceiueeruirtierieetiertietientteeeeteete st estesteeteeseeteestesteeseesseentesseeneesaeenaesnees 188
253 DIIVEI FRATUTIES....c..eviiiiiiiiiieteee ettt ettt b e bbb b st et b e ettt at bt eaeebe b eaesuenes 188
25.3.1 Source Code SIIUCTULE.c.ocouiiiiiiiiiiiiiitii ittt ea e 188
25.3.2 Menu Configuration OPTIOMS.ecueeueeuerueeteiteeteettenteette et esteeteeteeteetesaeesteeatesteestesbeentesseenseeseenteeseenseeneenaeenees 188

i.MX Linux® Reference Manual, Rev. 0, 12/2015

12 Freescale Semiconductor, Inc.

Section number Title Page
25.3.3 Programming INTEITACE.cccuiviiiiiiiiiiiieeetee ettt ettt ettt 189
254 UL TESE. ittt sttt b e et s e et h et et et a et 189
Chapter 26
Anatop Regulator Driver
20,1 INETOQUCTION. ...c.eiiiiiiiiiicic e s ettt a bt 191
26.1.1 Hardware OPEIatiOn.........coeeuiereruirtirteieteteteteitettete et et ete sttt sbesa et et et et ese et eateseebeebesseebesbesaesaessenseneennenne 191
262 DITVEI FRATUTES....c..eviiiiiiiiiieieeet ettt ettt et b e bbb s b st et be ettt e bt ea e aeeue b e sueeaenes 191
26.2.1 SOFEWATE OPETALION.eiiutieiieeiiieitte ettt ettt et e st et e e sbt e et e sttt e bt e sabeeabeesabeeaseesabeeabeessteeabeesabeenbeesaseensaenasean 192
260.2.2 ReEGUIALOT APIS....uiiiiiiiiiiiiiiiietiter ettt et sttt ettt ettt et b e e a e ae e ne 192
26.2.3 Driver INterface DEailS..........ccueoiiiiiiiiiiiiiiiiiieece e st 193
260.2.4 Source Code SIIUCTULE.c..ccuiiiiiiiiiiiiiie ettt s ea e 193
26.2.5 Menu Configuration OPLIONS........ccevieuiriirerertintententetetetee oottt ettt st be st et et sae e esse s et e et eseeueeueeseene 193
Chapter 27
SNVS Real Time Clock (SRTC) Driver
27,1 INETOAUCTION. ¢ttt et ettt e et e et ekt e st e eh e ea et e h e e et eae e bt ea e e bt em e e bt eate bt emseebeemteeseenseesee bt eneenbeemtesaeensennean 195
27. 1.1 Hardware OPEIatiOn........cocuerueriiriertiniietentteteettet ettt ette st e ettt et e sbeetesbe et eebee bt ebt e bt eatesbeestesbeenaesbeesesbnenbens 195
27.2 SOFtWATE OPETALION. .. .eieutieiitieiiteeiteette ettt st et te st e stteeate e bt e sabeebeesabeebtesa bt ebteeaseeabaesabeenbeesabeeastesateenbeesabeebaesnseeseenns 195
27.2.1 TOCTL. ettt bbbttt bbb bbbt b et bbbt bbbt be e 195
27.2.2 Keep Alive in the POWEr Off State.......ccccoouiriiiiiiiiiiiiii ettt 196
273 DIIVEE FEATUIES. ...ttt e b b e a e s ea e e 196
27.3.1 SOUICE COUE STITUCTUIE.eutieutitieie ettt te ettt et et eet et e eateeteestesaeeaees e e bt esee bt emee bt emeeabeenbeebeenseeseenseeneenseenee 197
27.3.2 Menu Configuration OPHONS.ccuerueeiiriterieriteieeit ettt ettt ettt et bt st st e steease s bt ee b e st e eabesbeestesbeenaeeneenaeenees 197
Chapter 28
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
28.1 ALSA Sound Driver INrOQUCTION.ccoeiiiiiiiiiiiiiiestceetcteet ettt sttt 199
28.2 SOC SOUNA CAI ... e st 202
28.2.1 Stere0 CODEQC FRALUIES.cccueiiiiiritieiteitie ettt ettt ettt sh et ettt esbt e et esbte e bt e sbeeebeesbeesabeesanesneenas 202
28.2.2 7.1 Audio Codec FEAtUIES........c.ccuiiiiiiiiiiiiiiicicect et 203
28.2.3 AM/FM COdeC FEATUIES.cuiiiiiiiiiiiiiiiiiiiiciiic st 203
28.2.4 Sound Card INFOIMALION.eiuiiiiitieieet ettt ettt ettt b ettt et e b et e e st ebe e st e sbeeneesbeenbesbeennesseennesnnans 203

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 13

Section number Title Page
28.3 HAardWare OPEIAtION.c..cetirtiritirtieitentieiteete et ettt ettt et stees e bt eat e s bt e et e st e e st e ebee st e e bt e bt ebeenbeeatesbeeatesbeenbesbeenbesbeenbesbeentenne 204
28.3.1 Stere0 Audio CODEC.......c.ooiiiiiiiieieee ettt 204
28.3.2 7.1 AUGIO COUCC. ...ttt ettt ettt ettt ettt e et e a e bt e et et e eaeesbeeab e e bt en b e ebeenbeebeenteeneenbeenee 205
28.3.3 AM/EM COURC. ..ottt ettt sttt ettt sttt ettt b et b et a bt et sa et ettt et eteneenens 205
284 SOFtWATE OPETALION. .. uteiutieriiteiteeite ettt ettt et e st e stteeabe e bt e sabeebeesabeebeesa bt ebeeeabeeabaesabeenbeesabeeaseesateenbtesaseenbaesnseaseenas 205
28.4.1 ASOC Driver SOUICe ATCHITECIUIE.c.ieuiiitieiirtieie ettt ettt ettt et e et et e et ettt e sbeeseesbeeseenbeennensens 206
28.4.2 Sound Card REZISIIAION.c..ccvuiiiiriiiiiitiriteteet ettt ettt ettt ettt et b ettt ettt et sbe et e saeenaesaeenaes 207
28.4.3 DEVICE OPCIN...uutiiniiiiiiieiieeiieeitte ettt sttt et ettt e bt e st e bt e sa bt e bt e sh bt e bt e e at e e bt e e ab e ea bt e sab e et e e eht e e bt e bt e eabeenaaeeates 208
28.4.4 DeVICetree BINAING.......cccuiiuiiiiiiiie ettt ettt ettt ea ettt ettt bt et e bt e e e bt et e bt ente s et eae 208
28.4.5 Menu Configuration OPTONS.couerieiiriterieriteteeit ettt ettt ettt ettt ste st e steeate s bt eebesbeesbesbeesteebeeseeaeenaeenees 208
28.5 UL TSt ittt sttt st e e e a et et ettt 209
28.5.1 Stere0 CODEC UNIt TESE....c.eiiiitieieitieieetieteet ettt ettt et s e st st esbeebte b e es e et e esteeseeneesaeebesseenbesaeesbesnsenseas 209
28.5.2 7.1 Audio Codec Ut TSt ..c.ciiiuiiiiiiiiiiiiiiie ittt sttt 210
28.5.3 AM/FM Codec Uit TESL.....coucuiiiiiiiiiiiiiieicieeetesee et 211
Chapter 29
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver for i.MX 6SoloLite
29.1 ALSA Sound Driver INIrOQUCTION.cciiiiiiiiiiiiiiiicieice et 213
20.2 SOC SOUNA CAIA ...ttt ettt ettt ettt et e bt e st e bt es s e bt emt e eh e et e ee e e bt e ateebeemeeebeemseabeenseebeenbeeneenseeneeneeenee 216
29.2.1 Stereo CODEC FEAUIES.........ccoeiiiiiiiiiiiiiiiitiiesiestetetet ettt s sttt s sa s 216
29.2.2 AM/FM COdeC FEATUIES.coiuiiiiiiiiiiiiiiiiiiiciiici s 216
29.2.3 Sound Card INFOIMALION.eitiiiiitieiietieie ettt b et st e bttt e bt e st e bt e st esbeeaeeseeenaesbeensesseensesanans 217
20.3 HardWare OPEIAtION.c..cevirtirtirtietentieite et et ette ettt et ste et e e sbe et e s b e eate st e eateebeesteebtentesbeesbeeatesbeeatesbeenbesbeenbesbeennesbeentenne 217
29.3.1 Stereo Audio CODEC.......c.ooiiiiiiiiieee et 217
20.3.2 7.1 AUGIO COUCC.... ettt ettt et ettt a e te e a e ae e st et e e et e ebeemteebeen b e ebeenbeebeenteeneenbeenee 218
29.3.3 AM/EM COURC......eiiuiieiiieiirieisictstetet ettt sttt ettt etttk b et b ettt s a et et ettt et eteneerens 218
204 SOFtWATE OPETALION. .. uteiutieriiieiteeite ettt ettt et et te st e sttesabe e bt e sabeebeesabeebeesa bt ebteeaseenbaesabeenbeesabeestesateesbeesaseebaesnseeseenas 219
29.4.1 ASOC Driver SOUrce ATCHITECIUIE.c..ieiiitieiiitieie ettt ettt ettt sttt ae et et ettt e sbesseenbeeseenbeennenaens 219
29.4.2 Sound Card REZISIIAION.c..ccvuiiiiriiriitiriteteet ettt ettt ettt et b ettt et be et ebe et st enaesaeenaes 219
20.4.3 DEVICE OPCIN...uutiiniiiiiieiieeieeitte ettt ettt et s bt e et e bt e st e bt e sab e e bt e sht e e bt e e ht e e bt e eab e ea bt e shbeeabeeehteebe e bt e eabeeeateeates 220

i.MX Linux® Reference Manual, Rev. 0, 12/2015

14 Freescale Semiconductor, Inc.

Section number Title Page
29.4.4 PlatfOrm Data.......cc.coooiiiiiiiiiiiiiiiccc e ettt 220
20.4.5 Menu Configuration OPLIOMNS.cc.ueeruieruitertienieetee st et ee sttt et e sttt et e sateebeesabeebtesateasbeesaseesbeesaseeseesnseenseesasean 220
Chapter 30
Asynchronous Sample Rate Converter (ASRC) Driver
30.1 INEFOAUCTION. ...ttt e e b e s h bbb b e n e sa e a b s s 223
30.1.1 HardWare OPEIatiON.c.eecueeuieruieuieeteeteetteteetterteette bt ette bt este bt eate et e enteeseenteeseesesaeenseestesbesmseaseensenseensenseenseane 223
30.2 SOFEWATE OPETALION.eoueitiiiiiiieiierie ettt ettt ettt ettt ettt e st e s bt et e sbees b e sb e eabeeb s ea bt e bt et e ebtembeebtesbeemtesaeenaesbeenaesbeenbesbnens 224
30.2.1 Sequence for Memory t0 ASRC t0 MEMOTY........coiiiiriiirieiiienieetee sttt ettt sttt st ettt et e e i s 225
30.2.2 Sequence for Memory to ASRC t0 Peripheral...........ccccooiiiiiiiiiiiieeeeeee e 225
30.3 SOUICE COE STIUCTUTIR.ueiuieiieiiiiiiiiitietiete ettt sttt ettt ettt et e b et be e et be e sttt e as et eaeebeeaeeaeeaeebesuesaeanes 226
30.3.1 Linux Menu Configuration OPLIONS.c...eeiueeriteriieiieeiieiteesite et esite et e sitesbeesitesabeesabesabeessbeeseesaeesseessnesnses 226
30.4 DeVICELIEE BINAING.eeiiiuieiiiiieie ittt ettt ettt ettt et e s h e bt s st e bees e et e es e et e en e e bt en e e bt enteebeentesaeenbesneeaeeaean 226
30.4.1 Programming Interface (Exported API and IOCTLS).....cc.ccctriiriiriininiinieiiereeieseeesie ettt 227
Chapter 31
The Sony/Philips Digital Interface (S/PDIF) Driver
311 INEFOQUCTION. c.eiiii ettt ettt et b b s et b e b et s e ettt eae b e enesa e b e b saesa b ne 229
3111 S/PDIF OVEIVIBW....couiiiiiiiiiiiiiiiiitiiie ittt et a e sa b s 229
31.1.2 HAIAWAre OVEIVIEW.eeueeiieuietieieete ettt ettt ettt et et et e st e e bt e st e eb e e bt e aee bt emeenbeemeebeenbeeseenteeseenteeseebeeneenaeenees 230
3113 SOFtWAIE OVEIVIEW...cuiiuiiiiiiiiiiiietetetet ettt sttt ettt ettt et b e s saeeb e saens 231
3114 ThE ASOC LAY c..eiiuiieiieetteeteet ettt et et ettt b e et e bt e e st e e bt e s ab e e bt e sabeesabesabeesbbeeabeesbeesnbeesanesans 231
31,2 S/PDIF TX DIEVET...cuiitiietiietiietiiteitst ettt ettt ettt b ettt ettt ettt ekt b bbb bbb es et ea et e st b et bt et e ebeaenes 231
3121 DIIVET DIESIZN. ettt ettt et b et bttt e bt sa e et e sbe et s bbbt ettt eae 232
31.2.2 Provided USer INTErface.couiiiiiiiiiiiiiiiiiiiiiiiicicc e e 232
31.3 S/PDIF RX DIIVET ...ttt ettt ettt b bbbt bbb st e e bbbt et enen 233
31301 DIIVET DIESIZN. ittt ettt et h ettt ettt sae et s bt et he et b et sbe et eae 234
31.3.2 Provided USer INTErface...........coiiiiiiiiiiiiiiiiiiiiiicicc et 234
314 SOUICE COUE STIUCTUIE ...eeutieuieitieieetiete et ettt et et et e ea e e eteeate et e este st e enteea e e besseenteeseenbeeseenbeem e e st enee st enseeseensesaeensesneensesnean 236
31.5 Menu Configuration OPHOMS. . ..ccouertirtirieieriteteetterte ettt ette st ettt ettt etesbe e te st s e bt etaebeestebeeatesbeentesbeentesbeenaesusensesanens 237
31.6 DeVICE TTEE BINAINES. ..cuueitieriiieiieiiteiteete ettt ettt ettt et e b e et e e bt e s et e e bt e sate e bt e eabeeabeeeabeeabeesabeebeesateenseesaneenne 237

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 15

Section number Title Page
31.7 Interrupts and EXCEPLIONS.couiriiiiiriieieriteteeit ettt ettt ettt et st b e et b e eat e b e st sbe et ebe et e satesaeestenbeennenuean 237
31,8 UNIt TESt PrOPATAtION. ..ccuueiiuiiitieeiiietie ittt ettt ettt ettt e bt e bt e et e e ebee et e esabeeabeeshbeeabeesbeeeabeebeesabeenstesabeenasesabeennee 238
0 T B B o A 1<) o OO OO OO PO U PSPPI PPORPPTUPPIUPPRRUPOOt 238
B1.8.2 RX TS STOP - eeutetteutirttete ettt ettt ettt et s bt et s bt et e bt et b et e bt e bt e heesa e ea b s bt eat e e bt e st eb e e st bt ea bt b et ebe et eatenae e nae 238
Chapter 32
SPI NOR Flash Memory Technology Device (MTD) Driver
32,1 INEFOQUCTION. c..tiiiiictiteite ettt ettt et bbb bbb st ettt et et e bt e b e enesa e b b s sa b ae 239
32. 1.1 Hardware OPEIAtiON.cccuuiiruierieriieniieetee sttt etee sttt et et e e bt e ssteeateesbaeebeesheeeabeesstesabeessbeenbeesbbeebeensaesbeenanenane 239
32.1.2 SOFEWAIE OPEIATION. c....tieutiitieteeiieteeite et eit et e ettt e bt eae e te e st e s bt este bt esteebeenteebeembeeseenteesee bt entesseeneesseensesneensenneans 240
32.1.3 DIIVET FEALUIES.cueiuiiiiiiiiiiiiiiii ittt sttt ettt st 240
32.1.4 Source Code SIIUCLULE.cc.iiuiiiiiiiiiiieie ittt sae b s 240
32.1.5 Menu Configuration OPLIONS........co.eeuertieueetietietiesteeieeste et e st eteste e te st eetesseenteeseeteeneesseentesaeentesseesesseensesseens 241
Chapter 33
MMC/SD/SDIO Host Driver
0 2 B 613 (o4 11 (<15 10 | OO OO OO OSSR UT SRR PTUSPRRRPON 243
33.1.1 Hardware OPETatiON.......c...coueeieriirtirieetinieete sttt sttt ettt ett et et e bt eateebeestesbeentesbtentesatenbeeasenbeessenbeensenbeennenne 243
33.1.2 SOFIWATE OPETALION.eeueieutieriieetiesite et ettt et e ettt et e sttt ebeesate e bt e sateebeeeabe e bt e sabeeabeesabeenseesaseenbeesabeenbeesabeenseenas 244
33,2 DIIVEE FEALUIES. ...ttt ettt h e s e h et e e b e st e e bt et e ea e e bt e et e ebeemeesbeemeeebeenbeebe et e eseenteeneenneenee 246
33.2.1 S0UTCE COAR SIIUCLUIE.oouiiiiiiiieieietet ettt st ettt ettt et e b e s sae b saeas 246
33.2.2 Menu Configuration OPUOMNS.ceiuteruteriieiieeteertte et et et estte st esbtesite e bt e sabeebeesbeesbeesateesbeessseenbaessesnseesas 246
33.2.3 DEVICEIIEE BINAINGZ. . c..ieietiiiiitieieit ettt ettt sttt h et e b et e bt e b e st e bt eae e bt eneesaeeneeseeenaeenean 247
33.2.4 Programming INTETTACE.cocueruiiiiriiiiiiieieete ettt ettt sttt et sbe e i s 248
33.2.5 Loadable MoAUIE OPEIAtiONS.........eevveeuieriiiiriienieetieeteette st et e sttt e bt e sttt e bt e sabeebeesabeesbeesaseesbeessseenbeessseeseess 248
Chapter 34
NAND GPMI Flash Driver
341 INEFOAUCTION. c...viiiiiiiii ittt e h b s sh b b se bbb n e a b s 251
34.1.1 HardWare OPEIAtiON.c.eeiueeuieruieienteeteetteie et teteettesteette bt etee bt esteeseeneeeseenteesee st saeenseemeesbeemsenbeentenseensenseenseane 251
342 SOFEWATE OPETALION.eoutiiiiiiiieeiierie ettt ettt ettt ettt ettt eat e s bt et e sbe e st e sb e e s bt eb e ea bt e bt et ebt e bt eatesbeemtesaeenaesbeenaesbsenbesbnens 251
34.2.1 Basic Operations: REAA/WIILE......cc..eiiuiiiiiiiieieeiie ettt sttt ettt e bb e et sbe e bt e saaesanes 252
34.2.2 EXTOT COTTECTION. ..eutteutiiieieeete et ete ettt et ettt et e et e bt ee b e bt es e et e eneees e e et e et e sbeemeesbeemseebeemteabeenbeeseenbeeneebeeneesneenees 252

i.MX Linux® Reference Manual, Rev. 0, 12/2015

16

Freescale Semiconductor, Inc.

Section number Title Page
34.2.3 Boot Control BIOCK ManagemeNnt........c..cecueeuteriiriiniiiienieiienieetenie ettt ettt ettt et ettt et sbeetesreeaesbeennesanens 252
3424 Bad BIOCK HANAIINE.cccviiiiiiiiiiieiieee ettt st ettt e b e et e bt st e bt e st e beeeabeenbaesaseebee s 253

34.3 SOUICE COUE STIUCTUIE.euieuttitieteeteete et et et te st et et e ee e eteeate et e eatesseeneeeseenbesseenseeseenbeeseenbeensaseenee st enseeseentesaeensesneensesnean 253
34.3.1 Menu Configuration OPLIONS........co.eeuertieiirtiertietiente ettt ettt ettt et stt et ebtebeebeesbeestesbeestesbeensesbeensesanens 253

Chapter 35
SATA Driver

35,1 HardwWare OPEIAtION.c..cocueruirtirtietentieiteett et ettt ettt et stees e sbe et e s bt e st e st e eabeebees et ebt e bt ebeenbeeatesbeeatesbeesbesbeenbesbeennesbeentenne 255
35. 1.1 SOFEWATE OPETALION.eeueieutieiieetierite ettt et e ettt et e et e et e e sabe et e e sateebeesabe e beesabeeabeesabeenseesateenbeessbeenbeesabeenseesas 255
35.1.2 Source Code Structure CONTIZUIATION.eeuuiitietietietietiete ettt ettt ettt et et et et es e et e e eseeteeaeenbe et e sbeeneenees 255
35.1.3 Linux Menu Configuration OPLIONS..........coueetirieriinieniintenteetenieeitenie ettt ettt et et sbeeeesbeenaesbeenaesnees 256
35.1.4 Board Configuration OPLIOMNS.c.eeeueertiertieriieeitertte et estte st esitesiteesttesateesbeesbeesbeesabeesseesateesbeessseenbaesseenseess 256

35.2 Programming INTEITACE.cc.iiiiiiiiieieeiet ettt sttt sttt e e et e e s et e e et et e e st e bt enee et e eneesaeeneesaeenaeeaean 256
35.2.1 USAZE EXAMPIEZ......eiiiiiiiiiiiiiieteet ettt ettt ettt e b et et a e s bt et sbe e b s 256
35.2.2 USAZE EXAMPIL....couuiiiiiiiiieiiteiteete ettt ettt et ettt et e s ht e et e s bt e e bt e bt e st e e hteea bt e e bt e enb e e bt e eabeenaee s 257

Chapter 36
Inter-IC (I12C) Driver

36.1 INEFOQUCTION. ...ttt e s e b b st b et a e s ea b s 259
36.1.1 T2C BUS DIIVET OVEIVIEW......eetiiiiitieiiiitieiteettete ettt etee sttt e ste et e bt et e e bt e s e et e emteeaeanbeesee bt entesseeneesbeensesseensenseans 259
36.1.2 I2C Device DITVET OVEIVIEW.....cc.oiuiiiiiiiiiiiiiiiitiieiestetetet ettt st sttt e e 260
36.1.3 Hardware OPEIAtiON.cocuueiiuierieriieniieeteesite et ee sttt et et e et e ssteeateesbteesbeessteeabeesatesabeessbeeabeesbbeebeenbeesbeenanesane 260

30.2 SOFEWAIE OPETALION.eueitiiiietteie ittt ettt ettt ettt et e e atesteeaeesteeaeeebeesseebeembees e enbeeseenteeneenbeeneeeseemtesaeenseseeensesneansessnans 260
36.2.1 12C Bus Driver Software OPEeration...........coceeruerierierienienientieitente et ste ettt et st ete st sbt et sesebeebse b eseesaeenee 260
36.2.2 12C Device Driver SOftWare OPEIatiOn........cc.ueeueeriieriieenieiieeniie et esite et esite st esitesbeesseesabeesbtessseenbeesseenseens 261

30.3 DIIVEI FEAUIES....c.ueiiiiiiiitieteeie ettt ettt h e et b e st e b et e e et e bt e ateebeemeeebeemeeebeenbeebe et e eneenteeneeneeenee 261
36.3.1 S0UTCE COAR SIIUCLUIE.oouiiiiiiiieieieiete ettt sttt ettt ettt e eae e s sae b sneas 261
36.3.2 Menu Configuration OPUOMNS.ceivieruteiiieiteeteestte et et et et e siteesbtesate e bt e sabeebeesabeesbeesateesbeesaseenbaesseenseesas 262
36.3.3 Programming INTEITACE.ccueiuieiiiiieiiit ettt ettt et e e st e bt e ae et eneesbe et saeenaeenean 262
36.3.4 INterrupt REQUITEIMENTS. ..c..coviiiiiiiiiiiiietieieettet ettt ettt st ettt et b et ebt et ebte bt eaaesbeeaaenbeenaesbeen 262

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 17

Section number Title Page
Chapter 37
Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver
371 TITOMUCTION. ...ttt ettt ettt ettt ettt e st e et e e bt em e e eb e eme e e bt ea b e e s e em b e eaeemeeem e e st emeesbeemeeeaeemtesseenbesbeenseeneenbeeneantens 263
37.1.1 Hardware OPETatiON.c...coueeteriertirieetinitete sttt sttt eit et ets et eat e s bt estesbeestesbe e et sbeenaesatenbesasenbeensenbeensesbeennenne 263
37.2 SOFIWATE OPETALION. ¢...eeiutieiteeitieeite et ettt et e sttt et e e ettt e bt e sbte e bt e s bteeabee bt e eabeesseesabeessbeeateesbteeabeebbeeabeenbtesabeestesabeensseenbeenses 263
37.2.1 SPI Sub-System in LinUx OS........cooiiiiiiiiiiee ettt ettt ettt e bt et e saeeneesaeebeeaean 264
37.2.2 Software LIMILAIONS.ccoeiiiiiiiiiiiiiieitetet et sttt e e s e e 265
37.2.3 StaNdard OPETAtIONS. ...ccueerutieieeriieetteete et e sttt et e sttt e bt e s ateebeesateeabeeshteabeessbe e beessbesabeesabeenbeessseebeensseebeenanesnne 265
37.2.4 ECSPI SYNchronous OPEIatiOn........cc.eecuieuterueeierteeterteetesteetesteeteeteeteeseenteaseesseeseesseesesseensesseensesseensesseenseans 266
37.3 DIIVEI FRATUTES. ...ttt ettt et et e b bbb sa e st et se ettt atea e s eue b eaeeae s 268
37.3.1 Source Code SIIUCLULE.c.oiuiiiiiiiiiiiieie ittt ea e e b 268
37.3.2 Menu Configuration OPLIONS........cc.eeuertieteetieteetientteiee st et e st eteste e testeenteeseenteeseeteeseesseentesaeeneesseesesseensesseans 268
37.3.3 Programming INTETTACE.cccueiuiiiiriiiiiitieicete ettt ettt st ettt sae e i s 269
37.3.4 INterrupt REQUITEIMENLS. .. .eovuriitieriieitieeiteetee ettt ettt et ettt e sat e et esbb e s bt e nbte s bt e saeesabeesbbeenbeenbaeeaseenseens 269
Chapter 38
FlexCAN Driver
38,1 DIIVEI OVEIVIEW. ..ottt bbb e eb e s e et ae s ae e sa s b sae e 271
38.1.1 HArdWare OPEIAtiON.c.eerueeuieruieienteeieettete et et et e te et e bt esee bt eate bt enteeueenteeseebesaeenseemtesbeemsenbeensenseensenseenseane 271
38.1.2 SOFtWATE OPEIALION. .. .eeeeuiiiiiiiieiteteeit ettt ettt ettt ettt ettt ebt e bt et e s bt e st e bt e st e e bt et e ebe e bt eatesbeestesbeemtesbeennesbeens 271
38.1.3 SoUrce COde SIIUCLULE.ccuiiiiiiiiiiiiicie ettt eb e 272
38.1.4 Linux Menu Configuration OPLIONS.cc.eruteiiruierierierteeiienteetienteete st et et este st eseesteeeesseetesaeeeesseensesseensesnean 272
Chapter 39
Media Local Bus Driver
39,1 TITOAUCTION. ...ttt ettt ettt et ettt e st e e st e sheem e e eb e eme e e b e embeeb e em bt eaeemeeem e e st emeesbeemeeeseembesseenbesbeenseeneenbeeneanteans 275
39.1.1 MLB DeVIiCe MOGUIE........ccooiiiiiiiiiiiiiiiiiiictie sttt e 275
39.1.2 SUPPOTLEA FEALUTES.cueiiutiiiieeiie ittt ettt e b e et e bt s bt e bt e st e e s st e sabeesbbeenbeenbeesnbeesnnesans 276
39.1.3 MLB DIIVEI OVEIVIEW....ccuiiiiiuieitieieetieie ettt ettt eate et este et e bt s et esbesseesbeeste bt emeesbeenteeseanteesee st eseesbeeneesbeensensean 277
302 MILB DIV ..ttt et e et b e b sttt ettt et e a e b st 277
39.2.1 MLB Driver ATCHITECTUIE.ccuoiiiiiiiiiiiiiiii e e 277
39.2.2 SOFtWAIE OPEIALION.....c.veuteuieuieiieiieiietiettett ettt st sttt ettt eb ettt e at et besae st be b et e s enseneeneebeebesaeeuenes 279
i.MX Linux® Reference Manual, Rev. 0, 12/2015
18 Freescale Semiconductor, Inc.

Section number Title Page
30.3 DIIVEE LS.ttt e b e ettt ettt e a e s 280
39.4 Menu Configuration OPLIOMS.eicuteiieerieeritertteete et et et e steebee sttt e bt e sttt ebeesabeeabeesabesabeesbbeanbeenseesnbeesstesabeesssesaseensne 280
Chapter 40
CHIPIDEA USB Driver

40.1 INEOUCHION.c.eiiiiiiiiiici bbb s e b b e ea e ea e en s sa b sa s 281
40.1.1 ATChItECTUIAL OVEIVIEW. .. .euiiuiiitieieetiete ettt ettt ettt ettt et e et e et e s et e bt sae e bt sae e beesee bt esse bt enseabeeneeeseeneeeneeneeseee 281

40.2 HAardwWare OPETAtION.cc.eeueruietirtietiettete ettt ettt et esteeeteste et e et e et e et e et e ebe e st e ebeesbeestesbeestesbeeabesbeeabeestenbeebte bt estesbeeneenae 282
40.2.1 SOFtWATE OPETALION. ..c..tiiiuiiiiieriteette ittt ettt et ettt e stt e et e e sbt e e bt esbteeabeesbtesabeesstesabeesbtesabeebeesabeenbeesabeenseesasean 282

40.2.2 SOUICE COUE SEITCLUIR.eutieuiitieiieetiete et tet ettt testeete st e e e sb e e te et eenbees e e bt eseesseeneesaeentesaeebesseenbeeseenbeeneanseans 283

40.2.3 Menu Configuration OPLIONS.c..eeuerterterietieiteteettett ettt ettt ettt et sttt sbe et e ste et e sbeenbeebeebeebtenbeeneenaeenees 283

40.2.4 USB WaKEUP USAZE.....eeeiieriiieiieiiiteiteeite ettt et sttt sat e bt e eate e bt e st e eabeesate e bt e sab e e beesabeeabeesabeenbeesaneebeenaneen 284

40.2.5 How to Close the USB Child DeVICE POWET........c.ccouieiiriiiiiriieit ettt 284

40.2.6 Changing the Controller Operation MOME.........c..coouiriiiiiiiiiiniiiirieieetee ettt sttt st 284

40.2.77 Loadable MOAUIE SUPPOTL.....ccuiiruieriiiriieeiiteitieete ettt ettt et e st e bt e et e e bt e sabe e bt e sbeeesbeesateeabeesanesnbeesasesseens 284

40.2.8 USB Charger DEtECTION. .. .cueeutitieuiietieti ettt ettt ettt ettt ettt e e et e bt es e e bt eseeeseentesaeentesaeenbesseenbeeseenbeeneenseans 285

40.2.9 USB OTG HNP and SRP SUPPOTL.....c.coveiriiiriiiriiiniiieiitetenettrettseetrte sttt es et 285
40.2.10 Embeded Host CertifiCation...........cccoeiiiiiiiiiiiiiiiiiiiiiciiicccie et s 287
40.2.10.1 Adding TPL-Support PrOPEITY.......cccuiiiiiiiiieiieieeteeieeie ettt sttt se e e enee e 287

40.2.10.2 VBUS CONIOL ..ttt ettt ettt st ne 287

Chapter 41
i.MX 6 PCI Express Root Complex Driver

41T INEOAUCTION.cutiiiiiiiciicietce et et e b e bbbttt et ettt et eaeeb e b e saesa e b b a s 289
ALT0T PCICiiieeee etk h ettt 289

41.1.2 Terminology and CONVENTIONS.cceetrietiririertirtententetetetett ettt ettt st et sae st et et et ese st et eseebesbesaeebesuensens 289

41.1.3 PCIe TOPOIOZY ON 1. IMX ..ottt ettt ettt sttt st ettt ettt b et sbe et ebe e et estenaeeneen 291

1104 FRALULES. ...cuiiiiiiiiiiiiicii e bbb bbb 293

41.2 Linux OS PCI Subsystem and RC AIIVeT........c.ccoiruiriiriiniiiiieieieiet ettt ettt ettt ettt 293
41.2.1 RC Driver SOUICE FIIES......c.couiiiiiiiiiiiiiiiiiiciciccc et st 294

41.2.2 Kernel CONfIGUIATIONS.cc.ueiititiieetieiteetie ettt ettt ettt et e st e bt eshte e bt e s atesabeesatesabeesbbeeabee bt e eabeebeesabeesseesans 294

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 19

Section number Title Page
41.3 System Resource: MemOTY LAYOUL......c..cocuiriiiiiiiiiriieteriieteet ettt ettt st ettt ettt st ettt ebee b sbee e eae 294
41.3.1 System Resource: INETTUPL TINES........eeruiiiiiiriieiiieiieeie ettt ettt st ettt e st eabeesiteeseenaee s 296
41.4 Using PCle Endpoint and RUNNING TESES.....c.cctriiiriiririniinienienteieieietetet ettt sttt ettt s ss e 296
41.4.1 Ensuring PCle System INitialiZation.coceouiriiiiiiiniiiinciicneccse ettt st 298
ALA.2 TOSES ettt ettt 298
143 KIOWIL ISSUCS.c..euteutieutetienieetteteette bt e atesteeateabeeate et e embe et e eatees e e st eseeabeemeeebeembeeheemseeseen bt en s e st enteaseenteeseentesaeenaesnean 299
Chapter 42
EIM NOR Driver
L N 113 (o L1 s (o) s WO OO OO 301
422 HAardwWare OPETAtION.cc.eeuerueetirttetieteete ettt ettt et esteeeteste et e st e es b e et e et e ebeesteebeesaeeatesbeestesbeeabesbeenbeebtenbeeas e bt estesbeeneenae 301
423 SOFEWATE OPEIALION. ...ccueieiiiiiieeiteeite ettt ettt et e et e bt e st e e bt e sat e e bt e eab e e bt e eabeeabeesabeebtesateebteeateebaesabeenbeesabeenseesatean 301
2.4 SOUICE COUE......eeteentiitiete ettt ettt ettt ettt et e s a et e s a e e bt e bt e bt es e et e e st et e em e e ebeemeeeseemteseeenbeeaeenbeeetenbeeme e beentenbeentenneeneenne 301
42.5 Enabling the WEIM NOR........c.cocoiiiiiiitt ettt ettt sttt ettt b et ebt et ebte bt sbee e eae 301
Chapter 43
Quad Serial Peripheral Interface (QuadSPI) Driver
431 INEOAUCTION.cutiiiiiiiieiicicec ettt et b bt bbb bt et b e bttt e bt et eaeea e b e saesa et be e ennen 303
432 HArdWAare OPETAtION. ..c..ueetiiriiiitieeiteeite ettt et eesite et e sttt e bt esuteeabeesabesabeesateeabeeshee e beeesbeeabeesabeeabeessseenbeenseeeabeesatesabeesaseenseens 303
433 SOFEWAIE OPEIATION. ..ceuetiuietteiietieiie et ettt ettt et eteeeteeatesteeatesbeeaeeebeembeeseen st eaee et es e e et e emeeeaeemseseeenseeaeenseemeanbeensenbeeneeeseenes 304
43,4 DIIVET FEALUIES.eiuiiiiiiiiiiiii ittt ettt sttt b e s e sttt ettt et eae b st be e 305
43.5 S0UTCE COAE SIIUCTULE.oviiiiiiiiiiieiei et b e st b e bbb eae s n e s sn e 305
43.6 Menu Configuration OPLIONS.eiueeuiruieteeeieete ettt ettt e et e et et e e te et e e bt este st eseeeseenteesee bt sseenbeeaeeabesmtenbeensenseeneeeseenes 305
Chapter 44
Fast Ethernet Controller (FEC) Driver
L O 113 (o L1 15 (o) WO OO OO P TR SRRP 307
44.2 HAardwWare OPETAtION.cc.eeuirtietiriieteettete ettt ettt et este et st e eate st e est e et e et e ebe e st e ebeesateatesbeesbesbeeabeabeenbeebt et e ebte bt estesbeeneenae 307
4421 SOFtWATE OPETALION. ..c..uiiiueiiitieriieeieerite ettt ettt et e st e bt e sbteesbeesbtesabe e btesabeessteeabeeabeesabeebaesabeenbeesabeenseesasean 310
44.2.2 SOUICE COUE SITCLUIR.otiiuietieiteetiete et tet ettt ettt et st e et e et e et e et eebeesee bt eseeaseemeesaeeneesaeebeeseenseeneebeeneenseans 310
44.2.3 Menu Configuration OPTIONS.c..eeterterieritetietteteettet ettt ettt ettt ettt esaesbe et e st e et e sbe et e ebeesbeeseenbeeneenaeenees 310
443 Programming INTEITACE.coiiiiiiiiiiiitie ettt sttt h et bt e s at e bt e s st e st esab e et e e s bt e et e e nbte st e e nateeates 311
44.3.1 DeviCe-SPECIfiC DETINES.ecuiitieiiitieie ettt ettt e et et e st e e saeebe bt et e sbe e beeneenteene 311
i.MX Linux® Reference Manual, Rev. 0, 12/2015
20 Freescale Semiconductor, Inc.

Section number Title Page
4432 Getting @ MAC AQAIESS. .. .coueiiieiiiiieitiieetiett ettt ettt ettt et ettt e bt et sbe e et sbtenbeeatenbeesnenbeeanenieens 312
Chapter 45
ENET IEEE-1588 Driver
45.1 HAardware OPETAtION.cc.eeuerteetiriietirteeteetterte ettt et ste et e bt et e st e et e ete et e ebeesteebeesaeeatesbeeatesbeeabe st e enbeebtenbeeasesbeentesbeeneenaee 313
45.1.1 Transmit TIMESIAMPING.ceoveeriieriieiieete ettt ettt sttt et et e e sttt e bt e sate e beesabeeabeesabeebeesbeeeabeessbeenbeesaseenneenene 314
45.1.2 ReECEIVE TIMESTAIMPING. .. cuveeveeutieuietienierttenteetteteeteetesteesteesee bt este bt eseesbeesteeseanteeseensesseensesseenseeneenbeensenbeennanseans 314
45.2 SOFtWATE OPCIATION. ...ceuviiiiiiiiiieteeiteit ettt ettt ettt ettt et sb e et s bt et e et e e st ea b et e eb e e bt eatesbeemaesbe e bt sbee bt sat e beebbenbeesaeeneenee 314
45.2.1 Source Code STIUCTUTR.coiiuiiiiiiiiiiitiieie et st ea e s sa s 315
45.2.2 Linux Menu Configuration OPtiONS.ceuietetireerteeiienteetesteeite st eetesteestesteestesseetesseensesseesseeneessesssesseensesseans 315
453 Programming INTEITACE.c.eeiiiiiiiiriiitceit ettt ettt ettt et sb et sae et s bttt st beebn e b e e b ean 315
454 1588 STACK SUPPOTL....eiiuiiiiiiieiieeiteeitte ettt ettt et ettt e b e s at e e bt e e at e e bt e s abeea b e e sabeeabtesbbeeabeeebeeeabeessbesabeessbeenbeenbbeanseenaees 315
45.4.1 1588 Stack INTrOQUCTION. ... couiiiiitieiteit ettt ettt ettt b et b ettt e bt e st e bt eseesaeeneesaeebesbeenbesneensens 315
45.4.2 LiNUXPLP StACK FRATUIES.eoiiriiiiiiiiiiiiiteteeit ettt ettt ettt ettt et sbe et ebe et sseenaeeaees 316
45.43 How to Use the Stacks in Linux OS........cccooiiiiiiiiiiiiiiiiiiii s 316
Chapter 46
Universal Asynchronous Receiver/Transmitter (UART) Driver
40.1 INEOAUCHION.c.uiiiiiiiiiiic et s e et b et ea e ea e en s sa b a s 317
46.2 HArAWAre OPETAION.ctiiuietieiietieteeteeteette et ette s bt e testeestesbeeate et e enteeseanteesee bt eaeeaseameesaeemseebeenseeseenbeessenseeneenseeneesseeneenne 318
46.2.1 SOFtWATE OPETALION.ceuiriiiieriieieeitertteteett ettt ettt ettt et e bt e steebtesbe e st e s beee s e bt eatesbeeat e st e eateebeenteebeenbesneenaeeanes 318
46.2.2 DIIVEI FEATUTES.ocviiiiiiiiiiiiiiccc e st 319
46.2.3 SOUICE COUE STITCLUIR.ctiiuiitieitietiete et tet ettt te st e e bt ete et e ea b e e st et e et te bt eseeeseeneesaeentesaeesesseebeeneenbeeneenseans 319
460.3 CONTIGUIALION.eeutiiiiiiiiitirte ettt ettt ettt et s b et sb et e bt et e et b et e eat e bt ea b e bt eat e ebeeme e sbe e bt ebte bt eatenbeeabesbeesneebeenee 319
46.3.1 CONTIGUIALION OPLIOMS. ..ceuttiririeiieriitertteete et et eteeste e et e st e e bt e sateebeesabeeabeesabeesbeesabe e btesabeenbeesaseebeesaseenseesasean 320
46.3.2 Source Code Configuration OPLIONS.cc.eeueeuieueeierieeienteete st ete st cetesteesteeteeteesee st aseesseentesseensesseesesseensens 320
46.3.3 Chip Configuration OPtONS.c..eeruirterierterieetente ettt ettt ettt ettt ettt esteeate st estesbeestesbe et esbeenbesbeeseebeensennee 320
46.3.4 Board Configuration OPLIONS.eecueerureeriterieeitieeiteertte st estee sttt etee sttt esteesiaesbeesstesabeesabesseessaeeseesseesaseessnesanes 320
46.4 Programming INTEITACE.eeiuiiieiiitietiee ettt ettt ettt b et e bt e st e bt e st e eb e et e sae e beeaee bt ese e beesaenbeentenbeans 320
46.4.1 INtEITUPE REQUITEIMEIIES. .c..vetteiiitieitittete ettt ettt ettt ettt et sb ettt et ettt e bt e bt eatesbeesbesbeeaesbeebesbsenbeeanenbeean 320

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 21

Section number Title Page
Chapter 47
Wi-Fi BCM4339 Driver
471 HArdWAare OPETAION.ccueeueetieuieetteteeteeteetteteeeteste et e ateeste st e eate et eenteeseenteesee bt eaeeaseameeseeembeaseenseeseenbeeseenseeneenseeneesseeneenee 321
A7 1.1 SOftWATE OPETALION.cetiriiiiiriterteeiterte ettt ettt ettt ettt et e bt s aeebtesbe et e s bt estesbeeat et e est e st e eabeebeenteebeenbesneenaeeanes 321
AT7.1.2 DIIVEE fEATULES......cviiiiiiiiiiiiiiicc et e 321
47. 1.3 SOUICE COE SEITCLUIR.cuviiuiitieieetiete et tet ettt ettt e e st estesb e et e et te bt et te bt eseesseeneesaeentesaeesesseebeeneebeennanseans 321
47.1.4 Linux Menu Configuration OPtIONS.c..eeuireeiireertnieneetenieeit et ettt ettt steetesbeetesbeesaesbeesbeessesbeessesbeesnenieens 322
47.2 How to Install the Driver MOUIE.............cocoiiiiiiiiiiiiiiiiiic e 322
473 DeVICE TTEE BINAING....c.uiiuieiiitieiieiieie ettt h et b et et e bt e et e bt e st e ebeemeeseeemeesaeembeebeembeebeenteeseenseeneenes 322
47.4 Murata Module SUPPOTT STALUS. ...cc.ueittitiriieiieitete ettt ettt ettt ettt et ettt es e bt eatesbe et sbe e bt sbtenbeeatenbeeanesbeennesseenee 323
Chapter 48
Pulse-Width Modulator (PWM) Driver
8.1 INEIOAUCHION. ...ttt e b bt s a e b e bt b et ettt et e st et eaeeb b suesa et b e saennes 325
48.1.1 HAardWare OPETAtION.ccvuvieiiieriitetie et ette st et e ettt et e et e e bt e eabeesteesabeesttesabeesbbeeaseebteeabeenstesabeesabesabeesbseenseennees 325
A8.1.2 CLOCKS ..ttt ettt ettt bbb bbbt b bbbt b et b et b et b et b et 326
48.1.3 SOftWATE OPETALION.ceuiruiiieiiierieeiteite ettt ettt ettt eb et eat et ebtesbe et e s bt ea b esbeeatesbeeab e st e esbeebeentesbeenaesneenaeennes 327
48.1.4 DIIVEI FEATUTIES.ocviiiiiiiiiiiiii et et 327
48.1.5 SOUICE COUE SEITCLUIR.etiiuiitieiteetiett ettt ettt ettt et e st ea e sb e et e e s eenbe et e e bt eseesseemeesaeentesaeesesseebesneebeeneanseans 327
48.1.6 Menu Configuration OPLIONS.c.ueeueritertirieteettete ettt ettt ettt ettt et sbe et ste et e sbe et e sbeenbeebeeteeseenbeeneenaeenees 328
Chapter 49
Watchdog (WDOG) Driver
49,1 INEOAUCTION. ...ttt ettt et b bt e b e b s bt b ettt et et e a e et eaeea e b e suesa et b saennes 329
49.1.1 HAardWare OPETAtION.ccouuiiriieeiteatie et ette et ette sttt e bt e e et esbeeebeesbeesabeesstesateesbaeeaseebeesabeenseesabeessbesabeessseenseenaees 329
49.1.2 SOFEWATE OPETALION.eoueiuiiuieiietiettrieeteetest ettt ettt ettt ettt ettt bbb s e se et et e e e s et et eaeebeeueeseebeebesuesaeas 329
49.2 Generic WDOG DIIVET......ccuiiiiiiiiiiiiciiciiete ettt et ettt ettt ettt e 329
49.2.1 DIIVEI FEATUTES.oviiiiiiiiiiiiiiiic e st st 330
49.2.2 Menu Configuration OPLONS.ceeeuietertertirtertenteteteteteet et et ett ettt sttt s besae st et sse st et esseeeneesseateseeseeresuesaeas 330
49.2.3 S0oUICE COE STIUCTUTR.cueiuiiiiiiiiiiitietiite ettt ettt ettt b e sttt et ea e b saesae b b saeanes 330
49.2.4 Programming INLETTACE.cocuiiiiiiiiiiiieeie ettt ettt et st be e st e bt e sate e bt e saneenae 331
i.MX Linux® Reference Manual, Rev. 0, 12/2015
22 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 50
OProfile
S50.1T TEFOAUCTION. ¢ttt ettt ettt ettt a ekt e st e e bt ea et eh e e et e et e bt e et e bt es e e bt emte bt emteebeenteeseenseeneenbeemeenbeemtesaeensennean 333
SO.I.T OVEIVIBW...eiuitinieiiietiieitreetete ettt ettt b et b et b et b et b s b st n bt b et b ne 333
50.1.2 FRALUIES. ...ttt e e h bbb 333
50.1.3 HardwWare OPEIatiOn.........cuerueiieruieieitieieetieste et et ette et eaeesteetesteeteebeenbeebeenbeeseenteesee st eneeeseensesseensesseensesneansens 334
50.2 SOFtWATE OPETALION.erutiutirititieitieteete ettt ettt ettt et b ettt ee b et e e st e ebe et e sbee et e st esbeeatesbeee b e bt eatesbeeab e s bt et e ebee et esaenaeeneen 334
50.2.1 Architecture-Specific COMPONEIILS.eeruiertieriieriietie et estee st et te sttt e bt e siteebeesatesabeesabesabeesbbeebeenseesabeesseesanes 335
50.2.2 oprofilefs PSEUdO FIlESYSIEIM.ccuiiuiiiiiiiiiiiiieieeeee ettt ettt e e eaee et e esee s 335
50.2.3 Generic KerNel DITVET......c..ccuiiiiiiiiiiiiciiii ettt s 335
50.2.4 OProfile DaGmON........cc.couiiiiiiiiiiiiic e 335
50.2.5 POSt PrOfIlING TOOLS...c..eiuiiitieiietieie ettt ettt ettt ettt et e bt et e s bt et e s bt e e eb e et e eseeteeneebeenee 336
50.3 REQUITEINEIIS. ..c.ueeutiiiiitieitetteteett et ettt ettt et e st et sb e e st beeatesbeea b e e bt et e eb e e bt eh e e bt eaeesbeeatesbeesbesbeembesb e et e e bt enbeebeenseeneenaeenee 336
50.3.1 Source Code SIIUCTULE.c.ocouiiiiiiiiiiiiiiii ettt s sa e 336
50.3.2 Menu Configuration OPTIOMS.eueeueeruereeieiteeteeteerteette et et e steesteeteeteeseesteeseesseemtesbeensesseenseeseenteeseenseeneenaeenees 336
50.3.3 Programming INTEITACE.cccuiruiiiiiiiiiiiieect ettt ettt et st 337
50.3.4 INLETTUPL REQUITEIMENES.eiiutiiiieiitieriteeiie ettt sttt sttt et e bt et e e bt e s bt e bt e s et e esbbesabeenbaesabeenbeesabeeseesares 337
50.3.5 Example Software CONfigUIALION.cetetirieriieieitt ettt ettt ettt ete et esbeeseesbeeneesbeessesbeennesanans 337
Chapter 51
CAAM (Cryptographic Acceleration and Assurance Module)
ST.1 CAAM DEVICE DITVET OVEIVIEW. . ..itiiuiiitieiietiett ettt ettt ettt ettt et et e bt eat et e es e e et e e et saeenaesatenbeeaeenbeeateabeenseebeeneeeseanes 339
51.2 Configuration and JOb EXECUtiON LEVEL.......cccocouiiiiiiiiiiiiiiiiiienceesecet sttt st s 339
51.3 Control/ConfigUration DITVET.......ccueiiiiiiiiieiiiie ettt ettt et ettt ettt e st e bt e sate e bt e satesabeesabeeabeessbeebeenanenn 340
ISl B o) o 1 4 11 Vol B 5) OSSO RO SUR SRS 340
S51.5 APIINErface LEeVEl....coooiiiiiiiiiiiiic ettt s s 341
S51.6 DIiVEr CONTIGUIAION.veitiiitieriieeieeitte ettt ettt et e st e ettt e bt e e bt e bt e st e esatesabeesateeabeebbeeabeebeesabeenbtesabeessaesaseenbaesaseenseean 344
o A 51 ¥ 11 3 o) OO PRTRRPRRRRI 345
51.8 Limitations in the Existing Implementation OVEIVIEW.coeriiriiriiniiiiinieeieetene ettt sttt 346
51.9 [Initialize Keystore Management INTETTACE.eivuiiiiiiiiiiiii ettt et et 346

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 23

Section number Title Page
51.10 Detect Available Secure Memory StOrage UNILS......co.covuereerieriinienienientenieet ettt ettt ettt st et sanesbe e sbeesnesbeenee 347
51.11 Establish Keystore in DeteCted UNt..........cocuiiriiiiiiriiieieeiie ettt ettt ettt sttt st e sabesteesbbeesbeesbeeeabeesanesaneas 347
ST.12 REICASE KEYSTOTE. . .eeutiiuiitiiiieitieite ettt ettt ettt et e et e b et e s et e e st e eb e eme e eae e bt sae e bt esee bt emee b e embenbeenbeeseenseeseeneeenee 348
51.13 Allocate a S1ot fTom the KEYSIOTE.cocuiriiiiiriiiiiiiierte ettt sttt et sb ettt st 348
51.14 Load Data into @ KEYSIOTE SIOt.....ciiuiiiiiiiiiiiiiiiie ettt ettt sttt s bttt e sttt e bt e st e et e s st e eabeesbeeenbeenaees 348
51.15 Demo IMage UPAALe........c.cciiiriiriirieiiieieieeei ettt ettt ettt ettt b ettt be sttt et st ebe e bt sae b b e 349
51.16 Decapsulate Data in the KEYSIOTE.......cccuiriiriiriiiiiienieieecete sttt ettt et st sae sttt be bbb 350
51.17 Read Data From @ KeYStOTE SIOt.....cccueiiuiiiiiiiieiiieiie ettt ettt ettt sttt et e st e bt e s it e e sbeesaseebeesnseenee s 350
51.18 Release a S10t back t0 the KEYSIOTE.cueiuiiiiiieiiiiee ettt ettt ettt ettt et et e bt et e bt et e sbeestesbeenteebeeneene 351
51.19 CAAM/SNVS - Security Violation Handling Interface OVErVIEW...........coeiiiriiiiiniiniiniiiiniieieniteeseeeeeee e 353
ST.200 OPEIALION. ..ceuvtiiuiieiieeitieite et ettt et ettt et et e bt esateeateesbaeea bt e sbe e e bt esbeeeabeesabeeabeeshbeeabee bt e eabeessbeeabeesabeenbeesabeenbeesateebeenneeeabes 353
S51.21 Configuration TNEEITACE.cc.eiiiiieietiee ettt ettt ettt et e e e bt s st e bt s st e sbeemtenbeensesbeensenbeensesseeneene 354
51.22 InStall @ HANAIET.....c.oouiiiiiiiiiiii e ettt et st 354
51.23 Remove an Installed DIIVET.........ccoiiiiiiiiiiiiiiiii e 354
51.24 Driver Configuration CAAMY/SINVS ... ettt ettt ettt et be et e s bt et e e bt e be e bt et e ese e teeneenaeeaes 355
Chapter 52
Remote Processor Messaging (RPMsg)
S0 B i (0T L1 17 (o) s OO OSSR SRR 357
52.2 FRAIUIES.ouiiiiiiiiiiiiieite ettt e b b b s a e bbb ettt e h e a et ea b s et st 358
52.3 SOUICE COUE......eoiiiiiiiiiiiiiiiiii ettt 359
52,4 Kernel CONFIGUIALIONS. ...c..cviiiieiiiiieiieitetteteste sttt ettt ettt et ettt b e bbbt et et sbesa et et et e e e st esteaeebtebesbeebeebesaesaennen 359
52.5 Running i.MX RPMSEZ TeSt PrOZIAMIS.cccueruiiiiriiiiiniieiieitett ettt ettt sttt ettt st et sae e 359
Chapter 53
Sipix Display Controller (SPDC) Frame Buffer Driver
53,1 INEEOAUCTION. c..c.uiiiiiiitcieeteee ettt s bbb st s et st et eat e bt eaeeae b e b sae et saesnens 363
53.2 HArdWAare OPETAtION.couvteruieriiieriieeittentteeteerttesteestte sttt esttesate e beesase e beesabe e stesabeestesaseenbeeeaseeabeesabeenbeessbeenbaessseenbeesnnennne 364
53.3 SOTEWATE OPEIALION.euieutieiiitieiteett ettt ettt ettt e bt e st e bt ea b et e en e e et e e st e ea e et e es e e beemeesbeemeeabeemte bt amteebeenteeseenseeneenseeneenaeenees 364
53.3.1 SPDC Frame Buffer DIiver OVEIVIEW.......cc.ccuccuiiiiiiiiiiiiiiiiiiiiiecicieieeeteteee ettt st 364
53.3.2 SPDC Frame Buffer Driver EXtENSIONS.........ccccuiiiiiiiiiiiiiiiiiiciccciececs e 365
i.MX Linux® Reference Manual, Rev. 0, 12/2015
24 Freescale Semiconductor, Inc.

Section number Title Page
53.3.3 SPDC Panel COnfigUIAtiON.cccueoueetiriiriiniieiinieete sttt ettt ettt ettt ettt et ebee bt st e saeestesbeentesbeennesieens 365
53.3.3.1 Boot Command Line Parameters.............cccccceiiiiiiiiiiiiiiiiiiiii s 366

53.3.4 SPDC Waveform LOAINg.cooeruieiiiieieiieee ettt ettt ettt ettt et es e b e nteeseenteeneenaeeneas 366
53.3.4.1 Using a Default Waveform File..........occooiiiiniiiiniiiiiseceeeee e 367

53.3.4.2 Using a Custom Waveform File..........c.cooviiiiiiiiiiiiiieece et 367

53.3.5 SPDC Panel INitIaliZatION.c.eeueeiuieiitieieetiete ettt ettt ettt ettt ettt e et e e ese et esee bt emeesbeemeesbeensesseensesneans 368

53.3.6 Grayscale Framebuffer SEIECtion..........cccccouiriiriiiiniiiiiiiieeee ettt 368

53.4 S0UICE COUE SLIUCTUIEoouiiiiiiiiiiiiiitiiiiiie e s d et eb e b s sn e 369
53.5 Menu Configuration OPLIOMS.ccueeuteutruiertteterteete it ete et ete et eate et eesteesee bt eseesteeseesbeeseeaseenseaseenteeseenseeseeseeneenseeneenaeeneas 370
53.6 Programming INEEITACE.cc.eooiiriiiiiiiiiit ittt ettt et b et b et b et ettt ettt 370
53.60.1 TOCTLS/FUNCHONS.c.viiiiiiiiiiiiiiiiiiiiiic ettt bbb s sae b sae 370

53.6.2 Structures and DEfiNeS.coeiiuiiiiiieieee e et ettt h et eh ettt e e eaees 374

Chapter 54
Display Content Integrity Checker (DCIC)

SAT IETOAUCTION. ¢ttt ettt ettt ettt ettt b e ea et e st e ebeea et e h e et e eae e bt ea e e bt es e e bt eate bt emte b e emteeseenseesee bt eneenbeemeesaeensennean 375
54.2 HAardwWare OPETAtION......cc.eeuiruietiriieieriteteitt et ett ettt et e e st e st sbtestesatetesbeebesb e e bt eas et e eaa e bt eatesbeestesbeenaesbee bt satenbeensenbeas 375
S54.3 SOFtWATE OPETALION. .. uveiutieiiiieiiteeite ettt et sttt e st e stteeabe e beesabeebeesabeebeesebeebeeeabeeabaesabeenbeesabeenstesateenbtesabeebeesnseeseenns 375
54.3.1 SOUICE COUE STIUCTUIE.eutieuiitieie ettt ettt ettt ettt et e bt eateeteentesaeeteeb e e bt esee bt eseenbeemse bt ensenbeenseeseenseeneenseenee 375

54.3.2 Menu Configuration OPTIONS.ccuereeiiriterierteieet ettt ettt ettt et sttt satesteeatesbeee b e st e eabesbeestesbeenaesaeenaeenees 376

54.3.3 DTS CONFIGUIALION. c...eeuteitieitieetterite ettt ettt ettt e bt e et e st e st e ebeesa bt esbeeesbeebeeeabeeabeesabeanstesabeeseenseeenbeesanesnses 376

54.4 Programming INEEITACE.eeuiiuiiiieiet ettt ettt ettt et ettt e bt et e s bt et e s bt eabeeb e et e e bt et e eseenteeneeneeeaes 376
54.4.1 TOCTLS FUNCHONS. ...ttt sttt eae s 376

5442 SHTUCTUIES. ...ttt ettt e a e b b s a e b e et ae b e b b sae b enesan 376

S T U 11 L] A OO OSSOSO 377
54.5.1 SOUICE COE......ouiiiiiiiiiiiiiiiciceet ettt et sttt ettt 377

54.5.2 DCIC CRC Calculation FUNCHONS.ccuiiiiiiiiiiiiiiiiiiici it s e 377

54.5.3 SAIMIPI...cneiiieee ettt b e h e bt e e bt e e e eh e en bt h e et e ehe e bt eateebeenteabeentenbeentenreens 377

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 25

Section number Title Page

Chapter 55

ADC Driver
55.1 ADC TNETOQUCTION. ...ttt ettt ettt ettt et e st e e b et eb e ea b e eb e et e ea e e bt eat e bt e st e sbeemeesbeemseebeembeeb e et e eseenbeeneenseeneeneeenes 379
552 ADC EXEINAl STZNALS...c..eoiiriiiiiiiiiieiteeet ettt ettt ettt ettt e b e sbe et b et b e st eeb et e bttt ebte bt et sbe et b s 379
55.3 ADC DIIVEI OVEIVIEW....uiiiiiiiiiiiiiiiiiiiiii ittt sa b ettt sas b b s sa e 380
55.3.1 ADC DIIVET FIl@....ueeiiiiiiiieieitiee ettt h et h et e a et e e s e bt e st e bt eneesbeensesbeenbesbeennesenans 380
55.3.2 Menu Configuration OPTONS.c.uerueeiiriterieritetert ettt ettt ettt et et ste st e ste et e s bt eebesbeeabesbeestesbeenaesaeenaeenees 380
55.3.3 Programming INEETTACE.c.cueiruiiiiiiiieeiteite ettt sttt ettt e et e b b s bt ebee st e ebeesats 380

Chapter 56

Video Analog-to-Digital Converter (VADC)

56.1 INErOQUCTION. ...c..iiiiiiiiiii et s e 383
56.2 HAardWare OPETALION.cc.eeuiiuieieitieieiteete et et et et ett e bt eateeteeatesteenteeaeebesaeebeas e e bt easen bt emeeseenseeseenseeaeensesaeenbesntenseensenseas 383
56.3 SOFTWATE OPETALION.eruiiuiiriiiiieitieteeite ettt ettt et ettt ettt ea et e st e ebe et e ebeeae e st enbeeatesbeeat e bt eabesbeeateebe et e ebeeaeeseenaeenees 384
56.3.1 Source Code SIIUCTULE.ccuiiiiiiiiiiiii ettt s sa e 384
56.3.2 Menu Configuration OPTIOMS.eueeueeuereeieeiteteetterteeete st etteeteeteeteetesaeesteeaeesbeeste bt ensesseenseeseenteeseenseeneenaeenees 384
56.3.3 DTS CONTIGUIALION ..teutiiuiiiiiiiiiititeete sttt ettt ettt ettt ettt ettt sttt e s bt et saeestesbe e bt sbe et e ebs et e ebeenaeeneenaeenee 384
564 UL TESE. ittt sttt s e bt et a et et h et b et 385

Chapter 57

Bluetooth® BCM4339 Driver

57.1 Bluetooth INrOAUCTION.c.couiiiiiiiiiiiiiiiicic e s b e st 387
57.2 HAardWare OPETALION.cc.eeuiiuteieitieieiteete et ete et et ett e bt esteeteeatesueeateeaeesesseenbeaseenbeeasenseemseseenseeseanseeseensesaeebesneenseeneensean 387
57.3 SOFtWATE OPETALION.eruiiuiiriiitieitieteeite ettt ettt ettt et b ettt ea et ea e ebe et e ebee et e st enbeeate s bt eea e bt eabesbe e st e e bt et e ebee et eseenaeeneen 387
57.3.1 Bluetooth DIiVer OVEIVIEW.......ccccouiiiiiiiiiiiiiiiiiiiieiecee ettt s en e 387
57.3.2 BlUetoOoth DITVET FILES.......ooiiiiiiiiieie ittt ettt ettt st ebe et eb et st e nte e st e naeenee 388
57.3.3 BIUELOOh STACK.....c.oiiiiiiiiiiiiiiiie e e 388
57.3.4 Menu Configuration OPLIOMNS.cc.ueeuieritritierieeiee st eetee sttt et e sttt e bt e ssteebeesabeebeesabeesbeesaseebaesnseebeesaseenseesasean 388

Chapter 58

Samsung MIPI DSI Driver
581 INTrOQUCTION. ...ttt st s 391
58.1.1 MIPI DSI IP DITVET OVEIVIEW.....eeueitieiiitieieeteeteetteteeiteteette ittt et estesteestesaeensesseenaesseebeeseeseeneenseeneenseeneene 391
i.MX Linux® Reference Manual, Rev. 0, 12/2015

26 Freescale Semiconductor, Inc.

Section number Title Page
58.1.2 MIPI DSI Display Panel DIiver OVEIVIEW......cc.coverueriiriirienieienieete sttt ettt sttt et svee e sbee e saees 392
58.1.3 HArdWare OPETALION......cc.eeruuteruieriieriieeteeitteeteesite et e e st e eateestte e bt esbeesabeesbtesabeesabeeabeesbbeenbeenbeesabeenseesabeessaeanseens 392
58.2 SOFtWAIE OPETALION....cueiuirtitititetetetet ettt ettt ettt ettt sttt et ettt e st eue e bt ebe e bt e bt s aesa et e sbe st et et e e et ennesteneeueebesuesaeas 392
58.2.1 MIPI DSI IP Driver SOftware OPEIation.coceevuereeriereerieriterienitenieeitenteetesieestesieesaesieeniesseestesssesseeanenseens 392
58.2.2 MIPI DSI Display Panel Driver Software OpPeration.............coceevueeriieriieinienieeitesteesieesieeesieeseeeieesressaee e 393
58.3 DIIVET FRATUIES. ...ttt ettt ettt e et et et e bt ee e e eb e eaeeee e em et seeemtesseembeeseembeebeenbees e et e entenbeeneenaeenee 393
58.3.1 S0UICe COde SIIUCLUIE.cueiuiiiiiiiiiiiiiiiietite ettt st sttt et eb e sae b saen 393
58.3.2 Menu Configuration OPLIOMNS.c..ueeuieritriiierieetee st etee sttt et e sttt et esateebeesabeebeesateesbtesaseeabeesaseeseesaseenseesasean 394
58.3.3 Programming INEITACE.cc.ccuiiiiiiiiiiieiiienetee ettt ettt ettt st 394

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 27

i.MX Linux® Reference Manual, Rev. 0, 12/2015

28

Freescale Semiconductor, Inc.

Chapter 1
About this Book

1.1 Audience

This document is targeted to individuals who will port the i.MX Linux® OS Board
Support Package (BSP) to customer-specific products.

The audience is expected to have a working knowledge of the Linux OS 3.0 kernel
internals, driver models, and i.MX processors.

1.1.1 Conventions
This document uses the following notational conventions:

* Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.
* Bold type indicates function names.

® <Yocto BuildDirs stands for <vocto puild directory>/tmp/work/<machine-poky-linux-gnueabis>

1.1.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 29

Audience
Term Definition
ARM® Advanced RISC Machines processor architecture
AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces
BCD Binary Coded Decimal
bus A path between several devices through data lines
bus load The percentage of time a bus is busy
CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data
CPU Central Processing Unit-generic term used to describe a processing core
CRC Cyclic Redundancy Check-Bit error protection method for data communication
Csl Camera Sensor Interface
DFS Dynamic Frequency Scaling
DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers
DPM Dynamic Power Management
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage Frequency Scaling
EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system
Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed
EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention
FCS Frame Checker Sequence
FIFO First In First Out
FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards
FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use
Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.
Flash path Path within ROM bootstrap pointing to an executable Flash application
Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command
GPIO General Purpose Input/Output
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.
I/O Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
Table continues on the next page...
i.MX Linux® Reference Manual, Rev. 0, 12/2015
30 Freescale Semiconductor, Inc.

Chapter 1 About this Book

Term Definition
IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays
IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication
ISR Interrupt Service Routine
JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices
on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used-a policy for line replacement in the cache
MMU Memory Management Unit-a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video
MPEG Several standards of compression for moving pictures and video:
standards + MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
* MPEG-3 was merged into MPEG-2
¢ MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multi-company organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory
ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 31

Audience
Term Definition

RTIC Real-Time Integrity Checker-a security hardware module

SCC SeCurity Controller-a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOS/

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

uSB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

i.MX Linux® Reference Manual, Rev. 0, 12/2015

32 Freescale Semiconductor, Inc.

Chapter 2
Introduction

2.1 Overview

The 1.MX family Linux Board Support Package (BSP) supports the Linux Operating
System (OS) on the following processors:

1.MX 6Dual/6Quad/6Solo/6DualLite/6SoloLite/6SoloX/6Ultalite/7Dual applications
processor

The purpose of this software package is to support Linux OS on the 1.MX 6Dual/6Quad/
6Solo/6DualLite/6SoloLite/6Ultalite/7Dual family of Integrated Circuits (ICs) and their
associated platforms. It provides the necessary software to interface the standard open-
source Linux kernel to the 1.MX hardware. The goal is to enable Freescale customers to
rapidly build products based on 1.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

2.1.1 Software Base

The 1.MX BSP is based on version 3.14.52 of the Linux kernel from the official Linux
kernel website (www.kernel.org). It is enhanced with the features provided by Freescale.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 33

http://www.kernel.org/

Overview

2.1.2 Features

Table below describes the features supported by the Linux BSP for specific platforms.
Table 2-1. Linux BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine-Specific Layer

MSL Machine-Specific Layer (MSL) supports interrupts, Machine-Specific Layer (MSL) All
Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

¢ Interrupts GIC: The Linux kernel contains
common ARM GIC interrupts handling code.

e Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux OS facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high resolution
timer features, and so on. Linux OS defines the
MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

* GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board 1/O.
The 10 software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. /O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

* SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.

SDMA API The Smart Direct Memory Access (SDMA) API driver | Smart Direct Memory Access All
controls the SDMA hardware. It provides an API to (SDMA) API
other drivers for transferring data between MCU, DSP
and peripherals. . The SDMA controller is responsible
for transferring data between the MCU memory space,
peripherals, and the DSP memory space. The SDMA
API allows other drivers to initialize the scripts, pass
parameters and control their execution. SDMA is based
on a microRISC engine that runs channel-specific

scripts.
DMAC Both AHB-to-APBH and AHB-to-APBX DMA support AHB-to-APBH Bridge with DMA All
configurable DMA descript chain. (APBH-Bridge-DMA)
Low-level PM The low-level power management driver is responsible |Low-level Power Management All
Drivers for implementing hardware-specific operations to meet |(PM) Driver

power requirements and also to conserve power on the

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

34 Freescale Semiconductor, Inc.

Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.
CPU Frequency |The CPU frequency scaling device driver allows the CPU Frequency Scaling All
Scaling clock speed of the CPUs to be changed on the fly. (CPUFREQ) Driver
Dynamic Bus In order to improve power consumption, the Bus Dynamic Bus Frequency Driver All
Frequency Driver |Frequency driver dynamically manages the various
system frequencies.
Multimedia Drivers
LCD The LCD interface driver supports the Samsung ELCDIF Frame Buffer Driver i.MX
LMS430xx 4.3" WQVGA LCD panel. 6SoloLite,
i.MX
6UltralLite,
i.MX 7Dual
EPDC The Electrophoretic Display Controller (EPDC) is a Electrophoretic Display Controller |i.MX
direct-drive active matrix EPD controller designed to (EPDC) Frame Buffer 6DuallLite,
drive E Ink EPD panels supporting a wide variety of i.MX 6Solo,
TFT backplanes. i.MX
6SoloLite,
i.MX 7Dual
PxP The Pixel Pipeline (PxP) DMA-ENGINE driver provides |PXP DMA-ENGINE Driver i.MX
a unique API, which are implemented as a DMA engine 6DuallLite,
client that smooths over the details of different i.MX 6Solo,
hardware offload engine implementations. i.MX
6SoloLite,
i.MX
6UltraLite,
i.MX 7Dual
IPU The Image Processing Unit (IPU) is designed to Image Processing Unit (IPU) i.MX 6Quad,
support video and graphics processing functions and to | Drivers i.MX 6Dual,
interface with video/still image sensors and displays. i.MX
The IPU driver is a self-contained driver module in the 6DuallLite,
Linux kernel. It contains a custom kernel-level API to i.MX 6Solo,
manipulate logical channels. A logical channel i.MX
represents a complete IPU processing flow. The IPU 6UltraLite,
driver includes a frame buffer driver, a V4L2 device i.MX 7Dual
driver, and low-level IPU drivers.
HDMI This driver provides the support HDMI module HDMI Driver All
V4L2 Output The Video for Linux 2 (V4L2) output driver uses the IPU | Video for Linux Two (V4L2) Driver |All
post-processing functions for video output. The driver
implements the standard V4L2 API for output devices.
V4L2 Capture The Video for Linux 2 (V4L2) capture device includes | Video for Linux Two (V4L2) Driver |All
two interfaces: the capture interface and the overlay
interface. The capture interface records the video
stream. The overlay interface displays the preview
video.

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 35

Overview

Table 2-1. Linux BSP Supported Features (continued)

Feature

Description

Chapter Source

Applicable
Platform

VPU

The Video Processing Unit (VPU) is a multi-standard
video decoder and encoder that can perform decoding
and encoding of various video formats.

Video Processing Unit (VPU)
Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo

Sound Drivers

ALSA Sound

The Advanced Linux Sound Architecture (ALSA) is a
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions. ALSA has a user-space
component called ALSAlib that can extend the features
of audio hardware by emulating the same in software
(user space), such as resampling, software mixing,
snooping, and so on. The ASoC Sound driver supports
stereo CODEC playback and capture through SSI.

ALSA Sound Driver

All

S/PDIF

The S/PDIF driver is designed under the Linux ALSA
subsystem. It implements one playback device for Tx
and one capture device for Rx.

The Sony/Philips Digital Interface
(S/PDIF) Driver

All

Memory Drivers

SPI NOR MTD

The SPI NOR MTD driver provides the support to the
Atmel data Flash using the SPI interface.

SPI NOR Flash Memory
Technology Device (MTD) Driver

All

NAND MTD

The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as UBIFS, CRAMFS and JFFS2UBI and
UBIFSCRAMFS and JFFS2. The driver implementation
supports the lowest level operations on the external
NAND Flash chip, such as block read, block write and
block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND
Flash are not guaranteed to be good, the NAND MTD
driver is also able to detect bad blocks and feed that
information to the upper layer to handle bad block
management.

NAND GPMI Flash Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo,
i.MX
6UltralLite,
i.MX 7Dual

SATA

The SATA AHCI driver is based on the LIBATA layer of
the block device infrastructure of the Linux kernel

SATA Driver

i.MX 6Quad,
i.MX 6Dual

Input Device Drivers

Networking Drivers

ENET

The ENET Driver performs the full set of IEEE 802.3/
Ethernet CSMA/CD media access control and channel
interface functions. The FEC requires an external
interface adaptor and transceiver function to complete
the interface to the Ethernet media. It supports half or
full-duplex operation on 10M\100M\1G related Ethernet
networks.

Fast Ethernet Controller (FEC)
Driver

All

Bus Drivers

1’C

The 12C bus driver is a low-level interface that is used
to interface with the 12C bus. This driver is invoked by
the 12C chip driver; it is not exposed to the user space.
The standard Linux kernel contains a core 12C module

Inter-IC (12C) Driver

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

All

36

Freescale Semiconductor, Inc.

Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature

Description

Chapter Source

Applicable
Platform

that is used by the chip driver to access the bus driver
to transfer data over the 12C bus. This bus driver
supports:

¢ Compatibility with the 12C bus standard

* Bit rates up to 400 Kbps

» Standard 12C master mode

* Power management features by suspending and
resuming 12C.

CSPI

The low-level Enhanced Configurable Serial Peripheral
Interface (ECSPI) driver interfaces a custom, kernel-
space API to both ECSPI modules. It supports the
following features:

* Interrupt-driven transmit/receive of SPI frames
¢ Multi-client management

* Priority management between clients

* SPI device configuration per client

Enhanced Configurable Serial
Peripheral Interface (ECSPI) Driver

All

MMC/SD/SDIO -
uSDHC

The MMC/SD/SDIO Host driver implements the
standard Linux driver interface to eSDHC.

MMC/SD/SDIO Host Driver

All

UART Drivers

MXC UART

The Universal Asynchronous Receiver/Transmitter
(UART) driver interfaces the Linux serial driver API to
all of the UART ports. A kernel configuration parameter
gives the user the ability to choose the UART driver
and also to choose whether the UART should be used
as the system console.

Universal Asynchronous Receiver/
Transmitter (UART) Driver

All

General Drivers

uSB

The USB driver implements a standard Linux driver
interface to the ARC USB-OTG controller.

CHIPIDEA USB Driver

All

FlexCAN

The FlexCAN driver is designed as a network device
driver. It provides the interfaces to send and receive
CAN messages. The CAN protocol was primarily
designed to be used as a vehicle serial data bus,
meeting the specific requirements of this field: real-time
processing, reliable operation in the EMI environment
of a vehicle, cost-effectiveness and required bandwidth.

FlexCAN Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo

ASRC

The Asynchronous Sample Rate Converter (ASRC)
driver provides the interfaces to access the
asynchronous sample rate converter module.

Asynchronous Sample Rate
Converter (ASRC) Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo

WatchDog

The Watchdog Timer module protects against system
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors. This
WDOG implements the following features:

¢ Generates a reset signal if it is enabled but not
serviced within a predefined time-out value

* Does not generate a reset signal if it is serviced
within a predefined time-out value

Watchdog (WDOG) Driver

All

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

37

Overview
Table 2-1. Linux BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
MXC PWM driver | The MXC PWM driver provides the interfaces to access | Pulse-Width Modulator (PWM) All
MXC PWM signals Driver
Thermal Driver | Thermal driver is a necessary driver for monitoring and | Thermal Driver All
protecting the SoC. The thermal driver will monitor the
SoC's temperature in a certain frequency. It defines
three trip points: critical, hot, and active.
OProfile OProfile is a system-wide profiler for Linux systems, OProfile All
capable of profiling all running code at low overhead.
i.MX Linux® Reference Manual, Rev. 0, 12/2015
38

Freescale Semiconductor, Inc.

Chapter 3
Machine Specific Layer (MSL)

3.1 Introduction

The Machine Specific Layer (MSL) provides the Linux kernel with the machine-
dependent components found here.

* Interrupts including GPIO and EDIO (only on certain platforms)

e Timer

* Memory map

* General Purpose Input/Output (GPIO) including IOMUX on certain platforms
» Shared Peripheral Bus Arbiter (SPBA)

* Smart Direct Memory Access (SDMA)

These modules are normally available in the following directory:

<Yocto_BuildDirs/linux/arch/arm/mach-imx for the i.MX 6 and 1.MX 7 platforms

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operation and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

3.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 39

Interrupts (Operation)

3.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external
interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
setting.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts in order of highest priority level, then highest source number with the
same priority. There are sixteen normal interrupt levels for all interrupt sources, with
level zero being the lowest priority. The interrupt levels are configurable through eight
normal interrupt priority level registers. Those registers, along with the Normal Interrupt
Mask Register, support software-controlled priority levels for normal interrupts and
priority masking.

3.2.2 Interrupt Software Operation

For ARM architecture-based processors, normal interrupt and fast interrupt are two
different exception types. The exception vector addresses can be configured to start at
low address (0x0) or high address (OxFFFF0000).

The Linux OS implementation running on ARM architecture chooses the high vector
address model.

The following file has a description of the ARM interrupt architecture.
<Yocto_BuildDirs>/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

40 Freescale Semiconductor, Inc.

Chapter 3 Machine Specific Layer (MSL)
3.2.3 Interrupt Features
The interrupt implementation supports the following features:

* Interrupt Controller interrupt disable and enable

* Functions required by the Linux interrupt architecture as defined in the standard
ARM interrupt source code (mainly the <Yocto_BuildDir>/linux/arch/arm/kernel/
irq.c file)

3.2.4 Interrupt Source Code Structure
The interrupt module is implemented in the following file (located in the directory
<Yocto_BuildDir>/linux/arch/arm/plat-mxc):

irg.c (If CONFIG MXC TZIC is not selected)
tzic.c (If CONFIG MXC TZIC is selected)
gic.c (If CONFIG ARM GIC is selected)
gpc.c (If CONFIG MXC is selected)

There are also two header files (located in the include directory specified at the beginning
of this chapter):

hardware.h
irgs.h

Table below lists the source files for interrupts.

Table 3-1. Interrupt Files

File Description
hardware.h Register descriptions
irgs.h Declarations for number of interrupts supported
gic.c Actual interrupt functions for GIC modules

3.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 41

A
Timer

In addition to the native interrupt lines supported from the Interrupt Controller, the
number of interrupts is also expanded to support GPIO interrupt and (on some platforms)
EDIO interrupts. This allows drivers to use the standard interrupt interface supported by
ARM device running Linux OS, such as the request_irq() and free_irq() functions.

3.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it does the following:

» Updates the system uptime

e Updates the time of day

» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired

e Updates resource usage and processor time statistics

The timer hardware on most i.MX platforms consists of either Enhanced Periodic
Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is configured to
generate a periodic interrupt at a certain interval (every 10 ms) and is used by the Linux
kernel.

3.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in Timer.
Another function provides the time elapsed as the last timer interrupt.

3.3.2 Timer Features
The timer implementation supports the following features:

* Functions required by Linux OS to provide the system timer and dynamic timers.
* Generates an interrupt every 10 ms.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

42 Freescale Semiconductor, Inc.

4
Chapter 3 Machine Specific Layer (MSL)

3.3.3 Timer Source Code Structure

The timer module is implemented in the arch/arm/mach-imx/time.c file.

3.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

3.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

3.4.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

3.4.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX
platforms as defined in the <Yocto_BuildDir>/arch/arm/mach-imx/pm-imx*.cfile.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 43

A
IOMUX

3.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the
physical to virtual memory map for all the I/O modules.

3.4.4 Memory Map Source Code Structure

The Memory Map module implementation is in pm-imx*.c under the platform-specific
MSL directory. The hardware.h header file is used to provide macros for all the I/O
module physical and virtual base addresses and physical to virtual mapping macros. All
of the memory map source code is in the in the following file:

<Yocto_BuildDirs/arch/arm/mach-imx/pm-imx*.c
Table below lists the source file for the memory map.

Table 3-2. Memory Map Files

File Description
mx6.h, mx7.h Header files for the 1/0 module physical addresses
hardware.h Memory map definition file

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

e TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
e« UART?2 DTR-alternate mode 3

i.MX Linux® Reference Manual, Rev. 0, 12/2015

44 Freescale Semiconductor, Inc.

e
Chapter 3 Machine Specific Layer (MSL)
e LCDC_CLS-alternate mode 4
e GPIO4[22]-alternate mode 5
e SLCDC_DATA[8]-alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design. If the pin is connected to an external UART transceiver and therefore to be used
as the UART data transmit signal, it should be configured as the primary function. If the
pin is connected to an external Ethernet controller for interrupting the ARM core, then it
should be configured as GPIO input pin with interrupt enabled. Again, be aware that the
software does not have control over what function a pin should have. The software only
configures pin usage according to the system design.

3.5.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware
module.

The IOMUX controller registers are briefly described in this section.
For detailed information, see the pin multiplexing section of the IC Reference Manual.

e SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables
loopback mode when applicable.

 SW_SELECT_INPUT-Controls pin input path. This register is only required when
multiple pads drive the same internal port.

* SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and
SO on.

3.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and
pad features.

3.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 45

IOMUX

3.5.4 IOMUX Source Code Structure

Table below lists the source files for the IOMUX module. The files are in the following
directories:

<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sl.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6q.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sx.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6ul.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx7d.c

Table 3-3. IOMUX Files

File Description
pinctrl-imx.c i.MX pinctrl core driver
pinctrl-imésl.c i.MX 6SoloLite pinctrl driver
pinctrl-imx6q.c i.MX 6Quad/DualLite pinctrl driver
pinctrl-imx6ésx.c i.MX 6SoloX pinctrl driver
pinctrl-imx6ul.c i.MX 6UltraLite pinctrl driver
pinctrl-imx7d.c i.MX 7Dual pinctrl driver

3.5.5 IOMUX Programming Interface
See pinctrl binding documents:

 imx-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx6sl-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

3.5.6 IOMUX Control Through GPIO Module

For a multi-purpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin, or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

i.MX Linux® Reference Manual, Rev. 0, 12/2015
46 Freescale Semiconductor, Inc.

4
Chapter 3 Machine Specific Layer (MSL)

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which cannot be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design. If this pin is connected to an external UART transceiver, it should
be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. The software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

3.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, refer to the relevant device documentation.

3.5.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPI1O port.
These registers may be used for software control of [IOMUX block of the GPIO.

3.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

3.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad
features.

3.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 47

A ————
General Purpose Input/Output(GPIO)

3.6 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

3.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the 1. MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization in the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since
it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-down,
slew rate and so on, with the pad control function may be required as well.

3.6.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.
The GPIO implementation supports the following features:

* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

* Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

48 Freescale Semiconductor, Inc.

Chapter 3 Machine Specific Layer (MSL)

 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is

located in the GPIO module.
* Minimal changes required for the public drivers such as Ethernet and UART drivers

as no special GPIO function call is needed for registering an interrupt.

3.6.2 GPIO Features
This GPIO implementation supports the following features:

e Implements the functions for accessing the GPIO hardware modules
* Provides a way to control GPIO signal direction and GPIO interrupts

3.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files,
located in the directories indicated at the beginning of this chapter:

Table 3-4. GPIO Files

File Description

drivers/gpio/gpio-mxc.c Function implementation

3.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio.txt under Linux source code directory
for the programming interface.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 49

A ————
General Purpose Input/Output(GPIO)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

50 Freescale Semiconductor, Inc.

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space and
the peripherals. It supports the following features:

 Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

* Callback mechanism at the end of script execution

4.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features:

e Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels.

e Powered by a 16-bit Instruction-Set micro-RISC engine.

» Each channel executes specific script.

* Very fast context-switching with two-level priority based preemptive multi-tasking.

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts.

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 51

Overview

4.1.2 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that it wishes to use, static channel allocation, or can have the SDMA driver provide a
free SDMA channel for the driver to use, dynamic channel allocation. For dynamic
channel allocation, the list of SDMA channels is scanned from channel 32 to channel 1.
Upon finding a free channel, that channel is allocated for the requested DMA transfers.

Table 4-1. SDMA Channel Usage

Driver Name Number of SDMA Channel Used
SDMA Channels
SDMA CMD 1 Static Channel allocation-uses SDMA channels 0
SSI 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
SPDIF 2 per device Dynamic channel allocation
ESAI 2 per device Dynamic channel allocation

4.1.3 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory linux/include/
linux

The table below shows the source files available in the directory / <Yocto_BuildDir>/
linux/drivers/dma

Table 4-2. SDMA API Source Files

File Description

dmaengine.c SDMA management routine

imx-sdma.c SDMA implement driver

The table below shows the image files available in the directory / <Yocto_BuildDir>/
linux/firmware/imx/sdma

i.MX Linux® Reference Manual, Rev. 0, 12/2015

52 Freescale Semiconductor, Inc.

Chapter 4 Smart Direct Memory Access (SDMA) API

Table 4-3. SDMA Script Files

File

Description

sdma-mx6qg-to1.bin.ihex

SDMA RAM scripts

4.1.4 Programming Interface

The module implements standard DMA API. Refer to the API documents, which are
included in the Linux documentation package, for more information on the functions

implemented in the driver. For additional information, you can refer to the ESAI driver.

4.1.5 Usage Example

Refer to one of the drivers, such as SPDIF driver, UART driver or SSI driver, that uses
the SDMA API driver for a usage example.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

53

Overview

i.MX Linux® Reference Manual, Rev. 0, 12/2015

54 Freescale Semiconductor, Inc.

Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK.

(The H in APBH denotes that the APBH is synchronous to HCLK.)

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/0O to the APB devices, as well as a central DMA facility for devices on this bus and a
vectored interrupt controller for the ARM core. Each one of the APB peripherals,
including the vectored interrupt controller, is documented in their own chapters elsewhere
in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of
the APBH bus and the AHB-to-APB bridge functions' use of the APBH is mediated by an
internal arbitration logic. For contention between these two units, the DMA is favored
and the AHB slave will report "not ready" through its HREADY output until the bridge
transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every fourth transfer on the APB

5.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features.

e Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels
* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes specific script

* Very fast context-switching with two-level priority based preemptive multi-tasking

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 55

Overview

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

5.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table.
The shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up using the general structure.

Table 5-1. APBH DMA Channel Assignments

APBH DMA CHANNEL # USAGE
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Ol N[O ND|—=|O

—_
o

—_
—_

—_
n

—_
w

—
N

—
o

5.1.3 Source Code Structure

The table below shows the source files available in the directory, drivers/dma/

Table 5-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX Linux® Reference Manual, Rev. 0, 12/2015

56 Freescale Semiconductor, Inc.

4
Chapter 5 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

 MXS_DMA -This is the configuration option for the APBH DMA driver. In
menuconfig, this option is available under:
* Device Drivers > DMA Engine support > MXS DMA support.

5.1.5 Programming Interface

The module implements standard DMA API. Refer to the API documents, which are
located in the Linux documentation package, for more information on the functions
implemented in the driver such as GPMI NAND driver.

5.1.6 Usage Example

Refer to one of the drivers, such as GPMI NAND driver, that uses the APBH DMA
driver for a usage example.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 57

Overview

i.MX Linux® Reference Manual, Rev. 0, 12/2015

58 Freescale Semiconductor, Inc.

Chapter 6
Image Processing Unit (IPU) Drivers

6.1 Introduction

The image processing unit (IPU) is designed to support video and graphics processing
functions and to interface with video and still image sensors and displays. The IPU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete IPU processing flow. For example, a complete IPU processing flow (logical
channel) might consist of reading a YUV buffer from memory, performing post-
processing, and writing an RGB buffer to memory. A logical channel maps one to three
IDMA channels and maps to either zero or one IC tasks. A logical channel can have one
input, one output, and one secondary input IDMA channel. The IPU API consists of a set
of common functions for all channels. Its functions are to initialize channels, set up
buffers, enable and disable channels, link channels for auto frame synchronization, and
set up interrupts.

Typical logical channels include:

e CSI direct to memory

e CSI to viewfinder pre-processing to memory

* Memory to viewfinder pre-processing to memory

* Memory to viewfinder rotation to memory

* Previous field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Current field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Next field channel of memory to video deinterlacing and viewfinder pre-processing
to memory

» CSI to encoder pre-processing to memory

* Memory to encoder pre-processing to memory

* Memory to encoder rotation to memory

* Memory to post-processing rotation to memory

* Memory to synchronous frame buffer background

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 59

A
Introduction

* Memory to synchronous frame buffer foreground

* Memory to synchronous frame buffer DC

* Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the [PU sub-modules are as
follows:

* Synchronous frame buffer functions

* Panel interface initialization

* Set foreground positions

 Set local/global alpha and color key

e Set gamma

 CSI functions

 Sensor interface initialization

* Set sensor clock

* Set capture size

* Enable or disable prefetching linear frames by using PRE/PRG
* Enable or disable resolving tiled frames by using PRE/PRG

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level API.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

60 Freescale Semiconductor, Inc.

Chapter 6 Image Processing Unit (IPU) Drivers
6.1.1 Hardware Operation

The detailed hardware operation of the IPU is discussed in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

DEpBy
SENSH CHos I | M UHFIFD
“if— Sensor -y Contmo | r—
ij—| |y o Ta e (OM FCo
— s .
Image SH13IPI00. | —
(& Fa ——
Wideo De-lnterlacer q
| D h -
LISFPB Olzp By
i — Inte mMace
f— (on i = 2] Im age
Cowderter oma
e Cotoalk hd E 1 B
(DM AC) p—
D b play
Procegsor
Dkph
1D IEfBIER - (ord [
CDD.WI Cotmnl e
oe o {0 M FE)
Coartral ||TlagE
Mo le Rotator el —
=3} (IR T

Figure 6-1. IPUV3EX/IPUv3H IPU Module Overview

6.2 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.
It consists of a custom kernel-level API for the following blocks:

e Synchronous frame buffer driver

* Display Interface (DI)

* Display Processor (DP)

* Image DMA Controller IDMAC)

* CMOS Sensor Interface (CSI)

e Image Converter (IC)

 Prefetch/Resolve Engine/Gasket (PRE/PRG)

Figure below shows the interaction between the different graphics/video drivers and the
IPU.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 61

Software Operation

— PR = Lypplication
era fpp o ConfApp | IEPPE'!.EF ——p Oher Data Flow (LITjspe]i Ivbde)

e Comitrol Calls
¥ ¥ J MddE wae
[hiulimedia Framewaork] {Uszer Ivbde)
¥ ¥ “PLI Plugin J
1] Wi L2 Widen Sink ¥
Capurz Augin Plgin
. | WP Library
Lk Ori
L [
[3 L3 L™ % F
WALE Output Cher |3y Syme Syne Liall
Diriver FrameBuf | FRmeBuf | FrameBuf kamel
DCriwver Driwear Mrivier

Ton quliy {01
DYOCESSInE

driver "‘--..__‘____
r L

EL i [IFU Common AR | IPU Display AF|
{ e | FRRENC J_FRF'U'FJ PP | ORDCTI] driver
i & J

& | [IPU 1 WP Hatrbarare
.l

Figure 6-2. Graphics/Video Drivers Software Interaction for IPUv3

Eerrel Ivode

Camera Sensor
Criver

The IPU drivers are sub-divided as follows:

* Device drivers-include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the ipu processing driver which
provide system interface to user space or V4L2 drivers. The frame buffer device
drivers are available in the <Yocto_BuildDir>/linux/drivers/video/mxc directory of
the Linux kernel. The V4L2 device drivers are available in the <Yocto_BuildDir>/
linux/drivers/media/video directory of the Linux kernel.

e MXC display driver is introduced as a simple framework to manage interaction
between IPU and display device drivers (e.g., LCD, LVDS, HDMI, MIPI, etc.)

* Low-level library routines-interface to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the directory of the Linux kernel.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

62 Freescale Semiconductor, Inc.

4
Chapter 6 Image Processing Unit (IPU) Drivers

6.2.1 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common
kernel video API is utilized for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

6.2.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the [PU hardware driver module.

6.2.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see
<Yocto_BuildDir>/linux/include/linux/fb.h. The following are a few of the IOCTLs
functions:

* Request general information about the hardware, such as name, organization of the
screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

* Request and change variable information about the hardware, such as visible and
virtual geometry, depth, color map format, timing, and so on. The driver suggests

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 63

A
Software Operation
values to meet the hardware capabilities (the hardware returns EINVAL if that is not
possible) if this information is changed.

* Get and set parts of the color map. Communication is 16 bits-per-pixel (values for
red, green, blue, transparency) to support all existing hardware. The driver does all
the calculations required to apply the options to the hardware (round to fewer bits,
possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver () interacts closely with the generic Linux frame buffer
driver (<Yocto_BuildDir>/linux/drivers/video/fbmem.c).

6.2.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer
driver API for synchronous LCD panels or those without memory. The synchronous
frame buffer screen driver is the top level kernel video driver that interacts with kernel
and user level applications. This is enabled by selecting the Synchronous Panel Frame
buffer option under the graphics support device drivers in the kernel configuration. To
supplement the frame buffer driver, the kernel builder may also include support for fonts
and a startup logo. This depends on the VT console for switching from serial to graphics
mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is utilized for setting colors, palette registration, image blitting and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

* Initialization of panel interface settings
* Initialization of IPU channel settings for LCD refresh
e Changing the frame buffer address for double buffering support

The following features are supported:

 Configurable screen resolution

i.MX Linux® Reference Manual, Rev. 0, 12/2015

64 Freescale Semiconductor, Inc.

L __4
Chapter 6 Image Processing Unit (IPU) Drivers
* Configurable RGB 16, 24 or 32 bits per pixel frame buffer
* Configurable panel interface signal timings and polarities
* Palette/color conversion management
* Power management
* LCD power off/on
* Enable/disable PRE/PRG features

User applications utilize the generic video API (the standard Linux frame buffer driver
API) to perform functions with the frame buffer. These include the following:

 Obtaining screen information, such as the resolution or scan length
» Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

6.2.2 IPU Backlight Driver

The IPU backlight driver implements IPU PWM backlight control for panels. It exports a
sys control file under /sys/class/backlight/pwm-backlight.0/brightness to user space. The
default backlight intensity value is 128.

6.2.3 IPU Device Driver

IPU (processing) device driver provide image processing features: resizing/rotation/CSC/
combination/deinterlacing based on IC/IRT modules in IPUv3.

The IPU device driver is task based, user just need prepare task setting, queue task, then
block wait task finish. The driver now support blocking method only, non-block method
will be added in the future. The task structures are like below:

struct ipu task {
struct ipu input input;
struct ipu output output;

bool overlay_en;
struct ipu overlay overlay;

#define IPU TASK PRIORITY NORMAL O
#define IPU TASK PRIORITY HIGH 1
u8 priority;

#define IPU TASK ID ANY 0
#define IPU TASK ID VF 1
#define IPU TASK ID PP 2
#define IPU TASK ID MAX 3

us task 1id;

int timeout;

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 65

A
Source Code Structure

struct ipu_input {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
dma_addr t paddr;

struct ipu deinterlace deinterlace;
dma_addr t paddr n; /*valid when deinterlace enable*/

bi

struct ipu overlay {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
struct ipu alpha alpha;
struct ipu colorkey colorkey;
dma_addr_t
paddr;

bi

struct ipu output

u32 width;
u32 height;
u32 format;
u8 rotate;
struct ipu crop crop;
dma_addr_t paddr;
bi
To prepare task, user just needs to fill task.input, task.overlay(if need combine) and

task.output parameters, then queue task either by:

int ipu queue task(struct ipu task *task);

if from kernel level (V4L2 driver for example), or by IPU_QUEUE_TASK ioctl
under /dev/mxc_ipu if from application level.

6.3 Source Code Structure

Table 6-1 lists the source files associated with the IPU, Sensor, V4L2, and Panel drivers.
These files are available in the following directories:

Yocto BuildDir/linux/drivers/mxc/ipu3

Yocto BuildDir/linux/drivers/video/mxc

Yocto BuildDir/linux/drivers/media/platform/mxc
Yocto BuildDir/linux/drivers/video/backlight

i.MX Linux® Reference Manual, Rev. 0, 12/2015

66 Freescale Semiconductor, Inc.

Chapter 6 Image Processing Unit (IPU) Drivers
Table 6-1. IPU Driver Files

File

Description

ipu_common.c

IPU common library functions

ipu_ic.c

IPU IC base driver

ipu_device.c

IPU driver device interface and fops functions

ipu_capture.c

IPU CSI capture base driver

ipu_disp.c

IPU display functions

ipu_calc_stripes_sizes.c

Multi-stripes method functions for ipu_device.c

pre.c

Prefetch/Resolve the engine driver

prg.c

Prefetch/Resolve the Gasket driver

mxc_ipuv3_fb.c

Driver for synchronous frame buffer

mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD support
mxc_hdmi.c Display Driver for HDMI interface
ldb.c Driver for synchronous frame buffer for on chip LVDS

mxc_dispdrv.c

Display Driver framework for synchronous frame buffer

mxc_edid.c

Driver for EDID

vdoa.c

VDOA post-processing driver, used by ipu_device.c

Table 6-2 lists the global header files associated with the IPU and Panel drivers. These
files are available in the following directories:

Yocto BuildDir/linux/drivers/mxc/ipu3/
Yocto BuildDir/linux/include/linux/
Yocto BuildDir/linux/drivers/media/platform/mxc/

Table 6-2. IPU Global Header Files

File

Description

ipu_param_mem.h

Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers
ipu_regs.h IPU register definitions

pre-regs.h Prefetch/Resolve Engine register definitions
prg-regs.h Prefetch/Resolve Gasket register definitions
vdoa.h Header file for VDOA drivers

mxc_dispdrv.h

Header file for display driver

mxcfb.h

Header file for the synchronous framebuffer driver

ipu.h

Header file for IPU basic driver

6.3.1 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

67

Source Code Structure

To get to these options use the command bitbake 1linux-imx -c menuconfig in the Yocto
build directory. On the screen displayed, select Configure the kernel and exit. When the
next screen appears select the options to configure.

* CONFIG_MXC_IPU_V3 - Includes support for the Image Processing Unit. In

menuconfig, this option is available under:

Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.

If ARCH_MXC is true, CONFIG_MXC _IPU_V3 will be set.

CONFIG_MXC_IPU_V3_PRG - This enables support for the IPUv3 prefetch gasket
engine to support double buffer handshake control bewteen IPUv3 and prefetch
engine (PRE), snoop the AXI interface for display refresh requests to memory, and
modify the request address to fetch the double buffered row of blocks in OCRAM.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch gasket engine

This option depends on CONFIG_MXC_IPU_V3 and
CONFIG_MXC_IPU_V3 _PRE.

CONFIG_MXC_IPU_V3_PRE - This enables support for the IPUv3 prefetch engine
to improve the system memory performance. The engine has the capability to resolve
framebuffers in tile pixel format to linear.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch engine

This option depends on CONFIG_MXC_IPU_V3. Enabling this option selects
CONFIG_MXC_IPU_V3_PRG.

CONFIG_MXC_CAMERA_OV5640_MIPI - Option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the
VIDEO_MXC_CAPTURE option. In menuconfig, this option is available under:

Device Drivers > Multimedia support > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
5640 Camera support using mipi

CONFIG_MXC_CAMERA_0OV5640 - Option for both the OV5640 sensor driver
and the use case driver. This option is dependent on the VIDEO_MXC_CAPTURE
option. In menuconfig, this option is available under:

Device Drivers > Multimedia platform > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
ov5640 camera support

i.MX Linux® Reference Manual, Rev. 0, 12/2015

68

Freescale Semiconductor, Inc.

4
Chapter 6 Image Processing Unit (IPU) Drivers

Only one sensor should be installed at a time.

* CONFIG_MXC_IPU_PRP_VF_SDC - Option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menuconfig, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.
* CONFIG_MXC_IPU_PRP_ENC - Option for the IPU:
Use case driver for dumb sensors
CSI>IC > MEM MEM > IC (PRP ENC) > MEM
or for smart sensors
CSI > IC(PRP ENC) > MEM.
In menuconfig, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.

* CONFIG_VIDEO_MXC_CAMERA - This is configuration option for V4L2 capture
Driver. This option is dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 69

Source Code Structure

* CONFIG_VIDEO_MXC_OUTPUT - This is configuration option for V4L2 output
Driver. This option is dependent on VIDEO_DEV & & MXC_IPU option. In
menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

By default, this option is Y for all.

e CONFIG_FB - This 1s the configuration option to include frame buffer support in the
Linux kernel. In menuconfig, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices
By default, this option is Y for all architectures.

* CONFIG_FB_MXC - This is the configuration option for the MXC Frame buffer
driver. This option is dependent on the CONFIG_FB option. In menuconfig, this
option is available under:

Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

 CONFIG_FB_MXC_SYNC_PANEL - This is the configuration option that chooses
the synchronous panel framebuffer. This option is dependent on the
CONFIG_FB_MXC option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

 CONFIG_FB_MXC_LDB - This configuration option selects the LVDS module on
1.MX 6 chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL and
CONFIG_MXC_IPUV3 |l FB_MXS options. In menuconfig, this option is available
under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

* CONFIG_FB_MXC_SII9022 - This configuration option selects the SI19022 HDMI
chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL option. In
menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image S119022 DVI/HDMI Interface Chip

i.MX Linux® Reference Manual, Rev. 0, 12/2015

70 Freescale Semiconductor, Inc.

4
Chapter 6 Image Processing Unit (IPU) Drivers

6.4 Unit Test
NOTE

In order to execute the tests properly, make sure you have the
util-linux package selected and load the following modules:

insmod ipu_ prp_enc.ko

insmod ipu_bg overlay sdc.ko
insmod ipu_ fg overlay sdc.ko
insmod ipu csi_enc.ko

insmod ov5640_ camera.ko
insmod mxc_v412 capture.ko

6.4.1 Framebuffer Tests

There is a test application named mxc_fb_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_fb_test directory.

Execute the fb test as follows:
Jmxc_fb_test.out

The result should be Exiting PASS. The test includes fbO(background) and
fb1(foreground) devices open, framebuffer parameters configure, global alpha blending,
fb pan display test and gamma test.

Redirect an image directly to the framebuffer device as follows:

cat image.bin > /dev/fb0

6.4.2 Video4Linux API test

There are test applications named mxc_v412_test.c and mxc_v412_output.c under the
<Yocto_BuildDir>/imx-test-"version"/test/mxc_v412_test directory.

Before running the v412 capture test application, you should be able see that the /dev/v4l/
videoO has been created.

Test ID: FSL-UT-V4L2-capture-0010

mxc_v412 capture.out -iw 640 -ih 480 -m 0 -r 0 -c 50 -fr 30 test.yuv
Capture the camera and store the 50 frames of YUV420 (VGA size)to a file called

test.yuv and set the frame rate to 30 fps. Look at mxc v412 capture.out -help to see
usage.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 71

AR
Unit Test

Test ID: FSL-UT-V4L2-overlay-sdc-0010

mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of

interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc v41l2 overlay.out -help to see the usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0020

mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
4 -t 50 -d 0 -fr 30

Direct preview (90 degree rotation) the camera to SDC background, and set frame rate
to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0010

mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
0 -t 50 -d 1 -fg -fr 30

Direct preview the camera to foreground, and set frame rate to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0020

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
4 -t 50 -d 1 -fg -fr 30

Direct preview(90 degree rotation) the camera to foreground, and set frame rate to
30
fps.

Test ID: FSL-UT-V4L2-output-0010

mxc_v412 output.out -iw 640 -ih 480 -ow 1024 -oh 768 -r 0 -fr 60 test.yuv

Read the YUV420 stream file on test.yuv created by the mxc v41l2 capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then
display on the framebuffer.

NOTE
The PRP channels require the stride line to be a multiple of 8§,
for example with no rotation, the width needs to be 8 bit
aligned; and with 90 degree rotation, the height needs to be 8

i.MX Linux® Reference Manual, Rev. 0, 12/2015

72 Freescale Semiconductor, Inc.

4
Chapter 6 Image Processing Unit (IPU) Drivers

bit aligned. Downsizing cannot exceed 8:1. For example, for a
VGA sensor, the smallest downsize 1s 80 X 60.

6.4.3 IPU Device Unit test

There is a test application named mxc_ipudev_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_ipudev_test directory.

Before running the IPU device test application, you should be able see that the /dev/
mxc_ipu has been created.

Run test like:

./mxc_ipudev_test.out -C config file raw data_ file

./mxc_ipudev test.out -command line options raw data file

See <Yocto_BuildDir>/imx-test-"version"/test/ipudev_config_file for configure file
instruction.

Below is a simple test source code of IPU device overlay which use alpha(global/local)
blending to combine two layers:

NOTE: the overlay width and height must be same as output's. For example, the input is
240x320, output is 1024x768 which using rotation 90 degree, the overlay must be same
as output, said, 1024x768.

static unsigned int fmt to bpp(unsigned int pixelformat)

{

unsigned int bpp;

switch (pixelformat) ({
case IPU PIX FMT RGB565:
/*interleaved 422%/
case IPU PIX FMT YUYV:
case IPU PIX FMT UYVY:
/*non-interleaved 422%/
case TIPU _PIX_FMT YUV422P:
case IPU PIX FMT YVU422P:
bpp = 16;
break;
case TPU _PIX_FMT_BGR24:
case IPU PIX FMT RGB24:
case IPU PIX FMT YUV444:
bpp = 24;
break;
case IPU PIX FMT BGR32:
case IPU PIX FMT BGRA32:
case IPU PIX FMT RGB32:
case TPU_PIX_FMT_RGBA32:
case IPU PIX FMT ABGR32:
bpp = 32;
break;
/*non-interleaved 420%/
case IPU PIX FMT YUV420P:
case IPU PIX FMT YVU420P:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 73

AR
Unit Test

case IPU_PIX_ FMT YUV420P2:
case IPU_PIX FMT NV12:

bpp = 12;

break;
default:

bpp = 8;

break;

}

return bpp;

}

static void dump_ipu_ task(struct ipu task *t)

printf ("====== ipu task ======\n");

printf ("input:\n") ;

printf ("\twidth: %d\n", t->input.width) ;

printf ("\theight: %d\n", t->input.height);

printf ("\tcrop.w = %d\n", t->input.crop.w) ;

printf ("\tcrop.h = %d\n", t->input.crop.h);

printf ("\tcrop.pos.x = %d\n", t->input.crop.pos.x);
printf ("\tcrop.pos.y = %d\n", t->input.crop.pos.y);
printf ("output:\n") ;

printf ("\twidth: %d\n", t->output.width);

printf ("\theight: %d\n", t->output.height);

printf ("\tcrop.w = %d\n", t->output.crop.w);

printf ("\tcrop.h = %d\n", t->output.crop.h);

printf ("\tcrop.pos.x = %d\n", t->output.crop.pos.X) ;
printf ("\tcrop.pos.y = %d\n", t->output.crop.pos.y);

if (t-soverlay en) {
printf ("overlay:\n") ;

printf ("\twidth: %d\n", t->overlay.width) ;

printf ("\theight: %d\n", t->overlay.height) ;

printf ("\tcrop.w = %$d\n", t-s>overlay.crop.w);

printf ("\tcrop.h = %d\n", t-soverlay.crop.h);

printf ("\tcrop.pos.x = %d\n", t->overlay.crop.pos.x);
printf ("\tcrop.pos.y = %d\n", t->overlay.crop.pos.y) ;

}

int main(int argc, char *argv([])
{
int fd, fd_fb, isize, ovsize, alpsize, cnt = 50;
int blank, ret;
FILE * file in = NULL;
struct ipu task task;
struct fb_var_ screeninfo fb_var;
struct fb fix screeninfo fb fix;
void *inbuf, *ovbuf, *alpbuf, *vdibuf;

fd = open("/dev/mxc_ipu", O _RDWR, O0);
fd fb = open("/dev/fbl", O RDWR, 0);
file in = fopen(argv[argc-1], "rb");

memset (&task, 0, sizeof (task));

/* input setting */

task.input.width = 320;
task.input.height = 240;
task.input.crop.pos.x = 0;
task.input.crop.pos.y = 0;
task.input.crop.w = 0;

task.input.crop.h = 0;

task.input.format = IPU PIX FMT YUV420P;

isize = task.input.paddr =

task.input.width * task.input.height
* fmt to bpp(task.input.format)/8;

i.MX Linux® Reference Manual, Rev. 0, 12/2015

74 Freescale Semiconductor, Inc.

4
Chapter 6 Image Processing Unit (IPU) Drivers

ioctl (fd, IPU ALLOC, &task.input.paddr);
inbuf = mmap (0, isize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.input.paddr) ;

/*overlay setting */
task.overlay en = 1;
task.overlay.width = 1024;
task.overlay.height = 768;
task.overlay.crop.pos.x = 0;
task.overlay.crop.pos.y = 0
task.overlay.crop.w = 0;
task.overlay.crop.h = 0;
task.overlay.format = IPU_PIX FMT RGB24;

#ifdef GLOBAL ALP
task.overlay.alpha.mode = IPU ALPHA MODE GLOBAL;
task.overlay.alpha.gvalue = 255;
task.overlay.colorkey.enable = 1;
task.overlay.colorkey.value = 0x555555;
ftelse
task.overlay.alpha.mode = IPU ALPHA MODE LOCAL;
alpsize = task.overlay.alpha.loc_alp paddr =
task.overlay.width * task.overlay.height;
ioctl (fd, IPU ALLOC, &task.overlay.alpha.loc_alp paddr) ;
alpbuf = mmap (0, alpsize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.overlay.alpha.loc_alp paddr) ;
alpbuf, 0x00, alpsize/4);
alpbuf+alpsize/4, 0x55, alpsize/4);
alpbuf+alpsize/2, 0x80, alpsize/4);
alpbuf+alpsize*3/4, Oxff, alpsize/4);

memset
memset
memset
memset

#endif

ovsize = task.overlay.paddr =
task.overlay.width * task.overlay.height
* fmt to bpp(task.overlay.format)/8;
ioctl (fd, IPU ALLOC, &task.overlay.paddr) ;
ovbuf = mmap (0, ovsize, PROT READ | PROT_WRITE,
MAP_SHARED, fd, task.overlay.paddr) ;
#ifdef GLOBAL_ALP
memset (ovbuf, 0x55, ovsize/4) ;
memset (ovbuf+ovsize/4, Oxff, ovsize/4);
memset (ovbuf+ovsize/2, 0x55, ovsize/4);
memset (ovbuf+ovsize*3/4, 0x00, ovsize/4);
#else
memset (ovbuf, 0x55, ovsize);
#endif
#endif

/* output setting*/
task.output.width = 1024;
task.output.height = 768;
task.output.crop.pos.x = 0;
task.output.crop.pos.y = 0
task.output.crop.w = 0;
task.output.crop.h = 0;
task.output.format = IPU PIX FMT RGB565;
task.output.rotate = IPU ROTATE NONE;

ioctl (fd fb, FBIOGET VSCREENINFO, &fb var);
fb_var.xres = task.output.width;
fb_var.xres virtual = fb var.xres;
fb_var.yres = task.output.height;
fb_var.yres_virtual = fb var.yres * 3;
fb_var.activate |= FB_ACTIVATE FORCE;
fb_var.nonstd = task.output.format;
fb_var.bits_per_pixel = fmt_to_ bpp(task.output.format) ;
ioctl (fd fb, FBIOPUT VSCREENINFO, &fb var);
ioctl (fd_fb, FBIOGET VSCREENINFO, &fb var) ;
ioctl (fd fb, FBIOGET FSCREENINFO, &fb fix);
task.output.paddr = fb_fix.smem start;
blank = FB_BLANK UNBLANK;

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 75

Unit Test
ioctl (fd_fb, FBIOBLANK, blank);
task.priority = IPU _TASK PRIORITY NORMAL;
task.task_id = IPU TASK ID ANY;
task.timeout = 1000;

again:

ret = ioctl(fd, IPU CHECK TASK, &task);

if (ret != IPU CHECK OK) ({
if (ret > IPU CHECK ERR MIN) ({
if (ret == IPU CHECK ERR SPLIT INPUTW OVER) {
task.input.crop.w -= 8;

goto again;

if (ret == IPU CHECK ERR SPLIT INPUTH OVER)
task.input.crop.h -= 8;
goto again;

if (ret == IPU CHECK ERR SPLIT OUTPUTW OVER) ({
task.output.crop.w -= 8;

goto again;

if (ret == IPU CHECK ERR SPLIT OUTPUTH OVER) ({
task.output.crop.h -= 8;
goto again;

ret = -1;
return ret;

dump_ipu task (&task) ;

while (--cnt > 0) {
fread(inbuf, 1, isize, file in);
ioctl(fd, IPU _QUEUE_TASK, &task);

}

munmap (ovbuf, ovsize);

ioctl (fd, IPU FREE, task.input.paddr);
ioctl (fd, IPU FREE, task.overlay.paddr);

close (f4d) ;
close (fd_fb) ;
fclose(file in);

i.MX Linux® Reference Manual, Rev. 0, 12/2015
76 Freescale Semiconductor, Inc.

Chapter 7
MIPI DSI Driver

7.1 Introduction
The MIPI DSI driver for Linux OS is based on the IPU framebuffer driver.
This driver has two parts:

e MIPI DSI IP driver-low level interface used to communicate with MIPI device
controller on the display panel

e MIPI DSI display panel driver provides an interface to configure the display panel
through MIPI DSI

7.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through IPU framebuffer driver interface and it is
not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS related
system resources and registers framebuffer event notifier for blank/unblank operation.
Next, the driver initializes MIPI D-PHY and configures the MIPI DSI IP according to the
MIPI DSI display panel. MIPI DSI driver supports the following features:

* Compatibility with MIPI Alliance Specification for DSI, Version1.01.00

» Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00

 Supports up to 2 D-PHY data lanes

 Bidirectional Communication and Escape Mode Support through Data Lane 0

* Programmable display resolutions, from 160x120(QQVGA) to 1024x768(XVGA)

* Video Mode Pixel Formats, 16bpp(565RGB),18bpp(666RGB)packed,
18bpp(666RGB)loosely, 24bpp(888RGB).

» Supports the transmission of all generic commands

 Supports ECC and checksum capabilities

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 77

A
Software Operation

* End-of-Transmission Packet(EoTp) support

* Supports ultra low power mode

7.1.2 MIPI DSI Display Panel Driver Overview

The MIPI DSI display panel driver implements MIPI DSI display panel related
configuration.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After power on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the
manufacturer's specification.

7.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on exisiting MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from host to peripheral in high-speed mode. It also generates an interrupt when error
occurs.

7.2 Software Operation

The MIPI DSI driver for Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

78 Freescale Semiconductor, Inc.

4
Chapter 7 MIPI DSI Driver

7.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The IPU instance to
which the MIPI DSI IP is attached is described in field int ipu_id while the DI instance
inside IPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter/leave low power mode.

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure
display module.

7.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through MIPI DSI
interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to setup display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

7.3 Driver Features
The MIPI DSI driver supports the following features:

e MIPI DSI communication protocol
* MIPI DSI command mode and video mode
* MIPI DCS command operation

NOTE
The MIPI DSI driver does not support the DBI-2 mode, since
the DBI-2 and DPI-2 cannot be enabled at the same time on this
controller.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 79

Driver Features

7.3.1 Source Code Structure
Table below shows the MIPI DSI driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/video/mxc.

Table 7-1. MIPI DSI Driver Files

File Description
mipi_dsi.c MIPI DSI IP driver source file
mipi_dsi.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

7.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

7.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see <Yocto_BuildDir>/linux/driver/video/mxc/mipi_dsi.h.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
80 Freescale Semiconductor, Inc.

Chapter 8
LVDS Display Bridge(LDB) Driver

8.1 Introduction

This section describes the LVDS Display Bridge(LLDB) driver which controls LDB
module to connect with external display devices with LVDS interface.

8.1.1 Hardware Operation

The purpose of the LDB is to support flow of synchronous RGB data from IPU or LCDIF
to external display devices through LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

For detailed information about LDB, see the LDB chapter of the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

8.1.2 Software Operation

LDB driver is functional if the driver is built-in.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 81

A
Introduction

When LDB device is probed properly, the driver will configure LDB reference resistor
mode and LDB regulator by using platform data information. LDB driver probe function
will also try to match video modes for external display devices to LVDS interface. The
display signal polarities control bits of LDB are set according to the matched video
modes. LVDS channel mapping mode and bit mapping mode of LDB are set according to
the LDB device tree node set by the user. LDB is fully enabled in probe function if the
driver identifies a display device with LVDS interface as the primary display device.

The steps the driver takes to enable a LVDS channel are:

1. Set 1db_di_clk's parent clk and the parent clk's rate.

2. Set 1ldb_di_clk's rate.

3. Enable both 1db_di_clk and its parent clk.

4. Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.

5. Enable related LVDS channels.

See <Yocto BuildDirs>/linux/drivers/video/mxc/ldb.c for more information.

8.1.3 Source Code Structure

The source code is available in the following location:

<Yocto BuildDir>/linux/drivers/video/mxc/1ldb.c

8.1.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

To get to these options, use the vitbake 1inux-imx -c menuconfig command. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options as build-in status to enable this module:

Device Drivers -> Graphics support -> MXC Framebufer support ->
Synchronous Panel Framebuffer -> MXC LDB

i.MX Linux® Reference Manual, Rev. 0, 12/2015

82 Freescale Semiconductor, Inc.

Chapter 9
Video for Linux Two (V4L2) Driver

9.1 Introduction

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions.

The V4L2 camera driver implements support for all camera related functions. The V412
capture device takes incoming video images, either from a camera or a stream, and
manipulates them. The output device takes video and manipulates it, then sends it to a
display or similar device. The V4L2 Linux standard API specification is available at
v412spec.bytesex.org/spec

The features supported by the V4L2 driver are as follows:

* Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

* Direct preview to graphics frame buffer (without synchronized to LCD refresh)

* Color keying or alpha blending of frame buffer and overlay planes

 Streaming (queued) capture from IPU encoding channel

» Direct (raw Bayer) still capture (sensor dependent)

* Programmable pixel format, size, frame rate for preview and capture

* Programmable rotation and flipping using custom API

* RGB 16-bit, 24-bit, and 32-bit preview formats

* Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and
4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture

* Control of sensor properties including exposure, white-balance, brightness, contrast,
and so on

* Plug-in of different sensor drivers

* Link post-processing resize and CSC, rotation, and display IPU channels

» Streaming (queued) input buffer

* Double buffering of overlay and intermediate (rotation) buffers

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 83

http://v4l2spec.bytesex.org/spec

A ————
V4L2 Capture Device

 Configurable 3+ buffering of input buffers

* Programmable input and output pixel format and size

* Programmable scaling and frame rate

* RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved

input formats
e TV output

The driver implements the standard V4L2 API for capture, output, and overlay devices.
The command modprobe mxc_v412_capture must be run before using these functions.

9.2 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

 Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video
stream

 Overlay interface-uses the IPU device driver to display the preview video to the SDC
foreground and background panel.

V4L2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in <Yocto_BuildDir>/linux/drivers/media/video/mxc/capture/.

The V4L2 capture device driver is in the mxc_v412_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWRB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
video/mxc/capture/

9.2.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

i.MX Linux® Reference Manual, Rev. 0, 12/2015

84 Freescale Semiconductor, Inc.

4
Chapter 9 Video for Linux Two (V4L2) Driver
* VIDIOC_S_FMT
* VIDIOC_REQBUFS
* VIDIOC_QUERYBUF
* VIDIOC_QBUF
* VIDIOC_DQBUF
* VIDIOC_STREAMON
* VIDIOC_STREAMOFF
* VIDIOC_OVERLAY
* VIDIOC_G_FBUF
* VIDIOC_S_FBUF
* VIDIOC_G_CTRL
* VIDIOC_S_CTRL
* VIDIOC_CROPCAP
* VIDIOC_G_CROP
e VIDIOC_S_CROP
* VIDIOC_S_PARM
* VIDIOC_G_PARM
* VIDIOC_ENUMSTD
* VIDIOC_G_STD
* VIDIOC_S_STD
e VIDIOC_ENUMOUTPUT
* VIDIOC_G_OUTPUT
* VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0-Normal operation

* 1-Vertical flip

» 2-Horizontal flip

 3-180° rotation

* 4-90° rotation clockwise

* 5-90° rotation clockwise and vertical flip

* 6-90° rotation clockwise and horizontal flip
* 7-90° rotation counter-clockwise

Figure below shows a block diagram of V412 Capture API interaction.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 85

V4L2 Capture Device

Application
User Space

Femel Space

Common Yideo for inus 2 Drver

Poallwait | mec_vwdl_camera_ops

iohain of buffers

I singnal the _
Setup the EBA of IDMA Polling function Stream On/Off, Open/Close
Channels acconding o the when frame
buter Queuad ready
ISF mxc_vdl cameara_ops

Lowwer level MXC Driver

Figure 9-1. Video4Linux2 Capture API Interaction

9.2.2 Use of the V4L2 Capture APIs

This section describes a sample V4L.2 capture process. The application completes the
following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.

3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver

creates a chain of buffers (currently the maximum number of frames is 3).

Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream using the [OCTL VIDIOC_STREAMON. This IOCTL enables the

IPU tasks and the IDMA channels. When the processing is completed for a frame,

the driver switches to the buffer that is queued for the next frame. The driver also

signals the semaphore to indicate that a buffer is ready.

7. Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL
blocks until it has been signaled by the ISR driver.

AN

i.MX Linux® Reference Manual, Rev. 0, 12/2015

86 Freescale Semiconductor, Inc.

4
Chapter 9 Video for Linux Two (V4L2) Driver
8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

For the V412 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the [OCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V412 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

9.3 V4L2 Output Device

The V4L2 output driver uses the IPU post-processing functions for video output.

The driver implements the standard V4L2 API for output devices. V4L.2 output device
support can be selected during kernel configuration. The driver is available at
<Yocto_BuildDir>/linux/drivers/media/video/mxc/output/mxc_vout.c.

9.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L.2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
e VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 87

A
Source Code Structure

e VIDIOC_G_CROP

e VIDIOC_S_CROP

* VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this use, the ID is V4L2_CID_MXC_MOTION. Supported values include the following:

¢ 0-Medium motion
e 1-Low motion
 2-High motion

9.3.2 Use of the V4L2 Output APIs

This section describes a sample V412 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-
interlace motion(if need).

Sets the output information using IOCTL VIDIOC_S_CROP.

Requests a buffer using [OCTL VIDIOC_REQBUFS. The common V4L.2 driver
creates a chain of buffers (not allocated yet)

Memory maps the buffer to its user space.

Executes the IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer using the IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing IOCTL VIDIOC_STREAMON.

Stop the stream by excuting IOCTL VIDIOC_STREAMOFF

Rl

SN e R

Pk

9.4 Source Code Structure
Table below lists the source and header files associated with the V4L.2 drivers.

These files are available in the following directory:

<Yocto BuildDirs>/linux/drivers/media/video/mxc

i.MX Linux® Reference Manual, Rev. 0, 12/2015

88 Freescale Semiconductor, Inc.

Chapter 9 Video for Linux Two (V4L2) Driver

Table 9-1. V2L2 Driver Files

File

Description

capture/mxc_v4l2_capture.c

V4L2 capture device driver

output/mxc_vout.c

V412 output device driver

capture/mxc_v412_capture.h

Header file for V4L2 capture device driver

capture/ipu_prp_enc.c

Pre-processing encoder driver

capture/ipu_prp_vf_adc.c

Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c

Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c

Pre-processing view finder (synchronous background) driver

capture/ipu_fg_overlay_sdc.c

synchronous forground driver

capture/ipu_bg_overlay_sdc.c

synchronous background driver

capture/ipu_still.c Pre-processing still image capture driver

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
video/mxc/capture/

Drivers for specific output can be found in <Yocto_BuildDir>/linux/drivers/media/
video/mxc/output/

9.4.1 Menu Configuration Options
The Linux kernel configuration options are provided in the chapter on the IPU module.

See Menu Configuration Options.

9.4.2 V4L2 Programming Interface

For more information, see the V4L2 Specification and the API Documents for the
programming interface.

The API Specification is available at LINUX MEDIA INFRASTRUCTURE API.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 89

http://v4l2spec.bytesex.org/spec/

Source Code Structure

i.MX Linux® Reference Manual, Rev. 0, 12/2015

90 Freescale Semiconductor, Inc.

Chapter 10
Electrophoretic Display Controller (EPDC) Frame
Buffer Driver

10.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device
while also supporting a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink® panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

* Support for EPDC driver as a loadable or built-in module.

Support for RGB565 and Y8 frame buffer formats.

Support for full and partial EPD screen updates.

Support for up to 256 panel-specific waveform modes.

Support for automatic optimal waveform selection for a given update.

Support for synchronization by waiting for a specific update request to complete.

Support for screen updates from an alternate (overlay) buffer.

Support for automated collision handling.

Support for 64 simultaneous update regions.

Support for pixel inversion in a Y8 frame buffer format.

Support for 90, 180, and 270 degree HW-accelerated frame buffer rotation.

* Support for panning (y-direction only).

* Support for automated full and partial screen updates through the Linux
fb_deferred_io mechanism.

* Support for three EPDC driver display update schemes: Snapshot, Queue, and Queue
and Merge.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 91

A
Hardware Operation
 Support for setting the ambient temperature through either a one-time designated API
call or on a per-update basis.

» Support for user control of the delay between completing all updates and powering
down the EPDC.

10.2 Hardware Operation
For the detailed hardware operation of the EPDC, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

10.3 Software Operation

The EPDC frame buffer driver is a self-contained driver module in the Linux kernel. It
consists of a standard frame buffer device API coupled with a custom EPD-specific API
extension, accessible through the IOCTL interface. This combined functionality provides
the user with a robust and familiar display interface while offering full control over the
contents and update mode of the E Ink display.

This section covers the software operation of the EPDC driver, both through the standard
frame buffer device architecture, and through the custom E Ink API extensions.
Additionally, panel intialization and framebuffer formats are discussed.

10.3.1 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers. The EPDC driver supports this model
with one key caveat: the contents of the frame buffer are not automatically updated to the
E Ink display. Instead, a custom API function call is required to trigger an update to the E
Ink display. The details of this process are explained in the EPDC Frame Buffer Driver
Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also include support for fonts and a startup logo. The frame buffer device

i.MX Linux® Reference Manual, Rev. 0, 12/2015

92 Freescale Semiconductor, Inc.

L __4

Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
fb0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/mxc/mxc_epdc_fb.c) interacts closely with
the generic Linux frame buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, see documentation in the Linux kernel
found in Documentation/fb/framebuffer.txt.

10.3.2 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb.h. A full description of these IOCTLs can be found in the Programming Interface
section Programming Interface.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions. These functions are
included in include/linux/mxcfb_epdc_kernel.h, and are documented in the Programming
Interface section Programming Interface.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 93

Software Operation

10.3.3 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, imx_epdc_fb_mode, which
can be found in include/linux/mxcfb_epdc.h.
struct imx_epdc_ fb mode {

struct fb videomode *vmode;

int vscan holdoff;

int sdoed width;

int sdoed delay;

int sdoez width;

int sdoez:delay;

int gdclk hp offs;

int gdsp offs;

int gdoe offs;

int gdclE_offs;

int num ce;
bi
The imx_epdc_fb_mode structure consists of an fb_videomode structure and a set of EPD
timing parameters. The fb_videomode structure defines the panel resolution and the basic
timing parameters (pixel clock frequency, hsync and vsync margins) and the additional
timing parameters in imx_epdc_fb_mode define EPD-specific timing parameters, such as
the source and gate driver timings. For details on how to configure E Ink panel timing
parameters, see the EPDC programming model section in the i. MX 6SoloLite

Applications Processor Reference Manual (IMX6SLRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

10.3.3.1 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is as follows:

epdc video=mxcepdcfb: [panel namel , bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the imx_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 16 selects RGB565 pixel format, while a setting of 8 selects
8-bit grayscale (Y8) format.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

94 Freescale Semiconductor, Inc.

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

10.3.4 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP and built into the
kernel.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

10.3.4.1 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in firmware/imx/:

* epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.

e epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports
animation mode updates).

* epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.

e epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports
animation mode updates).

The EPDC driver attempts to load a waveform file with the name "imx/
epdc_[panel_name].fw", where panel_name refers to the string specified in the
fb_videomode narme field. This panel_name information should be provided to the EPDC
driver through the kernel command line parameters described in the preceding chapter.
For example, to load the epdc_E060SCM.fw default firmware file for a Pearl panel, set
the EPDC kernel command line paratmeter to the following:

video=mxcepdcfb:E060SCM, bpp=16

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 95

Software Operation

10.3.4.2 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP. Therefore, contact Freescale to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name "imx/
epdc_[panel_name].fw", where panel_name refers to the string specified in the
fb_videomode narme field. For example, if the panel is named "E60_ABCD", then the
converted waveform file should be named epdc_E60_ABCD.fw.

The firmware script firmware.sh (lib/udev/firmware in the Linux root file system)
contains the search path used to locate the firmware file. The default search path for
firmware files is /lib/firmware;/usr/local/lib/firmware. A custom search path can be
specified by modifying firmware.sh. Create an imx directory in one of these paths and
add your new epdc_[panel_name].fw file there.

NOTE
If the EPDC driver is searching for a firmware waveform file
that matches the names of one of the default waveform files
(see preceding chapter), it will choose the default firmware files
that are built into the BSP over any firmware file that has been
added in the firmware search path. Thus, if you leave the BSP
so that it builds those default firmware files into the OS image,
be sure to use a panel name other than those associated with the
default firmware files, since those default waveform files will
be preferred and selected over a new waveform file placed in
the firmware search path.

10.3.5 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E Ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the
fb_var_screeninfo parameter set to match the X and Y resolution of a supported E Ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

96 Freescale Semiconductor, Inc.

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_ VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

10.3.6 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the
attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

fb_screen info screen info;

screen_info.bits per pixel = 8;

screen_info.grayscale = GRAYSCALE 8BIT;
retval = ioctl(fd fb0, FBIOPUT VSCREENINFO, &screen_info);

10.3.7 Enabling an EPDC Splash Screen

By default, the EPDC support in U-Boot is disabled, and therefore splash screen support
is also disabled. To enable splash screen support, edit the configuration file /include/
configs/mx6sl_evk.h/include/configs/mx6dl_arm2.h and enable the following defines:

#define CONFIG SPLASH SCREEN

#define CONFIG MXC_EPDC

Once this change has been made, rebuild the U-Boot image and flash it to your SD card.
Then perform the following steps to flash a waveform file to an SD card where U-Boot
can find it:

1. Identify the EPDC waveform file from the Linux kernel firmware directory that is
the best match for the panel you are using. For the DC2/DC3 boards, that would be
the waveform file /firmware/imx/epdc_E060SCM.fw.ihex.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 97

Source Code Structure

2. Convert the thex firmware file to a stripped-down binary using the script
thex2bin.py. Contact Freescale to acquire this script.

python ihex2bin.py -i epdc E060SCM.fw.ihex -o epdc E060SCM splash.bin

3. Write the firmware file to the SD card at the FAT partition.

cp epdc E060SCM.bin [FAT partition on SD card]

10.4 Source Code Structure

Table below lists the source files associated with the EPDC driver. These files are
available in the following directory:

drivers/video/mxc

Table 10-1. EPDC Driver Files

File Description
mxc_epdc_v2_fb.c The EPDC V2 frame buffer driver.
epdc_v2_regs.h Register definitions for the EPDC V2 module.

Table below lists the global header files associated with the EPDC driver. These files are
available in the following directory:

include/linux/
Table 10-2. EPDC Gilobal Header Files
File Description
mxcfb.h Header file for the MXC framebuffer drivers
mxcfb_epdc.h Header file for direct kernel access to the EPDC API extension

10.5 Menu Configuration Options
The following Linux kernel configuration options are provided for the EPDC module:

* CONFIG_MXC_EINK_PANEL includes support for the Electrophoretic Display
Controller. In menuconfig, this option is available under:
* Device Drivers > Graphics Support > E Ink Panel Framebuffer
* CONFIG_MXC_EINK_AUTO_UPDATE_MODE enables support for auto-update
mode, which provides automated EPD updates through the deferred I/0O framebuffer

i.MX Linux® Reference Manual, Rev. 0, 12/2015
98 Freescale Semiconductor, Inc.

L __4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
driver. This option is dependent on the MXC_EINK_PANEL option. In menuconfig,
this option is available under:
* Device Drivers > Graphics Support > E Ink Auto-update Mode Support

NOTE
This option only enables the use of auto-update mode.
Turning on auto-update mode requires an additional
IOCTL call using the
MXCFB_SET_AUTO_UPDATE_MODE IOCTL.

e CONFIG_FB to include frame buffer support in the Linux kernel. In menuconfig,
this option is available under:

* Device Drivers > Graphics support > Support for frame buffer devices
» By default, this option is Y for all architectures.

* CONFIG_FB_MXC is a configuration option for the MXC Frame buffer driver. This
option is dependent on the CONFIG_FB option. In menuconfig, this option is
available under:

e Device Drivers > Graphics support > MXC Framebuffer support
* By default, this option is Y for all architectures.

* CONFIG_MXC_PXP_V2 enables support for the PxP. The PxP is required by the
EPDC driver for processing (color space conversion, rotation, auto-waveform
selection) framebuffer update regions. This option must be selected for the EPDC
framebuffer driver to operate correctly. In menuconfig, this option is available under:

e Device Drivers > DMA Engine support > MXC PxP support

10.6 Programming Interface

10.6.1 I0OCTLs/Functions

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are, however,
two modes for accessing these functions. For user space access the IOCTL interface
should be used. For kernel space access the functions should be called directly. For each
function below both the IOCTL code and the corresponding kernel function is listed.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()
Description:
Defines a mapping for common waveform modes.

Parameters:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 99

Programming Interface

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature
Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.
Parameters:

int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update
Description:

Select between automatic and region update mode.

Parameters:

_u32 mode

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme
Description:

Select a scheme that dictates how the flow of updates within the driver.
Parameters:

_ u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is

i.MX Linux® Reference Manual, Rev. 0, 12/2015

100 Freescale Semiconductor, Inc.

L __4

Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
aynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps
the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update
Description:

Request a region of the frame buffer be updated to the display.
Parameters:

mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 101

Programming Interface

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.
Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay
Description:

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:
int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use
FB_POWERDOWN_DISABLE (defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay
Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

10.6.2 Structures and Defines

#define GRAYSCALE 8BIT 0x1
#define GRAYSCALE 8BIT INVERTED 0x2
#define AUTO UPDATE MODE REGION MODE 0
#define AUTO UPDATE MODE AUTOMATIC MODE 1

i.MX Linux® Reference Manual, Rev. 0, 12/2015

102 Freescale Semiconductor, Inc.

4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

#define UPDATE_SCHEME SNAPSHOT 0
#define UPDATE_SCHEME QUEUE 1
#define UPDATE_SCHEME QUEUE_ AND MERGE 2
#define UPDATE MODE_PARTIAL 0x0
#define UPDATE MODE_FULL 0x1
#define WAVEFORM MODE_AUTO 257
#define TEMP USE AMBIENT 0x1000
#define EPDC_FLAG_ENABLE_INVERSION 0x01
#define EPDC_FLAG FORCE MONOCHROME 0x02
#define EPDC_FLAG USE ALT BUFFER 0x100

#define EPDC_FLAG TEST_COLLISION 0x200
#define FB POWERDOWN DISABLE -1

struct mxcfb rect
__u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */

}i

struct mxcfb waveform modes {
int mode init; /* INIT waveform mode */
int mode du; /* DU waveform mode */
int mode_gc4; /* GC4 waveform mode */
int mode gc8; /* GC8 waveform mode */
int mode gclée; /* GClé6 waveform mode */
int mode gc32; /* GC32 waveform mode */

Vi

struct mxcfb alt buffer data {

__u32 phys _addr; /* physical address of alternate image buffer */

__u32 width; /* width of entire buffer */

__u32 height; /* height of entire buffer */

struct mxcfb rect alt update region; /* region within buffer to update */
Vi

struct mxcfb update data
struct mxcfb rect update region; /* Rectangular update region bounds */
u32 waveform mode; /* Waveform mode for update */
u32 update mode; /* Update mode selection (partial/full) */
__u32 update marker; /* Marker used when waiting for completion */
int temp; /* Temperature in Celsius */
uint flags; /* Select options for the current update */
} struct mxcfb_alt buffer data alt buffer data; /* Alternate buffer data */

struct mxcfb update marker data { _ u32 update marker; _ u32 collision test; };

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 103

Programming Interface

i.MX Linux® Reference Manual, Rev. 0, 12/2015

104 Freescale Semiconductor, Inc.

Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver

11.1 Introduction

The Pixel Pipeline (PxP) DMA-ENGINE driver provides a unique API, which are
implemented as a dmaengine client that smooths over the details of different hardware
offload engine implementations. Typically, the users of PxP DMA-ENGINE driver
include EPDC driver, V4L2 Output driver, and the PxP user-space library.

11.2 Hardware Operation
The PxP driver uses PxP registers to interact with the hardware. For detailed hardware

operations, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

* i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

11.3 Software Operation

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 105

Software Operation
11.3.1 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework.
There are three important structs in the DMA Engine Framework which are extended by
the PxP driver: struct dma_device, struct dma_chan, struct dma_async_tx_descriptor. The
PxP driver implements several callback functions which are called by the DMA Engine
Framework (or DMA slave) when a DMA slave (client) interacts with the DMA Engine.

The PxP driver implements the following callback functions in struct dma_device:
device_alloc_chan_resources /* allocate resources and descriptors */
device_free_chan_resources /* release DMA channel's resources */
device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave DMA operation */

device_control /* manipulate all pending operations on a channel, returns zero or error
code */

The first four functions are used by the DMA Engine Framework, the last two are used
by the DMA slave (DMA client). Notably, device_issue_pending is used to trigger the
start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct
dma_async_tx_descriptor, which is used to prepare the descriptor(s) which will be
executed by the engine. When tasks are received in pxp_tx_submit, they are not
configured and executed immediately. Rather, they are added to a task queue and the
function call is allowed to return immediately.

11.3.2 Channel Management

Although ePxP does not have multiple channels in hardware, the virtual channels are
supported in the driver; this provides flexibility in the multiple instance/client design. At
any time, a user can call dma_request_channel() to get a free channel, and then configure
this channel with several descriptors (a descriptor is required for each input plane and for
the output plane). When the PxP is no longer being used, the channel should be released
by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

106 Freescale Semiconductor, Inc.

Chapter 11 Pixel Pipeline (PxP) DMA-ENGINE Driver

11.3.3 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is
usually associated with several descriptors. Descriptors are recycled resources, under
control of the offload engine driver, to be reused as operations complete. The extended
TX descriptor packet (pxp_tx_desc), allows the user to pass PxP configuration
information to the driver. This includes everything that the PxP needs to execute a
processing task.

11.3.4 Completion Notification

There are two ways for an application to receive notification that a PxP operation has
completed.

* Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the
completion of the operation.
* Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output
buffer data can be retrieved.

For general information for DMA Engine Framework, see Documentation/dmaengine.txt
in the Linux kernel source tree.

11.3.5 Limitations

* The driver currently does not support scatterlist objects in the way they are
traditionally used. Instead of using the scatterlist parameter object to provide a chain
of memory sources and destinations, the driver currently uses it to provide the input
and output buffers (and overlay buffers, if needed) for one transfer.

e The PxP driver may not properly execute a series of transfers that is queued in rapid
sequence. It is recommended to wait for each transfer to complete before submitting
a new one.

11.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

Device Drivers --->

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 107

A
Source Code Structure

DMA Engine support --->
[*] MXC PxP support
[*] MXC PxP Client Device

11.5 Source Code Structure

The PxP driver source code is located in drivers/dma/ and include/linux/.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

108 Freescale Semiconductor, Inc.

Chapter 12
ELCDIF Frame Buffer Driver

12.1 Introduction

The ELCDIF frame buffer driver is designed using the Linux kernel frame buffer driver
framework. It implements the platform driver for a frame buffer device. The
implementation uses the ELCDIF API for generic LCD low-level operations. The
ELCDIF APl is also defined in the ELCDIF frame buffer driver to realize low level
hardware control. Only DOTCLK mode of the ELCDIF API is tested, so theoretically the
ELCDIF frame buffer driver can work with a sync LCD panel driver to support a frame
buffer device. The sync LCD driver is organized in a flexible and extensible manner and
1s abstracted from any specific sync LCD panel support. To support another sync LCD
panel, the user can write a sync LCD driver by referring to the existing one.

12.2 Hardware Operation
For detailed hardware operations, see the following documents:
* i.MX 6Solo/6DuallLite Applications Processor Reference Manual IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

12.3 Software Operation

A frame buffer device is a memory device similar to /dev/mem and it has the same

features. It can be read from, written to, or some location in it can be sought and maped
using mmap(). The difference is that the memory that appears is not the whole memory,
but only the frame buffer of the video hardware. The device is accessed through special

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 109

A
Menu Configuration Options

device nodes, usually located in the /dev directory, /dev/fb*. /dev/fb* also has several
IOCTLs which act on it and through which information about the hardware can be
queried and set. The color map handling operates through IOCTLs as well. See linux/fb.h
for more information on which IOCTLs there are and which data structures they use.

The frame buffer driver implementation for 1.MX 6 is abstracted from the actual
hardware. The default panel driver is picked up by video mode defined in platform data
or passed in with 'video=mxc_elcdif_fb:resolution, bpp=bits_per_pixel' kernel bootup
command during probing, where resolution should be in the common frame buffer video
mode pattern and bits_per_pixel should be the frame buffer's color depth.

12.4 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

* CONFIG_FB_MXS [=YINIM] Configuration option to compile support for the MXC
ELCDIF frame buffer driver into the kernel.

12.5 Source Code Structure

The frame buffer driver source code is in drivers/video/mxc/mxsfb.c.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
110 Freescale Semiconductor, Inc.

Chapter 13
Graphics Processing Unit (GPU)

13.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user
level graphics Application Programming Interface (APIs) such as OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0 and OpenCL 1.1EP. The 2D graphics processing
unit (GPU2D) is an embedded 2D graphics accelerator targeting graphical user interfaces
(GUI) rendering boost. The VG graphics processing unit (GPUVGQG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set.
The GPU driver kernel module source is in the kernel source tree, but the libs are
delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform
3D Vivante GC2000 6Quad/6Dual
3D Vivante GC880 6DualLite/6Solo
3D/2D Vivante GC400T 6SoloX
2D Vivante GC320 6Quad/6Dual/6DualLite/6Solo/6SoloLite
Vector Vivante GC355 6Quad/6Dual/6SoloLite
NOTE

GC400T does not support OpenGL ES 3.0.

GC880/GC400T does not support OpenCL 1.1EP, and only
GC2000 supports it.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 111

Introduction
13.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.4 API defined by
Khronos Group.

* OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

* OpenGL ES 2.0 API defined by Khronos Group.

* OpenGL ES 3.0 API defined by Khronos Group.

* OpenVG (OpenVaG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.

* OpenGL 2.1 API defined by Khronos Group.

* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

13.1.1.1 Hardware Operation

For detailed hardware operations, seee the GPU chapters in the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* .MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

13.1.1.2 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack . This layer provides the essential hardware
access, device management, memory management, command queue management,
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1, 2.0, and 3.0 API

i.MX Linux® Reference Manual, Rev. 0, 12/2015

112 Freescale Semiconductor, Inc.

« EGL 1.4 API
* OpenVG 1.1 API
* OpenCL 1.1 EP API

Chapter 13 Graphics Processing Unit (GPU)

13.1.1.3 Source Code Structure

Table below lists GPU driver kernel module source structure:

<Yocto_BuildDir>/linux/drivers/mxc/gpu-viv

Table 13-1. GPU Driver Files

File

Description

Kconfig Kbuild config

Kernel configure file and makefile

hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320

hal/kernel/archvg Hardware-specific driver code for GC355

hal/kernel Kernel mode HAL driver

hal/os/linux/kernel

OS layer HAL driver

NOTE

If you replace the whole content in this directory, the GPU
kernel driver can be upgraded.

13.1.1.4 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib
Table 13-2. GPU Library Files
File Description
libCLC.so OpenCL frontend compiler library
liIbEGL.so** EGL1.4 library
libGAL.so GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library
(without EGL API, no float point support API)
libGL.so** OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

113

Introduction

Table 13-2. GPU Library Files (continued)

File Description

libGLESv1_CL.so** OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)
libGLESv1_CM.so** OpenGL ES 1.1 common library

(with EGL API, include float point support API)
libGLESv2.s0** OpenGL ES 2.0/3.0 library
libGLSLC.so OpenGL ES shader language compiler library
libVSC.so OpenGL front-end compiler library
libVivanteOpenCL.so Vivante
libOpenCL.so OpenCL ICD wrapper library
libOpenVG.so* OpenVG 1.1 library
libVDK.so VDK wrapper library.
libVIVANTE.so Vivante user mode driver.
directfb-1.6-0/gfxdrivers/libdirectfb_gal.so DirectFB 2D acceleration library.
dri/vivante_dri.so DRl library for OpenGL2.1.
xorg/modules/drivers/vivante_drv.so EXA library for X11 acceleration.
libwayland-viv.so Wayland server-side library for Vivante's EGL driver
libgc_wayland_protocol.so Vivante Wayland Protocol Extension Library

**SONAME is used for libEGL.so, libGLESv2.so, ibGLESv1_CM.so,
libGLESv1_CL.so, libGL.so.

*For libOpenVGe.so, there are two libraries for the OpenVG feature. 1ibOpenVG.3d.so is
the gc2000/gc880/gc400t based OpenVG library. libOpenVG.2d.so is the gc355 based
OpenVaG library.

* For i.MX 6Dual/Quad, both 1ibOpenVG.3d.so and libOpenV@G.2d.so can be used.

* For i.MX 6DualLite and 1.MX 6SoloX, only libOpenVG.3d.so can be used.

* For i.MX 6SoloLite, only libOpenVG.2d.so can be used.

* If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.

* If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default

openVG library is linked to libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo 1n -s 1libOpenvG 355.so 1ibOpenVG.so

13.1.1.5 API References

Refer to the following web sites for detailed specifications:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

114 Freescale Semiconductor, Inc.

L __4
Chapter 13 Graphics Processing Unit (GPU)
e OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
* OpenCL 1.1 EP www .khronos.org/opencl/
* EGL 1.4 API: www.khronos.org/egl/
* OpenVG 1.1 API: www.khronos.org/openvg/

13.1.1.6 Menu Configuration Options

The following Linux kernel configurations are provided for GPU driver:

 CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the
menuconfig this option is available under Device Drivers > MXC support drivers >
MXC Vivante GPU support > MXC Vivante GPU support.

To get to the GPU library package in Yocto, use the command bitbake linux-imx -c
menuconfig. On the screen displayed, select Configure the kernel and select "Device
Drivers" > "MXC support drivers" > "MXC Vivante GPU support" > "MXC Vivante
GPU support"and exit. When the next screen appears select the following options to
enable the GPU driver:

 Package list > gpu-viv-bin-mx6q
 This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 115

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/

Introduction

i.MX Linux® Reference Manual, Rev. 0, 12/2015

116 Freescale Semiconductor, Inc.

Chapter 14
Wayland

14.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library
implementation of that protocol. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a
Wayland client itself. The clients can be traditional applications, X servers or other
display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland
compositor. The Weston compositor is a minimal and fast compositor and is suitable for
many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an i.MX 6 series
device.

14.2 Hardware Operation

1.MX 6SoloLite only supports GAL2D acceleration, and other SOCs in 1.MX 6 series
support EGL3D and GAL2D acceleration.

14.3 Software Operation

This release is based on the Wayland 1.6.0 version and Weston 1.6.0 version.

14.4 Yocto Build Instructions

The instructions for Yocto build are as follows:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 117

Customizing Weston

1. Prepare a Yocto build directory and follow the setup instructions in the Freescale
Yocto Project User's Guide IMXLXYOCTOUG) for Wayland.
2. Set up Yocto for Wayland in the build directory:

$ source fsl-setup-release.sh -b build-wayland -e wayland

3. Build an image.

$ bitbake fsl-image-weston

14.5 Customizing Weston

The FSL-Weston includes two compositors. One is the EGL3D compositor, which is
accelerated by the GC2000 3D core. The other is GAL2D compositor accelerated by the
GC320 2D core.

Weston options can be updated in the file “/etc/init.d/weston”.

Table 14-1. Common options for Weston

Weston option Description
tty default to current tty.
device "/dev/fb0", default frame buffer , Multi display supported in
Gal2D compositor.
use-gl EGL accelerated, defaults to be “1”.
use-gal2d GAL2D accelerated, defaults to be “0”.
idle-time Idle time in seconds.

14.5.1 Multi display supported in Weston

Multi display was supported in Gal2D compositor only. Add these options to start
Weston:

weston --tty=1 --device=/dev/£fb0,/dev/fb2 --use-gal2d=1 &

14.5.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single
buffering, the damage area is rendered to the offscreen surface and blits to front
buffer.The offscreen surface is used to avoid flickering. By default, the Weston server
starts with single buffering.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
118 Freescale Semiconductor, Inc.

L __4

Chapter 14 Wayland
In multi buffering, instead of rendering to offscreen, the damage area is rendered to back
buffer and does the flip, but the frame rate will be restricted to the display rate. A
maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of
buffers to be used.

Environment variables for single buffering:
export FB_MULTI_ BUFFER=1
Environment variables for double buffering:

export FB MULTI_ BUFFER=2

14.6 Running Weston
Perform the following operations to run Weston:

1. Boot the i.MX 6 series device.

2. To run clients, the second button in the top bar will run weston-terminal, from which
you can run clients. There are a few demo clients available in the Weston build
directory, but they are all pretty simple and mostly for testing specific features in the
Wayland protocol:

* 'weston-terminal' is a simple terminal emulator, not very compliant, but works
well enough for bash.

» 'weston-flower' draws a flower on the screen, testing the frame protocol.

» 'weston-smoke' tests SHM buffer sharing.

* 'weston-image' loads the image files passed on the command line and shows
them.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 119

Running Weston

i.MX Linux® Reference Manual, Rev. 0, 12/2015

120 Freescale Semiconductor, Inc.

Chapter 15
On-Chip High Definition Multimedia Interface (HDMI)
Driver

15.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module, which provides the capability to transfer
uncompressed video, audio, and data using a single cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multi-function device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

e Integration with the MXC Display Device framework (for managing display device
connections with the IPU(s))

* HDMI video output up to 1080p60 resolution

* Support for reading EDID information from an HDMI sink device

* Hotplug detection

e Support CEC

* Automated clock management to minimize power consumption

* Support for system suspend/resume

* HDMI audio playback (2, 4, 6, or 8 channels, 16bit, for sample rates 32KHz to
192KHz)

* [EC audio header information exposed through ALSA using ‘iecset’ utility

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 121

Introduction
15.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
figure below.

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). The DDC is an I12C interface which allows the
HDMI source to query the HDMI sink for Extended Display Identification Data (EDID).
A CEC channel provides optional high-level control functions between the source and
sink device.

w HDMI
Image Parallel I/F = b
Processing > 5
Unit &
TMDS _DATA
External AHB master % HOMI 7 >
Memory | B —»> PTHXY TMDS CLK
Interface =
< HDMI
TX
Controlier CEC »
‘. DDC(I*C)
AHB Slave 4 "2
» 5
I=
=}
&]
-
[}
1]
2
> —P t.uﬂ'} > HDCP
Clocks — a
& Z A A
Interrupts g—8o——
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 15-1. HDMI HW Integration

i.MX Linux® Reference Manual, Rev. 0, 12/2015
122 Freescale Semiconductor, Inc.

4

Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver
The video input to the HDMI is configurable and may come from either of the two IPU
modules in the 1.MX 6 serials and from either of the two Display Interface (DI) ports of
the IPU, DIO or DI1. This configuration is controlled through the IOMUX module using
the HDMI_MUX_CTRL register field. See the figure below for an illustration of this
interconnection.

Memory
&
L J I
IPU #1 IPU #2
DI By DIo DI
i Ta
Y
HDMI_MUX -—— HDOMI_MUX_CTRL
Y , +
Parallel LCD,

LVDS, MIPI DPI, HDMI

etc.

HDM| Out

Figure 15-2. IPU-HDMI Hardware Interconnection

15.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 123

Software Operation
15.2.1 Core

The HDMI core driver manages resources that must be shared between the HDMI audio
and video drivers. The HDMI audio and video drivers depend on the HDMI core driver,
and the HDMI core driver should always be loaded and initialized before audio and
video. The core driver serves the following functions:

* Map the HDMI register region and provide APIs for reading and writing to HDMI
registers

* Perform one-time initialization of key HDMI registers

* Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the IRQ

* Provide a means for sharing information between the audio and video drivers (e.g.,
the HDMI pixel clock)

* Provide a means for synchronization between HDMI video and HDMI audio while
blank/unbalnk, plug in/plug out events happen. HDMI audio can't start work while
HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable plug out event happens, core driver would pause HDMI audio DMA
controller if its PCM is registered. When HDMI is unblanked or cable plug in event
happens, core driver would firstly check if the cable is in the state of plug in, the
video state is unblank and the PCM is registered. If items listed above are all yes,
core driver would restart HDMI audio DMA.

15.2.2 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

124 Freescale Semiconductor, Inc.

Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

MX 6x Framebuffer and Display Device Software Architecture

[Registration/
Applications D Kernel Core Software unregistration requests
l] Freescale BSP Software from display device
Display device initialization
D Hardware trigger and capture of
Framebuffer Core display device settings

Display device initialization
7 {driven by trigger from IPL
FB driver)

FB notifications (blank,
l unblank, video mode change)
to HOMI driver

FB video mode change
requests from HOM| driver

Software
Hardware Y

Parallel LCD
MIP| DPI arate LDB

IPU HDMI devices

Figure 15-3. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad/6Solo/6DualLite/6SoloLite supports many different types of
display output devices (e.g., LVDS, LCD, HDMI, and MIPI displays) connected to and
driven by the IPU modules. The MXC Display Driver API provides a system for
registering display devices and configuring how they should be connected to each of the
IPU DIs. The HDMI driver registers itself as a display device using this API in order to
receive the correct video input from the IPU.

15.2.3 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the IPU FB driver through the MXC Display Driver system:

1. During the HDMI video driver initialization, mxc_dispdarv_register() is called to
register the HDMI module as a display device and to set the mxc_ndmi_disp_init ()
function as the display device init callback.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 125

A ————
Software Operation

2. When the IPU FB driver is initialized, mxc disparv init () 18 called. This results in an
init call to all registered display devices.

3. The mxc_nami_aisp_init () callback is executed. The HDMI driver receives a structure
from the IPU FB driver containing frame buffer information (fbi). The HDMI driver
also provides return information about which IPU and DI to select and the preferred
output format for video data from the IPU. The HDMI driver registers itself to
receive notifications of FB driver events. Finally, the HDMI driver can complete its
initialization by configuring the HDMI to receive a hotplug interrupt.

NOTE
All display device drivers must be initialized before the IPU FB
driver, in order for all display devices to be registered as MXC
Display Driver devices before the IPU FB driver can initialize
them.

15.2.4 Hotplug Handling and Video Mode Changes

Once the connection between the IPU and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt,
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and IPU FB are conducted through
the Linux Frame Buffer APIs. The following list demonstrates the software flow to
recognize an HDMI sink device and configure the IPU FB driver to drive video output to
it:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device, constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls tb_set_var() to change the video mode in the IPU FB
driver. The IPU FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), an FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode..

4. In the final step, the HDMI module is enabled to generate output to the HDMI sink
device.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

126 Freescale Semiconductor, Inc.

4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

15.2.5 Audio

The HDMI Tx audio driver uses the ALSA SoC framework, so it is broken into several
files, as is listed in Table 15-4. Most of the code is in the platform DMA driver
(sound/soc/imx/imx-hdmi-dma.c). The machine driver (sound/soc/fsl/imx-hdmi.c) exists
to allocate the SoC audio device and link all the SoC components together. The DAI
driver (sound/soc/fsl/fsl-hdmi-dai.c) mostly exists because SoC wants there to be a DAI
driver; it gets the platform data, but doesn’t do anything else.

The HDMI codec driver does most of the initialization of the HDMI audio sampler. Note
that the HDMI Tx block only implements the AHB DMA audio and not the other audio
interfaces (SSI, S/PDIF, etc.). The other main function of the HDMI codec driver is to set
up a struct of the IEC header information which needs to go into the audio stream. This
struct is hooked into the ALSA layer, so the IEC settings will be accessible in userspace
using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block’s DMA engine. Note that HDMI
audio uses the HDMI block’s DMA as well as SDMA. SDMA is used to help implement
the multi-buffer mechanism. The HDMI Tx block does not automatically merge the IEC
audio header information into the audio stream, so the platform DMA driver does this in
its hdmi_dma_copy()(for no memory map use) or hdmi_dma_mmap_copy()(for memory
map mode use) function before the DMA sends the buffers out. Also note that, due to
IEC audio header adding operation, it is possible that user space application is not able to
get enough CPU periods to feed data into HDMI audio driver in time, especially when
system loading is high. In this situation, some spark noise would be heard. In different
audio framework(ALSA LIB, or PULSE AUDIO), different log about this noise may be
printed. For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are
printed.

HDMI audio playback depends on HDMI pixel clock. So while in the state of HDMI
blank and cable plug out, HDMI audio would be stopped or can't be played. See detailed
information in software_operation_core.

Also note that, because HDMI audio driver need to add IEC header, driver need to know
how many data has application already write into HDMI audio driver. If application is
not able to tell how many data is wrote (for example, DMIX plugin in ALSA LIB),
HDMI audio driver is not able to work properly. There would be no sound heard.

The HDMI audio support features below:

 Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* capability of HDMI sink

 Playback Channels:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 127

A
Source Code Structure

©2,4,6,8

* capability of HDMI sink

* Playback audio formats:
« SNDRV_PCM_FMTBIT_S16_LE

15.2.6 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products is a user’s environment. The HDMI CEC driver implements
software part of HDMI CEC low Level protocol. It includes getting Logical address,
CEC message sending and receiving, error handle, message re-transmitting, and etc.

Zpplication

e B

(123 uoIIUNng

i P

——————————

CEC user space driver

|
|
|
g

r-""-
| 1e3 1301
1

CEC kernel space driver

Figure 15-4. HDMI CEC SW Architecture

15.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
128 Freescale Semiconductor, Inc.

4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
drivers/mfd/ directory.

Table 15-1. HDMI Core Driver File List

File Description

mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
include/linux/mfd/ directory.

Table 15-2. HDMI Core Display Driver Public Header File List

File Description

mxc-hdmi-core.h HDMI core driver header file

The source code for the HDMI display driver is available in the driver/video/mxc
directory.

Table 15-3. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/linux/
drivers and sound/soc/ directory. Although the HDMI is one hardware block, the audio
driver is divided into four c files corresponding to the ALSA SoC layers:

Table 15-4. HDMI Audio Driver File List

File

Description

fsl/fsl_hdmi.c

HDMI Audio SoC DAI driver implementation

fsl/imx-hdmi-dma.c

HDMI Audio SoC platform DMA driver implementation

fsl/imx-hdmi.c

HDMI Audio SoC machine driver implementation

The source code for the HDMI CEC driver is available in the <Yocto_BuildDir>/linux/
drivers/mxc/ directory.

Table 15-5. HDMI CEC Driver File List

File

Description

drivers/mxc/hdmi-cec.c

HDMI CEC driver implemention

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

Source Code Structure

The source code for the HDMI 1ib is available in the <Yocto_BuildDir>/imx-lib/hdmi-
cec/ directory.

Table 15-6. HDMI CEC lib File List

File Description
hdmi-cec/mxc_hdmi-cec.c HDMI CEC lib implemention
hdmi-cec/hdmi-cec.h HDMI CEC lib header file
hdmi-cec/android.mk HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the <Yocto_BuildDir>/linux/
arch/arm/plat-mxc/ directory.

Table 15-7. HDMI Platform File List

File Description
devices/platform-mxc-hdmi-core.c HDMI core driver platform device code
devices/platform-mxc_hdmi.c HDMI display driver platform device code
devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code
devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code
include/mach/mxc_hdmi.h HDMI register defines

15.3.1 Linux Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menuconfig at the following location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

i.MX Linux® Reference Manual, Rev. 0, 12/2015
130 Freescale Semiconductor, Inc.

e

Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver
Selecting either of the previous two configuration options will cause the MXC HDMI
Core configuration option, CONFIG_MFD_MXC_HDMI, to be selected. This option can
also be found in the menuconfig here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menuconfig at the following menu location:

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

15.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.

The HDMI video driver does not lend itself well to automated testing, so a number of
manual tests are required to verify the correct functionality. For audio driver testing, the
aplay audio file player and iecset utility provide confirmation of the the driver's proper
integration into the ALSA framework. The following two section look at unit testing for
both the HDMI audio and video drivers.

15.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1. Linux kernel command line-based tests: The initial mode used to display HDMI
video can be specified through the Linux kernel command line boot parameters. Try
several different valid display resolutions through the kernel parameters, re-booting
the system each time and verifying that the desired resolution is displayed on the
connected HDMI display.

2. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode, based on the modes read via EDID from the HDMI sink, and display
that mode on the sink device.

3. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 131

Unit Test

15.4.2 Audio

The following sequence of tests can verify the correct operation of the HDMI audio
driver:

1. Ensure that an HDMI cable is connected between the 1.MX board and the HDMI sink
device, and that the HDMI video image is being properly displayed on the device.

2. Use 'aplay -1' (that's a single dash and a lower-case L) to list out the audio playback
cards and determine which the card number is. This is different on our various
boards.

3. For example, if the HDMI ends up being card 2, use this command line to play out a
pcm audio file "file.wav":
$ aplay -Dplughw:2,0 file.wav

4. Use 'iecset' to list out the IEC information about the device. You will need to specify
card number like:

$ iecset -c2

NOTE
Note that HDMI audio is dependent on a reasonable pixel clock
rate being established. If this is not the case, error messages
indicating “pixel clock not supported” will appear. This is
because there is no clock regenerator cts value that could be
calculated for the current pixel clock.

15.4.3 CEC
The following test can be used to simple verifty HDMI CEC function:

$ /unit_test/mxc_cec_test

Bootup device and connect HDMI sink to board, then run the above command, the HDMI
CEC will send Poweroff command to HDMI sink.

15.4.4 HDCP

The following test can be used to verify the HDMI HDCP function. You need to make
sure that the HDMI HDCP function is supported by the i.MX 6 part.

Use HDCP, specifically DTB imx6q-sabresd-hdcp.dtb, and boot up the SABRE-SD
board.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
132 Freescale Semiconductor, Inc.

4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

Run the following commands:

$ /unit_tests/mxc_hdcp app.out &
$ echo 1 > /sys/devices/soc0/soc.X/20e0000.hdmi_video/hdcp_enable

If the HDCP function is not support by the i.MX 6 part or TV, the screen displays the
RED picture.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 133

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 12/2015

134 Freescale Semiconductor, Inc.

Chapter 16
External High-Definition Multimedia Interface (HDMI)
for i.MX 6SoloLite

16.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external S119022
HDMI hardware module, which provides the capability to transfer uncompressed video,
audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to Si19022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.
* Support for reading EDID information from an HDMI sink device for video.

* Hotplug detection
* HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

16.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 135

Source Code Structure

16.2.1 Hotplug Handling and Video Mode Changes

Once the connection between the ELCDIF and the HDMI has been established through
the MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and LECDIF FB are conducted
through the Linux Frame Buffer APIs. The following list demonstrates the software flow
to recognize a HDMI sink device and configure the ELCDIF FB driver to drive video
output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls £b_set_var() to change the video mode in the ELCDIF
FB driver. The ELCDIF FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), a FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

16.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI display driver, and the HDMI audio
driver.

The source code for the HDMI display driver is available in the <Yocto_BuildDir>/rpm/
BUILD/linux/drivers/video/mxc directory.

Table 16-1. HDMI Display Driver File List

File Description

mxcfb_sii902x_elcdif.c HDMI display driver implementation.

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/rpm/
BUILD/linux/drivers and sound/soc/ director. HDMI Audio data source comes from S/
PDIF TX.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

136 Freescale Semiconductor, Inc.

Chapter 16 External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloL.ite
Table 16-2. HDMI Audio Driver File List

File Description
sound/codecs/mxc_spdif.c S/PDIF Audio SoC CODEC driver implementation.
sound/soc/imx/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/imx/imx-spdif-dai.c S/PDIF Audio SoC DAI driver implementation.
sound/soc/imx/imx-pcm-dma-mx2.c S/PDIF Audio SoC platform layer driver implementation.

16.3.1 Linux Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_SII902X_ELCDIFI option provides support for the Si1902x
HDMI video driver and can be selected in menuconfig at the following menu location:

* Device Drivers > Graphics support > MXC Framebuffer support.

HDMI video support is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_MXC_SPDIF option provides support for the HDMI Audio driver
and can be selected in menuconfig at the following menu location:

* Device Drivers > Sound card support > Advanced Linux Sound Architecture >
ALSA for SoC audio support > SoC Audio for Freescale 1.MX CPUs > SoC Audio
support for IMX - S/PDIF

16.4 Unit Test
The HDMI video and audio drivers each have their own set of tests.
The preparation for HDMI test:

e Insert the HDMI daughter card into J13 on the i.MX 6SoloLite EVK board.

* Insert the HDMI cable into the HDMI slots of both HDMI daughter board and the
HDMI sink device.

* Power on the HDMI sink device.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 137

Unit Test

16.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1. MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode based on the modes read via EDID from the HDMI sink and display that
mode on the sink device.

2. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

16.4.2 Audio

The following sequence of tests verifies the correct operation of the HDMI audio driver:

1. Ensure that an HDMI cable is connected between the HDMI daughter board and the
HDMI sink device, and that the HDMI video image is being properly displayed on
the device.

2. Use this command line to play out a pcm audio file "file.wav" to HDMI sink device:

$ aplay -Dplughw:1,0 file.wav

i.MX Linux® Reference Manual, Rev. 0, 12/2015

138 Freescale Semiconductor, Inc.

Chapter 17
X Windows Acceleration

17.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows system can run with a default frame buffer driver which handles all drawing
operations to the main display. Since there is a 2D GPU (graphics processing unit)
available, then some drawing operations can be accelerated. High level X operations may
get decomposed into low level drawing operations which are accelerated for X-Windows
System.

17.2 Hardware Operation
X-Windows System acceleration on 1.MX 6 utilizes the Vivante GC320 2D GPU.

Acceleration is also dependent on the frame buffer memory.

17.3 Software Operation

X-Windows acceleration is supported for X.org X Server version 1.11.x and later
versions supporting the EXA interface version 2.5.

The following list summarizes the types of operations that are accelerated for X11. All
operations involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
* Upload image in system memory into video memory.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 139

A ————
Software Operation

* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.

* Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
* Porter-Duff blending of source with target.
* Source alpha masking.

The following list includes additional features supported as part of the X-Windows
acceleration:

 Allocation of X pixmaps directly in frame buffer memory.
e EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

17.3.1 X-Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

o] EEE

Figure 17-1. X Driver Architecture

i.MX Linux® Reference Manual, Rev. 0, 12/2015

140 Freescale Semiconductor, Inc.

L __4

Chapter 17 X Windows Acceleration
The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some i.MX 6 processors,
such as 1.MX 6SoloLite do not contain 3D HW module. The components shown in light
gray are the standard components in the X-Windows System without acceleration. The
components shown in orange are those added to support X-Windows System acceleration
and briefly described here.

The i.MX X Driver library module (vivante-drv.so) is loaded by the X server and
contains the high level implementation of the X-Windows acceleration interface for 1.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /dev/tbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ibear.so) contains the register level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the 1.MX X Driver code.

The EGL-X library module (1ipecr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

17.3.2 i.MX 6 Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The Vivante X Driver, referred to as vivante-drv.so, implements the EXA interface of the
X server to provide acceleration.

The following list describes details particular to this implementation:

* The implementation builds upon the source from the fbdev frame buffer driver for X
so that it can be the fallback when the acceleration is disabled.

e The implementation is based on X server EXA version 2.5.0.

» The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 300x300 pixels in which case fallback is to software rendering.

» The EXA copy operation is accelerated, except for source/target drawables
containing less than 400x120 pixels in which case fallback is to software rendering.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 141

A
Software Operation
* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels in which case fallback is to software
rendering.For EXA solid fill and copy operations, only solid plane masks and only
GXcopy raster-op operations are accelerated.
» For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, and GXnand) are not accelerated.
* EXA composite allows for many options and combinations of source/mask/target for
rendering.
* Most of the (commonly used) EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 200x200 pixels (operations with mask not supported).

 Constant source (with or without alpha mask) composite with target.

* Repeating pattern source (with or without alpha mask) composite with target.

* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these are needed to support component-alpha
blending which is accelerate).

* In general, the following types of (less commonly used) EXA composite operations
are not accelerated:

» Transformed (that is, scaled, rotated) sources and masks
 Gradient sources
* Alpha masks with repeating patterns

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt can fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel being requested for the
pixmap is less than eight (8). If the attempt to allocate from the GPU accessible memory
fails, then the memory is allocated from the system. If the pixmap memory is allocated
from the system, then this pixmap cannot be involved in a GPU accelerated option. The
number of pitch bytes used to access the pixmap memory may be different depending on
whether it was allocated from GPU accessible memory or from the system. Once the
memory for an X pixmap has been allocated, whether it is from GPU accessible memory
or from the system, the pixmap is locked and can never migrate to the other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation but more memory becomes available (through de-

i.MX Linux® Reference Manual, Rev. 0, 12/2015

142 Freescale Semiconductor, Inc.

L __4

Chapter 17 X Windows Acceleration
allocation) at a later time. The GPU accessible memory pitch (horizontal) alignment for
Vivante 2D GPUs is 8 pixels. Because the memory can be allocated from GPU accessible
memory, these pixels could be used in EGL for OpenGL/ES drawing operations. All of
the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension. An X extension, i.e., VIVEXT
shown in Fig. 1, 1s provided so that X clients can query the physical GPU address
associated with an X pixmap, if that X pixmap was allocated in the GPU accessible
memory.

17.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-
Windows System

The Direct Rendering Infrastructure, also known as the DRI, is a framework for allowing
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important activity for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APIs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

» The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

* The Vivante-specific X extension “vivext” passes buffer information from X server
to X clients. This Vivante X extension includes the following three interfaces:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 143

A ————
Software Operation
* DrawableFlush, which enables X clients to notify X server to flush the GPU
cache for a drawable surface.
* Drawablelnfo, which enables X clients to query the drawable information
(position, size, physical address, stride, cliplist, etc.) from the X server.
* PixmapPhysAddr, which enables X clients to query the physical address and
stride of a pixmap buffer from X server.

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

* GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

* In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

* Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

On a compositing X desktop, such as Ubuntu Unity 2D, GLES/GL applications always
render into the full rectangular back buffer of a window. There is no window clipping
required. So the Vivante DRI implementation can take advantage of the GPU’s resolve
function and render into the window back buffer directly.

On a legacy X window desktop, such as Gnome, Xwin, etc., GLES/GL applications have
to render onto the frame buffer surface directly. Thus, the DRI driver uses the
Drawablelnfo interface in the VIVEXT extension to obtain the cliplist of the window,
then copies the sub-regions of the render target to the frame buffer according to the
cliplist. This will ensure that the GLES/GL windows overlap with other windows on the
desktop properly. However, the copying of the render target sub-regions to the frame
buffer has to be done by the CPU as the sub-regions’ starting address and alignment may
not meet GPU copy requirements.

The Vivante DRI implementation can detect the type of X window manager (compositing
desktop manager or legacy desktop manager) at run-time, and use appropriate DRI
rendering paths for GLES/GL applications.

17.3.4 EGL- X Library

The EGL-X library implements the low level EGL interface when used in X Window
System. The following list describes details particular to this implementation:

» The eglDisplay native display type is “Display*” in X.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

144 Freescale Semiconductor, Inc.

L __4
Chapter 17 X Windows Acceleration
e The eglWindowSurfacenative window surface type is “Window” in X.
* The eglPixmapSurface native pixmap surface type is “Pixmap” in X.

When an eglWindowSurface is created, the back buffers used for double-buffering can
have different representations from the window surface (based on the selected
eglConfig). An attempt is made to create each back buffer using the representation which
provides the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the Vivante X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

17.3.5 xorg.conf for i.MX 6

The /etc/x11/x0rg.cont file must be properly configured to use the .MX 6 X Driver.

The /etc/X11/xorg.conf file must be properly configured to use the Vivante X Driver.
This configuration appears in a “Device” section of the file which contains some required
entries and some entries that are optional. The following example shows a preferred
configuration for using the Vivante X Driver:

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Section "Module"

Load "dbe"

Load "extmod"

Load "freetype"

Load "glx"

Load "dri"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "kbd"

Option "XkbLayout" "us"

Option "XkbModel" "pclO5"

Option "XkbRules" "xorg"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"
EndSection

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"

Option "fhdev" "/dev/fbo"

Option "vivante fbdev" "/dev/£fbo"

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 145

Software Operation

Option "HWcursor" "false"
EndSection

Section "Monitor"
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Your Accelerated Framebuffer Device"
DefaultDepth 24
EndSection

Section "DRI"
Mode 0666
EndSection

Mandatory Strings
Some important entries recognized by the Vivante X Driver are described as follows.
Device Identifier and Screen Device String

The mandatory Identifier entry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "Your Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screensection of the xorg.conf file. For example:

Section "Screen"
Identifier "Default Screen"
<other entries>
Device "Your Accelerated Framebuffer Device"
<other entries>
EndSection

Device Driver String

The mandatory Driver entry specifies the name of the loadable Vivante X driver.

Driver "vivante"

Device fbdevPath Strings

The mandatory entries fbdev and vivante_dev specify the path for the frame buffer device

to use.

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
<other entries>
EndSection

i.MX Linux® Reference Manual, Rev. 0, 12/2015
146 Freescale Semiconductor, Inc.

Chapter 17 X Windows Acceleration

17.3.6 Setup X-Windows System Acceleration on Yocto
Prerequisites:

* xserver-xorg-video-imx-viv-<BSP Version>.tar.gz, which is Vivante EXA plugin
source code based on GPU driver 4.6.9p12

» xserver-xorg, which should be the Xorg 1.11.x or above

* drm-update-arm.patch, which is a patch with adding the ARM lock implementation
for libdrm xf86drm.h. Note that the original xh86drm.h header file from libdrm does
not have lock for supporting ARM architecture. This patch is located in
$YOCTO_BUILDER/sources/meta-fsl-bsp-release/imx/meta-fsl-arm/recipes-
graphics/drm/libdrm/mx6, and shown below: drm-update-arm.patch:

+#elif defined(arm)
#undef DRM DEV MODE

+

+ #define DRM DEV_ MODE (S_IRUSR|S_IWUSR|S_ IRGRP|S_IWGRP|S_IROTH|S_IWOTH)
+

+ #define DRM CAS(lock,old,new, ret) \
+ do { \
+ __asm__ _ volatile (\
+ "1: ldrex %0, [%1]\n" \
+ teq %0, %2\n" \
+ strexeqg %0, %3, [%1]\n" \
+ nyn (_ret) \

+ "r" (lock), "r" (old), "r" (new) \
+ : "cc", "memory") ; \
+ } while (0)

4

#tendif /* architecture */
#endif /* GNUC__ >= 2 */

Build and install instructions:

* Install the prerequisites modules or patches in the appropriate locations and with
right recipes in Yocto environment.

» Build XServer with correct drm header file (xf86drm.h). The purpose is to create
correct dri module

e Build GPU EXA module with the command ‘bitbake x{86-video-imxfb-vivante’.
vivante_drv.so will be generated with successful build, and then install it together
with xorg and libdri library in target board rootfs in /usr/lib/xorg/modules/

e Install the pre-Yocto-built gpu-viv binary which is built based on gpu-viv version
4.6.9p12 in target board rootfs. For accelerating X11, the X11 backend is required

* Now ready to run the X11 applications in target board.

NOTE
x11 applications hangs if the ARM core version xf86drm.h is
not used

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 147

Software Operation

17.3.7 Setup X Window System Acceleration

* Install any packages appropriate for your platform.

Verify that the device file /dev/galcore is present.

Verify that the file /etc/X11/xorg.conf contains the correct entries as described in the
previous section.

Assuming the above steps have been performed, do the following to verify that X
Window System acceleration is indeed operating.

Examine the log file /var/log/Xorg.0.log and confirm that the following lines are
present.

[41.752] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so
[41.752] (II) VIVANTE(O0): using default device
[41.752] (II) VIVANTE(O0): Creating default Display subsection in Screen
section "Default Screen" for depth/fbbpp 24/32
[41.752] (**) VIVANTE(0): Depth 24, (--) framebufferbpp 32

)
41.752] (==) VIVANTE(O0): RGB weight 888
41.752] (==) VIVANTE(0): Default visual is TrueColor
41.753] ==) VIVANTE(O0): Using gamma correction (1.0, 1.0, 1.0)
41.753] (II) VIVANTE(O): hardware: DISP3 BG (video memory: 8100kB)

: checking modes against framebuffer device...

: checking modes against monitor...

: Virtual size is 1920x1080 (pitch 1920)
Built-in mode "current": 148.5 MHz, 67.5 kHz,

41.753] (II) VIVANTE (O
41.753] (--) VIVANTE (O

)
)
)
)
)
)
)
41.753] (**) VIVANTE (0)

[
[
[
[41.753] (II) VIVANTE (0
[
[
[

60.0 Hz
[41.753] (II) VIVANTE(O0): Modeline "current"x0.0 148.50 1920 2008 2052
2200 1080 1084 1089 1125 +hsync +
vsync -csync (67.5 kHz)
[41.753] (==) VIVANTE(0): DPI set to (96, 96)
41.753] (II) Loading sub module "fb"
41.753] (II) LoadModule: "fb"
41.754] (II) Loading /usr/lib/xorg/modules/libfb.so
41.755] (II) Module fb: vendor="X.Org Foundation"
41.755] compiled for 1.10.4, module version = 1.0.0
41.755] ABI class: X.Org ANSI C Emulation, version 0.4
41.755] (II) Loading sub module "exa"
41.755] (II) LoadModule: "exa"
41.756] (II) Loading /usr/lib/xorg/modules/libexa.so
41.756] (II) Module exa: vendor="X.Org Foundation"
41.756] compiled for 1.10.4, module version = 2.5.0
41.756] ABI class: X.Org Video Driver, version 10.0
41.756] (--) Depth 24 pixmap format is 32 bpp
41.797] (II) VIVANTE(O0): FB Start = 0x33142000 FB Base = 0x33142000 FB
Offset = (nil)
41.797] (II) VIVANTE(O): test Initializing EXA
41.798] (II) EXA(0): Driver allocated offscreenpixmaps
41.798] (II) EXA(0): Driver registered support for the following

operations:
41.798] (II) Solid
41.798] (II) Copy
41.798] (II) Composite (RENDER acceleration)
41.798] (II) UploadToScreen
42.075] (==) VIVANTE(0): Backing store disabled

e e e B —

)
42.084] (==) VIVANTE (0): DPMS enabled

i.MX Linux® Reference Manual, Rev. 0, 12/2015

148 Freescale Semiconductor, Inc.

Chapter 17 X Windows Acceleration

17.3.8 Troubleshooting

1. Framebuffer devices can be specified by environment variable. This is especially
useful when there are multiple framebuffer devices.

export FB_FRAMEBUFFER 0=/dev/fb2
2. If the above does not resolve the issue:

 If DRM booted up properly, check the /var/log/X11.n log file (n will represent
instance number) for more information.
 If DRM did not boot properly, check your kernel mode driver installation. (See
sections 6.4.2 and 6.4.3 above).
3. Window is created, but nothing is drawn
e If you run an OpenGL application and find a window was created, but nothing
was drawn, try to export the ${__ GL_DEV_FB} environment variable:

export _ GL _DEV_FB=$FB FRAMEBUFFER 0.
4. Cannot open Display message
* If you have a message similar to “Cannot open Display,” use the following
command to check whether X is running at :0 or at :1 instance, use:

$ ps -ef|grep X
* Then depending on the returned instance number, add the following environment
variable

export DISPLAY=:n
e then run again.
5. UART terminal cannot run GPU application with lightdm
» Use ssh terminal instead.
6. EXA build script failure
* Check the log file and make sure your system time is set correctly.
7. Invalid MIT-MAGIC-COOKIE-1 Key error message
* Some GPU applications are not permitted to run using root. Use an alternate
account instead.
8. Segment fault occurs while running GPU application
* Check the attribute for dev/galcore should be updated to 666.
» To update this attribute automatically on system boot,
 Locate and edit file /etc/udev/rules.d/<bsp-specific.rules>.
* Add: “KERNEL=="galcore”, MODE="0666""
 Lastly, make sure your kernel and GPU drivers are matched.
9. Check whether Compiz is running
e If your host or target has issues after installing the OpenGL Development
Packages in Table 6, above, check whether or not compiz is running with the
following command:

$ ps -ef|grep compiz

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 149

A
Software Operation
e If compiz is running, then Ubuntu is using Unity3D by default. To set the default
window manager to Unity2D:
* Locate and edit file /var/lib/AccountsService/users/<username>.
e Change ubuntu to ubunto-2d.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

150 Freescale Semiconductor, Inc.

Chapter 18
Video Processing Unit (VPU) Driver

18.1 Hardware Operation

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex
and efficient multimedia codec system.

The VPU hardware data flow is shown in the MPEG4 decoder example in Figure below.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 151

Hardware Operation

Bit Code Download

w

met PIC_RUM Parameters

—Y PIC_RUN Command
set nitval Paran eters Fumder = 1)
ReCoditd = 0
- RmCommeid = 3
Bit Eun Start L

BusyFlag =07

1Y R

Bet3IEQ INIT Parameters Check Eeturn Status
SEQ INIT Command =EQ END Comimand
Fgalvder =0 Fuminder =0
FoCodd¥d = 0 fliF 4 DEC) FunCodStd = o
RoaCommand =1 RmCommed = 2

|

BusyFlag=07 _

Fead Feturn Farameters

l

Figure 18-1. VPU Hardware Data Flow

18.1.1 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface

i.MX Linux® Reference Manual, Rev. 0, 12/2015
152 Freescale Semiconductor, Inc.

L __4

Chapter 18 Video Processing Unit (VPU) Driver
for the application layer in user-space as a path to access system resources. The
application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device-specific structure

* Device initialization which initializes the VPU clock and hardware and request the
IRQ

* Interrupt servicing routine which supports events that one frame has been finished

* File operation routine which provides the following interfaces to user space:

* File open

* File release

* File synchronization

¢ File IOCTL to provide interface for memory allocating and releasing

* Memory map for register and memory accessing in user space

* Device Shutdown-Shutdowns the VPU clock and hardware, and release the IRQ

The VPU user space driver has the following functions:

e Codec lib

* Downloads executable bitcode for hardware

* Initializes codec system

* Sets codec system configuration

 Controls codec system by command

» Reports codec status and result

* System I/O operation

* Requests and frees memory

* Maps and unmaps memory/register to user space
* Device management

18.1.2 Source Code Structure

Table below lists the kernel space source files available in the following directories:

<Yocto BuildDir>/linux/arch/arm/plat-mxc/include/mach/

<Yocto BuildDir>/linux/drivers/mxc/vpu/

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 153

A ————
Hardware Operation

Table 18-1. VPU Driver Files

File Description
mxc_vpu.h Header file defining IOCTLs and memory structures
MXC_vpu.c Device management and file operation interface implementation

Table below lists the user-space library source files available in the <Yocto_BuildDir>/
imx-lib-11.11.00/vpu directory:

Table 18-2. VPU Library Files

File Description
vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory
vpu_io.h Header file for IOCTLs
vpu_lib.c Core codec implementation in user space
vpu_lib.h Header file of the codec
vpu_reg.h Register definition of VPU
vpu_util.c File implementing common utilities used by the codec
vpu_util.h Header file

Table below lists the firmware files available in the following directories:

<Yocto BuildDir>/firmware-imx-11.11.00/1lib/firmware/vpu/ directory

Table 18-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

NOTE
To get the to files in Table 18-2, run the command: bitbake
linux-imx -c¢ menuconfig prep -p imx-lib in the console

18.1.3 Menu Configuration Options

To get to the VPU driver, use the command bitbake linux-imx -¢ menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the VPU driver:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

154 Freescale Semiconductor, Inc.

4
Chapter 18 Video Processing Unit (VPU) Driver

* CONFIG_MXC_VPU-Provided for the VPU driver. In menuconfig, this option is
available under

* Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit)
support

18.1.4 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

The codec library APIs are listed below:

RetCode wvpu Init (void *);
void vpu UnInit (void) ;
RetCode vpu GetVersionInfo (vpu versioninfo * verinfo);

RetCode vpu EncOpen (EncHandle* pHandle, EncOpenParam* pop) ;
RetCode vpu EncClose (EncHandle encHandle) ;
RetCode vpu EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);
RetCode vpu EncRegisterFrameBuffer (EncHandle handle, FrameBuffer * bufArray,
int num, int frameBufStride, int
sourceBufStride,
PhysicalAddress subSampBaseAl,
PhysicalAddress subSampBaseB,
ExtBufCfg *scratchBuf) ;
RetCode vpu EncGetBitstreamBuffer (EncHandle handle, PhysicalAddress* prdPrt,
PhysicalAddress* pwrPtr, Uint32*
size) ;
RetCode vpu EncUpdateBitstreamBuffer (EncHandle handle, Uint32 size);
RetCode vpu EncStartOneFrame (EncHandle encHandle, EncParam* pParam) ;
RetCode vpu EncGetOutputInfo (EncHandle encHandle, EncOutputInfo* info);
RetCode vpu EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam) ;
RetCode vpu DecOpen (DecHandle* pHandle, DecOpenParam* pop) ;
RetCode vpu DecClose (DecHandle decHandle) ;
RetCode vpu DecGetBitstreamBuffer (DecHandle pHandle, PhysicalAddress* pRdptr,
PhysicalAddress* pWrptr, Uint32* size);
RetCode vpu DecUpdateBitstreamBuffer (DecHandle decHandle, Uint32 size);
RetCode vpu DecSetEscSeqgInit (DecHandle pHandle, int escape);
RetCode vpu DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);
RetCode vpu DecRegisterFrameBuffer (DecHandle decHandle, FrameBuffer* pBuffer, int num,
int stride, DecBufInfo* pBuflInfo);
RetCode vpu DecStartOneFrame (DecHandle handle, DecParam* param) ;
RetCode vpu DecGetOutputInfo (DecHandle decHandle, DecOutputInfo* info);
RetCode vpu DecBitBufferFlush(DecHandle handle) ;
RetCode vpu DecClrDispFlag(DecHandle handle, int index) ;
RetCode vpu DecGiveCommand (DecHandle pHandle, CodecCommand cmd, void* pParam) ;
int vpu_ IsBusy(void) ;
int vpu WaitForInt (int timeout in ms) ;
RetCode vpu SWReset (DecHandle handle, int index);

System 1/O operations are listed below:

int IOGetPhyMem (vpu mem desc* buff) ;

int IOFreePhyMem(vpu mem desc* buff) ;
int IOGetVirtMem (vpu mem desc* buff) ;
int IOFreeVirtMem (vpu mem desc* buff) ;

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 155

Hardware Operation

18.1.5 Defining an Application

The most important definition for an application is the codec memory descriptor. It is
used for request, free, mmap and munmap memory as follows:

typedef struct vpu mem desc

int size; /*request memory size*/
unsigned long phy addr; /*physical memory get from system*/
unsigned long cpu_addr; /*address for system usage while freeing,

user doesn't need
to handle or use it*/

unsigned long virt uaddr; /*virtual user space address*/
} vpu_mem desc;
See the i.MX 6 VPU Application Programming Interface Linux® Reference Manual for
how to use API in the application (document IMXVPUAPI).

i.MX Linux® Reference Manual, Rev. 0, 12/2015
156 Freescale Semiconductor, Inc.

Chapter 19
OmniVision Camera Driver

19.1 OV5640 Using MIPI CSI-2 interface

This is an introduction for ov5640 camera driver which using MIPI CSI-2 interface.

19.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5640 supports two transfer mode: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to i.MX AP chip by MIPI CSI-2 interface.
MIPI receives the sensor data and transfers them to IPU CSI.

See the OV5640 datasheet to get more information on the sensor.

For more information on MIPI CSI-2 and IPU CSI, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 157

A ————
OV5640 Using MIPI CSI-2 interface

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

19.1.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:
» Capture stream mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P

19.1.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/media/video/mxc/capture.

Table 19-1. Camera Driver Files

File Description

ov5640_mipi.c Camera driver implementation for ov5640 using MIPI CSI-2 interface

19.1.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

158 Freescale Semiconductor, Inc.

4
Chapter 19 OmniVision Camera Driver

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

e Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640
camera support using mipi.

19.2 0OV5642 Using parallel interface

This is an introduction for ov5642 camera driver which using parallel interface.

19.2.1 Hardware Operation

The OV5642 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V412 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5642 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5642 supports only parallel interface.
See the OV5642 datasheet to get more information on the sensor.

For more information on IPU CSI, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 159

A ————
OV5642 Using parallel interface

19.2.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L.2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

» Capture stream mode
 Capture still mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P
* QSXGA

19.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<Yocto BuildDir>/linux/drivers/media/video/mxc/capture.

Table 19-2. Camera Driver Files

File Description

ov5642.c Camera driver implementation for ov5642 using parallel interface

19.2.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

160 Freescale Semiconductor, Inc.

Chapter 19 OmniVision Camera Driver

e Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642
camera support.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 161

A ————
0V5642 Using parallel interface

i.MX Linux® Reference Manual, Rev. 0, 12/2015

162 Freescale Semiconductor, Inc.

Chapter 20
MIPI CSI2 Driver

20.1 Introduction

MIPI CSI-2 for i.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2-compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it co-work with MIPI
sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

» MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver.

20.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the MIPI sensor driver and IPU CSI module and is
not exposed to the user space.

MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
* Support IPU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 163

A
Software Operation
* Support virtual channel select(0~3)
» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAWI10, RAWI12, RAWI14

20.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface including
PHY error handling;

* Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection;

e Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame-level
and line-level;

» Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events;

20.2 Software Operation

MIPI CSI2 driver for Linux OS has two parts: MIPI CSI2 driver initialize operation
which initializes mipi_csi2_info struct, and MIPI CSI2 common APIs which exports
APIs for CSI module driver and MIPI sensor driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

164 Freescale Semiconductor, Inc.

4
Chapter 20 MIPI CSI2 Driver

20.2.1 MIPI CSI2 Driver Initialize Operation

MIPI CSI driver first initializes mipi_csi2_info struct, some key information about mipi
sensor will be initialized, such as connected IPU ID, CSI ID, the virtual channel and date
type. Then, the driver initializes D-PHY clock and pixel clock (pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI). After these operations, MIPI CSI csi2 driver
waits for sensor connection.

20.2.2 MIPI CSI2 Common API Operation
MIPI CSI2 driver exports many APIs to manage MIPI D-PHY.
The following is the introduction for all APIs:

* mipi_csi2_get_info: get the mipi_csi_info

* mipi_csi2_enable: enable MIPI CSI interface

* mipi_csi2_disable: disable MIPI CSI interface

* mipi_csi2_get_status: get MIPI CSI interface disable/enable status

* mipi_csi2_get_bind_ipu: get the IPU ID which MIPI CSI will connect

* mipi_csi2_get_bind_csi: get the CSI ID which MIPI CSI will connect

e mipi_csi2_get_virtual_channel: get the virtual channel number by which MIPI sensor
transfers data to MIPI D-PHY

* mipi_csi2_set_lanes: set the lanes number by which MIPI sensor transfers data to
MIPI D-PHY

* mipi_csi2_set datatype: set the MIPI sensor data type

* mipi_csi2_get_datatype: get the MIPI sensor data type; This function is called by
CSI module to set the CSI register

* mipi_csi2_dphy_status: get the MIPI D-PHY status

» mipi_csi2_get_errorl: get the MIPI errorl register information

* mipi_csi2_get_error2: get the MIPI error2 register informaiton

* mipi_csi2_pixelclk_enable: enable the pixel clock

* mipi_csi2_pixelclk_disable: disable the pixel clock

* mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

20.3 Driver Features
MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
* Support IPU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 165

Driver Features

* Support virtual channel select(0~3)

» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
« RAW data: RAW6, RAW7, RAWS, RAW10, RAWI12, RAW14

20.3.1 Source Code Structure
Table below shows the MIPI CSI2 driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/mxc/mipi.

Table 20-1. MIPI CSI2 Driver Files

File Description

mXxC_mipi_csi2.c MIPI CSI driver source file

20.3.2 Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

20.3.3 Programming Interface

MIPI CSI2 Common APIs can only be called by mipi sensor driver and IPU CSI module
driver.

Before calling the API, in system initialization stage, use mipi_csi2_platform_data struct
and imx6q_add_mipi_csi2 function to add a MIPI CSI2 driver.

For mipi sensor driver, the initialization steps are:
» get MIPI info by calling mipi_csi2_get_info()
* enable MIPI CSI interface by calling mipi_csi2_enable()
* set the lanes by calling mipi_csi2_set_lanes()
* reset the MIPI D-PHY by calling mipi_csi2_reset()
* configure MIPI sensor

i.MX Linux® Reference Manual, Rev. 0, 12/2015

166 Freescale Semiconductor, Inc.

4
Chapter 20 MIPI CSI2 Driver
e wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_errorl()
* when uninstall the sensor driver, disable MIPI CSI interface by calling
mipi_csi2_disable()

For sample code which explains how mipi sensor uses mipi APIs, reference ov5640_mipi
driver source code.

For IPU CSI module driver, the call steps are:

 get MIPI info by calling mipi_csi2_get_info()

 get IPU 1d and CSI id to assure configuration of the correct CSI module by calling
mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi()

* get datatype and virtual channel from MIPI CSI driver and configure the CSI module
by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel()

 perform other configure operation for CSI module and enable CSI

* enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling
mipi_csi2_pixelclk_enable()

» when all tasks are done, disable CSI module first, then disable mipi pixel clock by
calling mipi_csi2_pixelclk_disable()

For sample code which explains how the CSI module driver uses MIPI APIs, reference
IPU CSI module driver source code.

20.3.4 Interrupt Requirements
No interrupt is needed for MIPI CSI driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 167

Driver Features

i.MX Linux® Reference Manual, Rev. 0, 12/2015

168 Freescale Semiconductor, Inc.

Chapter 21
Low-level Power Management (PM) Driver

21.1 Hardware Operation

Information found here describes the low-level Power Management (PM) driver which
controls the low-power modes.

The 1.MX 6 supports four low power modes: RUN, WAIT, STOP, and DORMANT.

Table below lists the detailed clock information for the different low power modes.

Table 21-1. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off On On
DORMANT Power off Disable Off Off On

For the detailed information about lower power modes, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
i.MX 7Dual Applications Processor Reference Manual IMX7DRM)
i.MX 6UltraLite Applications Processor Reference Manual IMX6ULRM)

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 169

Hardware Operation
21.1.1 Software Operation

The 1.MX 6 PM driver maps the low-power modes to the kernel power management
states as listed below:

» Standby-maps to STOP mode which offers significant power saving, as all blocks in
the system are put into a low-power state, except for ARM core, which is still
powered on, and memory is placed in self-refresh mode to retain its contents.

e Mem (suspend to RAM)which maps to DORMANT mode which offers most
significant power saving as all blocks in the system are put into a low-power state,
except for memory, which is placed in self-refresh mode to retain its contents

» System idle which maps to WAIT mode

« If ARM® Cortex®-M4 processor is alive together with ARM® Cortex®-A9 processor
before the kernel enters standby/mem mode, and if ARM Cortex-M4 processor is not
in its low power idle mode, ARM Cortex-A9 processor triggers the SOC to enter
WAIT mode instead of STOP mode to make sure that ARM Cortex-M4 processor
can continue running.

The 1.MX 6 PM driver performs the following steps to enter and exit low power mode:

1. Allow the Cortex-A9 platform to issue a deep sleep mode request.
2. 1If STOP or DORMANT mode:
* Program CCM CLPCR register to set low power control register.
* If DORMANT mode, request switching off CPU power when pdn_req is
asserted.
* Request switching off embedded memory peripheral power when pdn_req is
asserted.
e Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute imx6_suspend in IRAM.
If in DORMANT mode, save ARM context, change the drive strength of MMDC
PADs as "low" to minimize the power leakage in DDR PADs. Execute WFI pending
instructions for stop mode.
6. Generate a wakeup interrupt and exit low power mode. [f DORMANT mode, restore
ARM core and DDR drive strength.

SNk

In DORMANT mode, the i.MX 6 can assert the VSTBY signal to the PMIC and request a
voltage change. The U-Boot or Machine Specific Layer (MSL) usually sets the standby
voltage in STOP mode according to i.MX 6 data sheet.

21.1.2 Source Code Structure
Table below shows the PM driver source files. These files are available in:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

170 Freescale Semiconductor, Inc.

Chapter 21 Low-level Power Management (PM) Driver

<Yocto BuildDirs>/arch/arm/mach-imx/

Table 21-2. PM Driver Files

File Description

pm-imx6.c Supports suspend operation

suspend-imx6.S Assembly file for CPU suspend

21.1.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the bitbake linux-imx -c menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

* CONFIG_PM builds support for power management. In menuconfig, this option is
available under:
* Power management options > Power Management support
* By default, this option is Y.
* CONFIG_SUSPEND builds support for suspend. In menuconfig, this option is

available under:
e Power management options > Suspend to RAM and standby

21.1.4 Programming Interface

The imx6_set_Ilpm API in the system.c function is provided for low-power modes. This
implements all the steps required to put the system into WAIT and STOP modes.

21.1.5 Unit Test

To enter different system level low power modes:

echo mem > /sys/power/state
echo standby > /sys/power/state

To wake up system from low power modes, enable the wakeup source first, such as USB
device, debug UART, or RTC, which can be used as a wakeup source. Below is the
example of UART wakeup:

echo enabled > /sys/bus/platform/drivers/imx-uart/'xxxxxxxX'.serial/tty/ttymxc'y'/power/

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 171

Hardware Operation

wakeup;

Here 'xxxxxxx' is the physical base address of your debugging UART. For example, for
UARTI, it is 2020000. 'y' is your debugging UART index.

To test this mode automatically, refer to our script in /unit_tests/suspend_random_auto.sh
or /unit_tests/suspend_quick_auto.sh.

For FreeRTOS running with Linux OS together, press "s" on the FreeRTOS console to
start the test. FreeRTOS will enter or exit its low power idle mode in a random period.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
172 Freescale Semiconductor, Inc.

Chapter 22
PF100 Regulator Driver

22.1 Introduction
PF100 is a PMIC chip which is specified by 1. MX 6.

PF200/PF3000 is baed on PF100 with little change, since they share the same PF100
driver. PF100 regulator driver provides the low-level control of the power supply
regulators, selection of voltage levels, and enabling/disabling of regulators. This device
driver makes use of the PF100 regulator driver to access the PF100 hardware control

registers. PF100 regulator driver is based on regulator core driver and it is attached to
kernel I2C bus.

22.2 Hardware Operation

PF100 provides reference and supply voltages for the application processor and
peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and/or other circuitry.

Linear regulators are directly supplied from the battery or from the switchers and include
supplies for I/O and peripherals, audio, camera, BT, WLAN, and so on. Naming
conventions are suggestive of typical or possible use case applications, but the switchers
and regulators may be utilized for other system power requirements within the guidelines
of specified capabilities.

The only power on event of PF100 is PWRON is high, and the only power off event of
PF100 is PWRON is low. PMIC_ON_REQ pin of 1.MX 6, which is controlled by SNVS
block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off, so
that system can power off.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 173

Software Operation

22.2.1 Driver Features

PF100 regulator driver is based on regulator core driver. It provides the following
services for regulator control of the PMIC component:

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
 Get the current value for all voltage regulators.

22.3 Software Operation

PF100 regulator client driver performs operations by reconfiguring the PMIC hardware
control registers.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, then any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

22.3.1 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output 1s
controllable) and current sinks (where current output is controllable).

For more details, visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator_get (struct device *dev, const char *id);
* regulator_put 18 an unified API call to free the regulator source:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

174 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

4
Chapter 22 PF100 Regulator Driver

void regulator put (struct regulator *regulator, struct device *dev);
* regulator_enable 1S an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

* regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);
* regulator_is_enabled 1S the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

* regulator_set_voltage 18 an unified API call to set regulator output voltage:

int regulator set voltage(struct regulator *regulator, int uV);

* regulator_get_voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux

kefnelfﬂ:<Yocto_Bui1dDir>/linux/drivers/regulator/core.c.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 175

Driver Architecture

22.4 Driver Architecture

Figure below shows the basic architecture of the PF100 regulator driver.

Device drivers

PF100 driver
Regulator core driver

PF100 regulator driver

l

PF100 core driver(MFD)

l

12C or SPI driver

i.MX Linux® Reference Manual, Rev. 0, 12/2015
176 Freescale Semiconductor, Inc.

Chapter 22 PF100 Regulator Driver

22.4.1 Driver Interface Details
Access to PFUZE100 regulator is provided through the API of the regulator core driver.
PFUZE100 regulator driver provides the following regulator controls:

* 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWIC, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register

(PFUZE100_SWxSTANDBY) in advance.

6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG6.

1 LDO/Switch supply for VSNVS support on 1.MX processors.

1 Low current, high accuracy, voltage reference for DDR Memory reference voltage.

1 Boost regulator with USB OTG support.

Most power rails from PFUZE100 have been programmed properly according to the

hardware design. Therefore, you can't find the kernel using PFUZE100 regulators.

PFUZE100 regulator driver has implemented these regulators so that customers can

use it freely if default PFUZE100 value can't meet their hardware design.

22.4.2 Source Code Structure
The PFUZE100 regulator driver is located in the regulator device driver directory:

<Yocto BuildDir>/linux/drivers/regulator
Table 22-1. PFUZE100 core Driver Files

File Description

drivers/regulator/ Implementation of the PFUZE100 regulator client driver.
pfuzelO0-regulator.c

There is no board file related to pmic. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See pfuze100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

There is no board file related to pmic. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See pfuze100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 177

Driver Architecture

There 1s no board file related to pmic. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See pfuze100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

22.4.3 Menu Configuration Options
The following are menu configuration options:

1. To get to the PMIC power configuration, use the command:

bitbake linux-imx -c menuconfig

2. On the configuration screen select Configure Kernel, exit, and when the next screen
appears, choose the following:

3. Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF100 PMIC.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
178 Freescale Semiconductor, Inc.

Chapter 23
CPU Frequency Scaling (CPUFREQ) Driver

23.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage VDDCORE,
VDDSOC and VDDPU are changed to the voltage value defined in device tree scripts
(DTS) . This method can reduce power consumption (thus saving battery power),
because the CPU uses less power as the clock speed is reduced.

23.1.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency
to the nearest higher frequency in the array. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. The CPU
frequencies in the array are based on the boot CPU frequency. Interactive CPU frequency
governor is used which cannot be changed manually. To change CPU frequency
manually, the userspace CPU frequency governor can be used.By default, the
conservative CPU frequency governor is used.

Refer to the API document for more information on the functions implemented in the
driver.

To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values) use this command:

cat /sys/devices/system/cpu/cpul/cpufreq/stats/time in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz) use this command:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 179

Introduction

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpu0/cpufreqg/scaling max freg
Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo cur freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available_governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

23.1.2 Source Code Structure

Table below shows the source files and headers available in the following directory:

drivers/cpufreq/
Table 23-1. CPUFREQ Driver Files
File Description
imx6q-cpufreq.c/ imx7-cpufreq.c CPUFREAQ functions

For CPU frequency working point settings, see:

* arch/arm/boot/dts/imx6q.dtsi for i.MX 6Quad and 1.MX 6QuadPlus
e arch/arm/boot/dts/imx6dl.dtsi for i.MX 6DualLite

e arch/arm/boot/dts/imx6sl.dtsi for 1.MX 6SoloLite

e arch/arm/boot/dts/imx6sx.dtsi for 1.MX 6SoloX

e arch/arm/boot/dts/imx6ul.dtsi for i.MX 6Ultralite

e arch/arm/boot/dts/imx7d.dtsi for 1.MX 7Dual

i.MX Linux® Reference Manual, Rev. 0, 12/2015

180 Freescale Semiconductor, Inc.

4
Chapter 23 CPU Frequency Scaling (CPUFREQ) Driver

23.2 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

* CONFIG_CPU_FREQ; In menuconfig, this option is located under:
e CPU Power Management > CPU Frequency scaling
» The following options can be selected:
* CPU Frequency scaling
* CPU frequency translation statistics
* Default CPU frequency governor (conservative)(interactive)
 Performance governor
* Powersave governor
» Userspace governor for userspace frequency scaling
* Interactive CPU frequency policy governor
* Conservative CPU frequency governor
e CPU frequency driver for 1.MX CPUs

23.2.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 181

Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 12/2015

182 Freescale Semiconductor, Inc.

Chapter 24
Dynamic Bus Frequency Driver

24.1 Introduction

In order to improve power consumption, the Bus Frequency driver dynamically manages
the various system frequencies.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24 MHz and its
maximum frequency. Similarly the AHB frequency is varied between 24 MHz and 132
MHz.

24.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc.) based on peripheral activity and CPU loading.

24.1.2 Software Operation

The bus frequency depends on the request and release of device drivers for its operation.
Drivers will call bus frequency APIs to request or release the bus setpoint they want. The
bus frequency will set the system frequency to highest frequency setpoint based on the
peripherals that are currently requesting.

If ARM Cortex-M4 processor is alive with ARM Cortex-A9 processor together, ARM
Cortex-M4 processor will also request/release bus frequency high setpoint for its
operation. This means that ARM Cortex-A9 processor treats ARM Cortex-M4 processor
as one of its high-speed devices.

The following setpoints are defined for all 1.MX 6 platforms:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 183

Menu Configuration Options

1. High Frequency Setpoint: AHB is at 132 MHz, AXI is at 264 Mhz and DDR is at the
maximum frequency. This mode is used when most peripehrals that need higher
frequency for good performance are active. For example, video playback and
graphics processing.

2. Audio Playback setpoints: AHB is at 25 MHz, AXI is at 50 MHz and DDR is at 50
MHz for i.MX 6Quad/6DualLite/6SoloX and 100 MHz for i.MX 6SoloLite. This
mode is used in audio playback mode.

3. Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz and DDR is at 24
MHz. This mode is used when the system is idle waiting for user input (display is

off).

To Enable the bus frequency driver use the following command:
echo 1 > /sys/bus/platform/drivers/imx6_busfreqg/busfreqg.13/enable
To Disable the bus frequency driver use the following command:

echo 0 > /sys/bus/platform/drivers/imxé6 busfreqg/busfreq.13/enable

24.1.3 Source Code Structure

Table below lists the source files and headers available in the following directory:
arch/arm/mach-imx

Table 24-1. BusFrequency Driver Files

File Description

busfreg-imx.c Bus Frequency functions

busfreq ddr3.c, busfreqg lpddr2.c, DDR frequency change functions
ddr3_freqg imx6.S,
lpddr2 freq imx6.S,
ddr3 freq imx6sx.S,
ddr3_freq imx6sx.S,
ddr3_freqg imx7d4.S

24.2 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers is
included and enabled by default.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

184 Freescale Semiconductor, Inc.

Chapter 24 Dynamic Bus Frequency Driver
24.2.1 Board Configuration Options

There are no board configuration options for the Linux BusFreq device driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 185

Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 12/2015

186 Freescale Semiconductor, Inc.

Chapter 25
Thermal Driver

25.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines two trip points: critical and passive. Cooling device will take actions to protect
the SoC according to the different trip points that SoC has reached:

* When reaching critical point, cooling device will shut down the system.

* When reaching passive point, cooling device will lower CPU frequency and notify
GPU to run at a lower frequency.

e When the temperature drops to 10 °C below passive point, cooling device will
release all the cooling actions.

Thermal driver has two parts:

* Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to the different trip points.

25.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitor function and protection. It
creates a sys file interface of /sys/class/thermal/thermal_zone0/ for user. Internally, the
thermal driver will monitor the SoC temperature and do necessary protection according to
the different trip points that SoC's temperature reaches.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 187

Driver Features
25.2 Hardware Operation

The thermal driver uses internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

All the related modules are in SoC.

25.2.1 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. A
structure,thermal_zone_device_ops, describes the necessary interface that the thermal
framework needs. The framework will call the related thermal zone interface to monitor
the SoC temperature and do the cooling protection.

25.3 Driver Features
The thermal driver supports the features found here.

e Thermal monitors the SoC temperature.
* Cooling device protects the SoC when the temperature reaches passive or critical
points.

25.3.1 Source Code Structure

Table below shows the driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/thermal
Table 25-1. Thermal Driver Files

File Description

imx_thermal.c, device_cooling.c thermal zone driver source file

25.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

188 Freescale Semiconductor, Inc.

.4
Chapter 25 Thermal Driver

Device Drivers Generic Thermal sysfs driver > Temperature sensor driver for Freescale
1.MX SoCs.

25.3.3 Programming Interface

The thermal driver can be accessed via /sys/bus/platform/drivers/imx_thermal/.

25.4 Unit Test

Modify the trip point's temperature through /sys/class/thermal/thermal_zone0/
trip_point_x_temp. Here 'x' can be 0 and 1, indicating critical and passive trip point, the
value of trip points should be critical > passive. Then run some program to make SoC in
heavy loading, when the SoC temperature reach the trip points, the thermal driver will
take action to do some protections according to each trip point's mechanism. Restore the
trip point's temperature, when SoC temperature drop to 10 °C below passive, thermal
driver will remove all the protections.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 189

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 12/2015

190 Freescale Semiconductor, Inc.

Chapter 26
Anatop Regulator Driver

26.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

26.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, then the number of external supplies is
reduced to two. Missing from this external supply total are the necessary external
supplies to power the desired memory interface. This will change depending on the type
of external memory selected. Other supplies might also be necessary to supply the
voltage to the different I/O power segments if their I/O voltage needs to be different than
what is provided above.

Some internal regulator can be bypassed , so that external pmic can supply these power
directly to decrease power numer. such as VDD_SOC, VDD_ARM

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 191

Driver Features
26.2 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided
for regulator control can be found here.

» Switch ON/OFF all voltage regulators.
* Set the value for all voltage regulators.
* Get the current value for all voltage regulators.

26.2.1 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

26.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel. It is intended to provide voltage and current
control to client or consumer drivers and also provide status information to user space
applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current
output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:

e Struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put Used to free the regulator source:
e void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable Use€d to enable regulator output:

e 1nt regulator enable(struct regulator *regulator) ;

* regulator_disable Used to disable regulator output:

e 1int regulator disable(struct regulator *regulator) ;

* regulator_is_enabled 1S the regulator output enabled:
e 1int regulator_ is enabled(struct regulator *regulator);

* regulator_set_voltage USed to set regulator output voltage:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

192 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

4
Chapter 26 Anatop Regulator Driver

e 1nt regulator_set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage USed to get regulator output voltage:

e 1nt regulator get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see:
<Yocto_BuildDir>/linux/drivers/regulator/core.c.

26.2.3 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

e Seven LDO regulators

» All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

26.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:

<Yocto BuildDirs>/linux/drivers/regulator

Table 26-1. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators are registered in each SoC-specific dts file. For example, on the
1.MX 6Quad/6DualLite/6Solo, the DTS file is arch/arm/boot/dts/imx6qdl.dtsi.

26.2.5 Menu Configuration Options

To get to the Anatop regulator configuration, use the commandbitbake linux-imx -c
menuconfig. On the configuration screen select Configure Kernel, exit, and when the
next screen appears, choose. The following Linux kernel configurations are provided for
the Anatop Regulator driver:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 193

A
Driver Features
* Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.
e System Type > Freescale MXC Implementations > Internal LDO in 1.MX 6Quad/
1.MX 6DualLite bypass.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

194 Freescale Semiconductor, Inc.

Chapter 27
SNVS Real Time Clock (SRTC) Driver

27.1 Introduction

The SNVS Real Time Clock (SRTC) module is used to keep the time and date. It
provides a certifiable time to the user and can raise an alarm if tampering with counters is
detected. The SRTC is composed of two sub-modules: Low power domain (LP) and High
power domain (HP). The SRTC driver only supports the LP domain with low security
mode.

27.1.1 Hardware Operation
The SRTC is a real time clock with enhanced security capabilities.

It provides an accurate, constant time, regardless of the main system power state and
without the need to use an external on-board time source, such as an external RTC. The
SRTC can wake up the system when a pre-set alarm is reached.

27.2 Software Operation

The following sections describe the software operation of the SRTC driver.

27.2.1 10CTL

The SRTC driver complies with the Linux RTC driver model. See the Linux
documentation in <Yocto_BuildDir>/linux/Documentation/rtc.txt for information on the
RTC API.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 195

A
Driver Features

Besides the initialization function, the SRTC driver provides IOCTL functions to set up
the RTC timers and alarm functions. The following RTC IOCTLs are implemented by the
SRTC driver:

e RTC_RD_TIME

« RTC_SET_TIME
* RTC_AIE_ON

« RTC_AIE_OFF

« RTC_ALM_READ
* RTC_ALM_SET

The driver information can be access by the proc file system. For example:

root@freescale /unit_ tests$ cat /proc/driver/rtc

rtc_time : 12:48:29
rtc_date : 2009-08-07
alrm time : 14:41:16
alrm date : 1970-01-13
alarm_ IRQ : no

alrm pending : no

24hr : yes

27.2.2 Keep Alive in the Power Off State

To preserve the time when the device is in the power off state, the SRTC clock source
should be set to CKIL and the voltage input, NVCC_SRTC_POW, should remain active.
Usually these signals are connected to the PMIC and software can configure the PMIC
registers to enable the SRTC clock source and power supply.

Ordinarily, when the main battery is removed and the device is in power off state, a coin-
cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of
the coin-cell battery should be sufficient to power the SRTC. If the coin-cell battery is
chargeable, it is recommend to automatically enable the coin-cell charger so that the
SRTC is properly powered.

27.3 Driver Features
The SRTC driver includes the following features:

* Implements all the functions required by Linux OS to provide the real time clock and
alarm interrupt

e Reserves time in power off state

* Alarm wakes up the system from low power modes

i.MX Linux® Reference Manual, Rev. 0, 12/2015

196 Freescale Semiconductor, Inc.

4
Chapter 27 SNVS Real Time Clock (SRTC) Driver

27.3.1 Source Code Structure

The RTC module is implemented in the following directory:

<Yocto BuildDirs>/linux/drivers/rtc

Table below shows the RTC module files.
Table 27-1. RTC Driver Files

File Description

rtc-snvs.c SNVS RTC driver implementation file

The source file for the SRTC specifies the SRTC function implementations.

27.3.2 Menu Configuration Options

To get to the SRTC driver, use the command bitbake linux-imx -¢c menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the SRTC driver:

e Device Drivers > Real Time Clock > Freescale SNVS Real Time Clock

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 197

Driver Features

i.MX Linux® Reference Manual, Rev. 0, 12/2015

198 Freescale Semiconductor, Inc.

Chapter 28
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver

28.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

* Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

* Fully modularized sound drivers.

e SMP and thread-safe design.

» User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

* Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:

* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.

e Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 199

A
ALSA Sound Driver Introduction
 Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.
* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

200 Freescale Semiconductor, Inc.

Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 28-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 201

A ————
SoC Sound Card
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

28.2 SoC Sound Card

Currently, the stereo CODEC (wmg8962), 7.1 CODEC (cs42888), and AM/FM CODEC
(s14763) drivers are implemented using ASoC architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback. While enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC is only supported on the i.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

The AM/FM CODEC is only supported on the i.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

28.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

» Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and
96 KHz

e Channels:

* Playback: supports two channels.

 Capture: supports two channels.
e Audio formats:

 Playback:

* SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux® Reference Manual, Rev. 0, 12/2015

202 Freescale Semiconductor, Inc.

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
* SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
e Capture:
* SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

28.2.2 7.1 Audio Codec Features

» Sample rates for playback and record:
* 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8 k, 11.025 k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96
k, 176.4 k, 192 k (ASRC enabled)
e Channels:
* Playback: 2, 4, 6, 8 channels
* Playback(ASRC enabled): 2, 6 channels
» Capture: 2, 4 channels
e Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
e SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S24_LE
* Capture:
e SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

28.2.3 AM/FM Codec Features

» Supported sample rate for Capture: 48 KHz
* Supported channels:
 Capture: supports two channels.
* Supported audio formats:
e Capture: SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 203

Hardware Operation

28.2.4 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -1

%* [, igt of PLAYBACK Hardware Deviceg *x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

28.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

28.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA

channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and

LRCLK can be configured according to the audio sample rate.

The WM8962 ASoC CODEC driver exports the audio record/playback/mixer APIs
according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>C

* Mixers and audio controls

* CODEC audio operations

* DAC Digital mute control

The WM8962 CODEC is registered as an I2C client when the module initializes. The
APIs are exported to the upper layer by the structure snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

204 Freescale Semiconductor, Inc.

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

28.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the 12C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the 1.MX 6 Sabre ARD board, a cs42888
codec with 4 audio in port is used, each port receive two channels of data in the 12S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

The codec driver 1s generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

e Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

e Codec audio operations

* DAI Digital mute control

The CS42888 codec 1s registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

28.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which

connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

28.4 Software Operation

The following sections describe the software operation of the ASoC driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 205

Software Operation

28.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DALI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wm8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8962.c. imx-wmg8962.c is the machine layer
code which creates the driver device and registers the stereo sound card.

The multi-channel codec is connected to the CPU through the ESAI interface. fsl_esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multi-channel CODEC and hifi DAI drivers. The direct
hardware operations on the multi-channel CODEC are in c¢s42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. si476x.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine layer
code which creates the driver device and registers the sound card.

Table below shows the stereo codec SoC driver source files. These files are under the
<Yocto_BuildDir>/linux/sound/soc directory.

Table 28-1. Stereo Codec SoC Driver Files

File Description
fsl/imx-wm8962.c Machine layer for stereo CODEC ALSA SoC (CODEC as I2S Master)
fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC
fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAl driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAl driver and SSI register definitions
codecs/wm8962.c CODEC layer for stereo CODEC ALSA SoC
codecs/wm8962.h Header file for stereo CODEC driver

Table below lists the AM/FM codec SoC driver source files. These files are under the
<Yocto_BuildDir>/linux/sound/soc directory.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

206 Freescale Semiconductor, Inc.

.4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Table 28-2. AM/FM Codec SoC Driver Source Files

File

Description

fsl/imx-si476x.c

Machine layer for stereo CODEC ALSA SoC (CODEC as I2S Slave)

fsl/imx-pcm-dma.c

Platform layer for stereo CODEC ALSA SoC

fsl/imx-pcm.h

Header file for pcm driver and AUDMUX register definitions

fsl/fsl_ssi.c

SSI CPU DAI driver for stereo CODEC ALSA SoC

fsl/fsl_ssi.h

Header file for SSI CPU DAI driver and SSI register definitions

codecs/si476x.c

Codec layer for stereo CODEC ALSA SoC

fsl/fsl_sai.c

SAIl CPU DAI driver for stereo CODEC ALSA SoC

fsl/fsl_ssi.h

Header file for the SAI CPU DAI driver and SAl register definitions

Table below shows the multiple-channel ADC SoC driver source files. These files are
also under the <Yocto_BuildDir>/linux/sound/soc directory.

Table 28-3. CS42888 ASoC Driver Source File

File

Description

fsl/imx-cs42888.c

Machine layer for mutliple-channel CODEC ALSA SoC

fsl/imx-pcm-dma.c

Platform layer for mutliple-channel CODEC ALSA SoC

fsl/imx-pcm.h Header file for pcm driver
fsl/fsl_esai.c ESAI CPU DAI driver for mutliple-channel CODEC ALSA SoC
fsl/fsl_esai.h Header file for ESAI CPU DAI driver

codecs/cs42xx8.c

CODEC layer for mutliple-channel codec ALSA SoC

codecs/cs42xx8.h

Header file for mutliple-channel CODEC driver

fsl/fsl_asrc.c

CPU DAI driver of ASRC P2P

fsl/fsl_asrc.h

Header file for CPU DAI driver of ASRC P2P

fsl/fsl_asrc_pcm.c

Platform layer for ASRC P2P

28.4.2 Sound Card Registration

The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver, and their operation

functions.

2. The platform driver registers the PCM driver, CPU DAI driver and their operation

functions, pre allocates buffers for PCM components and sets playback and capture

operations as applicable.

3. The machine layer creates the DAI link between codec and CPU registers the sound

card and PCM devices.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

207

Software Operation

28.4.3 Device Open
The ALSA driver performs the following functions:

* Allocates a free substream for the operation to be performed.

e Opens the low level hardware device.

* Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened
substream).

* Configures DMA read or write channel for operation.

* Configures CPU DAI and CODEC DALI interface.

e Configures CODEC hardware.

» Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

28.4.4 Devicetree Binding
See the following documents:

* Documentation/devicetree/bindings/powerpc/fsl/ssi.txt

* Documentation/devicetree/bindings/sound/fsl-sai.txt

e Documentation/devicetree/bindings/sound/fsl-easi.txt

* Documentation/devicetree/bindings/sound/fsl-asrc-p2p.txt

* Documentation/devicetree/bindings/sound/wm8962.txt

* Documentation/devicetree/bindings/sound/cs42xx8.txt

* Documentation/devicetree/bindings/sound/imx-audmux.txt

* Documentation/devicetree/bindings/sound/imx-audio-wm8962.txt
* Documentation/devicetree/bindings/sound/imx-audio-cs42888.txt
* Documentation/devicetree/bindings/sound/imx-audio-si476x.txt

28.4.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* SoC Audio supports for wm8962 CODEC. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture

i.MX Linux® Reference Manual, Rev. 0, 12/2015

208 Freescale Semiconductor, Inc.

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with wm8962

e SoC Audio supports for .MX cs42888. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with cs42888

* SoC Audio supports for AM/FM. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with sid476x

28.5 Unit Test

This section descrbes how to use the ALSA driver.

28.5.1 Stereo CODEC Unit Test

Stereo CODEC driver supports playback and record features. There are a default volume,
and you may adjust volume by alsamixer command.

Playback feature may be tested by the following command:
e aplay [-Dplughw:0,0] audio.wav

Record feature supports analog micphone and digital micphone. The default is digital
micphone if analog micphone isn't plug-in.

Because analog micphone is connected to IN3R port of WM8962 CODEC, the following
amixer commands are needed to input into command line for enabling analog micphone.

e amixer sset MIXINR IN3R' on
e amixer sset ' INPGAR IN3R' on

Record feature may be tested by the following command:

e arecord [-Dplughw:0,0] -r 44100 -f S16_LE -c 2 -d 5 record.wav

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 209

AR
Unit Test

More usage for aplay/arecord/amixer may be gotten by the following commands.

 aplay --h
e arecord --h
e amixer --h

28.5.2 7.1 Audio Codec Unit Test

The 7.1 Audio codec driver support multi-channel playback and record feature. The
codec has a default volume, and you can adjust volume by alsamixer command.

Playback feature can be tested by following command:
e aplay [-Dplughw:0,0] audio.wav

While enabling ASRC, the 7.1 audio codec should use the device 1 for playback. The
codec has a default volume, and you can adjust volume by alsamixer command.
 aplay [-Dplughw:0,1] audio.wav

Record feature supports line in and mic in simultaneously. While on 1.MX 6 Sabre ARD
board, LINE-IN (L/R) use AIN1/AIN2, MICS1/MICS2 use AIN3/AIN4. By default, 2-ch
record uses AIN1/AIN2, 4-ch record uses AIN1/AIN2/AIN3/AIN4 together.

Record feature can be tested by following command:

e arecord [-Dplughw:0,0] -r 48000 -f S16_LE -c 2 -d 5 record.wav

Note:The default ALSA config file, asound.conf located under /etc/, only supports stereo
playback and record, which means, if you want to test 4,6,8-ch playback or 4-ch
recording, using aplay audio.wav or arecord -c 4 audio.wav(without -Dplughw), you will
have to make slight changes to the configure file as following:

* a) make sure playback pcm use dmix_48000 and capture pcm use dsnoop_48000
under pcm.asymed({ };

* b) add "channels x" to the end of struct pcm.dmix_48000{ } if you want to playback
x-ch wav file(x is greater than 2);

* ¢) add "channels x" to the end of struct pcm.!dsnoop_48000{ } if you want to record
to x-ch wav(x is greater than 2);

If plug plughw is used to make a playback or record, examples as below,

e aplay -Dplughw:0,0 audio.wav or
e arecord -Dplughw:0,0 -c 4 -r 48000 -f S16_LE record.wav

You are not required to change asound.conf because this configure file is not used here.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

210 Freescale Semiconductor, Inc.

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

More usage for aplay/arecord/amixer may be gotten by the following commands.

 aplay --h
e arecord --h
e amixer --h

28.5.3 AM/FM Codec Unit Test

This test turns on the AM/FM radio tuner (SI476x). It also sets and gets the current
station.

NOTE: An underrun error may occur sometimes.

This underrun behaviour is normal, since the test connects the AM/FM output to the
audio codec by a simple pipe.

There is not sync method between them. Upper layers (such as gstreamer plugins) should
take care of this sync.

Input the following command in command line to start unit test:

e /mxc_tuner_test.sh

The following infomation will be output to console window
Welcome to radio menu.

1. Turn on the radio

. Get current frequency

. Set current frequency

. Turn off the radio

o B~ W N

. Exit.

 To turn on the radio select option 1

* To get the current frequency select option 2

* To set the desire frecuency select option 3 <enter> set the frequency <9740>
 To turn off the radio select option 4

 To Exit select option 9

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 211

A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 12/2015

212 Freescale Semiconductor, Inc.

Chapter 29
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver for i.MX 6SoloL.ite

29.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

* Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

 Fully modularized sound drivers.

* SMP and thread-safe design.

 User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

* Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALLSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:

* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.

* Easy [2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 213

A
ALSA Sound Driver Introduction
 Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.
* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

214 Freescale Semiconductor, Inc.

Chapter 29 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver for i.MX 6SoloLite

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 29-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 215

A ————
SoC Sound Card
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

29.2 SoC Sound Card

Currently, the stereo CODEC (wm8962) is implemented by using SoC architecture on
1.MX 6SoloLite.

29.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

e Sample rates for playback and capture are 8KHz, 32 KHz, 44.1 KHz, 48 KHz, and 96
KHz
e Channels:
 Playback: supports two channels.
 Capture: supports two channels.
* Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24 LE

29.2.2 AM/FM Codec Features

* Supported sample rate for Capture: 48 KHz
* Supported channels:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

216 Freescale Semiconductor, Inc.

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 29 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver for i.MX 6SoloLite
 Capture: supports two channels.

* Supported audio formats:
* Capture: SNDRV_PCM_FMTBIT_S16_LE

29.2.3 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -1

xx T,igt of PLAYBACK Hardware Devicesg *x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

29.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

29.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8962 ASoC CODEC driver exports the audio record/playback/mixer APIs
according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>C

* Mixers and audio controls

* CODEC audio operations

* DAC Digital mute control

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 217

A
Hardware Operation

The WM8962 CODEC is registered as an I>C client when the module initializes. The
APIs are exported to the upper layer by the structure snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

29.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the I2C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the .MX 6 Sabre ARD board, a cs42888
codec with 4 audio in port is used, each port receive two channels of data in the 12S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

* Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

* Codec audio operations

* DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

29.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

218 Freescale Semiconductor, Inc.

4
Chapter 29 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver for i.MX 6SoloLite

29.4 Software Operation

The following sections describe the software operation of the ASoC driver.

29.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC i1s connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wmg8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8962.c. imx-wm8962.c is the machine layer
code which creates the driver device and registers the stereo sound card.

Table below shows the stereo CODEC SoC driver source files. These files are under the
<Y octoBuildDir>/linux/sound/soc directory.

Table 29-1. Stereo Codec SoC Driver Files

File Description
fsl/imx-wm8962.c Machine layer for stereo CODEC ALSA SoC
fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC
fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAI driver and SSI register definitions
codecs/wm8962.c CODEC layer for stereo CODEC ALSA SoC
codecs/wm8962.h Header file for stereo CODEC driver

29.4.2 Sound Card Registration

The CODECsSs have the same registration sequence:

1. The CODEC driver registers the CODEC driver, DAI driver, and their operation
functions.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 219

A
Software Operation
2. The platform driver registers the PCM driver, CPU DAI driver and their operation
functions, pre allocates buffers for PCM components and sets playback and capture
operations as applicable.
3. The machine layer creates the DAI link between CODEC and CPU registers the
sound card and PCM devices.

29.4.3 Device Open

The ALSA driver performs the following functions:

 Allocates a free substream for the operation to be performed.

e Opens the low level hardware device.

* Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened
substream).

* Configures DMA read or write channel for operation.

* Configures CPU DAI and CODEC DALI interface.

e Configures CODEC hardware.

* Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

29.4.4 Platform Data

See the following documents:

* Documentation/devicetree/bindings/powerpc/fsl/ssi.txt

* Documentation/devicetree/bindings/sound/wm8962.txt

e Documentation/devicetree/bindings/sound/imx-audmux.txt

* Documentation/devicetree/bindings/sound/imx-audio-wmg8962.txt

29.4.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* SoC Audio supports for wm8962 CODEC. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support

i.MX Linux® Reference Manual, Rev. 0, 12/2015

220 Freescale Semiconductor, Inc.

.4
Chapter 29 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver for i.MX 6SoloLite

-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with wm8962

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 221

Software Operation

i.MX Linux® Reference Manual, Rev. 0, 12/2015

222 Freescale Semiconductor, Inc.

Chapter 30
Asynchronous Sample Rate Converter (ASRC)
Driver

30.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal
to a signal of different sampling rate. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to
three sampling rate pairs simultaneously.

30.1.1 Hardware Operation
ASRC includes the following features:

» Supports ratio (Fsin/Fsout) range between 1/24 to 8.

* Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.

 Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but
with less performance (see IC spec for more details).

* Other output sampling rates in the range of 30 KHz to 100 KHz are also supported,
but with less performance.

* Automatic accommodation to slow variations in the incoming and outgoing sampling
rates.

* Tolerant to sample clock jitter.

* Designed mainly for real-time streaming audio usage. Can be used for non-realtime
streaming audio usage when the input sampling clocks are not available.

* In any usage case, the output sampling clocks must be activated.

* In case of real-time streaming audio, both input and output clocks need to be
available and activated.

* In case of non-realtime streaming audio, the input sampling rate clocks can be
avoided by setting ideal-ratio values into ASRC interface registers.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 223

Software Operation

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in
the platform for better performance. The ASRC supports following DMA channels:

* Peripheral to peripheral, for example: ASRC to ESAI
e Memory to peripheral, for example: memory to ASRC
* Peripheral to memory, for example: ASRC to memory

For more information, see the chapter on ASRC in the Multimedia Applications
Processor documentation.

30.2 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends
on the use cases in the platform.

Currently ASRC is used in following two scenarios.

* Memory > ASRC > Memory, ASRC is controlled by user application or ALSA plug-
in.
* Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA driver.

LpplicationTliddleware

ALSA lib/plugin)
F Y F Y F Y
¥
¥ ¥ ¥ ASEC Stream
Alsa driver Alza driver Alza driver Interface
tor spdif f tor stereo for 5.1 codec 4+ ¥
r 3 r 3 r 3 » M ASEC
driver
¥ ¥ ¥
=SPIDENLE Stereo codec 5.1 codec
driver driver driver

Figure 30-1. Audio Driver Interactions

As illustrated in figure above, the ASRC stream interface provides the interface for the
user space. The ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/
driver/asrc when the module is inserted. proc is used to track the channel number for each

i.MX Linux® Reference Manual, Rev. 0, 12/2015

224 Freescale Semiconductor, Inc.

L __4

Chapter 30 Asynchronous Sample Rate Converter (ASRC) Driver
pair. If all the pairs are not used, users can adjust the channel number through the proc
file. The total channels number should equal ten, or else the adjusted value cannot be
saved properly.

Now 7.1 audio codec driver support calling ASRC driver for memroy > ASRC >
perripheral(ESAI TX). All input audio file is convert into board defined sampling rate(for
example, 48khz). This use case only supports 2 or 6 channel playback. To call this use
case, user show follow steps below:

e call “aplay -1 grep ASRC" to get the card number and device number of playback
PCM. The device name is CS42888_ASRC. For example, the card number is O,
device number is 1.

* play audio file with the cardOdevicel device. For example, aplay -Dplughw:0,1
$AUDIO_FILE.

30.2.1 Sequence for Memory to ASRC to Memory

* Open /dev/mxc_asrc device

* Request ASRC pair - ASRC_REQ_PAIR

* Configure ASRC pair - ASRC_CONIFG_PAIR

» Start ASRC - ASRC_START_CONV

* Write the raw audio data (to be converted) into the user maintained input buffer. Fill
asrc_convert_buffer struct with input/output buffer length and address. Driver would
copy output data to user maintained output buffer address according to the output
buffer size. Repeat this step until all data is converted. -ASRC_CONVERT

» Stop ASRC conversion - ASRC_STOP_CONV

* Release ASRC pair - ASRC_RELEASE_PAIR

¢ Close /dev/mxc_asrc device

30.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1
audio sound card, a new device with the name "cs42888audio [cs42888-audio], device 1:
HiFi-ASRC-FE (*)" is specified for playback and capture with ASRC. The steps below
show the flow of calling ASRC to memroy to peripheral:

* The sound device(PCM) has been registered and start to enable the DMA channel in
ALSA driver

» Request ASRC pair - asrc_req_pair

» Configure ASRC pair - asrc_config_pair

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 225

Source Code Structure

e Enable the DMA channel from Memory to ASRC and from ASRC to Memory

e Start DMA channel and start ASRC conversion - asrc_start_conv

* When audio data playback complete, stop DMA channel and ASRC - asrc_stop_conv
» Release ASRC pair - asrc_release_pair

30.3 Source Code Structure

The table below lists the source files available in the devices directory.

<Yocto BuildDir>/linux/drivers/mxc/asrc
<Yocto_BuildDirs>/linux/include/linux/
<Yocto BuildDir>/linux/sound/soc/fsl/

<Yocto_BuildDir>/linux/sound/soc/codec/

Table 30-1. ASRC Source File List

File Description
mXc_asrc.c ASRC driver implementation codes including stream interface
mxc_asrc.h ASRC register definitions and export function declarations
imx-cs42888.c memory to ASRC to ESAI TX implementation in 7.1 audio codec machine driver.
imx-pcm-dma.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec platform driver.
fsl_esai.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec cpu driver.
Ccs42xx8 memory to ASRC to ESAI TX implementation in 7.1 audio codec codec driver.
fsl_asrc.c ALSA CPU DAl driver of ASRC P2P
fsl_asrc.h Header file for ALSA CPU DAI driver of ASRC P2P
fsl_asrc_pcm.c ALSA Platform layer for ASRC P2P

30.3.1 Linux Menu Configuration Options

The menu configuration options are as follows:

Device Drivers
-> MXC support drivers
-> MXC Asynchronous Sample Rate Converter support
-> ASRC support

Now ASRC driver can only be configured build-in module.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

226 Freescale Semiconductor, Inc.

4
Chapter 30 Asynchronous Sample Rate Converter (ASRC) Driver

30.4 Devicetree Binding
The functions of device tree bindings for ASRC M2M are as follows:

» compatible: Compatible list, must contain "fsl,imx6q-asrc".

* reg: Offset and length of the register set for the device.

* interrupts: Contains the asrc interrupt.

* clocks: Contains an entry for each entry in clock-names.

* clock-names: Must contain "mem", "ipg", "asrck", and "dma". (Generally, "dma" is
used for SPBA clock.)

* dmas: Generic dma devicetree binding as described in Documentation/devicetree/
bindings/dma/dma.txt.

e dma-names: Six dmas have to be defined, "txa", "rxa", "txb", "rxb", "txc", "rxc".

* fsl,clk-map-version: the mapping relationship in different SOC is different. This
version number can be used to indicate clock map information.

 fs],clk-channel-bits: indicates the channel bit information.

n.n

The functions of device tree bindings for ASRC P2P are as follows:

e compatible: Compatible list, must contain "fsl,imx6q-asrc-p2p".

* fsl,p2p-rate: A valid sample rate for Back-End (I2S) playback and record.

* fsl,p2p-width: A valid sample width for Back-End (I12S) playback and record.
e fsl,asrc-dma-rx-events: Contains three SDMA event numbers for ASRC Rx.
 fs],asrc-dma-tx-events: Contains three SDMA event numbers for ASRC Tx.

30.4.1 Programming Interface (Exported APl and IOCTLSs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.
ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in
struct asrc_config. Items in asrc_config is listed below:
e pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).
e channel num: channel number.
* buffer_num: buffer number need for input and output buffer use.The input/output
buffers are allocated inside ASRC driver. User is responsible for remap it into user
space.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 227

A ————
Devicetree Binding

* dma_buffer_size: buffer size for input and output buffers. The buffer size should be
in the unit of page size. Usually, 4k bytes is used.

* input_sample_rate: input sampling rate. Input sample rate should be in 5.512k, 8k,
11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k 96k, 176.4k, 192k.

 output_sample_rate: output sampling rate. Output sampling rate should be in 32k,
44.1k, 48k, 64k, 88.2k, 96k, 176.4k 192k.

e input_word_width: word width of input audio data. The input data word width can be
16 bit or 24 bit.

* output_word_width: word width of output audio data. The output data word width
can be 16 bit or 24 bit.

* inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock,
SPDIF RX clock, MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock,
SPDIF TX clock, ASRCLKI clock, NONE. If using clock except NONE, user
should make sure that the clock is available.

* outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by
ASRC_CONFIG_PAIR. Driver would copy input_buffer_length bytes data from the
input_buffer_vaddr for convert. After convert, driver fill the output_buffer_length
according to data number generated by ASRC and copy output_buffer_length to
output_buffer_vaddr. However, before calling ASRC_CONVERT, User is responsible
for filling the output_buffer_length according to the ratio of input sample rate and output
sample rate. If the generated buffer size is larger than user filled output_buffer_size,
driver would only copy user filled output_buffer_size to output_buffer_vaddr. If the
generated buffer size is smaller than user filled output_buffer_size(the difference should
be less than 64 bytes.), calling ASRC_CONVERT would fail.

e input_buffer_vaddr: virtual address of input buffer.

* output_buffer_vaddr: virtual address of output buffer.
* input_buffer_length: length of input buffer(bytes).
 output_buffer_length: length of output buffer(bytes).

ASRC_START_CONYV:
Start ASRC pair convert.
ASRC_STOP_CONYV:
Stop ASRC pair convert.
ASRC_STATUS:

Query ASRC pair status.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

228 Freescale Semiconductor, Inc.

Chapter 31
The Sony/Philips Digital Interface (S/PDIF) Driver

31.1 Introduction

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that
allows the processor to receive and transmit digital audio. The S/PDIF transceiver allows
the handling of both S/PDIF channel status (CS) and User (U) data. The frequency
measurement block allows the S/PDIF RX section to derive the receive clock from the
incoming S/PDIF stream.

31.1.1 S/PDIF Overview
Figure below shows the block diagram of the S/PDIF interface.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 229

AR
Introduction

IP BLIE

L~
=1 32-Bit
24-Bit

—— | CChannal H Rrx Rsg

SRCSH
24-Eit

. l
SPDIF | Ec"""";“R'E'-E F" Reg [
SPOIFIN[_] RECEIVEER 24-Bi

BLOCK —————#=| UChannal Rx Reg | =
=GU

24-Bil
4-1 CChannal Fx Rag

5RO 24-Eil

| FXFIFOLEFT) RxFIFO RIGHT
Az g (124

Y

o

EPDIFQUT

SELECT

/r‘“ &

SPOIFOUT |eg— |-—— SPDIF OFF

—

SRL |Left Rex Diata Reg Reight Fox Data Reg| SRR
4Bt

‘_| CChannelCona_H Tx Req |_..-_‘_r,..f"_

3TC3CGH 24.B

-¢—| CChanne|Cons_L Te Reg |q+

&POIF STLE0L 2480

TRANSMITTER THFIFG LEFT 1 T FFORGRF
BLOCK [HE2d) Y (16=x24)

3TL Lafl Tu Darla RBeg Left T Data Reg | 3TR

Figure 31-1. S/PDIF Transceiver Data Interface Block Diagram

31.1.2 Hardware Overview
The S/PDIF is composed of two parts:

» The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the
data in the S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are
also extracted from each frame and placed in the corresponding registers. The S/
PDIF receiver provides a bypass option for direct transfer of the S/PDIF input signal
to the S/PDIF transmitter.

* For the S/PDIF transmitter, the audio data is provided by the processor through the
SPDIFTxLeft and SPDIFTxRight registers. The Channel Status bits are provided
through the corresponding registers. The S/PDIF transmitter generates a S/PDIF
output bitstream in the biphase mark format (IEC958), which consists of audio data,
channel status and user bits.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

230 Freescale Semiconductor, Inc.

4

Chapter 31 The Sony/Philips Digital Interface (S/PDIF) Driver
In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of
the S/PDIF Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF
internal clock dividers and the sources are from outside of the S/PDIF block. The S/PDIF
receiver can recover the S/PDIF Rx clock from the S/PDIF stream. Figure 31-1 shows the
clock structure of the S/PDIF transceiver.

31.1.3 Software Overview

The S/PDIF driver is designed under ALSA System on Chip (ASoC) layer. The ASoC
driver for S/PDIF provides one playback device for Tx and one capture device for Rx.
The playback output audio format can be linear PCM data or compressed data with 16-
bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 or 32 KHz. The
capture input audio format can be linear PCM data or compressed 24-bit data and the
allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface
for PCM and compressed data transmission.

31.1.4 The ASoC layer

The ASoC layer divides audio drivers for embedded platforms into separate layers that
can be reused. ASoC divides an audio driver into a codec driver, a machine layer, a DAI
(digital audio interface) layer, and a platform layer. The Linux kernel documentation has
some concise description of these layers in linux/Documentation/sound/alsa/soc. In the
case of the S/PDIF driver, we are able to reuse the platform layer (imx-pcm-dma-mx2.c)
that is used by the ssi stereo codec driver.

31.2 S/PDIF Tx Driver

The S/PDIF Tx driver supports the following features.
* 32,44.1 and 48 KHz sample rates.

 Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the
24-bit output sample file must have 32-bits in each channel per frame. Only the 24
LSBs are valid.

* In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

* Stereo playback.
 Information query through iecset or amixer.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 231

A
S/PDIF Tx Driver

* The device ID can be determined by using the 'aplay -1' utility to list out the playback
audio devices.

For example:

root@freescale ~$ aplay -1

%%x T,igt of PLAYBACK Hardware Devices *

card 0: imxspdif [imx-spdif], device 0: S/PDIF PCM Playback dit-hifi-o0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

. NOTE
The number at the beginning of the IMX_SPDIF line is the
card ID. The string in the square brackets is the card name.

* The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers

#aplay -Dplughw:0,0 audio.wav

NOTE
The -D parameter of aplay indicates the PCM device with
card ID and PCM device ID: hw:[card id],[pcm device id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 0

31.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are
initialized. During S/PDIF playback, the channel status bits are fixed. The DMA and
interrupts are enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel
respectively. When both FIFOs are empty, an empty interrupt is generated if the empty
interrupt is enabled. If no data are refilled in the 20.8 ps (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel
every time. If auto re-synchronization is enabled, the hardware checks if the left and right
FIFO are in sync, and if not, it sets the filling pointer of the right FIFO to be equal to the
filling pointer of the left FIFO and an interrupt is generated.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

232 Freescale Semiconductor, Inc.

4
Chapter 31 The Sony/Philips Digital Interface (S/PDIF) Driver

31.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the
user besides the common PCM operations interface. It provides the interface for the user
to write S/PDIF channel status codes into the driver so they can be sent in the S/PDIF
stream. The input parameter of this interface is the IEC958 digital audio structure shown
below, and only status member is used:

struct snd_aes_iec958 {

unsigned char status[24]; /* AES/IEC958 channel status bits */
unsigned char subcode[147]; /* AES/IEC958 subcode bits */
unsigned char pad; /* nothing */

unsigned char dig subframe[4]; /* AES/IEC958 subframe bits */

31.3 S/PDIF Rx Driver

The S/PDIF Rx driver supports the following features:

* 16, 32,44.1, 48, 64 and 96 KHz receiving sample rate
* Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each
channel bit length in PCM recorded frame is 32 bits, and only the 24 LSBs are valid

In ALSA subsystem, the supported format is defined as S24_LE.

* Stereo record.
* The device ID can be determined by using the 'arecord -1' to list out record devices.

For example:

root@freescale ~$ arecord -1

%%x T,igt of CAPTURE Hardware Devices **

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: S/PDIF PCM Capture dir-hifi-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

e The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers.

#tarecord -Dplughw:1,0" -c 2 -r 44100 -f S24 LE record.wav

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 233

A ————
S/PDIF Rx Driver
NOTE
The -D parameter of the arecord indicates the PCM device
with card ID and PCM device ID: hw:[card id],[pcm device
id]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

31.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for
the internal DPLL to be locked. Using the high-speed system clock, the internal DPLL
can extract the bit clock (advanced pulse) from the input bit stream. When this internal
DPLL is locked, the LOCK bit of PhaseConfig Register is set and the driver configures
the interrupt, clock and SDMA channel. After that, the driver can receive audio data,
channel status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers.
The driver reads them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD.
The mode is determined by the USyncMode (bit 1 of CDText_Control register). User can
call the sound control interface to set the mode (see Table 31-1), but no matter what the
mode is, the driver handles the user bits in the same way. For the S/PDIF Rx, the
hardware block copies the Q bits from the user bits to the QChannel registers and puts the
user bits in UChannel registers. The driver allocates two queue buffers for both U bits
and Q bits. The U bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2
bytes in size, and queue buffers are filled in the U/Q Full, Err and Sync interrupt
handlers. This means that the user can get the previous ready U/Q bits while S/PDIF
driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt

status upon reception. A sound control interface is provided for the user to get the status
of this valid bit.

31.3.2 Provided User Interface

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

234 Freescale Semiconductor, Inc.

Chapter 31 The Sony/Philips Digital Interface (S/PDIF) Driver

Table 31-1. S/PDIF Rx Driver Interfaces
Interface Type | Mode' Parameter Comment
Common PCM |PCM - - PCM open/close
prepare/trigger
hw_params/sw_params
Rx Sample Sound r Integer Get sample rate. It is not accurate due to DPLL
2
Rate Control Range: [16000, 96000] frquengy measure module. _So the user
application must do a correction to the get
value.
USyncMode Sound rw Boolean Set 1 for CD mode
Control Value: O or 1 Set 0 for non-CD mode
Channel Status | Sound r struct snd_aes_iec958 -
Control .
Only status [6] array member is used
User bit Sound r Byte array -
Control 96 bytes for U bits
12 bytes for Q bits
No good V bit |Sound r Boolean An interrupt is associated with the valid flag.
Control Value: 0 or 1 (interrupt 16 - SPDIFValNoGood). This interrupt

is set every time a frame is seen on the SPDIF
interface with the valid bit set to invalid.

1. The mode column shows the interface attribute: r (read) or w (write)
2. The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 31-2 to use the S/PDIF Rx
driver. First, the application opens the S/PDIF Rx PCM device, waits for the DPLL to
lock the input bit stream, and gets the input sample rate. If the USyncMode needs to be
set, set it before reading the U/Q bits. Next, set the hardware parameters, including
channel number, format and capture sample rate which is obtained from the driver. Then,
call prepare and trigger to startup S/PDIF Rx stream read. Finally, call the read function
to get the data. During the reading process, applications can read the U/Q bits and
channel status from the driver and valid the no good bit.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

235

Source Code Structure

porn Open snd ctl
_! get *RX Sample Rate”
LR __BR BB BN BB NN _J8 28 _J§ XN BB KN XN _JEE___ELE _EX _J '
1r* i"'
.
set channel = 2 A
-
~
¥ Al
- -
set format = S24_LE . |
.ll"- -
l o 1
d-'-
set rate = gotten rate [M==-"""" snd ctl
* set *USyncMode COText™ On Off
pcrm
prepare
[r snd ol }
- I
read !
| -
— — — — — — i — 1 — — i — 1 — — + Snd Dtl
O S net RIII‘II’:I‘II"F!.'"GRII"I
L |
rlnse I i
snd ctl
""" * znd control

—* Prooram flow tnom likh

Figure 31-2. S/PDIF Rx Application Program Flow

31.4 Source Code Structure
Table below lists the source files for the driver.

These files are under the <Yocto_BuildDir>/linux/ directory.
Table 31-2. S/PDIF Driver Files

Description

File

sound/soc/codecs/spdif_transmitter.c

S/PDIF ALSA SOC playback codec driver

sound/soc/codecs/spdif_receiver.c

S/PDIF ALSA SOC record codec driver

sound/soc/fsl/imx-spdif.c

S/PDIF ALSA SOC machine layer

i.MX

Table continues on the next page...

Linux® Reference Manual, Rev. 0, 12/2015

236

Freescale Semiconductor, Inc.

Chapter 31 The Sony/Philips Digital Interface (S/PDIF) Driver
Table 31-2. S/PDIF Driver Files (continued)

File Description
sound/soc/fsl/fsl_spdif.c S/PDIF ALSA SOC DAl layer
sound/soc/fsl/imx-pcm-dma.c ALSA SOC platform layer
sound/soc/fsl/imx-pcm.h ALSA SOC platform layer header

31.5 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

To get to these options, use the bitbake linux-imx -¢c menuconfig command. Select
Configure the Kernel on the screen displayed and exit. When the next screen appears,
select the following options to enable this module:

* CONFIG_SND_IMX_SPDIF - Configuration option for the S/PDIF driver. In the
menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with S/PDIF

31.6 Device Tree Bindings
Please refer to the following documents:

* Documentation/devicetree/bindings/sound/fsl,spdif.txt
* Documentation/devicetree/bindings/sound/imx-audio-spdif.txt

31.7 Interrupts and Exceptions

S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and
event.

The driver handles the following interrupts:

* DPLL Lock and Loss Lock-Saves the DPLL lock status; this is used when getting the
Rx sample rate

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 237

Unit Test Preparation

» U/Q Channel Full and overrun/underrun-Puts the U/Q channel register data into

queue buffer, and update the queue buffer write pointer
* U/Q Channel Sync-Saves the ID of the buffer whose U/Q data is ready for read out
* U/Q Channel Error-Resets the U/Q queue buffer

31.8 Unit Test Preparation
In order to prepare to run a unit test, perform the following actions:

e Setup M-Audio Transit USB sound card by installing M-Audio Transit driver on
your PC.
* Install WaveLab tools on your PC.

31.8.1 Tx test step

* Plug optical line into [lineloptical] port of M-Audio transit.

NOTE
Make sure the [optical out] port of M-Audio transit has no
output (red light off) after plugging the optical line.

 Startup WaveLab, press record button on toolbar, setup the record file name, sample
rate, channel number, then do record.
* Meanwhile, on board use following command to play one wave file:

#aplay -D hw: [card id], [pcm id] audioXXkYYS.wav

* After aplay finishing, stop recording in WaveLab.
* Play the recorded wav file in wavelab to check.

31.8.2 Rx test step

* Plug optical line into [optical port] of M-Audio transit

» Startup WaveLab, open a test wav file: audioXXkY'YS.wav to play in loop

e Meanwhile, on board use following command to record one wave file. After finish
recording, you may playback the record wav file on other audio card on board or PC

#arecord -D hw: [card id], [pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24 LE record.wav

NOTE
The sample rate argument in the arecord command must be
consistent with wav file playing on WavelLab.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

238 Freescale Semiconductor, Inc.

Chapter 32
SPI NOR Flash Memory Technology Device (MTD)
Driver

32.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash.

32.1.1 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it

properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high-speed SPI-compatible bus up to 75 MHz. The memory
1s organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide. Thus,
the whole memory can be viewed as consisting of 16384 pages, or 4,194,304 bytes. The
memory can be programmed 1 to 256 bytes at a time using the Page Program instruction.
The whole memory can be erased using the Bulk Erase instruction, or a sector at a time,
using the Sector Erase instruction.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 239

A
Introduction

Unlike conventional Flash memories that are accessed randomly, these two SPT NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

32.1.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. Figure below illustrates the relationships between some of the
standard components.

c
@
m
P
£
i
E

r
RAMFS |

i
[]
]
]
[]
1
[]
1
i
]
1
]
1
i
]
1
]
]
]
[]
1
1
1
]
1
i
1
1
1
1
i
1
i
]
1
1
1
1
i
1
i
=

; o ||
Figure 32-1. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMEFS
file systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the
kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI
NOR MTD driver also provides the interfaces to read, write, and erase NOR Flash.

32.1.3 Driver Features
This NOR MTD implementation supports the following features:

* Provides necessary information for the upper layer MTD driver

i.MX Linux® Reference Manual, Rev. 0, 12/2015

240 Freescale Semiconductor, Inc.

4
Chapter 32 SPI NOR Flash Memory Technology Device (MTD) Driver

32.1.4 Source Code Structure
The SPI NOR MTD driver is implemented in the following directory:
drivers/mtd/devices/

Table below shows the driver files:

Table 32-1. SPI NOR MTD Driver Files

File Description

m25p80.c Source file

32.1.5 Menu Configuration Options

To get to the SPI NOR MTD driver, use the command bitbake linux-imx -¢c menuconfig.
On the screen displayed, select Configure the kernel and exit. When the next screen
appears select the following options to enable the SPI NOR MTD driver accordingly:

 CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

* Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 241

Introduction

i.MX Linux® Reference Manual, Rev. 0, 12/2015

242 Freescale Semiconductor, Inc.

Chapter 33
MMC/SD/SDIO Host Driver

33.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC) .

The host driver is part of the Linux kernel MMC framework.
The MMC driver has the following features:

e 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

 Supports card insertion and removal detections.

» Supports the standard MMC commands.

e PIO and DMA data transfers.

* Supports power management.

» Supports 1/4/8-bit operations for MMC cards.

e For 1.MX 6, USDHC supports eMMC4.4 SDR and DDR modes.

* For 1.MX 7Dual, USDHC supports eMMC5.0, which includes HS400 and HS200.

e Supports SD3.0 SDR50 and SDR104 modes.

33.1.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 243

A
Introduction

The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

33.1.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols.
The MMC block driver handles the file system read/write calls and uses the low level
MMC host controller interface driver to send the commands to the uSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit,
request, and set_ios. The driver implements the following functions:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

244 Freescale Semiconductor, Inc.

Chapter 33 MMC/SD/SDIO Host Driver

* The init function esanc_pitfm_init () initializes the platform hardware and set platform
dependant flags or values to sdhci_host structure.
* The exit function esdanc_pitem exit () deinitializes the platform hardware and frees the

memory allocated.

* The function esdnhc_pitfm get max_clock() gets the maximum SD bus clock frequency
supported by the platform.

* The function esanc_pitfm get_min_clock () gets the minimum SD bus clock frequency
supported by the platform.

* esdhc_pltfm get_ro() gets the card read only status.

* esdhc_execute_tuning () handles the preparation for tuning. It's only used for SD3.0

UHS-I mode.

* esdhc_set_clock () handles the clock change request.

Figure below shows how the MMC-related drivers are layered.

File System (Ext2fs'FAT driver)

SDIO APP

Applic ation/Server interface i

. 2

blocloc: bhlock
driver for

Block Client Driver {Storage)

peripheral media.

core.c, sil.c,

\ Client Drvver interface

Einds of Bus Protocol Drivers

Etc sd, o,

silio, ce-atn

Host ¢ ontroller Drtver mcerface t

sdhei.c/sdhei-pltfm.c

sdhei-esdhe-imx.c

¥

Host Conmoller

Skt Electrical interface i

. 4

and 50 01

Local Bus Interface

MMC/SD/SD

MMC/SD/SDIOCE-ATA Devices

IO/CE-ATA
Devices

Figure 33-1. MMC Drivers Layering

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

245

Driver Features

33.2 Driver Features
The MMC driver supports the following features:

* Supports multiple uSDHC modules.

* Provides all the entry points to interface with the Linux MMC core driver.

* MMC and SD cards.

e SDIO cards.

e SD3.0 cards.

* Recognizes data transfer errors such as command time outs and CRC errors.

* Power management.
* [t supports to be built as loadable or builtin module

33.2.1 Source Code Structure

Table below shows the uSDHC source files available in the kernel source directory:
drivers/mmc/host/.

Table 33-1. uSDHC Driver Files MMC/SD Driver Files

File Description
sdhci.c sdhci standard stack code
sdhci-pltfm.c sdhci platform layer
sdhci-esdhc-imx.c uSDHC driver
sdhci-esdhc.h uSDHC driver header file

33.2.2 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this
option is available under:
* Device Drivers > MMC/SD/SDIO Card support
* By default, this option is Y.
* CONFIG_MMC_BLOCK builds support for MMC block device driver which can be
used to mount the file system. In menuconfig, this option is available under:
* Device Drivers > MMC/SD Card Support > MMC block device driver
* By default, this option is Y.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
246 Freescale Semiconductor, Inc.

4
Chapter 33 MMC/SD/SDIO Host Driver
* CONFIG_MMC_SDHCI_ESDHC_IMX is used for the 1.MX USDHC ports. In
menuconfig, this option is found under:

* Device Drivers > MMC/SD Card Support > Secure Digital Host Controller
Interface support > SDHCI support on the platform specific bus > SDHCI
platform support for the Freescale eSDHC 1.MX controller

To compile SDHCI driver as a loadable module, several options should be selected
as indicated below:

e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as
indicated below:

* CONFIG_MMC_SDHClI=y, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

* CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCIT support on the platform specific bus.

 CONFIG_MMC_SDHCI_ESDHC_IMX-=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCIT support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

* CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under:

* Device drivers > MMC/SD/SDIO Card Support > Assume MMC/SD cards are

non-removable.

33.2.3 Devicetree Binding
Required properties:

» compatible : Should be "fsl,<chip>-esdhc"
* reg : Should contain eSDHC registers location and
e interrupts : Should contain eSDHC interrupt

Optional properties:

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 247

Driver Features

Example:usdhc@02194000 { /* uSDHC2 */

Vi

compatible = "fsl, imx6g-usdhc";
reg = <0x02194000 0x4000>;
interrupts = <0 23 0x04>;

clocks = <&clks 164>, <&clks 164>,
clock-names = "ipg", "ahb", "per";

pinctrl-names = "default";
pinctrl-0 = <&pinctrl usdhc2_ 1>;
cd-gpios = <&gpio2 2 0>;
wp-gpios = <&gpio2 3 0>;
bus-width = <8>;

no-1-8-v;

keep-power-in-suspend;
enable-sdio-wakeup;

status = "okay";

Reference:

* non-removable : Indicate the card is wired to host permanently
 fs]l,cd-internal : Indicate to use controller internal card detection

* fsl,wp-internal : Indicate to use controller internal write protection
* cd-gpios : Specify GPIOs for card detection

* wp-gpios : Specify GPIOs for write protection

« fsl,delay-line : Specify delay line value for emmc ddr mode

<&clks 164>;

* Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
* arch/arm/boot/dts/imx6*.dtsi

33.2.4 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with
the 1.MX uSDHC module.

See the Linux document generated from build: make htmldocs.

33.2.5 Loadable Module Operations
The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.
e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card

Support > Secure Digital Host Controller Interface support

i.MX Linux® Reference Manual, Rev. 0, 12/2015

248

Freescale Semiconductor, Inc.

4
Chapter 33 MMC/SD/SDIO Host Driver
e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.
* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller
2. How to load and unload SDHCI module.

Due to dependency, load or unload the module following the module sequence
shown below.

run the following commands to load module:
* load modules via insmod command, assuming the files of sdhci.ko and sdhci-
platform.ko exist in current directory.

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

* load modules via modprobe command, make sure the files of sdhci.ko and sdhci-
platform.ko exist in corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
e unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

 unload modules via modprobe command.

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 249

Driver Features

i.MX Linux® Reference Manual, Rev. 0, 12/2015

250 Freescale Semiconductor, Inc.

Chapter 34
NAND GPMI Flash Driver

34.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the 1.MX 6 serials.

Only the hardware-specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

34.1.1 Hardware Operation
NAND Flash is a nonvolatile storage device used for embedded systems.

It does not support random accesses of memory as in the case of RAM or NOR Flash.
Reading or writing to NAND Flash must be done through the GPMI. NAND Flash is a
sequential access device appropriate for mass storage applications. Code stored on
NAND Flash cannot be executed from there. Code must be loaded into RAM memory
and executed from there. The 1.MX 6 contains a hardware error-correcting block.

34.2 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes
or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 251

A
Software Operation

hardware-specific driver interfaces with the GPMI module on the 1.MX 6. It implements
the lowest level operations such as read, write and erase. If enabled, it also provides
information about partitions on the NAND device-this information has to be provided by
platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at www.linux-
mtd.infradead.org

34.2.1 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

gpmi_ecc_read page (with ECC)
gpmi_ecc write page (with ECQC)
gpmi_read byte (without ECC)
gpmi_read buf (without ECC)
gpmi_write_buf (without ECC)
gpmi_ecc _read oob (with ECC)
gpmi_ecc_write oob (with ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the gpmi_read_page() function is called, which creates the DMA chain,
submits it to execute, and waits for completion. The write case is a bit more complex: the
data to be written is mapped and flushed out by calling gpmi_send_page().

34.2.2 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page 1s (4k +
218) the page layout of 8K page is (8K + 448).

i.MX Linux® Reference Manual, Rev. 0, 12/2015

252 Freescale Semiconductor, Inc.

http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

4
Chapter 34 NAND GPMI Flash Driver

34.2.3 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are

found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

34.2.4 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved.

34.3 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/ directory.
The following files are included in the NAND driver:

bch-regs.h
gpmi-lib.c
gpmi-nand.c
gpmi-nand.h
gpmi-regs.h
Makefile

34.3.1 Menu Configuration Options
To enable the NAND driver, the following options must be set:

 CONFIG_IMX_HAVE_PLATFORM_GPMI_NAND-=[Y]
* CONFIG_MTD_NAND_GPMI_NAND=[Y | M]

In addition, these MTD options must be enabled:
« CONFIG_MTD_NAND = [y I m]

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 253

A
Source Code Structure

« CONFIG_MTD =y

* CONFIG_MTD_PARTITIONS =y

e CONFIG_MTD_CHAR =y

* CONFIG_MTD_BLOCK =y

In addition, these UBI options must be enabled:

« CONFIG_MTD_UBI=y
« CONFIG_MTD_UBI_WL_THRESHOLD=4096
« CONFIG_MTD_UBI_BEB_RESERVE=1
 CONFIG_UBIFS_FS=y

« CONFIG_UBIFS_FS_LZO=y
 CONFIG_UBIFS_FS_ZLIB=y

i.MX Linux® Reference Manual, Rev. 0, 12/2015
254 Freescale Semiconductor, Inc.

Chapter 35
SATA Driver

35.1 Hardware Operation

The detailed hardware operation of SATA is detailed in the Synopsys DesignWare Cores
SATA AHCI documentation, named SATA_Data_Book.pdf.

35.1.1 Software Operation

The details about the libata APIs, see the ibATA Developer's Guide named libata.pdf
pulished by Jeff Gazik.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel . Freescale-integrated AHCI linux driver combined the standard
AHCI drivers handle the details of the integrated Freescale SATA AHCI controller, while
the LIBATA layer understands and executes the SATA protocols. The SATA device,
such as a hard disk, is exposed to the application in user space by the /dev/sda* interface.
Filesystems are built upon the block device. The AHCI specified integrated DMA engine,
which assists the SATA controller hardware in the DMA transfer modes.

35.1.2 Source Code Structure Configuration

The source code of Freescale's AHCI SATA driver is located in the following folder:
<kernel dir>/driver/ata/ahci_imx.c

The standard AHCI and AHCI platform drivers are used to do the actual SATA
operations.

The source code of the standard AHCI and AHCI platform drivers are located in drivers/
ata/ folder, named as ahci.c and ahci-platform.c.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 255

Programming Interface

35.1.3 Linux Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

Symbol: AHCI_IMX
[=y]

Type
tristate

Prompt: Freescale i.MX AHCI SATA
support
Location:

-> Device
Drivers

-> Serial ATA and Parallel ATA drivers (ATA
[=y])
-> Platform AHCI SATA support (SATA AHCI PLATFORM
[=y1)

In busybox, enable "fdisk" under "Linux System Utilities".

35.1.4 Board Configuration Options
With the power off, install the SATA cable and hard drive.

35.2 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for
example: open, close, read, write, and ioctl) on /dev/sda*.

35.2.1 Usage Example2
NOTE

There may be a known error message when few kinds of SATA
disks are initialized, such as:

atal.00: serial number mismatch '090311PB0300QKG3TB1A"!

atal.00: revalidation failed (errno=-19)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

256 Freescale Semiconductor, Inc.

4
Chapter 35 SATA Driver

pls ignore that.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target,
and log in as root.

2. Make sure that the AHCI and AHCI platform drivers are built in the kernel or loaded
into the kernel.

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1 impl platform mode
ahci ahci: flags: ncg sntf stag pm led clo only pmp pio slum part ccc apst
scsi0 : ahci platform

atal: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 0x100 irg 71
atal: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

atal.00: ATA-8: SAMSUNG HM100UI, 2AM10001, max UDMA/133

atal.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32)

atal.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA SAMSUNG HM100UI 2AM1 PQ: 0 ANSI: 5

sd 0:0:0:0: [sdal 1953525168 512-byte logical blocks: (1.00 TB/931 GiB)

sd 0:0:0:0: [sdal] 4096-byte physical blocks

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sdal Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal

sd 0:0:0:0: [sda]l] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for
example: fdisk and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to
check basic kernel settings for the drive, execute hdparm /dev/sda.

35.2.2 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the
hard disk is pre-formatted, this command shows the size of the hard disk, partitions, and
filesystem type:

$fdisk -1 /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following
command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 257

Programming Interface

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note
this command can corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/sdal bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the
file to be written for file_name, do the following:

$dd if=file name of=/dev/sdal

To read 1KB of data from the card enter the following text, substituting the name of the
file to be written for output_file, do the following:

$dd if=/dev/sdal of=output file bs=1024 count=1
Files System Tests
Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

Smkfs.ext2 /dev/sdal
$mkfs.vfat /dev/sdal

Mount the file system as follows:

Smkdir /mnt/sdal
$Smount -t ext2 /dev/sdal /mnt/sdal

After mounting, file/directory, operations can be performed in /mnt/sdal.

Unmount the filesystem as follows:

Sumount /mnt/sdal

i.MX Linux® Reference Manual, Rev. 0, 12/2015

258 Freescale Semiconductor, Inc.

Chapter 36
Inter-IC (12C) Driver

36.1 Introduction

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The I2C driver for Linux OS has two parts:

* 12C bus driver-low level interface that is used to talk to the I2C bus
 12C chip driver-acts as an interface between other device drivers and the 12C bus
driver

36.1.1 12C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user
space.

The standard Linux kernel contains a core I2C module that is used by the chip driver to
access the I2C bus driver to transfer data over the I2C bus. The chip driver uses a
standard kernel space API that is provided in the Linux kernel to access the core 12C
module. The standard I2C kernel functions are documented in the files available under
Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

e Compatible with the I2C bus standard

* Bit rates up to 400 Kbps

* Starts and stops signal generation/detection
* Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer
 Standard 12C master mode

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 259

Software Operation

36.1.2 12C Device Driver Overview

The I12C device driver implements all the Linux I2C data structures that are required to
communicate with the I2C bus driver. It exposes a custom kernel space API to the other
device drivers to transfer data to the device that is connected to the I2C bus. Internally,
these API functions use the standard I12C kernel space API to call the I2C core module.
The I2C core module looks up the I2C bus driver and calls the appropriate function in the
I2C bus driver to transfer data. This driver provides the following functions to other
device drivers:

» Read function to read the device registers
* Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

36.1.3 Hardware Operation
The I12C module provides the functionality of a standard I2C master and slave.

It is designed to be compatible with the standard Philips I2C bus protocol. The module
supports up to 64 different clock frequencies that can be programmed by setting a value
to the Frequency Divider Register (IFDR). It also generates an interrupt when one of the
following occurs:

* One byte transfer is completed
» Address is received that matches its own specific address in slave-receive mode
e Arbitration is lost

36.2 Software Operation
The I2C driver for Linux OS has two parts: an I2C bus driver and an I2C chip driver.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

260 Freescale Semiconductor, Inc.

4
Chapter 36 Inter-IC (I12C) Driver

36.2.1 12C Bus Driver Software Operation

The I2C bus driver is described by a structure called 12c_adapter. The most important
field in this structure is struct i2c_algorithm *algo. This field is a pointer to the
12c_algorithm structure that describes how data is transferred over the 12C bus. The
algorithm structure contains a pointer to a function that is called whenever the I12C chip
driver wants to communicate with an 12C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one 12C module. If so, the driver registers
separate i2c_adapter structures for each [2C module with the I2C core. These adapters are
unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end
of a data transmission before transmitting the next byte. It times out and returns an error
if the transfer complete signal is not received. Because the I2C bus driver uses wait
queues for its operation, other device drivers should be careful not to call the I2C API
methods from an interrupt mode.

36.2.2 12C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, 12c_driver,
describes the I12C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value [2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. When the I12C bus
driver is loaded, this driver stores the i2c_adapter structure associated with this bus driver
so that it can use the appropriate methods to transfer data.

36.3 Driver Features

The 12C driver supports the following features:

e [2C communication protocol
* [2C master mode of operation

NOTE
The I2C driver does not support the I2C slave mode of
operation.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 261

Driver Features
36.3.1 Source Code Structure

Table below shows the I2C bus driver source files available in the directory:

<Yocto_BuildDir>/drivers/i2c/busses.
Table 36-1. 12C Bus Driver Files

File Description

i2c-imx.c I12C bus driver source file

36.3.2 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > 12C support > [2C Hardware Bus support > IMX 12C interface.

36.3.3 Programming Interface

The I12C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the I12C bus.

For more information, see include/linux/i2c.h .

36.3.4 Interrupt Requirements
The I2C module generates many kinds of interrupts.

The highest interrupt rate is associated with the transfer complete interrupt as shown in
table below.

Table 36-2. 12C Interrupt Requirements

Parameter Equation Typical Best Case
Rate Transfer Bit Rate/8 12,500/sec 50,000/sec
Latency 8/Transfer Bit Rate 80 us 20 us

The typical value of the transfer bit-rate is 100 Kbps. The best case values are based on a
baud rate of 400 Kbps (the maximum supported by the I2C interface).

i.MX Linux® Reference Manual, Rev. 0, 12/2015

262 Freescale Semiconductor, Inc.

Chapter 37
Enhanced Configurable Serial Peripheral Interface
(ECSPI) Driver

37.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.
It supports the following features:

e Interrupt-driven transmit/receive of bytes
* Multiple master controller interface

* Multiple slaves select

* Multi-client requests

37.1.1 Hardware Operation

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications.

Each ECSPI is equipped with a data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master
or slave devices.

The primary features of the ECSPI includes:

* Master/slave-configurable

* Four chip select signals to support multiple peripherals

» Up to 32-bit programmable data transfer

e 64 x 32-bit FIFO for both transmit and receive data

 Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 263

Software Operation
37.2 Software Operation

The following sections describe the ECSPI software operation.

37.2.1 SPI Sub-System in Linux OS

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. Figure below shows the block diagram for SPI
subsystem in Linux OS.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR Client #2 driver | ™ Client #3 driver
mtd driver
SPI Subsystem
ECSPI Hardware
h 4 h 4 ¥
SPI-NOR Flash Client #2 Client #3

Figure 37-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. Figure below shows how the different SPI drivers are
layered in the SPI subsystem.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

264 Freescale Semiconductor, Inc.

4
Chapter 37 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

SPI client Driver SPI slave driver
Client Driver Interface {}
SPI Core Driver SPI core driver
Controller Driver Interace {\r
FSL Eici%F;(I driver ECSPI host
(spl_imx.c) ECSPI Controller Driver controller driver
SPI Bus Interface: {}
ECSPI Controller
Electrical Interface. @
SPI slave device
SPI Slave
(SPI-NOR Flash)

Figure 37-2. Layering of SPI Drivers in SPl Subsystem

37.2.2 Software Limitations
The ECSPI driver limitations are as follows:

* Does not currently have SPI slave logic implementation

* Does not support a single client connected to multiple masters

* Does not currently implement the user space interface with the help of the device
node entry but supports sysfs interface

37.2.3 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

* Init function spi_imx_init() registers the device_driver structure.

 Probe function spi_imx_probe() performs initialization and registration of the SPI
device-specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/0 pins, requests for IRQ
and resets the hardware.

 Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

 SPI transfer function spi_imx_transfer() handles data transfers operations.

 SPI setup function spi_imx_setup() initializes the current SPI device.

» SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed
and an interrupt is generated.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 265

Software Operation

37.2.4 ECSPI Synchronous Operation

Figure below shows how the ECSPI provides synchronous read/write operations.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
266 Freescale Semiconductor, Inc.

Client Driver

spi_read/write

Chapter 37 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

return

SPI Core SPI Controller ECSPI
Driver Driver Hardware
>

spi transfer
> spi_enable_rx_intr
)
spi_load_TxFifo
>

e

callback after

spi_init_exchange

Rx_Data_Ready_intr

<

spi_getRxData

transfer completion

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc.

267

Driver Features

37.3 Driver Features
The ECSPI module supports the following features:

* Implements each of the functions required by a ECSPI module to interface to Linux
OS

e Multiple SPI master controllers

* Multi-client synchronous requests

37.3.1 Source Code Structure

Table below shows the source files available in the devices directory:

<Yocto BuildDir>/linux/drivers/spi/
Table 37-1. CSPI Driver Files

File Description

spi_imx.c SPI Master Controller driver

37.3.2 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the bitbake
linux-imx -¢ menuconfigcommand.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

e CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:
* Device Drivers > SPI Support.
* CONFIG_BITBANG is the Library code that is automatically selected by drivers
that need it. SPI_IMX selects it. In menuconfig, this option is available under:
» Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.
e CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:
* Device Drivers > SPI Support > Freescale 1.MX SPI controllers.

i.MX Linux® Reference Manual, Rev. 0, 12/2015

268 Freescale Semiconductor, Inc.

4
Chapter 37 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

37.3.3 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

37.3.4 Interrupt Requirements
The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 37-2. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case
BaudRate/ Transfer Length (BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

i.MX Linux® Reference Manual, Rev. 0, 12/2015
Freescale Semiconductor, Inc. 269

Driver Features

i.MX Linux® Reference Manual, Rev. 0, 12/2015

270 Freescale Semiconductor, Inc.

Chapter 38
FlexCAN Driver

38.1 Driver Overview

FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see Iwn.net/Articles/253425 or Documentation/networking/
can.txt in Linux source directory.

38.1.1 Hardware Operation

For the information on hardware operations, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

i.MX Linux® Reference Manual, Rev. 0, 12/2015

Freescale Semiconductor, Inc. 271

http://lwn.net/Articles/253425

Driver Overview

38.1.2 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

The CAN network device driver interface.

The CAN network device driver interface provides a generic interface to setup, configure
and monitor CAN network devices. The user can then configure the CAN device, like
setting the bit-timing parameters, via the netlink interface using the program "ip" from
the "IPROUTE2" utility suite.

Starting and stopping the CAN network device.

A CAN network device is started or stopped as usual with the command "ifconfig canX
up/down" or "ip link set canX up/down". Be aware that you *must* define proper bit-
timing parameters for real CAN devices before you can start it to avoid error-prone
default settings:

* ip link set canX up type can bitrate 125000

The iproute? tool also provides some other configuration capbilities for can bus such as
bit-timing setting. For details, see kernel doc: Documentation/networking/can.txt

38.1.3 Source C