
Document Number: 926-78094
Rev. 1.0
11/2008

®

i.MX27 PDK 1.0 Linux
Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F, No. 118 Jianguo Road
Chaoyang District
Beijing 100022, China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. "Typical" parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the
property of their respective owners. ARM is the registered trademarks of ARM Limited. The ARM
logo is a registered trademark of ARM Ltd.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

®

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor iii

Contents
About This Book

Chapter 1
Introduction

1.1 Software Base . 1-1
1.2 Features . 1-2

Chapter 2
Running Linux on the Hardware Boards

2.1 Running the i.MX Linux BSP. 2-1
2.1.1 Preparation – Board Setup . 2-1
2.1.2 Terminal Console . 2-2
2.1.3 Programming RedBoot into Flash . 2-2
2.1.4 Running Linux . 2-3
2.1.5 Booting Linux . 2-5
2.2 Exchanging Files with the i.MX Linux BSP . 2-5
2.2.1 Sending Files to the i.MX Linux BSP . 2-6
2.2.2 Sending Files to the Desktop PC . 2-6
2.2.3 Exchanging Files with the Desktop PC using Ethernet . 2-6
2.3 Building the i.MX Linux BSP from Source . 2-7
2.3.1 The GNU Tool Chain . 2-7
2.3.2 Installing the BSP . 2-7
2.3.3 Kernel Modules on the Target Platform . 2-12

Chapter 3
Architecture

3.1 Linux BSP Block Diagram . 3-1
3.2 Kernel . 3-1
3.2.1 Configuration . 3-2
3.2.2 Machine Specific Layer (MSL) . 3-2
3.3 Drivers . 3-4
3.3.1 Character Device Drivers . 3-4
3.3.2 Sound Driver. 3-6
3.3.3 Memory Technology Device (MTD) Drivers. 3-7
3.3.4 Networking Drivers . 3-8
3.3.5 Disk Drivers . 3-10
3.3.6 Security Drivers . 3-10
3.3.7 General Drivers. 3-12
3.4 Boot Loaders. 3-16
3.4.1 Functions of Boot Loaders . 3-16

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

iv Freescale Semiconductor

3.4.2 RedBoot . 3-17
3.5 Graphical User Interface . 3-17
3.5.1 Qt/Embedded . 3-17
3.6 Tools . 3-18
3.7 Root File System. 3-18
3.7.1 Utilities . 3-18
3.7.2 Contents . 3-19
3.8 Source of Linux BSP Components . 3-19
3.9 Linux BSP APIs . 3-20

Chapter 4
Machine Specific Layer (MSL)

4.1 Interrupts . 4-1
4.1.1 Interrupt Hardware Operation. 4-1
4.1.2 Interrupt Software Operation . 4-2
4.1.3 Interrupt Requirements . 4-2
4.1.4 Interrupt Source Code Structure . 4-2
4.1.5 Interrupt Programming Interface . 4-2
4.2 Timer. 4-3
4.2.1 Timer Hardware Operation . 4-3
4.2.2 Timer Software Operation . 4-3
4.2.3 Timer Requirements . 4-3
4.2.4 Timer Source Code Structure . 4-3
4.2.5 Timer Programming Interface . 4-4
4.3 Memory Map . 4-4
4.3.1 Memory Map Hardware Operation. 4-4
4.3.2 Memory Map Software Operation . 4-4
4.3.3 Memory Map Requirements . 4-4
4.3.4 Memory Map Source Code Structure . 4-4
4.3.5 Memory Map Programming Interface . 4-4
4.4 IOMUX. 4-5
4.4.1 IOMUX Hardware Operation . 4-5
4.4.2 IOMUX Software Operation . 4-6
4.4.3 IOMUX Requirements . 4-6
4.4.4 IOMUX Source Code Structure . 4-6
4.4.5 IOMUX Programming Interface. 4-6
4.4.6 IOMUX Control through GPIO Module . 4-6
4.5 General Purpose Input/Output (GPIO) . 4-8
4.5.1 GPIO Software Operation. 4-8
4.5.2 GPIO Requirements . 4-9
4.5.3 GPIO Source Code Structure . 4-9
4.5.4 GPIO Programming Interface . 4-9
4.6 EDIO. 4-9
4.6.1 EDIO Hardware Operation . 4-10

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor v

4.6.2 EDIO Software Operation . 4-10
4.6.3 EDIO Requirements . 4-10
4.6.4 EDIO Source Code Structure . 4-10
4.6.5 EDIO Programming Interface. 4-10
4.7 SPBA Bus Arbiter. 4-10
4.7.1 SPBA Hardware Operation. 4-11
4.7.2 SPBA Software Operation . 4-11
4.7.3 SPBA Requirements . 4-11
4.7.4 SPBA Source Code Structure . 4-11
4.7.5 SPBA Programming Interface . 4-11

Chapter 5
Direct Memory Access Controller (DMAC) API

5.1 Overview. 5-1
5.1.1 Hardware Operation . 5-1
5.1.2 Software Operation . 5-2
5.2 Requirements . 5-2
5.3 Source Code Structure . 5-2
5.4 Programming Interface . 5-2

Chapter 6
PMIC Protocol Driver

6.1 Key PMIC Features and Capabilities . 6-1
6.1.1 PMIC Register Access and Arbitration . 6-3
6.1.2 Interrupt Notification . 6-4
6.2 Driver Requirements. 6-5
6.2.1 Control Services . 6-5
6.2.2 Event Notification Services . 6-6
6.2.3 Miscellaneous Requirements . 6-6
6.3 Driver Software Operation . 6-6
6.4 Driver Architecture . 6-8
6.5 Driver Implementation Details . 6-9
6.5.1 Driver Initialization. 6-9
6.5.2 Driver Unloading . 6-9
6.5.3 Event Notification List . 6-9
6.5.4 Interrupt Handler. 6-10
6.5.5 Event Handlers . 6-11
6.5.6 Register Access. 6-11
6.6 Driver Source Code Structure. 6-11
6.7 Driver Configuration. 6-12

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

vi Freescale Semiconductor

Chapter 7
 PMIC Audio Driver

7.1 PMIC Audio Driver Features. 7-1
7.2 Driver Requirements. 7-3
7.2.1 Audio Device Handle Management . 7-3
7.2.2 Digital Audio Bus Selection and Configuration . 7-3
7.2.3 Stereo DAC and Voice Codec Control and Configuration. 7-4
7.2.4 Audio Input Section Control and Configuration. 7-4
7.2.5 Audio Output Section Control and Configuration . 7-4
7.2.6 Resetting the PMIC Audio Components . 7-4
7.2.7 Audio-Related Interrupts and Event Notification . 7-4
7.2.8 Additional Audio-related Configuration Options . 7-5
7.3 Software Operation . 7-5
7.4 Driver Architecture . 7-6
7.5 Driver Implementation Details . 7-6
7.5.1 Driver Initialization. 7-7
7.5.2 Driver Deinitialization . 7-7
7.6 Driver Source Code Structure. 7-7
7.7 Driver Configuration. 7-7

Chapter 8
PMIC Digitizer Driver

8.1 PMIC Digitizer Driver Features and Capabilities. 8-1
8.2 Driver Requirements. 8-1
8.3 Driver Software Operation . 8-2
8.4 Driver Architecture . 8-3
8.5 Driver Implementation Details . 8-4
8.5.1 Driver Initialization . 8-4
8.5.2 Driver Removal. 8-4
8.6 Driver Source Code Structure. 8-4
8.7 Linux Menu Configuration Options . 8-4

Chapter 9
PMIC Power Management Driver

9.1 PMIC Features . 9-1
9.2 Driver Requirements. 9-1
9.3 Driver Software Operation . 9-1
9.4 Driver Architecture . 9-2
9.5 Driver Implementation Details . 9-3
9.6 Driver Source Code Structure. 9-4
9.7 Driver Configuration. 9-4

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor vii

Chapter 10
PMIC Connectivity Driver

10.1 PMIC Features . 10-1
10.2 Driver Requirements. 10-1
10.3 Driver Software Operation . 10-2
10.4 Driver Architecture . 10-2
10.5 Driver Implementation Details . 10-3
10.5.1 Driver Initialization. 10-4
10.5.2 Driver Removal. 10-4
10.6 Driver Source Code Structure. 10-4
10.7 Linux Menu Configuration Options . 10-4

Chapter 11
PMIC Battery Driver

11.1 PMIC Features . 11-1
11.2 Driver Requirements. 11-1
11.3 Driver Software Operation . 11-1
11.4 Driver Architecture . 11-1
11.5 Driver Implementation Details . 11-2
11.5.1 Driver Initialization. 11-3
11.5.2 Driver Deinitialization . 11-3
11.6 Driver Source Code Structure. 11-3
11.7 Linux Menu Configuration Options . 11-3

Chapter 12
PMIC Light Driver

12.1 PMIC Features . 12-1
12.2 Driver Requirements. 12-1
12.2.1 Backlight Control Functions . 12-1
12.2.2 LED Control Functions. 12-2
12.3 Driver Software Operation . 12-2
12.4 Driver Architecture . 12-2
12.5 Driver Implementation Details . 12-3
12.5.1 Driver Initialization. 12-4
12.5.2 Driver Deinitialization . 12-4
12.6 Driver Source Code Structure. 12-4
12.7 Linux Menu Configuration Options . 12-4

Chapter 13
PMIC Real Time Clock (RTC)

13.1 PMIC Features . 13-1
13.2 Driver Requirements. 13-1

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

viii Freescale Semiconductor

13.3 Driver Software Operation . 13-1
13.4 Driver Architecture . 13-2
13.5 Driver Implementation Details . 13-2
13.5.1 Driver Initialization. 13-3
13.5.2 Driver Deinitialization . 13-3
13.6 Driver Source Code Structure. 13-3
13.7 Linux Menu Configuration Options . 13-3

Chapter 14
i.MX27 Low-Level Power Management Driver

14.1 Hardware Operation . 14-1
14.2 Software Operation . 14-1
14.3 Hardware Issue . 14-1
14.4 Source Code Structure . 14-1
14.5 Programming Interface . 14-2

Chapter 15
Dynamic Frequency Scaling Driver (CPUFreq)

15.1 Hardware Operation . 15-1
15.1.1 Software Operation . 15-1
15.2 Source Code Structure . 15-2
15.3 Linux Menu Configuration Options . 15-2

Chapter 16
CH7024 TV Encoder (TV-Out) Driver

16.1 TV-Out Driver Overview . 16-1
16.1.1 Hardware Operation . 16-1
16.1.2 Software Operation . 16-1
16.2 Source Code Structure Configuration. 16-2
16.3 Linux Menu Configuration Options . 16-3

Chapter 17
Video Processing Unit (VPU) Driver for MX27

17.1 Hardware Operation . 17-2
17.2 Software Operation . 17-3
17.3 Source Code Structure . 17-3
17.4 Linux Menu Configuration Options . 17-4
17.5 Programming Interface . 17-4
17.6 Defining an Application . 17-5

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor ix

Chapter 18
OmniVision Camera Driver (OV2640)

18.1 Hardware Operation . 18-1
18.2 Software Operation . 18-1
18.3 Source Code Structure . 18-1
18.4 Linux Menu Configuration Options . 18-1

Chapter 19
Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware
Support

19.1 ALSA Features and Components . 19-1
19.1.1 Current BSP Release Support . 19-2
19.1.2 PCM Components. 19-2
19.1.3 Control Components . 19-2
19.2 Hardware Operation . 19-3
19.3 Software Operation . 19-3
19.3.1 Initialization . 19-4
19.3.2 Device Open . 19-4
19.3.3 Digital Mixing. 19-4
19.4 Source Code Structure . 19-5

Chapter 20
Digital Audio Multiplexer (AUDMUX) Driver

20.1 Hardware Operation . 20-1
20.2 Software Operation . 20-1
20.3 Requirements . 20-2
20.4 Source Code Structure . 20-2
20.4.1 Linux Menu Configuration Options . 20-2
20.5 Programming Interface (Exported API) . 20-2
20.6 Interrupt Requirements . 20-3

Chapter 21
Synchronous Serial Interface (SSI) Driver

21.1 Hardware Operation . 21-1
21.2 Software Operation . 21-2
21.3 Requirements . 21-2
21.4 Source Code Structure . 21-2
21.4.1 Linux Menu Configuration Options . 21-2
21.5 Programming Interface (Exported API) . 21-3
21.6 Interrupt Requirements . 21-6

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

x Freescale Semiconductor

Chapter 22
NAND Flash Memory Technology Device (MTD) Driver

22.1 Overview. 22-1
22.1.1 Hardware Operation . 22-1
22.1.2 Software Operation . 22-1
22.2 Requirements . 22-2
22.3 Source Code Structure . 22-2
22.4 Configuration . 22-2
22.4.1 Linux Menu Configuration Options . 22-2
22.5 Programming Interface . 22-3
22.6 Device-Specific Information. 22-3

Chapter 23
Low-Level Keypad Driver

23.1 Hardware Operation . 23-1
23.2 Software Operation . 23-1
23.3 Requirements . 23-5
23.4 Source Code Structure . 23-5
23.5 Linux Menu Configuration Options . 23-5
23.6 Programming Interface . 23-6
23.7 Interrupt Requirements . 23-6
23.8 Device-Specific Information. 23-6

Chapter 24
SMSC LAN9217 Ethernet Driver

24.1 Hardware Operation . 24-1
24.2 Software Operation . 24-1
24.3 Requirements . 24-2
24.4 Source Code Structure . 24-2
24.5 Linux Menu Configuration Options . 24-2

Chapter 25
Fast Ethernet Controller (FEC) Driver

25.1 Hardware Operation . 25-1
25.2 Software Operation . 25-3
25.3 Source Code Structure . 25-3
25.4 Linux Menu Configuration Options . 25-3
25.5 Programming Interface . 25-4
25.5.1 Device-Specific Defines . 25-4
25.5.2 How to get a MAC Address? . 25-5

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xi

Chapter 26
Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

26.1 Overview. 26-1
26.2 Software Operation . 26-1
26.2.1 API Notes . 26-1
26.2.2 Architecture . 26-2
26.2.3 Symmetric Descriptors . 26-8
26.2.4 Hash Descriptors. 26-13
26.2.5 HMAC Descriptors . 26-15
26.2.6 Random Number Descriptors . 26-18
26.3 Requirements . 26-18
26.4 Source Code Structure . 26-19
26.5 Configuration . 26-20
26.6 Programming Interface . 26-21
26.7 Interrupt Requirements . 26-21

Chapter 27
Inter-IC (I2C) Driver

27.1 I2C Bus Driver Overview . 27-1
27.2 I2C Client Driver Overview . 27-1
27.3 Hardware Operation . 27-1
27.4 Software Operation . 27-2
27.4.1 I2C Bus Driver Software Operation . 27-2
27.4.2 I2C Client Driver Software Operation . 27-2
27.5 Requirements . 27-2
27.6 Source Code Structure . 27-3
27.7 Configuration . 27-3
27.7.1 Linux Menu Configuration Options . 27-3
27.8 Programming Interface . 27-3
27.9 Interrupt Requirements . 27-3
27.10 Device-Specific Information. 27-3

Chapter 28
I2C Slave Driver

28.1 I2C Slave Core Overview . 28-1
28.2 I2C Slave Chip Driver Overview . 28-1
28.3 Hardware Operation . 28-1
28.4 Software Operation . 28-1
28.5 Requirements . 28-1
28.6 Source Code Structure . 28-2
28.7 Configuration . 28-2
28.7.1 Linux Menu Configuration Options . 28-2
28.8 Programming Interface . 28-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xii Freescale Semiconductor

Chapter 29
Configurable Serial Peripheral Interface (CSPI) Driver

29.1 Hardware Operation . 29-1
29.2 Software Operation . 29-2
29.2.1 SPI Sub-System in Linux . 29-2
29.2.2 Limitations . 29-3
29.2.3 Standard Operations . 29-3
29.2.4 CSPI Synchronous Operation . 29-4
29.2.5 PMIC Access . 29-5
29.3 Requirements . 29-5
29.4 Source Code Structure . 29-5
29.5 Configuration . 29-5
29.6 Programming Interface . 29-6
29.7 Interrupt Requirements . 29-6
29.8 Device-Specific Information. 29-6

Chapter 30
MMC/SD/SDIO Host Driver

30.1 Hardware Operation . 30-1
30.2 Software Operation . 30-2
30.3 Requirements . 30-3
30.4 Source Code Structure . 30-3
30.5 Linux Menu Configuration Options . 30-3
30.6 Programming Interface . 30-4

Chapter 31
Universal Asynchronous Receiver/Transmitter (UART) Driver

31.1 UART Driver Hardware Operation . 31-1
31.2 UART Driver Software Operation . 31-2
31.3 UART Driver Requirements . 31-2
31.4 UART Driver Source Code Structure . 31-3
31.5 UART Driver Configuration. 31-3
31.5.1 Linux Menu Configuration Options . 31-3
31.5.2 Source Code Configuration Options. 31-4
31.6 UART Driver Programming Interface . 31-5
31.7 UART Driver Interrupt Requirements . 31-5
31.8 Device-Specific Information. 31-6
31.8.1 UART Ports . 31-6
31.8.2 Board Setup Configuration . 31-6
31.9 Early UART Support . 31-8

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xiii

Chapter 32
16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

32.1 SC16C652/ST16C2552 UART Hardware Operation. 32-1
32.2 SC16C652/ST16C2552 UART Software Operation . 32-5
32.3 SC16C652/ST16C2552 UART Requirements . 32-5
32.4 SC16C652/ST16C2552 UART Source Code Structure . 32-5
32.5 16C652 UART Driver Configuration . 32-5
32.5.1 Linux Menu Configuration Options . 32-5
32.5.2 Source Code Configuration Options. 32-6
32.6 SC16C652/ST16C2552 UART Programming Interface . 32-6
32.7 16C652 UART Driver Interrupt Requirements . 32-6
32.8 Device-Specific Information. 32-6

Chapter 33
ARC USB driver

33.1 Architectural Overview. 33-2
33.2 Hardware Operation . 33-2
33.3 Software Operation . 33-3
33.4 Requirements . 33-3
33.5 Source Code Structure . 33-4
33.6 Linux Menu Configuration Options . 33-5
33.7 Programming Interface . 33-6
33.7.1 Notes . 33-6

Chapter 34
ATA Driver

34.1 Hardware Operation . 34-1
34.2 Software Operation . 34-1
34.3 Source Code Structure Configuration. 34-2
34.4 Linux Menu Configuration Options . 34-2
34.5 Board Configuration Options . 34-2
34.6 Programming Interface . 34-2
34.7 Usage Example . 34-2
34.8 Usage Example . 34-3

Chapter 35
Real Time Clock (RTC) Driver

35.1 Hardware Operation . 35-1
35.2 Software Operation . 35-1
35.3 Requirements . 35-1
35.4 Source Code Structure . 35-1
35.5 Programming Interface . 35-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xiv Freescale Semiconductor

Chapter 36
Watchdog (WDOG) Driver

36.1 Hardware Operation . 36-1
36.2 Software Operation . 36-1
36.2.1 Generic WDOG driver . 36-1
36.2.2 WDOG under Machine-Specific Layer . 36-2

Chapter 37
FM Driver

37.1 FM Overview . 37-1
37.1.1 Hardware Operation . 37-1
37.1.2 Software Operation . 37-2
37.2 Source Code Structure Configuration. 37-3
37.3 Linux Menu Configuration Options . 37-3

Chapter 38
MMA7450L Accelerometer Driver

38.1 MMA7450L Features . 38-1
38.2 Driver Requirements. 38-1
38.3 Driver Architecture . 38-1
38.4 Driver Source Code Structure. 38-2
38.5 Linux Menu Configuration Options . 38-2

Chapter 39
Global Positioning System (GPS) Driver

39.1 GPS Driver Overview. 39-1
39.2 Hardware Operation . 39-3
39.2.1 UART Port . 39-3
39.2.2 GPIO Control . 39-3
39.2.3 Hardware-Dependent Parameters . 39-4
39.3 Software Operation . 39-4
39.3.1 GLGPS Configuration . 39-4
39.3.2 Driver Configuration. 39-5
39.3.3 Source Code . 39-6
39.3.4 LTO Feature (optional) . 39-6
39.3.5 Power Management . 39-6
39.3.6 irm Commands.. 39-7

Chapter 40
Unit Tests

40.1 Enabling the Unit Tests. 40-1
40.2 Running Tests That Write to a File. 40-1

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xv

40.3 MSL Tests. 40-1
40.4 Dynamic Frequency Scaling Tests . 40-1
40.5 DMAC Tests . 40-2
40.6 PMIC Protocol Tests. 40-3
40.6.1 MC13783 PMIC Protocol Driver Read/Write Unit Test . 40-3
40.6.2 PMIC Subscribe/Unsubscribe to an Event Unit Test . 40-4
40.6.3 PMIC Subscribe, Interrupt, Unsubscribe Unit Test . 40-4
40.6.4 PMIC Open/Close Unit Test. 40-4
40.6.5 PMIC Concurrent Access Unit Test . 40-5
40.7 PMIC Audio Tests . 40-5
40.8 PMIC Digitizer Tests . 40-5
40.8.1 PMIC Read ADC Value Tests . 40-5
40.8.2 PMIC Monitoring Tests . 40-6
40.9 PMIC Power Management Tests . 40-6
40.9.1 PMIC Regulator ON/OFF Tests . 40-6
40.9.2 PMIC Switcher and Regulator Configuration Tests . 40-7
40.9.3 PMIC Miscellaneous Feature Tests . 40-8
40.10 PMIC Connectivity Tests . 40-9
40.11 PMIC Battery Tests . 40-9
40.11.1 Charger Management Tests . 40-9
40.11.2 EOL Comparator Tests . 40-10
40.11.3 LED Management Tests . 40-10
40.11.4 Reverse Supply and Unregulated Modes Tests . 40-10
40.11.5 Set Out Control Tests . 40-11
40.11.6 Set Over Voltage Threshold . 40-11
40.11.7 Get Charger Current . 40-11
40.12 Low-level Power Management Tests on i.MX27 . 40-11
40.13 LCDC Tests . 40-13
40.14 CH7024 TV-Out Tests . 40-13
40.15 OmniVision Camera Tests . 40-14
40.16 i.MX27 VPU Tests . 40-15
40.17 ARC USB Tests . 40-16
40.17.1 USB host . 40-16
40.17.2 Peripheral Mode . 40-18
40.18 ALSA Tests. 40-21
40.18.1 ALSA Native Mode . 40-21
40.18.2 Playback on Stereo DAC: . 40-21
40.18.3 Recording . 40-21
40.18.4 Mixer. 40-22
40.18.5 Audio Loop Back . 40-26
40.18.6 OSS Emulation Mode . 40-26
40.19 AUDMUX Test. 40-26
40.20 SSI Test. 40-26
40.21 NAND Tests . 40-26
40.22 Keypad Tests. 40-27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xvi Freescale Semiconductor

40.23 FEC Tests . 40-28
40.24 SMSC LAN9217 Ethernet Tests. 40-28
40.25 I2C Test . 40-29
40.26 CSPI Tests. 40-29
40.27 MMC/SD/SDIO Test . 40-29
40.28 MXC UART Tests . 40-31
40.28.1 Basic UART Tests . 40-31
40.28.2 Early UART Support Tests. 40-33
40.29 FM Driver Tests . 40-33
40.30 MMA7450L Accelerometer Driver Tests. 40-34
40.31 GPS Tests . 40-35
40.32 RTC Tests . 40-35
40.33 Watchdog Tests. 40-36

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xvii

Figures
Figures

3-1 Linux BSP Block Diagram ... 3-1
3-2 MTD Architecture... 3-7
3-3 DPM High Level Design... 3-15
3-4 DPM Architecture Block Diagram ... 3-15
3-5 Qt/Embedded .. 3-18
3-6 Linux BSP Source Diagram.. 3-19
3-7 Linux BSP API Diagram... 3-20
6-1 PMIC Block Diagram ... 6-2
6-2 PMIC Device Driver ... 6-7
6-3 PMIC Protocol Driver Architecture and Interfaces .. 6-8
7-1 PMIC Audio Hardware Components .. 7-1
7-2 PMIC Audio Driver Architecture ... 7-6
8-1 PMIC Digitizer Driver Architecture ... 8-3
9-1 MC13783 Regulator Driver Architecture ... 9-2
9-2 PMIC Power Management Driver Architecture ... 9-3
10-1 PMIC Connectivity Driver Architecture... 10-3
11-1 PMIC Battery Device Driver Architecture ... 11-2
12-1 PMIC Light Driver Architecture... 12-3
13-1 PMIC RTC Driver Architecture .. 13-2
15-1 imx 27 CPU core clock diagram ... 15-1
16-1 TVout Driver in the Architecture .. 16-2
17-1 VPU Hardware Data Flow .. 17-2
20-1 AUDMUX Driver Interactions ... 20-1
21-1 SSI Driver Interactions.. 21-2
23-1 Keypad Driver State Machine... 23-2
26-1 Architecture Overview... 26-2
29-1 SPI Sub-system ... 29-2
29-2 Layering of SPI Drivers in SPI subsystem.. 29-3
29-3 CSPI Synchronous Operation ... 29-4
29-4 PMIC Access through SPI .. 29-5
30-1 Layering of MMC drivers ... 30-2
32-1 SC16C652/ST16C2552 Universal Asynchronous Receiver/Transmitter (UART) PCB Interface

32-2
32-2 SC16C652/ST16C2552 Universal Asynchronous Receiver/Transmitter (UART) Block

Diagram.. 32-3
32-3 16C652 UART Driver Block Diagram ... 32-4
33-1 Block Diagram .. 33-2
34-1 ... 34-1
36-1 WDOG Software Operation Flow Chart... 36-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xviii Freescale Semiconductor

37-1 Software Operation ... 37-2
38-1 Driver Architecture ... 38-2
39-1 Barracuda GPS Coarse System Architecture including Host CPU....................................... 39-1
39-2 GL GPS SW Architecture ... 39-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xix

Tables
Tables

1-1 Supported Features.. 1-2
2-1 Hardware Resources Needed .. 2-1
2-2 Resources Needed to Program RedBoot into Flash .. 2-2
2-3 Resources Needed to Download the Kernel and Root File System to SDRAM..................... 2-3
3-1 Machine Directories .. 3-2
3-2 List of Linux BSP Component APIs... 3-20
4-1 Interrupt Files List... 4-2
4-2 Memory Map File List .. 4-4
4-3 IOMUX File List... 4-6
4-4 IOMUX File List... 4-8
4-5 GPIO File List ... 4-9
4-6 EDIO File List... 4-10
4-7 SPBA File List .. 4-11
5-1 DMA API Files ... 5-2
6-1 Summary of all Available PMIC Client Device Drivers... 6-2
6-2 MC13783 PMIC Hardware Interrupt Events .. 6-4
6-3 PMIC Protocol Driver Sources File List... 6-12
7-1 MC13783 Audio Driver Source Files ... 7-7
8-1 MC13783 Digitizer Driver Source Files ... 8-4
9-1 MC13783 Power Management Driver Source Files ... 9-4
11-1 MC13783 Battery Driver Source Files ... 11-3
12-1 MC13783 Light Driver Source Files .. 12-4
13-1 MC13783 RTC Driver Source Files.. 13-3
14-1 Source Code .. 14-1
15-1 Source Code Files ... 15-2
16-1 TV-Out Driver Source File.. 16-2
16-2 Framebuffer Driver Source Files .. 16-2
17-1 VPU Driver File List... 17-4
18-1 Camera File List.. 18-1
19-1 PMIC Independent Source Files ... 19-5
20-1 AUDMUX Source Files.. 20-2
20-2 AUDMUX Exported Functions .. 20-2
21-1 SSI Source File List .. 21-2
21-2 SSI Exported Functions .. 21-3
22-1 NAND MTD File List... 22-2
22-2 NFC Hardware Version across i.MX platforms .. 22-3
23-1 Key Connections in Keypad ... 23-3
23-2 Keypad Interrupt Timer Requirements ... 23-6
23-3 Key Connections for Keypad.. 23-6
24-1 Ethernet File List... 24-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xx Freescale Semiconductor

25-1 Pin Usage in MII and SNI Modes... 25-1
25-2 Ethernet File List... 25-3
26-1 Blocking / Non-Blocking Definitions ... 26-6
26-2 ARC4 Descriptor Chains .. 26-12
26-3 Hash Descriptor Chains .. 26-14
26-4 HMAC Descriptor Chains... 26-16
26-5 Sahara2 Source File List ... 26-19
26-6 Sahara2 Header File List... 26-20
27-1 I2C Bus Driver Files ... 27-3
27-2 I2C Interrupt Requirements .. 27-3
27-3 Default Configuration ... 27-3
28-1 I2C Bus Driver Files ... 28-2
29-1 CSPI Source File List.. 29-5
29-2 CSPI Interrupt Requirements .. 29-6
29-3 CSPI Controllers in i.MX Family Platforms... 29-6
30-1 SDHC Driver File List .. 30-3
31-1 UART Source And Header File List ... 31-3
31-2 UART Global Header File List ... 31-3
31-3 UART Interrupt Requirements.. 31-5
31-4 UART General Configuration ... 31-6
31-5 UART Active/Inactive Configuration ... 31-6
31-6 UART IRDA Configuration.. 31-6
31-7 UART Mode Configuration .. 31-6
31-8 UART Shared Peripheral Configuration ... 31-6
31-9 UART Hardware Flow Control Configuration ... 31-6
31-12 UART UCR4_CTSTL Configuration ... 31-7
31-13 UART UFCR_RXTL Configuration... 31-7
31-14 UART UFCR_TXTL Configuration ... 31-7
31-15 UART Interrupt Mux Configuration ... 31-7
31-16 UART Interrupt 1 Configuration... 31-7
31-17 UART Interrupt 2 Configuration... 31-7
31-18 UART interrupt 3 Configuration... 31-7
31-10 UART DMA Configuration .. 31-7
31-11 UART DMA RX Buffer Size Configuration .. 31-7
32-1 Serial Port Register Addressing for the SC16C652/ST16C2552 UART.............................. 32-4
32-2 16552 UART Driver File List ... 32-5
32-3 16C652 UART Interrupt Requirements .. 32-6
33-1 USB Driver File List ... 33-4
33-2 USB Platform Source File List ... 33-4
33-3 USB Platform Header File List ... 33-4
33-4 USB Common Platform File List.. 33-5
33-5 Default USB Settings .. 33-6
34-1 ATA Driver File List ... 34-2

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xxi

36-1 WDOG File List.. 36-2
37-1 FM Driver Source and Header File List.. 37-3
38-1 Driver Source Code Structure File .. 38-2
39-1 UART Port .. 39-3
39-2 GPIO Control Signals ... 39-3
39-3 Hardware-dependent Parameters .. 39-4
39-4 hal Attributes... 39-5
39-5 gll Attributes ... 39-5
39-6 GPS Driver Source Code .. 39-6
40-1 ... 40-12

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xxii Freescale Semiconductor

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xxiii

About This Book
The Linux board support package (BSP) represents a porting of the Linux operating system (OS) to the
i.MX processors and to their associated 3-Stack boards. The BSP supports many of the hardware features
on the platforms, as well as most of the Linux OS features not dependent on any specific hardware feature.

Audience
This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific products.
The audience is expected to have a working understanding of the Linux 2.6 kernel internals and driver
models. An understanding of the i.MX processors is also required.

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, and
file and directory names.

• Italic type indicates replaceable command or function parameters.

• Bold type indicates function names.

Definitions, Acronyms, and Abbreviations
The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address
translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous
data routing between host serial interfaces and peripheral serial interfaces.

BCD Binary Coded Decimal

bus A path between several devices through data lines.

bus load The percentage of time a bus is busy.

CODEC Coder/decoder or compression/decompression algorithm—Used to encode and decode (or
compress and decompress) various types of data.

CPU Central Processing Unit—generic term used to describe a processing core.

CRC Cyclic Redundancy Check—Bit error protection method for data communication.

CSI Camera Sensor Interface

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers.

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xxiv Freescale Semiconductor

DRAM Dynamic Random Access Memory

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program)
from all the masters in the system.

Endian Refers to byte ordering of data in memory. Little Endian means that the least significant byte of the
data is stored in a lower address than the most significant byte. In Big Endian, the order of the
bytes is reversed.

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise
interrupts at regular intervals with minimal processor intervention.

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards
published by the National Institute of Standards and Technology (NIST). NIST develops FIPS
when there are compelling Federal government requirements such as for security and
interoperability but no acceptable industry standards or solutions.

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard
140-2(FIPS 140-2) is a standard that describes US Federal government requirements that IT
products should meet for Sensitive, But Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks
of the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process
includes cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is
triggered by a software command.

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a
message digest, is a number generated from a string of text. The hash is substantially smaller than
the text itself, and is generated by a formula in such a way that it is extremely unlikely that some
other text will produce the same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property.

IPU Image Processing Unit —supports video and graphics processing functions and provides an
interface to video/still image sensors and displays.

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted
specifications for infrared wireless communication.

ISR Interrupt Service Routine.

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of
compliant devices on a printed circuit board.

Kill Abort a memory access.

Definitions and Acronyms (Continued)

Term Definition

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xxv

KPP KeyPad Port—a 16-bit peripheral that can be used as a keypad matrix interface or as general
purpose input/output (I/O).

line Refers to a unit of information in the cache that is associated with a tag.

LRU Least Recently Used—a policy for line replacement in the cache.

MMU Memory Management Unit—a component responsible for memory protection and address
translation.

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video
compression and audio. It is also the name of the algorithms used to compress moving pictures
and video.

MPEG
standards

There are several standards of compression for moving pictures and video.
 • MPEG-1 is optimized for CD-ROM and is the basis for MP3.
 • MPEG-2 is defined for broadcast quality video in applications such as digital television set-top

boxes and DVD.
 • MPEG-3 was merged into MPEG-2.
 • MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide

Web.

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations
necessary to configure radio subsystems and selected peripherals.

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other
being NOR) used in memory cards such as the Compact Flash cards. NAND is best suited to flash
devices requiring high capacity data storage. NAND flash devices offer storage space up to
512-Mbyte and offer faster erase, write, and read capabilities over NOR architecture.

NOR Flash See NAND Flash.

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that
has developed a standard for small, credit card-sized devices, called PC Cards. There are three
types of PCMCIA cards that have the same rectangular size (85.6 by 54 millimeters), but different
widths.

physical
address

The address by which the memory in the system is physically accessed.

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant
phase angle (a lock) on the frequency of an input, or reference, signal.

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are
combined in various ways to create other colors. The abbreviation RGB come from the three
primary colors in additive light models.

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency
channel, and is unique to this color space. RGBA, like RGB, is an additive color space, so the more
of a color you place, the lighter the picture gets. PNG is the best known image format that uses
the RGBA color space.

Definitions and Acronyms (Continued)

Term Definition

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xxvi Freescale Semiconductor

Suggested Reading
The following documents contain information that supplements this guide:

•

• i.MX27 PDK Linux User’s Guide

• i.MX27 PDK Hardware User’s Guide

• MCIMX27 Multimedia Applications Processors Reference Manual, (MCIMX27RM)

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit
pseudo random numbers as part of the security module.

ROM Read Only Memory

ROM bootstrap Internal boot code encompassing the main boot flow as well as exception vectors.

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking
mechanism.

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting
low-/medium-bandwidth external devices using four wires. SPI devices communicate using a
master/slave relationship over two data lines and two control lines: Also see SS, SCLK, MISO, and
MOSI.

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—this module provides asynchronous serial
communication to external devices.

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB
1.1 specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum
transfer rate of 480 Mbps. A single USB port can be used to connect up to 127 peripheral devices,
such as mice, modems, and keyboards. USB also supports Plug-and-Play installation and hot
plugging.

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to
each other. USBOTG devices, also known as dual-role peripherals, can act as limited hosts or
peripherals themselves depending on how the cables are connected to the devices, and they also
can connect to a host PC.

word A group of bits comprising 32 bits

Definitions and Acronyms (Continued)

Term Definition

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor xxvii

• [KERN] Linux kernel coding style by Linus Torvalds. This is included in Linux distributions as the
file Documentation/CodingStyle

• [WSAS] WSAS Coding Conventions, version 0.4

• [ASM] WSAS Assembly Code Conventions

• [DOXY] WSAS Guidelines for Writing Doxygen Comments

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

xxviii Freescale Semiconductor

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 1-1

Chapter 1
Introduction
The i.MX family Linux board support package (BSP) supports the Linux operating system (OS) on the
following processors:

• i.MX27 Applications Processor

NOTE
The family of all i.MX processors is known as the i.MX platforms. You will
see this term used in sections that apply to any of these application
processors.

As the name BSP implies, the purpose of this software package is to support Linux on the i.MX family of
integrated circuits (ICs) and their associated platform (3-Stack board). It provides the software necessary
to interface the standard open-source Linux kernel to the i.MX hardware. The goal of this port is to enable
Freescale customers to rapidly build products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-
specific drivers, hardware-independent software stacks, GUI components, JVM, and applications required
for a product. Some of these are made available in their original open-source form as part of the base
kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP
functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon
verification test suites.

1.1 Software Base
The i.MX BSP is based on version 2.6.22 of the Linux kernel from the official Linux kernel Web site
(http://www.kernel.org). It is enhanced with features provided by Freescale.

http://www.kernel.org

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

1-2 Freescale Semiconductor, Inc.

1.2 Features
Table 1-1 describes the features supported by the Linux BSP for specific platforms.

Table 1-1. Supported Features

Features Description Chapter Source
Applicable
Platform

Machine Specific Layer

MSL MSL (Machine Specific Layer) supports interrupts,
Timer, Memory Map, GPIO/IOMUX, SPBA.
 • Interrupts (AITC/AVIC): The Linux kernel contains

common ARM code for handling interrupts. The
MSL contains platform-specific implementations
of functions for interfacing the Linux kernel to the
ARM11 and ARM9 interrupt controller.

 • Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high resolution
timer features, and so on. Linux defines the MSL
timer API required for the OS-tick timer and does
not expose it beyond the kernel tick
implementation.

 • GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board I/O.
The IO software module is board-specific, and
resides in the MSL layer as a self-contained set of
files. I/O configuration changes are centralized in
the GPIO module so that changes are not
required in the various drivers.

 • SPBA: The Shared Peripheral Bus Arbiter (SPBA)
provides an arbitration mechanism among
multiple masters to allow access to the shared
peripherals. The SPBA implementation under
MSL defines the API to allow different masters to
take or release ownership of a shared peripheral.

Chapter 1, “Machine Specific
Layer (MSL)”

all

Power Management IC (PMIC) Drivers

PMIC Protocol The PMIC protocol driver interfaces to the IC through
the SPI driver. It manages the hardware interrupt
from the IC and provides services for all IC client
drivers. It exposes consistent APIs used by each IC
client driver to access the IC component.

Chapter 1, “PMIC Protocol Driver” i.MX27

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 1-3

PMIC Audio The audio driver is a client of the IC protocol driver. It
provides services for audio control of the IC and has
the following features:
• Supports configuration of the PMIC's Stereo DAC
and Voice CODEC, including the 13-bit Voice
CODEC and both narrow and wide band sampling
and the 16-bit Stereo DAC with multiple sample
rates.
• Supports all input and output audio channels.
• Provides a custom API to set volume, balance,
mixer, and gain amplifiers.
• Reports an event for microphone bias detected.
• Provides a custom API for the configuration of the
PMIC-side of the SSI audio bus interface for
operating in network mode.
• Used by the higher level Alsa Driver.

Chapter 1, “PMIC Audio Driver” i.MX27

PMIC Digitizer This driver is a client of the PMIC's protocol driver.
It provides services for the digitizer controlled by the
PMIC. It supports the following features:
• Supports all types of digitizer input converters.
• Starts the digitizer converter.
• Reports an event when converted.
• Supports the monitor function of the PMIC's
digitizer.
• Used by touch screen component of input
sub-system and battery driver for charger/battery
current/voltage measurement.

Chapter 1, “PMIC Digitizer Driver” i.MX27

PMIC RTC The PMIC RTC for Linux provides access to the
PMIC’s RTC control circuits. It has the following
features
• Real time clock control.
• Alarm events.

Chapter 1, “PMIC Real Time Clock
(RTC)”

i.MX27

PMIC Power
Management

This driver is a client of the PMIC's protocol driver.
It provides services for power management control
through PMIC. It supports the following features:
• Controls all ON/OFF switches.
• Controls all voltage regulators.

Chapter 1, “PMIC Power
Management Driver”

i.MX27

PMIC Connectivity This driver is a client of the PMIC's protocol driver. It
provides services for USB OTG and RS-232
connectivity controlled by PMIC. It supports the
following features:
• Supports an RS-232 transceiver in either DTE or
DCE modes with full hardware flow control.
• Supports a USB OTG transceiver with device
insertion/removal detection capabilities and
connection configuration using the Host Negotiation
Protocol.
On imx27pdk platform, this driver is not used.

Chapter 1, “PMIC Connectivity
Driver”

i.MX27 ADS

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

1-4 Freescale Semiconductor, Inc.

PMIC Battery This component is a client of the PMIC's protocol
driver. It provides services for battery control. It
provides an API for battery control management.

Chapter 1, “PMIC Battery Driver” i.MX27

PMIC Light This driver is a client of PMIC's protocol driver. It
supports the following features:
• Supports all modes of LED control
• Supports backlight control (when the back light is
connected to the PMIC).
On the i.mx27pdk platform, this driver is not used.

Chapter 1, “PMIC Light Driver” i.MX27 ADS

Power Management Drivers

CPUFreq Frequency scaling is an important part of increasing
the battery life of portable devices, but it also has a
place in reducing power consumption.
This driver allows the CPU frequency to dynamically
change according to the CPU load or to user
demands. Optionally, it is also possible to change the
CPU core voltage depending on the selected
frequency to reduce power consumption even more.

Chapter 1, “Dynamic Frequency
Scaling Driver (CPUFreq)”

I.MX27PDK

Multimedia Drivers

LCDC The i.MX liquid crystal display controller (LCDC)
provides display data for external gray-scale or color
LCD panels. The LCDC is capable of supporting
black-and-white, gray-scale, passive-matrix color
(passive color or CSTN), and active-matrix color
(active color or TFT) LCD panels.

Chapter 23, “Liquid Crystal Display
Controller (LCDC) Driver”

i.MX27

TV-OUT TV-OUT is a television encoder device that encodes
video signals and generates synchronization signals
for a given television standard.

Chapter 1, “CH7024 TV Encoder
(TV-Out) Driver”

i.MX27

eMMA The enhanced Multimedia Accelerator (eMMA)
consists of the video Pre-processor (PrP) and
Post-processor (PP) blocks. These blocks provide
video acceleration and off-load the CPU from
computation-intensive tasks. The PrP and PP can be
used for generic video pre- and post-processing,
such as scaling, resizing, and color space
conversions.

Chapter 26, “The Enhanced
Multimedia Accelerator (eMMA)
Driver”

i.MX27

V4L2 Output The driver implements the standard V4L2 API for
output devices.

Section 16.2.3.3, “V4L2 Output
Device”

all

V4L2 Capture The Video for Linux 2 (V4L2) capture device includes
two interfaces: the capture interface and the overlay
interface.

Section 16.2.3.1, “V4L2 Capture
Device”

i.MX27

VPU The Video Processing Unit (VPU) is a multi-standard
video decoder and encoder that can perform
decoding and encoding of various video formats.

Chapter 17, “Video Processing
Unit (VPU) Driver for MX27” ”

i.MX27

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 1-5

Camera (OV2640) The OV2640 Camera driver is designed under Linux
V4L2 architecture. It implements the V4L2 capture
interface.

Chapter 18, “OmniVision Camera
Driver (OV2640)”

i.MX27

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a
sound driver that provides ALSA- and OSS-
compatible applications with the means to perform
audio playback and recording functions using the
audio components provided by Freescale’s PMIC
chips. ALSA has a user-space component called
ALSAlib that can extend the features of audio
hardware by emulating the same in software (user
space), such as resampling, s/w mixing, snooping,
and so on. The ASoc Sound driver supports stereo
codec playback and capture through SSI.

Chapter 1, “Advanced Linux
Sound Architecture (ALSA) Sound
Driver with PMIC Hardware
Support”

i.MX27

AudMux The low level Digital Audio Multiplexer (AUDMUX)
driver provides a custom, kernel-space API to the
AUDMUX module. It supports all of the features of
the hardware module. It provides runtime audio path
configuration.

Chapter 1, “Digital Audio
Multiplexer (AUDMUX) Driver”

i.MX27

SSI The low-level synchronous serial interface (SSI)
driver provides a custom, kernel-space API to the
SSI modules. It supports all of the features of the
hardware modules including enabling/disabling of
DMA request events.

Chapter 1, “Synchronous Serial
Interface (SSI) Driver”

i.MX27

Memory Drivers

NAND MTD The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as CRAMFS and JFFS2. The driver
implementation supports the lowest
level operations on the external NAND Flash chip,
such as block read, block write and block erase as
the NAND Flash technology only supports block
access. Because blocks in a NAND Flash are not
guaranteed to be good, the NAND MTD driver is also
able to detect bad blocks and feed that information to
the upper layer to handle bad block management.

Chapter 1, “NAND Flash Memory
Technology Device (MTD) Driver”

i.MX27

Input Device Drivers

Keypad The keypad driver interfaces Linux to the keypad
controller (KPP). The software operation of the
keypad driver follows the Linux keyboard
architecture. It supports up to an 8 x 8 external key
pad matrix of single poll switches.

Chapter 1, “Low-Level Keypad
Driver”

i.MX27

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

1-6 Freescale Semiconductor, Inc.

Networking Drivers

FEC The FEC Driver performs the full set of IEEE
802.3/Ethernet CSMA/CD media access control and
channel interface functions. The FEC requires an
external interface adaptor and transceiver function to
complete the interface to the Ethernet media. It
supports half- or full-duplex operation on 10 Mbps or
100 Mbps related Ethernet networks.

Chapter 1, “Fast Ethernet
Controller (FEC) Driver”

.MX27

SMSC LAN9217 he SMSC LAN9217 Ethernet driver interfaces SMSC
LAN9217-specific functions with the standard Linux
kernel network module. The LAN9217 is a
full-featured, single-chip 10/100 Ethernet controller
designed for embedded applications where
performance, flexibility, ease of integration, and
system cost control are required. The LAN9217 has
been specifically architected to provide the highest
performance possible for any 16-bit application. The
LAN9217 is fully IEEE 802.3, 10BASE-T, and 802.3
100BASE-TX compliant, and supports HP
Auto-MDIX.

Chapter 1, “SMSC LAN9217
Ethernet Driver

MX27PDK

Security Drivers

SCC/SCC2 The Security Controller (SCC) is a part of the
Freescale Platform Independent Security
Architecture (PISA). This driver is comprised of two
modules: the Secure RAM Module and the Secure
Monitor Module.The Secure RAM module provides a
secure way of storing sensitive data in on-chip and
off-chip RAM memory. On-chip data can be cleared
if necessary to prevent un-authorized access.
Off-chip data is stored in encrypted form using an
encryption key that is unique to each device and is
accessible only through the Secure RAM module.
The SCC module will only be accessible by ARM11.

Chapter 25, “Security Drivers” i.MX27

SAHARA The Symmetric / Asymmetric Hashing and Random
Accelerator (SAHARA) driver module drives the
hardware SAHARA2 present on the i.MX platforms.
SAHARA2 accelerates the following security
functions:
• AES encryption/decryption
• DES/3DES
• ARC4 (RC4-compatible cipher)
• MD5, SHA-1, SHA-224 and SHA-256 hashing
algorithms
• HMAC (support for IPAD and OPAD through
descriptors)
• Random number generator

Section Chapter 1,
“Symmetric/Asymmetric Hashing
and Random Accelerator
(SAHARA) Drivers”

i.MX27

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 1-7

Bus Drivers

I2C The I2C bus driver is a low level interface that is used
to interface with the I2C bus. This driver is invoked by
the I2C chip driver; it is not exposed to the user
space. The standard Linux kernel contains a core I2C
module that is used by the chip driver to access the
bus driver to transfer data over the I2C bus. This bus
driver supports:
 • Compatibility with the I2C bus standard
 • Bit rates up to 400kbps
 • Standard I2C master mode
 • Power management features by suspending and

resuming I2C

Chapter 1, “Inter-IC (I2C) Driver” i.MX27

1-Wire This is an integrated One-Wire interface. The driver
is implemented as a character driver and provides a
custom user space API. This driver supports:
 • a single OWire memory device connected to the

OWire peripheral for read/write bit and read/write
byte operations.

 • the OWire peripheral in the product for single
device detection and selection.

 • the interface to the OWire peripheral at the
read/write block and read/write page level.

Chapter 32, “One-Wire Driver” i.MX27 ADS

CSPI The low-level Configurable Serial Peripheral
Interface (CSPI) driver interfaces a custom,
kernel-space API to both CSPI modules. It supports
the following features:
 • Interrupt-driven transmit/receive of SPI frames
 • Multi-client management
 • Priority management between clients
 • SPI device configuration per client

Chapter 1, “Configurable Serial
Peripheral Interface (CSPI) Driver”

i.MX27

MMC/SD/SDIO -
SDHC

The MMC/SD/SDIO Host driver implements a
standard Linux driver interface to the MMC/Secure
Digital Host Controller (SDHC). The MMC driver
complies to the MMC specification version 4.1, SD
version 1.10 and SDIO version 1.10.

Chapter 1, “MMC/SD/SDIO Host
Driver”

i.MX27

UART Drivers

MXC UART The Universal Asynchronous Receiver/Transmitter
(UART) driver interfaces the Linux serial driver API to
all of the UART ports. A kernel configuration
parameter gives the user the ability to choose the
UART driver and also to choose whether the UART
should be used as the system console.

Chapter 1, “Universal
Asynchronous
Receiver/Transmitter (UART)
Driver”

i.MX27

16552 UART The Universal Asynchronous Receiver/Transmitter
(UART) Driver provides the standard Linux serial
driver API for all of the external UART ports.

Chapter 1, “16C652 Universal
Asynchronous
Receiver/Transmitter (UART)
Driver”

i.MX27 ADS

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Introduction

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

1-8 Freescale Semiconductor, Inc.

General Drivers

USB The USB driver implements a standard Linux driver
interfaces to ARC USB-HSOTG controller.

Chapter 1, “ARC USB driver” i.MX27

RTC This is the integrated Real Time Clock (RTC)
module. The RTC is used to keep the time and date
while the system is turned off; additionally, it provides
the PIE (periodic interrupt at a specific frequency)
and AIE (wake up the system by providing an alarm)
features.

Chapter 1, “Real Time Clock (RTC)
Driver”

i.MX27

WatchDog The Watchdog Timer module protects against
system failures by providing an escape from
unexpected hang or infinite loop situations or
programming errors. This WDOG implements the
following features.
• The WDOG module generates a reset signal if it is
enabled but not serviced within a predefined time-out
value.
• The WDOG module does not generate a reset
signal if it is serviced within a predefined time-out
value.

Chapter 1, “Watchdog (WDOG)
Driver”

i.MX27

FM (Si4702) The FM (Si4702) driver provides the interfaces to
control Si4702 chips.

Chapter 1, “FM Driver” i.MX273-Stack

MMA7450L
Accelerometer

The MMA7450L is a feature-rich accelerometer
device with a flexible programming interface
exposed to the software.

Chapter 1, “MMA7450L
Accelerometer Driver”

i.MX273-Stack

GPS The communications driver provides a serial
interface to the core driver and communicates with
the external GPS chip set.

Chapter 1, “Global Positioning
System (GPS) Driver”

i.MX27

Bootloaders

RedBoot RedBoot is an open source boot firmware based on
the eCos Hardware Abstraction Layer. It was
designed to be very portable, extensible, and
configurable.

i.MX27

GUI

Qt/E Qt/E is a Graphical User Interface supported by the
Linux BSP.

i.MX27

Tools

Table 1-1. Supported Features (Continued)

Features Description Chapter Source
Applicable
Platform

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-1

Chapter 2
Running Linux on the Hardware Boards
This chapter explains how to build and test this release of the i.MX Linux BSP on a hardware board, install
and configure the development tools, and install and configure the components of the i.MX Linux BSP
release.

Specifically, this chapter describes how to:

• Exercise the binary components of the i.MX Linux BSP release using a PDK board.

• Build the i.MX Linux BSP release from source files.

• Debug the i.MX Linux BSP kernel and drivers.

Exercising the binary release components covers the following:

— Using RedBoot to load a Linux image and a Linux file system onto a PDK board

— Using RedBoot to boot the Linux OS on a PDK board

Building the release from source files covers the following:

— Installing the source files for the Linux kernel and the i.MX Linux BSP onto a Linux host

— Installing the ARM cross-compiler tool chain onto a Linux host (Done automatically with
Linux Target Builder)

— Building the i.MX Linux BSP image file for an ARM target

— Building the CRAMFS or JFFS2 root file system

Debugging the kernel and the drivers covers the following:

— Configuring the ARM RealView ICE interface unit

— Downloading RedBoot and Linux images using RealView ICE

Each section in this chapter includes a table describing the resources that must be obtained to install one
of the development tools. For each resource, one of the table columns describes where the resource can be
obtained.

2.1 Running the i.MX Linux BSP
This section provides the procedures for booting the Linux OS on a hardware board.

2.1.1 Preparation – Board Setup
Table 2-1 lists the hardware resources needed for each supported platform. The optional accessory kit
applies only to the PDK kits.

Table 2-1. Hardware Resources Needed

Resource Description

i.MX27 PDK (3-stack) i.MX27 PDK containing a board, serial cable, and other accessories

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-2 Freescale Semiconductor

The kit may include an external memory card. It is important that this memory card be properly installed
into the CPU card. This is done by tilting the memory card at a slight angle above horizontal and pushing
the contacts into the connector until it clicks. Then press the card down into a flat, horizontal position until
the two spring clips engage the side of the card. To remove the memory card later, pull the spring clips
away from the sides of the memory card until it pops up. Then slide it out of the connector.

2.1.2 Terminal Console

HyperTerminal (on Microsoft Windows) or Minicom (on Linux) on your PC can be used to view console
debug messages. Set the terminal to 115200 bps, 8 data bits, parity None, 1 stop bit, and no flow control.

 Attach one end of the serial cable that comes with the development kit to the serial port on the board and
the other end of the cable to a serial port of your PC.

2.1.3 Programming RedBoot into Flash

Running Linux requires a boot loader, a Linux kernel, and a root file system. The boot loader should be
stored in Flash memory. The kernel should run directly from SDRAM memory. The file system can be
stored in the Flash as MTD mounted root or can be stored remotely on a separate machine and be mounted
through NFS.

RedBoot is used as the bootloader to load the Linux kernel. Make sure to install the version of RedBoot
that is included in this Linux BSP release even if RedBoot was previously stored in the Flash memory of
your board. Otherwise the Linux kernel may fail to boot.

Unzip the RedBoot release ZIP file and find the PDF document that matches your platform inside the
documentation folder. This document provides instructions on how to program RedBoot into Flash.

Also refer to this document for instructions on how to perform the following actions:

• Set up dip switches for different boot modes

• ARM RealView tools setup for the PDK board including RealView ICE firmware upgrade

After RedBoot is successfully programmed into Flash, change the settings for the dip switches to external
boot mode to boot from Flash. Reset the board, and the RedBoot prompt should come up. Note that if
RedBoot prompt does not show up the first time after turning power on or pressing the Reset button, press
“Ctrl + c” multiple times.

Table 2-2. Resources Needed to Program RedBoot into Flash

Resource Description Source

redboot_200840.zip The RedBoot release ZIP file that
contains the RedBoot binaries for
all the Freescale processors and
release documentation (the PDF
files for each platform). Refer to
these documents for instructions
on installing and using RedBoot.

Unpacked from tarball file

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-3

NOTES
Ensure that bootp is enabled if you plan to obtain an IP address through
DHCP.

Press the “Reset” button on the board if the RedBoot prompt comes up but
no IP address was obtained through DHCP.

2.1.4 Running Linux

To run Linux, you need a Linux kernel and a root file system.

2.1.4.1 Downloading the Linux Kernel and File System to SDRAM

The Linux kernel and Linux file system can be downloaded to SDRAM using either RedBoot or the
RealView ICE unit. Refer to the PDF files in the RedBoot release ZIP file for instructions on how to set
up RealView ICE.

The following steps explain how to download a Linux Kernel Image or the root filesystem using Ethernet
or the serial port.

2.1.4.1.1 Downloading the Linux Kernel and File System with Ethernet Download from
RedBoot

To download the Linux kernel and file system with Ethernet download from RedBoot:

1. Start the tftp server. Either copy the files to be downloaded to the directory pointed to by the server
or modify the server settings to point to the directory where the files to be downloaded reside.

Make sure bootp is enabled on the platform to obtain an IP address through DHCP or program a
static IP address. Refer to the RedBoot documentation for instructions.

2. Use the RedBoot fconfig command to configure RedBoot with your tftp server IP address and
reset the board for the changes to take effect

fconfig bootp_server_ip 10.81.68.96
Some of the very early boards may not have a valid MAC address in the EEPROM. To verify that,
type the setmac command under RedBoot. If the returned values are all 0xFF’s, then the MAC
address needs to be re-programmed. Contact the board vendor to obtain valid addresses. To
reconfigure the MAC address in the EEPROM, use the RedBoot setmac command. After that, reset
the board.

3. Download the Linux kernel binary to SDRAM using the command
load -r -b 0x100000 <tftp folder>/zImage

Table 2-3. Resources Needed to Download the Kernel and Root File System to SDRAM

Resource Description Source

zImage and
rootfs.ext2.gz

Binary Linux Kernel Image and
ext2 image of the root file system -
QTEmbedded/Qtopia. Select the
Kernel Image based on your
platform.

Unpacked from the tarball.

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-4 Freescale Semiconductor

4. Follow the instructions in Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the Linux kernel to Flash memory.

5. Download the root file system to SDRAM using the command:
load -r -b 0x100000 rootfs.cramfs

NOTE
The rootfs.cramfs file is not shipped with the tar ball. You must create it
prior to downloading to SDRAM. To do so, see Section 2.3.2.2, “Creating a
CRAMFS Root Filesystem.” Copy the CRAMFS file to the TFTP directory
and download it to SDRAM using the command mentioned above.

6. Follow the instructions in Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the file system to Flash memory.

2.1.4.1.2 Downloading the Linux Kernel and File System with Serial Download from
RedBoot

To download the Linux kernel and file system with serial download from RedBoot:

1. Issue the following command under the RedBoot prompt to download an Image using a serial
download:

load -r -b 0x100000 -m xmodem
2. RedBoot now is ready to receive data and printing out character “C” continuously. To send a file

using HyperTerminal, click Transfer > Send File > Xmodem (under Protocol) > Browse, choose
the file to download and then click Send. Ymodem can also be chosen for download.

3. Follow the instructions in Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the downloaded Image to Flash memory

2.1.4.1.3 Downloading the Linux Kernel and File System with RealView ICE

To download the Linux kernel and file system with RealView ICE:

1. Stop the RedBoot execution from the RVD.

2. Type the following command into the RVD command window, to download the binary file into
SDRAM with the RVD command:

 readfile,raw,gui “<PATH TO THE KERNEL IMAGE>/zImage"=0x100000
The command downloads the Image file into the 0x100000 memory location. Note that this
command may need to be modified with proper path.

3. Resume RedBoot from RVD by typing the command “go” on the RVD command window.

4. Follow the instructions in Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the downloaded Image to Flash memory.

2.1.4.2 Programming Linux Kernel and Filesystem to Flash Memory

To view the flashing procedures for the i.MX boards, see the Linux User's Guide for your board, for
example, i.MX27 PDK Linux User's Guide.

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-5

2.1.5 Booting Linux

To boot Linux, issue the following RedBoot commands:

fis load kernel
exec

NOTES
For specific instructions on how to boot Linux on your board, refer to the
Linux User's Guide for your platform. If the fis load command fails, try
one of the following commands:

fis load -b 0x100000 kernel

OR

fis del kernel

Then re-program the kernel image using the instructions in the previous
section.

The Linux prompt should appear on the terminal. The Linux logo should appear on the LCD screen. Be
aware that during kernel testing, after downloading your kernel image to SDRAM, Flashing is not
necessary. In this case, simply issue the exec command to launch the kernel.

RedBoot also allows passing command line options to the Linux kernel such that the default boot
command line options built into the kernel can be overridden. The following is an example (note the new
command line is in the quotes with the -c option):

exec -c "root=/dev/mtdblock4 rw"

A login prompt is displayed on the terminal console:
localhost login:

Use “root” as user name to login (no password is needed). Once logged in, you can issue console
commands to the sh shell.

If Qt/Embedded root file system is used, type the following command to start the Qtopia suite of
applications:

/etc/rc.d/init.d/qtopia

The i.MX LCD screen displays the Qtopia desktop or the calibration screen, if calibration has never been
performed.

2.2 Exchanging Files with the i.MX Linux BSP
The files from your desktop PC can be sent to the i.MX Linux BSP running on the board using the
terminal’s Zmodem protocol. It is also possible to use Zmodem to send files in the opposite direction, that
is, from the board to your desktop PC. If the Ethernet interface is enabled on the board, FTP can also be
used for file transfers.

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-6 Freescale Semiconductor

2.2.1 Sending Files to the i.MX Linux BSP

To send files to the BSP:

1. After the Linux BSP has booted up and you have logged in, type the following command in the
Linux BSP console:

rz
The Linux BSP is waiting to receive a file.

2. In HyperTerminal, select Send File... from the Transfer menu.

3. Choose Zmodem (with or without crash recovery).

4. Select the desktop file you want to transfer and click Send. A progress bar is displayed for the
transfer.

Once the transfer is complete, the file is available in the current directory of the console session. If you use
a read-only CRAMFS file system, you can only send files to /mnt/ramfs/root and its subdirectories.

2.2.2 Sending Files to the Desktop PC

To send files to the desktop PC:

1. In HyperTerminal, select Receive File... from the Transfer menu.

2. Select the desktop PC directory where you want the file to be placed.

3. Click Receive and then click Cancel and close the notification dialog box.

These steps set up the default receive directory. If these steps are skipped, then files are stored in
your default directory which is most likely your home directory.

4. Type the following command in the Linux BSP console:
sz <filename>

After the transfer is complete, the file is available in the destination directory on your desktop PC.

2.2.3 Exchanging Files with the Desktop PC using Ethernet

The PDK board has one Ethernet interface. To assign an IP address (for example:10.10.10.10) to this
interface, issue the following command:

ifconfig eth0 10.10.10.10

This IP address must be a valid address on your network. After this, you should be able to ping other
machines within the same subnet. To configure other parameters, such as the netmask and gateway, type
“ifconfig --help” for the proper instructions. Once you have done this, you can use the FTP protocol
tools such as ftpget and ftpput from your shell prompt to send and receive files over the network from
another FTP server.

NOTE
To use Ethernet under the Linux kernel, a valid Ethernet MAC address must
be programmed into the EEPROM on the base board. To do this, use the
setmac command under RedBoot.

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-7

In addition to the external Ethernet, the i.MX27 PDK, also have the internal
FEC module. See Chapter 25, “Fast Ethernet Controller (FEC) Driver.”

2.3 Building the i.MX Linux BSP from Source
The i.MX Linux BSP is built on a Linux host computer using Linux Target Image Builder (LTIB), which
is a tools framework used to manage, configure, extend, and build Linux software elements to easily build
a Linux target image and a root filesystem.

Note that LTIB also runs on other Linux Distributions, such as Fedora Core or Suse distributions on an x86
PC running the Linux OS.

This section describes the build procedures for RedHat 9.0 Linux. This section provides instructions for a
bash shell; certain shell commands may not work if you are using a different shell.

This BSP operates with LTIB running on a host development system with the following:

• Ethernet card

• Serial port

• 1 Gbyte of free disk space

• NFS Server

• TFTP Server

• rsync

• Perl

2.3.1 The GNU Tool Chain

The kernel for the i.MX Linux BSP is configured and built using cross development tools. The cross
development tools run on the Linux distribution of your host computer, but build ARM Linux binaries and
executables. These toolchains are installed during the LTIB install procedure described in the section
below.

2.3.2 Installing the BSP

You should follow the steps below to install LTIB on host machine. Bypassing the install script leads to
compile problems because LTIB will not be able to find the source packages it needs.

To install the BSP:

1. If the source package is .iso, copy the .iso file to your host machine, and as root, enter the
following command:
mount –o loop <target-bsp.iso> <mount point>

OR

If the source package is a .tgz, rather than an .iso, copy the target tar.gz file to your host
machine and extract it:

tar -zxf <target-bsp.tgz>
2. As a non-root user, install the LTIB:

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-8 Freescale Semiconductor

<unpacked/mounted target-bsp>/install
The script needs you to accept the License Agreement and to have the correct permissions for the
install path where the ltib directory will be located. The install script also copies source and
patches for the kernel and the root filesystem from the BSPs Common/pkgs folder to an
/opt/freescale/pkgs folder.

There are no uninstall scripts. To uninstall LTIB, remove the /opt/freescale/pkgs,
/opt/freescale/ltib and <install_path>/ltib directories manually.

NOTE
To rebuild Qtopia and tslib packages from source, several packages must have been installed
previously on your host. The exact package names may vary, depending on your Linux
distribution.

• zlib:

 rpm-based distros: install zlib and zlib-devel

 debian-based distros: install zlib and zlib-dev

• libuuid:

 rpm-based distros: install e2fsprogs and e2fsprogs-devel

 debian-based distros: install libuuid and uuid-dev

• libjpeg:

 rpm-based distros: install libjpeg

 debian-based distros: install libjpeg and libjpeg-dev

• libpng:

 rpm-based distros: install libpng and libpng-devel

 debian-based distros: libpng and libpng-dev

For additional information, please visit the TrollTech website at:

http://doc.trolltech.com/qtopia2.1/html/qtopia-dependencies.html or
http://doc.trolltech.com/qtopia4.3/qtopia-dependencies.html

2.3.2.1 Running LTIB

LTIB requires that the environmental variable KBUILD_OUTPUT not be set. Also, note that if you run
LTIB as root, it will cause compilation errors.

unset KBUILD_OUTPUT

To run LTIB, change to the directory into which you installed it and run ./ltib.

cd <install_path>/ltib
./ltib

The first time LTIB runs on a machine, a number of host packages are built and installed that support LTIB.
The toolchains also are installed. This may take a few minutes.

LTIB may provide messages about the settings in your host machines’ sudoers file, giving specific
directions on how to modify your sudoers file. This makes it possible to run rpm with root privileges,
which LTIB needs to do.

http://doc.trolltech.com/qtopia2.1/html/qtopia-dependencies.html

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-9

LTIB needs rpm-build installed on the host machine.

Also, LTIB requires that the directory that it uses for its cache of package source and patches be on the
same machine as the ltib directory, not mounted by nfs. This cache is called the local package pool
(LPP) and is set in the ltib/.ltibrc file. The default is /opt/freescale/pkgs. If /opt is an nfs
mount, edit the .ltibrc file and change the LPP path to something on the same machine as the ltib
directory.

NOTE
If the kernel source package (linux-2.6.22.tar.bz2) is not included in the
release package, you must provide this package for LTIB to build correctly.
Go to www.kernel.org and look for the file linux-2.6.22.tar.bz2, choose
one mirror and download the file. After it is downloaded, copy it to
/opt/freescale/pkgs/ in your host. You can create a checksum to validate
that the package is the one required by LTIB, using the following command:

$md5sum linux-2.6.22.tar.bz2

You should see the following output:

2e230d005c002fb3d38a3ca07c0200d0

Once LTIB is past the installation phase, it pops up a configuration menu for selecting a platform. Select
“Freescale iMX reference boards” as the platform choice. Exit after saving changes.

Another menu will pop up to select the board. Use the arrow keys to select <Platform type> and <Packages
Profiles>. The default profile is a minimal rootfs. Save your changes and exit.

The next configuration menu allows you to select the kernel source to use in building the kernel - either
the patch that came from the release (default) or local kernel sources. If building with local kernel sources,
config options are displayed in the menu to allow you to specify the absolute path to the kernel source
tree on your host machine.

By default the kernel is built at /rootfs/boot/zImage relative to the LTIB installation directory.
Another configuration option allows changing the kernel build path to be something other than that default.
To run the kernel menuconfig before building the kernel, select the Configure the kernel option.

The Package List submenu allows selecting the packages that will be used in building the root filesystem.
Busybox is in that list and Configure busybox at build time allows the user to do the Busybox
menuconfig when LTIB gets to the point that it is going to build Busybox.

The Target System Configuration Options submenu allows various settings including the kernel’s
default command line.

The Target Image Generation Options submenu allows selecting various root filesystem deployment
options.

To modify the project configuration simply run:
./ltib –-configure

This prompts for the platform/board configuration. In the board configuration screens, change settings and
select packages as appropriate. When you exit the configuration screen, your target image is adjusted
accordingly and LTIB begins building the kernel, modules, and root filesystem.

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-10 Freescale Semiconductor

To build using the default configuration:

./ltib --preconfig config/platform/imx27pdk/defconfig for PDK

When LTIB builds, it packages the results of building the kernel and each root filesystem package as an
rpm file. These rpm files are located at ltib/rpm/RPMS/arm. When doing rebuilds, LTIB re-uses the rpm files
it has built unless they have been deleted or the ‘-f’ has been specified.

Once you build your project you will get the following directory/image files (Depending on the Target
Image Generation Options selected in LTIB):

• rootfs – directory; the root file system that is to be deployed on your board. You can use this to
boot from NFS.

• rootfs.ext2.gz – EXT2 filesystem - You can use this to create a CRAMFS filesystem that can be
downloaded to SDRAM or flashed to your board. Note that this filesystem is more optimized in
size than the rootfs directory as some unnecessary files have been deleted.

• rootfs.cramfs - LTIB generated CRAMFS filesystem; you can download to SDRAM or flash this
file to your board.

• rootfs.jffs2 - LTIB generated JFFS2 filesystem; you can flash this file to your board.

• Refer to RedBoot documentation and the i.MX31 PDK Linux User's Guide for detailed steps on
flashing procedures.

• rootfs/boot/zImage – kernel image that can be loaded with RedBoot

• The kernel modules have been built and copied into the rootfs

If you want to fully re-configure and re-compile all the packages, you can do the following. However, this
is generally not necessary.

1. Clean up all the configure files and objects thoroughly:
./ltib –m distclean

2. You are prompted to confirm your choice. Type yes to perform a distclean.

3. Run ltib
./ltib

Note: Make sure to set up the network parameters in LTIB if booting from NFS:
./ltib -c

Set the network parameters in the following path:
Target System Configuration

Options--->
Network setup

IP address
netmask
broadcast address
gateway address
nameserver IP address

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor, Inc. 2-11

2.3.2.2 Creating a CRAMFS Root Filesystem

To create a CRAMFS root filesystem, use the rootfs.ext2.gz as it has been optimized in size compared to
the rootfs or instruct LTIB to create this file with the option Target Image Generation Options -> Target
Image -> cramfs:

mkdir temp
gunzip rootfs.ext2.gz

su to be root or do sudo for this:
mount -o loop -t ext2 rootfs.ext2 temp

Now rootfs is mounted on temp. You can point your nfs to the temp folder. To make a cramfs:
rm -rf temp/lost+found
mkcramfs temp rootfs.cramfs

NOTE
In some Linux distributions the mkcramfs tool is named mkfs.cramfs.

2.3.2.3 Various Useful LTIB Commands

Note that ltib will give a list of all its commands by invoking:
./ltib -h

2.3.2.3.1 Changing Platforms that LTIB is Building

The platform selection is saved in the .config file. The following brings up the LTIB platform selection
menu.

rm -f .config
./ltib

2.3.2.3.2 Compiling the Kernel and Modules using Local Source

1. Do a menuconfig to select the platform and set the path of the local Linux source directory:
./ltib -m config

A menu will come up.

2. Hit <enter> and select the platform using the up and down arrow keys.

3. Save your changes and exit.

4. Select to build the kernel from a local Linux source directory.

5. Change the path of where your kernel source directory is located to the correct absolute path like
/home/buffy/LINUX2.6/linux. The kbuild output directory will default to ../kbuild/$platform
relative to your Linux folder. Or you can change it if you like.

6. To do the kernel menuconfig, select the Configure the kernel option. This option will get reset
once the kernel successfully builds.

7. Save your changes and exit.

To do a clean kernel build, delete your kbuild directory.

LTIB’s -p option specifies to only build one package, so you can use it to select the local kernel build:

Running Linux on the Hardware Boards

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

2-12 Freescale Semiconductor

./ltib -p kernel -f

The build zImage ends up in rootfs/boot. The modules end up in rootfs/lib/modules.

2.3.2.3.3 Extracting the Kernel Source

The kernel source is released as a set of patches. To use ltib to patch them together:
./ltib -m config

A menu comes up. Press <enter> and select the platform using the up and down arrow keys. Exit saving
changes.

Then another menu appears. Under Choose your kernel select kernel (Linux 2.6.22-imx). Exit saving
changes. Then type:

./ltib -p kernel -m prep

The kernel gets patched together and appears under <ltib_dir>/rpm/BUILD/linux-.

2.3.2.3.4 Cleaning Up

To delete everything in the rootfs directory and clean up:
./ltib -m clean

To clean even more severely, delete the rpm directories that LTIB has built:
./ltib -m distclean

To clean up after a failed build:
rm -rf tmp rpm/BUILD/* rpm/SOURCES/*

2.3.3 Kernel Modules on the Target Platform

LTIB will build the kernel modules and install them on the root filesystem in the
/lib/modules/2.6.22-pdk27_rel1 folder. During the LTIB build process the modules.dep file is created so
that depmod does not need to be run on the target. One of the advantages of using LTIB to build the kernel
is that it updates the modules in the root filesystem and the modules.dep automatically.

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-1

Chapter 3
Architecture
This chapter describes the overall architecture of the Linux port to the i.MX family of processors. The BSP
supports all platforms in a single development environment, but not every driver is supported by all
processors. Drivers common to all platforms are referred to as i.MX drivers and drivers unique to a specific
platform are referred to by the platform name.

3.1 Linux BSP Block Diagram
Figure 3-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user-space
executables, standard kernel components that come from the Linux community, hardware-specific drivers,
and functions provided by Freescale for the i.MX family of processors.

Figure 3-1. Linux BSP Block Diagram

3.2 Kernel
The i.MX Linux port is based on the standard Linux kernel. The kernel supports many of the features
expected in most modern embedded OSes:

• Process and thread management

• Memory management (memory mapping, allocation/deallocation, MMU, and L1 cache control)

• Resource management (interrupts)

• Power management

• File systems (VFS, cramfs, ext2, ramfs, NFS, devfs, jffs2, fat)

• Driver model

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-2 Freescale Semiconductor

• Standardized APIs

• Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel configuration and
machine specific layer (MSL) implementation.

3.2.1 Configuration

For this BSP release, kernel configuration is done through LTIB. See the LTIB documentation for details.
The following are the some of the configuration settings apart from the standard features:

The serial port is labeled as UART-DCE on the i.MX27 PDK.

• Embedded mode

• Module loading/unloading

• ARM9 and ARM11

• File formats supported: ELF binaries, a.out and ECOFF

• Block devices: Loopback, Ramdisk

• i.MX Internal UART

• File systems: ext2, dev, proc, sysfs, cramfs, ramfs, jffs2, fat, pramfs

• Framebuffer

• Kernel debugging

• Automatic kernel module loading

• Power management

• Memory Technology Device (MTD) support

3.2.2 Machine Specific Layer (MSL)

The MSL provides a machine-dependent implementation as required by the Linux kernel, such as memory
map, interrupt, and timer. Each ARM platform has its own MSL directory under the arch/arm directory as
listed in Table 3-1.

For more information, see Chapter 4, “Machine Specific Layer (MSL).”

3.2.2.1 Memory Map

Before the kernel starts running in the virtual space, the physical-to-virtual address mapping for the IO
peripherals needs to be provided for the MMU to do the translation for memory/register accesses. The
mapping is done through a table structure in the MSL specific to a particular platform, with each entry

Table 3-1. Machine Directories

Platform Directory

i.MX27 3-Stack <ltib_dir>/rpm/BUILD/linux-/arch/arm/mach-mx27

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-3

specifying a peripheral’s starting address of virtual addresses, starting address of physical addresses, and
the size of the memory region and the type of the region.

3.2.2.2 Interrupts

The standard Linux kernel contains common ARM® code for handling interrupts. The MSL contains
platform-specific implementations of functions for interfacing the Linux kernel to the ARM11™ vectored
interrupt controller (AVIC) or the ARM9™ Interrupt Controller (AITC), depending on the platform.
Together, they support the following capabilities:

• AVIC initialization

• AITC initialization

• Interrupt enable/disable control

• ISR binding

• ISR dispatch

• Interrupt chaining

• Standard Linux API for accessing interrupt functions

• Static mapping of one interrupt source as FIQ

Vectored interrupts and fast interrupt are not supported.

3.2.2.3 General Purpose Timer (GPT)

The GPT is set up to generate an interrupt every 10 msec to provide OS ticks. This timer is also used by
the kernel for additional timer events. Linux defines the MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick implementation. Linux facilitates timer use through various
functions for timing delays, measurement, events, and alarms. The GPT is also used as the source to
support the High Resolution Timer feature.

The timer tick interrupt is disabled when in low-power modes other than idle.

3.2.2.4 Input/Output (I/O)

The Input/Output (IO) component in the MSL provides an abstraction layer between the various drivers
and the configuration and utilization of the system, including GPIO, IOMUX, and external board I/O. The
IO software module is board-specific, and resides in the MSL layer as a self-contained set of files. It
provides the following features as part of a custom kernel-space API:

• Initialization for the default I/O configuration after boot

• Functions for configuring the various I/O for active use

• Functions for configuring the various I/O for low power mode

• Functions for controlling and sampling GPIO and board I/O

• Functions for enabling, disabling, and binding callback functions to GPIO and EDIO interrupts

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-4 Freescale Semiconductor

• Functions to support different priority levels during ISR registration for different modules; if more
than one interrupt occurs at the same time, the higher priority ISR callback gets called first

• Atomic helper functions for GPIO, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. This allows I/O configuration
changes to be centralized in the GPIO module without requiring changes in the various drivers. These
functions are used by other device drivers in the kernel space. User level programs do not have access to
the functions in the GPIO module.

The exact API and implementations are different on each platform to account for the differences in
hardware, drivers, and boards. This module is an evolving module. As more drivers are added, more
functions are required from this module.

3.2.2.5 Shared Peripheral Bus Arbiter (SPBA)

The SPBA provides an arbitration mechanism among multiple masters to have access to the shared
peripherals. The SPBA implementation under MSL defines the API to allow different masters to take or
release ownership of a shared peripheral. These functions are also exported so that they can be used by
other loadable modules.

3.3 Drivers
There are many drivers provided by Freescale that are specific to the peripherals on the i.MX family of
processors or to the development platforms. Many of these drivers are common across all of the platforms.
Most can be compiled into the kernel or compiled as object modules which can be dynamically loaded
from a file system through insmod or modprobe. Modules can be loaded automatically as required using
the kernel auto-load feature. The BSP contains a modules.dep file and modprobe.conf file that contains the
dependency information for the modules.

The i.MX multimedia applications processors have several classes of drivers, explained in the following
sections.

3.3.1 Character Device Drivers

The i.MX family of processors support a Universal Asynchronous Receiver/Transmitter (UART) driver.
The character device drivers, summarized in this section, are the 16C652 UART Driver and the UART
Driver.

3.3.1.1 16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

The 16C652 Universal Asynchronous Receiver/Transmitter (UART) driver provides the interface to the
external SC16C652 UART on all the i.MX PDK boards. It provides the standard Linux serial driver API
for both of the external UART ports. It supports the following features:

• Interrupt-driven transmit/receive of characters

• Standard Linux baud rates from 460.8K baud down to 50 baud

• Two UART ports on 16C652

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-5

• Each 16C652 UART port can be programmed for 1, 4, 8, or 14 byte threshold levels to interrupt

• Supports transmitting and receiving characters with 7-bit and 8-bit character lengths

• Supports transmitting 1, 1.5, or 2 stop bits

• Supports odd and even parity

• Supports XON/XOFF software flow control

• Supports CTS/RTS hardware flow control

• Send and receive break characters through the standard Linux serial API

• Recognize frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY ioctls

• Supports the standard TTY layer ioctl calls

• Includes console support that is needed to bring up the command prompt through one of the UART
ports

Currently, the 16C652 UART driver is used by default to bring up the console. Power management,
autobaud detection, and DMA are not supported by this driver.

3.3.1.2 Universal Asynchronous Receiver/Transmitter (UART) Driver

UART driver interfaces the Linux serial driver API to all of the UART ports. It supports the following
features:

• Interrupt-driven and DMA-driven transmit/receive of characters

• Standard Linux baud rates up to 1.5Mbps

• Transmitting and receiving characters with 7-bit and 8-bit character lengths

• Transmitting 1 or 2 stop bits

• Odd and even parity

• XON/XOFF software flow control

• CTS/RTS hardware flow control (both interrupt-driven software controlled hardware flow control
and hardware-driven hardware flow control)

• TIOCMGET ioctl to read the modem control lines. Supports the constants TIOCM_CTS and TIOCM_CAR,
TIOCM_RI (only in DTE mode) only.

• TIOCMSET ioctl to set the modem control lines. Supports the constants TIOCM_RTS and TIOCM_DTR
only.

• Send and receive of break characters through the standard Linux serial API

• Recognize frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY ioctls.

• Slow IrDA (IrDA at or below 115200 baud)

• Power management features - suspends and resumes the UART ports

• The standard TTY layer ioctl calls

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-6 Freescale Semiconductor

• Includes console support that is needed to bring up the command prompt through one of the UART
ports

A kernel configuration parameter gives the user the ability to choose the UART driver, and also choose
whether the UART should be used as the system console.

All the UART ports can be accessed through the device files /dev/ttymxc0 through /dev/ttymxcX (where
X is the maximum UART number supported by the IC). /dev/ttymxc0 refers to UART 1. Autobaud detection
is not supported.

3.3.1.3 Real-Time Clock (RTC)

The Real-Time Clock (RTC) is the clock that keeps the date and time while the system is running and even
when the system is inactive. The RTC implementation supports ioctl calls to read time, set time, set up
periodic interrupts, and set up alarms. Linux defines the RTC API.

3.3.1.4 Watchdog Timer (WDOG)

The Watchdog timer protects against system failures by providing a method of escaping from unexpected
events or programming errors.

The WDOG software implementation provides routines to service the WDOG timer, so that the time-out
does not occur. The WDOG is serviced (at the same time for the platforms with two WDOGs) if is already
enabled before the Linux kernel boots (enabled by boot loader or ROM) with the service interval being
configurable. In addition, compile-time options specify whether the Linux kernel should enable the
watchdog, and if so, which parameters should be used. If the second WDOG presents (used to generate an
interrupt after the timeout occurs), the highest interrupt priority (number 16) is assigned to the WDOG
interrupt.

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported. This is supported under all i.MX platforms.

For the platforms that have two WDOG hardware modules, another implementation is done in the
Machine-specific Layer as part of the time.c file per the requirement from the customers.

3.3.2 Sound Driver

The components of the audio subsystem are applications, the Advanced Linux Sound Architecture
(ALSA), the audio driver, and the hardware. Applications interface with ALSA, and ALSA interfaces with
the audio driver, which in turn controls the hardware of the audio subsystem. For more information about
ALSA, see www.alsa-project.org.

The sound driver runs on the ARM11 and ARM9 processors. Digital audio data is carried over the digital
audio link interface to the codec hardware. This is managed by the audio driver. There may be one or more
audio streams, depending on the codec, such as voice or stereo DAC. The audio driver also configures
sample rates, audio MUXing, formats, and audio clocks. The audio driver also manages the codec setup

http://www.opensound.com

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-7

and control, DMA setup and control, and control of audio accessories, such as headphones and microphone
detection. Stream mixing may also be supported, depending on the codec.

3.3.3 Memory Technology Device (MTD) Drivers

Memory Technology Devices (MTDs) in Linux cover all memory devices, such as RAM, ROM, and
different kinds of Flashes. As each memory device has its own idiosyncrasies in terms of read and write,
the MTD subsystem provides a unified and uniform access to the various memory devices.

Figure 3-2. MTD Architecture

Figure 3-2 is excerpted from the Building Embedded Linux Systems book, which describes the MTD
subsystem. The “user modules” should not be confused with kernel modules or any sort of user-land
software abstraction. The term “MTD user module” refers to software modules within the kernel that
enable access to the low-level MTD chip drivers by providing recognizable interfaces and abstractions to
the higher levels of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
properties in the mtd_info argument to the add_mtd_device() function. The callbacks an MTD driver has
to provide are called by the MTD subsystem to carry out operations, such as erase, read, write, and sync.

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-8 Freescale Semiconductor

3.3.3.1 NAND MTD Driver

The NAND MTD driver interfaces with the integrated NAND controller on the i.MX processors. It can
support various file systems, such as CRAMFS and JFFS2. The driver implementation supports the lowest
level operations on the external NAND Flash chip, such as block read, block write and block erase as the
NAND Flash technology only supports block access. Because blocks in a NAND Flash are not guaranteed
to be good, the NAND MTD driver is also able to detect bad blocks and feed that information to the upper
layer to handle bad block management. This driver is part of the kernel image.

3.3.4 Networking Drivers

The networking drivers are described in the next sections.

3.3.4.1 CS8900A Ethernet Driver

NOTE
This driver is not supported in the i.MX27 PDK (3-Stack), i.MX31 PDK
(3-Stack) board.

The CS8900 Ethernet adapter from Cirrus Logic follows IEEE 802.3 standards and supports half- or
full-duplex operation at 10 Mbps. The CS8900A driver interfaces the CS8900A-specific functions with
the standard Linux kernel network module. It supports the following features:

• The efficient PacketPage Architecture operates in I/O and memory space and as a DMA slave

• Full duplex operation

• On-chip RAM buffers for transmit and receive of frames

• Supports programmable transmit features like automatic retransmission on collision and automatic
CRC generation

— Supports programmable receive features

— Support for DMA transfer

— Early interrupts for frame preprocessing

— Automatic rejection of erroneous frames

• EEPROM support for configuration

• Supports setting of multicast-list

• Supports MAC address setting

• Supports obtaining statistics from the device, such as transmit collisions

This network adapter can be accessed through the ifconfig command with interface name (eth0). The
probe function of this driver is declared in drivers/net/Space.c to probe for the device and initialize it
during boot.

3.3.4.2 SMSC LAN9217 Ethernet Driver

The SMSC LAN9217 Ethernet Driver interfaces SMSC LAN9217-specific functions with the standard
Linux kernel network module. The LAN9217 is a full-featured, single-chip 10/100 Ethernet controller

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-9

designed for embedded applications where performance, flexibility, ease of integration, and system cost
control are required. The LAN9217 has been specifically designed to provide the highest performance
possible for any 16-bit application. The LAN9217 is fully IEEE 802.3 10BASE-T and 802.3u
100BASE-TX compliant, and supports HP Auto-MDIX.

The SMSC LAN9217 Ethernet Driver has the following features:

• The efficient PacketPage Architecture can operate in I/O and memory space, and as a DMA slave

• Supports full duplex operation

• Supports on-chip RAM buffers for transmission and reception of frames

• Supports programmable transmit features like automatic retransmission on collision and automatic
CRC generation

• EEPROM support for configuration

• Supports MAC address setting

• Supports obtaining statistics from the device, such as transmit collisions

This network adapter can be accessed through the ifconfig command with interface name (eth0). The
probe function of this driver is declared in drivers/net/Space.c to probe for the device and to initialize
it during boot.

3.3.4.3 Fast IrDA (FIRI) Driver

NOTE
This driver is not supported in the i.MX27 PDK (3-Stack), i.MX31 PDK
(3-Stack) board and i.MX35 3-stack board.

The Fast Infra-Red Interface (FIRI) module provides support for infrared communication. The FIRI
module is capable of establishing a 0.576 Mbit/sec, 1.152 Mbit/sec, or 4 Mbit sec half duplex link through
an LED and IR detector.

The FIRI driver is used by the IrDA subsystem of the Linux kernel. The FIRI driver implements the
standard Linux driver APIs for data transfer, ioctls and power management required by the upper layer.

The FIRI driver includes the following features:

• Compliant with IrDA 1.1 for MIR and FIR

• Supports 0.56 Mbps and 1.152 Mbps for MIR

• Supports 4 Mbps for FIR

• 16/32-bit CRC generation and error detection

• Interrupt-driven transmit/receive of data

• DMA capability

• Full physical layer implementation

• Device Destination Detection Hardware Support

• SIP generation for collision avoidance

• Hardware packet assembly

• Hardware packet search

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-10 Freescale Semiconductor

• Software packet assembly

• Software packet search

• Power management

The Serial InfraRed (SIR) protocol, which supports data rate 115.2 kbps or lower, is implemented in the
UART module (see Section 3.3.1.2, “Universal Asynchronous Receiver/Transmitter (UART) Driver”).

3.3.5 Disk Drivers

The disk drivers include the ATA driver.

3.3.5.1 ATA Disk Driver

The ATA module is an AT attachment host interface. Its main use is to interface with hard disk devices.

The ATA driver is compliant to the ATA-6 standard, and supports the following protocols:

• PIO mode 0, 1, 2, 3, and 4

• multiword DMA mode 0, 1, and 2

• Ultra DMA mode 0, 1, 2, 3, and 4 with bus clocks of 50MHz or higher

• Ultra DMA mode 5 with bus clock of 80MHz or higher

3.3.6 Security Drivers

3.3.6.1 Security Controller Module (SCC) Driver

The security layer is comprised of two modules, the Secure RAM Module and the Secure Monitor Module.
The Secure RAM module provides a secure way of storing sensitive data in on-chip and off-chip RAM
memory. On-chip data can be cleared if necessary to prevent un-authorized access. Off-chip data is stored
in encrypted form using an encryption key that is unique to each device and is accessible only through
Secure RAM module. The Security Controller (SCC) is a part of the Freescale platform independent
security architecture (PISA). The SCC module will only be accessible by the ARM11. It supports the
following features:

• An autonomous hardware security state controller with debug inputs that are tied to all platform
test access detection signals to trigger a security shutdown

• Controls to ensure supervisory mode only configuration access

• Controls to ensure that high assurance internal boot is the only mechanism to reach the Secure state
after Reset

• An autonomous hardware security state controller with “debug” inputs that are tied to all platform
test access detection signals to trigger shutdown

• A self-clearing (zeroizing) 2KB RAM block, which clears itself upon command and can therefore
be used to store security-sensitive Red data (that is, security-sensitive plain text), such as
cryptographic keys

• A Security Timer which is an independent security watchdog timer whose time-out triggers a
security violation

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-11

• An Algorithm Sequence Checker (ASC) which can be used by software to force software
synchronization to the ASC's internal linear feedback shift register (LFSR) as a software assurance
check

• A “Bit Bank” counter that can be used with the ASC to ensure that a scrambler function uses the
same number of algorithm bits as traffic bits to ensure that no traffic data is “accidentally” left in
the clear

• A Plaintext/Ciphertext comparator that may be used to ensure that a cryptographic algorithm
scrambler has not been replaced with a simple pattern EXOR function

• Some portion of the SCC is used during initial boot-up from the iROM

• Some portion is used as a security measure during runtime, for example, tampering of the
hardware. This is used to clear the secure data either in the internal RAM or externally encrypted
data RAM

• Power management

3.3.6.2 Hash Accelerator Controller (HACC) Driver

The Hash Accelerator Controller (HACC) is a hardware accelerator designed to assist in the hashing of the
external Flash or RAM. It runs the SHA-1 algorithm on the given input to produce a 160 bit hash.

The HACC includes the following features:

• Accelerates the generation of a SHA-1 hash over selected memory contents.

• Works on 512 bits at a time, and in the end will pad a final block with a defined sequence so that
the final block is also a 512 bit entity.

• Has the flexibility to hash using 16-word bursts, or with incremental bursts for memories not
capable of handling 16-word bursts.

• The 160 bit resultant hash can be read out of the five 32-bit HSH registers.

• Calculates the SHA-1 hash over a number of large, potentially non-contiguous segments of
memory.

• Power management

3.3.6.3 Real-Time Integrity Checker (RTIC) Driver

The Run-Time Integrity Checker (RTIC) is part of the PISA family of platform security components. Its
purpose is to ensure the integrity of the peripheral memory contents and assist with boot authentication.
The RTIC has the ability to verify the memory contents during system boot and during run-time execution.
If the memory contents at runtime fail to match the hash signature, an error in the security monitor is
triggered.

The RTIC includes the following features:

• SHA-1 message authentication

• Segmented data gathering to support non-contiguous data blocks in memory (up to 2 segments per
block)

• Works with High Assurance Boot process

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-12 Freescale Semiconductor

• Support for up to 4 independent memory blocks

• Programmable DMA bus duty cycle timer and watchdog timer

3.3.7 General Drivers

General drivers discussed in the following sections, include the following:

• Multimedia Card (MMC)/SD driver

• I2C Client and Bus drivers

• Digital Audio Multiplexer (AUDMUX) driver

• Synchronous Serial Interface (SSI) driver

• Dynamic Power Management (DPM) driver

3.3.7.1 Multimedia Card (MMC)/SD Driver

The Multimedia Card (MMC)/SD driver implements a standard Linux slot driver as well as a block driver
interface to the MMC/SDHC controller. The interface to the upper layer follows the standard Linux driver
API.

• SDHC module supports MMC and SD cards

• MMC version 3.0 spec is supported. SD Memory Card spec 1.0 and SD I/O card spec 1.0 are
supported.

• Hardware contains 32x16 bit data buffer built in

• Plug and play support

• 100 Mbps Maximum hardware data rate in 4-bit mode

• 1/4 bit operation

• For SD card access, only SD bus mode is supported. SPI mode is not supported.

• Supports card insertion and removal events

• Supports the standard MMC/SD/SDIO commands

• Supports Power management

• Supports set/reset of password or card lock/unlock commands

• Power management

3.3.7.2 Inter-IC (I2C) Bus Driver

The I2C bus driver is a low level interface that is used to interface with the I2C bus. This driver is invoked
by the I2C chip driver; it is not exposed to the user space. The standard Linux kernel contains a core I2C
module that is used by the chip driver to access the bus driver to transfer data over the I2C bus. The chip
driver uses a standard kernel space API that is provided in the Linux kernel to access the core I2C module.
The standard I2C kernel functions are documented in the files available under Documentation/i2c in the
kernel source tree. This bus driver supports the following features:

• Compatibility with the I2C bus standard

• Supports bit rates up to 400kbps

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-13

• Start and stop signal generation/detection

• Acknowledge bit generation/detection

• Interrupt-driven, byte-by-byte data transfer

• Supports standard I2C master mode

• Supports power management features by suspending and resuming I2C

The I2C slave mode is not supported by this driver.

3.3.7.3 Digital Audio Multiplexer (AUDMUX) Driver

The low-level Digital Audio Multiplexer (AUDMUX) driver provides a custom, kernel-space API to the
AUDMUX module. It supports all of the features of the hardware module.

3.3.7.4 Synchronous Serial Interface (SSI) Driver

The low-level synchronous serial interface (SSI) driver provides a custom, kernel-space API to the SSI
modules. It supports all of the features of the hardware modules including enabling/disabling of DMA
request events. Drivers configure DMA channels through the DMA API.

3.3.7.5 Configurable Serial Peripheral Interface (CSPI) Driver

The low-level Configurable Serial Peripheral Interface (CSPI) driver interfaces a custom, kernel-space
API to the CSPI modules. It supports the following features:

• Interrupt-driven transmit/receive of SPI frames

• Multi-client management

• Priority management between clients

• SPI device configuration per client

DMA is not supported.

3.3.7.6 Dynamic Power Management (DPM) Driver

NOTE
The i.MX27 PDK board doesn’t use DPM to manage dynamic frequency
scaling. It uses CPUFreq instead. So paragraphs 3.3.7.6, “Dynamic Power
Management (DPM) Driver”, 3.3.7.7, “Policy Architecture”, 3.3.7.8,
“Operating Points”, 3.3.7.9, “Operating States”, 3.3.7.10, “Policy
Managers”, and 3.3.7.11, “Low-Level Power Management Driver” do not
refer to i.MX27 PDK.

Dynamic Power Management (DPM) refers to power management schemes implemented while programs
are still running. DPM focuses on system-wide energy consumption while it is running. In any CPU-
intensive application, lowering bus frequencies from their maximum performance points can result in
system wide energy savings.

DPM implementation includes the following data structures:

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-14 Freescale Semiconductor

• Operating Points

• Operating States

• Policies

• Policy manager

3.3.7.7 Policy Architecture

A DPM policy is a named data structure installed in the DPM implementation within the operating system,
and managed by the policy manager, which may be outside of the operating system. Once a DPM system
is initialized and activated, the system is always executing a particular DPM policy.

3.3.7.8 Operating Points

At any given point in time, a system is said to be executing at a particular operating point. The operating
point is described using hardware parameters, such as core voltage, CPU and bus frequencies, and the
states of peripheral devices. A DPM system could properly be defined as the set of rules and procedures
that move the system from one operating point to another as events occur.

3.3.7.9 Operating States

As already mentioned, the system supports multiple operating points. Some rules and mechanisms are
required to move the system from one operating point to another. Each operating state is associated with
an operating point. The system at a particular operating point is said to be in an operating state.

3.3.7.10 Policy Managers

A policy maps each operating state to a congruence class of operating points. The system supports multiple
operating states and hence multiple operating points. At any point in time, the system operates using a
single policy. For example, a power management strategy contains at least one policy, and may specify as
many different policies as necessary for different situations. If multiple policies are needed, then a policy
manager must exist in the system to coordinate the activation of different policies.

Figure 3-3 shows the high-level design for DPM.

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-15

Figure 3-3. DPM High Level Design

Figure 3-4 specifies the DPM architecture block diagram.

Figure 3-4. DPM Architecture Block Diagram

3.3.7.11 Low-Level Power Management Driver

The low-level power management driver is responsible for implementing hardware-specific operations to
meet power requirements, and also to conserve power. Driver implementation may be different for
different platforms. It is used by the DPM (Dynamic Power Management) layer. This driver implements
dynamic voltage and frequency scaling (DVFS) or dynamic frequency scaling (DFS) techniques,
depending on the platform, and low-power modes. The DVFS or DFS driver is used to change the
frequency/voltage or frequency only when the DPM layer decides to change the operating point to meet
the power requirements. This is done when the system is in RUN mode which helps in conserving power
while the system is running. Low-power modes, such as WAIT and STOP are also implemented to save
power. In all these cases, power consumption is achieved by reducing the voltage/frequency and the
severity of clock gating.

Low-level PM driver
CRM

Policy monitor
Daemon

(monitors
system activity)

DPM

Request

Operating/task
State change

Software
Hardware

Device Drivers

Power mgmt
Requirements

Sets operating points, Changing
pow er-performance
levels

Raise or lower
Perform ance
levels

New Voltage
Frequency

PLL0 PLL2PLL1

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-16 Freescale Semiconductor

3.3.7.12 CPUFreq

Frequency scaling is an important part of increasing the battery life of portable devices, but it also has a
place in reducing power consumption.

This driver allows the CPU frequency to dynamically change according to the CPU load or to user
demands. Optionally, it is also possible to change the CPU core voltage depending on the selected
frequency to reduce power consumption even more.

3.4 Boot Loaders
A boot loader is a small program that runs first after a CPU powers up. A boot loader is required to boot
an ARM Linux system. The boot loader for ARM Linux serves two purposes:

• Sets up the system, such as the AHB Lite IP Interface (AIPS) and the Multi Layer Cross Bar Switch
(MAX), memory, and different clocks

• Obtains proper information for the Linux kernel before jumping to it.

NOTE
Not all boot loaders are supported on all boards.

3.4.1 Functions of Boot Loaders

A boot loader provides the functions outlined in the following steps:

1. Set up AIPS and MAX

2. Set up Phase-Locked Loop (PLLs) for various system clocks

3. Set up and initialize the RAM

4. Initialize one serial port (optional)

5. Detect the machine type

6. Set up the kernel tagged list

7. Jump to the kernel image (either the Image file or the zImage file for compressed kernel)

The first step, setting up AIPS and MAX, is a required step for a boot loader to get access to proper
peripherals, such as Timer and UART. The MAX should also be set up properly for different bus master
priorities.

The second step, setting up the PLLs, is necessary because default PLL settings may not be optimal. The
boot loader should tune the settings before trying to execute the image to set up the desired clocks.

For more information about steps three to seven, see the following directory:
<ltib_dir>/Documentation/arm/Booting

Note that in the last, jump to the kernel image, the boot loader calls the kernel image directly regardless of
whether the kernel is compressed. For a compressed kernel (zImage), the expansion is done by the code
surrounding the kernel image during the kernel build.

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-17

The following boot loader is provided in the BSP:

• RedBoot

RedBoot downloads images using either serial or Ethernet connections, handles image decompression and
scripting, and stores the image into Flash. RedBoot is mainly used for software development.

3.4.2 RedBoot

RedBoot is an open source boot firmware based on the eCos Hardware Abstraction Layer. It was designed
to be very portable, extensible, and configurable. Some of the features are:

• Host connectivity through RS-232 or Ethernet

• Command line interface through RS-232 or Telnet

• Image downloads through HTTP, TFTP, X-Modem, or Y-Modem

• Support for compressed images (download and Flash load)

• Flash Image System for managing multiple Flash images

• Flash stored configuration

• Boot time script execution

• GDB (for debugging)

• BOOTP (for network booting)

• Watchdog servicing

RedBoot supports a wide variety of architectures and is very well documented. It is generally used for
software development. For more information on RedBoot, see http://sources.redhat.com/redboot/.

LCD display is not supported.

3.5 Graphical User Interface
The GUI resides in the user-level application space and interacts with the Video drivers transparently.
However, there are certain parts of the GUI that need to be ported, such as the touch screen driver and
keypad driver.

3.5.1 Qt/Embedded

The following are the components of Qt/Embedded as a windowing manager:

• Qtopia v4.3 for PDK

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-18 Freescale Semiconductor

Figure 3-5. Qt/Embedded

3.6 Tools
GCC ARM cross-compiler tool chains are used for compiling the kernel, associated drivers, libraries, and
applications. The pre-built tool chains are available in this release as described in Chapter 2, “Running
Linux on the Hardware Boards” and in the readme.html. The tool chain runs on the Linux Host PC.

ARM ADS is used for kernel level debugging and GDB for application level debugging.

For more information, see Chapter 2, “Running Linux on the Hardware Boards”.

3.7 Root File System
The Root file system is built as a cramfs or JFFS2 image. cramfs is a Linux filesystem designed to be
simple, small, and to compress things well. It is used on a number of embedded systems and small devices.

RAM is mounted as a ramfs. This is used for /tmp, /var and /home. There is also support for ramdisk and
jffs2 file systems. In a future release, the /var region may be mounted as jffs2 so as to provide persistent
storage for user data files.

The release also contains a tar file containing the root file system binaries.

3.7.1 Utilities

The cramfs is a read-only file system, so unlike other file systems it must be created along with its contents.
The mkcramfs utility is used to construct a cramfs image which later can be written to Flash/ROM and
mounted:

mkcramfs dir img.cramfs

Qt API

Frame buffer

Qt/Embedded

Linux Kernel

Qtopia

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-19

where dir is the name of a directory containing the files and subdirectories to be added to the cramfs image,
and img.cramfs is the name of the file to store the cramfs image.

mkcramfs runs on Linux 2.6. It is available on a standard Linux distribution. In some distributions it is
named mkfs.cramfs.

3.7.2 Contents

Pre-built binaries for the standard applications and libraries available in the file system provided by LTIB.
These include:

• base-files: This contains the basic root file system and configuration files

• busybox: Core of the system

• libc6: The C libraries from the latest stable arm-linux GNU tools release

• modutils: Linux kernel module support

• procps: /proc support utilities

• tinylogin

The binaries for the GUI are built from source. Qt/Embedded sources can be obtained from
http://www.trolltech.com.

3.8 Source of Linux BSP Components
Figure 3-6 shows the source of the code for each of the Linux BSP components.

Figure 3-6. Linux BSP Source Diagram

SPI

Atlas Protocol

Atlas
Digitizer

Power
Mgmt

I2C Bus

Client I2C

iMagic Camera

Keypad

CS8900
Ether

NOR MTDMXC UART

16550 UART

Sharp LCD

AVIC RTCMem Map SDMA WatchdogTimer

Machine Specific Layer

Atlas Audio
AudMux

SSI

Sound

MMC/SD

ATA

NAND MTD

MU

Post-Proc

Pre-Proc

Network
Stack

CramFS RamFS

FATExt2

NFS

JFFS2

Virtual File System

System Call Interface

Memory
Manager

Process
Manager

Resource
Manager

Legend

Utilities, Libraries GUI (QT and GTK)Applications, Shell CODECs

Epson SLCD

IPUSDMA TTY

IO

Fast
IrDA

USB Host
Stack

USB
Class

USB
Device
Stack

USB
Function

USB-OTG

Security

Other
Atlas

MPEG4 Encoder

Freescale

Open Source

ARM11 Belcarra

DPM Policy Manager

Post-Filter

Framebuffer

IrDA
Stack

MontaVista

Customer

Security
Package

http://www.armdevzone.com

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-20 Freescale Semiconductor

3.9 Linux BSP APIs
Figure 3-7 shows a high level view of the Linux BSP components.

Figure 3-7. Linux BSP API Diagram

Table 3-2 lists the types of APIs that are exported by each of the Linux BSP components.

Table 3-2. List of Linux BSP Component APIs

SW Component Kernel API User API Comment

MSL

Interrupts X Linux Std

Timer X Linux Std

DMAC(DMA) API X FSL Custom

IOMUX X FSL Custom

GPIO X FSL Custom

SPBA X FSL Custom

Character Device Drivers

16552 UART X X Linux Std

MXC UART X X Linux Std

Watchdog X Linux Std

RTC X Linux Std

SPI

Atlas Protocol

Atlas
Digitizer

Power
Mgmt

I2C Bus

I2C Client

iMagic Camera

Keypad

CS8900
Ether

NOR MTDMXC UART

16550 UART

Sharp LCD

AVIC RTCMem Map SDMA WatchdogTimer

Machine Specific Layer

Atlas Audio
AudMux

SSI

Sound

MMC/SD

ATA

NAND MTD

MU

Post-Proc

Pre-Proc

Network
Stack

CramFS RamFS

FATExt2

NFS

JFFS2

Virtual File System

System Call Interface

Memory
Manager

Process
Manager

Resource
Manager

Legend

Utilities, Libraries GUI (QT and GTK)Applications, Shell CODECs

Epson SLCD

IPUSDMA TTY

IO

Fast
IrDA

USB Host
Stack

USB
Class

USB
Device
Stack

USB
Function

USB-OTG

Security

Other
Atlas

MPEG4 Encoder

Standard

ARM11 Custom

DPM Policy Manager

Post-Filter

Framebuffer

IrDA
Stack

Security
Package

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 3-21

Graphics Drivers

Framebuffer X Linux Std with FSL Extensions

Sharp LCD X FSL Custom

Epson SLCD X FSL Custom

IPU X FSL Custom

VPU X FSL Custom

Multimedia

iMagic Camera X V4L2 with FSL Extensions

Video Post-Processing

Video Pre-Processing

Video Post-Filtering

MPEG4 VGA Encoder

MPEG4/H.264 D1 CODEC X FSL Custom

MC13783

MC13783 Protocol X FSL Custom

MC13783 Audio X FSL Custom

MC13783 Digitizer X FSL Custom

MC13783 RTC X FSL Custom

MC13783 Power
Management

X FSL Custom

MC13783 Connectivity X FSL Custom

MC13783 Battery X FSL Custom

MC13783 Light X FSL Custom

Sound Drivers

Sound X ALSA with FSL Extensions

Input Device Drivers

Keypad X FSL Custom

MTD Drivers

NOR MTD X Linux Std

NAND MTD X Linux Std

Networking Drivers

CS8900A Ethernet X Linux Std

SMSC 9217 Ethernet X Linux Std

Table 3-2. List of Linux BSP Component APIs (Continued)

SW Component Kernel API User API Comment

Architecture

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

3-22 Freescale Semiconductor

Fast IrDA Linux Std

Disk Drivers

ATA

USB Drivers

USB Host Stack X Linux Std

USB Device Stack X Belcarra

USB Class Drivers X Linux Std

USB Function Drivers X Belcarra

USB-OTG (TDI) X Linux Std/Belcarra

USB-OTG (ARC) X Linux Std/Belcarra

Security Drivers

SCC X FSL Custom

RNGA X FSL Custom

RTIC X FSL Custom

General Drivers

MMC/SD X Linux Std

Memory Stick TBD

I2C Bus X Linux Std

I2C Client X FSL Custom

DMA TTY X FSL Custom

AUDMUX X FSL Custom

SSI X FSL Custom

SPI X FSL Custom

Power Management

Power Management X DPM with FSL Extensions

DVFS X FSL Custom

DPTC No API

CPUFreq X X Linux Std

GUI

Qt/E X Qt/E

GTK X GTK

Table 3-2. List of Linux BSP Component APIs (Continued)

SW Component Kernel API User API Comment

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-1

Chapter 4
Machine Specific Layer (MSL)
The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent
components:

• Interrupts including GPIO and EDIO (only on certain platforms)

• Timer

• Memory map

• General purpose input output (GPIO) including IOMUX on certain platforms

• Shared peripheral bus arbiter (SPBA)

These modules are normally available in the following directory:
<ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc

The header files are implemented under the following directory:
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc

The MSL layer contains not only the modules common to all the boards using the same processor, such as
the interrupts and timer, but it also contains modules specific to each board, such as the memory map. The
following sections describe the basic hardware and software operation and the software interfaces for MSL
layer modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-
specific modules, such as Memory Map and GPIO (including IOMUX on some platforms) are detailed.

Each of the following sections contains an overview of the hardware operation. For more information, see
the corresponding IC Specification document.

4.1 Interrupts
The following sections explain the hardware and software operation of interrupts on the IC.

4.1.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 64 internal and external interrupt sources.
Each source can be enabled or disabled by configuring the Interrupt Enable Register or using the Interrupt
Enable/Disable Number Registers. When an interrupt source is enabled and the corresponding interrupt
source is asserted, the Interrupt Controller asserts a normal or a fast interrupt request depending on the
associated Interrupt Type Register setting.

Only in supervisor mode can Interrupt Controller registers be accessed. The Interrupt Controller’s interrupt
requests are prioritized in the order of fast interrupts (in order of highest order) and normal interrupts (in
order of highest priority level, then highest source number with the same priority). There are sixteen
normal interrupt levels for all interrupt sources, with level zero being the lowest priority. The interrupt
levels are configurable through eight normal interrupt priority level registers. Those registers, along with
the Normal Interrupt Mask Register support software controlled priority levels for normal interrupts and
priority masking.

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-2 Freescale Semiconductor

4.1.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different exceptions. The exception
vector addresses can be configured to start at low address (0x0) or high address (0xFFFF0000). ARM Linux
implementation chooses the high vector address model.

The following file has some detailed description about the ARM interrupt architecture.
<ltib_dir>/rpm/BUILD/linux-/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the
irqchip structure and exports one initialization function, which is called during system startup.

4.1.3 Interrupt Requirements

The interrupt implementation meets the following requirements:

• The interrupt module implements the Interrupt Controller interrupt disable and enable functions.

• The interrupt module implements all the functions required by the Linux interrupt architecture as
defined in the standard ARM interrupt source code (mainly the
<ltib_dir>/rpm/BUILD/linux-/arch/arm/kernel/irq.c file).

4.1.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file:
<ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc/irq.c

There are also two header files:
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/hardware.h
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/irqs.h

Table 4-1 lists the source files for interrupt.

4.1.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function. This function initializes the
Interrupt Controller hardware and registers functions for interrupt enable and disable from each interrupt
source. This is done within the structure global irq_desc of type struct irqdesc. After the initialization,
the interrupt can be used by the drivers through the request_irq() function to register device-specific
interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the number of interrupts is
also expanded to support GPIO interrupt and EDIO (on some platforms only) interrupts. This allows

Table 4-1. Interrupt Files List

File Description

hardware.h register descriptions

irqs.h declarations for number of interrupts supported

irq.c actual interrupt functions

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-3

drivers to use a standard interrupt interface supported by ARM Linux, such as request_irq() and
free_irq() functions.

4.2 Timer
The Linux kernel relies on the underlying hardware to provide support for both the system timer (which
generates periodic interrupts) and the dynamic timers (to schedule events). Once the system timer interrupt
occurs, it does the following:

• Updates the system uptime.

• Updates the time of day.

• Reschedules a new process if the current process has exhausted its time slice.

• Runs any dynamic timers that have expired.

• Updates resource usage and processor time statistics.

The timer hardware on i.MX platforms consists of either Enhanced Periodic Interrupt Timer (EPIT) or
general purpose timer (GPT) or both. GPT is configured to generate a periodic interrupt at a certain interval
(every 10 milliseconds) and is used by the Linux kernel.

4.2.1 Timer Hardware Operation

The General purpose timer (GPT) has a 32 bit up-counter. The timer counter value can be captured in a
register using an event on an external pin. The capture trigger can be programmed to be a rising or falling
edge. The GPT can also generate an event on ipp_do_cmpout pins, or can produce an interrupt when the
timer reaches a programmed value. It has a 12 bit prescaler providing a programmable clock frequency
derived from multiple clock sources.

4.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the
proper clock source, interrupt mode and interrupt interval. The timer then registers its interrupt service
routine and starts timing. The interrupt service routine is required to service the OS for the purposes
mentioned in Section 4.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

4.2.3 Timer Requirements

The timer implementation meets the following requirements:

• The timer module implements all the functions required by Linux to provide the system timer and
dynamic timers.

• The timer is set up to generate an interrupt every 10 ms.

4.2.4 Timer Source Code Structure

The timer module is implemented in arch/arm/plat-mxc/time.c file. The source file for the timer is time.c
and it describes timer function implementation.

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-4 Freescale Semiconductor

4.2.5 Timer Programming Interface

All the timer functions required for the Linux port are implemented in the time.c file.

4.3 Memory Map
As the Linux kernel is running under the virtual address space with the Memory Management Unit (MMU)
on, a predefined virtual to physical memory map table is required for the device drivers to access to the
device registers.

4.3.1 Memory Map Hardware Operation

The MMU (Memory Management Unit) as part of the ARM core provides the virtual to physical address
mapping defined by the page table. For more information, see the ARM Technical Reference Manual
(TRM) from ARM Limited.

4.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX platforms as defined in
the <ltib_dir>/rpm/BUILD/linux-/arch/arm/mach-mx3/mm.c file.

4.3.3 Memory Map Requirements

The Memory Map implementation should meet the requirement where the Memory Map module creates
the physical to virtual memory map for all the I/O modules.

4.3.4 Memory Map Source Code Structure

The Memory Map module implementation is in mm.c under the platform-specific MSL directory. The
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/hardware.h header file is used to provide
macros for all the IO module physical and virtual base addresses and physical to virtual mapping macros.
Table 4-2 lists the source file for the Memory Map.

4.3.5 Memory Map Programming Interface

The Memory Map is implemented in the mm.c file to provide the memory map between physical and virtual
addresses. It just defines an initialization function to be called during system startup.

Table 4-2. Memory Map File List

File Description

mx27.h Header files for the IO module physical addresses.

mm.c Memory map definition file

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-5

4.4 IOMUX
IOMUX module controls a pin’s usage so that the same pin can be configured for different purposes and
can be used by different modules. This is a common way to reduce the pin count while at the same time to
meet requirements from various customers.

Note that not all platforms have the IOMUX hardware module. On those platforms, the pin muxing is done
through the GPIO module.

Pins coming out of highly integrated processors can have multiple purposes due to its limited size. For a
multi-purpose pin, the IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin (which can be subdivided into either major function or some other
alternate functions) whose operation is controlled by a specific hardware module, or it can be configured
as a GPIO pin, in which case, the pin is controlled by the user through software with further configuration
through the GPIO module. For example, on certain platform, the TXD1 pin can be multiplexed with:

• TXD1— internal UART1 Transmit Data pin. This is the primary function of this pin.

• TCK—hardware mode 1

• USB_OTG_DATA1—alternate mode 1

• PP4_TXCLK/SCK—alternate mode 2

• RI_DCE1—alternate mode 4

• MCU2_5—GPIO

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose
which cannot be changed by software. Otherwise, the IOMUX module needs to be configured properly to
serve a particular purpose that is dictated with the system (board) design: if this pin is connected to an
external UART transceiver and therefore to be used as the UART data transmit signal, it should be
configured as the primary function. If this pin is connected to an external Ethernet controller for
interrupting the ARM core, then it should be configured as GPIO input pin with interrupt enabled. Again,
be aware that the software does not have control over what function a pin should have. The software only
configures a pin’s usage according to the system design.

4.4.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware module.

The IOMUX controller module is divided into MUX control and pad control sub modules. The following
sections briefly describe the hardware operation. For detailed information, refer to the relevant IC
specifications.

4.4.1.1 SW_MUX_CTL

The SW_MUX_CTL module contains SW_MUX_CTL registers to control each IOMUX, on a pad-to-pad basis. The
SW_MUX_CTL registers are partitioned into 4 × 8 bit fields. Each field is mapped to a specific pad. Each field
is partitioned as follows: 4 bits to control the input path, 3 bits to control the output path, and 1 reserved bit.

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-6 Freescale Semiconductor

4.4.1.2 SW_PAD_CTL

The IOMUX controller has a pad control register (SW_PAD_CTL) made of a set of registers to control each
PAD. The SW_PAD_CTL registers are used to control several parameters of the pad’s configuration:

• Active devices, such as pull-up/down, keeper, and open drain.

• Pad functionality, such as software input on, max drive, hysteresis, and power down.

4.4.2 IOMUX Software Operation

The iomux software implementation provides an API to set up a pin’s functionality and pad features.

4.4.3 IOMUX Requirements

The iomux implementation should meet the requirements where the iomux module implements all the
functions to configure the pins that are supported by the hardware.

4.4.4 IOMUX Source Code Structure

The iomux module is implemented in iomux.c file under the relevant MSL directory. The header file to
define the pin names is under:

<ltib_dir>/rpm/BUILD/linux-/arch/arm/mach-xxx/xxx_pins.h (where xxx stands for a
specific CPU)

Table 4-3 lists the source files for the iomux.

4.4.5 IOMUX Programming Interface

All the iomux functions required for the Linux port are implemented in the iomux.c file.

4.4.6 IOMUX Control through GPIO Module

The following discussion applies to those platforms that control the muxing of a pin through a GPIO
module.

For a multi-purpose pin, the GPIO controller provides the multiplexing control so that each pin may be
configured either as a functional pin (which can be subdivided into either major function or one alternate
function) whose operation is controlled by a specific hardware module, or it can be configured as a GPIO
pin, in which case, the pin is controlled by the user through software with further configuration through
the GPIO module. In addition, there are some special configurations for a GPIO pin (which can be
subdivided into not only output-based A_IN, B_IN, C_IN or DATA register, but input-based A_OUT or
B_OUT).

Table 4-3. IOMUX File List

File Description

iomux.c iomux function implementation

xxx_pins.h pin name definitions

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-7

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose
which cannot be changed by software; otherwise, the GPIO module needs to be configured properly to
serve a particular purpose that is dictated with the system (board) design: if this pin is connected to an
external UART transceiver, it should be configured as the primary function; if this pin is connected to an
external Ethernet controller for interrupting the core, then it should be configured as a GPIO input pin with
interrupt enabled. Again, be aware that the software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

4.4.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub modules. The
following sections briefly describe the hardware operation. For detailed information, refer to the relevant
IC spec.

4.4.6.1.1 Muxing Control

The GPIO In Use Registers control a multiplexer in the GPIO module. The settings in these registers
choose if a pin is utilized for a peripheral function or for its GPIO function. One 32-bit general purpose
register is dedicated to each GPIO port. These registers may be used for software control of IOMUX block
of the GPIO.

4.4.6.1.2 PULLUP control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control every pin of that
port.

4.4.6.2 GPIO Software Operation

The GPIO software implementation provides an API to set up a pin’s functionality and pad features.

4.4.6.3 GPIO Requirements

The GPIO implementation should meet the requirement where the GPIO module implements all the
functions to configure the pins that are supported by the hardware.

4.4.6.4 GPIO Source Code Structure

The GPIO module is implemented in gpio_mux.c file under the relevant MSL directory. The header file to
define the pin names is under:

<ltib_dir>/rpm/BUILD/linux-/arch/arm/mach-xxx/xxx_pins.h (where xxx stands for a
specific CPU)

Table 4-4 lists the source files for the IOMUX.

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-8 Freescale Semiconductor

4.4.6.5 GPIO Programming Interface

All the GPIO muxing functions required for the Linux port are implemented in the gpio_mux.c file.

4.5 General Purpose Input/Output (GPIO)
The GPIO module provides dedicated general-purpose pins that can be configured as either inputs or
outputs. When configured as an output, a pin’s state (high/low) can be controlled by writing to an internal
register; when configured as an input, a pin’s input state can be read from an internal register.

4.5.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX processor’s
external pins and a central place to control the GPIO interrupts.

The utility functions should be called to set up the desired functionality for a pin instead of directly access
to the GPIO registers. The GPIO interrupt implementation contains functions, such as interrupt service
routine (ISR) registration/un-registration and ISR dispatching once an interrupt occurs. All driver-specific
GPIO setup functions are recommended to be made during device initialization time in the MSL layer to
provide better portability and maintainability. This GPIO interrupt is initialized automatically during the
system starts.

If a pin is configured as GPIO by the IOMUX, more function calls should be made to set up the state of a
pin. The pad sub-module control within IOMUX may be required to be set up as well.

4.5.1.1 API Interface for GPIO

The GPIO implementation has the following features:

• Standardized API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS has been expanded to accommodate for all
the possible GPIO pins that are able of generating interrupts.

• Capability to request and free the usage of a IOMUX pin. If that pin is used as GPIO, another set
of request/free function calls are provided. User should check the return value of the “request” calls
before modifying the pin’s current state. The “free” function calls should be made when the pin is
not needed. See API document for more details.

• Aligned parameter passing for both IOMUX and GPIO function calls. In this implementation the
same enumeration for iomux_pins is used for both IOMUX and GPIO calls and the user does not
have to figure out where that pin is located in the GPIO module.

• Minimal changes required for the public drivers such as Ethernet driver and 8250 UART driver as
no special GPIO function call is needed for registering interrupt.

Table 4-4. IOMUX File List

File Description

gpio_mux.c iomux function implementation

xxx_pins.h pin name definitions

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-9

The following sub-sections shows the examples using this API.

4.5.1.2 IOMUX/GPIO API Usage Example For MX27

To configure the UART1_RXD pin for functional mode used by the UART driver, gpio_uart_active() calls:
...
gpio_request_mux(MX27_PIN_UART1_RXD, GPIO_MUX_PRIMARY);

To set it up, in the gpio_uart_inactive() function which will be called when the driver is shutdown, these
two calls are needed to put this pin in the GPIO input mode and then release the ownership of this pin:

...
gpio_free_iomux(MX27_PIN_UART1_RXD);

4.5.2 GPIO Requirements

This GPIO implementation should meet the following requirements where the GOPIO module:

• Implements the functions for accessing the GPIO hardware modules.

• Provides a centralized place to control GPIO signal setup and GPIO interrupts for the whole
system.

4.5.3 GPIO Source Code Structure

All of the GPIO module source code is in the MSL layer, in the following file:
<ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc/gpio.c

Includes are available in the following files:
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/gpio.h
<ltib_dir>/rpm/BUILD/linux-/arch/arm/mach-xxx/xxx_pins.h (where xxx stands for a
specific CPU)

.

4.5.4 GPIO Programming Interface

For more information, see the API documents for the programming interface.

4.6 EDIO
Note that not all platforms have the EDIO hardware module. So this section may only apply to the
platforms that have a EDIO module.

The EDIO module provides external interrupt capability to the processors.

Table 4-5. GPIO File List

File Description

xxx_pins.h GPIO private header file

gpio.h GPIO public header file

gpio.c Function implementation

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-10 Freescale Semiconductor

4.6.1 EDIO Hardware Operation

The Interrupt (EDIO) module recognizes the external asynchronous signal as an interrupt source. When it
matches the selected criteria, low level or edge (rising, falling or both edges), it asserts an interrupt request
to the processor’s interrupt controller. This module can handle eight such interrupts simultaneously with
selectable configuration for each incoming signal reaching EDIO.

4.6.2 EDIO Software Operation

EDIO interrupt has been integrated into the generic platform level interrupt implementation as in irq.c
under <ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc directory. For the drivers that need to set up the
interrupt attributes, such as interrupt edges or levels, the set_irq_type() can be called. The interrupt
clearing that is needed for the EDIO interrupts is hidden from the driver.

4.6.3 EDIO Requirements

This EDIO implementation should meet the following requirement where the EDIO module provides a
method to set the EDIO interrupt attributes provided by the hardware.

4.6.4 EDIO Source Code Structure

All of the EDIO module source code is in the irq.c is under the
<ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc/ directory and the hardware.h is under the
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/ directory.

4.6.5 EDIO Programming Interface

For more information, see the API documents for the programming interface.

4.7 SPBA Bus Arbiter
Note that not all platforms have the SPBA hardware module. Therefore, this section may only apply to the
platforms with the SPBA module in them.

The SPBA bus arbiter provides arbitration mechanism among multiple masters to have access to the shared
peripherals.

Table 4-6. EDIO File List

File Description

platform.h EDIO interrupt defines

irq.c Common functions for various boards

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 4-11

4.7.1 SPBA Hardware Operation

The SPBA is a three-to-one IP Sky-Blue line interface (IP-Bus) arbiter, with a resource locking
mechanism. The masters can access up to thirty-one shared peripherals through the SPBA. It has the
following features:

• Multi-master bus arbiter

• 32-bit data access

• Supports up to 31 shared peripherals, each consuming 16 KB of address space

• Can be considered as the 32nd peripheral, used for resource ownership and access control
mechanism to the 31 peripherals

• Provides 31 sets of Out of Band Steering Control signals to the off-module steering logic

• Operating frequency up to 67 MHz,

• Clocks: ipg_clk, ipg_clk_s (mcu clock domain).

4.7.2 SPBA Software Operation

Functions are provided to allow different masters to take/release ownership of a shared peripheral. These
functions are also exported to be used by other loadable modules.

4.7.3 SPBA Requirements

This SPBA implementation should meet the following requirements where:

• The SPBA module provides an API to allow different masters to take/release ownership of a shared
peripheral.

• The SPBA module conforms to the Linux coding standard as documented in the Coding
Conventions chapter.

4.7.4 SPBA Source Code Structure

All of the SPBA module source code is in the MSL layer.

The following files are available within the directories indicated:
<ltib_dir>/rpm/BUILD/linux-/arch/arm/plat-mxc/spba.c
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/spba.h

4.7.5 SPBA Programming Interface

For more information, see the API documents for the programming interface.

Table 4-7. SPBA File List

File Description

spba.h SPBA public header file

spba.c Common SPBA functions

Machine Specific Layer (MSL)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

4-12 Freescale Semiconductor

Direct Memory Access Controller (DMAC) API

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 5-1

Chapter 5
Direct Memory Access Controller (DMAC) API

5.1 Overview
The direct memory access controller (DMAC) provides 16 channels supporting linear memory, 2D
memory, and FIFO transfers to provide support for a wide variety of DMA operations.

5.1.1 Hardware Operation
• Sixteen channels support linear memory, 2D Memory, and FIFO for both source and destination.

• DMA chaining for variable length buffer exchanges and high allowable interrupt latency
requirement.

• Increment, decrement, and no-change support for source and destination addresses.

• Each channel is configurable to response to any of the DMA request signals.

• Supports 8, 16, or 32-bit FIFO and memory port size data transfers.

• DMA burst length configurable up to a maximum of 16 words, 32 half-words, or 64 bytes for each
channel.

• Bus utilization control for the channel that is not triggered by a DMA request.

• Burst time-out errors terminate the DMA cycle when the burst cannot be completed within a
programmed time count.

• Buffer overflow error terminates the DMA cycle when the internal buffer receives more than 64
bytes of data.

• Transfer error terminates the DMA cycle when a transfer error is detected during a DMA burst.

• DMA request time-out errors are generated for channels that are triggered by DMA requests to
interrupt the CPU when a DMA burst does not start on that channel after a programmed time count.

• Interrupts provided to the interrupt controller (and subsequently to the core) on bulk data transfer
complete or transfer error.

• Each peripheral supporting DMA transfer generates a DMA_REQ signal to the DMA controller,
assuming that each FIFO has a unique system address and generates a dedicated dma_req signal
to the DMA controller. For example, a USB device with 8 end-points has 8 DMA request signals
to the DMA if they all support DMA transfer.

• The DMA controller provides an acknowledge signal to the peripheral after a DMA burst is
complete. This signal is sometimes used by the peripheral to clear status bits.

• Repeat data transfer function supports automatic USB host-USB device bulk/iso data stream
transfer.

• Dedicated external DMA request signal.

Direct Memory Access Controller (DMAC) API

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

5-2 Freescale Semiconductor

5.1.2 Software Operation

The module provides an API for other drivers to control DMA channels. The DMA software operations
mainly contain the following:

• Requesting DMA channel

• Initialization of the channel

• Setting configuration of DMA channel

• Enabling/Disabling DMA

• Getting DMA transfer status

• DMA IRQ handler

5.2 Requirements
• The module shall implement functions parallel to standard DMA API.

• The module shall conform to the Linux coding standard as documented in the appendix.

5.3 Source Code Structure
The header file, dma.h, is available in the directory
/<ltib_dir>/rmp/BUILD/<linux_version>/include/asm-arm/arch.

Table 5-1 lists the source files available in the directory
/<ltib_dir>/rmp/BUILD/<linux_version>/arch/arm/.

5.4 Programming Interface
The module implements standard DMA API. Standard API is supported partially. It can be used along with
custom API functions only. Refer to the API document titled full_cod_doc.pdf for more information on
the methods implemented in the driver.

Table 5-1. DMA API Files

File Description

mach-mx27/dma.c Parameters of DMA channels

plat-mxc/dma_mx2.c DMA API functions

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-1

Chapter 6
PMIC Protocol Driver
This chapter describes the Power Management Integrated Circuit (PMIC) protocol device driver for Linux
that provides the low-level read/write access to the PMIC’s hardware control registers.

One key objective of the PMIC protocol driver and the other PMIC-related drivers is to provide a complete
API interface to all supported PMIC chips, despite differences in hardware design and implementation.
This is necessary to minimize the effort to design, implement, test, and support PMIC device drivers.

With a single API interface, a single application can be reused without any changes across all supported
PMIC chips. Such an application, however, must either restrict itself to a core set of features supported by
all PMIC chips, or detect at runtime which PMIC chip is installed before performing any PMIC-specific
operations.

This chapter describes the requirements, design, implementation, and client API that is provided for
accessing PMIC hardware. Additional information about the PMIC device driver APIs, especially
programming-related details, can also be located in the Doxygen-generated HTML documentation that is
provided with the Linux BSP distribution. As shown in Figure 6-1, the PMIC protocol driver handles all
low-level communications between many other Linux device drivers and the PMIC hardware. The PMIC
protocol driver uses one of the available SPI buses to communicate with the PMIC chip.

NOTE
The PMIC protocol driver is intended only for use with the MCU core and
the Linux OS. An equivalent PMIC driver for the DSP core within a dual
core platform is beyond the scope of this document.

6.1 Key PMIC Features and Capabilities
The PMIC protocol typically provides hardware to support the following functions for Freescale’s
i.MX-based platforms:

• Audio playback and recording

• Power supply control, battery charging, and power management support

• Analog-to-digital conversion (including touchpanel support)

• External RS-232 and USB OTG connectivity

• LED and LCD backlight control

• Real-time clock (RTC) support

• Event notification through the use of hardware interrupts

These functions are all selected and configured through the PMIC control registers, which are accessible
through two separate SPI interfaces. The Primary SPI interface initially has full read/write access to the
PMIC control registers, while the Secondary SPI interface initially has only read access but can be granted
selective read/write access. When used with dual core platforms, the PMIC can be controlled by both the
MCU and the DSP through their respective SPI interfaces. Depending upon the actual system
requirements, either the MCU or the DSP can be designated as the Primary Processor and connected to the
PMIC through the Primary SPI bus. The other processor would then be designated as the Secondary

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-2 Freescale Semiconductor

Processor and be connected to the PMIC through the Secondary SPI bus. For single core platforms, only
the Primary SPI interface to the PMIC is typically used.

Figure 6-1 shows the main functional blocks provided by the PMIC.

Figure 6-1. PMIC Block Diagram

Note that not all of the functions can be used at the same time because of hardware constraints. For
example, some of the I/O pins are shared between the USB OTG and RS-232 transceivers. Therefore, USB
OTG and RS-232 connectivity cannot be used at the same time, although it is certainly possible to switch
between the two modes. For the sake of simplicity, only the SPI bus interfaces are shown in Figure 6-2 and
all of the other PMIC data buses and external I/O connections have been omitted.

Table 6-1 provides a brief description of the PMIC functional blocks for which Linux device drivers have
already been implemented. Additional information about the device drivers for each of these PMIC
functional blocks can be located in this reference manual.

Table 6-1. Summary of all Available PMIC Client Device Drivers

PMIC Device Driver Functions

Power Management Driver • Battery charger interface for wall charging and USB charging.
 • Regulators with internal and external pass devices.
 • Power up and power down control.

Analog-to-Digital Conversion
(ADC) Driver

 • 10-bit ADC for battery monitoring and other readout functions.
 • Touch screen interface.

Audio Driver • Audio input amplifier selection and gain control.
 • Microphone bias circuit control.
 • Audio output amplifier selection and gain control.
 • Audio output hardware mixing and mono adder control.
 • 13-bit Voice CODEC supporting playback and recording at either 8 kHz or 16 kHz

sampling rates.
 • 13-bit Stereo DAC supporting playback at multiple sample rates.

RTC Driver • Real-time clock support (MC13783 PMIC only).

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-3

6.1.1 PMIC Register Access and Arbitration

The main purpose of the PMIC protocol driver is to provide the necessary read/write access to the PMIC
control registers using the SPI bus interfaces to support all of the higher-level PMIC client drivers that are
shown in Figure 6-1 and are briefly described in Table 6-1. There are two possible techniques for accessing
the PMIC control registers: exclusive sharing and logic sharing. For each PMIC control register, choose
either of the following techniques:

• Exclusive Sharing—One processor has exclusive control. The processor connected to the primary
SPI bus interface determines which processor has control by setting the appropriate arbitration
control bits. Only the designated processor can modify the register. By default, only the primary
SPI has read/write access to the PMIC control registers, while the secondary SPI has only read
access. However, some of the PMIC control registers and settings cannot be accessed at all from
the secondary SPI, regardless of the arbitration bit settings. See the appropriate PMIC detailed
technical specifications (DTS) document for complete information about primary versus
secondary SPI bus access to the control registers.

• Logic Sharing—Control is determined by analyzing logical expressions. Values of both the
primary and secondary control register settings are logically ANDed or ORed to create the final
resource control value. Logic Sharing of a resource, through either a single bit or a multi-bit vector,
can also be selected by setting the appropriate arbitration bit values through the primary SPI
interface.

Immediately following a Power up or Reset event, the processor that is connected to the Primary SPI
interface can modify the PMIC control registers to configure the desired access mode for control registers.
The specific registers that need to be updated and the appropriate arbitration bit values can be located in
the Detailed Technical Specifications document for the PMIC.

PMIC register access and arbitration settings are not issues on platforms where Linux is running on the
primary processor. However, where Linux is running on the secondary processor (on a dual-core platform),
additional steps must be taken to provide the required level of access to the PMIC registers from the
secondary SPI interface. The following options may be used to resolve this issue:

• Modify the platform or the PMIC hardware to swap the primary and secondary processor
connections.

• Implement additional software on the primary processor (which is not running Linux in this case)
to grant the secondary processor the required access rights to the PMIC control registers.

Backlight and LED Driver • Manages the LCD backlight level and each of the Red, Green, and Blue LEDs.

Connectivity Driver • USB OTG and RS-232 transceiver control.
 • USB OTG device insert/removal detection and notification.
 • USB OTG connection negotiation and voltage level control.

Battery Driver • Configures the battery control/monitoring interface.

Table 6-1. Summary of all Available PMIC Client Device Drivers

PMIC Device Driver Functions

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-4 Freescale Semiconductor

The second option is typically the preferred solution. However, in situations where additional software
development on the primary processor (usually DSP core, but note that the i.MX31 does not use an extra
DSP core) is not practical in the short-term, then a possible interim solution is to modify the PMIC
hardware so that both the primary and secondary SPI interfaces are connected to a secondary processor
running Linux (for example, by connecting both CSPI1 and CSPI2 from the ARM core to the PMIC). A
single function can be implemented that will be called during the Linux boot process and use the primary
SPI interface to reconfigure the PMIC arbitration bits as required. This allows the rest of the Linux system
to operate properly using only the secondary SPI interface, after the boot process has been completed.

Note that this is strictly an interim solution for getting Linux to run properly on the secondary processor
with full PMIC functionality. This hardware change to the PMIC SPI interfaces completely disconnects
the DSP core from the PMIC and, therefore, cannot be used as a true solution to the arbitration problem.
Ultimately, implementing the appropriate software on the primary processor to reconfigure the PMIC
arbitration settings is the only appropriate solution when Linux is running on the secondary processor.

6.1.2 Interrupt Notification

Events are reported to either the primary or secondary processor through the use of a PMIC-generated
hardware interrupt. A single interrupt signal can indicate one or more events. The PMIC protocol driver
first receives the interrupt signal and then checks the PMIC’s interrupt status register to determine exactly
which events are being signaled. Finally any client-registered callback functions are called to complete the
handling of the event. If no callback functions are currently registered, then the event is ignored.

Table 6-2 lists all events that the MC13783 PMIC protocol driver supports.

Table 6-2. MC13783 PMIC Hardware Interrupt Events

Event Description

ADC has finished requested
conversions

ON1B event

Touchscreen wake up ON2B event

ADC reading above high limit ON3B event

ADC reading below low limit System reset

Charger attach SW1A low setting stabilized

Charger over voltage detection SW1A high setting stabilized

Charger path reverse current SW1B low setting stabilized

Charger path short circuit SW1B high setting stabilized

BP regulator in regulation SW2A low setting stabilized

Dual path selection SW2A high setting stabilized

End of trickle charge SW2B low setting stabilized

End of life / low battery detect SW2B high setting stabilized

USB 4V detect Thermal warning

USB 2V detect Power cut event

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-5

6.2 Driver Requirements
The PMIC protocol driver module (also called the “core” driver in the Linux source tree) is responsible
for providing two types of services for all of the PMIC client driver components:

• Control Services

• Event Notification Services

The PMIC protocol driver may be built as a Linux loadable kernel module and manually loaded following
system boot. However, the protocol driver is typically configured to be built into the Linux kernel image
itself, because the PMIC card is not intended to be dynamically added or removed once the system has
been powered on. Also, some of the Linux power management functions require that the PMIC protocol
driver be properly loaded and fully operational.

6.2.1 Control Services

The key control services provided by the protocol device driver are:

• The ability to configure the SPI bus driver to communicate with the PMIC.

• The ability to read the current value of any PMIC hardware control register, by initiating the
appropriate SPI bus transaction.

• The ability to write new values to any PMIC hardware control register, by initiating the appropriate
SPI bus transaction.

• As the SPI bus transactions are asynchronous in nature, the PMIC protocol driver must not disable
interrupts or be operating in an atomic context when making calls to the SPI driver.

Note that both the read and write capabilities may be affected by the Primary and Secondary SPI bus
arbitration settings.

USB 1V detect Warm start event

Microphone bias 2 detect Memory hold event

Headset attach Clock source change

Stereo headset detect Semaphore cleared

Thermal shutdown Asp ICTEST state

Short circuit on Ahs outputs CHRGMOD state

1 Hz time tick USBMOD state

Time of day alarm BOOT state

Wake up event SW1A and SW1B joined

Table 6-2. MC13783 PMIC Hardware Interrupt Events (Continued)

Event Description

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-6 Freescale Semiconductor

6.2.2 Event Notification Services

The PMIC protocol device driver must support the following event notification services:

1. Register a default interrupt handler to handle all PMIC-related hardware interrupt events.

2. Allow other PMIC client drivers to subscribe and unsubscribe to one or more PMIC events and to
specify an appropriate “callback” function.

3. Call all previously registered callback functions when the corresponding PMIC event has been
received.

4. The ability to properly set the PMIC interrupt event mask register to selectively control which
hardware events are enabled or disabled.

5. The ability to query the PMIC interrupt status register to determine which events are being signaled
by the current hardware interrupt.

6.2.3 Miscellaneous Requirements

In addition to the specific services-related requirements given above, the PMIC protocol driver must also
satisfy the following additional requirements:

• Be able to properly reconfigure the PMIC arbitration settings (if required) to support the
functionality that is expected by the rest of the Linux system.

• Conform to the Linux coding standards.

6.3 Driver Software Operation
The PMIC protocol driver controls the PMIC by reading and writing the PMIC hardware control registers.
Both read and write access to the PMIC hardware control registers is done through the SPI driver. The
PMIC protocol driver requires the SPI driver to perform all of the following functions:

• Create the proper data packets for transmission on the SPI bus. This includes putting the proper
destination address for accessing a specific PMIC control register.

• Send the data packet and verify its transmission status.

• Receive and decode any data packets that were sent by the PMIC.

• Return any data received from the PMIC hardware back to the PMIC protocol driver.

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-7

Figure 6-2 shows the relationship between the PMIC protocol driver and all of the other related device
drivers in the system as well as the interaction between them.

Figure 6-2. PMIC Device Driver

The hardware interrupt signal that can be generated by the PMIC is first received and handled by the PMIC
protocol driver. The PMIC protocol driver determines events that are being signaled by the PMIC by
examining the PMIC’s interrupt status register. Finally, all PMIC interface drivers that have previously
registered for the currently active events are signaled through their respective callback functions.

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-8 Freescale Semiconductor

6.4 Driver Architecture
Figure 6-3 shows the overall architecture and external interfaces for the PMIC protocol driver.

Figure 6-3. PMIC Protocol Driver Architecture and Interfaces

The key components are as follows:

• Read/Write interfaces for the PMIC control registers, subscribing/unsubscribing to PMIC events,
and checking on one or more of the PMIC sense bits.

• PMIC device interface supporting the Linux IOCTL interface, for use with /dev/pmic device.

• Interface for sending and receiving SPI data packets to and from the PMIC.

• API for hardware interrupt notifications and which will then invoke the appropriate event callback
functions.

• API supporting the Linux kernel module, loading/unloading operations and device driver
initialization requirements.

• Internal function, called only during device driver initialization, that reconfigures the arbitration
bits on the PMIC, if necessary, to support proper operation from the secondary processor.

Each of these main device driver components will be described in greater detail, including any
implementation-specific issues, in the following section.

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-9

6.5 Driver Implementation Details
This section describes implementation-specific details associated with the PMIC protocol driver. The
device driver source files should also be consulted to fully understand the implementation of the PMIC
protocol driver. The CSPI driver documentation and sources should also be consulted if required.

6.5.1 Driver Initialization

The PMIC protocol driver performs the following operations when it is first loaded/initialized:

• Create either a /dev/pmic character device entry, depending on which version of the driver is
actually being loaded, and register the new device with the kernel.

• Perform any required PMIC arbitration fixes (see Section 6.1.1, “PMIC Register Access and
Arbitration”)

• Initialize the PMIC registers to a known state (optionally done here; or can be done by the
individual PMIC client drivers on a component-by-component basis).

• Initialize all driver-specific global variables.

• Enable the PMIC hardware interrupt line and bind it to the top half interrupt handler (see
Section 6.5.4.1, “Top Half Interrupt Handler”).

6.5.2 Driver Unloading

The following operations are performed when unloading/deinitializing the PMIC protocol driver:

• Remove the /dev/pmic device entry and tell the kernel to deregister this device.

• Disable the PMIC hardware interrupt line to prevent any further interrupts from occurring.

6.5.3 Event Notification List

The PMIC protocol driver uses a static array of list_head to manage the event notification list. The
subscript of the array corresponds to a specific event ID, and each array element is actually the head of a
linked list. Each element of the linked list contains all the information needed to invoke a callback
function. Initially the array of list_head is initialized to indicate that all of the linked lists are currently
empty and that no callback functions are currently registered.

Whenever an event callback function is to be registered, a new linked list element consisting of a structure
with the following fields is allocated:

• A pointer to a callback function that takes a single (void *) argument and which does not return
anything.

• A (void *) field that holds that argument that is to be used when invoking the callback function.

• A pointer to the next callback data structure for the same event.

This structure element is then initialized with the proper values and added to the appropriate linked list in
the array of event notification lists.

When a PMIC-generated hardware interrupt arrives, the interrupt handler starts by examining the PMIC’s
interrupt status register to determine the currently active events. The corresponding elements in the array

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-10 Freescale Semiconductor

of event notification lists are then examined to see if any callback functions have been registered and, if
so, they are all invoked in the same order that they were registered.

De-registering a callback function simply involves removing the callback data structure by adjusting the
linked list pointers and then deallocating the memory for the callback data structure.

The only important thing to keep in mind with the handling of the event notification list is that it must
always be kept in a consistent state and that any possible race conditions must be prevented. This basically
means that all of the following scenarios must be properly handled:

1. Registration and deregistration of callback functions must always be performed in a critical
section, so that the array of pointers and the associated linked lists are always kept in a consistent
state. This also avoids any possible memory leaks during allocation and deallocation of the
memory required for the linked list elements. As part of the callback registration and deregistration
process, calls to the SPI driver must be made to update the PMIC’s interrupt mask register. When
calls are made to the SPI driver, interrupts must be enabled, which eliminates atomic contexts.
Therefore, the critical section must be implemented using only a mutex and not a spinlock.

2. Callback function registration, deregistration, and the interrupt handler must all use a critical
section when accessing the array of pointers and the linked list of callback data structures. As the
interrupt handler is involved here, spinlocks must be used to implement the critical section.
Fortunately, the interrupt handler itself does not require making any calls to the SPI driver, so
running in an atomic context does not cause any problems.

These two requirements specify that a mutex must be used to guard against race conditions between
callback registration and deregistration operations. Furthermore, within the mutex critical section, a
spinlock must be used to guard against race conditions when the contents of anything in the event
notification list (either the array of pointers or the associated linked lists) are used or modified. However,
the spinlock can be released as soon as modifying the event notification list is no longer required, and the
mutex can be used to perform any operation that is not directly associated with or impacted by the interrupt
handler.

6.5.4 Interrupt Handler

The PMIC interrupt handler is divided into two parts. The “top half” is called directly by the Linux kernel
when the hardware interrupt is first raised, and all interrupts are disabled while the “top half” interrupt
handler is executing. The “top half” acknowledges and handles the interrupt.

However, if handling the interrupt also requires significant processing or other, possibly time consuming
operations, then all such operations should be deferred to a separate “lower half” interrupt handler that can
be executed at a lower priority and with hardware interrupts re-enabled.

6.5.4.1 Top Half Interrupt Handler

The top half interrupt handler in the PMIC protocol driver performs the following operations:

1. Acknowledge and clear the hardware interrupt condition.

2. Schedule a work queue task to complete the handling of the interrupt event.

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-11

Note that PMIC-related interrupts typically do not have any hard real-time requirements. Therefore, it is
perfectly acceptable to defer much of the interrupt handling to a separate work queue task.

6.5.4.2 The Lower Half Interrupt Handler

The lower half interrupt handler for the PMIC protocol driver is implemented as a work queue. Scheduling
is done by the top half whenever a hardware interrupt is received. The lower half handler does the work
that is required to handle the PMIC interrupt. The steps are as follows:

1. Read the current value of the PMIC’s interrupt status register to determine the list of currently
active events.

2. Clear the PMIC interrupts that will be handled by the PMIC device drivers. Note that if no callback
functions have been registered yet for an event, the PMIC protocol driver will just silently ignore
the event.

3. Invoke any callback functions that have been registered for the currently active events.

As already noted in the previous section, the interrupt handler must use a spinlock to implement a critical
section around any code that accesses the event notification list. This is needed to ensure that the event
notification list remains in a consistent state while the interrupt handler is running.

6.5.5 Event Handlers

Event handlers are callback functions that a device driver may use to be notified by the PMIC interrupt
handler that a particular event has just occurred. The device driver that is registering a callback function
may also specify a single (void *) argument that will be returned later when the callback is invoked. This
argument can be used to identify a specific instance of the callback function or be used to access any
context-specific data. No return value is expected from the event handler.

6.5.6 Register Access

The PMIC protocol driver exports APIs that allow other device drivers to read and write to PMIC control
registers. The PMIC control registers are accessed using one of the two available SPI interfaces. Either the
Primary or Secondary SPI interface is used, depending upon the specific design for the hardware
connections between the platform and the PMIC. As previously described in Section 6.1.1, “PMIC
Register Access and Arbitration,” there are significant operational differences between register access by
the primary and secondary SPI bus interfaces. However, the PMIC protocol driver is implemented in such
a way that all these differences are taken care within the PMIC protocol driver. Externally, the PMIC
protocol driver simply provides APIs to read and write to the PMIC control registers.

A separate IOCTL-based interface using the /dev/pmic device to read and write to the PMIC control
registers has also been implemented as a separate test module. However, this interface is intended only for
debugging and testing, and is not intended for general use.

6.6 Driver Source Code Structure
The source files for the PMIC protocol driver are available in the drivers directory,
<ltib_dir>/rpm/BUILD/linux-/drivers/mxc/pmic/core.

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-12 Freescale Semiconductor

Table 6-3 provides a brief description of each of the device driver source files.

Note that in addition to the driver-specific source files, there also exists a Kconfig file that is used to
define the device driver’s build configuration (see Section 6.7, “Driver Configuration”) and a Makefile
that is used during the Linux kernel image build process.

6.7 Driver Configuration
The PMIC protocol driver is configured using the same mechanisms that are provided to configure the
Linux kernel image. That is, a Kconfig file within the source files directory is used to select whether or
not the device driver is to be included in the kernel build process and whether it is to be built as a loadable
kernel module or not. Any of the standard kernel configuration tools, such as menuconfig, can be used
to select and configure the PMIC protocol driver.

The following Linux kernel configuration options are provided for the PMIC protocol driver. In order to
enter the configuration screens, use the following command. You should be located in the ltib directory.

/<ltib dir>/.ltib -c:

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> PMIC Protocol Support (SPI
Interface) - Choose this to have PMIC protocol driver support. By default, this option is Y for all
architectures.

Device Drivers-> MXC Support Drivers->MXC PMIC Support ->MXC PMIC device Interface -
Choose this to provide /dev interface to PMIC. This makes it possible to have
user-space programs use or control PMIC and for notification of PMIC events to user
space.

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers -
Used by all MC13783 clients - Used to enable the PMIC client drivers. Some of the MC13783
client drivers that can be selected are:

— MC13783 ADC support

— MC13783 Audio support

— MC13783 Real Time Clock (RTC) support

Table 6-3. PMIC Protocol Driver Sources File List

File Description

pmic_core_spi.c Main function of the module, register access function

pmic_config.h Define global configuration definitions or macros used by client
drivers.

pmic_event.c Event notification function.

pmic_external.c This files contains client API implementation, define SPI
interface.

pmic-dev.c This provides /dev interface to the user-space programs.

pmic.h Declaration of all the functions whose implementation differs
from PMIC chip to PMIC chip.

mc13783.c This file contains PMIC specific code (implementation of
functions in pmic.h)

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 6-13

— MC13783 Light and Backlight support

— MC13783 Battery API support

— MC13783 Connectivity API support

— MC13783 Power API support

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MXC_PMIC_FIXARB - This
option includes the software workaround for reconfiguring the PMIC’s arbitration bit settings to
enable secondary processor access. See also Section 6.1.1, “PMIC Register Access and
Arbitration.”

PMIC Protocol Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

6-14 Freescale Semiconductor

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 7-1

Chapter 7
 PMIC Audio Driver
This chapter describes the PMIC audio device driver for Linux. The PMIC audio driver provides low-level
control of the PMIC audio playback and recording devices.

The PMIC audio device driver uses the PMIC protocol driver (Chapter 6, “PMIC Protocol Driver”) to
control the audio playback and recording components of the PMIC.

7.1 PMIC Audio Driver Features
Figure 7-1 shows the key audio-related components that are provided by the MC13783 Power and Audio
Management IC.

Figure 7-1. PMIC Audio Hardware Components

Even though each specific power management IC may have some unique capabilities and features, they
all share the following common components and general capabilities:

• Stereo DAC—Provides both left and right channel audio output with sampling rates from 8 kHz to
96 kHz (in the case of MC13783). The stereo DAC also has an optional internal mixer that can be
used to mix together two separate input stereo audio streams to produce a single stereo output
stream.

• Voice or telephone codec—Provides both mono playback and recording capabilities with either an
8 kHz or 16 kHz sampling rate. The voice codec on certain power management ICs may also
support stereo recording but this feature is platform-specific. The voice codec also includes an
optional high-pass filter that can be used to filter the input or output audio streams.

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

7-2 Freescale Semiconductor

• Data Bus Selection and Configuration section—Controls the connections between the audio data
buses and the voice codec and stereo DAC components. The data buses can be configured to
operate either in a standard MSB-aligned mode, network mode, or I2C mode. Each data bus can be
routed to either the voice codec or the stereo DAC and both data buses can be active simultaneously
along with the voice codec and stereo DAC.

• Audio output control section—Determines which devices or audio output connectors will be used
as well as the gain settings on the various output amplifiers. The output control section may also
include an additional mixer for mixing together the outputs from the voice codec and the stereo
DAC and a mono adder for converting the stereo DAC output to a single mono channel. However,
whether these components are actually available and, if so, their exact capabilities are specific to
each power management IC.

• Audio input control section—Used to select an appropriate audio recording signal source as well
to configure the various input amplifiers and microphone bias circuits. The output of this section
is fed directly to the voice codec which then performs the analog-to-digital conversion at either an
8 kHz or 16 kHz sampling rate.

• PLL or clock control section—Internally generates the clock signals to drive the data buses and
thereby act as a bus master. Alternatively, the internal clock generator can be disabled and the
power management IC operated as a slave device using an external clock source. It is
recommended that the power management IC always be configured as the bus master to ensure that
the correct clock frequencies needed to support the various audio playback and recording sampling
rates are generated. This avoids having to rely on external clock sources that may have to be shared
with other system devices and which may not be operating at exactly the correct frequency thereby
possibly causing distortion in both audio playback and recording.

• Interrupt signal control section—Determines which hardware interrupts are enabled. The exact
number and type of interrupts that may be generated is specific to each power management IC but
they may include events, such as the insertion of a microphone or headset.

• Arbitration control block—Determines the level of access to the audio-related hardware registers
that is provided to both the primary and secondary processors. Various combinations of read-write
or read-only access can be configured as required. However, the audio API does not include any
access to the arbitration control block because this component is expected to be properly
configured during device power-up and there is currently no operating scenario which would
require reconfiguring the arbitration settings while the device is running.

As shown in Figure 7-1, the audio components of the power management IC connect with the processor
core and other peripheral devices through the data buses, interrupt signals, and clock signals. However,
Figure 7-1 does not show the SPI bus interfaces that are used to access the hardware control registers
(including the audio-related registers) on the power management IC. The SPI bus interface and associated
APIs are described in more detail in Chapter 6, “PMIC Protocol Driver.”

Finally, the external audio devices, such as headsets, loudspeakers, and microphones are connected to the
voice codec or stereo DAC through the appropriate audio jacks and plugs. The exact type and placement
of these jacks and plugs is implementation and device design-dependent. Therefore, while the current
implementation does allow access to all of the available audio input and output ports provided by the
power management IC, the actual device schematics or design documentation must be used to determine

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 7-3

which ports are available and what type of connector is being used. The result of trying to use a port or
external audio device which is not available or disconnected is undefined.

The power management ICs all share a similar set of components and features in terms of audio recording
and playback functions. However, each power management IC also has its own unique set of features and
capabilities beyond what has been described thus far. The documentation for the specific IC should be
consulted to fully understand all of the audio-related components, features, and functions provided by a
specific power management IC.

The audio API includes the ability to make use of both common and device-specific audio features as
required. For example, it is possible to perform mono audio recording using the voice codec on the
MC13783 power management IC. However, the API also provides stereo recording through the MC13783
voice codec, as that is supported through the MC13783 power management IC.

7.2 Driver Requirements
The PMIC audio driver provides full access to all of the features that are supported by the PMIC hardware.
The API must be identical for all ICs. Attempting to use a feature or select a configuration option that is
not supported by the PMIC that is being used returns PMIC_NOT_SUPPORTED. Successful operations
always return PMIC_SUCCESS, while any supported operations that failed due to an error condition
return PMIC_ERROR.

7.2.1 Audio Device Handle Management

The PMIC audio device driver must provide an API to support the following operations:

• Obtain a device handle for accessing the stereo DAC, voice codec, or external stereo input.

• Release a previously acquired device handle.

Higher-level device drivers that wish to access the PMIC audio components must first request and receive
a valid device handle. This ensures that there will never be a conflict over access to and control of a
particular audio component. Separate device handles have been defined for the stereo DAC, the voice
codec, and the external stereo input.

7.2.2 Digital Audio Bus Selection and Configuration

After successfully acquiring the appropriate device handle, another set of APIs must be provided to allow
for the selection and configuration of the digital audio bus:

• Select the digital audio data bus to be used.

• Configure the operating mode, timeslot selection, and timing signal parameters for the selected
digital audio data bus.

Note that both the voice codec and the stereo DAC can be connected to either of the two available digital
audio buses but only to one bus at a time. Furthermore, a single digital audio bus cannot be simultaneously
connected to both the voice codec and the stereo DAC.

The digital audio bus must be able to operate in either master or slave modes at all of the permissible
sampling rates.

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

7-4 Freescale Semiconductor

7.2.3 Stereo DAC and Voice Codec Control and Configuration

An API interface must be provided for directly controlling the voice codec and the stereo DAC audio
components. The required functionality includes the following:

• Enable/disable the audio device

• Enable/disable the available hardware mixing devices

• Perform a digital filter reset

7.2.4 Audio Input Section Control and Configuration

An API must be provided to configure the PMIC’s audio input section to support using the voice codec to
record an audio stream. The required functionality includes the following:

• Select the desired audio input source and recording mode (stereo or mono)

• Enable/disable the audio input source

• Select the desired input amplifier gain level

• Enable/disable the appropriate microphone bias circuit

7.2.5 Audio Output Section Control and Configuration

An API must be provided to configure the PMIC’s audio output section to support playback using either
the voice codec or the stereo DAC. The required functionality includes the following:

• Select the desired audio source for output (for example, voice codec, stereo DAC, or external stereo
input)

• Select the desired output amplifier gain and balance levels

• Enable/disable the available hardware mixing devices

• Enable/disable the phantom ground circuit

7.2.6 Resetting the PMIC Audio Components

An API must be provided to allow partial or complete resetting of the PMIC audio components. This will
provide a means to ensure that audio components are in a consistent state and to recover from any errors
that might occur. The required functionality includes the following:

• Reset only the voice codec or stereo DAC settings to their respective power-on settings

• Reset all PMIC audio-related settings in all registers to their respective power-on settings

7.2.7 Audio-Related Interrupts and Event Notification

An API must be provided to allow other device drivers (for example, the OSS sound driver) to register for
and to receive notification of audio-related events. The PMIC audio driver will first receive and handle all
audio-related interrupts as required but it must also allow higher-level drivers and applications access to
the event notification and any associated data so that they too can respond as required. The required
functionality includes the following:

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 7-5

• Register an event callback function

• Deregister an event callback function

• Enable/disable headset detection

• Enable/disable microphone bias detection notification (MC13783 PMIC only)

7.2.8 Additional Audio-related Configuration Options

An API must be provided to support some additional audio driver-related functions that do not necessarily
fit into any of the functional categories that have already been given. The required functionality includes
the following:

• Ability to query for which PMIC chip and driver is currently being used

• Ability to control the power consumption of the audio components by completely or selectively
powering up and powering down specific audio circuits and devices

• Enable/disable the anti-pop circuitry

• Provide a fully decoded PMIC audio control register dump (for debugging/testing purposes only)
driver

7.3 Software Operation
The PMIC audio driver makes calls to the PMIC protocol driver to reconfigure the PMIC’s control
registers to the desired setting. All higher-level audio configuration and operation requests are converted
to the appropriate PMIC control register settings and then the PMIC’s hardware state is updated through
the SPI bus interface.

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

7-6 Freescale Semiconductor

7.4 Driver Architecture
Figure 7-2 shows the basic architecture of the PMIC audio driver and the interfaces to the higher-level
Linux OSS sound driver as well as the underlying PMIC hardware.

Figure 7-2. PMIC Audio Driver Architecture

7.5 Driver Implementation Details
A structure defines the fields within each of the PMIC’s audio-related control registers. Each element of
the structure defines the size and offset of the register field. This enables the use of simple macros to access
each register field.

Note that the PMIC’s hardware registers are not exported outside the device driver. There is no need to
provide external low-level access to the PMIC’s registers. This also helps to ensure the maintenance of
complete control over the PMIC hardware state.

Another structure keeps track of the current PMIC hardware state. This data structure always mirrors
exactly how the hardware has been configured, and avoids the possibility of conflicting or invalid
configurations. It is also possible to easily return the current state of the PMIC audio hardware without
using extra SPI bus transactions to directly query the hardware.

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 7-7

7.5.1 Driver Initialization

Nothing special needs to be done during the initialization phase for this device driver. The higher-level
OSS sound driver makes calls to this driver only through the exported API and no other access method
needs to be supported.

7.5.2 Driver Deinitialization

When deinitializing this driver, make sure that any still opened device handles are properly closed and that
the PMIC hardware is restored to the default power on state. This will help to ensure that the PMIC is never
left in an inconsistent state and that it will never signal an interrupt event when there is nothing registered
to properly handle it.

7.6 Driver Source Code Structure
Table 7-1 lists the MC13783-specific source files that are available in the device driver directory,
<ltib_dir>/rpm/BUILD/linux-/drivers/mxc/pmic/mc13783/.

The header file for PMIC audio drivers is
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/pmic_audio.h.

7.7 Driver Configuration
This module can be selected using the ltib menu options.

To get to the PMIC audio configuration use the command ./ltib -c when located in the <ltib dir>. On
the screen displayed, select Configure the kernel and exit. When the next screen appears select the
following option to enable the audio driver.

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Audio support

This is the configuration option to choose the MC13783-specific audio driver.

Table 7-1. MC13783 Audio Driver Source Files

File Description

pmic_audio.c Implementation of the MC13783 audio PMIC client driver.

pmic_audio.h Header file for the MC13783 audio client driver.

PMIC Audio Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

7-8 Freescale Semiconductor

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 8-1

Chapter 8
PMIC Digitizer Driver
This chapter describes the PMIC digitizer driver for Linux that provides low-level access to the PMIC’s
analog-to-digital converters (ADC).

The PMIC digitizer driver controls the analog-to-digital converter (ADC) components of the PMIC. This
capability includes taking measurements of the X-Y coordinates and contact pressure from an attached
touchpanel. This device driver uses the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to
access the PMIC hardware control registers that are associated with the ADC.

8.1 PMIC Digitizer Driver Features and Capabilities
The PMIC digitizer driver is used to provide access to and control the analog-to-digital converter (ADC)
that is available with the PMIC. Multiple input channels are available for the ADC, and some of these
channels have dedicated functions for various system operations. For example:

• Sampling the voltages on the touchpanel interfaces to obtain the (X,Y) position and pressure
measurements.

• Battery voltage level monitoring.

• Measurement of the voltage on the USB ID line to differentiate between mini-A and mini-B plugs.

Note that some of these functions (for example, the battery monitoring and USB ID functions) are handled
separately by other PMIC device drivers.

The PMIC ADC has a 10-bit resolution and supports either a single channel conversion or automatic
conversion of all input channels in succession. The conversion can also be triggered by issuing a command
or by detecting the rising edge on a special signal line.

A hardware interrupt can be generated following the completion of an ADC conversion. A hardware
interrupt can also be generated if the ADC conversion results are outside of previously defined high and
low level thresholds.

Some PMIC chips also provide a pulse generator that is synchronized with the ADC conversion. The pulse
generator can enable or drive external circuits in support of the ADC conversion process.

The PMIC ADC components are subject to arbitration rules as documented in the documentation for each
PMIC. These arbitration rules determine how requests from both primary and secondary SPI interfaces are
handled.

SPI bus arbitration configuration and control is not part of this driver, because the platform has configured
arbitration settings as part of the normal system boot procedure. There is no need to dynamically
reconfigure the arbitration settings after the system has been booted.

8.2 Driver Requirements
The PMIC digitizer driver is a client of the PMIC protocol driver. The PMIC protocol driver provides
hardware control register reads and writes through the SPI bus interface, and also register/deregister event

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

8-2 Freescale Semiconductor

notification callback functions. The PMIC protocol driver requires access to ADC-specific event
notifications.

The following are the requirements for supporting a touchpanel device:

• Must be able to select either a single ADC input channel or an entire group of input channels to be
converted.

• Must be able to specify high and low level thresholds for each ADC conversion.

• Must be able to start an ADC conversion by issuing the appropriate start conversion command.

• Must be able to start an ADC conversion immediately following the rising edge of the ADTRIG
input line or after a predefined delay following the rising edge.

• Must be able to enable/disable hardware interrupts for all ADC-related event notifications.

• Provide an interrupt handler routine that receives and properly handles all ADC end-of-conversion
or exceeded high/low level threshold event notifications.

• Other device drivers must be able to register/deregister additional callback functions to provide
custom handling of all ADC-related event notifications.

• Provide a read-only device interface for passing touchpanel (X,Y) coordinates and pressure
measurements to applications.

• Provide the ability to read out one or more ADC conversion results.

• Implement the appropriate input scaling equations so that the ADC results are correct.

• Must be able to specify the delay between successive ADC conversion operations, if supported by
the PMIC. For PMIC chips that do not support this feature, the device driver should return a
NOT_SUPPORTED status.

• Provide support for a pulse generator that is synchronized with the ADC conversion. For PMIC
chips that do not support this feature, return a NOT_SUPPORTED status.

• Provide a complete IOCTL interface to initiate an ADC conversion operation and to return the
conversion results.

• Provide support for a polling method to detect when the ADC conversion has been completed.

Note that this digitizer driver is not responsible for any additional ADC-related activities, such as battery
level or USB ID handling. Such functions are handled by other PMIC-related device drivers.

Also, as previously indicated, this device driver is not responsible for SPI bus arbitration configuration.
The appropriate arbitration settings that are required for this device driver to work properly are expected
to have been set during the system boot process.

8.3 Driver Software Operation
Most of the required operations for this device driver simply involve writing the correct configuration
settings to the appropriate PMIC control registers. This can be done using the APIs that are provided with
the PMIC protocol driver.

Once an ADC conversion has been started, the calling thread should be suspended until the conversion has
been completed. A busy loop should be avoided as this will negatively impact processor and overall system
performance. Instead, the use of a wait queue offers a much better solution. Therefore, any potentially

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 8-3

time-consuming operations results in the calling thread being placed into a wait queue until the operation
is completed.

8.4 Driver Architecture
Figure 8-1 shows the basic architecture for the PMIC digitizer driver. The PMIC protocol driver and the
platform’s SPI driver provides the necessary interface to read and write the PMIC’s hardware control
registers.

Figure 8-1. PMIC Digitizer Driver Architecture

The PMIC’s interrupt controller generates interrupts for the following events:

• ADC end-of-conversion

• High/low level threshold exceeded

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

8-4 Freescale Semiconductor

8.5 Driver Implementation Details
The PMIC ADC conversion can take a significant amount of time. The delay between a start of conversion
request and a conversion completed event may even be open-ended, if the conversion is not started until
the appropriate external trigger signal is received. Therefore, all ADC conversion requests must be placed
in a wait queue until the conversion is complete. Once the ADC conversion has completed, the calling
thread can be removed from the wait queue and reawakened.

Avoid the use of any polling loops or other thread delay tactics that would negatively impact processor
performance. Also, avoid doing anything that prevents hardware interrupts from being handled, because
the ADC end-of-conversion event is typically signaled by a hardware interrupt.

8.5.1 Driver Initialization

The PMIC digitizer driver must also create the appropriate /dev character device entry to allow
applications to obtain the touchpanel (X,Y) coordinates and pressure measurements. The touchpanel
device is only required to support a read operation.

The MC13783— /dev/mc13783_ts device is created.

A device-independent softlink, /dev/ts, which references the PMIC-specific touchpanel device name is
also created, but this is part of a Linux boot script and is not handled by this device driver.

8.5.2 Driver Removal

The PMIC digitizer driver must remove the /dev device entry that was created when the driver was loaded.

8.6 Driver Source Code Structure
Table 8-1 lists the source files for the MC13783-specific version of this driver. These are available in the
directory, <ltib_dir>/rpm/BUILD/linux-/drivers/mxc/pmic/mc13783.

The header file for PMIC adc drivers is
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/pmic_adc.h.

8.7 Linux Menu Configuration Options
The following Linux kernel configuration is provided for this module. In order to get to the PMIC ADC
configuration use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure
Kernel, exit, and a new screen appears.

Table 8-1. MC13783 Digitizer Driver Source Files

File Description

pmic_adc.c Implementation of the MC13783 ADC client driver.

pmic_adc_defs.h Hardware definitions and internal functions for the ADC client driver.

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 8-5

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 ADC support

Chooses the MC13783 (MC13783) – Specific digitizer driver.

PMIC Digitizer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

8-6 Freescale Semiconductor

PMIC Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 9-1

Chapter 9
PMIC Power Management Driver
The PMIC power management device driver for Linux provides enabling and disabling of various
low-power modes. The MC13783 regulator driver provides the low-level control of the power supply
regulators and selection of voltage levels.

This driver has been deprecated. It has been replaced by the MC13783 regulator driver. It is still used
internally by some other drivers but once they have been changed to use the regulator driver, this driver
will be removed.

This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to
access the PMIC hardware control registers.

9.1 PMIC Features
Using the PMIC chip in a product potentially provides a complete power control and power management
strategy. The PMIC chips have built-in switching power supplies and linear voltage regulators that can be
configured to power the rest of the platform. These power supplies may also be selectively
enabled/disabled, and the voltage levels may be dynamically adjusted to control power consumption.

In addition, there is an internal state machine that can provide automatic power-cut functions and
transparent transitions between various low-power operating modes. Full shutdown and automatic restart
based on possible external events is also supported.

The IC documentation should be consulted for full details about what power supplies are provided, how
they can be configured, and how the internal power control logic is implemented.

9.2 Driver Requirements
The MC13783 PMIC regulator driver is a client of the PMIC protocol driver and regulator core driver. It
provides services for regulator control of the PMIC component.

• Switch ON/OFF all voltage regulators.

• Set the value for all voltage regulators.

• Get the current value for all voltage regulators.

9.3 Driver Software Operation
The PMIC power management driver and the MC13783 PMIC regulator client driver perform operations
by reconfiguring the PMIC hardware control registers. This is done by calling protocol driver APIs with
the required register settings.

Some of the PMIC power management operations depend on the system design and configuration. For
example, if the system is powered by a power source other than the PMIC, then turning off or adjusting
the PMIC’s voltage regulators has no effect. Conversely, if the system is powered by the PMIC, then any
changes that use the power management driver and the regulator client driver can affect the operation or
stability of the entire system.

PMIC Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

9-2 Freescale Semiconductor

9.4 Driver Architecture
Figure 9-1 shows the basic architecture of the MC13783 regulator driver. Figure 9-2 shows the basic
architecture of the PMIC power management driver, as well as its higher-level interfaces and the
connections to the underlying PMIC hardware.

Figure 9-1. MC13783 Regulator Driver Architecture

Regulator Core
Driver

Regulator Core Driver

MC13783 Regulator Driver

MC13783 PMIC Protocol Driver

CSPI Diver

PMIC Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 9-3

Figure 9-2. PMIC Power Management Driver Architecture

9.5 Driver Implementation Details
The access to the PMIC power management driver and the MC13783 regulator are provided through a set
of exported APIs. The exported APIs are meant for use by other kernel-mode device drivers. The IOCTL
interface is not provided for general use. An example of how it should work can be found in the unit test
module. All IOCTL calls are translated into corresponding internal API calls to perform the requested
operation.

All of the power management functions are handled by setting the appropriate PMIC hardware register
values. This is done by calling the PMIC protocol driver APIs to access the PMIC’s hardware registers.

SPI Driver

SPI Bus Interface

Regulator Control

PMIC Power Management Driver

PMIC Hardware

PMIC Power Management Driver

PMIC Power
Management Driver

IOCTL Interface

PMIC Protocol Driver

Interrupt Controller

PMIC Power Mgmt. Driver
Initialization/Deinitialization

PMIC Power Mgmt. Driver
Initialization/Deinitialization

Kernel API Interface

Linux /dev/atlas_power
or /dev/pmic_power

Device Entries

PMIC Power
Management Driver

API Interface

Linux Power
Management
Device Driver

PMIC Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

9-4 Freescale Semiconductor

9.6 Driver Source Code Structure
The MC13783-specific source files for the power management driver and MC13783 regulator driver are
available in the device driver directories: <ltib_dir>/rpm/BUILD/linux-/drivers/mxc/pmic/mc13783 and
<ltib_dir>/rpm/BUILD/linux-/drivers/regulator/mc13783.

The header file for PMIC Power drivers is
<ltib_dir>/rpm/BUILD/linux-/include/asm-arm/arch-mxc/pmic_power.h.

9.7 Driver Configuration
This module is selected using the ltib menu configuration options.

In order to get to the pmic power configuration, use the command ./ltib -c when located in the <ltib
dir>. On the screen that is displayed select Configure the Kernel then exit. When the next screen appears
select the following options to use the MC13783 regulator and power management drivers.

• Device Drivers-> Voltage and Current regulator-> MC13783 Regulator Support

• Device Drivers-> MXC Support Drivers -> MXC PMIC Support -> MC13783 Power API support

Then exit and ltib will build the kernel with these drivers enabled.

Table 9-1. MC13783 Power Management Driver Source Files

File Description

reg_mc13783.c Implementation of the MC13783 regulator
client driver

pmic_power.c Implementation of the MC13783 power
management client
driver

pmic_power_defs.h Internal header for MC13783 power
management client driver.

PMIC Connectivity Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 10-1

Chapter 10
PMIC Connectivity Driver
The MC13783 PMIC connectivity driver for Linux provides support for external connectivity of the
following types:

• RS-232

• USB OTG

• CEA936

The MC13783 PMIC Connectivity Driver is based on the MC13783 DTS 3.0 specification and the
Freescale MC13783 board.

This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to
access the PMIC hardware control registers.

10.1 PMIC Features
The PMIC includes transceivers to support both RS-232 and USB On-the-Go (OTG) external connectivity.
The MC13783 PMIC also includes support for the CEA936 specification. Due to the limited number of
available pin connections, only one of these external connectivity modes can be used at any one time. In
the case of the USB OTG transceiver, the specific connections that are made between the PMIC transceiver
and the host platform may also affect which USB OTG operating modes are supported.

The PMIC documentation should also be consulted for details about the configuration and use of the
RS-232 and USB OTG transceivers.

10.2 Driver Requirements
The PMIC connectivity driver is a client of the PMIC protocol driver and uses it to provide access to the
PMIC’s hardware control registers. The PMIC connectivity driver, in turn, must provide a suitable API
interface for the Linux UART and USB OTG drivers to support both RS-232 and USB OTG connectivity.
The required functionality includes the following:

• Acquisition and release of a connectivity device handle—The current owner of the device handle
is granted exclusive access to the PMIC’s transceivers as long as the handle is being held. Any
attempts to access or use the connectivity hardware without first successfully acquiring the device
handle result in the return of PMIC_ERROR.

• Selection of one of the supported operating modes—For example, RS-232, USB OTG, or
CEA-936. Attempting to use an unsupported mode results in a NOT_SUPPORTED return.

NOTE
The list of supported modes may differ from PMIC to PMIC.

• Registration and removal of an event handler callback function—Any attempts to register a
callback for an unsupported event results in a NOT_SUPPORTED return.

• Invocation of all registered callback functions—When the matching event has been signaled by the
PMIC protocol driver.

PMIC Connectivity Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

10-2 Freescale Semiconductor

• Configuration of the PMIC USB transceiver—As required to communicate with the platform’s
USB controller. This includes, for example, configuring the operating speed and the transceiver’s
power supply.

• Configuration of the PMIC USB transceiver—As required to support the additional USB OTG
requirements. This includes, for example, setting the Data Line Pulse duration and performing a
Host Negotiation Protocol sequence.

• Configuration of the PMIC RS-232 transceiver—As required to support an RS-232 connection.

• Configure the PMIC hardware to support the CEA-936 operating mode— Attempting to use the
CEA-936 mode when it is not supported by the underlying PMIC hardware results in a
NOT_SUPPORTED return.

NOTE
Currently, this mode is only supported by the MC13783 PMIC.

• Ability to explicitly reset the PMIC’s connectivity-related hardware components to their default or
power-on state—This function is useful to reinitialize the connectivity hardware to a known state.

• Automatic RS-232 to USB OTG mode switch—As supported by the PMIC, whenever a USB
device is attached while idle in RS-232 mode.

The specific hardware register settings that are required to configure the PMIC connectivity components
are located in the documentation for each PMIC chip.

10.3 Driver Software Operation
Most of the operations that must be performed by the PMIC connectivity driver involve setting the
appropriate values in the PMIC hardware control registers using the APIs that are provided by the PMIC
protocol driver. Specific settings for each PMIC can be located within the documentation for each PMIC
chip.

Event handler callback functions, if any, are registered using PMIC protocol driver APIs. The PMIC
protocol driver interrupt handler automatically invokes all registered callback functions whenever the
associated event is signaled by the PMIC hardware.

NOTE
This device driver is not responsible for handling the actual RS-232 or USB
OTG data transfer operations.

Higher-level UART or USB OTG drivers handle the transfers, as well as the configuration of the UART
and USB OTG controllers. The PMIC chips only provide the transceiver components, an event notification
capability, and the connections to any external connectors. The PMIC connectivity driver’s role is
restricted to transceiver configuration and event notification.

10.4 Driver Architecture
Figure 10-1 shows the basic architecture of the PMIC connectivity driver, as well as its relationship to the
Linux UART and USB OTG drivers and the PMIC hardware components. The UART driver configures

PMIC Connectivity Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 10-3

the RS-232 transceiver, while the USB OTG driver handles the USB OTG transceiver. Only one of these
transceivers can be active at any one time.

Figure 10-1. PMIC Connectivity Driver Architecture

The only events that are typically reported to the PMIC connectivity driver involve the detection of
USB-related state changes. In particular, the voltage level that is measured on the USB signal lines is used
to indicate the insertion or removal of a device, the requested operating speed, and whether it operates as
a host or a peripheral (for USB OTG devices). Details about the signaling and correct handling of the
various USB-related events can be located in the USB specification and the USB OTG supplement.

10.5 Driver Implementation Details
The PMIC connectivity device driver uses a single data structure to track the current state of the device
handle and all available PMIC configuration options. All APIs that modify the PMIC hardware also update
the data structure, so the device driver state always matches that of the hardware.

A mutex is used to ensure that the state of the device driver and the PMIC hardware are always kept in a
consistent state. A mutex is used whenever the system is not operating in an atomic or interrupt context

PMIC Connectivity Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

10-4 Freescale Semiconductor

within this driver. In the limited places where the system is operating in an atomic or interrupt context, a
spinlock is also acquired. The spinlock is released at the earliest possible time to minimize interrupt
handling latencies.

A tasklet is used to perform most of the event handling operations, so as to minimize the time actually
spent in the low-level interrupt handling routine.

10.5.1 Driver Initialization

The device driver initialization sequence continues as normal with no special provision for the PMIC
connectivity device driver.

NOTE
No device name is created within the /dev directory, because this driver does
not support any IOCTL interfaces.

10.5.2 Driver Removal

If the device handle is still being held when this driver is removed, then the handle must be forcibly closed
and the PMIC connectivity components must be restored to default power-on state, before the
deinitialization sequence is completed.

10.6 Driver Source Code Structure
The MC13783-specific source file, pmic_convity.c, for this device driver, is available in the device driver
directory, <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/pmic/mc13783. The source file describes the
function for MC13783 USB/RS232 connectivity client.

The header file for PMIC connectivity drivers is
<ltib_dir>/rpm/BUILD/linux-2.6.22/include/asm-arm/arch-mxc/pmic_convity.h.

10.7 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module. In order to get to the pmic
connectivity configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen
select Configure Kernel, exit, and a new screen will appear.

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 Power API support

Chooses the MC13783–specific power driver.

PMIC Battery Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 11-1

Chapter 11
PMIC Battery Driver
The PMIC battery device driver for Linux provides support for controlling the PMIC battery interface
circuits. This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol
Driver”) to access the PMIC hardware control registers.

11.1 PMIC Features
PMIC chips include circuits to automatically detect the presence of a charger and to recharge the system
battery. Additional circuits are provided to detect and prevent overcharging. Additional capabilities
include:

• Support for USB chargers

• Support for a coin cell charger

Battery voltage levels can also be monitored using the analog-to-digital converter and low voltage or
battery end-of-life conditions can be signaled through the use of hardware interrupts.

11.2 Driver Requirements
This module is a client of the PMIC protocol driver and uses it to provide access to the PMIC’s hardware
control registers. The PMIC battery driver, in turn, must provide an IOCTL interface that applications can
use to control and monitor the state of the battery and charger circuits. The required functionality includes
the following:

• API for battery charger control including selecting the appropriate charger path

• Configure the charging mode (for example, the charge current level)

• Configure the battery voltage and current level monitoring and end-of-life functions.

The specific hardware register settings that are required to configure the battery control circuits can be
located in the documentation for each PMIC chip.

11.3 Driver Software Operation
The PMIC battery driver provides an IOCTL interface through the /dev/pmic_battery device.
Applications use this driver to access the PMIC battery control registers and circuits. The battery driver
actually uses the PMIC protocol driver’s APIs to perform the necessary hardware control register
read/write operations.

The PMIC protocol driver’s APIs are also used to register/deregister event handler callback functions.
Event handlers can be registered for any of the supported battery-related event notifications, for example,
a battery end-of-life condition, detection of a charger being attached, or a charger-over-voltage condition.

11.4 Driver Architecture
Figure 11-1 shows the basic architecture of the PMIC battery device driver along with the associated PMIC
hardware components.

PMIC Battery Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

11-2 Freescale Semiconductor

Figure 11-1. PMIC Battery Device Driver Architecture

11.5 Driver Implementation Details
The implementation of the PMIC battery driver is relatively straightforward and involves providing the
appropriate IOCTL interface to support the /dev/pmic_battery device. Internally, each IOCTL call is
translated to the appropriate PMIC hardware control register operations, which are then performed with
the aid of the PMIC protocol and SPI drivers.

Event handler callback functions are registered directly with the PMIC protocol driver. The registered
event handler is invoked when the corresponding event is detected and the hardware interrupt is received
by the PMIC protocol driver.

SPI Driver

SPI Bus Interface

Battery
Charger
Control

Battery Overvoltage,
End-of-Life, and Charger

Insert Detection

PMIC Battery Driver

PMIC Hardware

PMIC Battery Driver

PMIC Battery Driver
IOCTL Interface

PMIC Protocol Driver

Interrupt Controller

Coincell
Charger
Control

Linux /dev/atlas_battery
or /dev/pmic_battery

Device

PMIC Battery Driver
Initialization/Deinitialization

PMIC Battery Driver
Initialization/Deinitialization

Kernel API Interface

PMIC Battery Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 11-3

11.5.1 Driver Initialization

During initialization, register a /dev/pmic_battery device to allow application-level access to the device
driver using the IOCTL interface.

11.5.2 Driver Deinitialization

The previously registered /dev/pmic_battery device entry must be removed when the device driver is
unloaded.

11.6 Driver Source Code Structure
Table 11-1 lists the source files for this driver that are available in the directory,
/<ltib_dir>/rmp/BUILD/<linux_version>/drivers/mxc/pmic/mc13783 .

The header file for PMIC battery drivers is
/<ltib_dir>/rmp/BUILD/<linux_version>/include/asm-arm/arch-mxc/pmic_battery.h.

11.7 Linux Menu Configuration Options
The following Linux kernel configurations are provided for the PMIC battery device driver. In order to get
to the pmic battery configuration, use the command ./ltib -c when located in the <ltib dir>. In the
screen select Configure Kernel, exit, and a new screen will appear.

• Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 Battery API support

Chooses the MC13783-specific version of the battery device driver.

Table 11-1. MC13783 Battery Driver Source Files

File Description

pmic_battery.c Implementation of the PMIC battery client driver.

pmic_battery_defs.h Define hardware registers for the PMIC battery driver.

PMIC Battery Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

11-4 Freescale Semiconductor

PMIC Light Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 12-1

Chapter 12
PMIC Light Driver
The MC13783 PMIC Light Driver for Linux provides access to the PMIC’s backlight and LED control
circuits. This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol
Driver”) to access the PMIC hardware control registers.

12.1 PMIC Features
The PMIC chip includes circuits to control the following external components:

• Backlight (for LCD or keypads)

• Color LEDs

The current level and duty cycle can be controlled as required to satisfy a wide variety of operating
requirements. The color LEDs can also be configured to Flash in a number of different patterns.

Complete information about the backlight and LED controls can be located in the documentation for each
PMIC.

12.2 Driver Requirements
The PMIC light driver must provide access to all of the PMIC backlight and LED control circuits. This
includes configuring the current levels, duty cycle, and Flashing modes. Note that the actual external
devices that are attached to the PMIC differ from platform to platform. Therefore, while the light driver
must provide access to all of the PMIC-supported features, it cannot make any assumptions about the
actual nature of the external devices (for example, the color of the LEDs that are attached) and whether
they actually exist or not.

Note that the PMIC light driver interface may include functions that are not supported by all PMIC chips.
Attempting to use a configuration that is not supported by the current PMIC hardware returns
NOT_SUPPORTED.

12.2.1 Backlight Control Functions

The PMIC backlight circuits are intended to support the control of the backlight level for an LCD display
and/or the keypad. The device driver must support the following operations:

• Enable/disable the backlight

• Set/get the backlight current level

• Set/get the backlight duty cycle

• Set/get the backlight cycle time

• Configure the backlight ramp up and ramp down settings

• Configure the backlight strobe settings

PMIC Light Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

12-2 Freescale Semiconductor

12.2.2 LED Control Functions

The LED control circuits supplement the backlight circuits by providing the ability to control additional
light sources for signaling purposes and for other special effects. The LED channels are labeled as being
R, G, and B because one typical application would be to attach red, green, and blue LEDs, respectively, to
each channel. However, this is not a required configuration, and other types of LEDs may be used with
these circuits. The device driver must support the following operations:

• Enable/disable each individual colored LED circuit

• Select either colored LED or funlight operating modes

• Set/get the colored LED current level

• Set/get the colored LED blink pattern

• Set/get the funlight current level

• Set/get the funlight duty cycle

• Set/get the funlight cycle time

• Configure the funlight ramp settings

• Configure the funlight strobe settings

• Enable/disable audio modulation

12.3 Driver Software Operation
The operation of the PMIC light driver is fairly simple, and only involves configuring the PMIC hardware
control registers as required. Access to the PMIC hardware control registers uses the PMIC protocol driver
which in turn uses the SPI driver.

As no standard Linux device driver exists to control backlight and external LEDs, applications must use
the documented IOCTL interface to access the PMIC light driver. Note, however, that not all of the
available backlight and LED control functions are supported by a specific PMIC chip. The device driver
returns NOT_SUPPORTED if an attempt is made to use a configuration or function that is not supported
by the underlying PMIC hardware.

The PMIC-specific control register settings that are required to configure the various backlight and LED
control circuits can be located in the documentation for each PMIC.

NOTE
No interrupt or notification events are associated with the PMIC light driver.

12.4 Driver Architecture
Figure 12-1 shows the basic PMIC light driver architecture along with the PMIC hardware components
that are being used.

PMIC Light Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 12-3

Figure 12-1. PMIC Light Driver Architecture

12.5 Driver Implementation Details
Configuring the PMIC light driver includes configuring parameters, such as duty cycle, current level,
ramp-up/ramp-down profiles, and so on, for the various backlight and LED circuits. The appropriate
control register settings are located in the documentation for the PMIC chip.

PMIC Light Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

12-4 Freescale Semiconductor

12.5.1 Driver Initialization

To initialize this driver, open the /dev/pmic_light device to allow application-level access to the device
driver using the IOCTL interface.

12.5.2 Driver Deinitialization

When the device driver is unloaded, remove the /dev/pmic_light device.

12.6 Driver Source Code Structure
Table 12-1 lists the source files for the MC13783-specific version of this driver that are available in the
device driver directory, /<ltib_dir>/rmp/BUILD/<linux_version>/drivers/mxc/pmic/mc13783.

The header file for PMIC Light drivers is
/<ltib_dir>/rmp/BUILD/<linux_version>/include/asm-arm/arch-mxc/pmic_light.h.

12.7 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module. In order to get to the PMIC light
configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure
Kernel, exit, and a new screen will appear.

Device Drivers -> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 Light and Backlight support

Chooses the MC13783–specific version of the light driver.

Table 12-1. MC13783 Light Driver Source Files

File Description

pmic_light.c Implementation of the MC13783 light client driver.

pmic_light_defs.h Definitions for the MC13783 light client driver.

PMIC Real Time Clock (RTC)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 13-1

Chapter 13
PMIC Real Time Clock (RTC)
The PMIC RTC for Linux provides access to the PMIC’s RTC control circuits. This device driver makes
use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to access the PMIC hardware
control registers.

13.1 PMIC Features
The PMIC chip is used for the following topics:

• Real-time clock control

• Wait alarm event

13.2 Driver Requirements
The PMIC RTC driver is a client of the PMIC protocol driver. It provides services for real time clock
control of PMIC component.

13.3 Driver Software Operation
The PMIC RTC driver performs operations by reconfiguring the PMIC hardware control registers. This is
done by calling protocol driver APIs with the required register settings.

PMIC Real Time Clock (RTC)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

13-2 Freescale Semiconductor

13.4 Driver Architecture
Figure 24-1 shows the basic PMIC RTC driver architecture along with the PMIC hardware components
that are being used.

Figure 13-1. PMIC RTC Driver Architecture

13.5 Driver Implementation Details
Configuring the PMIC RTC driver includes parameters as follows:

• Set time of day and day value

• Get time of day and day value

• Set time of day alarm and day alarm value

• Get time of day alarm and day alarm value

• Report alarm event to the client

PMIC RTC Driver PMIC RTC
API Interface IOCTL

 PMIC RTC Driver

Linux RTC
Device Driver

Linux /dev/pmic_RTC
Device Entries

 PMIC RTC
 Intialization/ DeIntialization
 Kernel API Interface.

 PMIC RTC
 Intialization/ DeIntialization

 PMIC Protocol Driver

 SPI Driver

 SPI Bus Interface

 RTC Controller

 Interrupt Controller

PMIC RTC

 PMIC
Hardware

PMIC Real Time Clock (RTC)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 13-3

13.5.1 Driver Initialization

To initialize this driver, open the /dev/pmic_rtc device to allow application-level access to the device
driver using the IOCTL interface.

13.5.2 Driver Deinitialization

When you unload the device driver, remove the /dev/pmic_rtc device.

13.6 Driver Source Code Structure
Table 13-1 lists the source files for the MC13783-specific version of this driver that are available in the
device driver directory, /<ltib_dir>/rmp/BUILD/<linux_version>/drivers/mxc/pmic/mc13783.

The header file for PMIC RTC drivers is
linux/include/<ltib_dir>/rmp/BUILD/<linux_version>/include/asm-arm/arch-mxc/pmic_rtc.h.

13.7 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module. In order to get to the PMIC RTC
configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure
Kernel, exit, and a new screen will appear.

Device Drivers-> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers -> MC13783
Real Time Clock (RTC) support

This is the configuration option to choose the MC13783-specific version of the RTC driver.

Table 13-1. MC13783 RTC Driver Source Files

File Description

pmic_rtc.c Implementation of the MC13783 RTC client driver.

pmic_rtc_defs.h Definitions for the MC13783 RTC client driver.

PMIC Real Time Clock (RTC)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

13-4 Freescale Semiconductor

i.MX27 Low-Level Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 14-1

Chapter 14
i.MX27 Low-Level Power Management Driver
The purpose of this document is to describe the design of the low-level PM driver for the i.MX27 platform.
This driver implements low-power modes. Low-power modes, such as DOZE and SLEEP are
implemented to save power.

14.1 Hardware Operation
The DFS operation and low-power modes on the MCU side are controlled by software using the clock
controller module (CCM). The features of CCM are as follows:

• PLL Control

• Dynamic frequency change (DFS) – Using dividers to change core frequency on the fly and PLL
scaling to lock PLL

• Clock gating for various modules during low-power modes

• Low-power mode

14.2 Software Operation
For DOZE and SLEEP low-power modes, software should disable interrupts before executing a
wait-for-interrupt (WFI) instruction and re-enable interrupts afterwards.

14.3 Hardware Issue
Dynamic Frequency Scaling (DFS) operation is not supported by this driver because of hardware
limitation. In the current hardware, it is not possible to change the ARM frequency without a PLL relock.
But a PLL relock will lead to DDR instability, because DDR requires a constant clock. As a result, the
kernel may crash. This issue will be fixed in the next revision of the i.MX27 chip.

14.4 Source Code Structure
Table 14-1 lists the source files for i.MX27 available in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/arch/arm/mach-mx27/.

The header file, mxc_pm.h (PM header file that contains API definitions), associated with the low-level PM
driver is available in <ltib_dir>/rpm/BUILD/linux-2.6.22/include/asm-arm/arch-mxc/.

Table 14-1. Source Code

File Description

mxc_pm.c Source file with all the implementation

crm_regs.h Header file with all register and bit definitions for CCM module

i.MX27 Low-Level Power Management Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

14-2 Freescale Semiconductor

14.5 Programming Interface
The API mxc_pm_lowpower is currently provided for low-power modes. This implements all the steps
required to put the system under DOZE or SLEEP mode.

Dynamic Frequency Scaling Driver (CPUFreq)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 15-1

Chapter 15
Dynamic Frequency Scaling Driver (CPUFreq)
Frequency scaling is an important part of increasing the battery life of portable devices, but it also has a
place in reducing power consumption.

This driver allows the CPU frequency to dynamically change according to the CPU load or to user
demands. Optionally, it is also possible to change the CPU core voltage depending on the selected
frequency to reduce power consumption even more.

15.1 Hardware Operation

Figure 15-1. imx 27 CPU core clock diagram

The MPLL clock output 798 MHz signal. The ARMDIV block can divide by 1, 2, 3 and 4. So the available
core frequency range is from 66.5 to 399 MHz. As the core frequency must be a multiple of the AHB bus
frequency (133 MHz), the frequencies available for practical use are 133, 266 and 399 MHz.

Using the MC13783 power management driver, the CPU core voltage can be changed.

15.1.1 Software Operation

The imx27 dynamic frequency scaling driver is implemented as a CPUFreq driver (and registered using
cpufreq_register_driver). All operations are done through the sysfs CPUFreq interface :
cd /sys/devices/system/cpu/cpu0/cpufreq

To list availables governors :
cat scaling_available_governors
conservative ondemand powersave userspace performance

To select a governor :
echo <governor> > scaling_governor

Example to set the frequency to 133 MHz using the userspace governor :
echo 133000 > scaling_setspeed

To see what is the current CPU frequency :
cat cpuinfo_cur_freq

MPLL DIV2

DIV3

ARMDIV
1
0

0
1

0
1

[0]

[0]
ARM SRC

ARM CLK

Dynamic Frequency Scaling Driver (CPUFreq)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

15-2 Freescale Semiconductor

133000

How the governors work:

• performance sets the frequency to the maximum available

• powersave sets the lowest frequency

• userspace allows the user to set the frequency through sysfs

• ondemand changes the frequency depending on the system load. It increases the frequency quickly.

• conservative changes the frequency depending on the system load. It is more targeted at mobile
devices and changes the frequency more graciously.

15.2 Source Code Structure
Table 15-1 lists the source files and headers available in the following directory:

<ltib_dir>/rpm/BUILD/linux-2.6.22/arch/arm/mach-mx27/
.

15.3 Linux Menu Configuration Options
In CPU Frequency Scaling, select :

• CPU Frequency Scaling
• the governors you want to be able to use

• optionnally enable voltage scaling for imx27 if you want to change the CPU voltage with the
frequency

15.3.0.1 Board Configuration Options

There are no board configuration options for the Linux imx27 CPUFreq driver.

Table 15-1. Source Code Files

File Description

cpufreq.c CPUFreq driver implementation.

CH7024 TV Encoder (TV-Out) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 16-1

Chapter 16
CH7024 TV Encoder (TV-Out) Driver

The CH7024 is a TV encoder device targeting handheld, portable video applications, such as digital still
cameras and similar portable embedded systems. The device is able to encode the video signals and
generate synchronization signals for NTSC and PAL standards. Supported TV output formats are
NTSC-M, NTSC-J, NTSC-433, PAL-B/D/G/A/I, PAL-M, PAL-N, and PAL-60.

16.1 TV-Out Driver Overview
The CH7024 takes in digital graphics input, which is the output of the IPU Synchronous Display
Controller (SDC), and converts it to TV output. In the IPU SDC controller, only one set of synchronous
display signals can be output at the same time. The i.MX platform puts the LCD and CH7024 signal
control and data pins together, therefore, the framebuffer cannot be displayed on both the LCD and TV-out
simultaneously. There needs to be a dynamic switch between the LCD and TV-out display output devices.
The CH7024 registers get configured through its I2C port. At present the driver only supports
PAL-B/D/G/A/I and NTSC-M output formats in SDTV mode.

CH7024 supports two operating modes, SDTV encoder (NTSC/PAL) with non-interlaced input and SDTV
encoder (NTSC/PAL) with interlaced input. In the first mode CH7024 can take non-interlaced data from
graphics controller and encode it to analog NTSC and PAL waveforms. In the second mode it can take
interlaced data from sources and perform SDTV encoding. The driver supports the first operating mode
with non-interlaced input.

The TV-out driver implements an I2C client driver and a framebuffer driver in the Linux kernel. The I2C
client driver implements the configurations to CH7024 registers through the I2C interface. The
framebuffer driver implements IPU SDC configurations and the digital graphics input to CH7024.

The driver is enabled by selecting the tvout option under the graphics parameters in the kernel
configuration.

16.1.1 Hardware Operation

The CH7024 provides a digital interface to most GCCs (In i.MX, it is the synchronous LCDC, for example,
IPU SDC). It accepts computer-generated digital graphics input in RGB or YCrCb format. The CH7024
receives initialization and basic configuration information through its I2C-compatible SIO port with
simple register Read/Write commands. The valid outputs are SDTV (PAL/NTSC). The driver implements
the SDTV (PAL/NTSC).

There is no specific hardware operation for CH7024 hardware.

16.1.2 Software Operation

The driver implements the TV-Encoder SDTV output format configuration (NTSC or PAL).

CH7024 TV Encoder (TV-Out) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

16-2 Freescale Semiconductor

The driver switches the current display output device from LCD to TV-Out (power off the LCD panel,
disable the current SDC output, setup the CH7024 and reconfigure the SDC to output appropriate signal
to CH7024). Then the TV-Out framebuffer device is used by applications.

CH7024 registers are accessed through the I2C interface. The driver uses the common kernel I2C client
driver to configure the CH7024 registers. The I2C client driver can not be accessed directly in user space.

The TV-out architecture diagram is shown in Figure 16-1.

Figure 16-1. TVout Driver in the Architecture

16.2 Source Code Structure Configuration
Table 9-1 describes the source files associated with the TV-out driver, which are available in the directory
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/video/mxc.

.

Table 9-2 describes the source files source files associated with the framebuffer drivers which use TV-out
driver are available in the directory <ltib_dir>/rpm/BUILD/linux-/drivers/video/mxc.

Table 16-1. TV-Out Driver Source File

File Description

ch7024.c Source file for CH7024 TV-Out driver

Table 16-2. Framebuffer Driver Source Files

File Description

mx2fb.c Source file for LCD framebuffer driver.
Provides SDC LCD disable/enable interface
to mx2fb_tv module for output device
switching.

TV -O ut A pplication
Application

Kernel

Hardware

Fram ebuffer
D river

C H 7024
D river

IPU SD C
D river

C H 7024
SD C LC D
C ontroller

CH7024 TV Encoder (TV-Out) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 16-3

16.3 Linux Menu Configuration Options
The Linux kernel provides the configuration option for the CH7024 TV-Out driver. In menuconfig, this
option is available under Device Drivers -> Graphics support -> Select TV out chip -> 3-stack CH7024
TV-Out Video.

CH7024 TV Encoder (TV-Out) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

16-4 Freescale Semiconductor

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 17-1

Chapter 17
Video Processing Unit (VPU) Driver for MX27
The Video Processing Unit (VPU) is the multimedia video processing module. It supports a full duplex
video codec with ~30 fps in VGA image resolution, multi-party call, and integrates multiple video
processing standards together, which include H264 BP, MPEG4 SP and H263 P3 (including annex I, J, K
and T).

It supports the following multimedia video stream processing features:

1. Multi-standard video codec

a) MPEG-4 part-II simple profile encoding/decoding

b) H.264/AVC baseline profile encoding/decoding

c) H.263 P3 encoding/decoding

d) Multi-party call: max processing 4 image/bitstream encoding and/or decoding simultaneously.

e) Multi-format: for example, encodes MPEG4 bitstream, and decodes H.264 bitstream
simultaneously.

2. Coding tools

a) High-performance motion estimation.

– Single reference frame for both MPEG4 and H.264 encoding.

– Support 16 reference frame for H264 decoding.

– Quarter-pel and half-pel accuracy motion estimation.

– [+/-16, +/-16] Search range.

– Unrestricted motion vector.

b) All variable block sizes are supported (In case of encoding, 8x4, 4x8, and 4x4 block sizes are
not supported).

c) MPEG-4 AC/DC prediction & H.264 Intra prediction.

d) H.263 Annex I, J, K(RS = 0 and ASO = 0), and T are supported. In case of encoding, the Annex
I and K(RS = 1 or ASO = 1) are not supported.

e) CIR (Cyclic Intra Refresh)/AIR (Adaptive Intra Refresh)

f) Error resilience tools.

– MPEG-4 re-synchronize marker & data-partitioning with RVLC (Fixed number of
bits/macroblocks between macroblocks).

– H.264/AVC FMO & ASO.

– H.263 slice structured mode.

g) Bit-rate control (CBR & VBR).

3. Pre/post rotation/mirroring

a) 8 rotation/mirroring modes for image to be encoded.

b) 8 rotation/mirroring modes for image to be displayed.

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

17-2 Freescale Semiconductor

4. Programmability

a) Embeds 16-bit DSP processor that is dedicated to processing bitstream and driving codec
hardware.

b) General purpose registers and interrupt generation for communication between system and
Video Codec module.

17.1 Hardware Operation
The VPU hardware performs all the codec computation and most parts of the bitstream parsing/packeting.
Therefore, software takes the advantage of less control and effort to implement a complex and efficient
multimedia codec system.

The VPU hardware data flow can be shown by a mpeg4 decoder example, as shown in Figure 17-1.

Figure 17-1. VPU Hardware Data Flow

W a it B u sy F lag = 0

S e t In itia l P a ra m e te rs
(A d d re ss 0 x 1 0 0 ~ 0 x 11 4)

B IT C o d e D o w n la o d

B IT R u n S ta r t

S e t S E Q _ IN IT P a ra m e te rs
(A d d re s s 0 x 1 8 0 ~ 0 x 1 9 0)

S E Q _ IN IT C o m m a n d
R u n In d e x = 0

R u n C o d Std = 0 (M P 4 _ D E C)
R u n C o m m a n d = 1

W a it B u sy F lag = 0

P IC T U R E _ R U N C o m m a n d
R u n In d e x = 0

R u n C o d S td = 0
R u n C o m m a n d = 3

S e t P IC T U R E _ R U N P a ra m e te r s
(A d d res s 0 x 1 8 C ~ 0 x 1 9 4)

R e a d R e tu rn P a ra m e te rs
(A d d re ss 0 x 1 C 0 ~ 0 x 1 D 0)

W a it B u sy F la g = 0

C h e c k R e tu rn S ta tu s

S E Q _ E N D C o m m a n d
R u n In d e x = 0

R u n C o d S td = 0
R u n C o m m a n d = 2

W a it B u sy F lag = 0

e n d

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 17-3

17.2 Software Operation
The VPU software can be divided into two parts: the kernel driver and the codec library as well as the
application in user space. The kernel driver takes responsibility for system control and reserving resources
(memory/IRQ and so on). It provides an IOCTL interface for the application layer in user space as a path
to access system resources. The application in user space calls related IOCTLs and codec library functions
to implement a complex codec system.

The VPU kernel driver has the functions listed below:

• Module initialization—Initializes the module with the device specific structure.

• Device initialization—Initializes the VPU clock and hardware, and request the IRQ.

• Interrupt servicing routine—Supports events that one frame has been finished.

• File operation routines— Provides the following interfaces to user space.

— file open

— file release

— file synchronization

— file ioctl, to provide interface for memory allocating and releasing

— memory map for register and memory accessing in user space

• Device Shutdown—Shuts down the VPU clock and hardware, and releases the IRQ.

The VPU user space driver has the functions listed below:

• Codec lib

— Downloads executable bitcode for hardware

— Initializes codec system

— Sets codec system configuration

— Controls codec system by command

— Report codec status and result

• System IO operation

— Request/Free memory

— Map/Unmap memory/register to user space

— Device management

17.3 Source Code Structure
 Table 17-1 lists the kernel space source files available in the following files:

<ltib_dir>/rpm/BUILD/linux-2.6.22/include/asm-arm/arch-mxc/mxc_vpu.h
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/vpu/mxc_vpu.c

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

17-4 Freescale Semiconductor

.

17.4 Linux Menu Configuration Options
The Linux kernel configuration option, CONFIG_MXC_VPU, is provided for VPU driver. In
menuconfig, this option is available under Device Drivers -> MXC support drivers -> MXC VPU
(Video Processing Unit) support -> Support for MXC VPU (Video Processing Unit).

17.5 Programming Interface
There is only a user space programming interface for the VPU module. A user in the application layer
cannot access the kernel driver interface directly. The VPU library does all this for users.

Codec library APIs are as follows:
RetCode vpu_EncOpen(EncHandle * pHandle, EncOpenParam * pop);
RetCode vpu_EncClose(EncHandle encHandle);
RetCode vpu_EncGetInitialInfo(EncHandle encHandle, EncInitialInfo * initialInfo);
RetCode vpu_EncRegisterFrameBuffer(EncHandle encHandle, FrameBuffer * pBuffer, int num,

int stride);
RetCode vpu_EncGetBitstreamBuffer(EncHandle handle, PhysicalAddress * prdPrt,

PhysicalAddress * pwrPtr, Uint32 * size);
RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);
RetCode vpu_EncStartOneFrame(EncHandle encHandle, EncParam * pParam);
RetCode vpu_EncGetOutputInfo(EncHandle encHandle, EncOutputInfo * info);
RetCode vpu_EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void * pParam);
RetCode vpu_DecOpen(DecHandle * pHandle, DecOpenParam * pop);
RetCode vpu_DecClose(DecHandle decHandle);
RetCode vpu_DecGetBitstreamBuffer(DecHandle pHandle, PhysicalAddress * pRdptr,

PhysicalAddress * pWrptr, Uint32 * size);
RetCode vpu_DecUpdateBitstreamBuffer(DecHandle decHandle, Uint32 size);
RetCode vpu_DecSetEscSeqInit(DecHandle pHandle, int escape);
RetCode vpu_DecGetInitialInfo(DecHandle decHandle, DecInitialInfo * info);
RetCode vpu_DecRegisterFrameBuffer(DecHandle decHandle, FrameBuffer * pBuffer, int num,

int stride);
RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam *param);
RetCode vpu_DecGetOutputInfo(DecHandle decHandle, DecOutputInfo * info);
RetCode vpu_DecBitBufferFlush(DecHandle handle);
RetCode vpu_DecGiveCommand(DecHandle pHandle, CodecCommand cmd, void * pParam);

System IO operations are listed as following.
int IOSystemInit(void);
int IOSystemShutdown(void);
int IOGetPhyMem(vpu_mem_desc* buff);
int IOFreePhyMem(vpu_mem_desc* buff);
int IOGetVirtMem (vpu_mem_desc* buff);
int IOFreeVirtMem(vpu_mem_desc * buff);

Table 17-1. VPU Driver File List

File Description

mxc_vpu.h Header file defining ioctrls and memory structures.

mxc_vpu.c Device management and file operation interface
implementation.

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 17-5

For detailed function usage, please refer to the VPU parts of the doxygen files and the demo code under
<ltib_dir>/rpm/BUILD/misc/test/mxc_vpu_test.

17.6 Defining an Application
The most important definition for an application is the codec memory descriptor. It is used for both
request/free and mmap/munmap memory.
typedef struct vpu_mem_desc
{

int size; /*request memory size*/
unsigned long phy_addr; /*physical memory get from system*/
unsigned long cpu_addr; /*address for system usage while freeing, user doesn't need

to handle or use it*/
unsigned long virt_uaddr; /*virtual user space address*/

} vpu_mem_desc;

Video Processing Unit (VPU) Driver for MX27

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

17-6 Freescale Semiconductor

OmniVision Camera Driver (OV2640)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 18-1

Chapter 18
OmniVision Camera Driver (OV2640)
The OV2640FSL is an on-board camera sensor and lens module designed for mobile applications where
low power consumption and small size are of the utmost importance. The camera driver is located under
the Linux V4L2 architecture. It implements the V4L2 capture interfaces.

Applications cannot use the camera driver directly; instead, the applications use the V4L2 capture driver
to open and close the camera for preview and image capture, controlling the camera, getting images from
camera, and starting the camera preview.

18.1 Hardware Operation
The OV2640FSL uses the serial camera control bus (SCCB) interface to control the sensor operation. It
works as an I2C client, and the CSI interface of IPU works as the I2C master, which uses the I2C bus to
control the camera’s operation.

The CSI interface of IPU also provides the sensor clock to the camera when the camera is working so that
the IPU can get image data from the camera through the CSI interface. The pixel clock, horizontal
reference output, and vertical synchronization output generated from the camera are used by the CSI
interface to get image data from the camera.

Refer to OV2640 and OV2640FSL datasheet to get more information on the sensor. Refer to the datasheet
for the platform to get more information on CSI and IPU.

18.2 Software Operation
The camera driver implements V4L2 capture interface, and applications use V4L2 capture interface to
operate the camera. The supported operations of V4L2 capture are preview, capture stream mode, capture
still mode, rotation, and resize.

The supported picture formats are RGB565, RGB24, BGR24, RGB32, BGR32, YUV422P, UYVY, and
YUV420.

18.3 Source Code Structure
Table 1-1 lists the camera driver source files available in the
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/media/video/mxc/capture directory.

18.4 Linux Menu Configuration Options
The Linux kernel configuration option, CONFIG_MXC_CAMERA_OV2640, is provided for the module.
This is the configuration option for the OV2640 camera driver. In menuconfig, this option is available

Table 18-1. Camera File List

File Description

ov2640.c camera driver implementation

OmniVision Camera Driver (OV2640)

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

18-2 Freescale Semiconductor

under Device Drivers -> Multimedia device -> Video For Linux -> Video Capture Adapter -> MXC
Camera/V4L2 PRP Features support. This option is dependent on the
CONFIG_VIDEO_MXC_IPU_CAMERA option. By default, this option is M.

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 19-1

Chapter 19
Advanced Linux Sound Architecture (ALSA) Sound Driver
with PMIC Hardware Support

NOTE
The i.MX27 PDK board doesn’t support voice codec.

This section explains the Advanced Linux Sound Architecture (ALSA) driver in general. Additional
documentation on ALSA can be located at www.alsa-project.org.

ALSA in general has the following components:

• ALSA utils (Aplay. Arecord, Alsamixer) – These are open source utilities that invoke APIs of
the ALSA user space library to access the kernel drivers and hardware.

• User space ALSA library (libasound)

• Kernel drivers – ALSA kernel drivers are hardware abstractions that directly map to some
hardware entity. Anything else that can be done in software (such as resampling, mixing, snooping,
and so on) is handled in user space as plug-ins.

ALSA can work in the following modes:

• Native or ALSA mode in which the applications go through a user space library. Here the
applications do not perform operations on the device files directly.

• OSS emulation mode in which the kernel ALSA driver emulates OSS for all practical purposes.
OSS compatible applications can directly perform operations on the device files. In this case the
compatibility between OSS style and ALSA is completely handled by the ALSA middle layer.

ALSA provides following types of interfaces to user space:

• Operational interface through /dev/snd/ (PCM components for capture and playback, control
components, MIDI devices, sequencer devices and a timer)

• Status and configuration interface through /proc/asound

19.1 ALSA Features and Components
The sections below describe the ALSA sound driver as applicable to Linux platforms based on Freescale’s
i.MX family of processors. This audio driver was ported to provide ALSA- and OSS-compatible
applications with the means to perform audio playback and recording functions using the audio
components provided by Freescale’s PMIC chips. The below sections cover ALSA strictly as applicable
to Freescale’s platforms.

The operational interfaces exported through /dev/snd/ in this release of BSP are as follows:

• PCM interfaces for playback (2)

• PCM interface for recording(1)

• Control interface for mixer operations(1)

www.alsa-project.org

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

19-2 Freescale Semiconductor

19.1.1 Current BSP Release Support
• 8 kHz through 96 kHz Stereo and Mono playback on /dev/snd/pcmC0D0p in native mode and

/dev/sound/dsp in OSS emulation mode.

• 8 kHz and 16 kHz mono playback on /dev/snd/pcmC0D1p in native mode and /dev/sound/adsp in
OSS emulation mode. This interface is not available for i.MX27PDK.

• 8 kHz and 16 kHz mono recording on /dev/snd/pcmC0D0c in native mode and /dev/sound/dsp in
OSS emulation mode

• Mixer operations to control input/output devices, playback/recording gains, balance and mono
adder configurations on /dev/snd/controlC0

• Playback Stream Mixing that is, mixing of two audio streams during playback. The audio driver
supports mixing of two audio streams. Mixing can be achieved in two ways.

— Analog Mixing: Analog mixing is mixing the two streams in the analog domain after the DAC
or the CODEC that is, after the streams have been decoded and before you pass it on to the
output.

— Digital Mixing: Digital mixing is mixing the 2 streams (mono) before they are decoded when
they are still in digital format. The two audio streams are mixed in the SSI and then the
combined stream is routed to the VCODEC for playback.

19.1.2 PCM Components

ALSA exports PCM devices: pcmC0D0p, pcmC0D0c, pcmC0D1p, and pcmC0D2p (if mixing is enabled)
in /dev/snd and dsp and adsp in /dev/sound for OSS compatibility.)

• C0 indicates sound card 0

• D0 or D1 indicates PCM device ID. (There can be multiple PCM devices attached to one sound
card)

Please note that these device files in /dev/snd and /dev/sound map to the same hardware but are exported
differently as per ALSA native and OSS emulation requirements.

Each PCM component maps to PCM device in the kernel that can have one playback and one capture
stream. Each stream can have multiple substreams.

In cases where the audio chip supports four identical DACs, they can be represented as one playback
stream with four substreams and allocating a substream upon device open is handled by the ALSA middle
layer.

19.1.3 Control Components

ALSA exports one control component in dev/snd as controlC0. The same control can be reached in OSS
emulation mode with the help of /dev/mixer device.

Controls are registered with a sound card as a linked list of Kcontrol structures identified by index, name
and interface. These control components can be accessed with amixer and alsamixer utilities. Currently
controls have been provided to vary playback volume, recording gain, playback balance, mono adder
configuration, output device selection and input device selection.

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 19-3

19.2 Hardware Operation
The ALSA sound driver provides interfaces between audio applications that run in user mode and the
hardware. The platform components that are used by the ALSA sound driver include the following:

• The Digital Audio MUX—Used to select the path for transferring the digital audio stream to and
from the PMIC. Reconfiguring the Digital Audio MUX can direct a digital audio stream to either
the Voice CODEC or the Stereo DAC. The Digital Audio MUX can also be used to select an audio
stream from either the ARM or DSP cores, but this feature is not currently implemented.

• The DMA controller—Used to transfer the digital audio data between a user-supplied data buffer
and the Synchronous Serial Interface (SSI) FIFO while minimizing any additional CPU overhead.
The ALSA sound driver internally allocates and manages the DMA channels, as well as handling
all DMA-related interrupt events.

• The SSI controller—Used to transmit and receive digital audio data in conjunction with the PMIC.
The SSI can be configured to operate in master mode, and the PMIC in slave mode, or vice versa.
The difference is that the master device generates appropriate clock signals to control the flow of
data. The PMIC should be configured in master mode and the SSI in slave mode, because then the
PMIC can generate the necessary clock signals using its own on-board clock sources, without any
dependencies or concerns about possible side-effects on other components that may be sharing the
same clock signal. Also PMIC generated clocks are more precise.

At least one SPI interface provides the ARM core with read/write access to the PMIC’s control registers.

In terms of the PMIC, the following audio-related components are configured and used by the OSS sound
driver:

• The Voice CODEC—Provides both playback and recording capabilities.

• The Stereo DAC—Provides a playback capability.

Various output devices and phantom ground circuits can be used to select and configure appropriate output
path. Various input devices and microphone bias circuits can be used to select and configure appropriate
input path.

The on-board PLL and clock source are used to generate appropriate clock signals for the SSI bus when
the PMIC is configured in master mode.

Gain settings for voice codec and stereo DAC.

• Balance gain to be applied to L and R channels.

• Mono adder configuration to keep L and R separate or added or phase inverted with respect to one
another.

19.3 Software Operation
In brief, the software performs the following steps:

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

19-4 Freescale Semiconductor

19.3.1 Initialization
• Allocate sound card instance

• Create 2 PCM devices to support playback on ST-DAC, playback on voice codec and recording on
voice codec

• Pre-allocate buffers for PCM components and set playback and capture operations as applicable

• Initialize the control components

• Enable clocks and power management functions

• Finally, register the sound card with all added components with ALSA driver. At this point access
to all device files is enabled

ALSA middle layer expects the following ops (something like Linux fops) to be implemented by the audio
chip abstraction layer

• Open (Opens a substream for playback or recording. Here generally the low-level hardware
devices are also opened. ALSA also assigns a substream for the required operation at this stage)

• Close

• IOCTL

• Hardware params (Typically audio hardware configuration in terms of DMA is done over here.)

• Hardware-free

• Prepare (The low-level audio chips, such as SSI and DAM, are configured and made ready for
playback or recording.)

• Trigger (The operation is started for the first time over here. If the driver supports pause/resume
operation, it is implemented as part of this function.)

• Pointer (This function is expected to return the current position of the DMA pointer.)

19.3.2 Device Open
• ALSA allocates a free substream for the operation to be performed

• Open the low-level hardware device

• Assign the hardware capabilities to ALSA runtime information. (Runtime structure contains all the
hardware, DMA, software capabilities of an opened substream.)

• Configure DMA read or write channel for operation

• Configure SSI and DAM hardware

• Configure PMIC audio hardware

• Trigger the transfer

After triggering for the first time, the subsequent DMA reads and writes are configured by the DMA
callback.

19.3.3 Digital Mixing

Digital Mixing involves mixing the two streams by configuring SSI to use two-channel mode so that data
is transmitted alternately from FIFO 0 and FIFO 1. One stream is written to TXFIFO0 and other to

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 19-5

TXFIFO1. So the two streams can be mixed as the SSI TX fetches data alternately from FIFO 0 and FIFO
1 in two-channel mode. This is routed to VCODEC for playback.

19.4 Source Code Structure
Table 19-1 shows the PMIC-independent source files that are used to build the ALSA sound driver. In
addition, these source files define the audio features, capabilities, and sound card interface that is to be
supported by the underlying audio hardware. A particular sound card need not support all of the features
and capabilities that are defined and there are means available to query the underlying sound card driver
for exactly what is supported. All of the source files listed in Table 19-1 are available in the
<ltib_dir>/rpm/BUILD/linux-2.6.22/sound/arm directory in the Linux kernel source tree.

Table 19-1. PMIC Independent Source Files

File Description

mxc-alsa-pmic.c Main file that abstracts PMIC audio hardware from ALSA and
implements all ALSA callback functions

mxc-alsa-mixer.c Implements and manages control components

mxc-alsa-common.h Common APIs and enums used between mxc-alsa-pmic.c
and mxc-alsa-mixer.c

mxc-alsa-pmic.h Header File

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

19-6 Freescale Semiconductor

Digital Audio Multiplexer (AUDMUX) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 20-1

Chapter 20
Digital Audio Multiplexer (AUDMUX) Driver
The digital audio multiplexer (AUDMUX) driver provides multiple and simultaneous interfaces between
internal/external ports and peripherals. With AUDMUX, resources do not need to be hard-wired and can
be effectively shared in different configurations. The AUDMUX interconnections allow multiple,
simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint
configurations.

AUDMUX includes two types of interfaces. Internal ports connect to the processor serial interfaces and
external ports connect to off-chip audio devices and serial interfaces of other processors. A desired
connectivity is achieved by configuring the appropriate internal and external ports.

20.1 Hardware Operation
The Digital Audio Multiplexer (AUDMUX) Driver module configures and deals with the hardware
registers for the AUDMUX module.

• At most three internal ports

• Four external ports

• Full 6-wire SSI interfaces for asynchronous receive and transmit

• Configurable 4-wire (synchronous) or 6-wire (asynchronous) peripheral interfaces

• Independent Tx/Rx Frame sync and clock direction selection for host or peripheral

• Each host interface can be connected to any other host or peripheral interface in a point-to-point or
point-to-multipoint (network mode)

• Transmit and Receive Data switching to support external network mode

• CE Bus network mode to provide synchronous switching on RxD

For more information, see the chapter on Audio Multiplexer in the documentation for the multimedia
applications processor.

20.2 Software Operation
The AUDMUX driver is a hardware abstraction located between its client (the audio driver) and the
multimedia applications processor registers. The purpose of this low-level API is only to set and read
registers. Figure 20-1 shows the block diagram for AUDMUX driver interactions.

Figure 20-1. AUDMUX Driver Interactions

Digital Audio Multiplexer (AUDMUX) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

20-2 Freescale Semiconductor

20.3 Requirements
The AUDMUX module’s implementation meets the following requirements:

• The AUDMUX module implements each of the functions required by such a module to interface
to Linux and configure all hardware registers related to this module.

20.4 Source Code Structure
Table 20-1 lists the source files available in the device directory:

<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/dam.

20.4.1 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_DAM, is provided for this module. In order to get to the
dam configuration use the command ./ltib -c when located in the <ltib dir>. In the screen, select
Configure Kernel, exit, and a new screen will appear.

This configuration option is for the Digital Audio Multiplexer (AUDMUX) Driver. In menuconfig, this
option is available under Device Drivers -> MXC support drivers -> MXC Digital Audio Multiplexer
support -> DAM support.

20.5 Programming Interface (Exported API)
The AUDMUX exported API allows the user to process standard AUDMUX operations.

Table 20-1. AUDMUX Source Files

File Description

dam.h Header file providing external API

dam.c AUDMUX version 2 registers access implementation

dam_v1.c AUDMUX version 1 registers access implementation

Table 20-2. AUDMUX Exported Functions

Function Description

dam_select_mode() This function selects the operation mode of the port.

dam_select_RxClk_direction() This function controls Receive clock signal direction
for the port.

dam_select_RxClk_source() This function controls Receive clock signal source for
the port.

dam_select_RxD_source() This function selects the source port for the RxD data.

dam_select_RxFS_direction() This function controls Receive Frame Sync signal
direction for the port.

dam_select_RxFS_source() This function controls Receive Frame Sync signal
source for the port.

Digital Audio Multiplexer (AUDMUX) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 20-3

The exact description of this API is available in the generated doxygen api_output directory. The whole
API documentation, including internal functions, is available in the generated doxygen full_output
directory.

20.6 Interrupt Requirements
No interrupts are generated by the digital audio multiplexer.

dam_select_TxClk_direction() This function controls Transmit clock signal direction
for the port.

dam_select_TxClk_source() This function controls Transmit clock signal source for
the port.

dam_select_TxFS_direction() This function controls Transmit Frame Sync signal
direction for the port.

dam_select_TxFS_source() This function controls Transmit Frame Sync signal
source for the port.

dam_set_internal_network_mode_mask () This function sets a bit mask that selects the port from
which of the RxD signals are to be ANDed together
for internal network mode. Bit 6 represents RxD from
Port7 and bit0 represents RxD from Port1. 1 excludes
RxDn from ANDing. 0 includes RxDn for ANDing.

dam_set_synchronous() This function controls whether or not the port is in
synchronous mode. When the synchronous mode is
selected, the receive and the transmit sections use
common clock and frame sync signals. When the
synchronous mode is not selected, separate clock
and frame sync signals are used for the transmit and
the receive sections. The default value is the
synchronous mode selected.

dam_switch_Tx_Rx() This function swaps transmit and receive signals from
(Da-TxD, Db-RxD) to (Da-RxD, Db-TxD). This default
signal configuration is Da-TxD, Db-RxD.

Table 20-2. AUDMUX Exported Functions (Continued)

Function Description

Digital Audio Multiplexer (AUDMUX) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

20-4 Freescale Semiconductor

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 21-1

Chapter 21
Synchronous Serial Interface (SSI) Driver

The synchronous serial interface (SSI) driver manages a full-duplex serial port that allows the multimedia
applications processor to communicate with a variety of serial devices. These serial devices can be
standard CODECs, digital signal processors (DSPs), microprocessors, peripherals, and popular industry
audio codecs that implement the inter-IC sound bus standard (I2S) and Intel AC97 standard.

The SSI is typically used to transfer samples in a periodic manner. The SSI consists of independent
transmitter and receiver sections with independent clock generation and frame synchronization. It supports
the configuration of all SSI block registers.

21.1 Hardware Operation

SSI includes the following features:

• Independent (asynchronous) or shared (synchronous) transmit and receive sections with separate
or shared internal/external clocks and frame syncs, operating in Master or Slave mode.

• Normal mode operation using frame sync.

• Network mode operation allowing multiple devices to share the port with as many as thirty-two
time slots.

• Gated Clock mode operation requiring no frame sync.

• Two sets of Transmit and Receive FIFOs. Each of the four FIFOs is 8x24 bits. The two sets of
Tx/Rx FIFOs can be used in Network mode to provide two independent channels for transmission
and reception.

• Programmable data interface modes such like I2S, LSB, MSB aligned.

• Programmable word length (8, 10, 12, 16, 18, 20, 22, or 24 bits).

• Program options for frame sync and clock generation.

• Programmable I2S modes (Master, Slave or Normal). Over-sampling clock, ccm_ssi_clk available
as output from SRCK in I2S Master mode.

• AC97 support.

• Completely separate clock and frame sync selections for the receive and transmit sections. In AC97
standard, the clock is taken from an external source and frame sync is generated internally.

• External ccm_ssi_clk input for use in I2S Master mode. Programmable over-sampling clock
(SYS_CLK/ccm_ssi_clk) of the sampling frequency available as output in master mode at SRCK,
when operated in sync mode.

• Programmable internal clock divider.

• Time Slot Mask Registers for reduced CPU overhead (for Tx and Rx both).

• SSI power-down feature.

• Programmable wait states for CPU accesses.

• IP Interface for register accesses, compliant to SRS 3.0.2 standard.

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

21-2 Freescale Semiconductor

For more information, see the chapter on SSI in the multimedia applications processor documentation.

21.2 Software Operation
The SSI driver is a hardware abstraction located between its client (Audio driver) and the multimedia
applications processor registers.

The purpose of this low level API is only to set and read registers. Figure 21-1 shows a block diagram of
the software interaction.

Figure 21-1. SSI Driver Interactions

21.3 Requirements
The SSI module implements each of the functions required by an SSI module to interface to Linux and
configure all hardware registers related to this module.

21.4 Source Code Structure
Table 21-1 lists the source files available in the devices directory:

<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/ssi.

21.4.1 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_MXC_SSI, is provided for this module. In order to get
to the ssi configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select
Configure Kernel, exit, and a new screen will appear.

Table 21-1. SSI Source File List

File Description

registers.h MXC registers definition header file

ssi_types.h Header file providing SSI specific types

ssi.h Header file providing external API

ssi.c SSI registers access implementation

IOMux Control
Registers

MXC SSI Hardware
Registers

SSI low level driver

Audio driver

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 21-3

This configuration option is for the multimedia applications processor SSI driver used for the MXC SSI
ports. In menuconfig, this option is available under Device Drivers -> MXC support drivers -> MXC SSI
support -> SSI support.

21.5 Programming Interface (Exported API)
The SSI Exported API allows the user to process standard SSI operations. The exact description of this
API is available in the generated doxygen api_output directory. The whole API documentation, including
internal functions, is available in the generated doxygen full_output directory.

I

Table 21-2. SSI Exported Functions

Function Description

ssi_ac97_frame_rate_divider() This function controls the AC97 frame rate divider.

ssi_ac97_get_command_address_register() This function gets the AC97 command address
register.

ssi_ac97_get_command_data_register() This function gets the AC97 command data register.

ssi_ac97_get_tag_register() This function gets the AC97 tag register.

ssi_ac97_mode_enable() This function controls the AC97 mode.

ssi_ac97_tag_in_fifo() This function controls the AC97 tag in FIFO behavior.

ssi_ac97_read_command() This function controls the AC97 read command.

ssi_ac97_set_command_address_register() This function sets the AC97 command address
register.

ssi_ac97_set_command_data_register() This function sets the AC97 command data register.

ssi_ac97_set_tag_register() This function sets the AC97 tag register.

ssi_ac97_variable_mode () This function controls the AC97 variable mode.

ssi_ac97_write_command() This function controls the AC97 write command.

ssi_clock_idle_state() This function controls the idle state of the transmit
clock port during SSI internal gated mode.

ssi_clock_off() This function turns off/on the ccm_ssi_clk to reduce
power consumption.

ssi_enable() This function enables/disables the SSI module.

ssi_get_data() This function gets the data word in the Receive FIFO
of the SSI module.

ssi_get_status() This function returns the status of the SSI module
(SISR register) as a combination of status.

ssi_i2s_mode() This function selects the I2S mode of the SSI module.

ssi_interrupt_disable() This function disables the interrupts of the SSI
module.

ssi_interrupt_enable() This function enables the interrupts of the SSI
module.

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

21-4 Freescale Semiconductor

ssi_network_mode() This function enables/disables the network mode of
the SSI module.

ssi_receive_enable() This function enables/disables the receive section of
the SSI module.

ssi_rx_bit0() This function configures the SSI module to receive
data word at bit position 0 or 23 in the Receive shift
register.

ssi_rx_clock_direction() This function controls the source of the clock signal
used to clock the Receive shift register.

ssi_rx_clock_divide_by_two() This function configures the divide-by-two divider of
the SSI module for the receive section.

ssi_rx_clock_polarity() This function controls which bit clock edge is used to
clock in data.

ssi_rx_clock_prescaler() This function configures a fixed divide-by-eight clock
pre-scaler divider of the SSI module in series with the
variable pre-scaler for the receive section.

ssi_rx_early_frame_sync() This function controls the early frame sync
configuration.

ssi_rx_fifo_counter() This function gets the number of data words in the
Receive FIFO.

ssi_rx_fifo_enable() This function enables the Receive FIFO.

ssi_rx_fifo_full_watermark() This function controls the threshold at which the RFFx
flag will be set.

ssi_rx_flush_fifo() This function flushes the Receive FIFOs.

ssi_rx_frame_direction() This function controls the direction of the Frame Sync
signal for the receive section.

ssi_rx_frame_rate() This function configures the Receive frame rate
divider for the receive section.

ssi_rx_frame_sync_active() This function controls the Frame Sync active polarity
for the receive section.

ssi_rx_frame_sync_length() This function controls the Frame Sync length (one
word or one bit long) for the receive section.

ssi_rx_mask_time_slot() This function configures the time slot(s) to mask for
the receive section.

ssi_rx_prescaler_modulus() This function configures the prescale divider for the
receive section.

ssi_rx_shift_direction() This function controls whether the MSB or LSB will be
received first in a sample.

ssi_rx_word_length() This function configures the Receive word length.

Table 21-2. SSI Exported Functions (Continued)

Function Description

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 21-5

ssi_set_data() This function sets the data word in the Transmit FIFO
of the SSI module.

ssi_set_wait_states() This function controls the number of wait states
between the core and SSI.

ssi_synchronous_mode() This function enables/disables the synchronous
mode of the SSI module.

ssi_system_clock() This function allows the SSI module to output the
SYS_CLK at the SRCK port.

ssi_transmit_enable() This function enables/disables the transmit section of
the SSI module.

ssi_two_channel_mode() This function allows the SSI module to operate in the
two channel mode.

ssi_tx_bit0() This function configures the SSI module to transmit
data word from bit position 0 or 23 in the Transmit shift
register.

ssi_tx_clock_direction() This function controls the direction of the clock signal
used to clock the Transmit shift register.

ssi_tx_clock_divide_by_two() This function configures the divide-by-two divider of
the SSI module for the transmit section.

ssi_tx_clock_polarity() This function controls which bit clock edge is used to
clock out data.

ssi_tx_clock_prescaler() This function configures a fixed divide-by-eight clock
prescaler divider of the SSI module in series with the
variable prescaler for the transmit section.

ssi_tx_early_frame_sync() This function controls the early frame sync
configuration for the transmit section.

ssi_tx_fifo_counter() This function gets the number of data words in the
Transmit FIFO.

ssi_tx_fifo_empty_watermark() This function controls the threshold at which the TFEx
flag will be set.

ssi_tx_fifo_enable() This function enables the Transmit FIFO.

ssi_tx_flush_fifo() This function flushes the Transmit FIFOs.

ssi_tx_frame_direction() This function controls the direction of the Frame Sync
signal for the transmit section.

ssi_tx_frame_rate() This function configures the Transmit frame rate
divider.

ssi_tx_frame_sync_active() This function controls the Frame Sync active polarity
for the transmit section.

ssi_tx_frame_sync_length() This function controls the Frame Sync length (one
word or one bit long) for the transmit section.

Table 21-2. SSI Exported Functions (Continued)

Function Description

Synchronous Serial Interface (SSI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

21-6 Freescale Semiconductor

21.6 Interrupt Requirements
The SSI module generates interrupts but this driver is only a hardware abstraction. The interrupt
requirements depend on the client which will use the API.

ssi_tx_mask_time_slot() This function configures the time slot(s) to mask for
the transmit section.

ssi_tx_prescaler_modulus() This function configures the prescale divider for the
transmit section.

ssi_tx_shift_direction() This function controls whether the MSB or LSB will be
transmitted first in a sample.

ssi_tx_word_length() This function configures the Transmit word length.

Table 21-2. SSI Exported Functions (Continued)

Function Description

NAND Flash Memory Technology Device (MTD) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 22-1

Chapter 22
NAND Flash Memory Technology Device (MTD) Driver

22.1 Overview
The NAND Flash Memory Technology Device (MTD) driver is for the NAND Flash Controller (NFC) on
the i.MX series processor. For the NAND MTD driver to work, only the hardware specific layer has to be
implemented. The rest of the functionality, such as Flash read/write/erase, is automatically taken care of
by the generic layer provided by the Linux MTD subsystem for NAND devices.

22.1.1 Hardware Operation

NAND Flash is a non-volatile storage device used for embedded systems. It does not support random
access of memory as in the case of RAM or NOR Flash. Reading or writing to NAND Flash has to be
through the NFC in the i.MX processors. It uses a multiplexed I/O Interface with some additional control
pins. It is a sequential access device appropriate for mass storage applications. Code stored on NAND
Flash can't be executed from there. It must be loaded into RAM memory and executed from there.

The NFC in the i.MX processors implements the interface to standard NAND Flash devices. It provides
access to both 8-bit and 16-bit NAND Flash. The NAND Flash Control block of the NFC generates all the
control signals that control the NAND Flash.

The NFC hardware versions vary across i.MX platforms. For details, see Section 22.6, “Device-Specific
Information.”

22.1.2 Software Operation

The MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of NOR and
NAND Flash devices. The MTD subsystem provides a unified and uniform access to the various memory
devices.

There are three layers of NAND MTD driver

• MTD driver

• Generic NAND driver

• Hardware specific driver

The MTD driver provides a mount point for the file system. It can support various file systems, such as
YAFFS2, CRAMFS and JFFS2.

The hardware specific driver interfaces with the integrated NFC on the i.MX processors. It implements the
lowest level operations on the external NAND Flash chip, such as read and write. It defines the static
partitions and registers it to the kernel. This partition information is used by the upper filesystem layer. It
initializes the nand_chip structure to be used by the generic layer.

The generic layer provides all functions, which are necessary to identify, read, write and erase NAND
Flash. It supports bad block management, because blocks in a NAND Flash are not guaranteed to be good.

NAND Flash Memory Technology Device (MTD) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

22-2 Freescale Semiconductor

The upper layer of the filesystem uses this feature of bad block management to manage the data on the
NAND Flash.

NAND MTD driver is part of the kernel image.

For detailed information on the NAND MTD driver architecture and the NAND API documentation refer
to http://www.linux-mtd.infradead.org/.

22.2 Requirements
This NAND Flash MTD driver implementation should meet the following requirements:

• The NAND MTD driver shall provide necessary hardware-specific information to the generic layer
of the NAND MTD driver.

• The NAND MTD driver shall provide software Error Correction Code (ECC) support.

• The NAND MTD driver shall support both 16-bit and 8-bit NAND Flash

• The NAND MTD driver shall conform to the Linux coding standard.

22.3 Source Code Structure
Table 22-1 lists the source files available for the NAND MTD driver. These files are under the
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mtd/nand directory.

22.4 Configuration
The NAND MTD driver has the following Linux menu configuration options.

22.4.1 Linux Menu Configuration Options

In menuconfig the following options are available under Device Drivers -> Memory Technology Device
(MTD) support -> NAND Device Support -> MXC NAND:

• CONFIG_MTD_NAND_MXC - This is the configuration option for the NAND MTD driver for
the i.MX processors having NFC hardware version 1.

• CONFIG_MTD_NAND_MXC_V2 - This is the configuration option for the NAND MTD driver
for the i.MX processors having NFC hardware version 2.

• CONFIG_MTD_NAND_MXC_V3 - This is the configuration option for the NAND MTD driver
for the MXC processors having NFC hardware version 3.

Table 22-1. NAND MTD File List

File Description

mxc_nd.c Hardware-specific layer for NAND MTD driver for NFC version 1.

mxc_nd.h Register declaration for NFC version 1

mxc_nd2.c Hardware-specific layer for NAND MTD driver for NFC version 2 and above

mxc_nd2.h Register declaration for NFC version 2 and above

http://www.linux-mtd.infradead.org/

NAND Flash Memory Technology Device (MTD) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 22-3

22.5 Programming Interface
The generic NAND driver nand_base.c provides all functions that are necessary to identify, read, write,
and erase NAND Flash. The hardware-dependent functions are provided by the hardware driver
mxc_nd.c/mxc_nd2.c depending on the NFC version. It mainly provides the hardware access information
and functions for the generic NAND driver.

Refer to the API documents for the programming Interface.

22.6 Device-Specific Information
For more information on NFC hardware, refer to the L3 specifications of i.MX processors.Table 22-2 lists
the NFC hardware version on different i.MX platforms.

Table 22-2. NFC Hardware Version across i.MX platforms

NFC
Version

Platforms/SoC

1 i.MX27

NAND Flash Memory Technology Device (MTD) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

22-4 Freescale Semiconductor

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 23-1

Chapter 23
Low-Level Keypad Driver
The low-level keypad driver interfaces with the keypad port (KPP) in the i.MX application processors. The
KPP interface in these processors is provided by the hardware. The low-level keypad driver is
implemented as a standard Linux 2.6 keyboard driver, modified for the i.MX application processors.

The Low-Level Keypad Driver supports the following features:

• Interrupt-driven scan code generation for keypress and release on a keypad matrix.

• The keypad is supported as a standard input device.

The Low-Level Keypad Driver can be accessed through the /dev/input/event0 device file.

23.1 Hardware Operation
The i.MX application processors keypad device supports a keypad matrix with as many as 8 rows and 8
columns. Any pins that are not being used for the keypad are available as general purpose input/output
pins.

The keypad port interfaces with a keypad matrix. On a keypress, the intersecting row and column lines are
shorted together. The keypad has two mode of operation, Run mode and Low Power mode. In both modes
the KPP detects any key press event, but in Low power mode it is done even when there is no MCU clock.

23.2 Software Operation
The low-level keypad driver generates scan-codes for keypress and release on the keypad matrix. The
operation is as follows:

1. When a key is pressed on the keypad, the keypad interrupt handler is called.

2. In the keypad interrupt handler, the mxc_kpp_scan_matrix function is called to scan for
keypresses and releases.

3. The keypad scan timer function is called every 10ms to scan for any keypress or release on the
keypad.

4. The scancode for the keypress or release is generated by the mxc_kpp_scan_matrix function.

5. The generated scancodes are converted to input device keycodes using the mxckpd_keycodes
array.

Every keypress or release follows the debounce state machine which is shown in Figure 26-1. The
mxc_kpp_scan_matrix function is called for every keypress and release interrupt.

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

23-2 Freescale Semiconductor

Figure 23-1. Keypad Driver State Machine

The low-level keypad driver registers the input device structure within the __init function by calling
input_register_device(&mxckbd_dev).

The driver sets input bit fields and conveys to other parts of the input systems all the events that can be
generated by this input device. The Low-Level Keypad Driver can generate only EV_KEY type events. This
can be indicated using __set_bit(EV_KEY, mxckbd_dev.evbit).

The keypress keycodes are reported by calling input_event(). The reported key press/release events are
passed to the event interface (/dev/input/event0). This event interface is created when the evdev
executable, located in <ltib_dir>/rpm/BUILD/linux-/drivers/input, is compiled. The event interface is a
generic input event interface. It passes the events generated in the kernel to the user space with timestamps.
Blocking reads and non-blocking reads and also select() can be done on /dev/input/event0.

The structure of input_event is as follows:

struct input_event {
 struct timeval time;
 unsigned short type;
 unsigned short code;
 unsigned int value;
};

where:

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 23-3

• ‘time’ is the timestamp and returns the time at which event happened

• ‘code’ i.MX keycode for keypress or release

• ‘value’ equals ‘0’ for key release and ‘1’ for key press

The functions mentioned in this section are implemented as a low-level interface between the Linux OS
and the KPP hardware. They cannot be called from other drivers, or from a user application.

The keypress and release scancodes can be derived using the following formula,
scancode (press) = (row × 8) + col;
scancode (release) = (row × 8) + col + 128;

The following table describes key connection, key scancodes, and key mapcodes of the keys in the keypad.

Table 23-1. Key Connections in Keypad

Key Row Column Scancode Keycode

SEL 0 0 0 161

LEFT 0 1 1 103

DOWN 0 2 2 106

RIGHT 0 3 3 108

UP 0 4 4 105

KEY2 0 5 5 88

END 0 6 6 107

BACK 0 7 7 158

KEY1 1 0 8 59

SEND 1 1 9 145

HOME 1 2 10 102

APP1 1 3 11 64

VOL_UP 1 4 12 115

APP2 1 5 13 66

APP3 1 6 14 67

APP4 1 7 15 68

KEY_3 2 0 16 4

KEY_2 2 1 17 3

KEY_1 2 2 18 2

KEY_4 2 3 19 5

VOL_DOWN 2 4 20 114

KEY_7 2 5 21 8

KEY_5 2 6 22 6

KEY_6 2 7 23 7

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

23-4 Freescale Semiconductor

KEY_9 3 0 24 10

Number_sign 3 1 25 87

KEY_8 3 2 26 9

ASTERISK 3 3 27 53

PLUS 3 4 28 78

RECORD 3 5 29 167

KEY_Q 3 6 30 16

KEY_W 3 7 31 17

KEY_A 4 0 32 30

KEY_S 4 1 33 31

KEY_D 4 2 34 32

KEY_E 4 3 35 18

KEY_F 4 4 36 33

KEY_R 4 5 37 19

KEY_T 4 6 38 20

KEY_Y 4 7 39 21

KEY_TAB 5 0 40 15

SYMB 5 1 41 65

CAPS 5 2 42 58

KEY_Z 5 3 43 44

KEY_X 5 4 44 45

KEY_C 5 5 45 46

KEY_V 5 6 46 47

KEY_G 5 7 47 34

KEY_B 6 0 48 48

KEY_H 6 1 49 35

KEY_N 6 2 50 49

KEY_M 6 3 51 50

KEY_J 6 4 52 36

KEY_K 6 5 53 37

KEY_U 6 6 54 22

KEY_I 6 7 55 23

SPACE 7 0 56 57

Table 23-1. Key Connections in Keypad (Continued)

Key Row Column Scancode Keycode

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 23-5

Refer to the Device-Specific Information section for additional mapcodes and scancodes.

23.3 Requirements
The Keypad driver meets the following requirements:

• The keypad driver returns the input keycode for every key that is pressed or released.

• The keypad driver implements support for an interrupt driver for keypress or release.

• The keypad driver implements support for blocking and non-blocking reads.

• The keypad driver is implemented as a standard input device.

23.4 Source Code Structure
The source file, mxc_keyb.c, available in the
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/input/keyboard directory. The file is a keypad lower level
file.

The header file, mxc_keyb.h, is associated with the keypad driver, and is available in the
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/input/keyboard directory.

23.5 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_MXC_KEYBOARD—MXC Keypad driver used for the MXC Keypad port (KPP). In
menuconfig this option is available under Device Drivers -> Input device support -> Keyboards
-> MXC Keypad Driver.

• CONFIG_INPUT_EVDEV —Create the event interface. Enabling this option creates the device
node /dev/input/event0. In menuconfig, this option is available under Device Drivers-> Input

device support-> Event interface.

The following source code configuration options are available for this module:

ON/OFF 7 1 57 64

PERIOD 7 2 58 52

ENTER 7 3 59 28

KEY_L 7 4 60 38

KEY_BS 7 5 61 14

KEY_P 7 6 62 25

KEY_O 7 7 63 24

Table 23-1. Key Connections in Keypad (Continued)

Key Row Column Scancode Keycode

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

23-6 Freescale Semiconductor

• Matrix config: The keypad matrix can be configured for up to 8 rows and 8 columns. The keypad
matrix configuration can be done by changing the MAXROW and MAXCOL macros defined in
include the mxc_keyb.h file.

• Debounce delay: User can configure the debounce delay by changing the variable KScanRate
defined in mxc_keyb.c

23.6 Programming Interface
All low-level keypad drivers define, typedefs, global variables, and functions are implemented in
mxc_keyb.c and mxc_keyb.h. For more information, see the API documents for the programming interface.

23.7 Interrupt Requirements
Table 23-2 lists the keypad interrupt timer requirements.

.

23.8 Device-Specific Information
Table 23-3 shows key connections, key scancodes, and key mapcodes of the keys on the keypad for a
specific platform.

Table 23-2. Keypad Interrupt Timer Requirements

Parameter Equation Typical Worst-Case

Key scanning interrupt (X number of instruction/MHz) × 64 (X/MHz) × 64 (X/MHz) × 64

Alarm for key polling None 10 msec 10 msec

Table 23-3. Key Connections for Keypad

Key Row Column Scancode Linux Key Code Platform

EXTRA5 0 0 0 KEY_KP9 i.MX27 ADS

0 1 1 KEY_F3 i.MX27 ADS

0 0 2 2 KEY_0 i.MX27 ADS

* 0 3 3 KEY_KPASTERISK i.MX27 ADS

RECORD 0 4 4 KEY_RECORD i.MX27 ADS

POWER 0 5 5 KEY_POWER i.MX27 ADS

EXTRA4 1 0 6 KEY_KP8 i.MX27 ADS

9 1 1 7 KEY_9 i.MX27 ADS

8 1 2 8 KEY_8 i.MX27 ADS

7 1 3 9 KEY_7 i.MX27 ADS

EXTRA1 1 4 10 KEY_KP5 i.MX27 ADS

VOL_DOWN 1 5 11 KEY_VOLUMEDOWN i.MX27 ADS

EXTRA3 2 0 12 KEY_KP7 i.MX27 ADS

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 23-7

6 2 1 13 KEY_6 i.MX27 ADS

5 2 2 14 KEY_5 i.MX27 ADS

4 2 3 15 KEY_4 i.MX27 ADS

APP4 2 4 16 KEY_KP4 i.MX27 ADS

VOL_UP 2 5 17 KEY_VOLUMEUP i.MX27 ADS

EXTRA2 3 0 18 KEY_KP6 i.MX27 ADS

3 3 1 19 KEY_3 i.MX27 ADS

2 3 2 20 KEY_2 i.MX27 ADS

1 3 3 21 KEY_1 i.MX27 ADS

APP3 3 4 22 KEY_KP3 i.MX27 ADS

UP 0 0 0 KEY_UP .MX27 PDK

DOWN 3 5 23 KEY_DOWN i.MX27 ADS

DOWN 0 1 1 KEY_DOWN MX27 PDK

BACK 4 0 24 KEY_BACK i.MX27 ADS

RIGHT 4 1 25 KEY_RIGHT i.MX27 ADS

RIGHT 1 0 8 KEY_RIGHT MX27 PDK

ACTION 4 2 26 KEY_ENTER i.MX27 ADS

LEFT 4 3 27 KEY_LEFT i.MX27 ADS

LEFT 1 1 9 KEY_LEFT MX27 PDK

HOME 4 4 28 KEY_HOME i.MX27 ADS

APP2 4 5 29 KEY_KP2 i.MX27 ADS

END 5 0 30 KEY_END i.MX27 ADS

KEY2 5 1 31 KEY_F2 i.MX27 ADS

UP 5 2 32 KEY_UP i.MX27 ADS

KEY1 5 3 33 KEY_F1 i.MX27 ADS

SEND 5 4 34 KEY_F4 i.MX27 ADS

APP1 5 5 35 KEY_KP1 i.MX27 ADS

ENTER 1 2 10 KEY_ENTER MX27 PDK

MENU1 2 0 16 KEY_F6 (APP1) MX27 PDK

MENU2 2 1 17 KEY_F8 (APP2) MX27 PDK

MENU3 2 2 18 KEY_F9 (APP3) MX27 PDK

MENU4 2 3 19 KEY_F10 (APP4) MX27 PDK

Table 23-3. Key Connections for Keypad (Continued)

Key Row Column Scancode Linux Key Code Platform

Low-Level Keypad Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

23-8 Freescale Semiconductor

SMSC LAN9217 Ethernet Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 24-1

Chapter 24
SMSC LAN9217 Ethernet Driver
The SMSC LAN9217 Ethernet driver interfaces SMSC LAN9217-specific functions with the standard
Linux kernel network module. The LAN9217 is a full-featured, single-chip 10/100 Ethernet controller
designed for embedded applications where performance, flexibility, ease of integration, and system cost
control are required. The LAN9217 has been specifically architected to provide the highest performance
possible for any 16-bit application. The LAN9217 is fully IEEE 802.3, 10BASE-T, and 802.3
100BASE-TX compliant, and supports HP Auto-MDIX.

The SMSC LAN9217 Ethernet driver has the following features:

• Efficient PacketPage Architecture can operate in I/O and memory space, and as a DMA slave.

• Supports full duplex operation.

• Supports on-chip RAM buffers for transmission and reception of frames.

• Supports programmable transmit features like automatic retransmission on collision and automatic
CRC generation.

• EEPROM support for configuration.

• Supports MAC address setting.

• Supports obtaining statistics from the device, such as transmit collisions.

This network adapter can be accessed through the ifconfig command with interface name (eth0). The
probe function of this driver is declared in <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/net/Space.c to
probe for the device and to initialize it during boot.

24.1 Hardware Operation
The SMSC LAN9217 Ethernet controller interfaces the system to the LAN network.

A brief overview of the device functionality is provided here. For details, see LAN9217 Ethernet
Controller Data Sheet.

The LAN9217 includes an integrated Ethernet MAC and PHY with a high-performance SRAM-like slave
interface. The simple, yet highly functional host bus interface provides glue-less connection to most
common 16-bit microprocessors and microcontrollers as well as 32-bit microprocessors with a 16-bit
external bus. The LAN9217 includes large transmit and receive data FIFOs to accommodate high latency
applications. In addition, the LAN9217 memory buffer architecture allows the most efficient use of
memory resources by optimizing packet granularity.

24.2 Software Operation
The SMSC LAN9217 Ethernet Driver has the functions listed below.

• Module initialization—Initializes the module with the device specific structure

• Driver entry points—Provides standard entry points for transmission

• Interrupt servicing routine

SMSC LAN9217 Ethernet Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

24-2 Freescale Semiconductor

• Miscellaneous routines—Setting and programming MAC address

24.3 Requirements
The Ethernet driver meets the following requirements:

• The module provides all the entry points to interface with the Linux kernel 2.6 net module.

• This Ethernet driver implements the default data configuration function to set the MAC address
and interface media used in case of EEPROM failure.

• This module follows Linux kernel coding style by Linus Torvalds. This is included in Linux
distributions as the file Documentation/CodingStyle.

24.4 Source Code Structure
 Table 24-1 lists the source files available in the <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/net
directory:

.

24.5 Linux Menu Configuration Options
The Linux kernel configuration option, CONFIG_SMSC911X, is provided for this module. This is the
Ethernet driver used for the SMSC LAN9117 chip. In menuconfig, this option is located under Device
Drivers -> Network Device Support -> Ethernet 10 or 100 Mbit -> SMSC LAN911x/LAN921x families

embedded ethernet support.

Table 24-1. Ethernet File List

File Description

smsc911x.h Header file defining registers.

smsc911x.c Linux driver for Ethernet LAN controller.

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 25-1

Chapter 25
Fast Ethernet Controller (FEC) Driver
The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet CSMA/CD media
access control and channel interface functions. The FEC requires an external interface adaptor and
transceiver function to complete the interface to the Ethernet media. It supports half- or full-duplex
operation on 10 Mbps- or 100 Mbps-related Ethernet networks.

The FEC driver has the following features:

• Supports full duplex operation

• Supports link status change detect

• Supports auto-negotiation (determines the network speed and full or half-duplex operation)

• Supports transmit features like automatic retransmission on collision and automatic CRC
generation

• Supports obtaining statistics from the device, such as transmit collisions

This network adapter can be accessed through the ifconfig command with the interface name (that is,
eth0). The driver will auto-probe the external adaptor (PHY device).

25.1 Hardware Operation
The FEC is an Ethernet controller interfaces the system to the LAN network. The FEC supports three
different standard MAC-PHY (physical) interfaces for connection to an external Ethernet transceiver. The
FEC supports the 10/100 Mbps MII and the 10 Mbps-only 7-wire interface, which uses a subset of the MII
pins.

A brief overview of the device functionality is provided here. For details, see the FEC Specification and
the Ethernet Transceiver Data Sheet.

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a 7-wire serial network interface
(SNI) for 10 Mbps Ethernet. In MII mode, there are 18 signals defined by the IEEE 802.3 standard and
supported by the EMAC. SNI mode uses the subset of the 18 signals. These signals are listed in Table 25-1.

Table 25-1. Pin Usage in MII and SNI Modes

Direction EMAC Pin Name MII Usage SNI Usage

in/out FEC_MDIO Management Data Input/Output General I/O

out FEC_MDC Management Data Clock General output

out FEC_TXD[0] Data out, bit 0 Data out

out FEC_TXD[1] Data out, bit 1 General output

out FEC_TXD[2] Data out, bit 2 General output

out FEC_TXD[3] Data out, bit 3 General output

out FEC_TX_EN Transmit Enable Transmit Enable

out FEC_TX_ER Transmit Error General output

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

25-2 Freescale Semiconductor

The MII management interface consists of two pins, FEC_MDIO and FEC_MDC. These pins are
configured through GPIO setting.

• Transmission—The Ethernet transmitter is designed to work with almost no intervention from
software. Once ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet
MAC is able to transmit onto the network. When the transmit FIFO fills to the watermark (defined
by the TFWR), the MAC transmit logic will assert FEC_TX_EN and start transmitting the
preamble (PA) sequence, the start frame delimiter (SFD), and then the frame information from the
FIFO. However, the controller defers the transmission if the network is busy (FEC_CRS asserts).
Before transmitting, the controller waits for carrier sense to become inactive, then determines if
carrier sense stays inactive for 60 bit times. If the transmission begins after waiting an additional
36 bit times (96 bit times after carrier sense originally became inactive). Both buffer (TXB) and
frame (TXF) interrupts may be generated as determined by the settings in the EIMR.

• Reception—The FEC receiver is designed to work with almost no intervention from the host and
can perform address recognition, CRC checking, short frame checking, and maximum frame
length checking. When the driver enables the FEC receiver by asserting ECR[ETHER_EN], it will
immediately start processing receive frames. When FEC_RX_DV asserts, the receiver will first
check for a valid PA/SFD header. If the PA/SFD is valid, it will be stripped and the frame will be
processed by the receiver. If a valid PA/SFD is not found, the frame will be ignored. In MII mode,
the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur, but
if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored. After the first 6 bytes
of the frame have been received, the FEC performs address recognition on the frame. During
reception, the Ethernet controller checks for various error conditions and once the entire frame is
written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains
the M, BC, MC, LG, NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB)
and Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the receive
frame is complete, the FEC sets the L-bit in the RxBD, writes the other frame status bits into the
RxBD, and clears the E-bit. The Ethernet controller next generates a maskable interrupt (RXF bit

in FEC_CRS Carrier Sense Carrier Sense

in FEC_COL Collision Collision

in FEC_TX_CLK Transmit Clock Transmit Clock

in FEC_RX_ER Receive Error General input

in FEC_RX_CLK Receive Clock Receive Clock

in FEC_RX_DV Receive Data Valid Not Used

in FEC_RXD[0] Data in, bit 0 Data in

in FEC_RXD[1] Data in, bit 1 General input

in FEC_RXD[2] Data in, bit 2 General input

in FEC_RXD[3] Data in, bit 3 General input

Table 25-1. Pin Usage in MII and SNI Modes (Continued)

Direction EMAC Pin Name MII Usage SNI Usage

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 25-3

in EIR, maskable by RXF bit in EIMR), indicating that a frame has been received and is in memory.
The Ethernet controller then waits for a new frame.

• Interrupt management—When an event occurs that sets a bit in the EIR, an interrupt will be
generated if the corresponding bit in the interrupt mask register (EIMR) is also set. The bit in the
EIR is cleared if a one is written to that bit position; writing zero has no effect. This register is
cleared upon hardware reset. These interrupts can be divided into operational interrupts,
transceiver/network error interrupts, and internal error interrupts. Interrupts which may occur in
normal operation are GRA, TXF, TXB, RXF, RXB, and MII. Interrupts resulting from
errors/problems detected in the network or transceiver are HBERR, BABR, BABT, LC, and RL.
Interrupts resulting from internal errors are HBERR and UN. Some of the error interrupts are
independently counted in the MIB block counters. Software may choose to mask off these
interrupts as these errors will be visible to network management through the MIB counters. For
PHY interrupt, which is interfaced through PBC (CPLD), it is optional for link status detect.

25.2 Software Operation
The FEC Driver has the functions listed below.

• Module initialization—Initializes the module with the device specific structure.

• Driver entry points—Provides standard entry points for transmission, such as
fec_enet_start_xmit and for reception of Ethernet packets through the ISR, such as
fec_enet_interrupt.

• Interrupt servicing routine—Supports events, such as TXF, RXF and MII.

• Miscellaneous routines—Different routines come under this category, such as fec_timeout for
waking up network stack and fec_enet_get_stats to obtain statistics for the device.

25.3 Source Code Structure
 Table 25-2 lists the source files available in the <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/net
directory.

.

For more information about the generic Linux driver, see the
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/net/fec.c source file.

25.4 Linux Menu Configuration Options
The Linux kernel configuration option, CONFIG_FEC, is provided for this module. This is the Ethernet
driver used for the FEC. In menuconfig, this option is available under Device Drivers -> Network
device support -> Ethernet (10 or 100Mbit) -> FEC ethernet controller.

Table 25-2. Ethernet File List

File Description

fec.h Header file defining registers.

fec.c Linux driver for Ethernet LAN controller.

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

25-4 Freescale Semiconductor

25.5 Programming Interface
Table 25-2 lists the source files for the FEC Driver. The following sections show modifications that were
required in the original Ethernet driver source for porting it to the i.MX family multimedia application
processors.

25.5.1 Device-Specific Defines

Device-specific defines are added to the header file (fec.h) and they provide common board configuration
options.

fec.h defines the struct for the register access and the struct for the buffer descriptor.
/*
 * Define the buffer descriptor structure.
 */
typedef struct bufdesc {
 unsigned short cbd_datlen; /* Data length */
 unsigned short cbd_sc; /* Control and status info */
 unsigned long cbd_bufaddr; /* Buffer address */
} cbd_t;
/*
 * Define the register access structure.
 */
typedef struct fec {
 unsigned long fec_reserved0;
 unsigned long fec_ievent; /* Interrupt event reg */
 unsigned long fec_imask; /* Interrupt mask reg */
 unsigned long fec_reserved1;
 unsigned long fec_r_des_active; /* Receive descriptor reg */
 unsigned long fec_x_des_active; /* Transmit descriptor reg */
 unsigned long fec_reserved2[3];
 unsigned long fec_ecntrl; /* Ethernet control reg */
 unsigned long fec_reserved3[6];
 unsigned long fec_mii_data; /* MII manage frame reg */
 unsigned long fec_mii_speed; /* MII speed control reg */
 unsigned long fec_reserved4[7];
 unsigned long fec_mib_ctrlstat; /* MIB control/status reg */
 unsigned long fec_reserved5[7];
 unsigned long fec_r_cntrl; /* Receive control reg */
 unsigned long fec_reserved6[15];
 unsigned long fec_x_cntrl; /* Transmit Control reg */
 unsigned long fec_reserved7[7];
 unsigned long fec_addr_low; /* Low 32bits MAC address */
 unsigned long fec_addr_high; /* High 16bits MAC address */
 unsigned long fec_opd; /* Opcode + Pause duration */
 unsigned long fec_reserved8[10];
 unsigned long fec_hash_table_high; /* High 32bits hash table */
 unsigned long fec_hash_table_low; /* Low 32bits hash table */
 unsigned long fec_grp_hash_table_high;/* High 32bits hash table */
 unsigned long fec_grp_hash_table_low; /* Low 32bits hash table */
 unsigned long fec_reserved9[7];
 unsigned long fec_x_wmrk; /* FIFO transmit water mark */
 unsigned long fec_reserved10;
 unsigned long fec_r_bound; /* FIFO receive bound reg */
 unsigned long fec_r_fstart; /* FIFO receive start reg */

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 25-5

 unsigned long fec_reserved11[11];
 unsigned long fec_r_des_start; /* Receive descriptor ring */
 unsigned long fec_x_des_start; /* Transmit descriptor ring */
 unsigned long fec_r_buff_size; /* Maximum receive buff size */
} fec_t;

25.5.2 How to get a MAC Address?
 static void __inline__ fec_get_mac(struct net_device *dev)

This gets the MAC address through IIM (IC Identification) by default for MX27. If the MAC address is
not programmed, the driver will set the MAC address to 0x00:0x00:0x00:0x00:0x00:0x00: , which would
not be acceptable. The MAC address can also be set by the REDBOOT command fconfig.

exec -c "noinitrd console=ttymxc0 root=/dev/nfs
nfsroot=10.192.223.211:/tools/rootfs/rootfs fec_mac=00:04:9f:00:98:2c rw ip=dhcp"

Fast Ethernet Controller (FEC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

25-6 Freescale Semiconductor

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-1

Chapter 26
Symmetric/Asymmetric Hashing and Random Accelerator
(SAHARA) Drivers

This document provides an overall architectural view of the Sahara 2 driver. It presents how the driver is
to be organized and the processes that must be handled to make the driver work.

26.1 Overview
This document adheres to the requirements specified in [1]. Although intended to be expandable and
portable, a change in requirements could alter how operations are performed.

For example, if a requirement to use a black key were added, several possibilities would immediately
occur.

1. If individual tasks could only handle red or black keys, they would register as a red or black key
holder and little of the architecture would change.

2. If they could handle either, key information would have to accompany the key. Possibilities are:

— A new object would be passed with the descriptor pointer.

— The key object would pass with the descriptor.

— The descriptors would be built in kernel space instead of user space, meaning that all user space
parameters would be passed to kernel mode.

As such, this document becomes the proposed approach, conceptually, but not a constraint, as changes
occur during design and implementation, requirement modifications happen, and familiarity with the
hardware becomes better understood.

26.2 Software Operation

26.2.1 API Notes
• Kernel users should not use 'blocking mode' unless the code is doing work on behalf of the kernel

process which needs to sleep. The reason is that blocking mode will attempt to put the current
process to sleep. This means that blocking mode cannot be used from 'bottom half' code nor from
interrupt code.

• Kernel users must provide a kmalloc'ed buffer address for all data types (key structures,
context structures, input/output buffers, and so on)

• User-mode users should beware of (or even avoid) doing I/O to the stack, as cache line boundaries
can cause problems. This can even be true for such simple things as having a context object on the
stack, or retrieving a random number into a uint32_t stack variable. This goes for key
structures, context structures, and input/output buffers.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-2 Freescale Semiconductor

26.2.2 Architecture

The conceptual model is shown in Figure 26-1.

Figure 26-1. Architecture Overview

All of the processes in Figure 26-1 are implemented as common code, except for some or all of the
following platform-centric processes: UM Extension, Init/Cleanup, Translator, and Completion
Notification.

The driver operates in poll or interrupt mode, based on how the code is built (compile time option). The
modes are mutually exclusive.

26.2.2.1 Registration List

This maintains a list of the tasks that are registered with the driver.

Sahara Public
Interface

UM Extension

UM to KM Mechanism (IOCTL)

Kernel Space

User Space

Sahara Public
Interface

Command

Command
Queue

Result
Pools

Completion
Notification

SAHARA
Device/HW

Poll / ISR

Init / Cleanup

Registration
List

Get
Results

Access Grant

Translator

Control flow

Data flow

Poll Mode: Control flow
Interrupt Mode: indirect connection (interrupt invokes
Poll/ISR; Completion Notification scheduled)

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-3

26.2.2.2 Command Queue

This maintains a list of commands (pointers to descriptor chains and their associated user) destined for the
SAHARA Device/HW. A pointer is maintained to the current (active) command as well as where the next
command is to be entered into the queue.

26.2.2.3 Result Pools

This maintains a list of completed commands. After the SAHARA Device/HW completes, the status,
along with its user association is placed in this pool.

26.2.2.4 SAHARA Device / HW

This is the Sahara 2 hardware.

26.2.2.5 Init / Cleanup

This process is invoked by the OS to do the following tasks:

• Initialize the driver when the OS wishes to start the driver

• Clean up the driver when the OS wishes to shut it down.

To initialize the driver:

1. Map Sahara registers into kernel space

2. Check that Sahara’s version number is 2

3. Attach handler to Sahara interrupt line (top half) if in interrupt mode

4. Initialize Sahara’s interrupt

5. Seed the random number generator. Note that in the Control register that the RNG Auto Reseed
cannot be set at startup (Hardware Erratum for RNG reseed). The available choices are:

— Set this bit after the first random number is obtained

— Never set this bit but rather detect when the RNG Reseed Req bit is set in the Status register and
put the RNG in Seed Generation Mode. This is to be used for this architecture

— Check for the reseed and set auto reseed when it becomes true

6. Install the tasklet (bottom half), if in interrupt mode (that is, install Complete Notification process)

7. Set up pointers to the command queue, the result pool, and the registration list

8. Populate the Capability Object with (most of this can be done at compile time) as follows:

— Sahara version (2)

— Command queue size

— Result pool size

— Registration list size

— Driver version number

— Algorithms & modes

— Whatever else makes sense

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-4 Freescale Semiconductor

9. Zero/initialize registration list, command queue, and result pool

10. Register as a device (to IOCTL)

11. If a failure is encountered anywhere, within the Init subprocess, it is terminated, the Cleanup
subprocess is initiated, and an error is returned to the OS

To clean up a process:

1. Unregister as a device (to IOCTL)

2. Uninstall interrupt handler (top half) if in interrupt mode

3. Uninstall tasklet (bottom half) if in interrupt mode

4. Reset Sahara (leaves Sahara’s interrupt disabled)

5. Null pointers to command queue, result pool, and registration list

26.2.2.6 Sahara Public Interface

This is the only access users are permitted to the Sahara functionality. (Refer to the API document included
in doxygen format.) The interface is the same in both the User and Kernel Space.

• Converts service requests into descriptor chains, for those requests that required descriptors

— For ‘final’ block of data, ensure that it is consumed correctly (hardware erratum for buffer
length issue)

— Descriptor pointers are created based on information in the SKO, HCO, and/or SCCO

— Descriptor pointers reference input and output data buffers, fields in the SKO, HCO, and/or
SCCO

• Returns error if input parameters are inconsistent or otherwise in error

• Passes pointers to a descriptor chain and a UCO to the next process

• Receives status information from the rest of the driver to return through the API’s return value

• Passes raw descriptor chains through (still must be registered, that is, have a UCO). It will be
necessary to determine if the hardware erratum for buffer length issue applies to this descriptor
chain and, if so, modify the chain appropriately

• Passes information into, and receives from, the Access Grant or UM Extension process, as
appropriate

26.2.2.7 UM Extension

When the Sahara public interface is built for user space, the user mode extension is included in the build
to provide a way for the user space sahara public interface to communicate into kernel mode.

• Transports the information passed from the Sahara Public Interface from User to Kernel space and
back

• Passes information into, and receives from, the Access Grant process

• Passes information into, and receives from, the Sahara Public Interface in User Space

• When signaled by the Completion Notification process, invokes the User’s callback routine (the
callback was acquired during registration)

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-5

26.2.2.8 Access Grant

All tasks must be registered with the driver before being able to request services.

• If this is a registration request, do the following:

— Enter user information in Registration List, such as: ID, maximum number of outstanding
commands possible (Result Pool size requested)

— Populate its User Context Object

— Return ‘success’ or ‘failure’ as appropriate

• If this is a deregistration request and the user is not registered, return ‘never registered’

• If this is a deregistration request and the user is registered

— Remove user information in Registration List

— Depopulate its User Context Object

— Return ‘success’ or ‘failure’ as appropriate

• If this is not a registration or deregistration request (that is, any other User request), access the
Registration List to see if the requestor is registered with the driver

— If User is registered, pass the request to the Command process

— If the User is not registered, return ‘unregistered’ error to the requesting process

26.2.2.9 Command

The Command determines what service was requested and directs the driver to fulfill that service. The
system determines whether it is a service that the driver can fulfill without the use of the Sahara hardware
or not.

For requests that involve Sahara hardware, the system does the following:

1. Checks that there is room in the Command Queue. If not, returns a ‘queue full’ status and
terminates.

2. Checks that there’s room in the Result Pool. If not, returns a ‘pool full’ status and terminates.

3. Checks that this user has not reached its maximum number of outstanding requests. If it has, returns
‘request limit reached’.

4. Invokes the Translator process to convert received memory addresses.

5. If Command Queue is empty, enters descriptor chain pointer into the Sahara’s Descriptor Address
Register (DAR). This starts the processing of descriptors which continues until the Command
Queue is empty.

6. Enters the UCO and descriptor pointer in Command Queue, and whatever additional information
may be needed, to await execution.

7. Checks if the RNG Reseed Req bit is set in the Status register and, if so, puts an RNG Reseed
descriptor into the command queue to reseed the RNG.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-6 Freescale Semiconductor

User Blocking/Non-blocking requests are handled as listed Table 26-1.

8. If in polling mode, transfers control to Poll/ISR process. (If in interrupt mode, the Poll/ISR process
will be invoked through the interrupt mechanism.)

For requests that do not involve Sahara hardware, the system processes the request and immediately
returns to the user. For example, if a ‘get results’ request is received, the list is populated with the user
results and the driver returns to the user.

26.2.2.10 Translator

The translator has the following features:

• Translates pointer addresses from virtual addresses to physical addresses

• Ensure that blocks of data that have become fragmented due to page discontinuity are handled with
links in the descriptor chain

• Lock pages so addresses remain stable

• Clear processor cache

26.2.2.11 Poll / ISR

Polling has the following features:

1. If polling, continuously check if operation is done (poll the State field in the Status Register) to
determine when the SAHARA Device/HW has completed

2. Move the content of the in-progress element from the Command Queue to the Result Pool

Table 26-1. Blocking / Non-Blocking Definitions

Feature Driver Poll Mode Driver Interrupt Mode

User Blocking User waits for request
completion. Driver never
gives up processor.

User waits for request
completion. Driver
queues request,
suspends calling task,
and releases processor
(on completion the Driver
un-suspends task /
returns)

User Non-blocking w
callback

Driver never gives up
processor, therefore User
is blocked until request
completion (the callback
will be invoked prior to
request completion)

Driver queues request
and returns. Upon
request completion, the
callback is invoked

User Non-blocking w no
callback

Driver never gives up
processor, therefore User
is blocked until request
completion

Driver queues request
and returns. (User is not
given any indication of
completion. It enters a
User Poll mode and polls
for the results)

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-7

3. Copy Sahara’s Status and Error Status registers into the result pool

4. Write Clr_Error in Command register and flag as FAILED if State field in Status register is 010 or
110 (otherwise set to PASSED)

5. Load next command into Sahara, if one exists (keep Sahara loaded with two commands at a time
if possible)

6. If in Interrupt mode, schedule tasklet (bottom half) process Completion Notification (that is, place
it in the ready queue)

7. If polling, transfer control to process Completion Notification

26.2.2.12 Completion Notification

Using compiler switches, this will be built to run as a tasklet or be invoked as a function.

1. Invoke callback function, available in UCO, if in interrupt mode and callbacks are not suppressed
by user

— If the User is in Kernel Space, invoke callback

— If the User is in User Space, signal UM Extension to invoke callback

2. Clean up memory, flags, and so on as needed

3. Unlock pages

26.2.2.13 Get Results

When a Get Results request is received (a request that does not involve Sahara hardware), the following
are performed and the result is immediately returned to the user:

1. If no results are found for this user, return ‘no results found’ status

2. If at least one result is found for the user, populate the user supplied result list in whatever order
the results are found in the Result Pool (return the lesser of the max number of requests or number
of results in pool)

3. If the status is PASSED (set by Poll/ISR process), check and return the following:

— Failed if State field in Status register is 011. Also sends notification to SAHARA Public
Interface to reject all future calls to SAHARA driver.

— Failed if SCC Fail bit in Status register is set.

— Specific descriptor error from Error Source field in the Error Status register, if the Error bit in
the Status register is set.

— Failed if Error bit in Status register is set and the Error Source field in the Error Status register
shows No Error.

— Passed otherwise.

4. Clear result pool entry.

5. Adjust number of outstanding requests.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-8 Freescale Semiconductor

26.2.3 Symmetric Descriptors

The following demonstrates the descriptors needed to perform the symmetric operations required of the
Sahara drivers.

26.2.3.1 Overview

All headers are defined in the SAHARA chapter of the MCIMX27 Applications Processors Reference
Manual. For this section, the “Descriptor Header Format” figure in SAHARA chapter of the MCIMX27
Applications Processors Reference Manual assumes the following settings:

• All shaded (“Unimplemented or Reserved”) bits are set to zero (the hardware will flag it as an error
if not)

• The CHA is SKHA

• The LLO bit is set

• All Form values are available in the “Descriptor Header Encoding” table

• The Parity bit is used to force the header to odd parity

• The Disable Key Parity field is clear to force check for key parity errors for DES and TDES

Placing a null where an IV or key is expected leaves the internal IV and key registers at whatever value
they currently contain. When the chip is reset or when a descriptor chain completes, the internal symmetric
IV and key registers are filled with zeros.

In SKO, you can locate which algorithm is being requested. The mode being requested is located in the
SCCO (note that ‘mode’ is not applicable to ARC4).

Unless otherwise noted, the order of the descriptors is as they would appear in a descriptor chain for the
mode or operation indicated.

26.2.3.2 ECB

For ECB, follow these steps:

1. Set context (key & mode)
Desc # 1
Header encrypt/decrypt:
0x91880005/0x11880001 DES key length 64 bit
0x91880006/0x11880002 TDES key length 128 (two key) or 192 (three key) bit
0x11880004/0x91880000 AES key length 128 bit (only 128 bit supported by Sahara2)
Length 1: zero (not applicable)
Pointer 1: null (not applicable)
Length 2: key length obtained from SKO
Pointer 2: key is found in the SKO

2. Encrypt/decrypt:
Desc # 4
Header: 0x11850000
Length 1: plaintext/ciphertext length value that was passed in
Pointer 1: points to the plaintext/ciphertext buffer that was passed in
Length 2: ciphertext/plaintext length value is same as plaintext/ciphertext length
Pointer 2: points to the ciphertext/plaintext buffer that was passed in

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-9

26.2.3.3 CBC

For CBC, follow these steps:

1. Set context (key, mode, & IV)
Desc # 1
Header encrypt/decrypt:
0x9188000D/0x11880009 DES IV & key length 64 bit
0x1188000F/0x9188000B TDES IV length 64 bit; key length 128 (2 key) or 192 (3 key) bit
0x9188000C/0x11880008 AES IV & key length 128 bit, only 128 bit key supported by
Sahara2
Length 1: IV length obtained from: SCCO (128 bit) if Load flag is set; zero if Init
flag is set
Pointer 1: IV is found in: SCCO if Load flag is set; null (left zeros) if Init flag
is set
Length 2: key length obtained from SKO
Pointer 2: key is found in the SKO

2. Encrypt/decrypt
Desc # 4
Header: 0x11850000
Length 1: plaintext/ciphertext length value that was passed in
Pointer 1: points to the plaintext/ciphertext buffer that was passed in
Length 2: ciphertext/plaintext length value is same as plaintext/ciphertext length
Pointer 2: points to the ciphertext/plaintext buffer that was passed in

3. Save context

If the save bit is set in the SCCO, save context (IV).
Desc # 5
Header: 0x91820000
Length 1: zero (not applicable)
Pointer 1: null (not applicable)
Length 2: IV length obtained from SCCO (64 bit)
Pointer 2: IV put in SCCO (write over previous value)

26.2.3.4 CTR

For CTR, follow these steps:

1. Set context (key, mode, & IV)

The counter modulus is available in the SCCO. The header value shown here is arbitrarily chosen
to be 2^8 (CTR Modulus Bits are all clear).

Desc # 1
Header encrypt/decrypt:
0x1188001C/0x91880018AES
Length 1: IV length obtained from: SCCO (128 bit) if Load flag is set; zero if Init
flag is set
Pointer 1: IV is found in: SCCO if Load flag is set; null (left zeros) if Init flag
is set
Length 2: key length obtained from SKO (only 128 bit key supported by Sahara2)
Pointer 2: key is found in the SKO

2. Encrypt/decrypt
Desc # 4
Header: 0x11850000
Length 1: plaintext/ciphertext length value that was passed in
Pointer 1: points to the plaintext/ciphertext buffer that was passed in

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-10 Freescale Semiconductor

Length 2: ciphertext/plaintext length value is same as plaintext/ciphertext length
Pointer 2: points to the ciphertext/plaintext buffer that was passed in

3. Save context

If the save bit is set in the SCCO, save context (IV).
Desc # 5
Header: 0x91820000
Length 1: zero (not applicable)
Pointer 1: null (not applicable)
Length 2: IV length obtained from SCCO (128 bit)
Pointer 2: IV put in SCCO (write over previous value)

26.2.3.5 CCM Encrypt

Note that the block size is 128 bits (16 bytes).

For CCM encrypt, follow these steps:

1. Set context (Ctr mode, modulus, Ctr_0, & Key)

The modulus value is 2^128 for CCM.
Desc # 1
Header:
0x11881E1C AES
Length 1: Ctr_0 length obtained from ACCO
Pointer 1: Ctr_0 value obtained from ACCO
Length 2: key length obtained from SKO (only 128 bit supported by Sahara2)
Pointer 2: key is found in the SKO

2. Adjust context (increments Ctr0 to Ctr_1)
Desc # 4
Header: 0x11850000
Length 1: don’t care (1 byte <= length <= 1 block)
Pointer 1: don’t care (any input)
Length 2: same as Length 1
Pointer 2: don’t care (any reasonable output location)

3. Compute MAC (CBC mode)

The key was set in Set Context (step 1), and the IV is zero due to chip reset or previous descriptor
chain completion.

Desc # 2
Header:0x108D000C AES
Length 1: B length ((u+1) * 16 bytes)
Pointer 1: link to B_0
Length 2: Y length (same as Length 1)
Pointer 2: Y

Link to B_0

Length 1: B_0 length (16 bytes)
Pointer 1: B_0 passed in
Next 1: Link to B_associated_data

Link to B_associated_data

Length 2: B_ad length passed in (u * 16 bytes)
Pointer 2: B_ad passed in

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-11

Next 2: Null

4. Compute Ciphertext (CCM mode)

Counter (Ctr) is already set from step 2.
Desc # 2
Header encrypt:0x918D1E14 AES
Length 1: payload length
Pointer 1: payload
Length 2: ciphertext length
Pointer 2: ciphertext = (P XOR CIPH(Ctr))

5. Save MAC.
Desc # 5
Header: 0x91820000
Length 1: zero (not saving Ctr)
Pointer 1: null (not saving Ctr)
Length 2: MAC length (Tlen), from passed in parameter
Pointer 2: MAC (last Y value of interest), put into passed in parameter

6. Reestablish CTR mode (Ctr mode, Ctr_0, & key)

This and the next descriptor encrypt MAC.
Desc # 1
Header encrypt:
0x11881E1C AES
Length 1: Ctr_0 length (m) from ACCO
Pointer 1: Ctr_0 (to calculate S_0 = CIPH_k(Ctr0)), found in ACCO
Length 2: zero (not needed, key already established)
Pointer 2: null (not needed, key already established)

7. Compute output.
Desc # 4
Header: 0x11850000
Length 1: MAC length (Tlen)
Pointer 1: MAC from parameter passed in
Length 2: Encrypted MAC length (Tlen) that was passed in
Pointer 2: Encrypted MAC = (T XOR S_0), put into buffer that was passed in

26.2.3.6 CCM Decrypt

Note that the block size is 128 bits (16 bytes).

For CCM Decrypt, follow these steps:

1. Set context (CTR mode, Ctr modulus, Ctr_0, key)
Desc # 1
Header:0x11881E1C AES
Length 1: Ctr_0 length is found in ACCO
Pointer 1: Ctr_0 is found in ACCO
Length 2: Key length is found in SKO
Pointer 2: Key is found in SKO

2. Derive decrypted MAC and increment Ctr
Desc # 4
Header: 0x11850000
Length 1: Encrypted MAC length that was passed in
Pointer 1: Encrypted MAC that was passed in
Length 2: MAC length that was passed in
Pointer 2: MAC put into buffer passed in

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-12 Freescale Semiconductor

3. Calculate Y (CBC mode)

The key was set in step 1 and the IV is zero due to chip reset or previous descriptor chain
completion. Notice also that the LLO bit is cleared to allow links.

Desc # 2
Header:0x108D000C AES
Length 1: B length ((u+1) * 16 bytes)
Pointer 1: link to B_0
Length 2: Y length (same as Length 1)
Pointer 2: Y

Link to B_0

Length 1: B_0 length (16 bytes)
Pointer 1: B_0 passed in
Next 1: Link to B_associated_data

Link to B_associated_data

Length 2: B_ad length passed in (u * 16 bytes)
Pointer 2: B_ad passed in
Next 2: Null

4. Decrypt payload (CCM mode)
Desc # 2
Header:0x118D1E10 AES
Length 1: ciphertext length passed in
Pointer 1: cipher from buffer passed in
Length 2: plaintext length passed in
Pointer 2: plaintext put in buffer passed in

5. Save context (MAC)

This MAC should be compared to the MAC derived in section step 2. If they are not equal, return
an INVALID status and zero out the plain text buffer.

Desc # 5
Header: 0x91820000
Length 1: zero
Pointer 1: null
Length 2: MAC length passed in
Pointer 2: MAC put in some scratchpad area

26.2.3.7 ARC4

Several combinations exist for ARC4. These are the descriptor chains for the possible symmetric cipher
mode permutations.

Table 26-2. ARC4 Descriptor Chains

INIT SAVE LOAD Descriptors

0 0 0 Return error ‘symmetric cipher mode error’ (nothing to do)

0 0 1 SBox In (Desc # 33) -> Data In/Out (Desc # 4)

0 1 0 Return error ‘symmetric cipher mode error’ (nothing to work with)

0 1 1 SBox In (Desc # 33) -> Data In/Out (Desc # 4) -> SBox Out (Desc # 34)

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-13

NOTE
The following descriptors are not organized as part of a descriptor chain but
are ordered by “Desc #” only. See Table 26-2 for how to order descriptor
chains.

For ARC4, follow these steps:

1. Encrypt/decrypt:

Context is loaded prior to this descriptor. If the passed in length (ciphertext or plaintext, whichever
is appropriate), this descriptor is not built (not added to the chain).

Desc # 4
Header: 0x11850000
Length 1: ciphertext/plaintext length value that was passed in
Pointer 1: points to the ciphertext/plaintext buffer that was passed in
Length 2: plaintext/ciphertext length value is same as plaintext/ciphertext length
Pointer 2: points to the plaintext/ciphertext buffer that was passed in

2. Set the context (SBox context & SBox):
Desc # 33
Header encrypt/decrypt: 0x11890027/0x91890023
Length 1: SBox context length obtained from SCCO (24 bit)
Pointer 1: SBox context found in SCCO
Length 2: SBox length
Pointer 2: SBox found in SCCO

3. Save the context (SBox context & SBox)
Desc # 34
Header: 0x11860000
Length 1: SBox context length obtained from SCCO (24 bit)
Pointer 1: SBox context found in SCCO
Length 2: SBox length found in SCCO
Pointer 2: points to the SBox found in the SCCO

4. Set the key
Desc # 35
Header: 0x11830003
Length 1: zero
Pointer 1: null
Length 2: key length from SKO (8 to 128 bit)
Pointer 2: key found in SKO

26.2.4 Hash Descriptors

The following example shows the descriptors needed to perform the hashing operations required of the
Sahara drivers.

1 0 0 Key In (Desc # 35) -> Data In/Out (Desc # 4)

1 0 1 Return error ‘symmetric cipher mode error’ (not compatible)

1 1 0 Key In (Desc # 35) -> Data In/Out (Desc # 4) -> SBox Out (Desc # 34)

1 1 1 Return error ‘symmetric cipher mode error’ (not compatible)

Table 26-2. ARC4 Descriptor Chains (Continued)

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-14 Freescale Semiconductor

26.2.4.1 Overview

All headers are defined in the SAHARA chapter of the MCIMX27 Applications Processors Reference
Manual. For this section, the “Descriptor Header Format” figure, located in the SAHARA chapter of the
MCIMX27 Applications Processors Reference Manual, assumes the following settings:

• All shaded (“Unimplemented or Reserved”) bits are set to zero (the hardware will flag it as an error
if not)

• The CHA is MDHA

• The LLO bit is set

• All Form values are available in the “Descriptor Header Encoding” table

• The Parity bit is used to force the header to odd parity

The following descriptors are ordered by “Desc #” only. See Table 26-3 for how to order descriptor chains.

26.2.4.2 Details

Several combinations exist for Hashing. These are the descriptor chains for the possible Hash
permutations.

Follow these steps:

1. Set context (set mode field & initial message digest)

Settings per case

— a: INIT bit clear, PDATA bit clear

— c: INIT bit clear, PDATA bit set

— d: INIT bit clear, PDATA bit set
Desc # 6
Header:
0xA1880021 MD5 context length is 24 bytes, digest (16) + context information
0x21880020 SHA1 context length is 24 bytes, digest (20) + context information
0x21880023 SHA224 context length is 36 bytes, digest (32) + context information
0xA1880022 SHA256 context length is 36 bytes, digest (32) + context information
Length 1: context length
Pointer 1: pointer to context found in SCCO

Table 26-3. Hash Descriptor Chains

Case INIT SAVE LOAD Final Descriptors

a 0 1 1 0 Context In (Desc # 6) -> Data In/Context Out (Desc # 10)

b 1 1 0 0 Data In/Context Out (Desc # 8)

c 0 0 1 1 Context In (Desc # 6) -> Data In/Digest Out (Desc # 10)

d 0 1 1 1 Context In (Desc # 6) -> Data In/Digest Out (Desc # 10) ->
Context Out (Desc # 11)

e 1 0 0 1 Data In/Digest Out (Desc # 8)

f 1 1 0 1 Data In/Digest Out (Desc # 8) -> Context Out (Desc # 11)

g ALL OTHERS Return error ‘hash mode error’

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-15

Length 2: zero (key not used)
Pointer 2: null (key not used)

2. Perform Hash (set mode field and perform digest)

Settings per case

— b: INIT bit set, PDATA bit clear

— e: INIT bit set, PDATA bit set

— f: INIT bit set, PDATA bit set
Desc # 8
Header:
0x218D0025 MD5 digest length up to 16 bytes
0xA18D0024 SHA1 digest length up to 20 bytes
0xA18D0027 SHA224 digest length up to 28 bytes
0x218D0026 SHA256 digest length up to 32 bytes
Length 1: message length that was passed in (multiple of 64 bytes if pad bit not set)
Pointer 1: pointer to message
Length 2: digest length
Pointer 2: puts digest into buffer passed in or context into HCO context field

3. Perform hash.

This uses whatever context has been established. Note that on the final segment or ‘chunk’ of the
calculation, the pad bit should be set.

Desc # 10
Header: 0x21850000
Length 1: message length that was passed in (multiple of 64 bytes if pad bit not set)
Pointer 1: pointer to message passed in
Length 2: digest (context) length
Pointer 2: puts digest (context) into buffer passed in

4. Save Digest.
Desc # 11
Header: 0xA1820000
Length 1: zero
Pointer 1: null
Length 2: context length
Pointer 2: puts context into HCO context field

26.2.5 HMAC Descriptors

The following section shows the descriptors needed to perform Keyed-Hashing for Message
Authentication (HMAC) operations.

26.2.5.1 Overview

All headers are defined in the SAHARA chapter of the MCIMX27 and MCIMX27L Applications
Processors Reference Manual. For this section, the Descriptor Header format assumes the following
settings:

• All shaded (“Unimplemented or Reserved”) bits are set to zero (the hardware will flag it as an error
if not)

• The CHA is MDHA

• The LLO bit is set

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-16 Freescale Semiconductor

• All Form values are available in the “Descriptor Header Encoding”

• The Parity bit is used to force the header to odd parity

The following terminology is used within this section. IPad is a constant. Performing an exclusive-OR
between IPad and a key produces an intermediate result. The hash of the intermediate result is referred to
as the Inner Precompute in this appendix. The same follows for the constant OPad, with the resulting value
referred to as the Outer Precompute.

The following descriptors are ordered by “Desc #”. See Table 26-4 for how to order descriptor chains.
Note that the key used in these descriptors has a maximum length of 64 bytes.

26.2.5.2 Details

These are the supported descriptor chains for HMAC.

Follow these steps:

1. Set Context

Table 26-4. HMAC Descriptor Chains

API Flags Content Descriptor Header Bits

C
as

e

IN
IT

S
A

V
E

L
O

A
D

F
IN

A
L

K
E

Y Content (Descriptors #)

H
M

A
C

P
D

A
TA

M
A

C
_F

U
L

L

IN
IT

a 0 0 1 1 x Context In (6) -> Data In/Digest Out (10 1 1 0 1

b 0 1 1 0 x Context In (6) -> Data In/Context Out (10) 0 0 0 1

c 0 1 1 1 0 Context In (6) -> Data In/Digest Out (10) -> Context
Out (11)

1 1 0 1

d 1 0 0 1 0 Precomps In (6) -> Data In/Digest Out (10) 1 1 0 1

e 1 0 0 1 1 Key In (6) -> Data In/Digest Out (10) 1 1 1 1

f 1 1 0 0 0 Precomps In (6) -> Data In/Context Out (10) 0 0 0 1

g 1 1 0 1 0 Precomps In (6) -> Data In/Digest Out (10) ->
Context Out (11)

1 1 0 1

h 1 1 0 1 1 Key In (6) -> Data In/Digest Out (10) -> Context
Out (11)

1 1 1 1

i return ‘incompatible hmac flag’ error if (
/* nothing to work with */ /* cannot do both */
((init==0)&& (load==0)) ||((init == 1)&& (load == 1)) ||
/* need to have some o/p */ /* sahara cant handle this */
((save==0)&&(final == 0)) || ((init==1)&&(save == 1) &&
 (final==0)&&(key == 1)))

NA

j Flags have no effect on
precompute call

Key In / Inner Precompute out
(8) ->
Key In / Outer Precompute out
(8)

IPad = 1
OPad = 1

0 0 0 1

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-17

If Final = 0, data must be a multiple of 64 bytes. If Final = 1, Padding is performed (PDATA set),
so length does not have to be a multiple of 64 bytes.

The following is an example of case f.
Desc # 6:
Header (precompute):
0xA1880229 MD5
0x21880228 SHA1
0xA188002B SHA224
0x2188002A SHA256
Length 1: Inner Precompute length (32 bytes)
Pointer 1: pointer to Inner Precompute in HCO
Length 2: zero
Pointer 2: Null

2. Calculate Precompute

When calculating the precomputes

— Either IPAD or OPAD bit is set

— INIT bit is set

For the headers shown, IPAD is set (thus OPAD is clear).

NOTE
If one precompute follows another without changing the key, that the key
can be specified as length zero and null in the second precompute (as the key
will still be in Sahara’s internal key register). Also, as the key comes through
the FIFO, it can be any length.

Desc # 8
Header:
0x218D0061 MD5 24 byte precompute (context) length
0xA18D0060 SHA1 24 byte precompute (context) length
0xA18D0063 SHA224 36 byte precompute (context) length
0x218D0062 SHA256 36 byte precompute (context) length
Length 1: key length obtained from SKO
Pointer 1: key is found in the SKO
Length 2: precompute length (32 bytes)
Pointer 2: puts precompute into HCO

3. Hash from current context

This uses whatever context is currently set.
Desc # 10
Header: 0x21850000
Length 1: message length
Pointer 1: pointer to message buffer
Length 2: message digest length
Pointer 2: pointer to message digest buffer or HCO’s context area

4. Save context
Desc # 11
Header: 0xA1820000
Length 1: zero
Pointer 1: null
Length 2: context out length
Pointer 2: pointer to context out found in HCO

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-18 Freescale Semiconductor

26.2.6 Random Number Descriptors

The following exemplifies the descriptors needed to perform random number operations required of the
Sahara drivers.

26.2.6.1 Overview

All headers are defined in the SAHARA chapter of the MCIMX27 Applications Processors Reference
Manual. For this appendix, the “Descriptor Header Format” figure, found in the SAHARA chapter of the
MCIMX27 Applications Processors Reference Manual, assumes the following settings:

• All shaded (“Unimplemented or Reserved”) bits are set to zero (the hardware will flag it as an error
if not)

• The CHA is RNG

• The LLO bit is set

• All Form values are found in the “Descriptor Header Encoding”

• The Parity bit is used to force the header to odd parity

26.2.6.2 Details

For random number descriptors, follow these steps:

1. Get random numbers
Desc # 18
Header: 0xB18C0000
Length 1: number of bytes of random values wanted
Pointer 1: pointer to random value buffer
Length 2: zero (entropy not used)
Pointer 2: null (entropy not used)

2. Seed the RNG
Desc # 18
Header: 0x318C0001
Length 1: zero (don’t get random numbers)
Pointer 1: null (don’t get random numbers)
Length 2: zero (entropy not used)
Pointer 2: null (entropy not used)

26.3 Requirements
The SAHARA2 driver meets the following requirements:

• The driver supports hashing with MD5, SHA-1, SHA-224 and SHA-256 algorithms.

• The driver supports HMAC with the same algorithms as for hashing.

• The driver provides Symmetric cryptography support for AES, DES, and triple DES, in ECB,
CBC, and CTR modes (though only AES is supported in CTR mode). ARC4 support is also
provided.

• CCM is supported for AES.

• The driver includes support for the wrapped keys (that is, hiding keys in the SCC), using the SCC
key to encrypt or decrypt, HMAC functions, or CCM.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-19

• The Sahara2 driver allows the generation of an arbitrary number of bytes of random data.

• The FSL SHW API is provided in both user mode and kernel mode. Callbacks and non-callback
non-blocking support are provided.

26.4 Source Code Structure
Table 26-5 lists the source files associated with the SAHARA2 driver that are available in the directory
<ltib_dir>/rpm/BUILD/linux-/drivers/mxc/security/sahara2.

Table 26-5. Sahara2 Source File List

File Description

sah_driver_interface.c MXC Sahara2 low level driver

sah_hardware_interface.c Provides an interface to the SAHARA hardware registers.

sah_interrupt_handler.c MXC Sahara2 Interrupt Handler.

sah_memory_mapper.c Re-creates SAHARA Data structures in kernel memory such
that they are suitable for DMA.

sah_queue.c Provides FIFO Queue implementation.

sah_queue_manager.c This file provides a Queue Manager implementation.The
Queue Manager manages additions and removal from the
queue and updates the status of queue entries. It also calls
sah_HW_* functions to interact with the hardware.

sah_status_manager.c Contains functions which processes the SAHARA status
registers.

sf_util.c Security Functions component API - Utility functions

fsl_shw_auth.c Contains the routines which do the combined encryption and
authentication.

fsl_shw_hash.c Implements Cryptographic Hashing functions of the API.

fsl_shw_hmac.c Provides HMAC functions of the API.

fsl_shw_rand.c Generates random numbers.

fsl_shw_sym.c Provides Symmetric-Key encryption support for block cipher
algorithms.

fsl_shw_user.c Implements user and platform capabilities functions

fsl_shw_wrap.c Implements Key-Wrap (Black Key) functions

km_adaptor.c Adaptor provides interface to driver for kernel user.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-20 Freescale Semiconductor

Table 26-6 lists the header files associated with the SAHARA driver are found in the directory
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/security/sahara2/include.

26.5 Configuration
NOTE: This section does not apply for the i.MX31 3-Stack Board.

The following Linux kernel configurations are provided for this module:

1. CONFIG_MXC_SAHARA - This configuration option for Sahara Hardware support. In
menuconfig this option is found under Device Drivers -> MXC support drivers -> MXC
Security Drivers -> SAHARA2 Security Hardware Support -> Security Hardware Support (FSL
SHW). By default, this option is Y.

2. CONFIG_MXC_SAHARA_USER_MODE - The driver can be configured to provide an interface
to user space (used by the library). (This configuration switch is currently ignored, and the user
space interface is currently always provided.). In menuconfig this option is found under Device
Drivers -> MXC support drivers -> MXC Security Drivers -> SAHARA2 Security Hardware
Support -> User Mode API for FSL SHW. By default, this option is Y.

Table 26-6. Sahara2 Header File List

File Description

fsl_shw.h MXC Sahara2 Definition of the Freescale Security Hardware
API.

fsl_platform.h File to isolate code which might be platform-dependent

sahara.h All of the defines used throughout user and kernel space

sah_driver_common.h Provides types and defined values for use in the Driver
Interface.

sah_hardware_interface.h Provides an interface to the SAHARA hardware registers.

sah_interrupt_handler.h Provides a hardware interrupt handling mechanism for device
driver.

sah_kernel.h Provides definitions for items that user-space and
kernel-space share.

sah_memory_mapper.h Re-creates SAHARA Data structures in kernel memory such
that they are suitable for DMA.

sah_queue_manager.h This file provides a Queue Manager implementation.The
Queue Manager manages additions and removal from the
queue and updates the status of queue entries. It also calls
sah_HW_* functions to interact with the hardware.

sah_status_manager.h SAHARA Status Manager Types and Function Prototypes

sf_util.h Security Function Utility Functions

diagnostic.h Macros for outputting kernel and user space diagnostics.

adaptor.h The Adaptor component provides an interface to the device
driver.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 26-21

3. CONFIG_MXC_SAHARA_POLL_MODE - The driver can be configured to poll the Sahara2
hardware device for end-of-operation status, or it can (by default) process an interrupt for
end-of-operation. In the menuconfig this option is found under Device Drivers -> MXC support
drivers -> MXC Security Drivers -> SAHARA2 Security Hardware Support -> Security Hardware
Support. By default, this option is N.

4. CONFIG_MXC_SAHARA_POLL_MODE_TIMEOUT - To avoid infinite polling, a time-out is
provided. Should the time-out be reached, a fault is reported, indicating something must have gone
wrong with SAHARA. This causes SAHARA to be reset. This time-out period is configurable.
When polling mode is selected, the value for
CONFIG_MXC_SAHARA_POLL_MODE_TIMEOUT appears and can be modified. Polling
mode works nearly the same as interrupt mode, that is, blocking mode returns the result of the
descriptor chain (succeeded, erred, and so on); non-blocking mode queues results in a results pool
and fsl_shw_get_results() retrieves them; callback mode (non-blocking mode only) the
callback is made just BEFORE control is returned from the API call (in interrupt mode it is some
time after). In the menuconfig this option is found under Device Drivers -> MXC support
drivers -> MXC Security Drivers -> SAHARA2 Security Hardware Support -> Force driver to
POLL for hardware completion.

26.6 Programming Interface
This driver implements all the methods that will be required by the Linux serial API to interface with the
MXC SAHARA2 Driver. It implements and provides a set of control methods to the core SAHARA2
driver present in Linux. Refer to the API document (included doxygen document) for more information
on the methods implemented in the driver.

26.7 Interrupt Requirements
There is no interrupt requirement in this module.

Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

26-22 Freescale Semiconductor

Inter-IC (I2C) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 27-1

Chapter 27
Inter-IC (I2C) Driver
The MXC I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver. The I2C bus driver
is a low-level interface that is used to talk to the I2C bus, while the I2C chip driver acts as an interface
between other device drivers and the I2C bus driver.

I2C is a two-wire, bi-directional serial bus that provides a simple, efficient method of data exchange,
minimizing the interconnection between devices.

27.1 I2C Bus Driver Overview
The I2C bus driver is invoked only by the MXC I2C chip driver; it is not exposed to the user space. The
standard Linux kernel contains a core I2C module that is used by the chip driver to access the I2C bus driver
to transfer data over the I2C bus. The chip driver uses a standard kernel space API that is provided in the
Linux kernel to access the core I2C module. The standard I2C kernel functions are documented in the files
available under Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

• Compatibility with the I2C bus standard

• Supports bit rates up to 400 kbps

• Starts and stops signal generation/detection

• Acknowledge bit generation/detection

• Interrupt-driven, byte-by-byte data transfer

• Supports standard I2C master mode

The I2C slave mode is not supported by this driver.

27.2 I2C Client Driver Overview
The I2C client driver implements all the Linux I2C data structures that are required to communicate with
the I2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer data to their
device that is connected to the I2C bus. Internally these API functions use the standard I2C kernel space
API to call the I2C core module. The I2C core module looks up the MXC I2C bus driver and calls the
appropriate function in the I2C bus driver to do the data transfer. This driver provides the following
functions to other device drivers:

• A read function to read the device registers

• A write function to write to the device registers

The camera driver would use the APIs provided by this driver to interact with the camera.

27.3 Hardware Operation
The I2C module provides the functionality of a standard I2C master and slave. It is designed to be
compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock

Inter-IC (I2C) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

27-2 Freescale Semiconductor

frequencies that can be programmed by setting a value to the frequency divider register (IFDR). It also
generates an interrupt when one of the following occurs:

• One byte transfer is completed.

• An address is received that matches its own specific address in slave-receive mode.

• Arbitration is lost.

27.4 Software Operation
The MXC I2C driver for Linux has two parts; an I2C bus driver and an I2C chip driver.

27.4.1 I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important field in this
structure is struct i2c_algorithm *algo. That field is a pointer to the i2c_algorithm structure that
describes how data is transferred over the MXC I2C bus. The algorithm structure contains a pointer to a
function that is called whenever the I2C chip driver wants to communicate with an I2C device.

On startup, the MXC I2C bus adapter is registered with the I2C core when the driver is loaded. Certain
MXC architectures have more than one I2C module. If so, the driver registers separate i2c_adapter
structures for each I2C module with the I2C core. These adapters are unregistered (removed) when the
driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end of a data
transmission before transmitting the next byte. It times out and returns an error if the transfer complete
signal is not received. Because the I2C bus driver uses wait queues for its operation, other device drivers
should be careful not to call the I2C API methods from an interrupt mode.

27.4.2 I2C Client Driver Software Operation

The MXC I2C chip driver controls an individual I2C device that lives on the MXC I2C bus. A structure,
i2c_driver, describes the I2C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value I2C_DF_NOTIFY so that the chip driver can be notified of
any new I2C devices, after the driver is loaded. The attach_adapter callback function is called whenever
a new I2C bus driver is loaded in the system. When the MXC I2C bus driver is loaded this driver stores the
i2c_adapter structure associated with this bus driver so that it can use the appropriate methods to transfer
data.

27.5 Requirements
The MXC I2C driver meets the following requirements:

• The driver supports the I2C communication protocol.

• The driver supports the I2C master mode of operation.

• The driver does not support the I2C slave mode of operation.

Inter-IC (I2C) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 27-3

27.6 Source Code Structure
Table 27-1 lists the I2C bus driver source files available in the directory,
<ltib_dir>/rpm/BUILD/linux-/drivers/i2c/busses.

.

27.7 Configuration

27.7.1 Linux Menu Configuration Options

In order to get to the I2C configuration, use the command ./ltib -c when located in the <ltib dir>. In
the screen, select Configure Kernel, exit, and a new screen will appear.

The I2C_MXC Linux kernel configuration is provided for this module. This option is available under Device
Drivers -> I2C support -> I2C Hardware Bus support -> MXC I2C support.

27.8 Programming Interface
The I2C device driver could use the standard SMBus interface to read and write the registers of the device
connected to the MXC I2C bus. For more information, see
<ltib_dir>/rpm/BUILD/linux-/include/linux/i2c.h.

27.9 Interrupt Requirements
The I2C module generates many kinds of interrupts. The highest interrupt rate is associated with the
transfer complete interrupt.

.

The typical value of the transfer bit-rate is 200 kbps. The worst-case is based on a baud rate of 400 kbps
(the maximum supported by the I2C interface).

27.10 Device-Specific Information
The x in I2Cx denotes the individual I2C number.

Table 27-3. Default Configuration

Table 27-1. I2C Bus Driver Files

File Description

mxc_i2c.c I2C bus driver source file

Table 27-2. I2C Interrupt Requirements

Parameter Equation Typical Worst-Case

Rate Transfer Bit Rate/8 25,000/sec 50,000/sec

Latency 8/Transfer Bit Rate 40us 20us

Option I2C_NR I2C1_FRQ_DIV I2C2_FRQ_DIV I2C3_FRQ_DIV

i.MX27 1 0x17 N/A N/A

Inter-IC (I2C) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

27-4 Freescale Semiconductor

I2C Slave Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 28-1

Chapter 28
I2C Slave Driver
I2C is a two-wire, bi-directional serial bus that provides a simple, efficient method of data exchange,
minimizing the interconnection between devices.

The MXC I2C slave driver is divided into two layers: the I2C slave core and the I2C slave chip driver. The
I2C core driver stays at the top level and is the interface for the registered I2C slave device to the Linux
device driver model. The I2C slave chip driver handles the low level hardware operation.

28.1 I2C Slave Core Overview
The I2C slave core is the interface to the Linux driver model. It receives the I2C slave chip driver’s register
requests, and creates device files for the registered I2C slave chip. It supports the open, read, write and ioctl
requests to the chip. It also provides a ring buffer API to the I2C slave chip driver.

28.2 I2C Slave Chip Driver Overview
The I2C slave chip driver is responsible for the hardware operation, It initializes the I2C slave hardware
and registers itself to the I2C slave core. Then it waits for the I2C slave core to open them. After being
opened, it sends out the data that I2C slave core asked for, or receives I2C data that send to it according to
the I2C address and delivers the received data to the I2C core.

28.3 Hardware Operation
The I2C module provides the functionality of a standard I2C master and slave. It is designed to be
compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock
frequencies that can be programmed by setting a value to the frequency divider register (IFDR). It also
generates an interrupt when one of the following occurs:

• One-byte transfer is completed.

• An address is received that matches its own specific address in slave-receive mode.

• Arbitration is lost.

For more details, see the IC specification.

28.4 Software Operation
The I2C slave driver provides standard open, read, write and ioctl operations for the user space
application. when the I2C slave module is loaded, there are some device files like /dev/slave-i2c-X
created for the registered I2C slave chip, while X stands for the registered I2C slave index. The user space
application uses open to initialize and start the specific i2c slave device, and uses read to get the received
data and uses write to send I2C data.

28.5 Requirements
The MXC I2C driver meets the following requirements:

I2C Slave Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

28-2 Freescale Semiconductor

• The driver supports the I2C communication protocol.

• The driver supports the I2C slave mode of operation.

28.6 Source Code Structure
Table 28-1 lists the I2C bus driver source files available in the directory,
<ltib_dir>/rpm/BUILD/linux-/drivers/i2c-slave.

.

28.7 Configuration

28.7.1 Linux Menu Configuration Options

In order to get to the I2C configuration, use the command ./ltib -c when located in the <ltib dir>. In
the screen, select Configure Kernel, exit, and a new screen will appear.

The following Linux kernel configurations are provided for this module:

• CONFIG_I2C_SLAVE - This option is available under Device Drivers -> I2C Slave support.

• CONFIG_MXC_I2C_SLAVE - This option is available under Device Drivers -> I2C Slave
support.

• CONFIG_I2C_SLAVE_CLIENT - This option is available under Device Drivers -> I2C Slave
support.

28.8 Programming Interface
The I2C device driver could use the standard open, read, write and ioctl to operate the I2C slave device.

Table 28-1. I2C Bus Driver Files

File Description

i2c_slave_core.c i2c slave core file

i2c_slave_device.c interface between i2c slave core and chip driver

i2c_slave_ring_buf
fer.c

ring buffer source file

mxc_i2c_slave.c i2c slave chip driver for mx35 i2c slave

i2c_slave_client.c I2C master client drive which makes the i2c master on the
some board can get access to our i2c slave.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 29-1

Chapter 29
Configurable Serial Peripheral Interface (CSPI) Driver
The configurable serial peripheral interface (CSPI) driver implements a standard Linux driver interface to
MXC CSPI Controllers. It is based on SPI Framework by David Brownell. It supports the following
features:

• Interrupt-driven transmit/receive of bytes

• Supports multiple master controller interface

• Supports the multiple slaves select

• Supports multi-client requests

29.1 Hardware Operation
CSPI is used for fast data communication with fewer software interrupts than conventional serial
communications. Each CSPI is equipped with data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master or slave devices.

The primary features of the CSPIs include:

• Master/slave configurable

• Two chip selects allowing maximum of 4 different slaves each for master mode operation

• Up to 32-bit programmable data transfer

• 8 by 32-bit FIFO for both Tx and Rx data

• Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK) are configurable

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

29-2 Freescale Semiconductor

29.2 Software Operation

29.2.1 SPI Sub-System in Linux

The CSPI driver layer is located between the client layer (PMIC is one of the clients) and the MXC
hardware access layer. Figure 29-1 shows the block diagram for SPI subsystem in Linux.

Figure 29-1. SPI Sub-system

SPI requests always go into I/O queues. Requests for a given SPI device are always executed in FIFO
order, and complete asynchronously through completion callbacks. There are also some simple
synchronous wrappers for those calls, including ones for common transaction types like writing a
command and then reading its response.

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 29-3

Each SPI client must have a protocol driver associated with them. And those must all be sharing the same
controller driver. Only the controller driver can interact with the underlying SPI hardware module.
Figure 29-2 shows how the different SPI drivers are layered in the SPI subsystem.

Figure 29-2. Layering of SPI Drivers in SPI subsystem

29.2.2 Limitations
• It does not have SPI Slave logic implementation yet.

• It does not support a single client connected to multiple masters.

• It presently does not implement user space interface with the help of device node entry but supports
a sysfs interface.

29.2.3 Standard Operations

The CSPI driver is responsible for implementing standard entry points for init, exit, chip select and
transfer. The driver implements the following functions:

1. The init function mxc_spi_init()—Registers the device_driver structure.

2. The probe function mxc_spi_probe()—Performs initialization and registration of the SPI device
specific structure with SPI core driver. The driver probes for memory and IRQ resources.
Configures the IOMUX to enable CSPI I/O pins, requests for IRQ and resets the hardware.

3. The chip select function mxc_spi_chipselect()—Configures the hardware CSPI for the current
SPI device. Sets the word size, transfer mode, data rate for this device.

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host
Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver
Interface

Client Driver
Interface

Freescale SPI
driver (mxc_spi.c)

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host
Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver
Interface

Client Driver
Interface

Freescale SPI
driver (mxc_spi.c)

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

29-4 Freescale Semiconductor

4. SPI transfer function mxc_spi_transfer()—Handles data transfers operations.

5. SPI setup function mxc_spi_setup()—Initialize the current SPI device.

6. SPI driver ISR mxc_spi_isr()—Called when the data transfer operation is completed and an
interrupt is generated.

29.2.4 CSPI Synchronous Operation

Figure 29-3 shows how CSPI provides synchronous read/write operations.

Figure 29-3. CSPI Synchronous Operation

Client
Driver

SPI Core
Driver

CSPI
Hardware

spi_read/write

SPI Controller
Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Client
Driver

SPI Core
Driver

CSPI
Hardware

spi_read/write

SPI Controller
Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 29-5

29.2.5 PMIC Access

Figure 29-4 shows the how PMIC can be accessed through the SPI subsystem.

Figure 29-4. PMIC Access through SPI

29.3 Requirements
The CSPI module implements the following requirements:

• It implements each of the functions required by a CSPI module to interface to Linux.

• It provides support for multiple SPI master controllers.

• It provides support to handle multi-client synchronous requests.

29.4 Source Code Structure
Table 29-1 lists the source files available in the devices directory:

<ltib_dir>/rpm/BUILD/linux-/drivers/spi/.
.

29.5 Configuration
The following Linux kernel configurations are provided for this module. In order to get to the spi
configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure
Kernel, exit, and a new screen will appear.

Table 29-1. CSPI Source File List

File Description

mxc_spi.h Header file defining registers.

mxc_spi.c Freescale SPI Master Controller driver

MC13783
Core

SPI Master
Controller Driver

MC13783
Client Drivers

pmic_read_reg()
pmic_write_reg

SPI Core

Frame message
spi_sync()

master->transfer()

Callback after tranfer

Get the reply frame/
Discard if write

Decode to get reg_val
return reg_val

MC13783
Core

SPI Master
Controller Driver

MC13783
Client Drivers

pmic_read_reg()
pmic_write_reg

SPI Core

Frame message
spi_sync()

master->transfer()

Callback after tranfer

Get the reply frame/
Discard if write

Decode to get reg_val
return reg_val

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

29-6 Freescale Semiconductor

• CONFIG_SPI: Build support for the SPI core. In menuconfig, this option is available under Device
Drivers->SPI Support->SPI Support.

• CONFIG_BITBANG: This is library code, and is automatically selected by drivers that need it.
SPI_MXC selects it. In menuconfig, this option is available under Device Drivers->SPI Support->
Bitbanging SPI master

• CONFIG_SPI_MXC: This implements the SPI master mode for MXC CSPI. In menuconfig, this option
is available under Device Drivers->SPI Support->MXC CSPI controller as SPI Master.

• CONFIG_SPI_MXC_SELECTn: This is to select the CSPI hardware modules into the build(where n = 1,
2, or 3). In menuconfig, this option is available under Device Drivers->SPI Support->MXC CSPI
Controller as SPI Master.

• CONFIG_SPI_MXC_TEST_LOOPBACK: This is to select the enable testing of CSPIs in loop back mode. In
menuconfig, this option is available under Device Drivers->SPI Support->LOOPBACK Testing of
CSPIs. By default this is disabled as it is intended to use only for testing purposes.

29.6 Programming Interface
This driver implements all the functions that are required by the SPI core to interface with the CSPI
hardware. For more information, see the API document generated by the doxygen.

29.7 Interrupt Requirements
The SPI interface generates interrupts. CSPI interrupt requirements are listed in Table 29-2.

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl) of 1 and a 32-bit
transfer length. The worst-case is based on a baud rate of 12 Mbps (max supported by the SPI interface)
with a 8-bits transfer length.

29.8 Device-Specific Information
Table 29-3 lists the number of CSPI controllers in different i.MX family platforms.

Table 29-2. CSPI Interrupt Requirements

Parameter Equation Typical Worst-Case

BaudRate /
Transfer
Length

(BaudRate / (TransferLength)) * (1 / Rxtl) 31250 1500000

Table 29-3. CSPI Controllers in i.MX Family Platforms

Platforms
(SOC)

No. of CSPI
Controllers

i.MX27 3

MMC/SD/SDIO Host Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 30-1

Chapter 30
MMC/SD/SDIO Host Driver
The MMC/SD/SDIO Host driver implements a standard Linux driver interface to the MMC/Secure Digital
Host Controller (SDHC) or the enhanced MMC/SD host controller (eSDHC). The host driver is part of the
Linux kernel’s MMC framework.

The MMC driver has following features:

• 1-bit or 4-bit operation

• Supports card insertion and removal events

• Supports the standard MMC commands

• PIO and DMA data transfers

• Power management

30.1 Hardware Operation
The MMC communication is based on an advanced 7-pin serial bus designed to operate in a low voltage
range. The SDHC or eSDHC module support MMC along with SD memory and I/O functions. The SDHC
or eSDHC controls the MMC, SD memory, and I/O cards by sending commands to cards and performing
data accesses to/from the cards. The SD memory card system defines two alternative communication
protocols: SD and SPI. The SDHC or eSDHC only support the SD bus protocol.

For SDHC module, the SDHC command number and SDHC command argument register allows a
command to be issued to the card. The SDHC command and data control register allows the users to
specify the format of the data and the response and to control the read wait cycle.

The block length register defines the number of bytes in a block (block size). As the Stream mode of MMC
is not supported, the block length must be set for every transfer.

For SDHC, there is an 8-bit x16-bit FIFO to store the response from the card in the SDHC. The SDHC
Response FIFO Access register is used to access this FIFO. The SDHC uses two 64-byte data buffers.
These buffers are used as temporary storage for data being transferred between the host system and the
card, and vice versa. The SDHC data buffer access register bits hold 32-bit data upon a read or write
transfer. For reception, follow these steps:

1. The SDHC controller generates an DMA request when the FIFO is full.

2. Upon receiving this request, DMA starts transferring data from the SDHC FIFO to system memory
by reading the data buffer access register.

To transmit data, follow these steps:

1. The SDHC controller generates an DMA request whenever the transmit FIFO is empty.

2. Upon receiving this request, the DMA starts moving data from the system memory to the SDHC
FIFO by writing to the Data Buffer Access Register for a number of pre-defined bytes.

The read-only SDHC Status Register provides SDHC operations status, application FIFO status, error
conditions, and interrupt status.

MMC/SD/SDIO Host Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

30-2 Freescale Semiconductor

For both SDHC and eSDHC modules, when certain events occur in the module, they all have the ability
to generate an interrupt as well as setting corresponding Status Register bits. The SDHC interrupt control
register and eSDHC interrupt status enable and signal enable registers allow the user to control whether
these interrupts should occur.

30.2 Software Operation
The Linux OS contains an MMC bus driver which implements the MMC bus protocols. The MMC block
driver handles the file system read/write calls and uses the low level MMC host controller interface driver
to send the commands to SDHC or eSDHC.

Figure 30-1 shows how the MMC-related drivers are layered.

Figure 30-1. Layering of MMC drivers

The i.MX MMC driver is responsible for implementing standard entry points for init, exit, request, and
set_ios. The driver implements the following functions:

 File System (Ext2fs/FAT driver)

Block Client Driver (Storage)

Kinds of Bus Protocol Drivers

Host Controller Driver

MMC/SD/SDIO/CE-ATA Devices

Host Controller

Application/Server interface

block.c: block

driver for

peripheral media.

core.c, sd.c,

Freescale MMC driver

mx_sdhci.c or

mxc_mmc.c

Client Driver interface

Host controller Driver interface

Local Bus Interface

Slot Electrical interface

Etc sd, mmc,

sdio, ce-ata

and so on.

......

MMC/SD/SD

IO/CE-ATA

Devices

SDIO APP

MMC/SD/SDIO Host Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 30-3

For SDHC:

1. The init function mxcmci_init()—Registers the device_driver structure.

2. The probe function mxcmci_probe()—Performs initialization and registration of the MMC device
specific structure with MMC bus protocol driver. The driver probes for memory and IRQ
resources. Configures the IOMUX to enable SDHC I/O pins and resets the hardware. Requests for
IRQ and allocates DMA channel along with transfer completion routine mxcmci_dma_irq().

3. mxcmci_set_ios()—Sets bus width, voltage level, and clock rate according to core driver
requirements.

4. mxcmci_request()—Handles both read and write operations. Sets up the number of blocks and
block length. It configures an DMA channel, allocates safe DMA buffer and starts the DMA
channel. It configures the SDHC command number register and SDHC command argument
register to issue a command to the card. This function starts the DMA and starts the clock.

5. MMC driver ISR mxcmci_gpio_irq()—Called when the MMC card is detected or removed.

6. MMC driver ISR mxcmci_irq()— Interrupt from SDHC called when command is done or errors
like CRC or buffer underrun or overflow occurs.

DMA completion routine mxcmci_dma_irq()—Called after completion of a DMA transfer. It informs the
MMC core driver of a request completion by calling mmc_request_done() API.

30.3 Requirements
• The MMC driver provides support for multiple SDHC modules.

• The MMC driver provides all the entry points to interface with the Linux MMC core driver.

• The MMC driver supports MMC and SDcards.

• The MMC driver recognizes data transfer errors like command time outs and CRC errors.

• The MMC driver supports power management.

• The MMC driver conforms to the Linux coding standards.

30.4 Source Code Structure
Table 30-1 lists the SDHC source files available in the source directory
<ltib_dir>/rpm/BUILD/linux-/drivers/mmc/host/.

Table 30-1. SDHC Driver File List

/

30.5 Linux Menu Configuration Options
In order to get to the mmc configuration, use the command ./ltib -c when located in the <ltib dir>. In
the screen, select Configure Kernel, exit, and a new screen will appear.

File Description

mxc_mmc.h Header file defining registers

mxc_mmc.c SDHC driver

MMC/SD/SDIO Host Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

30-4 Freescale Semiconductor

The following Linux kernel configurations are provided for this module:

• CONFIG_MMC—Build support for the MMC bus protocol. In menuconfig, this option is
available under Device Drivers -> MMC/SD Card support. By default, this option is Y for all
architectures.

• CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to
mount the file system. In menuconfig, this option is available under Device Drivers ->
MMC/SD Card Support -> MMC block device driver support. By default, this option is Y for all
architectures.

• CONFIG_MMC_MXC—i.MX MMC driver used for the i.MX SDHC ports. In menuconfig,
this option is available under Device Drivers -> MMC/SD Card Support -> Freescale MXC
Multimedia Card Interface support. This option is applied for i.MX27 platforms.

30.6 Programming Interface
This driver implements the functions required by the MMC bus protocol to interface with the i.MX SDHC
and eSDHC module. For additional information, see the BSP API Document.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 31-1

Chapter 31
Universal Asynchronous Receiver/Transmitter (UART)
Driver
The low-level universal asynchronous receiver transmitter (UART) driver interfaces the Linux serial
driver API to all the UART ports. It has the following features:

• Supports interrupt-driven and DMA-driven transmit/receive of characters.

• Supports standard Linux baud rates up to 1.5Mbps.

• Supports transmitting and receiving characters with 7-bit and 8-bit character lengths.

• Supports transmitting 1 or 2 stop bits.

• Supports TIOCMGET ioctl to read the modem control lines. Supports only the constants
TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only.

• Supports TIOCMSET ioctl to set the modem control lines. Supports the constants TIOCM_RTS
and TIOCM_DTR only.

• Supports odd and even parity.

• Supports XON/XOFF software flow control. Serial communication using software flow control is
reliable when communication speeds are not too high and the probability of buffer overruns is
minimal.

• Supports CTS/RTS hardware flow control (both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow).

• Send and receive break characters through the standard Linux serial API.

• Recognize frame and parity errors.

• Ability to ignore characters with break, parity, and frame errors.

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY
ioctls. Some programs like setserial and dip use this feature to make sure that the baud rate
was set properly and to get general information on the device. While doing this the user should
specify the UART type to be 52. This is defined in the serial_core.h header file.

• Serial IrDA support.

• Supports power management feature by suspending and resuming the UART ports.

• Supports the standard TTY layer ioctl calls.

All the UART ports can be accessed through the device files /dev/ttymxc0 through
/dev/ttymxc4, where /dev/ttymxc0 refers to UART 1. The number of available UART ports
varies from device to device.

Autobaud detection is not supported.

31.1 UART Driver Hardware Operation
Refer to the IC/Hardware Specification to determine the number of UART modules available in your
device. Each UART hardware port is capable of standard RS-232 serial communication and has support
for IrDA 1.0. Each UART contains a 32-byte transmitter FIFO and a 32-half-words deep receiver FIFO.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

31-2 Freescale Semiconductor

They also support a variety of maskable interrupts when the data level in each FIFO reaches a programmed
threshold level and when there is a change in state in the modem signals. Each UART can be programmed
to be in DCE or DTE mode.

31.2 UART Driver Software Operation
The Linux OS contains a core UART driver that handles a lot of the serial operations that are common
across UART drivers for various platforms. The low-level UART driver is responsible for supplying to this
core UART driver such information as the UART port information and a set of control functions. These
functions are implemented as a low-level interface between the Linux OS and the UART hardware. They
cannot be called from other drivers or from a user application. The control functions used to control the
hardware are passed to the core driver through a structure called uart_ops, and the port information is
passed through a structure called uart_port. The low level driver is also responsible for handling the
various interrupts for the UART ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration options are provided
in the mxc_uart.h header file. The user can specify the size of the DMA receive buffer. The minimum
size of this buffer is 512 bytes. The size should be a multiple of 256. The driver breaks the DMA receive
buffer into smaller sub-buffers of size 256 bytes and registers these buffers with the DMA system. The
DMA transmit buffer size is fixed at 1024 bytes.The size is limited by the size of the Linux UART transmit
buffer (1024).

The driver requests 2 DMA channels for the UARTs that need DMA transfer. On a receive transaction, the
driver copies the data from the DMA receive buffer to the TTY Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer to the DMA
transmit buffer and sends this buffer to the DMA system. The user should use hardware-driven hardware
flow control when using DMA data transfer. For more information, see the Linux documentation on the
serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow control and
hardware-driven hardware flow control. The hardware flow control method can be configured using the
options provided in the header file. The user has the capability to de-assert the CTS line using the available
IOCTL calls. If the user wishes to assert the CTS line then control is transferred back to the receiver, as
long as the driver has been configured to use hardware-driven hardware flow control.

31.3 UART Driver Requirements
The UART driver meets the following requirements:

• Supports baud rates up to 1.5Mbps.

• Recognizes frame and parity errors only in interrupt-driven mode. The UART driver does not
recognize these errors in DMA-driven mode.

• Sends and receives and appropriately handles break characters.

• Recognizes the modem control signals.

• Ignores characters with frame, parity and break errors if requested to do so.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 31-3

• Implements support for software and hardware flow control (software-controlled and
hardware-controlled).

• Is able to get and set the UART port information. Certain flow control count information is not
available in hardware-driven hardware flow control mode.

• Implements support for Serial IrDA.

• Supports power management.

• Supports interrupt-driven and DMA-driven data transfer.

31.4 UART Driver Source Code Structure
Table 31-1 lists the source files associated with the UART driver that are available in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/serial.

Table 31-2 lists the header files associated with the UART driver that are available in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/include/asm-arm/arch-mxc.

The source file, serial.c/serial.h, is associated with the UART driver that are available in the
directory, <ltib_dir>/rpm/BUILD/linux-2.6.22/arch/arm/mach-xxxx. The source file contains UART
configuration data and calls to register the device with the platform bus.

31.5 UART Driver Configuration
This section discusses configuration options associated with Linux, chip configuration options, and board
configuration options.

31.5.1 Linux Menu Configuration Options

The following Linux kernel configuration settings are provided for this module:

• CONFIG_SERIAL_MXC—This configuration option is used for the UART driver for the UART
ports. In menuconfig, this option is available under Characters->Serial. By default, this option
is Y for all architectures.

Table 31-1. UART Source And Header File List

File Description

mxc_uart.c UART low level driver

serial_core.c Core UART driver that is included as part of standard Linux

Table 31-2. UART Global Header File List

File Description

mxc_uart.h UART header that contains UART configuration data structure
definitions

board-xxxx.h Holds some UART board specific configuration options

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

31-4 Freescale Semiconductor

• CONFIG_SERIAL_MXC_CONSOLE—This configuration option chooses the Internal UART to
bring up the system console. This option is dependent on the “CONFIG_SERIAL_MXC” option.
In menuconfig this option is available under Characters->Serial. By default, this option is N for
all architectures.

31.5.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

31.5.2.1 Chip Configuration Options

The following chip-specific configuration options are provided in mxc_uart.h:

• Number of UART Ports (UART_NR)—Number of UART ports in the platform.

• UART Interrupts Muxed (UARTx_MUX_INTS)—Specifies which set of interrupts is integrated
with the ARM core, the muxed ANDed interrupt lines or the individual interrupts from the UART
port.

• UART TX Interrupt / UART Muxed Interrupt Number (UARTx_INT1)—Specifies the transmit
interrupt number, or the interrupt number of the ANDed interrupt in case the interrupts are muxed.

• UART RX interrupt (UARTx_INT2)—Specifies the receiver interrupt number. In case the
interrupts are muxed, set this option to a value of -1.

• UART MINT Interrupt (UARTx_INT3)—Specifies the master interrupt number. If the interrupts
are muxed, set this option to a value of -1.

• UART HW Flow control (UARTx_HW_FLOW)—Allows the user to choose either an
interrupt-driven software-controlled hardware flow, or a hardware-driven hardware-controlled
flow. When DMA is enabled, this option should always be specified.

• UART CTS Threshold (UARTx_UCR4_CTSTL—Specifies the threshold at which the CTS pin is
de-asserted by the receiver.

• UART DMA Enable/Disable (UARTx_DMA_ENABLE)—Specifies whether to use DMA-driven
data transfer. Setting this option to 1 enables DMA-driven data transfer.

• UART DMA RX Buffer size (UARTx_DMA_RXBUFSIZE)—Specifies the size of the DMA
receive buffer. The minimum size is 512 and the size should be a multiple of 256.

• UART RX Threshold (UARTx_UFCR_RXTL)—Specifies the trigger level of the UART receive
FIFO. This option controls the threshold at which a receive interrupt is generated. Set this option
to any value between 0 and 32.

• UART TX Threshold (UARTx_UFCR_TXTL)—Specifies the trigger level of the UART transmit
FIFO. This option controls the threshold at which a transmit interrupt is generated. Set this option
to any value between 0 and 32

• UART Shared Peripheral (UARTx_SHARED_PERI)—Specifies whether the UART is a shared
peripheral. The value should be set to the UART shared peripheral number, or to -1 if the UART is
not a shared peripheral.

The x in UARTx denotes the individual UART number. The default configuration for each individual UART
number is listed in Table 31-5.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 31-5

31.5.2.2 Board Configuration Options

The following board-specific configuration options for the driver can be set within board.h:

• UART Mode (UARTx_MODE)—Specifies whether the UART is configured to be in DTE or DCE
mode.

• UART IR Mode (UARTx_IR)—Specifies whether the UART port is to be used for IrDA.

• UART Enable / Disable (UARTx_ENABLED)—Enable or disable a particular UART port. If
disabled, the UART will not be registered in the file system and the user will not be able to access it.

• MAX_UART_BAUDRATE—Specify the maximum baud rate that you wish to support on your
board. Any value up to 1500000 can be specified.

The x in UARTx denotes the individual UART number. The default configuration for each individual
UART number is shown in Table 31-5.

31.6 UART Driver Programming Interface
The UART Driver implements all the methods required by the Linux serial API to interface with the UART
port. The driver implements and provides a set of control methods to the Linux core UART driver. For
more information about the methods implemented in the driver, see the API document (included doxygen
document).

31.7 UART Driver Interrupt Requirements
The UART Driver interface generates many kinds of interrupts. The highest interrupt rate is associated
with transmit and receive interrupt. The system requirements are listed in Table 31-3.

The baud rate is set in the mxcuart_set_termios function. The typical values are based on a baud
rate of 57600 with a receiver trigger level (Rxtl) of 1 and a transmitter trigger level (Txtl) of 2. The
worst-case is based on a baud rate of 1.5 Mbps (max supported by the UART interface) with an Rxtl of 1
and a Txtl of 31. There is also an undetermined number of handshaking interrupts that are generated but
the rates should be an order of magnitude lower.

Table 31-3. UART Interrupt Requirements

Parameter Equation Typical Worst-Case

Rate (BaudRate/(10))*(1/Rxtl + 1/(32-Txtl)) 5952/sec 300000/sec

Latency 320/BaudRate 5.6ms 213.33us

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

31-6 Freescale Semiconductor

31.8 Device-Specific Information

31.8.1 UART Ports

The UART ports can be accessed through the device files /dev/ttymxc0, /dev/ttymxc1, etc. where
/dev/ttymxc0 refers to UART 1. The number of UART ports on a particular platform are listed in Table
31-4.

31.8.2 Board Setup Configuration

For i.MX27ADS, either UART1 or UART 2 can be enabled through DIP switches; the same applies for
UART3/UART4 and UART5/UART6. UART5 and UART6 are not functional when the CMOS sensor is
plugged in. UART4 is default disabled, for its pins are shared with USB.

Table 31-4. UART General Configuration

Platform UART_NR MAX BAUDRATE

i.MX27ADS 6 1500000

Table 31-5. UART Active/Inactive Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 1 1 1 0 1 1

Table 31-6. UART IRDA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 NO_IRDA NO_IRDA IRDA NO_IRDA NO_IRDA NO_IRDA

Table 31-7. UART Mode Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 MODE_DCE MODE_DCE MODE_DCE MODE_DTE MODE_DTE MODE_DTE

Table 31-8. UART Shared Peripheral Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 -1 -1 -1 -1 -1 -1

Table 31-9. UART Hardware Flow Control Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 1 1 1 1 1 1

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 31-7

.

Table 31-10. UART DMA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 0 0 0 0 0 0

Table 31-11. UART DMA RX Buffer Size Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 0 0 0 0 0 0

Table 31-12. UART UCR4_CTSTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 16 16 16 16 16 16

Table 31-13. UART UFCR_RXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 16 16 16 16 16 16

Table 31-14. UART UFCR_TXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 16 16 16 16 16 16

Table 31-15. UART Interrupt Mux Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED

Table 31-16. UART Interrupt 1 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 INT_UART1 INT_UART2 INT_UART3 INT_UART4 INT_UART5 INT_UART6

Table 31-17. UART Interrupt 2 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 -1 -1 -1 -1 -1 -1

Table 31-18. UART interrupt 3 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX27 -1 -1 -1 -1 -1 -1

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

31-8 Freescale Semiconductor

31.9 Early UART Support
The kernel starts logging messages on a serial console when it knows where the device is. This happens
when the driver enumerates all the serial devices, which can happen a minute or more after the kernel starts
booting.

Linux kernel 2.6.10 and later kernels have an “early UART” driver that works very early in the boot
process. The kernel immediately starts logging messages, if the user supplies an argument as follows:

"console=mxcuart,0xphy_addr,115200n8"

Where phy_addr represents the physical address of the UART on which the console is to be used and
115200n8 represents the baud rate supported.

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 32-1

Chapter 32
16C652 Universal Asynchronous Receiver/Transmitter
(UART) Driver
The external SC16C652/ST16C2552 universal asynchronous receiver/transmitter (UART) runs on
Freescale i.MX boards. The serial driver files for the Linux 2.6 kernel have been modified.

The following are the features of the UART for the i.MX family of processors:

• Interrupt-driven transmit/receive of characters

• Supports standard Linux baud rates from 115K baud down to 50 baud

• Supports two UART ports on 16C652 and four UART ports on 15C6552

• Supports transmitting and receiving characters with 7-bit and 8-bit character lengths

• Supports transmitting 1, 1.5, or 2 stop bits

• Supports odd and even parity

• Supports XON/XOFF software flow control

• Supports CTS/RTS hardware flow control

• Send and receive break characters through the standard Linux serial API

• Recognizes frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY ioctls

• Supports the standard TTY layer ioctl calls

• Includes console support that is needed to bring up the command prompt through one of the UART
ports

Power management, autobaud detection, and DMA are not supported by the UART.

32.1 SC16C652/ST16C2552 UART Hardware Operation
UART controller is the key component of the serial communications subsystem of a computer. At the
destination, a second UART re-assembles the bits into complete bytes. During transmission, the UART
converts the bytes from the processors parallel bus to the serial bit stream. During receiving, the UART
builds the serial bits into a parallel byte.

The UART is interfaced to the Peripheral Bus Controller (PBC). The PBC is used to interface the CPU
board bus with the busses used by peripherals. It provides an LPC (Low Pin Count) interface for access to
the on-board UART controller.

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

32-2 Freescale Semiconductor

The block diagram of the PBC interface is shown in Figure 32-1:

Figure 32-1. SC16C652/ST16C2552 Universal Asynchronous Receiver/Transmitter (UART) PCB Interface

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 32-3

The block diagram of SC16C652/ST16C6552 is shown in Figure 32-2.

Figure 32-2. SC16C652/ST16C2552 Universal Asynchronous Receiver/Transmitter (UART) Block Diagram

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

32-4 Freescale Semiconductor

The block diagram of 16C652 UART driver is shown in Figure 32-3.

Figure 32-3. 16C652 UART Driver Block Diagram

The base address and the offset give the location of the UART register. Addressing of the accessible
registers of the Serial Port is listed in Table 32-1.

Table 32-1. Serial Port Register Addressing for the SC16C652/ST16C2552 UART

DLABa A2 A1 A0 Register Name

0 0 0 0 Receive Buffer (read/write)

0 0 0 0 Transmit Buffer (read/write)

0 0 0 1 Interrupt Enable (read/write)

X 0 1 0 Interrupt Identification (read/write)

X 0 1 0 FIFO Control (read/write)

X 0 1 1 Line Control (read/write)

X 1 0 0 Modem Control (read/write)

X 1 0 1 Line Status (read/write)

X 1 1 0 Modem Status (read/write)

X 1 1 1 Scratch pad (read/write)

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 32-5

32.2 SC16C652/ST16C2552 UART Software Operation
The SC16C652/ST16C2552 UART provides standard serial driver interface to the Linux operating
system. The driver works in interrupt mode and makes use of the UART FIFO for optimum operation.

For more information, see the documentation for Linux 2.6 Serial Port Drivers.

32.3 SC16C652/ST16C2552 UART Requirements
The SC16C652/ST16C2552 UART has the following requirements:

• The 16C652 UART is used as a debug port to bring up the console for development purposes.

• The SC16C652/ST16C2552 UART driver, at a minimum must support baud rates up to 115200bps
with no handshaking, 8-bit character length, 1 Stop bit, and no parity.

• The 16C652 UART driver must support a minimum of one 16C652 UART.

32.4 SC16C652/ST16C2552 UART Source Code Structure
Table 32-2 lists the files associated with SC16C652/ST16C2552 UART development:

32.5 16C652 UART Driver Configuration
This section documents the configuration options available for the external UART.

32.5.1 Linux Menu Configuration Options

The following menu options are available for the external 16C652 UART. These options are available
under Device Drivers -> Characters devices -> Serial drivers:

1. 8250/16550 and compatible serial support = Y

2. Console on 8250/16550 and compatible serial port = Y

3. Maximum number of non-legacy 8250/16550 serial ports = two (one for ST16C6552)

1 0 0 0 Divisor LSB (read/write)

1 0 0 1 Divisor MSB (read/write)

a DLAB – 7th bit of Line Control Register.

Table 32-2. 16552 UART Driver File List

File Description

8250.h Driver header file

8250.c Driver source file

serial.h Architecture specific configuration header file

Table 32-1. Serial Port Register Addressing for the SC16C652/ST16C2552 UART (Continued)

DLABa A2 A1 A0 Register Name

16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

32-6 Freescale Semiconductor

By default, for all architectures, the first two options are N and the last option is four.

32.5.2 Source Code Configuration Options

32.5.2.1 Chip Configuration Options

The following chip-specific configuration options for the driver are provided in serial.h:

• UART1 interrupt (IRQ_UARTINT0) - This specifies the UART1 interrupt number.

• UART2 interrupt (IRQ_UARTINT1) - This specifies the UART2 interrupt number.

• UART1 base address (SERIAL1_BASE_ADDRESS) - This specifies the UART1 base address.

• UART2 base address (SERIAL2_BASE_ADDRESS) - This specifies the UART2 base address.

• PBC Base address (PBC_BASE_ADDRESS) - This specifies the PBC base address.

• PBC IRQ status (IRQSTAT) - PBC interrupt status register.

32.6 SC16C652/ST16C2552 UART Programming Interface
The SC16C652/ST16C2552 UART implements all the methods that are required by the Linux serial API
to interface with the UART ports. It implements and provides a set of control methods to the core UART
driver present in Linux. For more information, see the API documents for the programming interface.

32.7 16C652 UART Driver Interrupt Requirements
The system requirements are listen in Table 32-3.

The typical values are based on a baud rate of 57600 with a receiver trigger level (Rxtl) of 1. Transmitter
trigger level is not set. The worst-case is based on a baud rate of 1.152 Mbps (max supported by the UART
interface) with an Rxtl of 1. The interrupt latency for typical (9600) and lowest (50) baud rates.

32.8 Device-Specific Information
Features of the SC16C652/ST16C2552 UART for the i.MX family of processors supports one UART port
on the MX27 board.

The following menu options are available for the external 16C652 UART. These options are found under
Device Drivers -> Characters devices -> Serial drivers:

Maximum number of non-legacy 8250/16550 serial ports = two (one for an i.MX27 board)

Table 32-3. 16C652 UART Interrupt Requirements

Parameter Equation Typical Worst-Case

Rate (BaudRate / 10)) × (1 / Rxtl + 1 / 32) 5940 /sec 118800 /sec

Latency 320 / BaudRate 5.6 msec 213.33 msec

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 33-1

Chapter 33
ARC USB driver
The universal serial bus (USB) driver implements a standard Linux driver interface to the ARC USB-HS
OTG controller. The USB provides a universal link that can be used across a wide range of
PC-to-telephone interconnects. It features ease-of-use; for example, it supports plug-and-play, port
expansion, and any new USB peripheral uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI)-compliant. This USB driver has the
following features:

• Full Speed / Low speed Host only core (HOST 1)

• High Speed / Full Speed / Low Speed Host Only core (HOST2)

• High speed and Full Speed OTG core

• Host mode: Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP (Still
Image) drivers

• Peripheral mode: Supports MSC, MTP, and CDC (Communication Devices Class) drivers

• Embedded DMA controller

This driver is present only in the application processor architectures.

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

33-2 Freescale Semiconductor

33.1 Architectural Overview
A USB host system is composed of a number of hardware and software layers. Figure 33-1 illustrates a
conceptual block diagram of the building block layers in a host system that work in concert to support USB
2.0.

Figure 33-1. Block Diagram

33.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at
http://www.usb.org/developers/docs/.

http://www.usb.org/developers/docs/

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 33-3

33.3 Software Operation
The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only
implements the hardware specified initialization functions. For the USB peripheral, it implements the
gadget framework.
static struct usb_ep_ops fsl_ep_ops = {

 .enable = fsl_ep_enable,

 .disable = fsl_ep_disable,

 .alloc_request = fsl_alloc_request,

 .free_request = fsl_free_request,

 .queue = fsl_ep_queue,

 .dequeue = fsl_ep_dequeue,

 .set_halt = fsl_ep_set_halt,

 .fifo_status = arcotg_fifo_status,

 .fifo_flush = fsl_ep_fifo_flush, /* flush fifo */

};
static struct usb_gadget_ops fsl_gadget_ops = {
 .get_frame = fsl_get_frame,
 .wakeup = fsl_wakeup,
/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */
 .vbus_session = fsl_vbus_session,
 .vbus_draw = fsl_vbus_draw,
 .pullup = fsl_pullup,
};
1. fsl_ep_enable():configure endpoint, making it usable.
2. fsl_ep_disable(): endpoint is no longer usable
3. fsl_alloc_request(): allocate a request object to use with this endpoint.
4. fsl_free_request(): frees a request object.
5. arcotg_ep_queue():queues (submits) an I/O request to an endpoint.
6. arcotg_ep_dequeue(): dequeues (cancels, unlinks) an I/O request from an endpoint
7. arcotg_ep_set_halt(): sets the endpoint halt feature.
8. arcotg_fifo_status(): get the total number of bytes to be moved with this
transfer descriptor.

For OTG, an OTG finish state machine (FSM) is implemented.

33.4 Requirements
• The USB stack shall support USB device mode

• The USB stack shall support mass storage device profile – subclass 8-1. (RBC set)

• The USB stack shall support USB host mode

• The USB stack shall support HID host profile – subclasses 3-1-1 and 3-1-2. (USB mouse and
keyboard)

• The USB stack shall support mass storage host profile – subclass 8-1

• The USB stack shall support Ethernet USB profile – subclass 2

• The USB stack shall support DC PTP transfer

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

33-4 Freescale Semiconductor

• The USB stack shall support MTP device mode

33.5 Source Code Structure
Table 33-1 lists the source files available in the source directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/usb.

/

Table 33-2 lists the platform related source files in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/include/asm-arm/arch-mxc.

Table 33-2. USB Platform Source File List

Table 33-3 lists the platform-related source files in the directories:
<ltib_dir>/rpm/BUILD/linux-2.6.22/arch/arm/mach-mx27/

Table 33-3. USB Platform Header File List

Table 33-4 lists the common platform source files in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/arch/arm/plat-mxc.

Table 33-1. USB Driver File List

File Description

host/ehci-hcd.c host driver source file.

host/ehci-arc.c host driver source file.

host/ehci-hub.c hub driver source file.

host/ehci-mem.c memory management for host driver data structures.

host/ehci-q.c ehci host queue manipulation.

gadget/arcotg_udc.c peripheral driver source file.

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file.

otg/fsl_otg.h OTG driver header file.

otg/otg_fsm.c OTG FSM implement source file.

otg/otg_fsm.h OTG FSM header file.

File Description

arc_otg.h USB register define.

File Description

usb.c Platform-related initialization

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 33-5

Table 33-4. USB Common Platform File List

33.6 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module:

• CONFIG_USB_OTG—Build support for otg, allows to switch from device to host role using the
ID pin of the usb connector.

• CONFIG_USB_EHCI_HCD—Build support for USB host driver. In menuconfig, this option is
available under Device Drivers --> USB support --> EHCI HCD (USB 2.0) support. By default,
this option is M.

• CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In menuconfig,
this option is available under Device Drivers --> USB support --> Support for Freescale controller.
By default, this option is Y.

• CONFIG_USB_EHCI_ARC_H1—Build support for selecting the USB Host1. In menuconfig, this
option is available under Device Drivers --> USB support --> Support for Host1 port on Freescale
controller. By default, this option is N.

• CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In
menuconfig, this option is available under Device Drivers --> USB support --> Support for OTG
host port on Freescale controller. By default, this option is Y.

• CONFIG_USB_EHCI_ROOT_HUB_TT—Build support for OHCI or UHCI companion. In
menuconfig, this option is available under Device Drivers --> USB support --> Root Hub
Transaction Translators. By default, this option is Y.

• CONFIG_USB_STORAGE—Build support for USB mass storage devices. In menuconfig, this
option is available under Device Drivers --> USB support --> USB Mass Storage support. By
default, this option is M.

• CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is
available under Device Drivers --> HID Devices --> USB Human Interface Device (full HID)
support. By default, this option is M.

• CONFIG_USB_GADGET—Build support for USB gadget. In menuconfig, this option is
available under Device Drivers --> USB support --> USB Gadget Support ---> Support for USB
Gadgets. By default, this option is M.

• CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this
option is available under Device Drivers --> USB support --> USB Gadget Support ---> Freescale
USB Device Controller. By default, this option is Y.

File Description

isp1301xc.c ISP1301 USB driver

isp1504xc.c ISP1504 USB driver

mc13783_xc.c mc13783USB d river

serialxc.c internal serial transceiver driver

usb_common.c common platform related part of USB driver

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

33-6 Freescale Semiconductor

• CONFIG_USB_GADGET_ARC_OTG—Build support for the USB OTG port in HS/FS
peripheral mode. In menuconfig, this option is available under Device Drivers --> USB support -->
USB Gadget Support --> Support for OTG peripheral port on Freescale controller. By default, this
option is Y.

• CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, this option is available
under Device Drivers --> USB support --> USB Gadget Support --> Ethernet Gadget. By default,
this option is M.

• CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDIS protocol. In menuconfig, this
option is available under Device Drivers --> USB support --> USB Gadget Support --> RNDIS
support (EXPERIMENTAL). By default, this option is Y.

• CONFIG_USB_FILE_STORAG—Build support for Mass Storage gadget. In menuconfig, this
option is available under Device Drivers --> USB support --> USB Gadget Support --> File-backed
Storage Gadget. By default, this option is M.

• CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is
available under Device Drivers --> USB support --> USB Gadget Support --> Serial Gadget. By
default, this option is M.

• CONFIG_USB_EHCI_FSL_1504 -Build support for selecting ISP1504 transceiver for OTG port
host mode. In menuconfig, this option is available under “Device Drivers --> USB support -->
Select OTG transceiver --> Philips ISP1504”.

• CONFIG_USB_GADGET_FSL_1504 -Build support for selecting ISP1504 transceiver for OTG
port gadget mode. This option is available under “Device Drivers --> USB support --> USB Gadget
Support --> Select OTG transceiver --> Philips ISP1504”.

• CONFIG_USB_EHCI_FSL_1301 -Build support for selecting ISP1301 transceiver. In
menuconfig, this option is available under “Device Drivers --> USB support --> Select OTG
transceiver --> Philips ISP1301”.

• CONFIG_USB_EHCI_FSL_MC13783 -Build support for selecting MC13783 transceiver for
Host. In menuconfig, “Device Drivers --> USB support --> Select OTG transceiver --> Freescale
MC13783”.

33.7 Programming Interface
This driver implements all the functions that are required by the USB bus protocol to interface with the
i.MX USB ports. For more information, see the BSP API document.

33.7.1 Notes

To enable OTG HS: CONFIG_USB_EHCI_ARC_OTGHS = y

To enable Host2: CONFIG_USB_EHCI_ARC_H2 = y

Table 33-5. Default USB Settings

Default value OTG HS OTG FS Host1(FS) Host2(HS) Host2(FS)

i.MX27 3-Stack enabled disabled N/A N/A N/A

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 33-7

To use OTG host and device : CONFIG_USB = y, CONFIG_USB_EHCI_HCD = m,
CONFIG_USB_OTG = y, CONFIG_USB_GADGET = m, CONFIG_USB_OTG_WHITELIST = n,
CONFIG_USB_GADGET_ARC_OTG = y. Note : when USB_OTG is enabled, USB_EHCI_HCD and
USB_GADGET cannot be used as built-in. The OTG module (isp1504_arc.ko) must be loaded first,
before the host (ehci-hcd.ko) and the device (arcotg_udc.ko) module.

ARC USB driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

33-8 Freescale Semiconductor

ATA Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 34-1

Chapter 34
ATA Driver

34.1 Hardware Operation
The detailed hardware operation of ATA is detailed in the hardware documentation.

34.2 Software Operation

Figure 34-1.

The i.MX ATA/IDE driver sits beneath the IDE layer of the block device infrastructure of the Linux kernel
(see the figure listed above). It handles the details of the integrated ATA controller, while the IDE layer
understands and executes the IDE and ATA protocols. The IDE device, such as a hard disk, is exposed to
the application in user space by the /dev/hda* interface. Filesystems are built upon the block device. The
integrated DMA engine, which assists the ATA controller hardware in the DMA transfer modes, is
accessed through the Linux DMA driver.

Filesystem L ayer

B lock D evice L ayer

i.M X ATA C on troller

IA PI L ayer

D M A D river

i.M X ATA D river

ATA Protocol L ayer

D M A E n gin e

ID E Perip h eral (e.g .
H ard D isk)

/m n t/…
U ser S p ace

/d ev/h d a*

K ern el S p ace

S oftw are

H ard w are

ID E B u s

ATA Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

34-2 Freescale Semiconductor

34.3 Source Code Structure Configuration
Table 34-1 lists the source files available in the linux/drivers/ide/arm directory.

34.4 Linux Menu Configuration Options
Enable the following packages:

• hdparm

• e2fsprogs

• Set modutils "module-init-tools"

In busybox, enable fdisk under Linux System Utilities.

Enable the following kernel configuration options as either modules (M) or built-in to the kernel (Y).
These options are all under "Device Drivers ---> ATA/ATAPI/MFM/RLL support":

• ATA/ATAPI/MFM/RLL support

• Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support

• Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support ---> Include IDE/ATA-2 DISK support

Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support ---> Freescale MXC IDE support

34.5 Board Configuration Options
With the power off, install the IDE cable and hard drive.

34.6 Programming Interface
The application interface to the ATA driver is the standard POSIX device interface (for example: open,
close, read, write, and ioctl) on /dev/hda*.

34.7 Usage Example
1. After building the kernel and the ATA driver and deploying, boot the target, and log in as root.

2. On the target, run these commands if you configured the driver as modules. If you built the driver
into the kernel, you'll see similar messages in the console boot log.

modprobe mxc_ide
modprobe ide-disk

You should see messages similar to the following:
freescale# modprobe mxc_ide
Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2
ide: Assuming 50MHz system bus speed for PIO modes; override with

Table 34-1. ATA Driver File List

File Description

mxc_ide.h ATA driver header file

mxc_ide.c ATA driver source code

ATA Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 34-3

idebus=xx
MXC: IDE driver, (c) 2004-2005 Freescale Semiconductor
mxc_ide_resetproc: resetting ATA controller
hda: HTC426020G7AT00, ATA DISK drive
ide0 at 0xd408c0a0-0xd408c0a7,0xd408c0d8 on irq 15
hda: max request size: 512KiB
hda: 39070080 sectors (20003 MB), CHS=16383/255/63
hda: cache flushes supported
hda: hda1
ide0: read chan=31 (42 BDs), write chan=30 (42 BDs)
hda: enabling UDMA3 mode

You may use standard Linux utilities to partition and create a file system on the drive (for example: fdisk
and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/hda*. For example, to check basic
kernel settings for the drive, execute hdparm /dev/hda.

34.8 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the hard disk is
pre-formatted, this command shows the size of the hard disk, partitions, and filesystem type:

$fdisk -l /dev/hda

If the hard disk is not formatted, create the partitions on the hard disk using the following command:
$fdisk /dev/hda

After the partition, the created files resemble /dev/hda[1-4].

Block Read/Write Test:
The command, dd, is used for for reading/writing blocks. Note this command can corrupt the partitions and
filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/hda1 bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the file to be written
for file_name, do the following:

$dd if=file_name of=/dev/hda1

To read 1KB of data from the card enter the following text, substituting the name of the file to be written
for output_file, do the following:

$dd if=/dev/hda1 of=output_file bs=1024 count=1

Files System Tests

ATA Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

34-4 Freescale Semiconductor

Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:
$mkfs.ext2 /dev/hda1
$mkfs.vfat /dev/hda1

Mount the file system as follows:
$mkdir /mnt/hda1
$mount -t ext2 /dev/hda1 /mnt/hda1

After mounting, file/directory, operations can be performed in /mnt/hda1.

Unmount the filesystem as follows:
$umount /mnt/hda1

Real Time Clock (RTC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 35-1

Chapter 35
Real Time Clock (RTC) Driver
Each i.MX processor has an integrated real time clock (RTC) module. The RTC is used to keep the time
and date while the system is turned off. The driver can also do the following:

• Provide periodic interrupt at certain frequency (PIE)

• Wake up the system by providing the alarm feature (AIE)

35.1 Hardware Operation
The RTC’s prescaler converts the incoming crystal reference clock to a 1 Hz signal, which is used to
increment seconds, minutes, hours, and days Time-Of-Day (TOD) counters. The alarm functions, when
enabled, generate RTC interrupts when the TOD settings reach programmed values. The sampling timer
generates fixed-frequency interrupts, and the minutes stopwatch allows efficient interrupts on minute
boundaries.

35.2 Software Operation
The RTC module’s software implementation is through a RTC driver. Besides the initialization function,
it provides ioctl functions to set up the RTC timer, interrupt, and so on. The periodic interrupt is
supported at fixed frequencies of 2Hz, 4Hz, 8Hz, 16Hz, 32Hz, 64Hz, 128Hz, 256Hz, and 512Hz given the
clock input of 32.768 kHz (Other clock input frequencies are not supported by the driver.) The 1Hz
periodic interrupt is also called “update interrupt” (UIE).

NOTE
The i.MX RTC driver implementation follows what is stated in the rtc.txt
file under Linux kernel Documentation directory that “Programming and/or
enabling interrupt frequencies greater than 64 Hz is only allowed by root.”

35.3 Requirements
This RTC implementation meets the following requirements:

• The RTC module implements all the functions required by Linux to provide the real time clock,
alarm interrupt and periodic interrupt.

• The RTC module conforms to the Linux coding standard as documented in the Coding Conventions
chapter.

35.4 Source Code Structure
The RTC module is implemented in the following files:

<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/rtc/rtc-mxc.c

The source file, mxc-rtc.c, for the RTC specifies the RTC function implementations.

Real Time Clock (RTC) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

35-2 Freescale Semiconductor

35.5 Programming Interface
All the Linux RTC functions are implemented in the time.c file.

NOTE
The <ltib_dir>/rpm/BUILD/linux-2.6.22/include/linux/rtc.h file
specifies all the ioctls for RTC.

The following RTC ioctls are supported on i.MX platforms.
column (1) = IOCTLs listed in include/linux/rtc.h
column (2) = Supported by MXC platform RTC driver. “Y” means supported.
 (1) (2)
RTC_UIE_ON Y Y
RTC_UIE_OFF Y Y
RTC_RD_TIME Y Y
RTC_SET_TIME Y Y
RTC_ALM_READ Y Y
RTC_ALM_SET Y Y
RTC_WKALM_RD Y Y
RTC_WKALM_SET Y Y
RTC_AIE_ON Y Y
RTC_AIE_OFF Y Y
RTC_WIE_ON Y -
RTC_WIE_OFF Y -
RTC_IRQP_READ Y Y
RTC_IRQP_SET Y Y
RTC_PIE_ON Y Y
RTC_PIE_OFF Y Y
RTC_EPOCH_READ Y Y
RTC_EPOCH_SET Y -
RTC_PLL_GET Y -
RTC_PLL_SET Y -

For more information, see the API documentation for the detailed programming interface.

Watchdog (WDOG) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 36-1

Chapter 36
Watchdog (WDOG) Driver
The Watchdog Timer module protects against system failures by providing an escape from unexpected
hang or infinite loop situations or programming errors. Some platforms may have two WDOG modules
with one of them having interrupt capability.

36.1 Hardware Operation
Once the WDOG timer is activated, it must be serviced by software on a periodic basis. If servicing does
not take place in time, WDOG times out. Upon a time-out, WDOG either asserts the wdog_b signal or a
wdog_rst_b system reset signal, depending on software configuration. The watchdog module can not be
deactivated once it is activated.

36.2 Software Operation
The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported.

For the platforms that have two WDOG hardware modules, another implementation is done in the
machine-specific layer as part of the time.c file. The following sections describe both implementations.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.

36.2.1 Generic WDOG driver

This is implemented in the <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/watchdog/mxc_wdt.c file. It
essentially provides functions for various IOCTLs and read/write calls from the user level program to
control the WDOG.

36.2.1.1 Requirements

This WDOG implementation meets the following requirements:

• The WDOG module generates the reset signal if it is enabled but not serviced within a predefined
timeout value.

• The WDOG module does not generate the reset signal if it is serviced within a predefined timeout
value.

• The WDOG module provides IOCTL/read/write required by the standard WDOG subsystem.

36.2.1.2 Source Code Structure

The WDOG source code is in <ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/watchdog/mxc_wdt.c and
mxc_wdt.h.

Watchdog (WDOG) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

36-2 Freescale Semiconductor

Table 36-1 lists the source files for WDOG.

36.2.1.3 Programming Interface

For more information, see the API documentation for the detailed programming interface.

36.2.2 WDOG under Machine-Specific Layer

The WDOG software implementation provides routines to service WDOG so that the timeout never
occurs. If the WDOG timer is enabled before the Linux kernel boots (enabled by boot loader or ROM) it
is automatically serviced, with the service interval being configurable. In addition, compile-time options
specify if the Linux kernel should enable the watchdog, and if so the parameters to be used. If the second
WDOG presents (it is used to generate an interrupt after the timeout occurs), the highest interrupt priority
(16) is assigned to this interrupt.

Figure 36-1 shows the flow chart for the operation. It applies to all platforms with two WDOGs.

Figure 36-1. WDOG Software Operation Flow Chart

36.2.2.1 Requirements

This WDOG implementation meets the following requirements:

• The WDOG module generates the reset signal if it is enabled but not serviced within a predefined
timeout value.

Table 36-1. WDOG File List

File Description

mxc_wdt.c WDOG function implementations

mxc_wdt.h header file for WDOG implementation

WDOG
enabled in

H/W?

WDOG_SERVICE_PERIOD
defined?

Y

Service based on
WDOG_SERVICE_PERIOD

Y

Service every OS tick

N

WDOGx_ENABLE
defined?

Setup and
enable WDOGx

Do Nothing

N

Y

Module init

Watchdog (WDOG) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 36-3

• The WDOG module does not generate the reset signal if it is serviced within a predefined timeout
value.

• The second WDOG (when present) shall generate an interrupt if it is enabled but not serviced
within a predefined timeout value.

36.2.2.2 Source Code Structure

The WDOG module implementation is embedded inside the timer module as described above. The source
code is available in the time.c file under the MSL directory.

The source files for WDOG is time.c, which specifies WDOG function implementations.

36.2.2.3 Programming Interface

The following DEFINES are provided:
WDOG1_ENABLE /* not defined by default */
WDOG2_ENABLE /* not defined by default */
WDOG1_TIMEOUT /* WDOG1 timeout in ms */
WDOG2_TIMEOUT /* WDOG2 timeout in ms */
WDOG_SERVICE_PERIOD /* time interval in ms to service WDOG */

Watchdog (WDOG) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

36-4 Freescale Semiconductor

FM Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 37-1

Chapter 37
FM Driver
Si4702 is adopted as the FM chip on the board. The Si4702 extends Silicon Laboratories Si4700 FM tuner
family, and further increases the ease and attractiveness of adding FM radio reception to mobile devices
through small size and board area, minimum component count, flexible programmability. Headset cable
is used for Antenna on the board.

37.1 FM Overview
The device offers significant programmability, and caters to the subjective nature of FM listeners and
variable FM broadcast environments world-wide through a simplified programming interface and mature
functionality.

Power management is also simplified with an integrated regulator allowing direct connection to a 2.7 to
5.5 V battery.

Capabilities:

• Worldwide FM band support (76-108 MHz)

• Digital low-IF receiver

• Seek tuning

• Automatic frequency control (AFC)

• Automatic gain control (AGC)

• Signal strength measurement

• Adaptive noise suppression

• Volume control

• 32.768 kHz reference clock

• 2-wire and 3-wire control interface

• 2.7 to 5.5 V supply voltage

• Integrated LDO regulator allows direct connection to battery

• Integrated crystal oscillator

37.1.1 Hardware Operation

Si4702 supports both three-wire control and two-wire control. Two-wire control is chosen by drive SEN
pin high while chip boot up, which is done by hardware design.

For two-wire operation, a transfer begins with the START condition. The control word is latched internally
on rising SCLK edges and is eight bits in length, comprised of a seven-bit device address equal to
0010000b and a read/write bit (write = 0 and read = 1). The device acknowledges the address by setting
SDIO low on the next falling SCLK edge.

For write operations, the device acknowledge is followed by an eight-bit data word latched internally on
rising edges of SCLK. The device always acknowledges the data by setting SDIO low on the next falling

FM Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

37-2 Freescale Semiconductor

SCLK edge. An internal address counter automatically increments to allow continuous data byte writes,
starting with the upper byte of register 02h, followed by the lower byte of register 02h, and onward until
the lower byte of the last register is reached. The internal address counter then automatically wraps around
to the upper byte of register 00h and proceeds from there until continuous writes cease. Data transfer
ceases with the STOP command. After every STOP command, the internal address counter is reset.

For read operations, the device acknowledge is followed by an eight bit data word shifted out on falling
SCLK edges. An internal address counter automatically increments to allow continuous data byte reads,
starting with the upper byte of register 0Ah, followed by the lower byte of register 0Ah, and onward until
the lower byte of the last register is reached. The internal address counter then automatically wraps around
to the upper byte of register 00h and proceeds from there until continuous reads cease. After each byte of
data is read, the controller IC should return an acknowledge if an additional byte of data will be requested.
Data transfer ceases with the STOP command. After every STOP command, the internal address counter
is reset.

FM analog signals will directly connect to audio chip which will route it out to headset.

37.1.2 Software Operation

Figure 37-1. Software Operation

The FM driver serves as an interface between kernel and user space. The driver can control hardware
directly, such as reset operation, but most of the functional operation is taken using I2C framework, which
is especially convenient in the 2-wire control case.

The main software operation is as follows:

1. In initialization stage, register device in character sub-system, and then register it to I2C
framework.

2. In open operation, reset the chip, and initialize the register on the chip.

3. In release operation, shutdown the chip.

4. In ioctl operation, handle all the command from user space, execute them and feed back
information if there is any.

 Application

I2C framework

FM driver

SI4702

Hardware

Kernel space

User space

Register access

Hardware control

Register access

ioctl()

FM Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 37-3

37.2 Source Code Structure Configuration
Table 37-1 lists the source files associated with the FM driver that are available in the directory,
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/char/.

37.3 Linux Menu Configuration Options
The Linux kernel configurations are provided for this module. CONFIG_FM_SI4702 is the configuration
option for the FM driver. By default, this option is M.

To load the FM drivers use the command:
insmod si4702.ko

It is located in /lib/modules/2.6.22-pdk27_rel1/kernel/drivers/char.

Table 37-1. FM Driver Source and Header File List

File Description

si4702.c Source file for SI4702 FM driver

si4702.h Header file for SI4702 FM driver

FM Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

37-4 Freescale Semiconductor

MMA7450L Accelerometer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 38-1

Chapter 38
MMA7450L Accelerometer Driver
The MMA7450L is a feature-rich accelerometer device with a flexible programming interface exposed to
the software. It can be used on many applications, such as image stability, freefall detection, motion
dialing, e-compass, and so forth.

38.1 MMA7450L Features
• Digital Output (I2C/SPI) - 10-Bit at 8g Mode

• 3mm x 5mm x 1mm LGA-14 Package

• Low Current Consumption: 400 µA

• Self Test for Z-Axis

• Low Voltage Operation: 2.4 V - 3.6 V

• Customer Assigned Registers for Offset Calibration

• Programmable Threshold Interrupt Output

• Level/Pulse Detection for Motion Recognition (shock, vibration, freefall)

• Click Detection for Single or Double Click Recognition

• High Sensitivity (64 LSB/g at 2g and at 8g in 10-Bit Mode)

• Selectable Sensitivity (±2g, ±4g, ±8g)

• Self-Test for Z-Axis

• Robust Design, High Shocks Survivability (10,000 g)

• RoHS-Compliant

• Environmentally-Preferred Product

• Low Cost

38.2 Driver Requirements
The MMA7450L driver is based on the I2C driver, and also makes use of the hardware monitoring system
and the input polling device, so the driver must be supported in the Linux kernel.

38.3 Driver Architecture
The software design will touch several part of Linux kernel, such as, I2C driver, input poll device and
hardware monitor system. See the following illustration for the complete software architecture.

The MMA7450L provides two methods of register access, I2C and SPI. This driver uses the I2C. At driver
initial phase, a I2C client is registered to the I2C system, and it will be used during the whole process of
MMA7450L operations.

The MMA7450L registers itself to the hardware monitor system and the input polling device that provide
user access facilities.

MMA7450L Accelerometer Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

38-2 Freescale Semiconductor

Figure 38-1. Driver Architecture

38.4 Driver Source Code Structure
The driver source code structure contains only one file:

<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/hwmon/mxc_mma7450.c

38.5 Linux Menu Configuration Options
The following Linux kernel configurations are provided for this module. In order to get to the mma7450
configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen, select Configure
Kernel, exit, and a new screen will appear.
Device Drivers->Hardware Monitoring support->MMA7450 device driver

Table 38-1. Driver Source Code Structure File

File Description

mxc_mma7450.c Implementation of the mma7450 accelerometer driver.

I2C interface

HARDWARE

MMA7450L driver

Hwmon system Input poll device system

User application

Kernel space
User space

register register

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 39-1

Chapter 39
Global Positioning System (GPS) Driver

39.1 GPS Driver Overview

An external global positioning system (GPS) module can be supported through the serial port and
necessary GPIO resources. Currently, the PDK supports Broadcom's Barracuda Single Chip A-GPS
Solution. Since this chip set features a host-based architecture, several software components need to be
loaded on the platform to enable full operation. Figure 39-1 shows a coarse block diagram of the complete
GPS system architecture consisting of the BCM4750 Barracuda GPS IC and the host CPU.

Figure 39-1. Barracuda GPS Coarse System Architecture including Host CPU

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

39-2 Freescale Semiconductor

Figure 39-2. GL GPS SW Architecture

Figure 39-2 shows the GPS software architecture on the host. The communications driver provides a serial
interface to the core driver and communicates with the external GPS chip set. In the current platform, the
UART acts as this serial interface. The GPIO function controls the power and reset functions of the GPS
chip set. The system timer, that is the GPT timer, is used to provide an accurate timer to the GPS core
driver. Non-volatile storage is used to store assistance data and useful information for the last GPS position
information received, which can accelerate the next position fix. A log buffer is generated by the GLL lib
and used to track problems when integrating the GL GPS solution. The hardware abstraction layer (HAL)
is used to abstract specific hardware platforms, which makes the GPS core driver hardware-independent.
The core driver processes GPS data and controls the work flow with the GPS device. It accepts application
requests and sends the GPS position information to the upper layer.

Most of the GPS software modules are provided in binary format only. BSP source code is available for
the driver that handles the concrete hardware access, additional source code controls the GPS data flow
when GPS is running.

Generally, the functionality of the GPS module is segmented into two parts: control driver and core driver.
The control driver is mainly for hardware-specific IO settings. The core driver (glgps_freescaleLinux)

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 39-3

manages the GPS system, gets and parses data from the Barracuda chip, and generates position data and
sends it to a pipe which connects to the application.

39.2 Hardware Operation
The GPS daughter board should connect to the UARTx slot of the platform hardware. Since GPS is very
sensitive to timing accuracy, the platform should provide a high-accuracy, non-drifting millisecond timer
function to the GPS core drivers.

The GPS Control driver manages hardware-specific IOs to regulate power usage on the platform, power
on/off and reset GPIO pins setting when the GPS is supported. Before GPS power up, the reset/init
sequence must be done. The reset pin is asserted for a few milliseconds, then de-asserted. It’s done when
the gpiodrv is loaded. When GPS is launched, the power pin is asserted.

39.2.1 UART Port

The GPS module uses UARTx to communicate with the host; the device name in Linux is shown below.
Table 39-1. UART Port

39.2.2 GPIO Control

GPIO pins are used to control the GPS module.

Platform UART Device Name

i.MX27 UART2 /dev/ttymxc1

Table 39-2. GPIO Control Signals

GPIO Name PIN Value Description

MX27_PIN_I2C2_SDA 0: Reset of GPS module is asserted;
1: Reset of GPS module is de-asserted

MX27_PIN_USBH2_CLK 1: GPS module is power on;
0: GPS module is power off

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

39-4 Freescale Semiconductor

39.2.3 Hardware-Dependent Parameters

The TCXO clock is a hardware parameter that must be set in the XML file in order for the GPS to work
properly.

39.3 Software Operation
Broadcom provides several software components to drive the GPS hardware. Broadcom's software
architecture allows the LTO feature to be enabled or disabled as needed, which is a way to get assistance
data as showing in architecture chart.

Software applications communicate with the GPS module through a NMEA pipe where you need to read
the incoming NMEA data. The GPS application will create a NMEA pipe then get all the NMEA sentences
from this pipe.

39.3.1 GLGPS Configuration

The GLGPS reads configuration from an XML file. This configuration file defines the
hardware-dependent settings, paths, and different tasks.

The XML file should be like this:
<?xml version=”1.0” encoding=”utf-8”?>
<glgps xmlns=”http://www.glpals.com/” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.glpals.com/ glconfig.xsd” >

 <!--HAL Confguration -->
 <hal acPortName=”/dev/ttymxc2” lBaudRate=”115200” cLogEnabled=”true” acLogDirectory=”./log”
ltoFileName=”lto.dat”
 bPrintToConsole=”false” />

 <!-- Parameters passed to GlEngine -->
 <gll FrqPlan=”FRQ_PLAN_26MHZ_2PPM” RfType=”GL_RF_BARRACUDA”
 LogPriMask=”LOG_DEBUG”
 LogFacMask=”LOG_GLLAPI | LOG_DEVIA | LOG_NMEA | LOG_RAWDATA “
 />

Table 39-3. Hardware-dependent Parameters

Parameter Value Description

Frequency Plan: The TCXO has to be accurate +/- 2.0 ppm.
The number after "FRQ_PLAN_" describes the type of TCXO used, for
example, FRQ_PLAN_13MHZ_2PPM is a 13MHz reference clock.

FRQ_PLAN_13MHZ_2PPM
FRQ_PLAN_16_8MHZ_2PPM
FRQ_PLAN_26MHZ_2PPM
FRQ_PLAN_10MHZ_2PPM_10MHZ_50PPB
FRQ_PLAN_20000_2PPM_13MHZ_50PPB
FRQ_PLAN_27456_2PPM_26MHZ_50PPB
FRQ_PLAN_33600_2PPM_26MHZ_50PPB
FRQ_PLAN_19200_2PPM_26MHZ_100PPB

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 39-5

 <!-- List of jobs can be performed by the GPS controller -->
<!-- The default job all parameters are set to default values -->

 <job id=”normal”>
 <task>
 <req_pos />
 </task>
 </job>

 <job id=”cold”>
 <task>
 <!-- Instructs GLL to ignore all elements stored in NVRAM listed below -->
 <startup ignore_time=”true” ignore_osc=”true” ignore_pos=”true” ignore_nav=”true”
ignore_ram_alm=”true” />
 <req_pos />
 </task>
 </job>
</glgps>

Hal tag defines the glhal settings (serial COM settings, enable hal log, some other paths). Parameters are
explained on Table 39-4.

gll defines gll specific parameters, as explained in Table 39-5.

In this example different tasks are configured. Task named “normal” makes autonomous fix every second
and “cold” starts autonomous fixes with no assisted data.

39.3.2 Driver Configuration

The GPS GPIO control driver is configured using the same mechanisms that are provided to configure the
Linux kernel image. That is, a Kconfig file within the source files directory is used to select whether or not
the device driver is to be included in the kernel build process and whether it is to be built as a loadable

Table 39-4. hal Attributes

hal Attributes Description Comment

acPortName serial COM port

lBaudRate baud rate 9600,19200,38400
,57600,115200

acLogDirectory directory where the
logs will be placed

Table 39-5. gll Attributes

gll attributes description comment

FrqPlan type of TCXO For GPS/B it is
FRQ_PLAN_26MH

Z_2PPM

RfType Type of rf chip it should be
GL_RF_BARRACU

DA

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

39-6 Freescale Semiconductor

kernel module or not. Any of the standard kernel configuration tools, such as menuconfig, can be used to
select and configure the GPS control driver.

39.3.2.1 Linux Menu Configuration Options

The CONFIG_GPS_IOCTRL Linux kernel configuration option is provided for the GPS GPIO control
driver. It is the build option for GPS GPIO control driver support. In menuconfig, it can be located under
Device Drivers-> MXC Support Drivers-> Broadcom GPS ioctrl support -> GPS ioctrl support. By
default, this option is M for all architectures.

39.3.3 Source Code

Table 39-6 lists the source files available in the source directory
<ltib_dir>/rpm/BUILD/linux-2.6.22/drivers/mxc/gps_ioctrl

39.3.4 LTO Feature (optional)

The Long Term Orbit (LTO) feature is a way to get assistance data for the device. The assistance data used
in the PDK is valid for several days, giving PDK users the advantages of assisted GPS performance while
preserving the freedom of autonomous GPS operation.

The PDK should be connected through a NFS server and you should put the LTO file in the folder that the
GPS driver is pointing to. It is the responsibility of the customer to implement the way to get a TCP/IP
connection on the platform (Bluetooth, IP over USB).

39.3.4.1 Enabling The LTO Feature on the Platform

You must contact Broadcom in order to obtain the necessary license for enabling this feature on the
Freescale PDK platform. You must submit the following information to obtain the license: platform name
and platform type.

You must also ensure that the LTO feature is enabled through the different parameters that the GPS driver
can take as an input.

39.3.5 Power Management

The GPS driver manages automatically the power management of the Broadcom chip set by toggling the
different IOs of the chip set. The GPS chip set will go in Low Power Standby mode when you are stopping
the GPS driver.

Table 39-6. GPS Driver Source Code

File Description

agpsgpiodev.c Main file for GPIO kernel module

agpsgpiodev.h head file of Simple character device interface for AGPS
kernel module

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 39-7

39.3.6 irm Commands.

While the glgps is running some command can be sent to the process.

There is a special FIFO file in /var/run/glgpsctrl where the commands are sent. Commands are ASCII
strings with the ‘$pglirm,’ prefix + command name format.

• $pglirm,req_pos,name,period,N1,fixcount,N2,validfix,N3,duration_sec,N4

Creates a periodic position request.

– Name – Unique request identifier, it also used by GLHAL to output NMEA data

– Period – Update period in milliseconds

– Fixcount – Stop after that number of fixes (valid or invalid) reported

– Validfix – Stop after that number of valid fixes reported

– Duration_sec – Stop after that many seconds
• $pglirm,req_pos_single,name,acc,timeout,N1

Creates a single shot request.

– Name – Unique request identifier, it also used by GLHAL to output NMEA data

– Acc – Accuracy QoS parameter

– Timeout – Time-out QoS parameter

• $pglirm,req_aid,name

Queries for what assistance data is missing.

– Name – Unique request identifier, it also used by GLHAL to output NMEA data

• $pglirm,factory,test,prn,17,timeout,16,GL_FACT_TEST_MODE,GL_FACT_TEST_CONT,GL_FACT_TEST_I

TEMS,GL_FACT_TEST_WER

Creates a factory request.

– Test – Unique request identifier, it also used by GLHAL to output NMEA data

– Prn – PRN number

– Timeout – How long to run test for

– GL_FACT_TEST_MODE – Test mode
[GL_FACT_TEST_ONCE|GL_FACT_TEST_CONT]

– GL_FACT_TEST_ITEMS – What to test
GL_FACT_TEST_CN0|GL_FACT_TEST_FRQ|GL_FACT_TEST_WER

• $pglirm,startup,{[ignore_osc|ignore_rom_alm|ignore_rom_alm|ignore_pos|ignore_ram_alm|igno
re_time],[true|false]}

Tells the GLCT to ingore specified elements of the data previously stored in nonvolatile
storage.

• $pglirm,stop,name

Stops an ongoing request with a name "name"; the name "all" is reserved to stop all ongoing
requests.

• $pglirm,quit

Causes GLCT to exit.

Global Positioning System (GPS) Driver

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

39-8 Freescale Semiconductor

• $pglirm,pwm,[on|off]

Turns auto power management on or off

As an example, to send quit command in a shell, do the following:
echo ‘$pglirm,quit’ >/var/run/glgpsctrl

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-1

Chapter 40
Unit Tests
The unit tests are tests written by the Linux BSP developers to check the drivers they have added. They
can be useful in understanding how to use a particular driver and in checking that changes have not broken
anything.

40.1 Enabling the Unit Tests
In order to enable the unit test packages with all the test applications that will be mentioned in the
following sections, enter the following commands:

./ltib -c
Package list -> mxc-misc

40.2 Running Tests That Write to a File
On most platforms, the unit tests directory is on a read-only partition. One way to create a writable partition
is to do the following:

mkdir /tmp/tmp2
mount -t tmpfs whatever /tmp/tmp2
export TMP=/tmp/tmp2

Then run the tests from /tmp/tmp2 by specifying the full path: /unit_tests/<test name>.

40.3 MSL Tests
This module is not testable except by noting the correct behavior when other modules use it.

40.4 Dynamic Frequency Scaling Tests
These test cases demonstrate the possibility for an application to dynamically change the processor’s
frequency. This allows power saving when the CPU idle. This can be achieved using the command
/sys/devices/system/cpu/cpu0/cpufreq.

The test cases in Section 40.4, “Dynamic Frequency Scaling Tests“ are available for i.MX27 platforms.

Test ID : FSL-UT-CPUFREQ-0010

This test case displays all the avilable governors and put the system under the «userspace» governor. If the
«userspace» governor is not listed as an available governor, you need to enable it in the kernel
configuration prior to running this test.

$ cd /sys/devices/system/cpu/cpu0/cpufreq
$ cat scaling_available_governors
conservative ondemand powersave userspace performance
$cat cpuinfo_cur_freq
399000
$ echo userspace > scaling_governor

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-2 Freescale Semiconductor

End of Test FSL-UT-CPUFREQ-0010

Test ID : FSL-UT-CPUFREQ-0020

This test case shows how to change the CPU frequency to 266 MHz.

$ echo 266000 > scaling_setspeed
$ cat cpu_info_curfreq
266000

End of Test FSL-UT-CPUFREQ-0020

Test ID : FSL-UT-CPUFREQ-030

This test case shows how to change the CPU frequency to 133 MHz.
$ echo 133000 > scaling_setspeed
$ cat cpu_info_curfreq
133000

End of Test FSL-UT-CPUFREQ-030

Test ID : FSL-UT-CPUFREQ-040

This test case put the system under the «conservative» governor. It then shows how the frequency is
dynamically adjusted when overloading the system by performing a MD5 sum computation.

$ echo conservative > scaling_governor
$ cat cpu_info_curfreq
133000
$ md5sum /dev/urandom &
$ cat cpu_info_curfreq
399000
$ killall md5sum
$ cat cpu_info_freq

End of Test FSL-UT-CPUFREQ-040

40.5 DMAC Tests
The test cases in Section 40.5, “DMAC Tests“ are available for i.MX27 platforms.

There is a DMA test application under <ltib_dir>/rpm/BUILD/imx-test-2.3.0/test/mxc_udma_test

directory, and it needs the support from a DMA test driver mxc_udma_testdriver.c which is under

<ltib_dir>/rpm/BUILD/imx-test-2.3.0/module_test/mxc_udma_testdriver.c. The test could be executed

as following:

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-3

Test ID: FSL-UT-UDMA-0010
$cd unit_tests
$insmod mxc_udma_testdriver.ko
register virtual dma driver.
dma major number = 252
$mknod /tmp/dma c 252 0
$cd ../mxc_dma_test/
$./mxc_dma_test.out 0 /*1D memory to memory dma is tested*/
...
Verify 1d mem c7202000,x=-81,p[10]=-81
Verify Success
begin dma free
End dma free

End of Test FSL-UT-UDMA-0010

Test ID: FSL-UT-UDMA-0020
$./mxc_dma_test.out 1 /*1D memory to 2D memory dma is tested*/
...
Verify 2d mem c7172000,x=-87,p[2*128+1+0]=-87
Verify Success
begin dma free
End dma free

End of Test FSL-UT-UDMA-0020

40.6 PMIC Protocol Tests
The test cases in Section 40.6, “PMIC Protocol Tests“” are available for i.MX27, platforms.

The source code for the unit test applications is available only after running the following command on
ltib:

/<ltib_dir>/ltib -p imx-test -m prep

then, the source code for the unit test applications is available at the following location:

<ltib_dir>/rpm/BUILD/misc/test/mxc_pmic_test/protocol_tests/

The built unit test applications are available at /<ltib_dir>/rootfs/unit_tests.

Use the pmic_testapp.out program to test the protocol driver.

40.6.1 MC13783 PMIC Protocol Driver Read/Write Unit Test

The RW unit test checks the read/write functionality of the MC13783 protocol driver on a register.
Type: ./pmic_testapp.out -T RW

If the test has run correctly, the result is as follows:
mc13783_testapp 1 PASS : mc13783_testapp test worked as expected

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-4 Freescale Semiconductor

40.6.2 PMIC Subscribe/Unsubscribe to an Event Unit Test

The SU unit test checks the ability to subscribe to an event using the MC13783 PMIC.
Type : ./pmic_testapp.out -T SU

If the test has run correctly, the result is as follows:
mc13783_testapp 1 PASS : mc13783_testapp test worked as expected

40.6.3 PMIC Subscribe, Interrupt, Unsubscribe Unit Test

Test ID: FSL-UT-PMIC-Protocol-0010

The S_IT_U unit test checks the interrupt handling capability of the MC13783 protocol driver using the
TSI (touchscreen) event.

Type : ./pmic_testapp.out -T S_IT_U

If the test has run correctly, the result is as follows:
Press PWR button on the KeyBoard or MC13783
you should see IT callback info
Press Enter to continue after pressing the button

DETECTED PMIC EVENT : 27

Did you see the callback info [Y/N]Y
Test subscribe/unsubscribe 2 event = 27

Press PWR button on the KeyBoard or MC13783
you should see IT callback info twice.
Press Enter to continue after pressing the button

 DETECTED PMIC EVENT : 27
 DETECTED PMIC EVENT : 27

Did you see the callback info twice [Y/N]Y
mc13783_testapp 1 PASS : mc13783_testapp test worked as expected

End of Test FSL-UT-PMIC-Protocol-0010

40.6.4 PMIC Open/Close Unit Test

The OC unit test checks the ability to Open and Close API of the MC13783 PMIC.

Test ID: FSL-UT-PMIC-0010
Type : ./pmic_testapp.out -T OC

If the test has run correctly, the result is as follows:
mc13783_testapp 1 PASS : mc13783_testapp test worked as expected

End of Test FSL-UT-PMIC-0010

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-5

40.6.5 PMIC Concurrent Access Unit Test

The CA unit test checks the ability for Concurrent Access API of MC13783 PMIC.

Test ID: FSL-UT-PMIC-0010
Type : ./pmic_testapp.out -T CA

If the test has run correctly, the result is as follows:
mc13783_testapp 1 PASS : mc13783_testapp test worked as expected

End of Test FSL-UT-PMIC-0010

40.7 PMIC Audio Tests
The test cases in Section 40.7, “PMIC Audio Tests“” are available for i.MX27 and i.MX31 platforms.

ALSA test applications either in the native mode or in the OSS emulation mode should presently suffice
to verify the PMIC Audio driver APIs.

40.8 PMIC Digitizer Tests
The test cases in Section 40.8, “PMIC Digitizer Tests“” are available for i.MX27 and i.MX31 platforms.

Use the pmic_testapp_adc.out program to test the MC13783-specific version of this device driver.

40.8.1 PMIC Read ADC Value Tests

This test returns the last correct touch screen value of MC13783 ADC.

Test ID: FSL-UT-PMIC-ADC-0010

Type the following:
./pmic_testapp_adc.out -T CONV

The system returns:
pmic_testapp_adc 0 INFO : Testing if 47292 test case is OK

========== TESTING PMIC adc DRIVER ==========
Select a channel [0-15] :
=>0
Test convert ADC functions
Channel 0: 0
Convert 8x channel 0 - 0: 0
Convert 8x channel 0 - 1: 0
Convert 8x channel 0 - 2: 0
Convert 8x channel 0 - 3: 0
Convert 8x channel 0 - 4: 0
Convert 8x channel 0 - 5: 0

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-6 Freescale Semiconductor

Convert 8x channel 0 - 6: 0
Convert 8x channel 0 - 7: 0
MULTICHANNEL From channel 0 - 0: 0
MULTICHANNEL From channel 0 - 1: 0
MULTICHANNEL From channel 0 - 2: 860
MULTICHANNEL From channel 0 - 3: 416
MULTICHANNEL From channel 0 - 4: 1023
MULTICHANNEL From channel 0 - 5: 31
MULTICHANNEL From channel 0 - 6: 2
MULTICHANNEL From channel 0 - 7: 290
pmic_testapp_adc 1 PASS : 47292 test case worked as expected

End of Test FSL-UT-PMIC-ADC-0010

40.8.2 PMIC Monitoring Tests

This test returns monitoring touch screen value of MC13783 ADC.

Test ID: FSL-UT-PMIC-ADC-0020

Type the following:
./pmic_testapp_adc.out -T MON

The system returns:
pmic_testapp_adc 0 INFO : Testing if 50232 test case is OK

Test monitoring ADC functions
pmic_testapp_adc 1 PASS : 50232 test case worked as expected

End of Test FSL-UT-PMIC-ADC-0020

40.9 PMIC Power Management Tests
The test cases in Section 40.9, “PMIC Power Management Tests“” are available for i.MX27, i.MX31 and
i.MX32 platform.

Use the “pmic_testapp_power” program to test the MC13783-specific version of this device driver.

Test ID: FSL-UT-PMIC-Power-MOD-0010

To run this test application, the test module mxc_pmic_power_testmod.ko must be inserted.

End of Test FSL-UT-PMIC-Power-MOD-0010

NOTE
After upgrade to kernel 2.6.24, the PMIC power driver is re-impelemented
under the common regualtor driver architecture. So the test cases in this
section are obsolete for i.MX31 3-Stack and i.MX27 3-Stack.

40.9.1 PMIC Regulator ON/OFF Tests

Test ID: FSL-UT-PMIC-Power-0010

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-7

This test checks the Regulator ON/OFF API function of the PMIC power.

1. Load this module:
modprobe mxc_pmic_power_testmod

2. For the PMIC ON/OFF test, type this line:
./pmic_testapp_power.out -T 1

The following result appears for a successful test:
Testing if REGULATOR ON is OK
REGULATOR 4 : ON
REGULATOR 5 : ON
REGULATOR 6 : ON
REGULATOR 7 : ON
REGULATOR 8 : ON
REGULATOR 9 : ON
REGULATOR 10 : ON
REGULATOR 11 : ON
REGULATOR 12 : ON
REGULATOR 13 : ON
REGULATOR 14 : ON
REGULATOR 15 : ON
REGULATOR 16 : ON
REGULATOR 17 : ON
REGULATOR 18 : ON
REGULATOR 19 : ON
REGULATOR 20 : ON
REGULATOR 21 : ON
REGULATOR 22 : ON
Test PASSED
Testing if REGULATOR OFF is OK
Switching OFF is restricted to limited of Regulator
as its' dangerous to switch-off regulators randomly.
REGULATOR 4 : OFF
REGULATOR 5 : OFF
REGULATOR 6 : OFF
REGULATOR 16 : OFF
REGULATOR 18 : OFF
Test PASSED

End of Test FSL-UT-PMIC-Power-0010

40.9.2 PMIC Switcher and Regulator Configuration Tests

Test ID: FSL-UT-PMIC-Power-0020

This test checks switches/Regulator Configuration API function of PMIC power.

NOTE
Make sure the configuration file mc13783_power.cfg is in the working
directory. It is available in
<ltib_dir>/rpm/BUILD/misc/test/mxc_pmic_test/

pmic_testapp_power/mc13783_power.cfg.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-8 Freescale Semiconductor

For the PMIC Switcher/Regulator Configuration test, type this line:
./pmic_testapp_power.out -T 2

The following result appears for a successful test:
Testing if SWITCHES/REGULATOR configurations are OK
REGULATOR 0 : Test PASSED
REGULATOR 0 : Test PASSED
REGULATOR 1 : Test PASSED
REGULATOR 1 : Test PASSED
REGULATOR 2 : Test PASSED
REGULATOR 2 : Test PASSED
REGULATOR 3 : Test PASSED
REGULATOR 3 : Test PASSED
REGULATOR 4 : Test PASSED
REGULATOR 5 : Test PASSED
REGULATOR 6 : Test PASSED
REGULATOR 7 : Test PASSED
REGULATOR 8 : Test PASSED
REGULATOR 8 : Test PASSED
REGULATOR 9 : Test PASSED
REGULATOR 9 : Test PASSED
REGULATOR 10 : Test PASSED
REGULATOR 10 : Test PASSED
REGULATOR 11 : Test PASSED
REGULATOR 11 : Test PASSED
REGULATOR 12 : Test PASSED
REGULATOR 12 : Test PASSED
REGULATOR 13 : Test PASSED
REGULATOR 13 : Test PASSED
REGULATOR 14 : Test PASSED
REGULATOR 14 : Test PASSED
REGULATOR 15 : Test PASSED
REGULATOR 15 : Test PASSED
REGULATOR 16 : Test PASSED
REGULATOR 16 : Test PASSED
REGULATOR 17 : Test PASSED
REGULATOR 19 : Test PASSED
REGULATOR 19 : Test PASSED
REGULATOR 20 : Test PASSED
REGULATOR 20 : Test PASSED
REGULATOR 21 : Test PASSED
REGULATOR 21 : Test PASSED
REGULATOR 22 : Test PASSED
REGULATOR 22 : Test PASSED
TEST CASE PASSED

End of Test FSL-UT-PMIC-Power-0020

40.9.3 PMIC Miscellaneous Feature Tests

Test ID: FSL-UT-PMIC-Power-0030

This test checks regulator API function of MC13783 power.

For the PMIC Switcher test, type this line:

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-9

./pmic_testapp_power.out -T 3

The following result appears for a successful test:
Testing if Miscellaneous features are OK
Testing if Configuration of System Reset Buttons are OK
Test PASSED
Testing if Auto Reset is configured
Test PASSED
Testing if ESIM control voltage values are configured\
Test PASSED
Testing if Regen polarity is configured
Test PASSED
Testing if battery detect enable is configured
Test PASSED
Testing if AUTO_VBKUP2 enable is configured
Test PASSED
Testing if Power Control Configurations are OK
Test PASSED
TEST CASE PASSED

End of Test FSL-UT-PMIC-Power-0030

40.10 PMIC Connectivity Tests
These test applications can only be run on i.MX27 PDK.

40.11 PMIC Battery Tests
The test cases in Section 40.11, “PMIC Battery Tests“” are available for i.MX27, platform.

Use the “pmic_testapp_battery” program to test this module.

Test ID: FSL-UT-PMIC-0010

This is the auto test. The auto test executes pmic_testapp_battery -T 0 through 5, which completes the tests
called for in sections 40.11.1 through 40.11.6.

Execute the auto test as follows:
./autorun-pmic.sh

The result should be "Exiting PASS"

End of Test FSL-UT-PMIC-0010

40.11.1 Charger Management Tests

This test checks charger management API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 0

If the result is correct you will see:
pmic_battery_testapp 0 INFO : Test main charger control function of PMIC Battery
pmic_battery_testapp 0 INFO : VOLTAGE = 0 CURRENT = 0
pmic_battery_testapp 0 INFO : VOLTAGE = 0 CURRENT = 1
.....

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-10 Freescale Semiconductor

pmic_battery_testapp 0 INFO : VOLTAGE = 7 CURRENT = 6
pmic_battery_testapp 0 INFO : VOLTAGE = 7 CURRENT = 7
pmic_battery_testapp 0 INFO : Test disable charger control function of PMIC Battery
driver
pmic_battery_testapp 0 INFO : Test COIN cell charger control function of PMIC Battery
pmic_battery_testapp 0 INFO : VOLTAGE = 0
....
pmic_battery_testapp 0 INFO : VOLTAGE = 3
pmic_battery_testapp 0 INFO : Test disable charger control function of PMIC Battery
driver
pmic_battery_testapp 0 INFO : Test TRICKLE charger control function of PMIC Battery
pmic_battery_testapp 0 INFO : CURRENT = 0
......
pmic_battery_testapp 0 INFO : CURRENT = 7
pmic_battery_testapp 0 INFO : Test disable charger control function of PMIC Battery
driver
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_0 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_0 test case working as expected

40.11.2 EOL Comparator Tests

This test checks charger management API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 1

If the result is correct you can see:
pmic_battery_testapp 0 INFO : Test enable eol function of PMIC Battery
pmic_battery_testapp 0 INFO : THRESHOLD = 0
pmic_battery_testapp 0 INFO : THRESHOLD = 1
pmic_battery_testapp 0 INFO : THRESHOLD = 2
pmic_battery_testapp 0 INFO : THRESHOLD = 3
pmic_battery_testapp 0 INFO : Test disable eol function of PMIC Battery
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_1 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_1 test case working as expected

40.11.3 LED Management Tests

This test checks LED management API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 2

If the result is correct you can see:
pmic_battery_testapp 0 INFO : Test led control function of PMIC Battery
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_2 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_2 test case working as expected

40.11.4 Reverse Supply and Unregulated Modes Tests

This test checks Reverse Supply and Unregulated Modes API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 3

If the result is correct you can see:
pmic_battery_testapp 0 INFO : Test set reverse supply function of PMIC Battery
pmic_battery_testapp 0 INFO : Test set reverse supply function of PMIC Battery
pmic_battery_testapp 0 INFO : Test unregulated function of PMIC Battery enable

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-11

pmic_battery_testapp 0 INFO : Test unregulated function of PMIC Battery disable
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_3 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_3 test case working as expected

40.11.5 Set Out Control Tests

This test checks Set Out Control API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 4

If the result is correct you can see:
pmic_battery_testapp 0 INFO : Test set out control function of PMIC Battery in
CONTROL_BPFET_LOW
pmic_battery_testapp 0 INFO : Test set out control function of PMIC Battery in
CONTROL_BPFET_HIGH
pmic_battery_testapp 0 INFO : Test set out control function of PMIC Battery in
CONTROL_HARDWARE
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_4 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_4 test case working as expected

40.11.6 Set Over Voltage Threshold

This test checks Set Over Voltage Threshold API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 5

If the result is correct you can see:
pmic_battery_testapp 0 INFO : Test set threshold function of PMIC Battery
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_5 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_5 test case working as expected

40.11.7 Get Charger Current

Test ID: FSL-UT-PMIC-Battery-0010

This test checks Get Charger Current API function of PMIC battery.
Type : ./pmic_testapp_battery.out -T 6

If the result is correct you can see:
charger current : 1023.
pmic_battery_testapp 0 INFO : Testing pmic_battery_testapp_6 test case is OK
pmic_battery_testapp 1 PASS : pmic_battery_testapp_6 test case working as expected

End of Test FSL-UT-PMIC-Battery-0010

40.12 Low-level Power Management Tests on i.MX27
Test ID: FSL-UT-PM-MX27-0010

Low-level PM driver is tested on the hardware. A test module called mxc_pm_test.c was written to test the
kernel space API provided by the low-level PM driver. This test module provides IOCTL namely,
MXCTEST_PM_LOWPOWER, which is used to test DOZE or SLEEP low-power modes.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-12 Freescale Semiconductor

To perform this test, JTAG must be disconnected from the hardware, and the kernel should be executed
using the command-line option, “jtag = off”, which is the default option.

The unit test application and the test module are called mxc_pm_test.out and mxc_pm_test.ko,
respectively, and can be found in the ROOTFS.

When executing low power mode tests, ensure that the keypad is connected, because only a key press will
wake up the core from SLEEP low power mode.

For low power modes, three options are available: WAIT, DOZE, and STOP. WAIT and DOZE internally
implement the DOZE mode of i.MX27 and STOP internally implement SLEEP mode of i.MX27.

For executing the test case, perform the follow steps:
insmod mxc_pm_test.ko
./mxc_pm_test.out
root@freescale /unit_tests/mxc_pm_test$./mxc_pm_test.out

========== TESTING Low-level PM DRIVER ==========

Note that some option #'s may be skipped depending on platform. So, enter the option number
corresponding to each option correctly.

Enter any of the following options:

1. Test Integer Scaling

2. Test PLL Scaling

3. Test Int/PLL Scaling (choice decided by PM driver)

4. Test Low Power Modes

5. Select CKOH output

9. Infinite loop cycling through operating points.

4

1. WAIT mode

2. DOZE mode

3. STOP mode

4. DSM mode

Enter a valid choice:

3

A key press will wake up the core for choice 3 (STOP mode).

End of Test FSL-UT-PM-MX27-0010

Table 40-1.

File Location

mxc_pm_test.ko /unit_tests/modules

mxc_pm_test.out /unit_tests/mxc_pm_test

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-13

40.13 LCDC Tests
The test cases in Section 40.13, “LCDC Tests“” are only available for i.MX27 platform.

Test ID: FSL-UT-LCDC-FB-0010

Framebuffer Tests:

• Saving an image from the framebuffer device:
cat /dev/fb0 > framebuffer.bin

• Redirecting an image directly to the background framebuffer device:
cat image.bin > /dev/fb0

End of Test FSL-UT-LCDC-FB-0010

40.14 CH7024 TV-Out Tests
The unit test application for the CH7024 TV-Out can be found in the ROOTFS/unit_tests/mxc_fb_test
directory. The name of the application is mxc_tvout_test.out.

The test cases in Section 40.14, “CH7024 TV-Out Tests“ are available for i.MX27 platforms.

Test ID : FSL-UT-CH7024-0010

This test case switches the display from the LCD panel to the TV-Out mode. The «-m» parameter allows
to choose either the TV-Out NTSC («n») mode or the TV-Out PAL («p») mode.

$ cd /unit_tests/mxc_fb_test/
$./mxc_tvout_test.out -m n
$./mxc_tvout_test.out -e y

Note that the frame buffer dimensions are changed from 480x640 to 640x480, hence the application needs
to be restarted to take the new resolution into account.

End of Test FSL-UT-CH7024-0010

Test ID : FSL-UT-CH7024-0020

This test case uses /cat/proc commands to display information about the CH7024 driver.
$ cat /proc/driver/ch7024/attribute
TV Format : NTSC
Brightness : 144
Hue : 64
Saturation : 64
Contrast : 64
Sharpness : 4

End of Test FSL-UT-CH7024-0020

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-14 Freescale Semiconductor

Test ID : FSL-UT-CH7024-0030

This test cases shows how to change the CH7024 driver settings using /cat/proc commands.
$ echo «Brightness=200» > /proc/driver/ch7024/attribute
$ echo «Contrast=100» > /proc/driver/ch7024/attribute
$ echo «Hue=100» > /proc/driver/ch7024/attribute
$ echo «Sharpness=2» > /proc/driver/ch7024/attribute
$ echo «Saturation=120» > /proc/driver/ch7024/attribute

You should see the image change accordingly.

End of Test FSL-UT-CH7024-030

Test ID : FSL-UT-CH7024-0040

This test case switches back the display from TV-Out to the LCD panel.
$./mxc_tvout_test.out -e n

End of Test FSL-UT-CH7024-0040

40.15 OmniVision Camera Tests
The test cases in Section 40.15, “OmniVision Camera Tests“ are available for i.MX27, i.MX31, i.MX32,
and i.MX35 platforms.

To test the camera, use the following command to install the kernel modules of the camera driver, if it was
not loaded automatically on boot up:

insmod ipu_prp_enc.ko
insmod ipu_prp_vf_sdc.ko
insmod ipu_prp_vf_sdc_bg.ko
insmod ipu_still.ko
insmod ov2640_camera.ko
insmod mxc_v4l2_capture.ko

Then run the following test cases to test it.

Test ID: FSL-UT-V4L2-capture-0010
mxc_v4l2_capture.out -w 352 -h 288 -r 0 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (QQVGA size) to the test.yuv file, and then set
the frame rate to 30 fps. For information about usage, see mxc_v4l2_capture.out -help.

End of Test FSL-UT-V4L2-capture-0010

Test ID: FSL-UT-V4L2-overlay-sdc-0010
mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r 0 -t
50 -d 0 -fg -fr 30

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-15

Direct preview the camera to SDC foreground, and set the frame rate to 30 fps. The window of interest is
640 X 480, with a starting offset of (0,0). The preview size is 160 X 160 with a starting offset of (20,20).
For more information, see mxc_v4l2_overlay.out -help .

End of Test FSL-UT-V4L2-overlay-sdc-0010

Test ID: FSL-UT-V4L2-overlay-sdc-0020
mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r 4 -t
50 -d 0 -fr 30

Direct preview (90 degree rotation) the camera to SDC background, and set the frame rate to 30 fps.

End of Test FSL-UT-V4L2-overlay-sdc-0020

40.16 i.MX27 VPU Tests
The unit test application for VPU can be found in the ROOTFS/unit_tests/mxc_vpu_test directory. The
name of the application is mxc_vpu_test.out.

Executing the application displays the following help:
./mxc_vpu_test.out
Usage: ./test -D "<decode options>" -E "<encode options>" -L "<loopback options>
" -C <config file> -H display this help

decode options
 -i <input file> Read input from file
 input file is mandatory for decode
 -o <output file> Write output to file
 If no output is specified, default is LCD
 -f <format> 0 - MPEG4, 1 - H.263, 2 - H.264, 3 - VC1
 If no format specified, default is 0 (MPEG4)
 -c <count> Number of frames to decode
 -d <deblocking> Enable deblock - 1. Not for MX27
 default deblock is disabled (0).
 -r <rotation angle> 0, 90, 180, 270
 default rotation is disabled (0)
 -m <mirror direction> 0, 1, 2, 3
 default no mirroring (0)

encode options
 -i <input file> Read input from file (yuv)
 If no input file specified, default is camera
 -o <output file> Write output to file
 If no output is specified, def files are created
 -f <format> 0 - MPEG4, 1 - H.263, 2 - H.264, 3 - VC1
 If no format specified, default is 0 (MPEG4)
 -c <count> Number of frames to encode
 -r <rotation angle> 0, 90, 180, 270
 default rotation is disabled (0)
 -m <mirror direction> 0, 1, 2, 3
 default no mirroring (0)
 -w <width> capture image width
 default is 176.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-16 Freescale Semiconductor

 -h <height>capture image height
 default is 144
 -b <bitrate in kbps>
 default is auto (0)
 -g <gop size>
 default is 0

loopback options
 -f <format> 0 - MPEG4, 1 - H.263, 2 - H.264, 3 - VC1
 If no format specified, default is 0 (MPEG4)
 -w <width> capture image width
 default is 176.
 -h <height>capture image height
 default is 144

config file - Use config file for specifying options

Some examples:

For H.264 decode
./mxc_vpu_test.out -D “-i /usr/vectors/h264/vga.264 -f 2”

For MPEG4 decode with rotation
./mxc_vpu_test.out -D “-i /usr/vectors/mp4/d1.mpeg4 -f 0 -r 90”

Using the config file
./mxc_vpu_test.out -C config_dec

For H.264 encode
./mxc_vpu_test.out -E “-o out.264 -w 240 -h 320 -f 2”

Doing a simultaneous encode and decode
./mxc_vpu_test.out -E “-o enc.264 -w 176 -h 144 -f 0” -D “-i /vectors/vga.264 -f 2”

Using the loopback test (The enocoded image from the camera is decoded immediately)
./mxc_vpu_test.out -L “-f 2 -w 240 -h 320”

40.17 ARC USB Tests

40.17.1 USB host

40.17.1.1 PTP

Test ID: FSL-UT-USB-ARC-HOST-PTP-0010

gPhoto2 could be used for PTP tests. You could download gPhoto2 software from http://www.gphoto.org/

gPhoto2 is a free, redistributable, ready to use set of digital camera software applications for Unix-like
systems, written by a whole team of dedicated volunteers around the world. It supports more than 900
cameras. gPhoto2 runs on a large range of UNIX-like operating system, including Linux, FreeBSD, and
NetBSD. gPhoto is provided by major Linux distributions like Debian GNU/Linux, Ubuntu, Gentoo,
Fedora, SUSE Linux, and Mandriva.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-17

End of Test FSL-UT-USB-ARC-HOST-PTP-0010

40.17.1.2 MSC

Test ID: FSL-UT-USB-ARC-HOST-MSC-0020

The steps are:

1. modprobe isp1504-arc

2. modprobe ehci-hcd

3. mkdir /mnt/udisk

4. Plug in a U-disk

5. cat /proc/partitions, for example:

major minor #blocks name

31 0 256 mtdblock0

8 0 127744 sdb

6. Find partitions with a major number of 8; in this example, the sdb is U-disk partition.
mount -t vfat /dev/sdb1 /mnt/udisk
OR
mount -t vfat /dev/sda1 /mnt/udisk

If this function is not used, unload the following drivers:
• umount /mnt/udisk

• rmmod ehci-hcd

• rmmod isp1504-arc

End of Test FSL-UT-USB-ARC-HOST-MSC-0020

40.17.1.3 HID

Material: USB mouse or USB keyboard.

Test ID: FSL-UT-USB-ARC-HOST-HID-0030

The steps are:
1. modprobe isp1504-arc

2. modprobe ehci-hcd

3. modprobe usbhid

Insert USB mouse or USB keyboard.
4. /evtest /dev/input/event2

If this function is not used, unload the following drivers.
• rmmod usbhid

• rmmod ehci-hcd

• rmmod isp1504-arc

Notes:

1. For HID build as module:

USB support --> USB Human Interface Device (full HID) support. Select it as a module.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-18 Freescale Semiconductor

CONFIG_USB_HID=m

USB support --> HID input layer support. Select as built in. CONFIG_USB_HIDINPUT = y.
modprobe isp1504-arc
modprobe ehci-hcd
insmod usbhid.ko

2. The evtest tool is a popular Linux open source tool, and can be located on the Internet. It is also
included in LTIB package “input-utils“.

End of Test FSL-UT-USB-ARC-HOST-HID-0030

40.17.2 Peripheral Mode

40.17.2.1 MSC

Test ID: FSL-UT-USB-ARC-Peripheral-MSC-0010

To use MMC/SD card as a U-Disk:

1. Plug a MMC/SD card into the board.

2. Boot the board.

3. Load MMC/SD modules:
insmod mx_sdhci
OR
insmod mxc_mmc

4. Load USB modules:
modprobe arcotg_udc

modprobe g_file_storage file="/dev/mmcblk0"

5. Connect the board to the PC with a USB cable.

6. The PC should recognize the U-disk.

If this is the first time it has been used, it will have to be formatted.

On a PC, enter Computer Management tools, storage-> Disk Management. Following the PC tutor,
get a raw disk, create a partition on it, and format it with FAT or FAT32.

7. Files can now be transferred between the PC and the board.

To use a partition of the hard disk as a U disk:

1. Get a “raw” hard disk, and connect it to the ATA interface of board.

2. dd if=/dev/zero of=/dev/hda bs=1M count=100

3. Reboot this board.
4. modprobe arcotg_udc

5. modprobe g_file_storage file="/dev/hda" if IDE interface is used.
or modprobe g_file_storage file="/dev/sda" if LibATA interface is used.

6. Use the PC to create a partition table, and format every partition.

On a PC using Windows, open "Computer Management", enter storage -> Disk Management

Enter Initialize and Convert Disk Wizard. Everything should be set to the default. Create a partition
table using the PC with Windows. After creating a partition table, input the "sync" command in the
Linux console.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-19

7. Reboot this board, and look at the partition table (fdisk -l)
root@10 ~$ fdisk -l

Disk /dev/hda: 20.0 GB, 20003880960 bytes

255 heads, 63 sectors/track, 2432 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
 Device Boot Start End Blocks Id System

/dev/hda1 1 127 1020096 b W95 FAT32

/dev/hda2 128 2431 18506880 f W95 Ext'd (LBA)

/dev/hda5 128 254 1020096 6 FAT16

/dev/hda6 255 636 3068383+ b W95 FAT32

The above steps need to be done only once.

After that, perform the following steps when using ATA as U-Disk:
1. modprobe arcotg_udc

2. Set the hard disk partition as a USB disk.
modprobe g_file_storage file="/dev/hda"

3. Files may now be transferred between the PC and the board.

4. After finishing the file transfer, it can mounted:
5. mount -t vfat /dev/hda6 /mnt/test

6. ls /mnt/test, everything here.

NOTE
• Do not use the Linux format command (for example, fdisk) to create a

hard disk partition table. PC Windows must be used to create it if one
partition is to be used as a U disk.

• Do not use this partition on the PC and the board at the same time.

• Use device “/dev/sda” instead of “/dev/hda” if the LibATA interface is
used.

• If this function is not used, unload the following drivers
umount /mnt/test

rmmod g_file_storage

rmmod arcotg_udc

End of Test FSL-UT-USB-ARC-Peripheral-MSC-0010

40.17.2.2 Ethernet

Test ID: FSL-UT-USB-ARC-Peripheral-ETH-0020

Steps:
1. modprobe arcotg_udc

2. modprobe g_ether

3. ifconfig usb0

4. ifconfig usb0 192.168.0.2 up

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-20 Freescale Semiconductor

When first using the USB Ethernet, and the PC OS is Windows XP, a driver must be installed. Use
the BSP file: linux\Documentation\usb\linux.inf to install the driver.

5. On the PC (if running Windows), find a device named Linux USB Ethernet/RNDIS Gadget

6. Configure it with a fixed IP.

7. Press the right button on the mouse, and click on TCP/IP ' Properties '

8. Use the following IP address and settings:

192.168.0.1

255.255.255.0

192.168.0.1

9. Save these settings.

10. From the PC, ping 192.168.0.2.

If this function is not used
ifconfig usb0 down

If this function is not used, unload the following drivers
• rmmod g_ether

• rmmod arcotg_udc

End of Test FSL-UT-USB-ARC-Peripheral-ETH-0020

40.17.2.3 ACM

Test ID: FSL-UT-USB-ARC-Gadget-ACM-0030

Testing the serial gadget requires that the windows ACM driver be installed. This requires gserial.inf and
usbser.sys. gserial.inf can be obtained from Documentation/usb/gadget_serial.txt. usbser.sys can be
obtained using:

Expand "C:\WINDOWS\Driver Cache\i386\driver.cab" -F:usbser.sys .

Copy gserial.inf and usbser.sys to a single directory.

1. modprobe arcotg_udc

ARC USBOTG Device Controller driver version 1 August 2005 init
ARC USBOTG h/w ID=0x5 revision=0x40

2. mknod /dev/ttygs c 127 0

3. modprobe g_serial use_acm=1

gs_bind: Gadget Serial v2.2 bound
arcotg_udc: gadget arc_udc bound to driver g_serial
gs_module_init: Gadget Serial v2.2 loaded

4. Connect the board to the PC with a USB cable.

gs_disconnect: Gadget Serial disconnected
gs_disconnect: Gadget Serial disconnected
gs_set_config: Gadget Serial configured, high speed CDC-ACM config

5. Windows will recognize the serial gadget. Choose to install a driver from a specific location and
select gserial.inf. This will install usbser.sys as the ACM driver in windows.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-21

6. On a Windows host configure a new HyperTerminal session to use the COM port assigned to
Gadget Serial. The "Port Settings" will be set automatically when HyperTerminal connects to the
gadget serial device, so you can leave them set to the default values--these settings mostly do not
matter.

7. echo “hi” > /dev/ttygs

String “hi” should be displayed in Gadget Serial terminal
8. cat /dev/ttygs

Anything you type on the Gadget Serial terminal should appear in serial port terminal window. For further
details refer to linux documentation for serial gadget in Documentation/usb/gadget_serial.txt.
End of Test FSL-UT-USB-ARC-Gadget-ACM-0030

40.18 ALSA Tests
Accessing or testing ALSA with Freescale BSP. The test cases in Section 40.18, “ALSA Tests“” are
available for i.MX27, i.MX31, and i.MX32 platforms.

40.18.1 ALSA Native Mode

Make sure the utilities aplay, arecord, and alsamixer are present in /usr/bin of ROOTFS.

libasound.so.2.0.0 exists in usr/bin and a softlink libasound.so.2 is present in the same directory
pointing to libasound.so.2.0.0

usr/share/alsa directory exists

It is populated with all configuration information.

All the above would be present in the ROOTFS and user need not do anything on his part.

40.18.2 Playback on Stereo DAC:

Test ID: FSL-UT-ALSA-0010
aplay –N –M file.wav

• -N indicates non-block mode for device open

• -M Indicates MMAP mode. (Playback works even without –M but performance is good with –M
especially for high sample rates)

• file.wav can be any mono or stereo file from 8k through 96k sample rate. Supported rates are 8000,
11025, 16000, 22050, 24000, 32000, 44100, 48000 and 96000.

Sound Files can be located in the test/mxc_ssi_test/sound_samples directory.

End of Test FSL-UT-ALSA-0010

40.18.3 Recording

Test ID: FSL-UT-ALSA-0030
arecord –r 8000 –c 1 –f S16_LE –N –M –d 20 file.wav

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-22 Freescale Semiconductor

• -r – sample rare can be either 8000 or 16000

• -c – 1 – Num of channels and has to be 1 as only mono recording is supported

• -f is the bit format. Has to be Signed 16 bit Little Endian

• -N and –M same as in aplay

• -d – duration of recording in seconds

• File.wav is the one that would be created with recorded voice

End of Test FSL-UT-ALSA-0030

40.18.4 Mixer

Test ID: FSL-UT-ALSA-0040

“alsamixer –V all” command displays all the controls on the console. (It uses an ncurses library that
needs to be present). The GUI window looks as follows:

Use TAB to switch among playback, capture, and All menu. Use up/down arrows to increase or decrease
values and left/right arrows to navigate among controls.

Starting from left, navigation is

• Master Playback volume ranges from 0 to 100 and is internally mapped to PMIC dB gains.

• Master Capture volume (displayed as Master C). This ranges from 0 through 100. (Capture only
control)

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-23

• Master B or master playback balance. This ranges from 0 through 100. A value of 50 indicates both
L and R equal. 0 attenuates one channel to the maximum and 100 attenuates the other. (Playback
only control)

• Master I or master input device selection. This control ranges from 0 through 7 (three bits with LSB
representing handset Mic, bit 1 representing headset Mic and bit 2 representing Line IN). A value
of 0 in the bit position resets the corresponding device and 1 set the same. For example, a value of
5 that is, 101 in binary sets handset MIC and Line IN. It is scaled to 0 to 100 and displayed but
there are exactly 7 steps (corresponding to 000 through 111 in binary) (Capture only control)

• Master M or master mono adder configuration (Playback only control). This ranges in value from
0 through 3 (Again scaled to 0 to 100 range with 3 steps). This represents L and R separate, L and
R added, R 180 degree phase shifted with respect to L and both added and R phase shifted with
respect to L.

• Master O or master output device selection. This control ranges from 0 through 15 (four bits with
LSB representing earphone, bit 1 representing hands free, bit 2 representing Headset and bit 3
representing Lineout). A value of 0 in the bit position resets the corresponding device and 1 set the
same. For example, a value of 5 that is, 0101 in binary sets headset and earphone. It is scaled to 0
to 100 and displayed but there are exactly 15 steps (corresponding to 000 through 1111 in binary)

• A value of 15 or 1111 sets all output devices and 0 resets everything.(Playback only control).

End of Test FSL-UT-ALSA-0040

40.18.4.1 Testing Audio Record Capabilities

The goal is to test recording sound from Microphone and Line Inputs, both Mono and Stereo.

The recording capability uses external memory, not IRAM, for the audio record buffers. However,
recording can work with or without the audio playback buffers located in IRAM.

40.18.4.1.1 Stereo Record Testing

1. Set the record level for Microphone

a) alsamixer -V all

b) Select Item: Capture and increase to at least 75

c) Select Item: Left Input Mixer +20db and hit M to toggle it On

d) Select Item: Right Input Mixer +20db and hit M to toggle it On

e) Hit ESC to exit

2. Recording sound from Microphone. Speak into MIC while running the following:

a) arecord -d 5 -c 2 -f S16_LE -r 8000 /tmp/mic8k.wav

b) arecord -d 5 -c 2 -f S16_LE -r 16000 /tmp/mic16k.wav

c) arecord -d 5 -c 2 -f S16_LE -r 24000 /tmp/mic24k.wav

d) arecord -d 5 -c 2 -f S16_LE -r 32000 /tmp/mic32k.wav

e) arecord -d 5 -c 2 -f S16_LE -r 48000 /tmp/mic48k.wav

f) arecord -d 5 -c 2 -f S16_LE -r 11025 /tmp/mic11k.wav

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-24 Freescale Semiconductor

g) arecord -d 5 -c 2 -f S16_LE -r 22050 /tmp/mic22k.wav

h) arecord -d 5 -c 2 -f S16_LE -r 44100 /tmp/mic44k.wav

i) arecord -d 5 -c 2 -f S16_LE -r 96000 /tmp/mic96k.wav

j) arecord -d 5 -c 2 -f S16_LE -r 64000 /tmp/mic64k.wav

3. Set the record level for Line Inputs

a) alsamixer -V all

b) Select Item: Capture and increase to 75

c) Select Item: Left Capture Mixer AUX Capture and increase to 75

d) Select Item: Right Capture Mixer AUX Capture and increase to 75

e) Hit ESC to exit

4. Recording sound from line inputs. Drive sound into stereo line inputs to codec, while executing the
following commands. Ensure that the signal level at the codec inputs is within the specifications of
the codec.

a) arecord -d 5 -c 2 -f S16_LE -r 8000 /tmp/lin8k.wav

b) arecord -d 5 -c 2 -f S16_LE -r 16000 /tmp/lin16k.wav

c) arecord -d 5 -c 2 -f S16_LE -r 24000 /tmp/lin24k.wav

d) arecord -d 5 -c 2 -f S16_LE -r 32000 /tmp/lin32k.wav

e) arecord -d 5 -c 2 -f S16_LE -r 48000 /tmp/lin48k.wav

f) arecord -d 5 -c 2 -f S16_LE -r 11025 /tmp/lin11k.wav

g) arecord -d 5 -c 2 -f S16_LE -r 22050 /tmp/lin22k.wav

h) arecord -d 5 -c 2 -f S16_LE -r 44100 /tmp/lin44k.wav

i) arecord -d 5 -c 2 -f S16_LE -r 96000 /tmp/lin96k.wav

j) arecord -d 5 -c 2 -f S16_LE -r 64000 /tmp/lin64k.wav

5. Playback the files using aplay filename.wav

40.18.4.1.2 Mono Record Testing

1. Set the record level for Microphone and mute the Left Headphone

a) alsamixer -V all

b) Select Item: Capture and increase to at least 75

c) Select Item: Left Input Mixer +20db and hit M to toggle it On

d) Select Item: Right Input Mixer +20db and hit M to toggle it On

e) Select Item: Left Playback Mixer Playback Sw and hit M to toggle it Off to mute Left DAC
input to the Left Playback Mixer.

f) Select Item: Left Playback Mixer Right Playback Sw and hit M to toggle it On to unmute the
Right DAC input to Left Playback Mixer.

g) Hit ESC to exit

2. Recording sound from Microphone. Speak into MIC while running the following:

a) arecord -d 5 -c 1 -f S16_LE -r 8000 /tmp/mic8kM.wav

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-25

b) arecord -d 5 -c 1 -f S16_LE -r 16000 /tmp/mic16kM.wav

c) arecord -d 5 -c 1 -f S16_LE -r 24000 /tmp/mic24kM.wav

d) arecord -d 5 -c 1 -f S16_LE -r 32000 /tmp/mic32kM.wav

e) arecord -d 5 -c 1 -f S16_LE -r 48000 /tmp/mic48kM.wav

f) arecord -d 5 -c 1 -f S16_LE -r 11025 /tmp/mic11kM.wav

g) arecord -d 5 -c 1 -f S16_LE -r 22050 /tmp/mic22kM.wav

h) arecord -d 5 -c 1 -f S16_LE -r 44100 /tmp/mic44kM.wav

i) arecord -d 5 -c 1 -f S16_LE -r 96000 /tmp/mic96kM.wav

j) arecord -d 5 -c 1 -f S16_LE -r 64000 /tmp/mic64kM.wav

3. Set the record level for Line Inputs and mute the Left Headphone

a) alsamixer -V all

b) Select Item: Capture and increase to 75

c) Select Item: Left Capture Mixer AUX Capture and increase to 75

d) Select Item: Right Capture Mixer AUX Capture and increase to 75

e) Select Item: Left Playback Mixer Playback Sw and hit M to toggle it Off to mute Left DAC
input to the Left Playback Mixer.

f) Select Item: Left Playback Mixer Right Playback Sw and hit M to toggle it On to unmute the
Right DAC input to Left Playback Mixer.

g) Hit ESC to exit

4. Recording sound from line inputs. Drive sound into right line input to codec, while executing the
following commands. Ensure that the signal level at the codec inputs is within the specifications of
the codec.

a) arecord -d 5 -c 1 -f S16_LE -r 8000 /tmp/lin8kM.wav

b) arecord -d 5 -c 1 -f S16_LE -r 16000 /tmp/lin16kM.wav

c) arecord -d 5 -c 1 -f S16_LE -r 24000 /tmp/lin24kM.wav

d) arecord -d 5 -c 1 -f S16_LE -r 32000 /tmp/lin32kM.wav

e) arecord -d 5 -c 1 -f S16_LE -r 48000 /tmp/lin48kM.wav

f) arecord -d 5 -c 1 -f S16_LE -r 11025 /tmp/lin11kM.wav

g) arecord -d 5 -c 1 -f S16_LE -r 22050 /tmp/lin22kM.wav

h) arecord -d 5 -c 1 -f S16_LE -r 44100 /tmp/lin44kM.wav

i) arecord -d 5 -c 1 -f S16_LE -r 96000 /tmp/lin96kM.wav

j) arecord -d 5 -c 1 -f S16_LE -r 64000 /tmp/lin64kM.wav

5. Playback the files using aplay filename.wav

6. To restore ability to hear the left channel headphone for stereo testing:

a) alsamixer -V all

b) Select Item: Left Playback Mixer Playback Sw and hit M to toggle it On to unmute Left DAC
input to the Left Playback Mixer.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-26 Freescale Semiconductor

c) Select Item: Left Playback Mixer Right Playback Sw and hit M to toggle it Off to mute the
Right DAC input to the Left Playback Mixer.

d) Hit ESC to exit

40.18.5 Audio Loop Back
Test ID: FSL-UT-ALSA-0050

arecord -c 1 -f S16_LE -r 8000/16000 | aplay -D hw:0,1

This command configures Voice Codec for recording and loops back the recorded samples onto the Voice
Codec for playback. The sample rate can be either 8000 or 16000.

End of Test FSL-UT-ALSA-0050

40.18.6 OSS Emulation Mode

40.18.6.1 Playback on ST-DAC

Test ID: FSL-UT-OSS-Emulation-0010
/dev/sound/dsp file represents ST-DAC playback.

Use check_audio.out with the command (in /unit_tests/mxc_sound_test)
./check_audio.out 1 file.wav

1 as the first argument opens ST-DAC

End of Test FSL-UT-OSS-Emulation-0010

40.19 AUDMUX Test
ALSA test applications either in the native mode or in the OSS emulation mode should presently suffice
to verify the AUDMUX driver APIs.

40.20 SSI Test
ALSA test applications either in the native mode or in the OSS emulation mode should presently suffice
to verify the SSI driver APIs.

Note: The AUDIO test tests the SSI driver.

40.21 NAND Tests
Test ID: FSL-UT-NAND-MTD-0010

After the system boots up with the NAND MTD driver, it may be tested as follows:
JFFS2:

1. Find out the available partition(s) in the running Linux system. The above partition information
comprises both NOR and NAND device. Typically partition on NAND device starts with the name
“IPL-SPL”, so user can opt to test partition after this. For example:

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-27

root@freescale ~$ cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "RedBoot"
mtd1: 01900000 00020000 "rootfs"
mtd2: 0001f000 00008000 "FIS directory"
mtd3: 00001000 00008000 "RedBoot config"
mtd4: 00020000 00004000 "IPL-SPL"
mtd5: 00400000 00004000 "nand.kernel"
mtd6: 01600000 00004000 "nand.rootfs"
mtd7: 005e0000 00004000 "nand.userfs"

2. Erase one of the NAND Flash partitions using flash_eraseall.(X-> Partition number)
$ flash_eraseall /dev/mtd/X

3. Create a raw file containing a jffs2 filesystem
 $ mkfs.jffs2 -n -d /etc -o etc.jffs2 -e <erase_size> -s <page_size>

4. Write the Jffs2 image on to the NAND raw device
$ nandwrite -p /dev/mtd/X etc.jffs2

5. Mount the NAND partition and read the files
$ mkdir -p /tmp/mtdX
$ mount -t jffs2 /dev/mtdblockX /tmp/mtdX
$ cd /tmp/mtdX
$ find . # list all the files
$ find . -type f -exec cat {} \; >/dev/null # read all the files into /dev/null
$#other file operations like copy from/to a NAND partition, remove..etc

In addition this module is tested by booting Linux with jffs2 root filesystem. In addition, for read/write
test, mount a JFFS2 file system on a valid MTD partition and then do some file operations, such as copy
and remove. Those operations should be successful. The files copied into the JFFS2 mount directory exist
even after shutting down and restarting the platform.

NOTE
For booting Linux with jffs2 as the root filesystem the command line
argument should be changed. If the jffs2 root filesystem is present on
mtdblock 2 then the following command line should be used

exec -c "noinitrd console=ttymxc0,115200 root=/dev/mtdblock2 rw rootfstype=jffs2 ip=none".
End of Test FSL-UT-NAND-MTD-0010

40.22 Keypad Tests

To Run the Keypad Test Code:

After enabling the keypad test through “make menuconfig” and then doing “make” as described in
Section 40.1, “Enabling the Unit Tests“, the keypad test script is located in
<ltib_dir>/rpm/BUILD/misc/test/mxc_keyb_test directory. It can be downloaded using the methods
described in Section 41.1, “Downloading a File“”.

Assuming that the test application is “mxc_keyb_test.out”, the following are the steps to run it after being
downloaded onto the platform:

1. # chmod 755 *

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-28 Freescale Semiconductor

2. # ./mxc_keyb_test.out 2 2 8

3. When it says "Please press keys on the keypad:", press any 5 keys on the keypad within 5
seconds.

You should see:
Key Press is LEFT
Key Release is LEFT

40.23 FEC Tests
The test cases in Section 40.23, “FEC Tests“ are available for i.MX27 and i.MX35 platforms.

Test ID: FSL-UT-FEC-0010

The following items are unit test cases required to test for proper functionality of the Ethernet driver for
the Linux kernel. Following tests can be carried out using test application that is, client server programs to
send or receive test packet.

• ping OK

• ftp OK (busybox 1.01)

• dhcp OK

• telnet OK

• telnetd OK

• nfs OK

For more information about the material covered in this chapter, see related Ethernet Transceiver data
sheet. Also refer the <ltib_dir>/rpm/BUILD/linux_2.6.22/drivers/net/fec.c source file.

End of Test FSL-UT-FEC-0010

40.24 SMSC LAN9217 Ethernet Tests
Test ID: FSL-UT-ETHERNET-0010

The following items are unit test cases required to test for proper functionality of Ethernet driver for the
Linux kernel. Following tests can be carried out using test application; that is, client server programs to
send or receive test packet.

• ping OK

• ftp OK (busybox 1.01)

• dhcp OK

• telnet OK

• telnetd OK
• nfs OK

For more information about the material covered in this chapter, see SMSC LAN9217 – Ethernet
Controller Data Sheet.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-29

End of Test FSL-UT-ETHERNET-0010

40.25 I2C Test
Use the I2C device tests, such as “Camera” to verify the functionality of the MXC I2C driver.

40.26 CSPI Tests
The source code for the unit test applications (only for loop back mode) is available at the following
location:

<ltib_dir>/rpm/BUILD/misc/test/mxc_spi_test/

The built unit test application for SPI tests is
/unit_tests/mxc_spi_test1.out

The built unit test modules for SPI test is the following:
/unit_tests/modules/mxc_spi_testmod.ko

This test send up to 32 bytes to a specific SPI device. SPI writes data received data from the user into Tx
FIFO and waits for the data in the Rx FIFO. Once the data is ready in the Rx FIFO, it is read and sent to
user. Test is considered successful if data received matches with the data sent.

NOTE
Because this test is intended to test the SPI device, it is always configured
in loop back mode, since it is dangerous to send random data to SPI slave
devices. This requires the kernel image to be rebuilt with
CONFIG_SPI_MXC_TEST_LOOPBACK (Refer Section 29.5, “Configuration“”)
enabled in the menuconfig. Also the test module mxc_spi_testmod.ko must
be inserted before testing.

To run the SPI test:
Options: ./mxc_spi_test1.out <spi_no> <nb_bytes> <value>
<spi_no> - CSPI Module number in [0, 1, 2]
<nb_bytes> - No. of bytes: [1-32]
<value> - Actual value to be sent

Example:
./mxc_spi_test/mxc_spi_test1.out 0 9 FreeScale
Execute data transfer test: 0 9 FreeScale
Data sent : FreeScale
Data received : FreeScale
Test PASSED.

40.27 MMC/SD/SDIO Test
Before performing tests, load the module below:

For SDHC, load these modules if CONFIG_MMC_MXC is configured as “M” before tests:
insmod mxc_mmc

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-30 Freescale Semiconductor

Test ID: FSL-UT-MMC-0010

From the /unit_tests/ directory execute the auto test.
./autorun-mmc_sh

The result should be "Exiting PASS".

End of Test FSL-UT_MMC-0010

• Test for MMC card insertion event detection.

• Test for MMC card removal event detection.

Block Read/Write Test:

'dd' is the command for reading/writing blocks. Note this command can corrupt the partitions and
filesystem on MMC card.

Examples:

Test ID: FSL-UT-MMC-0020

To clear the first 5 KB of the card:
$dd if=/dev/zero of=/dev/mmcblk0 bs=1024 count=5

The response should be

• 5+0 records in

• 5+0 records out

End of Test FSL-UT-MMC-0020

Test ID: FSL-UT-MMC-0030

To write a file content to the card enter the following text, substituting the name of the file to be written
for file_name.

$dd if=file_name of=/dev/mmcblk0

End of Test FSL-UT-MMC-0030

Test ID: FSL-UT-MMC-0040

To read 1KB of data from the card, enter the following text, substituting the name of the file to be written
for output_file.

$dd if=/dev/mmcblk0 of=output_file bs=1024 count=1

End of Test FSL-UT-MMC-0040

Test ID: FSL-UT-MMC-0050

File System Test:

For the filesystem tests select appropriate filesystem types and partition types when configuring the kernel.

Insert an MMC or SD card. For an SD card, the following type of information is displayed:

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-31

mmcblk0: mmc0:cffc SD512 495488KiB
mmcblk0: p1

For an MMC card, the following type of information will be displayed:
mmcblk0: mmc:001 000000 1003520KiB
mmcblk0:p1

The following command can be used to find out the capacities of the card.

If the card is pre-formatted, this command shows the size of the card, partitions and filesystem type:
$fdisk -l /dev/mmcblk0

If the card is not formatted:

— Create the partitions on the card using the following command:
$fdisk /dev/mmcblk0

— After the partition the created files resemble the following:
/dev/mmcblk0p[1-4]

End of Test FSL-UT-MMC-0050

Test ID: FSL-UT-MMC-0060

Format the card using mkfs.minix, mkfs.ext2 or mkfs.ext3 depending on the filesystem:
$mkfs.ext2 /dev/mmcblk0p1
$mkfs.ext3 /dev/mmcblk0p1
$mkfs.minix /dev/mmcblk0p1 no_blocks

End of Test FSL-UT-MMC-0060

Test ID: FSL-UT-MMC-0070

Mount the file system
$mkdir /mnt/mmc_part1
$mount -t ext2 /dev/mmcblk0p1 /mnt/mmc_part1 or
$mount -t ext3 /dev/mmcblk0p1 /mnt/mmc_part1

After mounting, file/directory operations can be performed in /mnt/mmc_part1

Unmount the filesystem before ejecting the card (or at least use “sync” command).
$umount /mnt/mmc_part1

End of Test FSL-UT-MMC-0070

40.28 MXC UART Tests

40.28.1 Basic UART Tests

NOTE
Select from the available test cases as needed for your IC and hardware
design.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-32 Freescale Semiconductor

The first four steps are the unit tests performed on development hardware boards. Subsequent steps are for
IrDA unit test.

1. Redirect the output of a shell command to another UART. Ensure both ends are using the same
baud rate and other port settings.

Test ID: FSL-UT-UART-MXC-0010
stty -F /dev/ttymxc1 115200 -- set the baud rate of UART 2 to 115200
ls >/dev/ttymxc1 -- the output should be printed on UART2’s window

End of Test FSL-UT-UART-MXC-0010

2. Start a shell in the background and redirect its standard input, standard output and standard error
to a different UART port

Test ID: FSL-UT-UART-MXC-0020
sh </dev/ttymxc2 >/dev/ttymxc2 2>/dev/ttymxc2

End of Test FSL-UT-UART-MXC-0020

3. A user space test application is written to test the loop-back IOCTL.

Test ID: FSL-UT-UART-MXC-0040
#test all internal MXC UART Ports (ttymxc/0..ttymxc/XX)
mxc_uart_test.out /dev/ttymxcXX

FSL-UT-UART-MXC-0040

4. Type the following command on the Linux console

Test ID: FSL-UT-UART-MXC-0030
cat /dev/ttymxc0

On the board, connect UART 1 to a serial port on your PC. Open a Hyperterminal window that is
connected to this serial port. Type characters in the Hyperterminal window. These characters
should be printed by the cat application in the console window. Text files should also be transferred
(Transfer->Send Text File). The contents of this file should be received by the cat received through
UART 1. Note that this test will not pass for serial ports which have the UART DMA
Enable/Disable (UARTx_DMA_ENABLE) configuration option set to 1 as the port will be operating
in a raw mode where the character input is not being parsed. This is expected behavior.

End of Test FSL-UT-UART-MXC-0030

5. Test Serial Infrared on the boards.

This test example requires two boards. Before performing the IrDA, align the IrPorts facing each
other, about an inch apart.

The following steps tests Serial IrDA using IrLAN on the board:

Test ID: FSL-UT-FIRI-0020
On one board:
 stty -F /dev/ttymxc0 -echo
 modprobe irtty-sir
 insmod /lib/modules/2.6.22-pdk27_rel1/kernel/net/irda/irlan/irlan.ko access=2
 ifconfig irlan0 10.0.0.1 netmask 255.255.255.0 broadcast 10.0.0.255
 irattach /dev/ttymxc0 -s
 ping 10.0.0.2

On another board:
 stty -F /dev/ttymxc0 -echo
 modprobe irtty-sir

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-33

 insmod /lib/modules/2.6.22-pdk27_rel1/kernel/net/irda/irlan/irlan.ko access=2
 ifconfig irlan0 10.0.0.2 netmask 255.255.255.0 broadcast 10.0.0.255
 irattach /dev/ttymxc0 -s
 telnet 10.0.0.1

End of Test FSL-UT-FIRI-0020

40.28.2 Early UART Support Tests

This testing is done by inspection. After booting the kernel with early UART command line, the kernel
boot log messages should follow immediately.

Test Case ID: FSL-UT-EUART-MXC-0010

Use following command line examples for respective boards to test early UART functionality:

• i.MX27:
exec -c "noinitrd console=mxcuart,0x1000a000,115200n8 root=/dev/nfs
nfsroot=10.232.184.242:<NFS root file system directory> rw init=/linuxrc ip=dhcp"

End of Test Case ID: FSL-UT-EUART-MXC-0010

40.29 FM Driver Tests

The test cases in Section 40.29, “FM Driver Tests“ are available for i.MX27 and i.MX31 3-Stack
platforms.

To enable audio output, run amixer command to open loopback mixer:
$ amixer cset name='Loopback Line-in' 1

If FM driver is configured as “M”, load module before tests:
$ insmod mxc_si4702.ko

Test ID: FSL-UT-FM-0010

This test starts the FM chip.

Reset FM chip by type below command in the shell
$ echo reset > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

Type the following for FM to start work:
$ echo start > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

End of Test FSL_UT_FM_0010

Test ID: FSL-UT-FM-0020

This test auto searches the stations:

For seek channels, enter command:
$ echo seek > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-34 Freescale Semiconductor

End of Test FSL_UT_FM_0020

Test ID: FSL-UT-FM-0030

This test searches for a specific station:

Enter the station number, such as 101, 103, 105, 107, currently only these channel are valid in the
command line:

$ echo 101 > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

End of Test FSL_UT_FM_0030

Test ID: FSL-UT-FM-0040

This test adjusts the volume.

To adjust the volume, enter vu/vd as follows:
$ echo vu > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

End of Test FSL_UT_FM_0040

Test ID: FSL-UT-FM-0050

This test power off the fm chip.

Enter command:
$ echo halt > /sys/class/i2c-adapter/i2c-0/0-0010/si4702_ctl

End of Test FSL_UT_FM_0050

40.30 MMA7450L Accelerometer Driver Tests

The usage of this driver is heavily based on how the algorithm is implemented, so the MMA7450L driver
unit test can only test part of this driver’s functions using the command line in sysfs. The tests in
Section 40.30, “MMA7450L Accelerometer Driver Tests“ are available for i.MX27 and i.MX31 3-Stack
platforms.

1. Install module mxc_mma7450.ko
$ modprobe mxc_mma7450

2. Go to directory /sys/class/i2c-adapter/i2c-0/0-001d
$ cd /sys/class/i2c-adapter/i2c-0/0-001d

3. Check the register value by type:
$ cat mma7450_ctl

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-35

4. Set mma7450 measurement mode by type:
$ echo setmod 1 > mma7450_ctl

5. Repeat step 3 to check the register value update.

40.31 GPS Tests

Test ID: FSL-UT-GPS-0010

Note that the tests performed in this sections exercise the GPS solution as a system; that is, the hardware
and software get tested together. GPS tests are available for i.MX27 Stack platform.

Before test, use command “lsmod” to make sure the GPS gpio control driver module:gps_gpiodrv has been
installed, if not, add it on command line:

$ modprobe gps_gpiodrv

To make a device node on the command line:
$ mknod /dev/agpsgpio c 100 1

Enable log file to see GPS messages:
$ cd /usr/local/bin/
$ vi glconfig.xml

Change cLogEnabled="false" to cLogEnabled="true".

Set the proper uart port for specific platform in glconfig.xml:
use /dev/ttymxc1

Run GPS process:
$./glgps_freescaleLinux glconfig.xml normal&

Exit GPS process:
$ echo `$pglirm,quit' >/var/run/glgpsctrl

There will be a log file generated in ./log/ with name like gl-xx.txt

40.32 RTC Tests
There is a user space test program for RTC that can be located in this release in the imx-test-2.3.2.tar.gz
file. The source file is rtctest.c, which is under the <ltib_dir>/rpm/BUILD/misc/test/mxc_rtc directory
after un-taring the tarball. This file was taken from rtc.txt under the kernel Documentation directory and
modified to run on the i.MX platforms.

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-36 Freescale Semiconductor

A file called “rtctest.out” is produced after a successful build.

Test ID: FSL-UT-RTC-0010

This test is exactly the same as executing the auto run test. To run the test, download it to the target and
type /unit_tests/rtctest.out --full. You should see the following output:

RTC Driver Test Example.

Counting 5 update (1/sec) interrupts from reading /dev/rtc0: 1 2 3 4 5
Again, from using select(2) on /dev/rtc0: 1 2 3 4 5

Current RTC date/time is 1-1-1970, 00:12:54.
Alarm time now set to 00:12:59.
Waiting 5 seconds for alarm... okay. Alarm rang.

Periodic IRQ rate was 64Hz.
Counting 20 interrupts at:
2Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
16Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
32Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
64Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 *** Test complete ***

Typing cat /proc/interrupts shows 131 more events on IRQ 25.

End of Test FSL-UT-RTC-0010

40.33 Watchdog Tests
There is a user space test program for WDOG that can be located in this release in the imx-test-2.3.2.tar.gz
file. The source file is wdt_driver_test.c which is located under the
<ltib_dir>/rpm/BUILD/misc/test/wdog/ directory after you untar the imx-test-2.3.2 tarball. This file is
taken from watchdog.txt under the kernel Documentation/watchdog directory with slight modifications to
run on the i.MX platforms.

There should be a file called wdt_driver_test.out after a successful build. To run the test, download it to
the target and type ./wdt_driver_test.out. The following text will appear on the terminal:

Usage: wdt_driver_test <timeout> <sleep> <test>
timeout: value in seconds to cause wdt timeout/reset
sleep: value in seconds to service the wdt
test: 0 - Service wdt with ioctl(), 1 - with write()

To test the WDOG timeout feature with the IOCTL, do the following:

Test ID: FSL-UT-WDOG-0070
./wdt_driver_test.out 1 2 0 &

This should generate a reset after 3 seconds (a 1 second time-out and a 2 second sleep).

End of Test FSL-UT-WDOG-0070

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

Freescale Semiconductor 40-37

Test ID: FSL-UT-WDOG-0080
./wdt_driver_test.out 2 1 0 &

The system should keep running without being reset. This test requires the kernel to be executed with the
“jtag=on” on some platforms.

End of Test FSL-UT-WDOG-0080

Test ID: FSL-UT-WDOG-0090

To test the WDOG module, the following test programs must be built:
mxc_wdog_tm.ko
wdog_test.out.

A test module mxc_wdog_tm.c was written to test the kernel space API provided by the watchdog module.
This test module provides the IOCTL MXCTEST_WDOG to user space applications. Download the module
mxc_wdog_tm.ko to the platform and install it using the following command:

insmod mxc_wdog_tm.ko

This test module is registered in the /dev directory as mxc_wdog_tm.

A user space application called wdog_test.c was written to use the watchdog test module IOCTLs to
simulate various watchdog time-out scenarios. Build this test program and then download the binary for
this test (wdog_test.out) to the platform and run from the shell prompt. Type ./wdog_test.out from the
shell prompt and follow the help messages to run different tests.

End of Test FSL-UT-WDOG-0090

Unit Tests

i.MX27 Linux PDK 1.0 Reference Manual, Rev. 1.0

40-38 Freescale Semiconductor

	Contents
	Figures
	Tables
	About This Book
	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations
	Suggested Reading

	Chapter 1 Introduction
	1.1 Software Base
	1.2 Features

	Chapter 2 Running Linux on the Hardware Boards
	2.1 Running the i.MX Linux BSP
	2.1.1 Preparation - Board Setup
	2.1.2 Terminal Console
	2.1.3 Programming RedBoot into Flash
	2.1.4 Running Linux
	2.1.5 Booting Linux

	2.2 Exchanging Files with the i.MX Linux BSP
	2.2.1 Sending Files to the i.MX Linux BSP
	2.2.2 Sending Files to the Desktop PC
	2.2.3 Exchanging Files with the Desktop PC using Ethernet

	2.3 Building the i.MX Linux BSP from Source
	2.3.1 The GNU Tool Chain
	2.3.2 Installing the BSP
	2.3.3 Kernel Modules on the Target Platform

	Chapter 3 Architecture
	3.1 Linux BSP Block Diagram
	3.2 Kernel
	3.2.1 Configuration
	3.2.2 Machine Specific Layer (MSL)

	3.3 Drivers
	3.3.1 Character Device Drivers
	3.3.2 Sound Driver
	3.3.3 Memory Technology Device (MTD) Drivers
	3.3.4 Networking Drivers
	3.3.5 Disk Drivers
	3.3.6 Security Drivers
	3.3.7 General Drivers

	3.4 Boot Loaders
	3.4.1 Functions of Boot Loaders
	3.4.2 RedBoot

	3.5 Graphical User Interface
	3.5.1 Qt/Embedded

	3.6 Tools
	3.7 Root File System
	3.7.1 Utilities
	3.7.2 Contents

	3.8 Source of Linux BSP Components
	3.9 Linux BSP APIs

	Chapter 4 Machine Specific Layer (MSL)
	4.1 Interrupts
	4.1.1 Interrupt Hardware Operation
	4.1.2 Interrupt Software Operation
	4.1.3 Interrupt Requirements
	4.1.4 Interrupt Source Code Structure
	4.1.5 Interrupt Programming Interface

	4.2 Timer
	4.2.1 Timer Hardware Operation
	4.2.2 Timer Software Operation
	4.2.3 Timer Requirements
	4.2.4 Timer Source Code Structure
	4.2.5 Timer Programming Interface

	4.3 Memory Map
	4.3.1 Memory Map Hardware Operation
	4.3.2 Memory Map Software Operation
	4.3.3 Memory Map Requirements
	4.3.4 Memory Map Source Code Structure
	4.3.5 Memory Map Programming Interface

	4.4 IOMUX
	4.4.1 IOMUX Hardware Operation
	4.4.2 IOMUX Software Operation
	4.4.3 IOMUX Requirements
	4.4.4 IOMUX Source Code Structure
	4.4.5 IOMUX Programming Interface
	4.4.6 IOMUX Control through GPIO Module

	4.5 General Purpose Input/Output (GPIO)
	4.5.1 GPIO Software Operation
	4.5.2 GPIO Requirements
	4.5.3 GPIO Source Code Structure
	4.5.4 GPIO Programming Interface

	4.6 EDIO
	4.6.1 EDIO Hardware Operation
	4.6.2 EDIO Software Operation
	4.6.3 EDIO Requirements
	4.6.4 EDIO Source Code Structure
	4.6.5 EDIO Programming Interface

	4.7 SPBA Bus Arbiter
	4.7.1 SPBA Hardware Operation
	4.7.2 SPBA Software Operation
	4.7.3 SPBA Requirements
	4.7.4 SPBA Source Code Structure
	4.7.5 SPBA Programming Interface

	Chapter 5 Direct Memory Access Controller (DMAC) API
	5.1 Overview
	5.1.1 Hardware Operation
	5.1.2 Software Operation

	5.2 Requirements
	5.3 Source Code Structure
	5.4 Programming Interface

	Chapter 6 PMIC Protocol Driver
	6.1 Key PMIC Features and Capabilities
	6.1.1 PMIC Register Access and Arbitration
	6.1.2 Interrupt Notification

	6.2 Driver Requirements
	6.2.1 Control Services
	6.2.2 Event Notification Services
	6.2.3 Miscellaneous Requirements

	6.3 Driver Software Operation
	6.4 Driver Architecture
	6.5 Driver Implementation Details
	6.5.1 Driver Initialization
	6.5.2 Driver Unloading
	6.5.3 Event Notification List
	6.5.4 Interrupt Handler
	6.5.5 Event Handlers
	6.5.6 Register Access

	6.6 Driver Source Code Structure
	6.7 Driver Configuration

	Chapter 7 PMIC Audio Driver
	7.1 PMIC Audio Driver Features
	7.2 Driver Requirements
	7.2.1 Audio Device Handle Management
	7.2.2 Digital Audio Bus Selection and Configuration
	7.2.3 Stereo DAC and Voice Codec Control and Configuration
	7.2.4 Audio Input Section Control and Configuration
	7.2.5 Audio Output Section Control and Configuration
	7.2.6 Resetting the PMIC Audio Components
	7.2.7 Audio-Related Interrupts and Event Notification
	7.2.8 Additional Audio-related Configuration Options

	7.3 Software Operation
	7.4 Driver Architecture
	7.5 Driver Implementation Details
	7.5.1 Driver Initialization
	7.5.2 Driver Deinitialization

	7.6 Driver Source Code Structure
	7.7 Driver Configuration

	Chapter 8 PMIC Digitizer Driver
	8.1 PMIC Digitizer Driver Features and Capabilities
	8.2 Driver Requirements
	8.3 Driver Software Operation
	8.4 Driver Architecture
	8.5 Driver Implementation Details
	8.5.1 Driver Initialization
	8.5.2 Driver Removal

	8.6 Driver Source Code Structure
	8.7 Linux Menu Configuration Options

	Chapter 9 PMIC Power Management Driver
	9.1 PMIC Features
	9.2 Driver Requirements
	9.3 Driver Software Operation
	9.4 Driver Architecture
	9.5 Driver Implementation Details
	9.6 Driver Source Code Structure
	9.7 Driver Configuration

	Chapter 10 PMIC Connectivity Driver
	10.1 PMIC Features
	10.2 Driver Requirements
	10.3 Driver Software Operation
	10.4 Driver Architecture
	10.5 Driver Implementation Details
	10.5.1 Driver Initialization
	10.5.2 Driver Removal

	10.6 Driver Source Code Structure
	10.7 Linux Menu Configuration Options

	Chapter 11 PMIC Battery Driver
	11.1 PMIC Features
	11.2 Driver Requirements
	11.3 Driver Software Operation
	11.4 Driver Architecture
	11.5 Driver Implementation Details
	11.5.1 Driver Initialization
	11.5.2 Driver Deinitialization

	11.6 Driver Source Code Structure
	11.7 Linux Menu Configuration Options

	Chapter 12 PMIC Light Driver
	12.1 PMIC Features
	12.2 Driver Requirements
	12.2.1 Backlight Control Functions
	12.2.2 LED Control Functions

	12.3 Driver Software Operation
	12.4 Driver Architecture
	12.5 Driver Implementation Details
	12.5.1 Driver Initialization
	12.5.2 Driver Deinitialization

	12.6 Driver Source Code Structure
	12.7 Linux Menu Configuration Options

	Chapter 13 PMIC Real Time Clock (RTC)
	13.1 PMIC Features
	13.2 Driver Requirements
	13.3 Driver Software Operation
	13.4 Driver Architecture
	13.5 Driver Implementation Details
	13.5.1 Driver Initialization
	13.5.2 Driver Deinitialization

	13.6 Driver Source Code Structure
	13.7 Linux Menu Configuration Options

	Chapter 14 i.MX27 Low-Level Power Management Driver
	14.1 Hardware Operation
	14.2 Software Operation
	14.3 Hardware Issue
	14.4 Source Code Structure
	14.5 Programming Interface

	Chapter 15 Dynamic Frequency Scaling Driver (CPUFreq)
	15.1 Hardware Operation
	15.1.1 Software Operation

	15.2 Source Code Structure
	15.3 Linux Menu Configuration Options

	Chapter 16 CH7024 TV Encoder (TV-Out) Driver
	16.1 TV-Out Driver Overview
	16.1.1 Hardware Operation
	16.1.2 Software Operation

	16.2 Source Code Structure Configuration
	16.3 Linux Menu Configuration Options

	Chapter 17 Video Processing Unit (VPU) Driver for MX27
	17.1 Hardware Operation
	17.2 Software Operation
	17.3 Source Code Structure
	17.4 Linux Menu Configuration Options
	17.5 Programming Interface
	17.6 Defining an Application

	Chapter 18 OmniVision Camera Driver (OV2640)
	18.1 Hardware Operation
	18.2 Software Operation
	18.3 Source Code Structure
	18.4 Linux Menu Configuration Options

	Chapter 19 Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support
	19.1 ALSA Features and Components
	19.1.1 Current BSP Release Support
	19.1.2 PCM Components
	19.1.3 Control Components

	19.2 Hardware Operation
	19.3 Software Operation
	19.3.1 Initialization
	19.3.2 Device Open
	19.3.3 Digital Mixing

	19.4 Source Code Structure

	Chapter 20 Digital Audio Multiplexer (AUDMUX) Driver
	20.1 Hardware Operation
	20.2 Software Operation
	20.3 Requirements
	20.4 Source Code Structure
	20.4.1 Linux Menu Configuration Options

	20.5 Programming Interface (Exported API)
	20.6 Interrupt Requirements

	Chapter 21 Synchronous Serial Interface (SSI) Driver
	21.1 Hardware Operation
	21.2 Software Operation
	21.3 Requirements
	21.4 Source Code Structure
	21.4.1 Linux Menu Configuration Options

	21.5 Programming Interface (Exported API)
	21.6 Interrupt Requirements

	Chapter 22 NAND Flash Memory Technology Device (MTD) Driver
	22.1 Overview
	22.1.1 Hardware Operation
	22.1.2 Software Operation

	22.2 Requirements
	22.3 Source Code Structure
	22.4 Configuration
	22.4.1 Linux Menu Configuration Options

	22.5 Programming Interface
	22.6 Device-Specific Information

	Chapter 23 Low-Level Keypad Driver
	23.1 Hardware Operation
	23.2 Software Operation
	23.3 Requirements
	23.4 Source Code Structure
	23.5 Linux Menu Configuration Options
	23.6 Programming Interface
	23.7 Interrupt Requirements
	23.8 Device-Specific Information

	Chapter 24 SMSC LAN9217 Ethernet Driver
	24.1 Hardware Operation
	24.2 Software Operation
	24.3 Requirements
	24.4 Source Code Structure
	24.5 Linux Menu Configuration Options

	Chapter 25 Fast Ethernet Controller (FEC) Driver
	25.1 Hardware Operation
	25.2 Software Operation
	25.3 Source Code Structure
	25.4 Linux Menu Configuration Options
	25.5 Programming Interface
	25.5.1 Device-Specific Defines
	25.5.2 How to get a MAC Address?

	Chapter 26 Symmetric/Asymmetric Hashing and Random Accelerator (SAHARA) Drivers
	26.1 Overview
	26.2 Software Operation
	26.2.1 API Notes
	26.2.2 Architecture
	26.2.3 Symmetric Descriptors
	26.2.4 Hash Descriptors
	26.2.5 HMAC Descriptors
	26.2.6 Random Number Descriptors

	26.3 Requirements
	26.4 Source Code Structure
	26.5 Configuration
	26.6 Programming Interface
	26.7 Interrupt Requirements

	Chapter 27 Inter-IC (I2C) Driver
	27.1 I2C Bus Driver Overview
	27.2 I2C Client Driver Overview
	27.3 Hardware Operation
	27.4 Software Operation
	27.4.1 I2C Bus Driver Software Operation
	27.4.2 I2C Client Driver Software Operation

	27.5 Requirements
	27.6 Source Code Structure
	27.7 Configuration
	27.7.1 Linux Menu Configuration Options

	27.8 Programming Interface
	27.9 Interrupt Requirements
	27.10 Device-Specific Information

	Chapter 28 I2C Slave Driver
	28.1 I2C Slave Core Overview
	28.2 I2C Slave Chip Driver Overview
	28.3 Hardware Operation
	28.4 Software Operation
	28.5 Requirements
	28.6 Source Code Structure
	28.7 Configuration
	28.7.1 Linux Menu Configuration Options

	28.8 Programming Interface

	Chapter 29 Configurable Serial Peripheral Interface (CSPI) Driver
	29.1 Hardware Operation
	29.2 Software Operation
	29.2.1 SPI Sub-System in Linux
	29.2.2 Limitations
	29.2.3 Standard Operations
	29.2.4 CSPI Synchronous Operation
	29.2.5 PMIC Access

	29.3 Requirements
	29.4 Source Code Structure
	29.5 Configuration
	29.6 Programming Interface
	29.7 Interrupt Requirements
	29.8 Device-Specific Information

	Chapter 30 MMC/SD/SDIO Host Driver
	30.1 Hardware Operation
	30.2 Software Operation
	30.3 Requirements
	30.4 Source Code Structure
	30.5 Linux Menu Configuration Options
	30.6 Programming Interface

	Chapter 31 Universal Asynchronous Receiver/Transmitter (UART) Driver
	31.1 UART Driver Hardware Operation
	31.2 UART Driver Software Operation
	31.3 UART Driver Requirements
	31.4 UART Driver Source Code Structure
	31.5 UART Driver Configuration
	31.5.1 Linux Menu Configuration Options
	31.5.2 Source Code Configuration Options

	31.6 UART Driver Programming Interface
	31.7 UART Driver Interrupt Requirements
	31.8 Device-Specific Information
	31.8.1 UART Ports
	31.8.2 Board Setup Configuration

	31.9 Early UART Support

	Chapter 32 16C652 Universal Asynchronous Receiver/Transmitter (UART) Driver
	32.1 SC16C652/ST16C2552 UART Hardware Operation
	32.2 SC16C652/ST16C2552 UART Software Operation
	32.3 SC16C652/ST16C2552 UART Requirements
	32.4 SC16C652/ST16C2552 UART Source Code Structure
	32.5 16C652 UART Driver Configuration
	32.5.1 Linux Menu Configuration Options
	32.5.2 Source Code Configuration Options

	32.6 SC16C652/ST16C2552 UART Programming Interface
	32.7 16C652 UART Driver Interrupt Requirements
	32.8 Device-Specific Information

	Chapter 33 ARC USB driver
	33.1 Architectural Overview
	33.2 Hardware Operation
	33.3 Software Operation
	33.4 Requirements
	33.5 Source Code Structure
	33.6 Linux Menu Configuration Options
	33.7 Programming Interface
	33.7.1 Notes

	Chapter 34 ATA Driver
	34.1 Hardware Operation
	34.2 Software Operation
	Figure 34-1.

	34.3 Source Code Structure Configuration
	Table 34-1. ATA Driver File List

	34.4 Linux Menu Configuration Options
	34.5 Board Configuration Options
	34.6 Programming Interface
	34.7 Usage Example
	34.8 Usage Example

	Chapter 35 Real Time Clock (RTC) Driver
	35.1 Hardware Operation
	35.2 Software Operation
	35.3 Requirements
	35.4 Source Code Structure
	35.5 Programming Interface

	Chapter 36 Watchdog (WDOG) Driver
	36.1 Hardware Operation
	36.2 Software Operation
	36.2.1 Generic WDOG driver
	36.2.2 WDOG under Machine-Specific Layer

	Chapter 37 FM Driver
	37.1 FM Overview
	37.1.1 Hardware Operation
	37.1.2 Software Operation

	37.2 Source Code Structure Configuration
	37.3 Linux Menu Configuration Options

	Chapter 38 MMA7450L Accelerometer Driver
	38.1 MMA7450L Features
	38.2 Driver Requirements
	38.3 Driver Architecture
	38.4 Driver Source Code Structure
	38.5 Linux Menu Configuration Options

	Chapter 39 Global Positioning System (GPS) Driver
	39.1 GPS Driver Overview
	39.2 Hardware Operation
	39.2.1 UART Port
	39.2.2 GPIO Control
	39.2.3 Hardware-Dependent Parameters

	39.3 Software Operation
	39.3.1 GLGPS Configuration
	39.3.2 Driver Configuration
	39.3.3 Source Code
	39.3.4 LTO Feature (optional)
	39.3.5 Power Management
	39.3.6 irm Commands.

	Chapter 40 Unit Tests
	40.1 Enabling the Unit Tests
	40.2 Running Tests That Write to a File
	40.3 MSL Tests
	40.4 Dynamic Frequency Scaling Tests
	40.5 DMAC Tests
	40.6 PMIC Protocol Tests
	40.6.1 MC13783 PMIC Protocol Driver Read/Write Unit Test
	40.6.2 PMIC Subscribe/Unsubscribe to an Event Unit Test
	40.6.3 PMIC Subscribe, Interrupt, Unsubscribe Unit Test
	40.6.4 PMIC Open/Close Unit Test
	40.6.5 PMIC Concurrent Access Unit Test

	40.7 PMIC Audio Tests
	40.8 PMIC Digitizer Tests
	40.8.1 PMIC Read ADC Value Tests
	40.8.2 PMIC Monitoring Tests

	40.9 PMIC Power Management Tests
	40.9.1 PMIC Regulator ON/OFF Tests
	40.9.2 PMIC Switcher and Regulator Configuration Tests
	40.9.3 PMIC Miscellaneous Feature Tests

	40.10 PMIC Connectivity Tests
	40.11 PMIC Battery Tests
	40.11.1 Charger Management Tests
	40.11.2 EOL Comparator Tests
	40.11.3 LED Management Tests
	40.11.4 Reverse Supply and Unregulated Modes Tests
	40.11.5 Set Out Control Tests
	40.11.6 Set Over Voltage Threshold
	40.11.7 Get Charger Current

	40.12 Low-level Power Management Tests on i.MX27
	40.13 LCDC Tests
	40.14 CH7024 TV-Out Tests
	40.15 OmniVision Camera Tests
	40.16 i.MX27 VPU Tests
	40.17 ARC USB Tests
	40.17.1 USB host
	40.17.2 Peripheral Mode

	40.18 ALSA Tests
	40.18.1 ALSA Native Mode
	40.18.2 Playback on Stereo DAC:
	40.18.3 Recording
	40.18.4 Mixer
	40.18.5 Audio Loop Back
	40.18.6 OSS Emulation Mode

	40.19 AUDMUX Test
	40.20 SSI Test
	40.21 NAND Tests
	40.22 Keypad Tests
	40.23 FEC Tests
	40.24 SMSC LAN9217 Ethernet Tests
	40.25 I2C Test
	40.26 CSPI Tests
	40.27 MMC/SD/SDIO Test
	40.28 MXC UART Tests
	40.28.1 Basic UART Tests
	40.28.2 Early UART Support Tests

	40.29 FM Driver Tests
	40.30 MMA7450L Accelerometer Driver Tests
	40.31 GPS Tests
	40.32 RTC Tests
	40.33 Watchdog Tests

