
i.MX BSP Porting Guide

Document Number: IMXBSPPG
Rev. 0, 03/2016

i.MX BSP Porting Guide, Rev. 0, 03/2016

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board

1.1 U-Boot Overview..7

1.2 Obtaining the Source Code for the U-Boot...7

1.2.1 Preparing the Code...8

1.3 Customizing the i.MX 6 or i.MX 7 Custom Board Code... 11

1.3.1 Changing the DCD Table for i.MX DDR3, LPDDR2, Initialization.. 11

1.3.2 Booting with the Modified U-Boot ...11

1.3.3 Adding New Driver Initialization Code to Board Files... 12

1.3.4 Further Customization at System Boot.. 13

1.3.5 Customizing the Printed Board Name... 14

1.4 Debugging...14

1.4.1 Using JTAG Tool for Debugging.. 14

1.4.2 Using printf for debugging...15

Chapter 2
Configuring the IOMUX Controller

2.1 IOMUX Overview.. 17

2.2 Information for Setting IOMUX Controller Registers..18

2.3 Using IOMUX in the Device Tree - Example.. 19

Chapter 3
Registering a New UART Driver

3.1 Enabling UART on Kernel Menuconfig...21

3.2 UART Settings..21

3.3 File Names and Locations...21

Chapter 4
Adding Support for SDHC

4.1 SDHC Overview... 23

Chapter 5

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 3

Section number Title Page

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

5.1 SPI NOR Overview...25

5.2 Source Code Structure.. 25

5.2.1 Configuration Options..25

5.2.2 Selecting SPI NOR on the Linux Image.. 26

5.3 Changing the SPI Interface Configuration..26

5.4 Hardware Operation..26

5.4.1 Software Operation.. 27

Chapter 6
Connecting an LVDS Panel to an i.MX 6Dual/6Quad/6Solo/6DualLite Reference Board

6.1 LVDS Overview... 29

6.1.1 Connecting an LVDS Panel to the i.MX 6Dual/6Quad/6DualLite Reference Board..29

6.2 Enabling an LVDS Channel..29

6.2.1 Locating Menu Configuration Options ... 30

6.3 LDB Ports... 30

6.3.1 Input Parallel Display Ports... 31

6.3.2 Output LVDS Ports..32

6.4 Additional Information... 32

Chapter 7
Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

7.1 CSI Overview..35

7.1.1 Required Software ...35

7.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI Interfaces Layout.. 36

7.1.3 Configuring the CSI Unit in Test Mode...36

7.2 Adding Support for a New CMOS Camera Sensor.. 37

7.2.1 Adding a Camera Sensor Entry in Kconfig... 37

7.2.2 Creating the Camera Sensor File... 38

7.2.3 Adding a Compilation Flag for the New Camera.. 40

7.3 Using the I2C Interface...41

7.3.1 Loading and Testing the Camera Module..43

i.MX BSP Porting Guide, Rev. 0, 03/2016

4 Freescale Semiconductor, Inc.

Section number Title Page

7.4 Additional Reference Information.. 43

7.4.1 CMOS Interfaces Supported by the i.MX 6Dual/6Quad/6Solo/6DualLite... 43

7.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI Parallel Interface... 45

7.4.3 Timing Data Mode Protocols...47

Chapter 8
Porting Audio Codecs to a Custom Board

8.1 Audio Overview..49

8.1.1 Common Porting Task... 49

8.1.2 Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference design)................ 50

8.1.3 Porting the Reference BSP to a Custom Board (audio codec is different than the reference design)................. 51

Chapter 9
Porting the Ethernet Controller Driver

9.1 Ethernet Controller Overview...53

9.1.1 Pin Configuration...53

9.1.2 Source Code... 55

9.1.3 Ethernet Configuration...55

Chapter 10

10.1 USB Overview for i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual..57

10.2 USB Overview for i.MX 6SoloLite/6SoloX...59

Chapter 11
Revision History

11.1 Revision History... 61

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 5

i.MX BSP Porting Guide, Rev. 0, 03/2016

6 Freescale Semiconductor, Inc.

Chapter 1
Porting U-Boot from an i.MX 6/7 Reference Board to
an i.MX 6/7 Custom Board

1.1 U-Boot Overview
This chapter provides a step-by-step guide that explains how to add i.MX 6 and i.MX 7
custom board support for U-Boot.

This developer guide is based on the U-Boot v2015.04 package. For the i.MX patches,
see the release notes.

1.2 Obtaining the Source Code for the U-Boot
The following steps describe how to obtain the source code.

1. Install Yocto Project. See the Freescale Yocto Project User's Guide
(IMXLXYOCTOUG).

2. In Yocto Project, set the U-Boot preferred provider to uboot-imx. Confirm that the
sources/meta-fsl-bsp-release/imx/meta-fsl-arm/conf has the line PREFERRED_PROVIDER_u-
boot_mx6 = "u-boot-imx"

The U-Boot code is now located at <build directory>/tmp/work/<machine>-poky-linux-
gnueabi/u-boot-imx/<version>/git, where <machine> can be one of the following:

• imx6qsabresd
• imx6qpsabresd
• imx6qsabreauto
• imx6dlsabresd
• imx6dlsabreauto
• imx6solosabreauto
• imx6slevk
• imx6sxsabresd
• imx6sxsabreauto

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 7

• imx7dsabresd
• imx6ul_14x14_evk

The U-Boot main directory is referred to as <UBOOT_DIR>. It is also assumed that your
shell working directory is <UBOOT_DIR>.

1.2.1 Preparing the Code

The following steps describe how to prepare the code.

1. Copy the board directory, as shown below:

$cp -R board/freescale/<mx6 or mx7>_<reference board name> board/freescale/<mx6 or
mx7>_<custom board name>

2. Copy the existing mx<reference board name>.h board configuration file as
mx<custom board name>.h, as shown below:

$cp include/configs/mx<reference board name>.h include/configs/mx<custom board name>.h

NOTE
The configuration files for the i.MX 6 or i.MX 7 are
located at include/configs. The files associated with the
boards are:

• i.MX 6 SABRE-SD:
• mx6sabresd_common.h
• mx6sabresd.h

• i.MX 6 SABRE-AI:
• mx6sabresd_common.h
• mx6qsabreauto.h

• i.MX 6SoloLite EVK:
• mx6slevk.h

• i.MX 6SoloX SABRE-SD:
• mx6sxsabresd.h

• i.MX 6SoloX SABRE-AI:
• mx6sxsabreauto.h

• i.MX 7Dual SABRE-SD:
• mx7dsabresd.h

• i.MX 6UltraLite EVK
• mx6ul_14x14_evk.h

NOTE
You should pay attention to the following configurations
when using a new board.

Obtaining the Source Code for the U-Boot

i.MX BSP Porting Guide, Rev. 0, 03/2016

8 Freescale Semiconductor, Inc.

• CONFIG_LOADADDR: Normally your zImage is
loaded to this address for boot.

• CONFIG_SYS_MALLOC_LEN: Heap memory size.
• CONFIG_STACKSIZE: Stack size.
• CONFIG_NR_DRAM_BANKS: Number of ddr banks.
• PHYS_SDRAM_SIZE: Configure the DDR size in MB.
• PHYS_SDRAM: Physical address for the DDR memory
• fdt_file: Configure "#define

CONFIG_DEFAULT_FDT_FILE <customer>.dtb" or
directly change "fdt_file=<customer>.dtb".

• Config file is important for U-Boot. It determines the
size, functionality, and performance of u-boot.bin.

3. Create a new file in <UBOOT_DIR>/configs/ for the new i.MX-based configuration.
The instruction is an example for the i.MX 6Quad board:

CONFIG_SYS_EXTRA_OPTIONS="IMX_CONFIG=board/freescale/mx6q<customer_board>/<customer
board>.cfg,MX6Q"
CONFIG_ARM=y
CONFIG_TARGET_MX6Q<customer_board>=y

CONFIG_SYS_MALLOC_F=y
CONFIG_SYS_MALLOC_F_LEN=0x400
CONFIG_DM=y
CONFIG_DM_THERMAL=y

NOTE
U-Boot project developers recommend adding any new
board to the MAKEALL script and running this script to
validate that the new code has not broken any other
platform build. This is a requirement if you plan to submit a
patch back to the U-Boot community. For further
information, see the U-Boot README file.

4. Rename

board/freescale/<mx6 or mx7><reference board name>/<mx6 or mx7><reference board name>.c

to

board/freescale/<mx6 or mx7><custom board name>/<mx6 or mx7><custom board name>.c.

5. Change the line

COBJS := <mx6 or mx7><reference board name>.o (inside board/freescale/<mx6 or
mx7><custom board
name>/Makefile)

to

obj-y := <mx6 or mx7><custom board name>.o

Chapter 1 Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 9

NOTE
The remaining instructions build U-Boot manually and do
not use Yocto Project.

6. Change the Kconfig.
For the Kconfig in board/<mx6 or mx7><customer board name>/:

if TARGET_<MX6 or MX7><CUSTOMER BOARD
NAME>

config SYS_BOARD
 default "<mx6 or mx7><customer board
name>"

config SYS_VENDOR
 default "freescale"

config SYS_SOC
 default "<mx6 or
mx7>"

config SYS_CONFIG_NAME
 default "<mx6 or mx7><customer
board>"

endif

The following is an example for the i.MX 6Quad SABRE-AI board:

if TARGET_MX6QSABREAUTO

config SYS_BOARD
 default "mx6qsabreauto"

config SYS_VENDOR
 default "freescale"

config SYS_SOC
 default "mx6"

config SYS_CONFIG_NAME
 default "mx6qsabreauto"

endif

For the Kconfig in arch/arm/, add new entry in arch/arm/Kconfig:

config TARGET_<MX6 or MX7><CUSTOMER BOARD
NAME>
 bool "Support <mx6 or mx7><customer board
name>"
 select CPU_V7

source "board/freescale/<mx6 or mx6><customer board name>/Kconfig

The following is an example for the i.MX 6Quad SABRE-AI board:

config TARGET_MX6QSABREAUTO
 bool "Support mx6qsabreauto"
 select CPU_V7

source "board/freescale/mx6qsabreauto/Kconfig"

7. Create a shell script under <UBOOT_DIR> named build_u-boot.sh.

Obtaining the Source Code for the U-Boot

i.MX BSP Porting Guide, Rev. 0, 03/2016

10 Freescale Semiconductor, Inc.

The file contents are as follows:

#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=<path to cross compiler prefix> (e.g.,
/opt/poky/1.4.1/sysroots/i686-pokysdk-linux/usr/bin/cortexa9hf-vfp-neon-poky-linux-
gnueabi/arm-poky-linux-gnueabi-
make distclean;
make mx<custom board name>_config
make

8. Compile U-Boot by using $./build_u-boot.sh.
9. If everything is correct, you should now have u-boot.imx, which indicates that your

build setup is correct and ready to be customized.

The new i.MX custom board that you have created is an exact copy of the i.MX reference
board, but the boards are two independent builds. This allows you to proceed to the next
step: customizing the code to suit the new hardware design.

1.3 Customizing the i.MX 6 or i.MX 7 Custom Board Code
The new i.MX 6 or i.MX 7 custom board is a part of the U-Boot source tree, but it is a
duplicate of the i.MX 6 or i.MX 7 reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards.

If there is a difference in the DDR technology between the two boards, the DDR
initialization needs to be ported. DDR initialization is coded in the DCD table, inside the
boot header of the U-Boot image. When porting bootloader, kernel or driver code, you
must have the schematics easily accessible for reference.

1.3.1 Changing the DCD Table for i.MX DDR3, LPDDR2,
Initialization

Before you initialize the memory interface, you need to configure the relevant I/O pins
with the right mode and impedance, and then initialize the MMDC module.

1. To port to the custom board, the DDR needs to be initialized properly.
2. Take a example for the i.MX 6Quad custom board. Open the file: board/freescale/

mx6<customer_board_name>/imximage.cfg to mx6q.cfg.
3. Modify all items in this file to match the memory specifications. These code blocks

are read by the ROM code to initialize your DDR memory.

Chapter 1 Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 11

1.3.2 Booting with the Modified U-Boot

This section describes how to compile and write u-boot.imx to an SD card.

If the DDR configuration (board/freescale/mx6<customer_board_name>/imximage.cfg)
was modified successfully, you can compile and write u-boot.imx to an SD card. To
verify this, insert the SD card into the SD card socket of the CPU board and power on the
board.

The following message should be displayed on the console if your board was based on
the i.MX 6Quad SABRE_SD:

U-Boot 2015.04-00240-gb8760a1 (Jul 10 2015 - 14:32:18)

CPU: Freescale i.MX6Q rev1.2 at 792 MHz
CPU: Temperature 36 C
Reset cause: POR
Board: MX6Q-Sabreauto revA
I2C: ready
DRAM: 2 GiB
PMIC: PFUZE100 ID=0x10
NAND: 0 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
No panel detected: default to Hannstar-XGA
Display: Hannstar-XGA (1024x768)
In: serial
Out: serial
Err: serial
switch to partitions #0, OK
mmc1 is current device
Net: FEC [PRIME]
Normal Boot
Hit any key to stop autoboot: 0
=>

The following message should be displayed on the console if your custom board was
based on the i.MX 6SoloLite EVK:

U-Boot 2015.04-00240-gb8760a1 (Jul 10 2015 - 14:39:05)

CPU: Freescale i.MX6SL rev1.2 at 396 MHz
CPU: Temperature 38 C
Reset cause: POR
Board: MX6SLEVK
I2C: ready
DRAM: 1 GiB
PMIC: PFUZE100 ID=0x10
MMC: FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
In: serial
Out: serial
Err: serial
switch to partitions #0, OK
mmc1 is current device
Net: FEC [PRIME]
Error: FEC address not set.

Normal Boot
Hit any key to stop autoboot: 0
=>

Customizing the i.MX 6 or i.MX 7 Custom Board Code

i.MX BSP Porting Guide, Rev. 0, 03/2016

12 Freescale Semiconductor, Inc.

1.3.3 Adding New Driver Initialization Code to Board Files

The following steps describe how to add new driver and how to initialize code.

1. Find mx<customer_board>.c in board/freescale/mx<customer_board>/.
2. Edit mx<customer_board>.c and add new driver initialization code, including clock,

IOMUX, and GPIO.
3. Put driver initialization function into board_init or board_late_init.

NOTE
• The board_early_init_f() function is called at the very

early phase if you define
CONFIG_BOARD_EARLY_INIT_F. You can put the
UART/SPI-NOR/NAND IOMUX setup function
which requires to be set up at the very early phase.

• The board_init()function is called between
board_early_init_f and board_late_init. You can do
some general board-level setup here. If you do not
define CONFIG_BOARD_EARLY_INIT_F, do not
call printf before the UART setup is finished.
Otherwise, the system may be down.

• board_late_init() function is called fairly later. To
debug the initialization code, put the initialization
function into it.

1.3.4 Further Customization at System Boot

To further customize your U-Boot board project, use the first function that system boot
calls on:

board_init_f in "common/board_f.c"
board_early_init_f()
board_init()

All board initialization is executed inside this function. It starts by running through the
init_sequence_f[] array and init_sequence_r[] array of function pointers.

The first board dependent function inside the init_sequence_f[] array is
board_early_init_f(). board_early_init_f() is implemented inside board/freescale/
mx6<custom board name>.c.

The following line of code is most important:

...
setup_iomux_uart();
...

Chapter 1 Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 13

NOTE
If a device tree is used, the machine ID is not used. The
compatible string of the DTS file is used to match the board.
The device tree for file each boot variation is specified in the
machine configuration files in the meta-fsl-arm/conf/machine
directory.

1.3.5 Customizing the Printed Board Name

To customize the printed board name, use the checkboard() function.

This function is called from the init_sequence_f[] array implemented inside board/
freescale/mx6<custom board name>.c. There are two ways to use checkboard() to
customize the printed board name. The brute force way or by using a more flexible
identification method if implemented on the custom board.

To customize the brute force way, delete identify_board_id() inside checkboard() and
replace printf("Board: "); with printf("Board: i.MX on <custom board>\n");

If this replacement is not made, the custom board may use another identification method.
The identification can be detected and printed by implementing the
__print_board_info() function according to the identification method on the custom
board.

1.4 Debugging
There are two ways to do debugging:

• Using a JTAG tool
• Using printf

1.4.1 Using JTAG Tool for Debugging

Generally, we use JTAG tool to debug at a very early stage, for example, before UART
initialization, or when it is difficult to debug with printf.

1. Make sure that your JTAG tool supports ARM® Cortex®-A9 cores on i.MX 6 and
supports ARM® Cortex®-A7 cores for i.MX 7Dual and 6UltraLite. It is
recommended to use TRACE32.

2. Load U-Boot (which is an elf file) in the root directory of U-Boot fully, or just
symbol (faster) to debug step by step.

Debugging

i.MX BSP Porting Guide, Rev. 0, 03/2016

14 Freescale Semiconductor, Inc.

NOTE
We can make optimization level 0 in compiling, which is
easier for debugging in JTAG tool.

1.4.2 Using printf for debugging

This is the most common method we use in debugging. You can print your value in the
driver for debugging.

NOTE
If you want to use printf in early stages, such as in board_init,
we can put UART initialization code earlier, such as in the
board_early_init_f().

Chapter 1 Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 15

Debugging

i.MX BSP Porting Guide, Rev. 0, 03/2016

16 Freescale Semiconductor, Inc.

Chapter 2
Configuring the IOMUX Controller

2.1 IOMUX Overview

Before using the i.MX pins (or pads), users must select the desired function and correct
values for characteristics such as voltage level, drive strength, and hysteresis. You can
configure a set of registers from the IOMUX controller.

i.MX 6Dual/6Quad

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6Dual/6Quad Applications Processor Reference Manual
(IMX6DQRM). For additional information about the IOMUX controller block, see the
"IOMUX Controller (IOMUXC)" chapter in the i.MX 6Dual/6Quad Applications
Processor Reference Manual (IMX6DQRM).

i.MX 6Dual/QuadPlus

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6Dual/6QuadPlus Applications Processor Reference Manual
(IMX6DQPRM). For additional information about the IOMUX controller block, see the
"IOMUX Controller (IOMUXC)" chapter in the i.MX 6Dual/6QuadPlus Applications
Processor Reference Manual (IMX6DQPRM).

i.MX 6DualLite

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6DualLite Applications Processor Reference Manual
(IMX6SDLRM). For additional information about the IOMUX controller block, see the
"IOMUX Controller (IOMUXC)" chapter in the i.MX 6DualLite Applications Processor
Reference Manual (IMX6SDLRM).

i.MX 6SoloLite

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 17

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM).
For additional information about the IOMUX controller block, see the "IOMUX
Controller (IOMUXC)" chapter in the i.MX 6SoloLite Applications Processor Reference
Manual (IMX6SLRM).

i.MX 6SoloX

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM).
For additional information about the IOMUX controller block, see the "IOMUX
Controller (IOMUXC)" chapter in the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM).

i.MX 7Dual

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 7Dual Applications Processor Reference Manual (IMX7DRM). For
additional information about the IOMUX controller block, see the "IOMUX Controller
(IOMUXC)" chapter in the i.MX 7Dual Applications Processor Reference Manual
(IMX7DRM).

i.MX 6UltraLite

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM).
For additional information about the IOMUX controller block, see the "IOMUX
Controller (IOMUXC)" chapter in the i.MX 6UltraLite Applications Processor Reference
Manual (IMX6ULRM).

2.2 Information for Setting IOMUX Controller Registers
The IOMUX controller contains four sets of registers that affect the i.MX 6Dual/6Quad/
6DualLite/6Solo/6SoloLite/6SoloX/6UltraLite/7Dual registers.

• General-purpose registers (IOMUXC_GPRx)-consist of registers that control PLL
frequency, voltage, and other general purpose sets.

• "Daisy Chain" control registers (IOMUXC_<Instance_port>_SELECT_INPUT)-
control the input path to a module when more than one pad may drive the module's
input

• MUX control registers (changing pad modes):
• Select which of the pad's eight different functions (also called ALT modes) is

used.

Information for Setting IOMUX Controller Registers

i.MX BSP Porting Guide, Rev. 0, 03/2016

18 Freescale Semiconductor, Inc.

• Set the pad functions individually or by group using one of the following
registers:

• IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>
• IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>

• Pad control registers (changing pad characteristics):
• Set pad characteristics individually or by group using one of the following

registers:
• IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>
• IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>
• Pad characteristics are:

• SRE (1 bit slew rate control)-Slew rate control bit; selects between FAST/
SLOW slew rate output. Fast slew rate is used for high frequency designs.

• DSE (2 bits drive strength control)-Drive strength control bits; selects the
drive strength (low, medium, high, or max).

• ODE (1 bit open drain control)-Open drain enable bit; selects open drain or
CMOS output.

• HYS (1 bit hysteresis control)-Selects between CMOS or Schmitt Trigger
when pad is an input.

• PUS (2 bits pull up/down configuration value)-Selects between pull up or
down and its value.

• PUE (1 bit pull/keep select)-Selects between pull up or keeper. A keeper
circuit help assure that a pin stays in the last logic state when the pin is no
longer being driven.

• PKE (1 bit enable/disable pull up, pull down or keeper capability)-Enable or
disable pull up, pull down, or keeper.

• DDR_MODE_SEL (1 bit ddr_mode control)-Needed when interfacing DDR
memories.

• DDR_INPUT (1 bit ddr_input control)-Needed when interfacing DDR
memories.

2.3 Using IOMUX in the Device Tree - Example
This is an example which shows how to use IOMUX in the Device Tree.

 usdhc@0219c000 { /* uSDHC4 */
 fsl,card-wired;
 vmmc-supply = <®_3p3v>;
 status = "okay";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usdhc4_1>;
};
iomuxc@020e0000 {
 compatible = "fsl,imx6q-iomuxc";
 reg = <0x020e0000 0x4000>;

Chapter 2 Configuring the IOMUX Controller

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 19

 /* shared pinctrl settings */
 usdhc4 {
 pinctrl_usdhc4_1: usdhc4grp-1 {
 fsl,pins = <
 MX6QDL_PAD_SD4_CMD__SD4_CMD
0x17059
 MX6QDL_PAD_SD4_CLK__SD4_CLK
0x10059
 MX6QDL_PAD_SD4_DAT0__SD4_DATA0
0x17059
 MX6QDL_PAD_SD4_DAT1__SD4_DATA1
0x17059
 MX6QDL_PAD_SD4_DAT2__SD4_DATA2
0x17059
 MX6QDL_PAD_SD4_DAT3__SD4_DATA3
0x17059
 MX6QDL_PAD_SD4_DAT4__SD4_DATA4
0x17059
 MX6QDL_PAD_SD4_DAT5__SD4_DATA5
0x17059
 MX6QDL_PAD_SD4_DAT6__SD4_DATA6
0x17059
 MX6QDL_PAD_SD4_DAT7__SD4_DATA7 0x17059
 >;
 };
 };

};

For details, see:

Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx6*-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx7*-pinctrl.txt

Using IOMUX in the Device Tree - Example

i.MX BSP Porting Guide, Rev. 0, 03/2016

20 Freescale Semiconductor, Inc.

Chapter 3
Registering a New UART Driver

3.1 Enabling UART on Kernel Menuconfig
Enable the UART driver on Linux® OS menuconfig. This option is located at:

-> Device Drivers

 -> Character devices

 -> Serial drivers

 <*> IMX serial port support
 [*] Console on IMX serial port

After enabling the UART driver, build the Linux kernel and boot the board.

3.2 UART Settings
By default, the UART is configured as follows:

• Baud Rate: 115200
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow Control: None

3.3 File Names and Locations
There are three Linux source code directories that contain relevant UART files.

The header file is available in the directory <linux source code directory>/drivers/tty/
serial/

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 21

Table 3-1. Available Files-First Set

File Description

imx.c UART driver

File Names and Locations

i.MX BSP Porting Guide, Rev. 0, 03/2016

22 Freescale Semiconductor, Inc.

Chapter 4
Adding Support for SDHC

4.1 SDHC Overview
uSDHC has 14 associated I/O signals.

The following list describes the associated I/O signals.

Signal Overview

• The SD_CLK is an internally generated clock used to drive the MMC, SD, and SDIO
cards.

• The CMD I/O is used to send commands and receive responses to/from the card.
Eight data lines (DAT7~DAT0) are used to perform data transfers between the
SDHC and the card.

• The SD_CD# and SD_WP are card detection and write protection signals directly
routed from the socket. These two signals are active low (0). A low on SD_CD#
means that a card is inserted and a high on SD_WP means that the write protect
switch is active.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD
interface is busy.

• SD_RST_N is an output signal used to reset the MMC card. This should be
supported by the card.

• SD_VSELECT is an output signal used to change the voltage of the external power
supplier. SD_CD#, SD_WP, SD_LCTL, SD_RST_N, and SD_VSELECT are all
optional for system implementation. If the uSDHC is desired to support a 4-bit data
transfer, DAT7~DAT4 can also be optional and tied to high voltage.

Adding uSDHC support in the device tree

The following is an example for adding uSDHC support in the device tree:

usdhc1: usdhc@02190000 {
 compatible = "fsl,imx6ul-usdhc", "fsl,imx6sx-usdhc";
 reg = <0x02190000 0x4000>;
 interrupts = <GIC_SPI 22 IRQ_TYPE_LEVEL_HIGH>;

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 23

 clocks = <&clks IMX6UL_CLK_USDHC1>,
 <&clks IMX6UL_CLK_USDHC1>,
 <&clks IMX6UL_CLK_USDHC1>;
 clock-names = "ipg", "ahb", "per";
 bus-width = <4>;
 status = "disabled";
 };

For more information, see:

The binding document at linux/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt.

arch/arm/boot/dts/imx6ul.dtsi

arch/arm/boot/dts/imx6ul-14x14-evk.dts

arch/arm/boot/dts/imx6qdl.dtsi

arch/arm/boot/dts/imx6qdl-sabresd.dtsi

Support of SD3.0

SD3.0 requires 3.3 V and 1.8 V for signal voltage. Voltage selection needs to be
implemented on your platform.

Support of SDIO

In most situations, SDIO requires more power than SD/MMC memory cards. Ensure that
the power supply is in the SD slot while using SDIO, or apply an external power to SDIO
instead.

SDHC Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

24 Freescale Semiconductor, Inc.

Chapter 5
Configuring the SPI NOR Flash Memory Technology
Device (MTD) Driver

5.1 SPI NOR Overview
This chapter describes how to set up the SPI NOR Flash memory technology device
(MTD) driver.

This driver uses the SPI interface to support the SPI-NOR data Flash devices. By default,
the SPI NOR Flash MTD driver creates static MTD partitions.

The NOR MTD implementation provides necessary information for the upper-layer MTD
driver.

5.2 Source Code Structure
The SPI NOR MTD driver is implemented in the following file:

linux/drivers/mtd/devices/m25p80.c

Since the size is only 4 MB, we do not implement partitions for the SPI NOR.

5.2.1 Configuration Options

Freescale's BSP supports the following SPI NOR Flash models.

• "M25P32-VMW3TGB" "m25p32"

Those models are defined in the structure

static const struct spi_device_id m25p_ids[],

located at

drivers/mtd/devices/m25p80.c

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 25

5.2.2 Selecting SPI NOR on the Linux Image

Follow these steps to enable support for SPI NOR:

1. Add the pinctrl for the SPI. For example:

pinctrl_ecspi1: ecspi1grp {
 fsl,pins = <
 MX6QDL_PAD_EIM_D17__ECSPI1_MISO 0x100b1
 MX6QDL_PAD_EIM_D18__ECSPI1_MOSI 0x100b1
 MX6QDL_PAD_EIM_D16__ECSPI1_SCLK 0x100b1
 >;
 };

 pinctrl_ecspi1_cs: ecspi1cs {
 fsl,pins = <
 MX6QDL_PAD_EIM_D19__GPIO3_IO19 0x80000000
 >;
 };

2. Enable the SPI. For example:

&ecspi1 {
 fsl,spi-num-chipselects = <1>;
 cs-gpios = <&gpio3 19 0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi1 &pinctrl_ecspi1_cs>;
 status = "okay"; /* pin conflict with WEIM NOR */

 flash: m25p80@0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "st,m25p32";
 spi-max-frequency = <20000000>;
 reg = <0>;
 };
};

5.3 Changing the SPI Interface Configuration
The i.MX 6 SoC has five ECSPI interfaces. By default, the BSP configures ECSPI-1
interface in the master mode to connect to the SPI NOR Flash.

5.4 Hardware Operation
SPI NOR Flash is SPI compatible with frequencies up to 66 MHz.

The memory is organized in pages of 512 bytes or 528 bytes. SPI NOR Flash also
contains two SRAM buffers of 512/528 bytes each, which allows data reception while a
page in the main memory is being reprogrammed. It also allows the writing of a
continuous data stream.

Changing the SPI Interface Configuration

i.MX BSP Porting Guide, Rev. 0, 03/2016

26 Freescale Semiconductor, Inc.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash
accesses data sequentially. It operates from a single 2.7-3.6 V power supply for program
and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-wire
interface: serial input, serial output, and serial clock.

5.4.1 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system.

The following figure illustrates the relationships between standard components.

Figure 5-1. Components of a Flash-based file system

Chapter 5 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 27

The MTD subsystem for Linux OS is a generic interface to memory devices such as
Flash and RAM which provides simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2, and
CRAMFS file systems. The SPI NOR MTD driver is based on the MTD data Flash driver
in the kernel by adding SPI accesses.

In the initialization phase, the SPI NOR MTD driver detects a data Flash by reading the
JEDEC ID. The driver then adds the MTD device. The SPI NOR MTD driver also
provides the interfaces to read, write, erase NOR Flash.

Hardware Operation

i.MX BSP Porting Guide, Rev. 0, 03/2016

28 Freescale Semiconductor, Inc.

Chapter 6
Connecting an LVDS Panel to an i.MX 6Dual/6Quad/
6Solo/6DualLite Reference Board

6.1 LVDS Overview
This chapter describes how to connect the LVDS panel to an i.MX 6Dual/6Quad/6Solo/
6DualLite reference board. The i.MX 6Dual/6Quad/6Solo/6DualLite processor has an
LVDS display bridge (LDB) block that drives LVDS panels without external bridges.
The LDB supports the flow of synchronous RGB data from the IPU to external display
devices through the LVDS interface. This support covers the following activities:

• Connectivity to relevant devices-display with an LVDS receiver.
• Arranging the data as required by the external display receiver and by LVDS display

standards.
• Synchronization and control capabilities.

6.1.1 Connecting an LVDS Panel to the i.MX 6Dual/6Quad/
6DualLite Reference Board

The kernel command line for 24-bit LVDS panel (4 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB24

The kernel command line for 18-bit LVDS panel (3 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB666

6.2 Enabling an LVDS Channel
The LDB driver source code is available at linux/drivers/video/mxc/ldb.c.

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 29

When the LDB device is probed by the mxc display core driver, the driver uses platform
data information from DTS file to configure the LDB's reference resistor mode and also
tries to match video modes for external display devices with an LVDS interface. The
display signal polarities and LDB control bits are set according to the matched video
modes.

The LVDS channel mapping mode and the LDB bit mapping mode of LDB are set
according to the LDB device tree node set by the user.

An LVDS channel is enabled as follows:

1. Set the parent clock of ldb_di_clk and the parent clock rate.
2. Set the rate of ldb_di_clk.
3. Set the LDB in a proper mode, including display signals' polarities, LVDS channel

mapping mode, bit mapping mode, and reference resistor mode.
4. Enable both ldb_di_clk and its parent clock.

6.2.1 Locating Menu Configuration Options

Linux kernel configuration options are provided for the build-in status to enable this
module. To locate these options, perform the following steps:

1. Go to the root of the kernel tree.
2. Make menuconfig.
3. Follow this sequence: Device Drivers > Graphics support > MXC Framebuffer

support > Synchronous Panel Framebuffer > MXC LDB

6.3 LDB Ports
The following figure shows the LDB block.

LDB Ports

i.MX BSP Porting Guide, Rev. 0, 03/2016

30 Freescale Semiconductor, Inc.

Figure 6-1. i.MX 6 LVDS Display Bridge (LDB) Block

i.MX 6SoloX LDB supports only one LVDS channel.

The LDB has the following ports:

• Two input parallel display ports.
• Two output LVDS channels
• Control signals to configure LDB parameters and operations.
• Clocks from the SoC PLLs.

Chapter 6 Connecting an LVDS Panel to an i.MX 6Dual/6Quad/6Solo/6DualLite Reference Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 31

6.3.1 Input Parallel Display Ports

The LDB is configurable to support either one or two (DI0, DI1) parallel RGB input
ports. The LDB only supports synchronous access mode.

Each RGB data interface contains the following:

• RGB data of 18 or 24 bits
• Pixel clock
• Control signals
• HSYNC, VSYNC, DE, and one additional optional general purpose control
• Transfers a total of up to 28 bits per data interface per pixel clock cycle

The LDB supports the following data rates:

• For dual-channel output: up to 170 MHz pixel clock (such as UXGA-1600 x 1200 at
60 Hz + 35% blanking)

• For single-channel output: up to 85 MHz per interface. (such as WXGA-1366 x 768
at 60 Hz + 35% blanking).

6.3.2 Output LVDS Ports

The LDB has two LVDS channels, which are used to communicate RGB data and
controls to external LCD displays either through the LVDS interface or through LVDS
receivers. Each channel consists of four data pairs and one clock pair, with a pair
indicating an LVDS pad that contains PadP and PadM.

The LVDS ports may be used as follows:

• One single-channel output
• One dual channel output: single input, split to two output channels
• Two identical outputs: single input sent to both output channels
• Two independent outputs: two inputs sent, each to a distinct output channel

6.4 Additional Information
For additional information, see the following reference materials:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

• i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

Additional Information

i.MX BSP Porting Guide, Rev. 0, 03/2016

32 Freescale Semiconductor, Inc.

• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

• i.MX Linux Reference Manual (IMXLXRM), included as a part of the Linux BSP

Chapter 6 Connecting an LVDS Panel to an i.MX 6Dual/6Quad/6Solo/6DualLite Reference Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 33

Additional Information

i.MX BSP Porting Guide, Rev. 0, 03/2016

34 Freescale Semiconductor, Inc.

Chapter 7
Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite
Camera Sensor with CSI

7.1 CSI Overview
This chapter provides information about how to use the expansion connector to include
support for a new camera sensor on an i.MX 6Dual/6Quad/6DualLite reference board.

It describes the following operations:

• Configuring the CSI unit in test mode (Configuring the CSI Unit in Test Mode)
• Adding support for a new CMOS sensor in the i.MX 6Dual/6Quad/6Solo/6DualLite

BSP (Adding Support for a New CMOS Camera Sensor)
• Setting up and using the I2C interface to handle your camera bus (Using the I2C

Interface)
• Loading and testing the camera module (Loading and Testing the Camera Module)

It also provides reference information about the following:

• Required software and hardware
• i.MX 6Dual/6Quad/6Solo/6DualLite reference CSI interfaces layout (i.MX 6Dual/

6Quad/6Solo/6DualLite CSI Interfaces Layout)
• CMOS sensor interfaces (CSI) supported by the i.MX 6Dual/6Quad/6Solo/6DualLite

(IPU) (CMOS Interfaces Supported by the i.MX 6Dual/6Quad/6Solo/6DualLite)
• i.MX 6Dual/6Quad/6Solo/6DualLite SABRE-SD CSI parallel interface (i.MX

6Dual/6Quad/6Solo/6DualLite CSI Parallel Interface)
• i.MX 6Dual/6Quad/6Solo/6DualLite CSI test mode (Timing Data Mode Protocols)

7.1.1 Required Software

In Freescale BSPs, all capture devices support the V4L2 standard.

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 35

Therefore, only the CMOS-dependent layer needs to be modified to include a new CMOS
sensor. All other layers are developed to work with V4L2.

Required development tools are as follows:

• i.MX 6 Linux OS L3.10.9 or newer

7.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI Interfaces Layout

The following figure shows the camera interface layout on an i.MX 6Solo/6DualLite
SABRE-SD board.

Figure 7-1. Camera Interface Layout

CSI0 is used as a parallel sensor input interface. CSI1 is used as a MIPI sensor input
interface.

7.1.3 Configuring the CSI Unit in Test Mode

This chapter uses the test mode for its example scenario of a new camera driver that
generates a chess board.

When you set the TEST_GEN_MODE register, the device is in test mode, which is used
for debugging. The CSI generates a frame automatically and sends it to one of the
destination units. The sent frame is a chess board composed of black and configured
color squares. The configured color is set with the registers PG_B_VALUE,
PG_G_VALUE, and PG_R_VALUE. The data can be sent in different frequencies
according to the configuration of DIV_RATIO register.

CSI Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

36 Freescale Semiconductor, Inc.

When CSI is in test mode, configure the CSI unit with a similar configuration to the
described settings in the following table. Call ipu_csi_init_interface() to configure the
CSI interface protocol, formats, and features.

Table 7-1. Settings for Test Mode

Bit Field Value Description

CSI0_DATA_DEST 0x4 Destination is IDMAC via SMFC

CSI0_DIV_RATIO 0x0 SENSB_MCLK rate = HSP_CLK rate

CSI0_EXT_VSYNC 0x1 External VSYNC mode

CSI0_DATA_WIDTH 0x1 8 bits per color

CSI0_SENS_DATA_FORMAT 0x0 Full RGB or YUV444

CSI0_PACK_TIGHT 0x0 Each component is written as a 16 bit word where the MSB is written to
bit #15. Color extension is done for the remaining least significant bits.

CSI0_SENS_PRTCL 0x1 Non-gated clock sensor timing/data mode.

CSI0_SENS_PIX_CLK_POL 0x1 Pixel clock is inverted before applied to internal circuitry.

CSI0_DATA_POL 0x0 Data lines are directly applied to internal circuitry.

CSI0_HSYNC_POL 0x0 HSYNC is directly applied to internal circuitry.

CSI0_VSYNC_POL 0x0 VSYNC is directly applied to internal circuitry.

7.2 Adding Support for a New CMOS Camera Sensor
To add support for a new CMOS camera sensor to your BSP, create a device driver to
support it.

This device driver is the optimal location for implementing initialization routines, the
power up sequence, power supply settings, the reset signal, and other desired features for
your CMOS sensor. It is also the optimal location to set the parallel protocol used
between the camera and the i.MX 6Dual/6Quad/6Solo/6DualLite.

Perform the following three steps on the i.MX 6Dual/6Quad/6Solo/6DualLite BSP to
create a device driver:

1. Add a camera sensor entry in Kconfig.
2. Create the camera file.
3. Add compilation flag for the new camera sensor.

These steps are described in detail in the following subsections.

7.2.1 Adding a Camera Sensor Entry in Kconfig

Select specific camera drivers in the following location (as shown in figure below):

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 37

Device Drivers > Multimedia support > Video capture adapters V4L platform devices > MXC
Video For Linux Camera > MXC Camera/V4L2 PRP Features
support

Figure 7-2. MXC Camera/V4L2 PRP Features Support Window

To add a new camera sensor entry on the Kconfig camera file, perform the following
steps:

1. Enter the following command into the display specific folder:

$ cd linux/drivers/media/video/mxc/capture

2. Open the Kconfig file:

$ gedit Kconfig &

3. Add the entry where you want it to appear:

config MXC_IPUV3_CSI0_TEST_MODE
 tristate "IPUv3 CSI0 test mode camera support"
 depends on !VIDEO_MXC_EMMA_CAMERA
 ---help---
 If you plan to use the IPUv3 CSI0 in test mode with your MXC
system, say Y here.

7.2.2 Creating the Camera Sensor File

The camera sensor file enables camera initialization, reset signal generation, power
settings, and all sensor-specific code.

Adding Support for a New CMOS Camera Sensor

i.MX BSP Porting Guide, Rev. 0, 03/2016

38 Freescale Semiconductor, Inc.

NOTE
Before connecting a camera sensor to the i.MX 6Dual/6Quad/
6Solo/6DualLite board, you must check whether the sensor is
powered with the proper supply voltages and whether the
sensor data interface has the correct VIO value. Power supply
mismatches can damage either the CMOS or the i.MX 6Dual/
6Quad/6Solo/6DualLite.

Create a file with the required panel-specific functions in the following path:

linux/drivers/media/video/mxc/capture/

The camera file-ipuv3_csi0_chess.c-must include the functions described in table below
and may include additional functions and macros required for your driver.

Table 7-2. Required Functions

Function Name Function Declaration Description

ioctl_g_ifparm static int ioctl_g_ifparm(struct
v4l2_int_device *s, struct v4l2_ifparm
*p)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl

ioctl_s_power static int ioctl_s_power(struct
v4l2_int_device *s, int on)

V4L2 sensor interface handler for VIDIOC_S_POWER ioctl. Sets
sensor module power mode (on or off)

ioctl_g_parm static int ioctl_g_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl. Get
streaming parameters.

ioctl_s_parm static int ioctl_s_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_S_PARM ioctl. Set
streaming parameters.

ioctl_g_fmt_cap static int ioctl_g_fmt_cap(struct
v4l2_int_device *s, struct v4l2_format
*f)

Returns the sensor's current pixel format in the v4l2_format
parameter.

ioctl_g_ctrl static int ioctl_g_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_G_CTRL. If the
requested control is supported, returns the control's current value
from the video_control[] array. Otherwise, it returns -EINVAL if the
control is not supported.

ioctl_s_ctrl static int ioctl_s_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_S_CTRL. If the
requested control is supported, it sets the control's current value in
HW (and updates the video_control[] array). Otherwise, it returns -
EINVAL if the control is not supported.

ioctl_init static int ioctl_init(struct
v4l2_int_device *s)

V4L2 sensor interface handler for VIDIOC_INT_INIT. Initialize
sensor interface.

ioctl_dev_init static int ioctl_dev_init(struct
v4l2_int_device *s)

Initializes the device when slave attaches to the master.

ioctl_dev_exit static int ioctl_dev_exit(struct
v4l2_int_device *s)

De-initializes the device when slave detaches to the master.

After the functions have been created, you need to add additional information to
ipuv3_csi0_chess_slave and ipuv3_csi0_chess_int_device. The device uses this
information to register as a V4L2 device.

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 39

The following ioctl function references are included:

static struct v4l2_int_slave ipuv3_csi0_chess_slave = {
 .ioctls = ipuv3_csi0_chess_ioctl_desc,
 .num_ioctls = ARRAY_SIZE(ipuv3_csi0_chess_ioctl_desc),
};

static struct v4l2_int_device ipuv3_csi0_chess_int_device = {
 ...
 .type = v4l2_int_type_slave,
 ...
};

static int ipuv3_csi0_chess_probe(struct i2c_client *client,const struct i2c_device_id *id)
{
 ...
 retval = v4l2_int_device_register(&ipuv3_csi0_chess_int_device);
 ...
}

It is also necessary to modify other files to prepare the BSP for CSI test mode. Change
the sensor pixel format from YUV to RGB565 in the ipu_bg_overlay_sdc.c file so that
the image converter does not perform color space conversion and the input received from
the CSI test mode generator is sent directly to the memory. Additionally, modify
mxc_v4l2_capture.c to preserve CSI test mode settings which are set by the
ipuv3_csi0_chess_init_mode() function in the ipuv3_csi0_chess.c file.

7.2.3 Adding a Compilation Flag for the New Camera

After camera files are created and the Kconfig file has the entry for your new camera,
modify the Makefile to create the new camera module during compilation.

The Makefile is located in the same folder as your new camera file and Kconfig: linux/
drivers/media/video/mxc/capture.

1. Enter the following into the i.MX 6Dual/6Quad/6Solo/6DualLite camera support
folder:

$ cd linux/drivers/media/video/mxc/capture

2. Open the i.MX 6Dual/6Quad/6Solo/6DualLite camera support Makefile.

$ gedit Makefile &

3. Add the cmos driver compilation entry to the end of the Makefile.

ipuv3_csi0_chess_camera-objs := ipuv3_csi0_chess.o

obj-$(CONFIG_MXC_IPUV3_CSI0_TEST_MODE) += ipuv3_csi0_chess_camera.o

Adding Support for a New CMOS Camera Sensor

i.MX BSP Porting Guide, Rev. 0, 03/2016

40 Freescale Semiconductor, Inc.

The kernel object is created by using the ipuv3_csi0_chess.c file. You should have the
following files as output:

• ipuv3_csi0_chess_camera.mod.c
• ipuv3_csi0_chess.o
• ipuv3_csi0_chess_camera.o
• ipuv3_csi0_chess_camera.mod.o
• ipuv3_csi0_chess_camera.ko

7.3 Using the I2C Interface
Many camera sensor modules require a synchronous serial interface for initialization and
configuration.

This section uses the linux/drivers/media/video/mxc/capture/ov5642.c file as its example
code. This file contains a driver that uses the I2C interface for sensor configuration.

After the I2C interface is running, create a new I2C device to handle your camera bus. If
the camera sensor file (called mycamera.c in the following example code) is located in
the same folder as ov5642.c, the code is as follows:

struct i2c_client * mycamera_i2c_client;

static s32 mycamera_read_reg(u16 reg, u8 *val);
static s32 mycamera_write_reg(u16 reg, u8 val);

static const struct i2c_device_id mycamera_id[] = {
 {"mycamera", 0},
 {},
};

MODULE_DEVICE_TABLE(i2c, mycamera_id);

static struct i2c_driver mycamera_i2c_driver = {
 .driver = {
 .owner = THIS_MODULE,
 .name = "mycamera",
 },
 .probe = mycamera_probe,
 .remove = mycamera_remove,
 .id_table = mycamera_id,
};

static s32 my_camera_write_reg(u16 reg, u8 val)
{
 u8 au8Buf[3] = {0};
 au8Buf[0] = reg >> 8;
 au8Buf[1] = reg & 0xff;
 au8Buf[2] = val;
 if (i2c_master_send(my_camera_i2c_client, au8Buf, 3) < 0) {
 pr_err("%s:write reg error:reg=%x,val=%x\n",__func__, reg, val);
 return -1;
 }
 return 0;
}

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 41

static s32 my_camera_read_reg(u16 reg, u8 *val)
{
 u8 au8RegBuf[2] = {0};
 u8 u8RdVal = 0;
 au8RegBuf[0] = reg >> 8;
 au8RegBuf[1] = reg & 0xff;

 if (2 != i2c_master_send(my_camera_i2c_client, au8RegBuf, 2)) {
 pr_err("%s:write reg error:reg=%x\n",__func__, reg);
 return -1;
 }

 if (1 != i2c_master_recv(my_camera_i2c_client, &u8RdVal, 1)) {// @ECA
 pr_err("%s:read reg error:reg=%x,val=%x\n",__func__, reg, u8RdVal);
 return -1;
 }

 *val = u8RdVal;
 return u8RdVal;
}

static int my_camera_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
 ...
 my_camera_i2c_client = client;
 ...
}

static __init int mycamera_init(void)
{
 u8 err;
 err = i2c_add_driver(&mycamera_i2c_driver);
 if (err != 0)
 pr_err("%s:driver registration failed, error=%d \n",__func__, err);
 return err;
}

static void __exit mycamera_clean(void)
{
 i2c_del_driver(&mycamera_i2c_driver);
}

module_init(mycamera_init);
module_exit(mycamera_clean);

Check ov5642.c for the complete example code.

After creating the new I2C device driver, add a new I2C node to your platform dts file.

You may modify the dts file at this point to specify features about your camera such as
the CSI interface used (CSI0 or CSI1), the MCLK frequency, and some power supply
settings related to the module.

You can now read and write from/to the sensor in the camera sensor file by using the
following:

retval = mycamera_write_reg(RegAddr, Val);
retval = mycamera_read_reg(RegAddr, &RegVal);

Using the I2C Interface

i.MX BSP Porting Guide, Rev. 0, 03/2016

42 Freescale Semiconductor, Inc.

7.3.1 Loading and Testing the Camera Module

If your camera driver has been created as a kernel module, as in the example in this
chapter, the module must be loaded prior to any camera request attempt.

According to the Makefile information, the camera module is named
ipuv3_csi0_chess_camera.ko.

To load the V4L2 camera interface and CSI in test mode, execute the following
commands:

root@freescale /unit_tests$ modprobe ipuv3_csi0_chess_camera
root@freescale /unit_tests$ modprobe mxc_v4l2_capture

To test the video0 input (camera), an mxc_v4l2_overlay test is included in the BSP. If the
imx-test package has also been included, open the unit test folder and execute the test.

root@freescale ~$ cd /unit_tests/
root@freescale /unit_tests$./mxc_v4l2_overlay.out

7.4 Additional Reference Information
This section provides reference information about the following:

• CMOS Interfaces Supported by the i.MX 6Dual/6Quad/6Solo/6DualLite
• i.MX 6Dual/6Quad/6Solo/6DualLite CSI Parallel Interface
• Timing Data Mode Protocols

7.4.1 CMOS Interfaces Supported by the i.MX 6Dual/6Quad/
6Solo/6DualLite

The camera sensor interface, which is a part of the image processing unit (IPU) module
on the i.MX 6Dual/6Quad/6Solo/6DualLite, handles CMOS sensor interfaces. The i.MX
6Dual/6Quad/6Solo/6DualLite IPU is able to handle two camera devices through its CSI
ports: one connected to the CSI0 port and the other to the CSI1 port. Both CSI ports are
identical and provide glueless connectivity to a wide variety of raw/smart sensors and TV
decoders.

Each of the camera ports includes the following features:

• Parallel interface
• Up to 20-bit input data bus

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 43

• A single value in each cycle
• Programmable polarity

• Multiple data formats
• Interleaved color components, up to 16 bits per value (component)
• Input Bayer RGB, Full RGB, or YUV 4:4:4, YUV 4:2:2 Component

order:UY1VY2 or Y1UY2V, grayscale and generic data
• Scan order: progressive or interlaced
• Frame size: up to 8192 x 4096 pixels
• Synchronization-video mode

• The sensor is the master of the pixel clock (PIXCLK) and synchronization
signals.

• Synchronization signals are received by using either of the following methods:
• Dedicated control signals-VSYNC, HSYNC-with programmable pulse

width and polarity.
• Controls embedded in the data stream following loosely the BT.656 protocol

with flexibility in code values and location.
• The image capture is triggered by the MCU or by an external signal (such as a

mechanical shutter).
• Synchronized strobes are generated for up to six outputs-the sensor and camera

peripherals (flash, mechanical shutter...).
• Frame rate reduction by periodic skipping of frames.

For details, see the "Image Processing Unit (IPU)" chapter in the i.MX 6Dual/6Quad
Applications Processor Reference Manual (IMX6DQRM) or i.MX 6Solo/6DualLite
Applications Processor Reference Manual (IMX6SDLRM). The following figure shows
the block diagram.

Additional Reference Information

i.MX BSP Porting Guide, Rev. 0, 03/2016

44 Freescale Semiconductor, Inc.

Figure 7-3. IPU Block Diagram

Several sensors can be connected to each of the CSIs. Simultaneous functionality (for
sending data) is supported as follows:

• Two sensors can send data independently, each through a different port.
• One stream can be transferred to the VDI or IC for on-the-fly processing while the

other one is sent directly to system memory.

The input rate supported by the camera port is as follows:

• Peak: up to 180 MHz (values/sec).
• Average (assuming 35% blanking overhead) for YUV 4:2:2.

• Pixel in one cycle (BT.1120): up to 135 MP/sec, such as 9 Mpixels at 15 fps.
• Pixel on two cycles (BT.656): up to 67 MP/sec, such as 4.5 Mpixels at 15 fps.

• On-the-fly processing may be restricted to a lower input rate.

If required, additional cameras can be connected though the USB port.

7.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI Parallel Interface

The CSI obtains data from the sensor, synchronizes the data and the control signals to the
IPU clock (HSP_CLK), and transfers the data to the IC and/or SMFC.

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 45

The CSI parallel interface (shown in figure below) provides a clock output (MCLK),
which is used by the sensor as a clock input reference. The i.MX 6Dual/6Quad/6Solo/
6DualLite requests either video or still images through a different interface between the
processor and the camera module. In most situations, the interface is a synchronous serial
interface such as the I2C. After the frame has been requested, the camera module takes
control of the CSI bus, and uses synchronization signals VSYNC, HSYNC, DATA_EN
and PIXCLK to send the image frame to the i.MX 6Dual/6Quad/6Solo/6DualLite. The
camera sensor creates PIXCLK based on MCLK input.

Figure 7-4. Parallel Interface Layout

In parallel interface, a single value arrives in each clock, except in BT.1120 mode when
two values arrive per cycle. Each value can be 8-16 bits wide according to the
configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N LSB
bits are ignored.

Therefore, you never need CSI0_DAT[3:0], unless you are using BT.1120 mode, because
the maximum pixel width is 16 (CSI0_DAT[19:4]). The expansion port 2 includes
CSI0_DAT[19:4], but only CSI0_DAT[19:10] are used for the CSI data bus (10-bit wide
data). CSI0_DAT[9:4] are shared with other interfaces and are used for audio and I2C.

CSI can support several data formats according to SENS_DATA_FORMAT
configuration. When the data format is YUV, the output of the CSI is always YUV444-
even if the data arrives in YUV422 format.

The polarity of the inputs can be configured using the following registers:

Additional Reference Information

i.MX BSP Porting Guide, Rev. 0, 03/2016

46 Freescale Semiconductor, Inc.

• SENS_PIX_CLK_POL
• DATA_POL
• HSYNC_POL
• VSYNC_POL

The following table describes the camera parallel interface provided by the i.MX 6Dual/
6Quad/6Solo/6DualLite:

Table 7-3. CSI0 Parallel Interface Signals

Signal IPU Pin Description

MCLK CSI0_MCLK Master Clock (Output)

PIXCLK CSI0_PIXCLK Pixel Clock

VSYNC CSI0_VSYNC Vertical Synchronization signal

HSYNC CSI0_HSYNC Horizontal Synchronization signal

DATA_EN CSI0_DATA_EN Data Enable or Data ready

DATA[19:10] CSI0_DAT [19:10] Pixel data bus, optional to [19:4]

Timing Data Mode Protocols, explains how the timing data mode protocols use these
signals. Not all signals are used in each timing data mode protocol.

7.4.3 Timing Data Mode Protocols

The CSI interface supports the following four timing/data protocols:

• Gated mode
• Non-gated mode
• BT.656 (Progressive and interlaced)
• BT.1120 (Progressive and interlaced)

In gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is used to
indicate the beginning of a raw. The sensor clock is always ticking.

In non-gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is not
used. The sensor clock only ticks when data is valid.

In BT.656 mode, the CSI works according to recommendation ITU-R BT.656. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

In BT1120 mode, the CSI works according to recommendation ITU-R BT.1120. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

Chapter 7 Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 47

For details, see the i.MX 6Dual/6Quad Applications Processor Reference Manual
(IMX6DQRM) or i.MX 6Solo/6DualLite Applications Processor Reference Manual
(IMX6SDLRM).

Additional Reference Information

i.MX BSP Porting Guide, Rev. 0, 03/2016

48 Freescale Semiconductor, Inc.

Chapter 8
Porting Audio Codecs to a Custom Board

8.1 Audio Overview
This chapter describes how to port audio drivers from the Freescale reference BSP to a
custom board.

This procedure varies depending on whether the audio codec on the custom board is the
same as, or different than the audio codec on the Freescale reference design. This chapter
first describes the common porting task and then various other porting tasks.

8.1.1 Common Porting Task

In order to use the ALSA Audio function, CPU DAI driver, CODEC DAI driver and DAI
LINK driver (Machine driver) should be registered in the device tree, and accordingly
there must be three nodes in board specified dts file. An example of detailed nodes can be
found in arch/arm/boot/dts/imx6qdl-sabresd.dtsi:

/* DT binding for CPU DAI driver */
ssi2: ssi@0202c000 {
 fsl,mode = "i2s-slave";
 status = "okay";
};

/* DT binding for CODEC DAI driver */
codec: wm8962@1a {
 compatible = "wlf,wm8962";
 reg = <0x1a>;
 clocks = <&clks 169>;
 DCVDD-supply = <®_audio>; /* 1.8v */
 DBVDD-supply = <®_audio>; /* 1.8v */
 AVDD-supply = <®_audio>; /* 1.8v */
 CPVDD-supply = <®_audio>; /* 1.8v */
 MICVDD-supply = <®_audio>; /* 3.3v */
 PLLVDD-supply = <®_audio>; /* 1.8v */
 SPKVDD1-supply = <®_audio>; /* 4.2v */
 SPKVDD2-supply = <®_audio>; /* 4.2v */
 gpio-cfg = <
 0x0000 /* 0:Default */
 0x0000 /* 1:Default */
 0x0013 /* 2:FN_DMICCLK */

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 49

 0x0000 /* 3:Default */
 0x8014 /* 4:FN_DMICCDAT */
 0x0000 /* 5:Default */
 >;
};

/* DT binding for DAI LINK driver */
sound {
 compatible = "fsl,imx6q-sabresd-wm8962",
 "sl,imx-audio-wm8962";
 model = "wm8962-audio";
 si-controller = <&ssi2>;
 udio-codec = <&codec>;

 audio-routing =
 "Headphone Jack", "HPOUTL",
 "Headphone Jack", "HPOUTR",
 "Ext Spk", "SPKOUTL",
 "Ext Spk", "SPKOUTR",
 "MICBIAS", "AMIC",
 "IN3R", "MICBIAS",
 "DMIC", "MICBIAS",
 "DMICDAT", "DMIC";
 mux-int-port = <2>;
 mux-ext-port = <3>;
 hp-det-gpios = <&gpio7 8 1>; /*active low*/
 mic-det-gpios = <&gpio1 9 1>; /*active low*/
};

NOTE
The specific meaning of the device tree binding can be checked
up in binding doc located in Documentation/devicetree/
bindings/sound/.

8.1.2 Porting the Reference BSP to a Custom Board (audio
codec is the same as in the reference design)

When the audio codec is the same in the reference design and the custom board, ensure
that the I/O signals and the power supplies to the codec are properly initialized in order to
port the reference BSP to the custom board.

Devicetree uses pin control group for I/O signals' configuration, there are some examples
in arch/arm/boot/dts/imx6qdl-sabresd.dtsi and the definitions of those pin control groups
can be found in arch/arm/boot/dts/imx6qdl.dtsi.

The essential signals for wm8962 codec are as follows:

• I2C interface signals
• I2S interface signals
• SSI external clock input to wm8962

The following table shows the required power supplies for the wm8962 codec.

Audio Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

50 Freescale Semiconductor, Inc.

Table 8-1. Required Power Supplies

Power Supply Name Definition Value

PLLVDD PLL supply 1.8 V

SPKVDD1 Supply for left speaker drivers 4.2 V

SPKVDD2 Supply for right speaker drivers 4.2 V

DCVDD Digital core supply 1.8 V

DBVDD Digital supply 1.8 V

AVDD Analog supply 1.8 V

CPVDD Charge pump power supply 1.8 V

MICVDD Microphone bias amp supply 3.3 V

8.1.3 Porting the Reference BSP to a Custom Board (audio
codec is different than the reference design)

When adding support for an audio codec that is different than the one on the Freescale
reference design, create new ALSA drivers in order to port the reference BSP to a custom
board. The ALSA drivers plug into the ALSA sound framework, which allows the
standard ALSA interface to be used to control the codec.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/
sound/soc. The following table shows the files used for the wm8962 codec support:

Table 8-2. Files for wm8962 Codec Support

File Name Definition

imx-pcm-dma.c • Shared by the stereo ALSA SoC driver, the esai driver, and the spdif driver.
• Responsible for preallocating DMA buffers and managing DMA channels.

fsl_ssi.c • Register the CPU DAI driver for the stereo ALSA SoC
• Configures the on-chip SSI interfaces

wm8962.c • Register the stereo codec and Hi-Fi DAI drivers.
• Responsible for all direct hardware operations on the stereo codec.

imx-wm8962.c • Machine layer code
• Create the driver device
• Register the stereo sound card.

NOTE
If using a different codec, adapt the driver architecture shown in
table above accordingly. The exact adaptation depends on the
codec chosen. Obtain the codec-specific software from the
codec vendor.

Chapter 8 Porting Audio Codecs to a Custom Board

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 51

Audio Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

52 Freescale Semiconductor, Inc.

Chapter 9
Porting the Ethernet Controller Driver

9.1 Ethernet Controller Overview
This chapter explains how to port the Ethernet controller driver to the i.MX 6 or i.MX 7
processor.

Using Freescale's standard driver makes porting to the i.MX 6 simple. Porting needs to
address the following three areas:

• Pin configuration
• Source code
• Ethernet connection configuration

9.1.1 Pin Configuration

The Ethernet Controller supports three different standard physical media interfaces: a
reduced media independent interface (RMII), a media independent interface (MII), and a
4-bit reduced RGMII.

In addition, the Ethernet Controller includes support for different standard MAC-PHY
(physical) interfaces for connection to an external Ethernet transceiver. The i.MX
Ethernet Controller supports the 10/100 Mbps MII, and 10/100 Mbps RMII. The i.MX
6Dual/6Quad/6Solo/6DualLite/6SoloX FEC also supports 1000 Mbps RGMII, which
uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the Ethernet
chapter of the following documents:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

• i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 53

• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

• i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII, and RGMII modes use a subset of the 18 signals. These signals
are listed in the following table.

Table 9-1. Pin Usage in MII RMII and RGMII Modes

Direction EMAC Pin
Name

MII Usage RMII Usage RGMII Usage (not supported by i.MX
6SoloLite)

In/Out FEC_MDIO Management Data Input/Output Management Data
Input/output

Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 Not Used Data out, bit 2

Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_CLK Transmit Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_ER Receive Error Receive Error Not Used

In FEC_RX_CLK Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_DV Receive Data Valid Receive Data Valid
and generate CRS

RXDV XOR RXERR on the falling edge
of FEC_RX_CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2

In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

Because i.MX 6 has more functionality than it has physical I/O pins, it uses I/O pin
multiplexing.

Every module requires specific pad settings. For each pad there are up to eight muxing
options called ALT modes. For further explanation, see IOMUX chapter in the following
documents:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

Ethernet Controller Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

54 Freescale Semiconductor, Inc.

• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

• i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

• i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

Note in designs with an external Ethernet PHY may require an external pin configured as
a simple GPIO to reset the Ethernet PHY before enabling physical clock. Otherwise,
some PHYs fail to work correctly.

9.1.2 Source Code

The source code for the Freescale Ethernet Linux environment is located under the linux/
drivers/net/ethernet/freescale/ directory. It contains the following files:

Table 9-2. Source Code Files

File Names Descriptions

• fec.h
• fec_main.c
• fec_ptp.c

FEC low-level Ethernet driver:

The driver uses the following compile definitions:

CONFIG_FEC: enables the Ethernet Controller driver.

9.1.3 Ethernet Configuration
This section mainly covers Ethernet driver bring up issues. For more information about
Ethernet MAC configuration, see the following documents:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

• i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

• i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

Chapter 9 Porting the Ethernet Controller Driver

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 55

Note the following during Ethernet driver bring up:

• Configure all I/O pins used by MAC correctly in dts files.
• Check physical input clock and power, physical led1 and led2 lighten on if clock and

power input are ok.
• Make sure that MAC tx_clk has the right clock input. Otherwise, MAC cannot work.
• Make sure that the MAC address is set and valid.

By default, the Ethernet driver gets the MAC address from the Ethernet node property
"local-mac-address" in dts file. If dts does not have the property, the driver get the MAC
address from fuse. If the fuse does not burn the MAC address, the driver gets the MAC
address from the Ethernet registers set by the bootloader. If no legal MAC address exists,
MAC malfunctions. In this example, add the MAC address in the U-Boot command line
for kernel, such as "fec.macaddr=0x00,0x01,0x02,0x03,0x04,0x05" in bootargs.

The Ethernet driver and hardware are designed to comply with the IEEE standards for
Ethernet auto-negotiation. For a description of using flow control in full duplex and
more, see the Ethernet chapter in the following documents:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

• i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

• i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

Ethernet Controller Overview

i.MX BSP Porting Guide, Rev. 0, 03/2016

56 Freescale Semiconductor, Inc.

Chapter 10

10.1 USB Overview for i.MX 6Dual/6Quad/6Solo/6DualLite/
6UltraLite/7Dual

There are up to four USB ports on i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual
serial application processors:

• USB OTG port
• USB H1 port
• USB HSIC1 port
• USB HSIC2 port

NOTE
There is no HSIC2 port on i.MX 6SoloLite.

The following power supplies must be provided:

• 5V power supply for USB OTG VBUS
• 5V power supply for USB H1 VBUS
• 3.3V power supply for HSIC1/2 port
• 3.15 +/- 5%V power supply for USB OTG/H1 PHY. Since this power can be routed

from USB OTG/H1 VBUS, it indicates that if either of the power supplies is
powered up, the USB PHY is powered as well. However, if neither can be powered
up, an external power supply is needed.

For the USB OTG port, the following signals are used:

• USB_OTG_CHD_B
• USB_OTG_VBUS
• USB_OTG_DN
• USB_OTG_DP
• USBOTG_ID
• USBOTG_OC_B
• one pin is used to control USB_OTG_VBUS signal

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 57

The following signals, needed to set with proper IOMUX, are multiplexed with other
pins.

NOTE
For the USBOTG_ID pin, a pin which has an alternate
USBOTG_ID function must be used.

• USBOTG_ID
• USBOTG_OC_B
• one pin used to control USB_OTG_VBUS signal

For USB H1 port, the following signals are used:

• USB_H1_VBUS
• USB_H1_DN
• USB_H1_DP
• USBH_OC_B

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• USBH_OC_B

For USB HSIC 1/2 port, the following signals are used:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device

For i. MX 6SoloLite, there is only one HSIC port, so only H2_xxx signals are used.

USB Overview for i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual

i.MX BSP Porting Guide, Rev. 0, 03/2016

58 Freescale Semiconductor, Inc.

10.2 USB Overview for i.MX 6SoloLite/6SoloX
There are up to three USB ports on i.MX 6 SoloLite/6SoloX serial application
processors:

• USB OTG1 port
• USB OTG2 port
• USB HSIC1 port

The following power supplies must be provided:

• 5V power supply for USB OTG1 VBUS
• 5V power supply for USB OTG2 VBUS
• 3.3V power supply for HSIC1 port
• 3.15 +/- 5%V power supply for USB OTG1/OTG2 PHY. Since this power can be

routed from USB OTG1/OTG2 VBUS, it indicates that if either of the power
supplies is powered up, the USB PHY is powered as well. However, if neither can be
powered up, an external power supply is needed.

For the USB OTG1 port, the following signals are used:

• USB_OTG1_CHD_B
• USB_OTG1_VBUS
• USB_OTG1_DN
• USB_OTG1_DP
• USBOTG1_ID
• USBOTG1_OC_B
• one pin is used to control USB_OTG1_VBUS signal

The following signals, needed to set with proper IOMUX, are multiplexed with other
pins.

NOTE
For the USBOTG_ID pin, a pin which has an alternate
USBOTG_ID function must be used.

• USBOTG_ID
• USBOTG_OC_B
• one pin used to control USB_OTG_VBUS signal

For USB OTG2 port, the following signals are used:

• USB_OTG2_VBUS
• USB_OTG2_DN

Chapter 10

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 59

• USB_OTG2_DP
• USBOTG2_OC_B

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• USBOTG2_OC_B

For USB HSIC 1 port, the following signals are used:

• H2_STROBE
• H2_DATA

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• H2_STROBE
• H2_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device

USB Overview for i.MX 6SoloLite/6SoloX

i.MX BSP Porting Guide, Rev. 0, 03/2016

60 Freescale Semiconductor, Inc.

Chapter 11
Revision History

11.1 Revision History
This table provides the revision history.

Table 11-1. Revision History

Revision number Date Substantive changes

0 03/2016 Initial release

i.MX BSP Porting Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 61

Revision History

i.MX BSP Porting Guide, Rev. 0, 03/2016

62 Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. ARM, ARM Powered, and Cortex are registered trademarks of

ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

Document Number: IMXBSPPG
Rev. 0

03/2016

	Chapter 1: Porting U-Boot from an i.MX 6/7 Reference Board to an i.MX 6/7 Custom Board
	U-Boot Overview
	Obtaining the Source Code for the U-Boot
	Preparing the Code

	Customizing the i.MX 6 or i.MX 7 Custom Board Code
	Changing the DCD Table for i.MX DDR3, LPDDR2, Initialization
	Booting with the Modified U-Boot
	Adding New Driver Initialization Code to Board Files
	Further Customization at System Boot
	Customizing the Printed Board Name

	Debugging
	Using JTAG Tool for Debugging
	Using printf for debugging

	Chapter 2: Configuring the IOMUX Controller
	IOMUX Overview
	Information for Setting IOMUX Controller Registers
	Using IOMUX in the Device Tree - Example

	Chapter 3: Registering a New UART Driver
	Enabling UART on Kernel Menuconfig
	UART Settings
	File Names and Locations

	Chapter 4: Adding Support for SDHC
	SDHC Overview

	Chapter 5: Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
	SPI NOR Overview
	Source Code Structure
	Configuration Options
	Selecting SPI NOR on the Linux Image

	Changing the SPI Interface Configuration
	Hardware Operation
	Software Operation

	Chapter 6: Connecting an LVDS Panel to an i.MX 6Dual/6Quad/6Solo/6DualLite Reference Board
	LVDS Overview
	Connecting an LVDS Panel to the i.MX 6Dual/6Quad/6DualLite Reference Board

	Enabling an LVDS Channel
	Locating Menu Configuration Options

	LDB Ports
	Input Parallel Display Ports
	Output LVDS Ports

	Additional Information

	Chapter 7: Supporting the i.MX 6Dual/6Quad/6Solo/6DualLite Camera Sensor with CSI
	CSI Overview
	Required Software
	i.MX 6Dual/6Quad/6Solo/6DualLite CSI Interfaces Layout
	Configuring the CSI Unit in Test Mode

	Adding Support for a New CMOS Camera Sensor
	Adding a Camera Sensor Entry in Kconfig
	Creating the Camera Sensor File
	Adding a Compilation Flag for the New Camera

	Using the I2C Interface
	Loading and Testing the Camera Module

	Additional Reference Information
	CMOS Interfaces Supported by the i.MX 6Dual/6Quad/6Solo/6DualLite
	i.MX 6Dual/6Quad/6Solo/6DualLite CSI Parallel Interface
	Timing Data Mode Protocols

	Chapter 8: Porting Audio Codecs to a Custom Board
	Audio Overview
	Common Porting Task
	Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference design)
	Porting the Reference BSP to a Custom Board (audio codec is different than the reference design)

	Chapter 9: Porting the Ethernet Controller Driver
	Ethernet Controller Overview
	Pin Configuration
	Source Code
	Ethernet Configuration

	Chapter 10:
	USB Overview for i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual
	USB Overview for i.MX 6SoloLite/6SoloX

	Chapter 11: Revision History
	Revision History

