Android[™] Quick Start Guide

1 Overview

This document guides you through the processes of downloading and running this release package. It only explains how to download and run the default release image with default configuration. For details on using the release package, see the *AndroidTM User's Guide* included in this release package.

2 Hardware Requirements

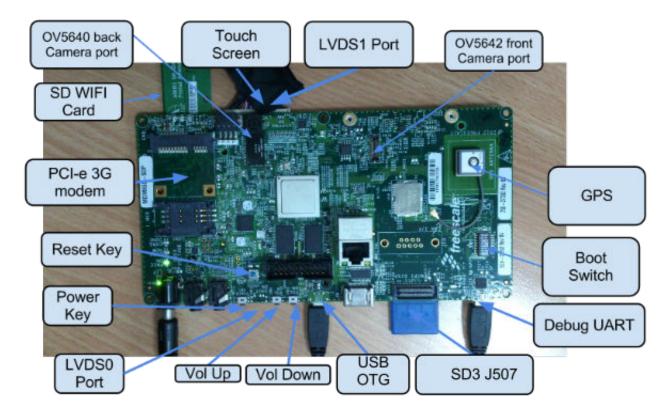
The hardware requirements for using this release package are as follows:

Supported system-on-chips (SoCs):

- i.MX 6Dual/6Quad
- i.MX 6Solo/6DualLite
- i.MX 6SoloLite
- i.MX 6SoloX

Supported boards:

- SABRE-SD board and platform
- SABRE-AI board
- EVK board


Contents

1	Overview1
1	Overview
2	Hardware Requirements1
3	Working with the i.MX 6Quad/6DualLite SABRE-SD Board and Platform
4	Working with the i.MX 6Quad/6DualLite SABRE-AI Platform7
5	Working with the i.MX 6 SoloLite EVK Board13
6	Working with the i.MX 6SoloX SABRE- SD Board17
7	Working with the i.MX 6SoloX SABRE- AI Board

3.1 Board hardware

The figure below shows the different components of the SABRE-SD board.

Figure 1. SABRE-SD Board

NOTE

Due to a known limitation of the hardware/SoC, the power key on the RevB or older versions of the SABRE-SD board cannot be used as the normal power key. So, the VOL_DOWN key is mapped as the power key. The VOL_DOWN key was not available on early boards.

3.2 Board images

The table below describes the locations of the software images in release_package/android__full_image_6qsabresd.tar.gz on board partitions.

Table 1. Board images

Image name	Path in release package	Download target

Table continues on the next page ...

Table 1. Board images (continued)

\ \	eMMC first 8MB section
\	eMMC first 8MB section
\eMMC	eMMC 1st partition for 800 MB or 1 GB HZ i.MX 6DualQuad
\eMMC	eMMC 1st partition for 1.2G HZ i.MX6DQ
\eMMC	eMMC 1st partition for i.MX 6DualLite
\eMMC	eMMC 2nd partition for 800 MB or 1 GB HZ i.MX 6DualQuad
\eMMC	eMMC 2nd partition for 1.2 GB HZ i.MX 6DualQuad
\eMMC	eMMC 2nd partition for i.MX 6DualLite
\eMMC	eMMC 5th partition
	\eMMC \eMMC \eMMC \eMMC \eMMC

3.3 Downloading board images

The board images can be downloaded to the target board by using the MFGTool. The release package includes MFGTool for i.MX 6Dual/6Quad, i.MX 6Solo/6DualLite, i.MX 6SoloX, and i.MX 6SoloLite in android_ KK4.4.3_2.0.0_tools.tar.gz. The MFGTool is mfgtools.tar.gz.

NOTE

The MFGTool only works in the Windows® operating system (OS) environment.

Perform the following steps to download the board images:

NOTE

The steps given below take i.MX 6Dual/6Quad as the example SoC. For i.MX 6Solo/ 6DualLite, replace 'MX6Q' with 'MX6DL' and '6q' with '6dl.'

- 1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this example.
- 2. If the directory does not exist, create the *android/sabresd* directory under *MFGTool-Dir/Profiles/Linux/OS Firmware/ files*.
- 3. Copy the following files from either android_KK4.4.3_2.0.0-ga_core_image_6qsabresd.tar.gz or android_KK4.4.3_2.0.0-ga_full_image_6qsabresd.tar.gz to the *MFGTool-Dir/Profiles/Linux/OS Firmware/files/ android/sabresd* path.
 - u-boot-imx6q.imx
 - eMMC/boot-imx6q.img
 - eMMC/system.img
 - eMMC/recovery-imx6q.img

NOTE

Do not replace any other files in the files directory and the OS Firmware directory. To download images for the i.MX 6DualLite/6Solo SABRE-SD boards, you need to replace the name "imx6q" in step 3 with "imx6dl".

To download the images for the 1.2GB HZ i.MX 6DualQuad SABRE-SD boards, you need to replace the name "imx6q" in step 3 with "imx6q-ldo".

4. No dedicated boot dips are reserved for serial download mode on SABRE-SD board. Therefore, a tricky method is used to enter serial download mode. Change the SABRE-SD SW6 (boot) to 00001100 (from 1-8 bit) to enter download mode.

5. Power on the board. Using USB cable on the SABRE-SD OTG port, connect your Windows OS computer to the SABRE-SD board.

NOTE

There are two USB micro ports on the SABRE-SD board: USB to UART and USB OTG. USB to UART is referred to as debug UART, and the USB OTG is referred to as USB in the hardware image above. The debug UART can be used to monitor the log of the hardware boot processing.

6. Double click the file *.vbs according to the target device as shown in the following table.

Target device and boot storage	VBS file
i.MX 6Dual/6Quad (800M HZ or 1G HZ) SABRE-SD eMMC	mfgtool2-android-mx6q-sabresd-emmc.vbs
i.MX 6Dual/6Quad (1.2G HZ) SABRE-SD eMMC	mfgtool2-android-mx6q-sabresd-emmc-1.2g.vbs
i.MX 6Dual/6Quad (800M HZ or 1G HZ) SABRE-SD SD	mfgtool2-android-mx6q-sabresd-sd.vbs
i.MX 6Dual/6Quad (1.2G HZ) SABRE-SD SD	mfgtool2-android-mx6q-sabresd-sd-1.2g.vbs
i.MX 6Solo/6DualLite SABRE-SD eMMC	mfgtool2-android-mx6dl-sabresd-emmc.vbs
i.MX 6Solo/6DualLite SABRE-SD SD	mfgtool2-android-mx6dl-sabresd-sd.vbs

7. Click Start to start downloading images.

MfgTool_MultiPanel		
Hub 6-Port 3	Status Information	
Drive(s):	Successful Operations:	0
	Failed Operations:	0
HID-compliant device	Failure Rate:	0 %
	Start	Exit

Figure 2. Starting download

The figure below shows the downloading in progress where the status bar shows the download status. The download may take one to two minutes depending on the host machine.

MfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s): E:	Successful Operations:	0
	Failed Operations:	0
Partitioning	Failure Rate:	0 %
	Stop	Exit

Figure 3. Download status

The figure below shows the tool once the download is complete.

MfgTool_MultiPanel		
Hub 6-Port 3 Drive(s): E:	Status Information Successful Operations:	1
Done	Failed Operations:	0
	Failure Rate:	0.00 %
	Stop	Exit

Figure 4. Download complete

- 8. Click Stop.
- 9. Change "Boot Switch(SW6)" to 11100110 (from 1-8 bit) to switch the board back to eMMC 4-bit boot mode. Or change "Boot Switch(SW6)" to 11010110 (from 1-8 bit) to switch the board back to eMMC 8-bit boot mode.

3.4 Booting

After downloading the images, you can boot the board by connecting it to the power supply.

There are three hardware displays supported in this release: two LVDS display panels and HDMI output. See Booting with single display: LVDS display to enable the LVDS1 display. See Booting with single display: HDMI display to enable single HDMI display. See Booting with dual displays: LVDS and HDMI displays to enable LVDS1 and HDMI output dual display feature.

NOTE

There are two LVDS ports in SABRE SD hardware: LVDS0 and LVDS1. LVDS1 is taken as the primary display in this release. The LVDS1 port is nearby miniPCIe interface (see the SABRE-SD board image above).

3.4.1 Booting with single display: LVDS display

In the U-Boot prompt, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc2
U-Boot > setenv bootargs console=ttymxc0,115200 init=/init video=mxcfb0:dev=ldb,bpp=32
```

```
video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off vmalloc=400M androidboot.console=ttymxc0
consoleblank=0 androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

3.4.2 Booting with single display: HDMI display

In the U-Boot prompt, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc2
U-Boot > setenv bootargs console=ttymxc0,115200 androidboot.console=ttymxc0 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=hdmi,1920x1080M@60,bpp=32 video=mxcfb1:off
video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

3.4.3 Booting with dual displays: LVDS and HDMI displays

In the U-Boot prompt, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc2
U-Boot > setenv bootargs console=ttymxc0,115200 androidboot.console=ttymxc0 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=ldb,bpp=32 video=mxcfb1:dev=hdmi,
1920x1080M@60,bpp=32 video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale
cma=384M
U-Boot > saveenv
```

3.5 Board reboot

After you have completed download and setup, reboot the board and wait for Android to boot up.

Figure 5. Android KitKat image

4 Working with the i.MX 6Quad/6DualLite SABRE-AI Platform

4.1 Board hardware

The figure below shows the different components of the SABRE-AI board.

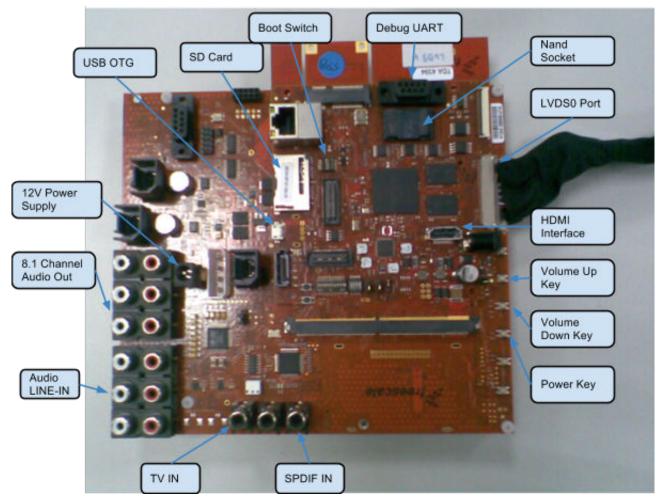


Figure 6. SABRE-AI board

4.2 Board images

The table below describes the location in the board partitions of the software images in android_KK4.4.3_2.0.0-ga_full_image_6qsabreauto.tar.gz on board partitions.

Image name	Path in release package	Download target
u-boot-imx6q.imx	١	SD first 8MB block
u-boot-imx6dl.imx		
boot-imx6q.img	\SD	SD 1st partition
boot-imx6dl.img		
recovery-imx6q.img	\SD	SD 2nd partition
recovery-imx6dl.img		
system.img	\SD	SD 5th partition
u-boot-imx6dl-nand.imx	١	NAND 1st 64 MB MTD partition

Table continues on the next page...

Table 2. Board images (continued)

u-boot-imx6q-nand.imx		
boot-imx6q-nand.img	\NAND	NAND 2nd 16 MB MTD partition
boot-imx6dl-nand.img		
recovery-imx6q-nand.img	\NAND	NAND 3rd 16 MB MTD partition
recovery-imx6dl-nand.img		
android_root.img	\NAND	UBIFS Volume for 4th MTD partition

4.3 Downloading board images

The board images can be downloaded to the target board by using the MFGTool. The release package includes MFGTool for both i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite in android_ KK4.4.3_2.0.0_tools.tar.gz. The MFGTool is mfgtools.tar.gz.

NOTE

The MFGTool only works in Windows OS environment.

Perform the following steps to download the board images:

NOTE

The steps given below take i.MX 6Dual/6Quad as the example SoC. For i.MX 6Solo/ 6DualLite, replace 'MX6Q' with 'MX6DL' and '6q' with '6dl.'

- 1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this example.
- If the directory does not exist, create the "android" directory under the MFGTool-Dir/Profiles/Linux/OS Firmware/files directory.
- 3. Copy following files from either release_package/android_KK4.4.3_2.0.0-ga_core_image_6qsabreauto.tar.gz or release_package/android_KK4.4.3_2.0.0-ga_full_image_6qsabreauto.tar.gz to the MFGTool-Dir/Profiles/Linux/OS Firmware/files/android/sabreauto path.
 - u-boot-imx6q.imx
 - SD/boot-imx6q.img
 - SD/system.img
 - SD/recovery.img

NOTE

Do not replace any other files in the files directory and the OS Firmware directory. When using the NAND boot, the files are in "nand" folder, and use android_root.img instead system.img. The boot loader should be u-boot-mx6q-nand.bin.

To download images for the i.MX 6DualLite/6Solo SABRE-AI boards, you need to replace the name "imx6q" in step 3 with "imx6dl".

- 4. Change SABRE-AI S3 (boot mode) to 0101 (from 1-4 bit) to enter download mode.
- 5. Power on the board. Using USB cable on the SABRE-AI OTG port, connect your Windows OS computer to the SABRE-AI board.

NOTE

The USB micro port in SABRE-AI is J10.

6. Update the MFGTool-Dir/cfg.ini file according to the target device as shown in the following table.

file		
Target device	VBS file	
i.MX 6Dual/6Quad SABRE-AI SD	mfgtool2-android-mx6q-sabreauto-sdcard.vbs	
i.MX 6Dual/6Quad SABRE-AI NAND	mfgtool2-android-mx6q-sabreauto-nand.vbs	
i.MX 6Solo/6DualLite SABRE-AI SD	mfgtool2-android-mx6dl-sabreauto-sdcard.vbs	
i.MX 6Solo/6DualLite SABRE-AI NAND	mfgtool2-android-mx6dl-sabreauto-nand.vbs	

Table 3. SABRE-AI VBS

7. Click Start to start downloading images.

MfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s):	Successful Operations:	0
HID-compliant device	Failed Operations:	0
	Failure Rate:	0 %
	Start	Exit

Figure 7. Starting download

The figure below shows the downloading in progress where the status bar shows the download status. The download may take one to two minutes depending on the host machine.

MfgTool_MultiPanel		
Hub 6Port 3 Drive(s): E:	Status Information Successful Operations:	0
Partitioning	Failed Operations: Failure Rate:	0 0 %
	Stop	Exit

Figure 8. Download status

The figure below shows the tool once the download is complete.

MfgTool_MultiPanel		
- Hub 6Port 3	Status Information	
Drive(s): E:	Successful Operations:	1
	Failed Operations:	0
Done	Failure Rate:	0.00 %
	Stop	Exit

Figure 9. Download complete

- 8. Click Stop.
- Change the board boot switch to (S3, S2,S1) 0010, 0010,0100100000 (from 1 bit) to boot from SD on CPU Board.
 Change the board boot switch to (S3, S2,S1) 0010, 0001,0001000000 (from 1bit) to boot from NAND

4.4 Booting

After downloading the images, you can boot the board by connecting the power supply. There are two hardware displays supported in this release: one LVDS display panel and one HDMI output.

- To enable the LVDS0 display, see Section Booting with single display: LVDS display.
- To enable the HDMI display, see Section Booting with single display: HDMI display.
- to enable LVDS0 and HDMI output dual display feature, see Section Booting with dual displays: LVDS and HDMI displays.

NOTE

There are two LVDS ports in SabreAuto hardware, LVDS0 and LVDS1. LVDS0 is taken as the primary display in this release. The LVDS0 port is in the CPU board. The LVDS1 is in the base board.

4.4.1 Booting with single display: LVDS display

To boot from SD, set the U-Boot environment variables as show below:

```
U-Boot > setenv bootcmd booti mmc1
U-Boot > setenv bootargs console=ttymxc3,115200 init=/init video=mxcfb0:dev=ldb,bpp=32
video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off vmalloc=400M androidboot.console=ttymxc3
consoleblank=0 androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

To boot from NAND, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd 'nand read 0x12000000 0x4000000 0x1000000;booti 0x12000000'
U-Boot > setenv bootargs console=ttymxc3,115200 init=/init video=mxcfb0:dev=ldb,bpp=32
video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off vmalloc=400M androidboot.console=ttymxc3
consoleblank=0 androidboot.hardware=freescale mtdparts=gpmi-nand:64m(bootloader),
16m(bootimg),16m(recovery),-(root) ubi.mtd=4 cma=384M
U-Boot > saveenv
```

4.4.2 Booting with single display: HDMI display

To boot from SD, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc1
U-Boot > setenv bootargs console=ttymxc3,115200 androidboot.console=ttymxc3 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=hdmi,1920x1080M@60,bpp=32 video=mxcfb1:off
video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

To boot from NAND, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd 'nand read 0x12000000 0x4000000 0x1000000;booti 0x12000000'
U-Boot > setenv bootargs console=ttymxc3,115200 androidboot.console=ttymxc3 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=hdmi,1920x1080M@60,bpp=32 video=mxcfb1:off
video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale mtdparts=gpmi-nand:
64m(bootloader),16m(bootimg),16m(recovery),-(root) ubi.mtd=4 cma=384M
U-Boot > saveenv
```

4.4.3 Booting with dual displays: LVDS and HDMI displays

To boot from SD, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc1
U-Boot > setenv bootargs console=ttymxc3,115200 androidboot.console=ttymxc3 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=ldb,bpp=32 video=mxcfb1:dev=hdmi,
1920x1080M@60,bpp=32 video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale
cma=384M
U-Boot > saveenv
```

To boot from NAND, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd 'nand read 0x12000000 0x4000000 0x1000000;booti 0x12000000'
U-Boot > setenv bootargs console=ttymxc3,115200 androidboot.console=ttymxc3 consoleblank=0
vmalloc=400M init=/init video=mxcfb0:dev=ldb,bpp=32 video=mxcfb1:dev=hdmi,
1920x1080M@60,bpp=32 video=mxcfb2:off video=mxcfb3:off androidboot.hardware=freescale
mtdparts=gpmi-nand:64m(bootloader),16m(bootimg),16m(recovery),-(root) ubi.mtd=4 cma=384M
U-Boot > saveenv
```

4.5 Board reboot

After you have completed download and setup, reboot the board and wait for Android to boot up.

Figure 10. Android KitKat image

5.1 Board hardware

The figure below shows the different components of the SoloLite EVK board.

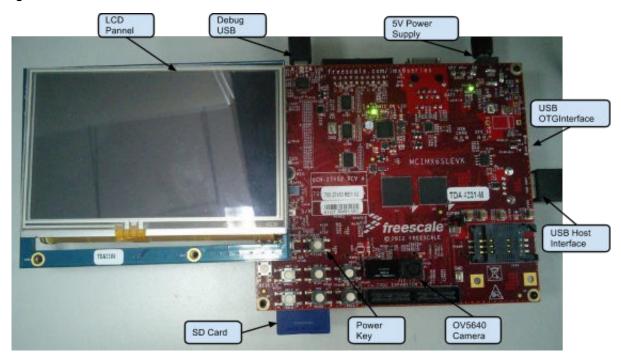


Figure 11. i.MX 6 SoloLite EVK board

5.2 Board images

The table below describes the location in the board partitions of the software images in android_KK4.4.3_2.0.0-ga_core_image_6slevk.tar.gz on board partitions.

Table 4.	Board	images
----------	-------	--------

Image name	Path in release package	Download target
u-boot-imx6sl.imx	λ	SD first 8MB block
boot-imx6sl.img	\SD	SD 1st partition
recovery-imx6sl.img	\SD	SD 2nd partition
system.img	\SD	SD 5th partition

5.3 Downloading board images

The board images can be downloaded to the target board by using the MFGTool. The release package includes MFGTool for i.MX 6Dual/6Quad, i.MX 6Solo/6DualLite, i.MX 6SoloX and i.MX 6SoloLite in android_ KK4.4.3_2.0.0_tools.tar.gz. The MFGTool is mfgtools.tar.gz.

NOTE

The MFGTool only works in Windows OS environment.

Perform the following steps to download the board images:

- 1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this example.
- 2. If the directory does not exist, create the "android/evk" directory under the MFGTool-Dir/Profiles/Linux/OS Firmware/ files path.

- 3. Copy following files from release_package/android_KK4.4.3_2.0.0-ga_core_image_6slevk.tar.gz to your MFGTool-Dir/Profiles/Linux/OS Firmware/files/android/evk directory.
 - u-boot-imx6sl.imx
 - SD/boot-imx6sl.img
 - SD/system.img
 - SD/recovery-imx6sl.img

NOTE

Do not replace other files in files directory and OS firmware directory.

- 4. Change the i.MX 6SoloLite-EVK board's S1(boot mode) to 10 (from 1-2 bit) to enter download mode.
- 5. Power on the board. Use USB cable on the i.MX 6SoloLite-EVK board OTG port, and connect your Windows OS computer with the i.MX 6SoloLite-EVK board.

NOTE

There are two USB micro ports in i.MX 6SoloLite-EVK board: USB to UART, USB OTG. The USB to UART can be referenced as debug UART, and the USB OTG can be referenced as USB in the hardware image above. The debug UART can be used to watch the log of the hardware boot processing.

6. Double click the *.vbs file according to the target device as shown in the following table.

Table 5. MFGTool VBS file

Target device and boot storage	VBS file
i.MX 6SoloLite EVK SD	mfgtool2-android-mx6sl-evk-sd.vbs

7. Click Start to start downloading images.

MfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s):	Successful Operations:	0
	Failed Operations:	0
HID-compliant device	Failure Rate:	0 %
	Start	Exit

Figure 12. Starting download

The figure below shows the downloading in progress where the status bar shows the download status. The download may take one to two minutes depending on the host machine.

AfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s): E:	Successful Operations:	0
	Failed Operations:	0
Partitioning	Failure Rate:	0 %
	Stop	Exit

Figure 13. Download status

The figure below shows the tool when the download is complete.

MfgTool_MultiPanel		
Hub 6Port 3 Drive(s): E:	Status Information Successful Operations:	1
Done	Failed Operations: Failure Rate:	0
		0.00 %
	Stop	Exit

Figure 14. Download complete

- 8. Click Stop and disconnect the USB cable.
- 9. Change S1(boot mode) to 01 (from 1-2 bit). Change "Boot Switch(SW3,4,5)" to 01000000(from 1bit-8bit) 00101100(from 1bit-8bit) 00000000(from 1bit-8bit) to switch the board back to SD1 boot mode.

5.4 Booting with single display: LCD display

After downloading the images, you can boot the board by connecting it to the power supply.

In the U-Boot prompt, set the U-Boot environment variables as shown below:

```
UBoot > setenv bootcmd booti mmc1
UBoot > setenv bootargs console=ttymxc0,115200 init=/init androidboot.console=ttymxc0
consoleblank=0 androidboot.hardware=freescale
UBoot > saveenv
```

5.5 Board reboot

After you have completed download and setup, reboot the board and wait for Android to boot up.

Figure 15. Android KitKat image

6 Working with the i.MX 6SoloX SABRE-SD Board

6.1 Board hardware

The figure below shows the different components of the i.MX 6SoloX SABRE-SD board.

Working with the i.MX 6SoloX SABRE-SD Board

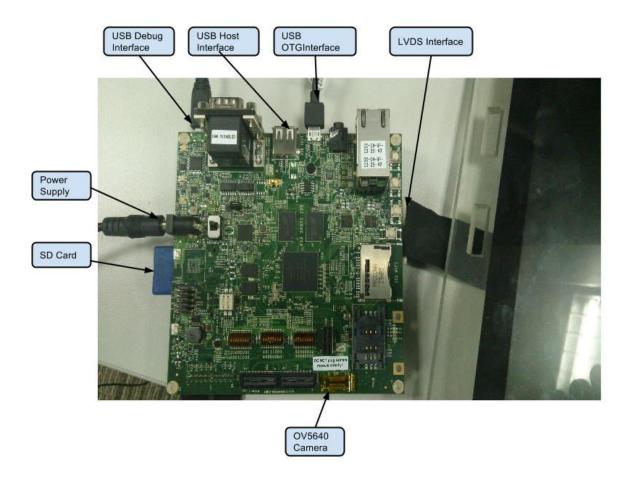


Figure 16. i.MX 6SoloX SABRE-SD board

6.2 Board images

The table below describes the location in the board partitions of the software images in android_KK4.4.3_2.0.0-ga_core_image_6slevk.tar.gz on board partitions.

Table 6.	Board	images
----------	-------	--------

Image name	Path in release package	Download target
u-boot-imx6sx.imx	١	SD first 8MB block
boot-imx6sx.img	\SD	SD 1st partition
recovery-imx6sx.img	\SD	SD 2nd partition
system.img	\SD	SD 5th partition

6.3 Downloading board images

The board images can be downloaded to the target board by using the MFGTool. The release package includes MFGTool for i.MX 6Dual/6Quad, i.MX 6Solo/6DualLite, i.MX 6SoloX and i.MX 6SoloLite in android_ KK4.4.3_2.0.0_tools.tar.gz. The MFGTool is mfgtools.tar.gz.

NOTE

The MFGTool only works in Windows OS environment.

Perform the following steps to download the board images:

- 1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this example.
- 2. If the directory does not exist, create the "android/sabresd" directory under the MFGTool-Dir/Profiles/Linux/OS Firmware/files path.
- 3. Copy following files from release_pakcage/image/sabresd_6sx to your MFGTool-Dir/Profiles/Linux/OS Firmware/ files/android/sabresd path.
 - u-boot-imx6sx.imx
 - SD/boot-imx6sx.img
 - SD/system.img
 - SD/recovery-imx6sx.img

NOTE

Do not replace other files in files directory and OS firmware directory.

- 4. Change the the i.MX SoloX SABRE-SD board's S1 (boot mode) to 10 (from 1-2 bit) to enter download mode.
- 5. Power on the board. Use the USB cable on the OTG port of the i.MX SoloX SABRE-SD board, and connect your Windows OS computer with the i.MX SoloX SABRE-SD board.

NOTE

There are two USB micro ports on the i.MX SoloX SABRE-SD board: USB to UART, USB OTG. The USB to UART can be referenced as debug UART, and the USB OTG can be referenced as USB in the hardware image above. The debug UART can be used to watch the log of the hardware boot processing.

6. Double click the *.vbs file according to the target device as shown in the following table.

Table 7. MFGTool VBS

file

Target device and boot storage	VBS file
i.MX SoloX SABRE-SD SD	mfgtool2-android-mx6sx-sabresd-sdcard.vbs

7. Click Start to start downloading images.

MfgTool_MultiPanel		
- Hub 6Port 3	Status Information	
Drive(s):	Successful Operations:	0
	Failed Operations:	0
HID-compliant device	Failure Rate:	0 %
	Start	Exit

Figure 17. Starting download

Working with the i.MX 6SoloX SABRE-SD Board

The figure below shows the downloading in progress where the status bar shows the download status. The download may take one to two minutes depending on the host machine.

MfgTool_MultiPanel		
Hub 6Port 3 Drive(s): E:	Status Information Successful Operations: Failed Operations:	0
Partitioning	Failure Rate:	0 %
	Stop	Exit

Figure 18. Download status

The figure below shows the tool when the download is complete.

MfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s): E:	Successful Operations:	1
	Failed Operations:	0
Done	Failure Rate:	0.00 %
	Stop	Exit

Figure 19. Download complete

- 8. Click Stop and disconnect the USB cable.
- 9. Change S1 (boot mode) to 01 (from 1-2 bit). Change "Boot Switch (SW10,11,12)" to 00000000 (from 1bit-8bit), 00111000 (from 1bit-8bit), 01000000 (from 1bit-8bit) to switch the board back to SD4 boot mode.

6.4 Booting with single display: LVDS display

After downloading the images, you can boot the board by connecting it to the power supply.

In the U-Boot prompt, set the U-Boot environment variables as shown below:

```
U-Boot > setenv bootcmd booti mmc2
U-Boot > setenv bootargs console=ttymxc0,115200 init=/init androidboot.console=ttymxc0
consoleblank=0 androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

6.5 Board reboot

After you have completed download and setup, reboot the board and wait for Android to boot up.

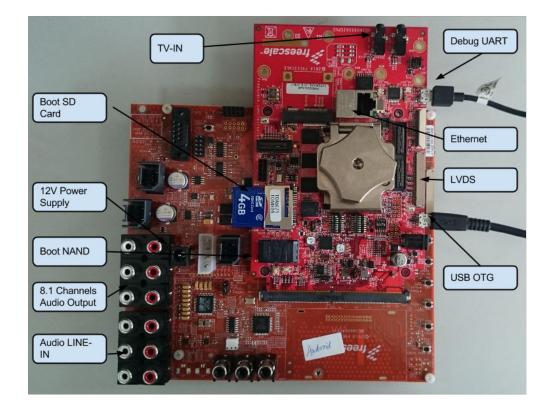


Figure 20. Android KitKat image

7 Working with the i.MX 6SoloX SABRE-AI Board

7.1 Board hardware

The figure below shows the different components of the i.MX 6SoloX SABRE-AI board.

Figure 21. i.MX 6SoloX SABRE-AI board

7.2 Board images

The table below describes the location in the board partitions of the SD card and NAND images in android_KK4.4.3_2.0.0_full_image_6sxqsabreauto.tar.gz.

Image name	Path in release package	Download target
u-boot-imx6sx.imx	λ	SD first 8MB block
boot-imx6sx.img	\SD	SD 1st partition
recovery-imx6sx.img	\SD	SD 2nd partition
system.img	\SD	SD 5th partition
u-boot-imx6sx-nand.i mx	۸.	NAND 1st 64 MB MTD partition
boot-imx6sx.img	NAND	NAND 2nd 16 MB MTD partition
recovery-imx6sx.img	NAND	NAND 3rd 16 MB MTD partition
android_root.img	NAND	UBIFS volume for 4th MTD partition

Table 8. Board images

7.3 Downloading board images

The board images can be downloaded to the target board by using the MFGTool. The release package includes MFGTool for i.MX 6Dual/6Quad, i.MX 6Solo/6DualLite, i.MX 6SoloX and i.MX 6SoloLite in android_ KK4.4.3_2.0.0_tools.tar.gz. The MFGTool is mfgtools.tar.gz.

NOTE

The MFGTool only works in the Windows OS environment.

Perform the following steps to download the board images:

- 1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this example.
- 2. If the directory does not exist, create the "android/sabreauto" directory under the MFGTool-Dir/Profiles/Linux/OS Firmware/files path.
- 3. Copy following files from either release_package/android_KK4.4.3_2.0.0_core_image_6sxsabreseauto.tar.gz or release_package/android_KK4.4.3_2.0.0_full_image_6sxsabeauto.tar.gz to the MFGTool-Dir/Profiles/Linux/OS Firmware/files/android/sabreauto path.
 - u-boot-imx6sx.imx
 - SD/boot-imx6sx.img
 - SD/system.img
 - SD/recovery-imx6sx.img

NOTE

- Do not replace other files in files directory and OS firmware directory.
- When the NAND boot is used, the files are in the "nand" folder, and you can use android_root.img instead system.img. The bootloader should be u-boot-imx6sx-nand.imx. Change S3,S4 to 00000000,00000001.
- Change the SABRE-AI S1 (boot mode) to 0101 (from 1-4 bit) to enter download mode. Change SW3,SW4 (boot configuration) to 00001100, 01000010 to boot from SD.
- 4. Power on the board. Use the USB cable on the OTG port of the i.MX SoloX SABRE-AI board, and connect your Windows OS computer with the i.MX SoloX SABRE-AI board.

NOTE

The USB micro port on the SABRE-AI board is J10.

5. Double click the *.vbs file according to the target device as shown in the following table.

Table 9. MFGTool VBS file

Target device and boot storage	VBS file
i.MX SoloX SABRE-AI SD	mfgtool2-android-mx6sx-sabreauto-sdcard.vbs
i.MX 6SoloX SABRE-AI NAND	mfgtool2-android-mx6sx-sabreauto-nand.vbs

6. Click Start to start downloading images.

Working with the i.MX 6SoloX SABRE-AI Board

MfgTool_MultiPanel		
Hub 6-Port 3	Status Information	
Drive(s):	Successful Operations:	0
	Failed Operations:	0
HID-compliant device	Failure Rate:	0 %
	Start	Exit

Figure 22. Starting download

The figure below shows the downloading in progress where the status bar shows the download status. The download may take one to two minutes depending on the host machine.

MfgTool_MultiPanel		
Hub 6Port 3	Status Information	
Drive(s): E:	Successful Operations:	0
	Failed Operations:	0
Partitioning	Failure Rate:	0 %
	Stop	Exit

Figure 23. Download status

The figure below shows the tool when the download is complete.

MfgTool_MultiPanel		
Hub 6-Port 3	Status Information	
Drive(s): E:	Successful Operations:	1
	Failed Operations:	0
Done	Failure Rate:	0.00 %
	Stop	Exit

Figure 24. Download complete

- 7. Click Stop and disconnect the USB cable.
- 8. Change "Boot Switch(S1)" to 0010 (1-4 bit) to switch the board back to SD boot mode. Change the board boot switch to (S1, SW3,SW4) 0010, 00000000,00000001 (from 1bit) to boot from NAND.

7.4 Booting with single display: LVDS display

After downloading the images, you can boot the board by connecting it to the power supply.

Working with the i.MX 6SoloX SABRE-AI Board

There are two LVDS ports on the SABRE-AI board, LVDS0, and LVDS1. LVDS0 is taken as the primarly display in this release. The LVDS0 port is on the CPU board. The LVDS1 is on the base board.

To boot from SD, set the U-Boot environment variables as follows

```
U-Boot > setenv bootcmd booti mmc0
U-Boot > setenv bootargs console=ttymxc0,115200 init=/init androidboot.console=ttymxc0
consoleblank=0 androidboot.hardware=freescale cma=384M
U-Boot > saveenv
```

To boot from NAND, set the U-Boot environment variables as follows:

```
U-Boot > setenv bootcmd 'nand read 0x80800000 0x4000000 0x1000000;booti0x80800000'
U-Boot > setenv bootargs console=ttymxc0,115200 init=/init video=mxcfb0:dev=ldb,bpp=32
video=mxcfb1:off video=mxcfb2:off video=mxcfb3:off vmalloc=400M androidboot.console=ttymxc0
consoleblank=0 androidboot.hardware=freescale mtdparts=gpminand:64m(bootloader),16m(bootimg),
16m(recovery),(root)vubi.mtd=5 cma=384M
U-Boot > saveenv
```

7.5 Board reboot

After you have completed download and setup, reboot the board and wait for Android to boot up.

Figure 25. Android KitKat image

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and ARM Cortex-A9 are registered trademarks of ARM Limited.

© 2015 Freescale Semiconductor, Inc.

Document Number: AQSUG Rev. KK4.4.3_2.0.0-ga 02/2015

