
i.MX 6Dual/6Quad BSP Porting Guide

Document Number: IMX6DQBSPPG
Rev L3.0.35_4.0.0, 05/2013

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Porting U-Boot from an i.MX 6Dual/6Quad Reference Board to an i.MX 6Dual/6Quad Custom Board

1.1 U-Boot Overview..7

1.2 Obtaining the Source Code for the U-Boot...7

1.2.1 Preparing the Code...7

1.3 Customizing the i.MX 6 Custom Board Code..9

1.3.1 Changing the DCD Table for i.MX 6 DDR3 Initialization..10

1.3.2 Booting with the Modified U-Boot ...10

1.3.3 Add New Driver Initialize Code to Board Files..11

1.3.4 Further Customization at System Boot..12

1.3.5 Customizing the Printed Board Name...12

1.4 How to Debug...13

1.4.1 Use RealView ICE for Debugging...13

1.4.2 Use printf for debugging..13

Chapter 2
Configuring the IOMUX Controller

2.1 IOMUX Overview..15

2.2 Information for Setting IOMUX Controller Registers..15

2.3 Setting Up the IOMUX Controller and U-Boot..16

2.3.1 Defining the Pads...16

2.3.2 Configuring IOMUX Pins for Initialization Function...17

2.3.3 Example-Setting a GPIO..17

2.4 Setting Up the IOMUX Controller in Linux...18

2.4.1 IOMUX Configuration Definition...18

2.4.2 Machine Layer File..19

2.4.3 Example -Setting a GPIO...20

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 3

Section number Title Page

Chapter 3
Registering a New UART Driver

3.1 UART Overview...21

3.1.1 Configuring UART Pads on IOMUX..21

3.1.2 Enabling UART on Kernel Menuconfig..22

3.1.3 Testing the UART..22

3.1.4 File Names and Locations..22

Chapter 4
Adding Support for SDHC

4.1 SDHC Overview...25

Chapter 5
Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

5.1 SPI NOR Overview...27

5.2 Source code structure..27

5.2.1 Configuration options..27

5.2.2 Selecting SPI NOR on the Linux image..28

5.3 Changing the SPI interface configuration...29

5.3.1 Changing the ECSPI Interface...29

5.3.2 Changing the Chip Select...29

5.3.3 Changing the external signals..29

5.4 Hardware Operation..29

5.4.1 Software Operation..30

Chapter 6
Connecting an LVDS Panel to an i.MX6 Reference Board

6.1 LVDS Overview...33

6.1.1 Connecting an LVDS Panel to the i.MX6 Reference Board..33

6.2 Enabling a LVDS Channel..34

6.2.1 Locating Menu Configuration Options ...34

6.3 LDB Ports...35

6.3.1 Input Parallel Display Ports...36

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

4 Freescale Semiconductor, Inc.

Section number Title Page

6.3.2 Output LVDS Ports..36

6.4 Further Reading..36

Chapter 7
Supporting the i.MX6 Camera Sensor Interface CSI0

7.1 CSI Overview..39

7.1.1 Required Software ...39

7.1.2 i.MX6 CSI Interfaces Layout...40

7.1.3 Configuring the CSI Unit in Test Mode...40

7.2 Adding Support for a New CMOS Camera Sensor..41

7.2.1 Adding a Camera Sensor Entry on the ltib Catalog (Kconfig)..41

7.2.2 Creating the Camera Sensor File...42

7.2.3 Adding a Compilation Flag for the New Camera..44

7.3 Using the I2C Interface...45

7.3.1 Loading and Testing the Camera Module..47

7.4 Additional Reference Information..48

7.4.1 CMOS Interfaces Supported by the i.MX6DualLite...48

7.4.2 i.MX6 CSI Parallel Interface...50

7.4.3 Timing Data Mode Protocols...51

Chapter 8
Porting Audio Codecs to a Custom Board

8.1 Audio Overview..53

8.1.1 Common Porting Task...53

8.1.2 Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference design)................54

8.1.3 Porting the Reference BSP to a Custom Board (audio codec is different than the reference design).................54

Chapter 9
Porting the Fast Ethernet Controller Driver

9.1 FEC Overview..57

9.1.1 Pin Configuration...57

9.1.2 Source Code...58

9.1.3 Ethernet Configuration...59

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 5

Section number Title Page

Chapter 10
Porting USB Host1 and USB OTG

10.1 USB Overview..61

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

6 Freescale Semiconductor, Inc.

Chapter 1
Porting U-Boot from an i.MX 6Dual/6Quad Reference
Board to an i.MX 6Dual/6Quad Custom Board

1.1 U-Boot Overview
This chapter provides a step-by-step guide that explains how to add i.MX 6 custom board
support to U-Boot.

This developer's guide is based on U-Boot version 2009.08 plus LTIB-based package for
the i.mx patches. Please refer to the release notes.

1.2 Obtaining the Source Code for the U-Boot
The following steps explain how to obtain the source code.

1. Install LTIB as usual. Make sure you deselect U-Boot from compilation.
2. Manually unpack U-Boot: ./ltib -m prep -p u-boot

The U-Boot code is now located at rpm/BUILD/u-boot-<version number>. The guide
will now refer to the U-Boot main directory as <UBOOT_DIR> and assumes that your
shell working directory is <UBOOT_DIR>.

1.2.1 Preparing the Code

The following steps explain how to prepare the code.

1. Make a copy of the board directory, as shown below:

$cp -R board/freescale/mx6_<reference board name> board/freescale/mx6_<custom board
name>

2. Copy the existing mx6_<reference board name>.h board configuration file as
mx6_<custom board name>.h, as shown below:

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 7

$cp include/configs/mx6_<reference board name>.h include/configs/mx6_<custom board
name>.h

NOTE
You should pay attention to the following configurations
when using a new board.

• CONFIG_LOADADDR: Normally your uImage will be
loaded to this address for boot.

• CONFIG_SYS_MALLOC_LEN: Heap memory size.
• CONFIG_STACKSIZE: Stack size.
• CONFIG_NR_DRAM_BANKS: Number of ddr banks.
• PHYS_SDRAM_x, PHYS_SDRAM_x_SIZE: DDR bank

x start address and size (where x denotes an index
between 0 and CONFIG_NR_DRAM_BANKS-1,
inclusive).

• CONFIG_NR_DRAM_BANKS, PHYS_SDRAM_x and
PHYS_SDRAM_x_SIZE will be passed to kernel. If
these configs are wrong, kernel might fail to boot.

• Config file is important for U-Boot. Most times it
decides size, functionality, and performance of u-
boot.bin.

3. Create one entry in <UBOOT_DIR>/Makefile for the new i.MX 6Dual/6Quad-based
configuration. This file is in alphabetical order. The instruction for use is as follows:

mx6_<custom board name>_config : unconfig
 @$(MKCONFIG) $(@:_config=) arm arm_cortexa8 mx6_<custom board name> freescale
mx6

NOTE
U-Boot project developers recommend adding any new
board to the MAKEALL script and to run this script in
order to validate that the new code has not broken any other
platform build. This is a requirement if you plan to submit a
patch back to the U-Boot community. For further
information, consult the U-Boot README file.

4. Rename

board/freescale/mx6_<reference board name>/mx6_<reference board name>.c

as

board/freescale/mx6_<custom board name>/mx6_<custom board name>.c.

Obtaining the Source Code for the U-Boot

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

8 Freescale Semiconductor, Inc.

5. Adapt any fixed paths. In this case, the linker script board/freescale/mx6_<custom
board name>/u-boot.lds has at least two paths that must be changed

• Change

board/freescale/mx6_<reference board name>/flash_header.o

to

board/freescale/mx6_<custom board name>/flash_header.o

• Change

board/freescale/mx6_<reference board name>/libmx6_<reference board name>.a

to

board/freescale/mx6_<custom board name>/libmx6_<custom board name>.a

6. Change the line

COBJS := mx6_<reference board name>.o (inside board/freescale/mx6_<custom board
name>/Makefile)

to

COBJS := mx6_<custom board name>.o

NOTE
The remaining instructions build the U-Boot manually and
do not use LTIB.

7. Create a shell script under <UBOOT_DIR> named build_u-boot.sh.

The file contents are now:

#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=<path to cross compiler prefix> (e.g.
PATH:/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-
none-linux-gnueabi-)
make distclean;
make mx6_<custom board name>_config
make

8. Compile U-Boot using $./build_u-boot.sh
9. If everything is correct, you should now have u-boot.bin as proof that your build

setup is correct and ready to be customized.

The new i.MX6 custom board that you have created is an exact copy of the i.MX6
reference board, but the boards are two independent builds. This allows you to proceed to
the next step: customizing the code to suit the new hardware design.

Chapter 1 Porting U-Boot from an i.MX 6Dual/6Quad Reference Board to an i.MX 6Dual/6Quad Custom Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 9

1.3 Customizing the i.MX 6 Custom Board Code
The new i.MX 6 custom board is part of the U-Boot source tree, but it is a duplicate of
the i.MX 6 reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards.

If there is a difference in the DDR technology between the two boards, the DDR
initialization needs to be ported. DDR initialization is coded in the DCD table, inside the
boot header of the U-Boot image. When porting bootloader, kernel or driver code, you
must have the schematics easily accessible for reference.

1.3.1 Changing the DCD Table for i.MX 6 DDR3 Initialization

Initializing the memory interface requires configuring the relevant I/O pins with the right
mode and impedance and initializing the MMDC module.

1. To port to the custom board, the appropriate DDR initialization needs to be used.
This is the same initialization as would be used in a JTAG initialization script.

2. Open the file

board/freescale/mx6_<custom board name>/flash_header.S

3. Modify all MXC_DCD_ITEM macros to match the memory specifications. These
code blocks will be read by ROM code to initialize your DDR memory.

4. Modify dcd_hdr and write_dcd_cmd value.

NOTE
If you change the number of MXC_DCD_ITEM lines in the
DCD table, you must update the value of the dcd_hdr and
write_dcd_cmd labels according to the number of items.

• dcd_hdr is comprised of tag(0xD2), len and version(0x40),
where len = <dcd items> * 8 + 8.

e.g.

len = 128, dcd_hdr = 0x400804D2 (Tag=0xD2, Len=128*8 + 4 + 4,
Ver=0x40)

• write_dcd_cmd is comprised of tag(0xCC), len and
param(0x04), where len = <dcd items> * 8 + 4.
e.g.

len = 128, write_dcd_cmd = 0x040404CC (Tag=0xCC, Len=128*8 +
4, Param=0x04)

Customizing the i.MX 6 Custom Board Code

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

10 Freescale Semiconductor, Inc.

1.3.2 Booting with the Modified U-Boot

The content below explains how to compile and write u-boot.bin to SD card.

If the DCD table (board/freescale/mx6_<custom board name>/flash_header.S) was
modified successfully, you can compile and write u-boot.bin to an SD card. To test this,
insert the SD card into the SD card socket of the CPU board and power cycle the board.

A message like this should be printed in the console:

U-Boot 2009.08-00410-ga32bc11 (Dec 15 2011 - 13:19:05)

CPU: Freescale i.MX 6 family 0.0V at 792 MHz
mx6 pll1: 792MHz
mx6 pll2: 528MHz
mx6 pll3: 480MHz
mx6 pll8: 50MHz
ipg clock : 66000000Hz
ipg per clock : 66000000Hz
uart clock : 80000000Hz
cspi clock : 60000000Hz
ahb clock : 132000000Hz
axi clock : 264000000Hz
emi_slow clock: 29333333Hz
ddr clock : 528000000Hz
usdhc1 clock : 200000000Hz
usdhc2 clock : 200000000Hz
usdhc3 clock : 200000000Hz
usdhc4 clock : 200000000Hz
nfc clock : 24000000Hz
Board: MX6-<reference board name>:[POR]
Boot Device: SD
I2C: ready
DRAM: 2 GB
MMC: FSL_USDHC: 0,FSL_USDHC: 1,FSL_USDHC: 2,FSL_USDHC: 3
In: serial
Out: serial
Err: serial
Net: got MAC address from IIM: 00:00:00:00:00:00
FEC0 [PRIME]
Hit any key to stop autoboot: 0
<reference board name>: U-Boot >

1.3.3 Add New Driver Initialize Code to Board Files

The following steps explain how to add new driver initialize code.

1. Find mx6_<customer_board>.c in board/freescale/mx6_<customer_board>/.
2. Edit mx6_<customer_board>.c and add new module driver’s initialization code,

including clock, iomux, and gpio.
3. Put driver init function into board_init or board_late_init.

NOTE
• board_init() function will be called earlier before

UART initialization. Please do not attempt to use printf

Chapter 1 Porting U-Boot from an i.MX 6Dual/6Quad Reference Board to an i.MX 6Dual/6Quad Custom Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 11

in this function, otherwise U-Boot will crash. Most of
driver init functions are put into board_init() function.

• board_late_init() function will be called fairly later.
For debugging initialization code, driver init functions
may be put in it.

1.3.4 Further Customization at System Boot

To further customize your U-Boot board project, use the first function that system boot
calls on:

start_armboot in "lib_arm/board.c".
board_init()

All board initialization is executed inside this function. It starts by running through the
init_sequence[] array of function pointers.

The first board dependent function inside init_sequence[] array is board_init().
board_init() is implemented inside board/freescale/mx6_<custom board name>.c.

At this point the most important tip is the following line of code:

...
gd->bd->bi_arch_number = MACH_TYPE_MX6_<reference board name>; /* board id for Linux */
...

To customize your board ID, go to the registration process at http://
www.arm.linux.org.uk/developer/machines/

This tutorial will continue to use MACH_TYPE_MX6_<reference board name>.

1.3.5 Customizing the Printed Board Name

To customize the printed board name, use the checkboard() function.

This function is called from the init_sequence[] array implemented inside board/
freescale/mx6_<custom board name>.c. There are two ways to use checkboard() to
customize the printed board name. The brute force way or by using a more flexible
identification method if implemented on the custom board.

To customize the brute force way, delete the call to identify_board_id() inside
checkboard() and replace printf("Board: "); with printf("Board: i.MX6 on <custom
board>\n");

Customizing the i.MX 6 Custom Board Code

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

12 Freescale Semiconductor, Inc.

http://www.arm.linux.org.uk/developer/machines/
http://www.arm.linux.org.uk/developer/machines/

If this replacement is not made, the custom board may use another identification method.
The identification can be detected and printed by implementing the function
__print_board_info() according to the identification method on the custom board.

1.4 How to Debug
Normally we have two ways for debugging:

• Use Realview ICE.
• Use printf.

1.4.1 Use RealView ICE for Debugging

Normally we use RealView ICE to debug in very early stage, e.g. before uart
initialization, or when it is hard to debug with printf.

1. Make sure your RealView ICE can support cortex A9. If not, you need to upgrade
the firmware and your RealView software.

2. Load U-Boot (which is an elf file) in root directory of U-Boot fully, or just symbol
(faster) to debug step by step.

NOTE
We can make optimization level 0 in rules.mk which will
be easier for debugging in RealView ICE.

1.4.2 Use printf for debugging

This is the most common method we use in debugging. You can print your value in
driver for debugging.

NOTE
If we want to use printf in early stages, e.g. in board_init, we
can put uart initialization code earlier, e.g. to start_armboot() in
board.c of lib_arm directory.

Chapter 1 Porting U-Boot from an i.MX 6Dual/6Quad Reference Board to an i.MX 6Dual/6Quad Custom Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 13

How to Debug

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

14 Freescale Semiconductor, Inc.

Chapter 2
Configuring the IOMUX Controller

2.1 IOMUX Overview

Before using the i.MX 6Dual/6Quad pins (or pads), users must select the desired function
and correct values for characteristics such as voltage level, drive strength, and hysteresis.
They do this by configuring a set of registers from the IOMUX controller.

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter in the i.MX 6Dual/6Quad Multimedia Applications Processor Reference Manual.
For additional information about the IOMUX controller block, see the "IOMUX
Controller (IOMUXC)" chapter in the i.MX 6Dual/6Quad Multimedia Applications
Processor Reference Manual.

2.2 Information for Setting IOMUX Controller Registers
The IOMUX controller contains four sets of registers that affect the i.MX 6Dual/6Quad
registers, as follows:

• General-purpose registers (IOMUXC_GPRx)-consist of registers that control PLL
frequency, voltage, and other general purpose sets.

• "Daisy Chain" control registers (IOMUXC_<Instance_port>_SELECT_INPUT)-
control the input path to a module when more than one pad may drive the module's
input

• MUX control registers (changing pad modes):
• Select which of the pad's 8 different functions (also called ALT modes) is used.
• Can set pad's functions individually or by group using one of the following

registers:
• IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>
• IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>

• Pad control registers (changing pad characteristics):

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 15

• Set pad characteristics individually or by group using one of the following
registers:

• IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>
• IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>
• Pad characteristics are:

• SRE (1 bit slew rate control)-Slew rate control bit; selects between FAST/
SLOW slew rate output. Fast slew rate is used for high frequency designs.

• DSE (2 bits drive strength control)-Drive strength control bits; select the
drive strength (low, medium, high, or max).

• ODE (1 bit open drain control)-Open drain enable bit; selects open drain or
CMOS output.

• HYS (1 bit hysteresis control)-Selects between CMOS or Schmitt Trigger
when pad is an input.

• PUS (2 bits pull up/down configuration value)-Selects between pull up or
down and its value.

• PUE (1 bit pull/keep select)-Selects between pull up or keeper. A keeper
circuit help assure that a pin stays in the last logic state when the pin is no
longer being driven.

• PKE (1 bit enable/disable pull up, pull down or keeper capability)-Enable or
disable pull up, pull down, or keeper.

• DDR_MODE_SEL (1 bit ddr_mode control)-Needed when interfacing DDR
memories.

• DDR_INPUT (1 bit ddr_input control)-Needed when interfacing DDR
memories.

2.3 Setting Up the IOMUX Controller and U-Boot
The IOMUX controller contains four sets of registers that affect the i.MX 6Dual/6Quad
registers as follows:

Table 2-1. Configuration Files

Path Filename Description

cpu/arm_cortexa8/mx6/ iomux-v3.c Iomux functions (no need to change)

include/asm-arm/arch-mx6/ iomux-v3.h Iomux definitions (no need to change)

include/asm-arm/arch-mx6/ mx6_pins.h Definition of all processor's pads

board/freescale/mx6_<reference board name>/ mx6_<reference board name>.c Board initialization file

Setting Up the IOMUX Controller and U-Boot

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

16 Freescale Semiconductor, Inc.

2.3.1 Defining the Pads

The iomux-mx6x.h file contains each pad's IOMUX definitions where the x denotes the
SOC type. Use the following code to see the default definitions:

#define MX6x_PAD_<PIN NAME>__<FUNC NAME> (_MX6x_PAD_<PIN NAME>__<FUNC NAME> |
MUX_PAD_CTRL(MX6x_<PAD CTRL>))

To change the values for each pad according to your hardware configuration, use the
following:

_MX6x_PAD_<PIN NAME>__<FUNC NAME> = IOMUX_PAD(_pad_ctrl_ofs, _mux_ctrl_ofs, _mux_mode,
_sel_input_ofs, _sel_input, _pad_ctrl)

Where:

• _pad_ctrl_ofs - PAD Control Offset
• _mux_ctrl_ofs - MUX Control Offset
• _mux_mode -MUX Mode
• _sel_input_ofs - Select Input Offset
• _sel_input - Select Input
• _pad_ctrl - PAD Control

MX6x_<PAD CTRL> = (pull_keep_en | pull_keep_sel | pull_config | speed | drive_strength |
slew_rate | hyst_en | open_drain_en)

2.3.2 Configuring IOMUX Pins for Initialization Function

The board-mx6x_<reference board name>.c file contains the initialization functions for
all peripherals (such as UART, I2C, and Ethernet). Configure the relevant pins for each
initializing function by using the following:

mxc_iomux_v3_setup_pad(iomux_v3_cfg_t pad);
mxc_iomux_v3_setup_multiple_pads(iomux_v3_cfg_t *pad_list, unsigned count)

Where the following applies:

<pad> < is a macro composed of mux mode, pad ctrl, and input select config. See
IOMUX_PAD() definition in arch/arm/plat-mxc/include/mach/iomux-v3.h;

<pad_list> is an array of <pad>;

<count> is the size of the array of <pad>;

2.3.3 Example-Setting a GPIO

For example, configure and use pin SD2_DAT1 as a general GPIO and toggle its signal.

Chapter 2 Configuring the IOMUX Controller

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 17

Add the following code to the file board-mx6x_<reference board name>.h, in the array of
mx6x_<reference board name>_pads where x denotes the SOC type:

MX6x_PAD_SD2_DAT1__GPIO1_14;

Make sure that no any other SD2_DAT1 configuration exists in the array. Then, if done
correctly, the pin SD2_DAT1 on the i.MX 6Dual/6Quad toggles when booting.

2.4 Setting Up the IOMUX Controller in Linux
The folder linux/arch/arm/mach-<platform name> contains the specific machine layer file
for your custom board.

For example, the machine layer file used on the i.MX 6Dual/6Quad <reference> boards
are linux/arch/arm/mach-mx6/board-mx6x_<reference board name>.c. This platform is
used in the examples in this section. The machine layer files include the IOMUX
configuration information for peripherals used on a specific board.

To set up the IOMUX controller and configure the pads, change the two files described in
table below:

Table 2-2. IOMUX Configuration Files

Path File name Description

linux/arch/arm/plat-mxc/include/mach/ iomux-mx6x.h(x
denotes SOC type)

IOMUX configuration definitions

linux/arch/arm/mach-mx6 board-
mx6x_<reference
board name>.h

Machine Layer File. Contains IOMUX configuration
structures

2.4.1 IOMUX Configuration Definition

The iomux-mx6x.h (x denotes SOC type) file contains definitions for all i.MX 6Dual/
6Quad pins. Pin names are formed according to the formula <SoC>_PAD_<Pad
Name>_GPIO_<Instance name>_<Port name>. Definitions are created with the
following line code:

IOMUX_PAD(PAD Control Offset, MUX Control Offset, MUX Mode, Select Input Offset, Select
Input, Pad Control)

The variables are defined as follows:

PAD Control Offset Address offset to pad control register
(IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>)

Setting Up the IOMUX Controller in Linux

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

18 Freescale Semiconductor, Inc.

MUX Control Offset Address offset to MUX control register
(IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>)

MUX Mode MUX mode data, defined on MUX control registers

Select Input Offset Address offset to MUX control register
(IOMUXC_<Instance_port>_SELECT_INPUT)

Select Input Select Input data, defined on select input registers

Pad Control Pad Control data, defined on Pad control registers

Definitions can be added or changed as shown in the following example code:

#define MX6x_PAD_SD2_DAT1__USDHC2_DAT1 IOMUX_PAD (0x0360, 0x004C, 0, 0x0000, 0, 0)

The variables are as follows:

0x0360 - PAD Control Offset

0x004C - MUX Control Offset

0 - MUX Mode

0x0000 - Select Input Offset

0 - Select Input

0 - Pad Control

For all addresses and register values, check the IOMUX chapter in the i.MX 6Dual/
6Quad Applications Processor Reference Manual.

2.4.2 Machine Layer File

The board-mx6x_<reference board name>.h file contains structures for configuring the
pads(x denotes the SOC type).

They are declared as follows:

static iomux_v3_cfg_t mx6x_<reference board name>_pads[] = {
…
…
…
MX6x_PAD_SD2_CLK__USDHC2_CLK,
MX6x_PAD_SD2_CMD__USDHC2_CMD,
MX6x_PAD_SD2_DAT0__USDHC2_DAT0,
MX6x_PAD_SD2_DAT1__USDHC2_DAT1,
MX6x_PAD_SD2_DAT2__USDHC2_DAT1,
MX6x_PAD_SD2_DAT3__USDHC2_DAT3,
…
…
…
};

Chapter 2 Configuring the IOMUX Controller

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 19

Add the pad's definitions from iomux-mx6x.h to the above code.

On init function (in this example "mx6x_<reference board name>_init" function), set up
the pads using the following function:

mxc_iomux_v3_setup_multiple_pads(mx6x_<reference board name>_pads,
ARRAY_SIZE(mx6x_<reference board name>_pads));

2.4.3 Example -Setting a GPIO

For example, configure the pin PATA_DA_1 (PIN L3) as a general GPIO and toggle its
signal.

On Kernel menuconfig, add sysfs interface support for GPIO with the following code:

Device Drivers --->

 [*] GPIO Support --->

 [*] /sys/class/gpio/... (sysfs interface)

Define the pad on iomux-mx6x.h (x denotes SOC type) file as follows:

#define MX6x_PAD_SD2_DAT1__GPIO_1_14 IOMUX_PAD(0x0360, 0x004C, 5, 0x0000, 0, 0)

Parameters:

0x0360 - PAD Control Offset

0x004C - MUX Control Offset

5 - MUX Mode

0x0000 - Select Input Offset

0 - Select Input

0 - Pad Control

To register the pad, add the previously defined pin to the pad description structure in the
board-mx6x_<reference board name>.h file as shown in the following code:

static iomux_v3_cfg_t mx6x_<reference board name>_pads[] = {
…
…
…
MX6x_PAD_NANDF_CS0__GPIO_6_11,
…
…
…
};

Setting Up the IOMUX Controller in Linux

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

20 Freescale Semiconductor, Inc.

Chapter 3
Registering a New UART Driver

3.1 UART Overview
This chapter explains how to configure the UART pads, enable the UART driver, and test
that the UART was set up correctly.

3.1.1 Configuring UART Pads on IOMUX

The IOMUX register must be set up correctly before the UART function can be used.
This section provides example code to show how to set up the IOMUX register.

Pads are configured using the file linux/arch/arm/mach-mx6/<platform>.c, with
<platform> replaced by the appropriate platform file name.

Take the imx6x, where x denotes the SOC type, (since i.mx6dl and i.mx6dq are pin-pin
compatible, they are using the same board file) reference board as an example. The
machine layer file used on the i.MX6x reference boards is linux/arch/arm/mach-mx6/
board-mx6x_evk.c.

The iomux-mx6x.h file contains the definitions for all i.MX 6Dual/6Quad pads.
Configure the UART pads as follows:

/* UART4 */
#define MX6x_PAD_KEY_COL0_UART4_TXD
 \(_MX6x_PAD_KEY_COL0__UART4_TXD | MUX_PAD_CTRL(MX6x_UART_PAD_CTRL)

#define MX6x_PAD_KEY_ROW0_UART4_TXD
 \(_MX6x_PAD_KEY_RAW0__UART4_TXD | MUX_PAD_CTRL(MX6x_UART_PAD_CTRL)

The structures for configuring the pads are contained in the mx6x_<reference board
name>.h file. Update them so that they match the configured pads' definition as shown
above. The code below shows the non-updated structures:

static iomux_v3_cfg_t mx6x_brd_pads[] = {
…
…
…

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 21

 MX6x_PAD_KEY_COL0_UART4_TXD,
 MX6x_PAD_KEY_ROW0_UART4_TXD,
…
…
…
};

Use the following function to set up the pads on the init function mx6_evk_init() (found
in the board-mx6x_evk.c file).

3.1.2 Enabling UART on Kernel Menuconfig

Enable the UART driver on Linux menuconfig. This option is located at:

-> Device Drivers

 -> Character devices

 -> Serial drivers

 <*> IMX serial port support
 [*] Console on IMX serial port

After enabling the UART driver, build the Linux kernel and boot the board.

3.1.3 Testing the UART

By default, the UART is configured as follows:

• Baud Rate: 9600
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow Control: None

If the user employed a different UART configuration for a device that needs to connect to
the processor, connection and communication will fail. There is a simple way to test
whether the UART is properly configured and enabled.

In Linux command line, type the following:

echo "test" > /dev/ttymxc1

3.1.4 File Names and Locations

There are three Linux source code directories that contain relevant UART files.

UART Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

22 Freescale Semiconductor, Inc.

Table below lists the UART files that are available on the directory <linux source code
directory>/drivers/tty/serial/

Table 3-1. Available Files-First Set

File Description

imx.c uart driver

Table below lists the UART files that are available on the directory <linux source code
directory>/arch/arm/plat-mxc/include/mach/

Table 3-2. Available Files-Second Set

File Description

imx_uart.h UART header containing UART configuration and data structures

iomux-<platform>.h IOMUX pads definitions

Chapter 3 Registering a New UART Driver

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 23

UART Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

24 Freescale Semiconductor, Inc.

Chapter 4
Adding Support for SDHC

4.1 SDHC Overview
uSDHC has 14 associated I/O signals.

The following list describes the associated I/O signals.

Signal Overview

• The SD_CLK is an internally generated clock used to drive the MMC, SD, and SDIO
cards.

• The CMD I/O is used to send commands and receive responses to/from the card.
Eight data lines (DAT7~DAT0) are used to perform data transfers between the
SDHC and the card.

• The SD_CD# and SD_WP are card detection and write protection signals directly
routed from the socket. These two signals are active low (0). A low on SD_CD#
means that a card is inserted and a high on SD_WP means that the write protect
switch is active.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD
interface is busy.

• SD_RST_N is an output signal used to reset MMC card. This should be supported by
card.

• SD_VSELECT is an output signal used to change the voltage of the external power
supplier SD_CD#, SD_WP, SD_LCTL, SD_RST_N, and SD_VSELECT are all
optional for system implementation. If the uSDHC is desired to support a 4-bit data
transfer, DAT7~DAT4 can also be optional and tied to high.

Pin IOMUX

Make modification to IOMUX according to your platform in the following file:

• arch/arm/plat-mxc/include/mach/iomux-mx6q.h

Support of SD3.0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 25

SD3.0 requires 3.3V and 1.8V for signal voltage. Voltage selection needs to be
implemented on your platform.

Support of SDIO

In most cases, SDIO requires more power then SD/MMC memory cards. Make sure that
the power supply is on SD slot while using SDIO, or please apply an external power to
SDIO instead.

SDHC Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

26 Freescale Semiconductor, Inc.

Chapter 5
Configuring the SPI NOR Flash Memory Technology
Device (MTD) Driver

5.1 SPI NOR Overview
This chapter explains how to set up the SPI NOR Flash memory technology device
(MTD) driver.

This driver uses the SPI interface to support the SPI-NOR data Flash devices. By default,
the SPI NOR Flash MTD driver creates static MTD partitions.

The NOR MTD implementation provides necessary information for the upper layer MTD
driver.

5.2 Source code structure
The SPI NOR MTD driver is implemented in the following file:

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/m25p80.c

The SPI NOR MTD partitions are implemented in the following file:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/board-mx6q_<boardname>.c

5.2.1 Configuration options

Freescale's BSP supports the following SPI NOR Flash models.

• "SST 25VF016B" "sst25vf016b"
• "M25P32-VMW3TGB" "m25p32"

Those models are defined in the structure

static const struct spi_device_id m25p_ids[],

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 27

located at

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/m25p80.c

5.2.2 Selecting SPI NOR on the Linux image

Follow these steps to enable support for SPI NOR:

1. Open the file (located at arch/arm/mach-mx6) and modify the structure called static
struct flash_platform_data xxxx_spi_flash_data[]

2. Write the name of the data flash desired on the .type variable of this structure. This
name must be exactly the same as it appears on the m25p_ids[] structure.

3. Set the number of partitions you want to use on the SPI NOR Flash. On the <board
name>.c file, go to the structure called static struct mtd_partition
xxxx_spi_nor_partitions[]

4. Each partition has three elements: the name of the partition, the offset, and the size.
By default, these elements are partitioned into a bootloader section and a kernel
section, and defined as:

 .name = "bootloader",

 .offset = 0,

 .size = 0x00100000,

 .name = "kernel",

 .offset = MTDPART_OFS_APPEND,

 .size = MTDPART_SIZ_FULL,

Bootloader starts from address 0 and has a size of 1M byte. Kernel starts from
address 1M byte.

NOTE
You may create more partitions or modify the size and
names of these ones.

5. To get to the SPI NOR MTD driver, use the command ./ltib -c when located in the
<ltib dir>.

6. On the screen displayed, select Configure the kernel and exit.
7. When the next screen appears, enable the SPI NOR MTD driver. This option is

available under Device Drivers > Memory Technology Device (MTD) support >
Self-contained MTD device drivers > Support most SPI Flash chips (AT26DF,
M25P,). The configuration is called CONFIG_MTD_M25P80. This configuration
enables access to the SPI-NOR chips.

Source code structure

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

28 Freescale Semiconductor, Inc.

5.3 Changing the SPI interface configuration
The i.MX6Q chip has five ECSPI interfaces. By default, the i. MX6Q BSP configures
ECSPI-1 interface in the master mode to connect to the SPI NOR Flash.

5.3.1 Changing the ECSPI Interface

To change the ECSPI interface used, use the following procedure:

1. Locate the file at arch/arm/mach-mx6/<board name>.c
2. Look for the structure spi_board_info. The field bus_num decides which ECSPI

module to use. This starts from 0 which indicates ECSPI1 and so on. The field
chip_select decides which chip select to use within the ECSPI module.

3. Use the function spi_board_register_info() to register the ECSPI interface.

5.3.2 Changing the Chip Select

To change the chip select used, locate the file at arch/arm/mach-mx6/board-mx6q<board
name>.c and use the static struct spi_board_info structure.

Replace the value of ".chip_select" variable with the desired chip select value. For
example, .chip_select = 3 sets the chip select to number 3 on the ECSPI interface.

5.3.3 Changing the external signals

The iomux-mx6q.h/iomux-mx6sl.h file contains the definitions for all pads. Find the
configuration for the ESCPI pins needed for the SPI-NOR and add it to the
<boardname>_pads[] structure found in arch/arm/mach-mx6/board-<board name>.h.

5.4 Hardware Operation
SPI NOR Flash is SPI compatible with frequencies up to 66 MHz.

The memory is organized in pages of 512 bytes or 528 bytes. SPI NOR Flash also
contains two SRAM buffers of 512/528 bytes each which allows data reception while a
page in the main memory is being reprogrammed. It also allows the writing of a
continuous data stream.

Chapter 5 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 29

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash
accesses data sequentially. It operates from a single 2.7-3.6 V power supply for program
and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-wire
interface: serial input, serial output, and serial clock.

5.4.1 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system.

Figure below illustrates the relationships between standard components.

Figure 5-1. Components of a Flash-based file system

Hardware Operation

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

30 Freescale Semiconductor, Inc.

The MTD subsystem for Linux is a generic interface to memory devices such as Flash
and RAM which provides simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2, and
CRAMFS file systems. The SPI NOR MTD driver is based on the MTD data Flash driver
in the kernel by adding SPI accesses.

In the initialization phase, the SPI NOR MTD driver detects a data Flash by reading the
JEDEC ID. The driver then adds the MTD device. The SPI NOR MTD driver also
provides the interfaces to read, write, erase NOR Flash.

Chapter 5 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 31

Hardware Operation

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

32 Freescale Semiconductor, Inc.

Chapter 6
Connecting an LVDS Panel to an i.MX6 Reference
Board

6.1 LVDS Overview
This chapter explains how to connect the LVDS panel to an i.MX6 reference board. The
i.MX6 processor has a LVDS display bridge (LDB) block that drives LVDS panels
without external bridges. The LDB supports the flow of synchronous RGB data from the
IPU to external display devices through the LVDS interface. This support covers the
following activities:

• Connectivity to relevant devices-display with an LVDS receiver.
• Arranging the data as required by the external display receiver and by LVDS display

standards.
• Synchronization and control capabilities.

6.1.1 Connecting an LVDS Panel to the i.MX6 Reference Board

The following LVDS panels were tested on the i.MX6 reference boards:

• HannStar display (model number: HSD100PXN1)

The kernel command line for 24-bit LVDS panels (4 pairs of LVDS data signals) displays
the following lines if the panel is properly connected:

LVDS0 and LVDS1 on the board: video=mxcfb0:dev=ldb,LDB-XGA,if=RGB24 video=mxcfb1:dev=ldb,LDB-
XGA,if=RGB24 ldb=sep0

The kernel command line for 18-bit LVDS panels (3 pairs of LVDS data signals) displays
the following lines if the panel is properly connected:

LVDS0 and LVDS1 on the board: video=mxcfb0:dev=ldb,LDB-XGA,if=RGB666
video=mxcfb1:dev=ldb,LDB-XGA,if=RGB666 ldb=sep0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 33

6.2 Enabling a LVDS Channel
The LDB driver source code is available at <ltib_dir>/rpm/BUILD/linux/drivers/video/
mxc/ldb.c.

To make a built-in LDB driver functional, add the 'ldb' option to the kernel command
line.

The driver configures the LDB when the device is probed.

When the LDB device is probed properly, the driver uses platform data information to
configure the LDB's reference resistor mode and regulator. The LDB driver probe
function also tries to match video modes for external display devices with an LVDS
interface. The display signal polarities and LDB control bits are set according to the
matched video modes.

The LVDS channel mapping mode and the LDB bit mapping mode of LDB are set
according to the boot up LDB option chosen by the user. If the user has not specified an
option but the video mode can be found in the local video mode database, the driver
chooses an appropriate LDB setting. If no video mode is matched, nothing is done in
probe function. Users can set up the LDB later by using ioctrls. The LDB will be fully
enabled in probe function if the driver finds that the primary display device is a single
display device with an LVDS interface.

The steps the driver takes to enable a LVDS channel are as follows:

1. Set ldb_di_clk's parent clock and the parent clock's rate.
2. Set ldb_di_clk's rate.
3. Enable both ldb_di_clk and its parent clock.
4. Set the LDB in a proper mode, including display signals' polarities, LVDS channel

mapping mode, bit mapping mode, reference resistor mode.

6.2.1 Locating Menu Configuration Options

Linux kernel configuration options are provided for the build-in status to enable this
module. To locate these options, use the following procedure.

1. Go to <ltib dir>.
2. Use the ./ltib -c command.
3. Select Configure the Kernel on the screen displayed and exit.

Enabling a LVDS Channel

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

34 Freescale Semiconductor, Inc.

4. When the next screen appears, follow this sequence: Device Drivers > Graphics
support > MXC Framebuffer support > Synchronous Panel Framebuffer > MXC
LDB

6.3 LDB Ports
Figure below shows the LDB block.

Figure 6-1. i.MX6 LVDS Display Bridge (LDB) Block

The LDB has the following ports:

• Two input parallel display ports.

Chapter 6 Connecting an LVDS Panel to an i.MX6 Reference Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 35

• Two output LVDS channels
• Control signals to configure LDB parameters and operations.
• Clocks from the SoC PLLs.

6.3.1 Input Parallel Display Ports

The LDB is configurable to support either one or two (DI0, DI1) parallel RGB input
ports. The LDB only supports synchronous access mode.

Each RGB data interface contains the following:

• RGB data of 18 or 24 bits
• Pixel clock
• Control signals
• HSYNC, VSYNC, DE, and one additional optional general purpose control
• Transfers a total of up to 28 bits per data interface per pixel clock cycle

The LDB supports the following data rates:

• For dual-channel output: up to 170 MHz pixel clock (e.g. UXGA-1600 x 1200 at 60
Hz + 35% blanking)

• For single-channel output: up to 85 MHz per interface. (e.g. WXGA-1366 x 768 at
60 Hz + 35% blanking).

6.3.2 Output LVDS Ports

The LDB has two LVDS channels, which are used to communicate RGB data and
controls to external LCD displays either through the LVDS interface or through LVDS
receivers. Each channel consists of four data pair and one clock pair, with a pair meaning
an LVDS pad that contains PadP and PadM.

The LVDS ports may be used as follows:

• One single-channel output
• One dual channel output: single input, split to two output channels
• Two identical outputs: single input sent to both output channels
• Two independent outputs: two inputs sent, each to a different output channel

6.4 Further Reading
Please consult the following reference materials for additional information:

Further Reading

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

36 Freescale Semiconductor, Inc.

• i.MX6 Multimedia Applications Processor Reference Manual
• i.MX6 Linux Reference Manual, included as part of the Linux BSP

Chapter 6 Connecting an LVDS Panel to an i.MX6 Reference Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 37

Further Reading

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

38 Freescale Semiconductor, Inc.

Chapter 7
Supporting the i.MX6 Camera Sensor Interface CSI0

7.1 CSI Overview
This chapter provides information about how to use the expansion connector to include
support for a new camera sensor on an i.MX6 reference board.

It explains how to do the following:

• Configure the CSI unit in test mode (Configuring the CSI Unit in Test Mode)
• Add support for a new CMOS sensor in the i.MX6 BSP (Adding Support for a New

CMOS Camera Sensor)
• Set up and use the I2C interface to handle your camera bus (Using the I2C Interface)
• Load and test the camera module (Loading and Testing the Camera Module)

It also provides reference information about the following:

• Required software and hardware
• i.MX6 reference CSI interfaces layout (i.MX6 CSI Interfaces Layout)
• CMOS sensor interfaces (CSI) supported by the i.MX6 (IPU) (CMOS Interfaces

Supported by the i.MX6DualLite)
• i.MX6 Sabre SD CSI parallel interface (i.MX6 CSI Parallel Interface)
• i.MX6 CSI test mode (Timing Data Mode Protocols)

7.1.1 Required Software

In Freescale BSPs, all capture devices are based on the V4L2 standard.

Therefore, only the CMOS-dependent layer needs to be modified to include a new CMOS
sensor. All other layers have been developed to work with V4L2.

Required development tools are as follows:

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 39

• Linux host with i.MX6 Linux L3.0.35 or newer
• Serial port terminal (such as Hyperterminal, TeraTerm, Minicom).

7.1.2 i.MX6 CSI Interfaces Layout

Figure below shows the camera interface layout on an i.MX6sdl smart device board.

Figure 7-1. Camera Interface Layout

CSI0 is used as a parallel sensor input interface. CSI1 is used as a mipi sensor input
interface.

7.1.3 Configuring the CSI Unit in Test Mode

This chapter uses the test mode for its example scenario of a new camera driver that
generates a chess board.

Setting the TEST_GEN_MODE register places the device in test mode which is used for
debugging. The CSI generates a frame by itself and sends it to one of the destination
units. The sent frame is a chess board composed of black and configured color squares.
The configured color is set with the registers PG_B_VALUE, PG_G_VALUE, and
PG_R_VALUE. The data can be sent in different frequencies according to the
configuration of DIV_RATIO register.

When CSI is in test mode, configure the CSI unit with a similar configuration to the
described settings in table below. Call ipu_csi_init_interface() to configure the CSI
interface protocol, formats, and features.

CSI Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

40 Freescale Semiconductor, Inc.

Table 7-1. Settings for Test Mode

Bit Field Value Description

CSI0_DATA_DEST 0x4 Destination is IDMAC via SMFC

CSI0_DIV_RATIO 0x0 SENSB_MCLK rate = HSP_CLK rate

CSI0_EXT_VSYNC 0x1 External VSYNC mode

CSI0_DATA_WIDTH 0x1 8 bits per color

CSI0_SENS_DATA_FORMAT 0x0 Full RGB or YUV444

CSI0_PACK_TIGHT 0x0 Each component is written as a 16 bit word where the MSB is written to
bit #15. Color extension is done for the remaining least significant bits.

CSI0_SENS_PRTCL 0x1 Non-gated clock sensor timing/data mode.

CSI0_SENS_PIX_CLK_POL 0x1 Pixel clock is inverted before applied to internal circuitry.

CSI0_DATA_POL 0x0 Data lines are directly applied to internal circuitry.

CSI0_HSYNC_POL 0x0 HSYNC is directly applied to internal circuitry.

CSI0_VSYNC_POL 0x0 VSYNC is directly applied to internal circuitry.

7.2 Adding Support for a New CMOS Camera Sensor
To add support for a new CMOS camera sensor to your BSP, first create a device driver
for supporting it.

This device driver is the optimal location for implementing initialization routines, the
power up sequence, power supply settings, the reset signal, and other desired features for
your CMOS sensor. It is also the optimal location to implement the CSI configuration for
the parallel protocol used between the camera and the i.MX6.

Perform the following three steps on the i.MX6 BSP to create the device driver:

1. Add a camera sensor entry on the ltib catalog.
2. Create the camera file.
3. Add compilation flag for the new camera sensor.

These steps are discussed in detail in the following subsections.

7.2.1 Adding a Camera Sensor Entry on the ltib Catalog
(Kconfig)

Select specific camera drivers in the following location (as shown in figure below):

Device Drivers > Multimedia support > Video capture adapters > MXC Camera/V4L2 PRP
Features
support

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 41

Figure 7-2. MXC Camera/V4L2 PRP Features Support Window

To add a new camera sensor entry on the Kconfig camera file, perform the following
steps:

1. Enter the following into the display specific folder:

$ cd <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture

2. Open Kconfig file:

$ gedit Kconfig &

3. Add the entry where you want it to appear:

config MXC_IPUV3_CSI0_TEST_MODE
 tristate "IPUv3 CSI0 test mode camera support"
 depends on !VIDEO_MXC_EMMA_CAMERA
 ---help---
 If you plan to use the IPUv3 CSI0 in test mode with your MXC
system, say Y here.

7.2.2 Creating the Camera Sensor File

The camera sensor file enables camera initialization, reset signal generation, power
settings, CSI configuration, and all sensor-specific code.

Adding Support for a New CMOS Camera Sensor

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

42 Freescale Semiconductor, Inc.

NOTE
Before connecting a camera sensor to the i.MX6 board, you
must check whether the sensor is powered with the proper
supply voltages and also whether the sensor data interface has
the correct VIO value. Power supply mismatches can damage
either the CMOS or the i.MX6.

Create a file with the required panel-specific functions in the following path:

<ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/

The camera file-ipuv3_csi0_chess.c-must include the functions described in table below
and may include additional functions and macros required for your driver.

Table 7-2. Required Functions

Function name Function declaration Description

ioctl_g_ifparm static int ioctl_g_ifparm(struct
v4l2_int_device *s, struct v4l2_ifparm
*p)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl

ioctl_s_power static int ioctl_s_power(struct
v4l2_int_device *s, int on)

V4L2 sensor interface handler for VIDIOC_S_POWER ioctl. Sets
sensor module power mode (on or off)

ioctl_g_parm static int ioctl_g_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl. Get
streaming parameters.

ioctl_s_parm static int ioctl_s_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_S_PARM ioctl. Set
streaming parameters.

ioctl_g_fmt_cap static int ioctl_g_fmt_cap(struct
v4l2_int_device *s, struct v4l2_format
*f)

Returns the sensor's current pixel format in the v4l2_format
parameter.

ioctl_g_ctrl static int ioctl_g_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_G_CTRL. If the
requested control is supported, returns the control's current value
from the video_control[] array. Otherwise, it returns -EINVAL if the
control is not supported.

ioctl_s_ctrl static int ioctl_s_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_S_CTRL. If the
requested control is supported, it sets the control's current value in
HW (and updates the video_control[] array). Otherwise, it returns -
EINVAL if the control is not supported.

ioctl_init static int ioctl_init(struct
v4l2_int_device *s)

V4L2 sensor interface handler for VIDIOC_INT_INIT. Initialize
sensor interface.

ioctl_dev_init static int ioctl_dev_init(struct
v4l2_int_device *s)

Initializes the device when slave attaches to the master.

ioctl_dev_exit static int ioctl_dev_exit(struct
v4l2_int_device *s)

De-initializes the device when slave detaches to the master.

After the functions have been created, you need to add additional information to
ipuv3_csi0_chess_slave and ipuv3_csi0_chess_int_device. The device uses this
information to register as a V4L2 device.

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 43

The following ioctl function references are included:

static struct v4l2_int_slave ipuv3_csi0_chess_slave = {
 .ioctls = ipuv3_csi0_chess_ioctl_desc,
 .num_ioctls = ARRAY_SIZE(ipuv3_csi0_chess_ioctl_desc),
};

static struct v4l2_int_device ipuv3_csi0_chess_int_device = {
 ...
 .type = v4l2_int_type_slave,
 ...
};

static int ipuv3_csi0_chess_probe(struct i2c_client *client,const struct i2c_device_id *id)
{
 ...
 retval = v4l2_int_device_register(&ipuv3_csi0_chess_int_device);
 ...
}

It is also necessary to modify other files to prepare the BSP for CSI test mode. Change
the sensor pixel format from YUV to RGB565 in the ipu_bg_overlay_sdc.c file so that
the image converter will not perform color space conversion and the input received from
the CSI test mode generator will be sent directly to the memory. Also, modify
mxc_v4l2_capture.c to preserve CSI test mode settings which are set by the
ipuv3_csi0_chess_init_mode() function in the ipuv3_csi0_chess.c file.

7.2.3 Adding a Compilation Flag for the New Camera

After camera files have been created and the Kconfig file has the entry for your new
camera, modify the Makefile to create the new camera module during compilation.

The Makefile is located in the same folder as your new camera file and Kconfig: <ltib
dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

1. Enter the following into the i.MX6 camera support folder:

$ cd <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture

2. Open the i.MX6 camera support Makefile.

$ gedit Makefile &

3. Add the cmos driver compilation entry to the end of the Makefile.

ipuv3_csi0_chess_camera-objs := ipuv3_csi0_chess.o sensor_clock.o

obj-$(CONFIG_MXC_IPUV3_CSI0_TEST_MODE) += ipuv3_csi0_chess_camera.o

Adding Support for a New CMOS Camera Sensor

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

44 Freescale Semiconductor, Inc.

The kernel object is created using the ipuv3_csi0_chess.c file. You should have the
following files as output:

• ipuv3_csi0_chess_camera.mod.c
• ipuv3_csi0_chess.o
• ipuv3_csi0_chess_camera.o
• ipuv3_csi0_chess_camera.mod.o
• ipuv3_csi0_chess_camera.ko

7.3 Using the I2C Interface
Many camera sensor modules require a synchronous serial interface for initialization and
configuration.

This section uses the <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/
ov5642.c file for its example code. This file contains a driver that uses the I2C interface
for sensor configuration.

After the I2C interface is running, create a new I2C device to handle your camera bus. If
the camera sensor file (called mycamera.c in the following example code) is located in
the same folder as ov5642.c, the code is as follows:

struct i2c_client * mycamera_i2c_client;

static s32 mycamera_read_reg(u16 reg, u8 *val);
static s32 mycamera_write_reg(u16 reg, u8 val);

static const struct i2c_device_id mycamera_id[] = {
 {"mycamera", 0},
 {},
};

MODULE_DEVICE_TABLE(i2c, mycamera_id);

static struct i2c_driver mycamera_i2c_driver = {
 .driver = {
 .owner = THIS_MODULE,
 .name = "mycamera",
 },
 .probe = mycamera_probe,
 .remove = mycamera_remove,
 .id_table = mycamera_id,
};

static s32 ipuv3_csi0_chess_write_reg(u16 reg, u8 val)
{
 u8 au8Buf[3] = {0};
 au8Buf[0] = reg >> 8;
 au8Buf[1] = reg & 0xff;
 au8Buf[2] = val;
 if (i2c_master_send(my_camera_i2c_client, au8Buf, 3) < 0) {
 pr_err("%s:write reg error:reg=%x,val=%x\n",__func__, reg, val);
 return -1;
 }

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 45

 return 0;
}

static s32 my_camera_read_reg(u16 reg, u8 *val)
{
 u8 au8RegBuf[2] = {0};
 u8 u8RdVal = 0;
 au8RegBuf[0] = reg >> 8;
 au8RegBuf[1] = reg & 0xff;

 if (2 != i2c_master_send(my_camera_i2c_client, au8RegBuf, 2)) {
 pr_err("%s:write reg error:reg=%x\n",__func__, reg);
 return -1;
 }

 if (1 != i2c_master_recv(my_camera_i2c_client, &u8RdVal, 1)) {// @ECA
 pr_err("%s:read reg error:reg=%x,val=%x\n",__func__, reg, u8RdVal);
 return -1;
 }

 *val = u8RdVal;
 return u8RdVal;
}

static int my_camera_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
 ...
 my_camera_i2c_client = client;
 ...
}

static __init int mycamera_init(void)
{
 u8 err;
 err = i2c_add_driver(&mycamera_i2c_driver);
 if (err != 0)
 pr_err("%s:driver registration failed, error=%d \n",__func__, err);
 return err;
}

static void __exit mycamera_clean(void)
{
 i2c_del_driver(&mycamera_i2c_driver);
}

module_init(mycamera_init);
module_exit(mycamera_clean);

Check ov5642.c for the complete example code.

After creating the new I2C device, add the following lines to your platform file.
i.MX6DQ and i.MX6SoloDualLite share the same platform file. (located at <ltib dir>/
rpm/BUILD/linux/arch/arm/mach-mx6/board_mx6q_<board name>.c).

static struct mxc_camera_platform_data camera_data = {
 .mclk = 24000000,
 .mclk_souce = 0,
 .csi = 0,
 .io_init = mx6q_csi0_io_init,
 .pwdn = mx6q_csi0_cam_powerdown,
};

static struct i2c_board_info mxc_i2c0_board_info[] __initdata = {

Using the I2C Interface

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

46 Freescale Semiconductor, Inc.

 {
 I2C_BOARD_INFO("wm89**", 0x1a),
 },
 {
 I2C_BOARD_INFO("ov5642", 0x3c),
 .platform_data = (void *)&camera_data,
 },
 {
 I2C_BOARD_INFO("mma8451", 0x1c),
 .platform_data = (void *)&mma8451_position,
 },
 {
 I2C_BOARD_INFO("mycamera", 0x2E),
 .platform_data = (void *)&camera_data,
 },
};

static void __init mx6_sabresd_board_init(void)
{
 ...
 i2c_register_board_info(0, mxc_i2c0_board_info,ARRAY_SIZE(mxc_i2c0_board_info));
 ...
}

You may modify the platform file at this point to specify features about your camera such
as the CSI interface used (CSI0 or CSI1), the MCLK frequency, and some power supply
settings related to the module. Notice I2C_BOARD_INFO specify the I2C name and
address of the camera sensor module.

NOTE
It is mandatory that dev_type field of I2C_BOARD_INFO be
equal to the i2c_device_id on your camera sensor file
(mycamera.c).

You can now read and write from/to the sensor in the camera sensor file by using the
following:

retval = mycamera_write_reg(RegAddr, Val);
retval = mycamera_read_reg(RegAddr, &RegVal);

7.3.1 Loading and Testing the Camera Module

If your camera driver has been created as a kernel module, as in the example in this
chapter, the module must be loaded prior to any camera request attempt.

According to the Makefile information, the camera module is named
ipuv3_csi0_chess_camera.ko.

To load the V4L2 camera interface and CSI in test mode, execute the following
commands:

root@freescale /unit_tests$ modprobe ipuv3_csi0_chess_camera
root@freescale /unit_tests$ modprobe mxc_v4l2_capture

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 47

To test the video0 input (camera), an mxc_v4l2_overlay test is included in the BSP. If the
imx-test package has also been included, open the unit test folder and execute the test.

root@freescale ~$ cd /unit_tests/
root@freescale /unit_tests$./mxc_v4l2_overlay.out

If the imx-test package has not been built, select it from the LTIB package menu:

Package List > imx-test

The chessboard appears in a rectangle located on the left top side of the WVGA panel, as
shown in figure below. The colors of the chessboard toggle between red, green, and blue
every time you run the test.

7.4 Additional Reference Information
• CMOS Interfaces Supported by the i.MX6DualLite
• i.MX6 CSI Parallel Interface
• Timing Data Mode Protocols

7.4.1 CMOS Interfaces Supported by the i.MX6DualLite

The camera sensor interface, which is part of the image processing unit (IPU) module on
the i.MX6, handles CMOS sensor interfaces. The i.MX6 IPU is able to handle two
camera devices through its CSI ports: one connected to the CSI0 port and the other to the
CSI1 port. Both CSI ports are identical and provide glueless connectivity to a wide
variety of raw/smart sensors and TV decoders.

Each of the camera ports includes the following features:

• Parallel interface.
• Up to 20-bit input data bus.
• A single value in each cycle.
• Programmable polarity.

• Multiple data formats.
• Interleaved color components, up to 16 bits per value (component).
• Input Bayer RGB, Full RGB, or YUV 4:4:4, YUV 4:2:2 Component

order:UY1VY2 or Y1UY2V, grayscale and generic data.
• Scan order: progressive or interlaced.
• Frame size: up to 8192 x 4096 pixels.
• Synchronization-video mode.

• The sensor is the master of the pixel clock (PIXCLK) and synchronization
signals.

Additional Reference Information

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

48 Freescale Semiconductor, Inc.

• Synchronization signals are received using either of the following methods:
• Dedicated control signals-VSYNC, HSYNC-with programmable pulse

width and polarity.
• Controls embedded in the data stream following loosely the BT.656 protocol

with flexibility in code values and location.
• The image capture is triggered by the MCU or by an external signal (e.g. a

mechanical shutter).
• Synchronized strobes are generated for up to 6 outputs-the sensor and camera

peripherals (flash, mechanical shutter...).
• Frame rate reduction by periodic skipping of frames.

For details, refer to the "Image Processing Unit (IPU)" chapter in the i.MX 6Dual/6Quad
Applications Processor Reference Manual. Figure below shows the block diagram.

Figure 7-3. IPU Block Diagram

Several sensors can be connected to each of the CSIs. Simultaneous functionality (for
sending data) is supported as follows:

• Two sensors can send data independently, each through a different port.
• One stream can be transferred to the VDI or IC for on-the-fly processing while the

other one is sent directly to system memory.

The input rate supported by the camera port is as follows:

• Peak: up to 180 MHz (values/sec).

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 49

• Average (assuming 35% blanking overhead) for YUV 4:2:2.
• Pixel in one cycle (BT.1120): up to 135 MP/sec, e.g. 9 Mpixels at 15 fps.
• Pixel on two cycles (BT.656): up to 67 MP/sec, e.g. 4.5 Mpixels at 15 fps.

• On-the-fly processing may be restricted to a lower input rate.

If required, additional cameras can be connected though the USB port.

7.4.2 i.MX6 CSI Parallel Interface

The CSI obtains data from the sensor, synchronizes the data and the control signals to the
IPU clock (HSP_CLK), and transfers the data to the IC and/or SMFC.

The CSI parallel interface (shown in figure below) provides a clock output (MCLK),
which is used by the sensor as a clock input reference. The i.MX6 requests either video or
still images through a different interface between the processor and the camera module.
In most cases, the interface is a synchronous serial interface such as the I2C. After the
frame has been requested, the camera module takes control of the CSI bus, and uses
synchronization signals VSYNC, HSYNC, DATA_EN and PIXCLK to send the image
frame to the i.MX6. The camera sensor creates PIXCLK based on MCLK input.

Figure 7-4. Parallel Interface Layout

In parallel interface, a single value arrives in each clock-except in BT.1120 mode when
two values arrive per cycle. Each value can be 8-16 bits wide according to the
configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N LSB
bits are ignored.

Additional Reference Information

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

50 Freescale Semiconductor, Inc.

Therefore, you never need CSI0_DAT[3:0], unless you are using BT.1120 mode, because
the maximum pixel width is 16 (CSI0_DAT[19:4]). The expansion port 2 includes
CSI0_DAT[19:4], but only CSI0_DAT[19:10] are used for the CSI data bus (10-bit wide
data). CSI0_DAT[9:4] are shared with other interfaces and are used for audio and I2C.

CSI can support several data formats according to SENS_DATA_FORMAT
configuration. When the data format is YUV, the output of the CSI is always YUV444-
even if the data arrives in YUV422 format.

The polarity of the inputs can be configured using the following registers:

• SENS_PIX_CLK_POL
• DATA_POL
• HSYNC_POL
• VSYNC_POL

The camera parallel interface provided by the i.MX6 is a 15 line interface, as described in
table below:

Table 7-3. CSI0 Parallel Interface Signals

Signal IPU Pin Description

MCLK CSI0_MCLK Master Clock (Output)

PIXCLK CSI0_PIXCLK Pixel Clock

VSYNC CSI0_VSYNC Vertical Synchronization signal

HSYNC CSI0_HSYNC Horizontal Synchronization signal

DATA_EN CSI0_DATA_EN Data Enable or Data ready

DATA[19:10] CSI0_DAT [19:10] Pixel data bus, optional to [19:4]

Timing Data Mode Protocols, explains how the timing data mode protocols use these
signals. Not all signals are used in each timing data mode protocol.

7.4.3 Timing Data Mode Protocols

The CSI interface supports the following four timing/data protocols:

• Gated mode
• Non-gated mode
• BT.656 (Progressive and interlaced)
• BT.1120 (Progressive and interlaced)

In gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is used to
indicate the beginning of a raw. The sensor clock is always ticking.

Chapter 7 Supporting the i.MX6 Camera Sensor Interface CSI0

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 51

In non-gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is not
used. The sensor clock only ticks when data is valid.

In BT.656 mode, the CSI works according to recommendation ITU-R BT.656. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

In BT1120 mode, the CSI works according to recommendation ITU-R BT.1120. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

For details, refer to the i.MX 6Dual/6Quad Applications Processor Reference Manual.

Additional Reference Information

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

52 Freescale Semiconductor, Inc.

Chapter 8
Porting Audio Codecs to a Custom Board

8.1 Audio Overview
This chapter explains how to port audio drivers from the Freescale reference BSP to a
custom board.

This procedure varies depending on whether the audio codec on the custom board is the
same as, or different than the audio codec on the Freescale reference design. This chapter
first explains the common porting task and then various other porting tasks.

8.1.1 Common Porting Task

The mxc_audio_platform_data structure must be defined and filled appropriately for the
custom board before doing any other porting tasks. An example of a filled structure can
be found in the file located at linux/arch/arm/mach-mx6/board-mx6q_<board name>.c.

static struct mxc_audio_platform_data wm8962_data = {
 .ssi_num = 1,
 .src_port = 2,
 .ext_port = 3,
 .hp_gpio = MX6_BRD_HEADPHONE_DET,
 .hp_active_low = 1,
 .mic_gpio = -1,
 .mic_active_low = 1,
 .init = mxc_wm8962_init,
 .clock_enable = wm8962_clk_enable,
};

Customize the structure according to the following definitions:

ssi_num: The ssi used for this codec

src_port: The digital audio mux (DAM) port used for the internal SSI interface

ext_port: The digital audio mux (DAM) port used for the external device audio interface

hp_gpio: The IRQ line used for headphone detection

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 53

hp_active_low: When headphone is inserted, the detection pin status, if pin voltage level
is low, the value should be 1.

mic_gpio: The IRQ line used for micphone detection

mic_active_low: When micphone is inserted, the detection pin status, if pin voltage level
is low, the value should be 1.

init: initialize wm8962 resource relevant to board, such as mclk source

clock_enable: a callback for enable/disable mclk

8.1.2 Porting the Reference BSP to a Custom Board (audio
codec is the same as in the reference design)

When the audio codec is the same in the reference design and the custom board, users
must ensure that the I/O signals and the power supplies to the codec are properly
initialized in order to port the reference BSP to the custom board.

The board-mx6q_<board name>.h file contains the pads definitions. Add entries to this
file to define the configuration for the audio codec signals.

The necessary signals for the wm8962 codec, which is used on the , are as follows:

• I2C interface signals
• I2S interface signals
• SSI external clock input to wm8962

Table below shows the required power supplies for the wm8962 codec.

Table 8-1. Required Power Supplies

Power Supply Name Definition Value

PLLVDD PLL supply 1.8 V

SPKVDD1 Supply for left speaker drivers 4.2 V

SPKVDD2 Supply for right speaker drivers 4.2 V

DCVDD Digital core supply 1.8 V

DBVDD Digital supply 1.8 V

AVDD Analog supply 1.8 V

CPVDD Charge pump power supply 1.8 V

MICVDD Microphone bias amp supply 3.3 V

Audio Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

54 Freescale Semiconductor, Inc.

8.1.3 Porting the Reference BSP to a Custom Board (audio
codec is different than the reference design)

When adding support for an audio codec that is different than the one on the Freescale
reference design, users must create new ALSA drivers in order to port the reference BSP
to a custom board. The ALSA drivers plug into the ALSA sound framework, which
allows the standard ALSA interface to be used to control the codec.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/
sound/soc. Table below shows the files used for the wm8962 codec support:

Table 8-2. Files for wm8962 Codec Support

File Name Definition

imx-pcm-dma-mx2.c • Shared by the stereo ALSA SoC driver, the esai driver, and the spdif driver.
• Responsible for preallocating DMA buffers and managing DMA channels.

imx-ssi.c • Register the CPU DAI driver for the stereo ALSA SoC
• Configures the on-chip SSI interfaces

wm8962.c • Register the stereo codec and Hi-Fi DAI drivers.
• Responsible for all direct hardware operations on the stereo codec.

imx-wm8962.c • Machine layer code
• Create the driver device
• Register the stereo sound card.

NOTE
If using a different codec, adapt the driver architecture shown in
table above accordingly. The exact adaptation will depend on
the codec chosen. Obtain the codec-specific software from the
codec vendor.

Chapter 8 Porting Audio Codecs to a Custom Board

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 55

Audio Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

56 Freescale Semiconductor, Inc.

Chapter 9
Porting the Fast Ethernet Controller Driver

9.1 FEC Overview
This chapter explains how to port the fast Ethernet controller (FEC) driver to the i.MX 6
processor.

Using Freescale's standard (FEC) driver makes porting to the i.MX 6 simple. Porting
needs to address the following three areas:

• Pin configuration
• Source code
• Ethernet connection configuration

9.1.1 Pin Configuration

The FEC supports three different standard physical media interfaces: a reduced media
independent interface (RMII), a media independent interface (MII), and a 7-wire serial
interface.

In addition, the FEC includes support for different standard MAC-PHY (physical)
interfaces for connection to an external Ethernet transceiver. The FEC supports the
10/100 Mbps MII, and 10/100 Mbps RMII.The FEC also supports 1000 Mbps RGMII,
which uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details see the FEC
chapter of the i.MX 6Dual/6Quad Multimedia Applications Processor Reference Manual.

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII , RMIIand RGMII modes uses a subset of the 18 signals. These signals
are listed in table below.

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 57

Table 9-1. Pin Usage in MII, RMII and RGMII Modes

Direction EMAC Pin
Name

MII Usage RMII Usage RGMII Usage

In/Out FEC_MDIO Management Data Input/Output Management Data
Input/output

Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 Not Used Data out, bit 2

Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_CLK Transmit Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_ER Receive Error Receive Error Not Used

In FEC_RX_CLK Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_DV Receive Data Valid Receive Data Valid
and generate CRS

RXDV XOR RXERR on the falling edge
of FEC_RX_CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2

In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

Since i.MX 6 has more functionality than it has physical I/O pins, it uses I/O pin
multiplexing.

Every module requires specific pad settings. For each pad there are up to 8 muxing
options called ALT modes. For further explanation refer to IOMUX chapter in the i.MX
6Dual/6Quad Multimedia Applications Processor Reference Manual.

There have a important note that the pin FEC_PHY_RESET_B is used as a simple GPIO
to reset the FEC PHY before enable phy clock, otherwise some phys cannot work fine.

9.1.2 Source Code

The source code for the Freescale FEC Linux environment is located under the ../ltib/
rpm/BUILD/linux/drivers/net directory. It contains the following files:

FEC Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

58 Freescale Semiconductor, Inc.

Table 9-2. Source Code Files

File Names Descriptions

• fec.h
• fec.c

FEC low-level Ethernet driver:

The driver uses the following compile definitions:

CONFIG_FEC: enable FEC driver.

CONFIG_FEC_NAPI: enable NAPI polling method for ethernet RX path.

9.1.3 Ethernet Configuration

This section mainly covers FEC bring up issues. Please refer to i.MX 6Dual/6Quad
Multimedia Applications Processor Reference Manual FEC chapter if you want to know
more about FEC MAC configuration.

Please note the following during FEC bring up:

• Configure all I/O pins used by MAC correctly for related function.
• Check phy input clock and power, phy led1 and led2 lighten on if clock and power

input are ok.
• Make sure MAC tx_clk has right clock input, otherwise MAC cannot work.
• Make sure MAC address is set and valid.

By default, the Ethernet driver reads the burned-in MAC address, which is found in code
from the fec.c file located in the function fec_get_mac(). If no MAC address exists in the
hardware, the MAC reads all zeros, which makes MAC malfunction. If this occurs,
please add MAC address in U-Boot command line for kernel, such as add early parameter
"fec_mac=00:01:02:03:04:05" in bootargs.

The FEC driver and hardware are designed to comply with the IEEE standards for
Ethernet auto-negotiation. See the FEC chapter in the i.MX 6Dual/6Quad Multimedia
Applications Processor Reference Manual for a description of using flow control in full
duplex and more.

Chapter 9 Porting the Fast Ethernet Controller Driver

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 59

FEC Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

60 Freescale Semiconductor, Inc.

Chapter 10
Porting USB Host1 and USB OTG

10.1 USB Overview
There are up to four USB ports on i.MX 6 serial application processors:

• USB OTG port
• USB H1 port
• USB HSIC1 port
• USB HSIC2 port

The following power supplies must be provided:

• 5V power supply for USB OTG VBUS
• 5V power supply for USB H1 VBUS
• 3.3V power supply for HSIC1/2 port
• 3.15 +/- 5%V power supply for USB OTG/H1 PHY. Since this power can be routed

from USB OTG/H1 VBUS, that means that if either of the power supplies is powered
up, the USB PHY is powered as well. However, if neither can be powered up, an
external power supply is needed.

For USB OTG port, the following signals are used:

• USB_OTG_CHD_B
• USB_OTG_VBUS
• USB_OTG_DN
• USB_OTG_DP
• USBOTG_ID
• USBOTG_OC_B
• one pin is used to control USB_OTG_VBUS signal

The following signals, needed to set with proper IOMUX, are multiplexed with other
pins.

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

Freescale Semiconductor, Inc. 61

NOTE
For the USBOTG_ID pin, a pin which has an alternate
USBOTG_ID function must be used.

• USBOTG_ID
• USBOTG_OC_B
• one pin used to control USB_OTG_VBUS signal

For USB H1 port, the following signals are used:

• USB_H1_VBUS
• USB_H1_DN
• USB_H1_DP
• USBH_OC_B

The following signals are multiplexed with other pins, needed to set with proper IOMUX:

• USBH_OC_B

For USB HSIC 1/2 port, the following signals are used

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

The following signals are multiplexed with other pins, needed to set with proper IOMUX:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

To secure HSIC connection, USB HSIC port must be powered up before USB HSIC
device

USB Overview

i.MX 6Dual/6Quad BSP Porting Guide , Rev. L3.0.35_4.0.0, 05/2013

62 Freescale Semiconductor, Inc.

Document Number IMX6DQBSPPG
Rev L3.0.35_4.0.0

05/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may vary

over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. ARM is the registered trademark of ARM Limited. ARM9 is the

trademark of ARM Limited. All other product or service names are the property of their-

respective owners.

© 2013 Freescale Semiconductor, Inc.

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Chapter 1: Porting U-Boot from an i.MX 6Dual/6Quad Reference Board to an i.MX 6Dual/6Quad Custom Board
	U-Boot Overview
	Obtaining the Source Code for the U-Boot
	Preparing the Code

	Customizing the i.MX 6 Custom Board Code
	Changing the DCD Table for i.MX 6 DDR3 Initialization
	Booting with the Modified U-Boot
	Add New Driver Initialize Code to Board Files
	Further Customization at System Boot
	Customizing the Printed Board Name

	How to Debug
	Use RealView ICE for Debugging
	Use printf for debugging

	Chapter 2: Configuring the IOMUX Controller
	IOMUX Overview
	Information for Setting IOMUX Controller Registers
	Setting Up the IOMUX Controller and U-Boot
	Defining the Pads
	Configuring IOMUX Pins for Initialization Function
	Example-Setting a GPIO

	Setting Up the IOMUX Controller in Linux
	IOMUX Configuration Definition
	Machine Layer File
	Example -Setting a GPIO

	Chapter 3: Registering a New UART Driver
	UART Overview
	Configuring UART Pads on IOMUX
	Enabling UART on Kernel Menuconfig
	Testing the UART
	File Names and Locations

	Chapter 4: Adding Support for SDHC
	SDHC Overview

	Chapter 5: Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
	SPI NOR Overview
	Source code structure
	Configuration options
	Selecting SPI NOR on the Linux image

	Changing the SPI interface configuration
	Changing the ECSPI Interface
	Changing the Chip Select
	Changing the external signals

	Hardware Operation
	Software Operation

	Chapter 6: Connecting an LVDS Panel to an i.MX6 Reference Board
	LVDS Overview
	Connecting an LVDS Panel to the i.MX6 Reference Board

	Enabling a LVDS Channel
	Locating Menu Configuration Options

	LDB Ports
	Input Parallel Display Ports
	Output LVDS Ports

	Further Reading

	Chapter 7: Supporting the i.MX6 Camera Sensor Interface CSI0
	CSI Overview
	Required Software
	i.MX6 CSI Interfaces Layout
	Configuring the CSI Unit in Test Mode

	Adding Support for a New CMOS Camera Sensor
	Adding a Camera Sensor Entry on the ltib Catalog (Kconfig)
	Creating the Camera Sensor File
	Adding a Compilation Flag for the New Camera

	Using the I2C Interface
	Loading and Testing the Camera Module

	Additional Reference Information
	CMOS Interfaces Supported by the i.MX6DualLite
	i.MX6 CSI Parallel Interface
	Timing Data Mode Protocols

	Chapter 8: Porting Audio Codecs to a Custom Board
	Audio Overview
	Common Porting Task
	Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference design)
	Porting the Reference BSP to a Custom Board (audio codec is different than the reference design)

	Chapter 9: Porting the Fast Ethernet Controller Driver
	FEC Overview
	Pin Configuration
	Source Code
	Ethernet Configuration

	Chapter 10: Porting USB Host1 and USB OTG
	USB Overview

