i.MX6 DDR Stress Tester User's Guide

Document Number: IMX6 Rev. V1.0.2 12/2013

© 2013 Freescale Semiconductor, Inc. All rights reserved.

How to Reach Us:

Home Page: www.freescale.com

Web Support: www.freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM9 is a trademark of ARM Limited. © 2013 Freescale Semiconductor, Inc. All rights reserved.

Chapter 1 Introduction	1-2
Chapter 2 Installation and Setup	2-3
2.1 Installation	
2.2 System Requirements	
Chapter 3 Running DDR Stress Tester	
Chapter 4 DDR init script	4-14
Chapter 5 FAQ	5-19
Chapter 6 Reference Documents	6-20
Chapter 7 Revision History	

Chapter 1 Introduction

DDR_Stress_Tester is a software application for fine tuning DDR parameters and verifying DDR performance on i.MX6 boards. It is program running on PC which downloads a test image to the i.MX6 processor's IRAM through USB connection. The test image running on the target board will perform DDR calibrations and stress test. The result will be sent to PC through USB and be printed in the Command Prompt window.

The application performs write leveling, DQS gating, read/write delay calibration on the target board to match the layout of the board and archive the best DDR performance. In addition, the stress test can help the user to verify the DDR performance on their boards.

Chapter 2 Installation and Setup

2.1 Installation

There is no installation application for the DDRStressTester application. Simply create a folder where the application will reside and unzip DDR_Stress_Tester_V1.0.1.zip to the folder. There should be two sub-folders: Binary and Documentation.

Make sure the DDR_Stress_Tester.exe and the target images ddr-stress-test-mx6dq.bin, ddrstress-test-mx6dl.bin and ddr-stress-test-mx6sl.bin are in the "Binary" directory.

2.2 System Requirements

- Minimum PC Requirements 2.0 GHz CPU, 1GB RAM with USB connection.
- Windows® XP w/Service Pack 2 or later

Chapter 3 Running DDR Stress Tester

To run the DDR Stress Tester, perform the following steps:

1. Connect the target board to PC host

Configure the i.MX6 target board to boot in Serial Downloader mode by setting BOOT_MODE[1:0] to 01 and power up the board. Connect a USB cable from the host computer to the USB OTG port on the MX6 target board. A "HID-compliant device" will be shown in the Device Manager as Figure 3-1:

Figure 3-1 HID compliant device

2. Launch the DDR_Stress_Tester application

In Windows' Command Prompt, change to the Binary folder and then type the following command:

"DDR_Stress_Tester -t mx6x -df mx6x_ddr_script_filename"

The DDR Stress Test version and DDR configuration will be displayed as Figure 3-2. If the DDR configuration does not match the board, please check whether the correct initialization script is used or the BOOT_CFG3[5:4] fuses are correctly set.

Figure 3-2 DDR configuration display window

3. Select the ARM core speed

This is for selecting the ARM core speed for running the calibrations and stress test. The maximum ARM core speed of i.MX6Q and i.MX6D is 1.2GHz, and the maximum ARM core speed of i.MX6DL, i.MX6S, and i.MX6SL is 1.0GHz.

📾 Administrator: Command Prompt - DDR_Stress_Tester.exe -t mx6x -df scripts\MX61_init_LPDDR2_528MHz... 💶 🗖 🗙 What ARM core speed would you like to run? Type 0 for 650MHz, 1 for 800MHz, 2 for 1GHz, 3 for 1.2GHz

Figure 3-3 ARM core speed set up window

4. Select the DDR density

This is for selecting the size of memory to be tested. For DDR3, input the density of each chip select. For LPDDR2, input the density of each channel. If there are two chip selects per channel, input the total density for the channel. For example, if CSD0 and CSD1 are used for channel 0 and the density of each chip select is 512MB, 1GB should be selected.

🖬 Administrator: Command Prompt - DDR_Stress_Tester.exe -t mx6x -df scripts\MX6_series_boards\Validati 💻	그ン
Please select the DDR density per chip select (in bytes) on the board Type Ø for 2GB; 1 for 1GB; 2 for 512MB; 3 for 256MB; 4 for 128MB; 5 for 64MB; 6 for 32MB DDR density selected (MB): 512	

Figure 3-4 DDR density set up window for DDR3

Figure 3-5 DDR density set up window for LPDDR2

5. Select chip select for DDR3

This option will only be shown for DDR3 with 2 chip selects. If only one chip select is used, CSD0 will be used as default.

Figure 3-6 chip select set up window

6. Select the number of channels for LPDDR2

This option will only be shown for LPDDR2 with 2 channels. If there are two channels, the user can choose to run the stress test on either channel 0 or channel 1. If it is desired to

perform calibration, the user must choose 2 channels. If it is chosen to test 1 channel here, the user must skip the calibration in the later steps.

7. Select DDR frequency for Calibration

The default DDR calibration frequency is 400MHz for i.MX6DL, i.MX6S, and i.MX6SL. And, the default DDR calibration frequency for i.MX6Q and i.MX6D is 528MHz. The user can also press 'n' and input a calibration frequency which is between 350MHz and 528MHz for debugging purpose.

Figure 3-8 DDR calibration frequency set up window

8. Write leveling calibration

The write leveling calibration can generate a delay between the clock and the associate DQS of up to 3 cycles as following: (WL_DL_ABS_OFFSET/256*cycle) + (WL_HC_DEL*half cycle) + (WL_CYC_DEL*cycle).

Write leveling calibration is supported by DDR3 only. For LPDDR2, write-leveling calibration is disabled.

The DDR3 needs to be put into write leveling mode with MR1 command before write leveling calibration. After finishing write leveling calibration, it needs to restore the value of MR1 register on DDR3 to exit write leveling mode. So before write leveling calibration is executed, the user is requested to input the MR1 value. Please make sure the same MR1 value on the initialization script is entered here.

setmem /32 0x021b001c = 0x00048031 // MMDC0_MDSCR, MR1 write, CS0

The MR1 value is upper 4 hex bits written to MMDCx_MDSCR as shown above.

📷 Administrator: Command Prompt - DDR_Stress_Tester.exe -t mx6x -df scripts\MX6_series_boards\SabreS 💶 🗖	×
Please enter the MR1 value on the initilization script	
This will be re-programmed into MR1 after write leveling calibration	
Enter as a 4-digit HEX value, example 0004, then hit enter 0004 You have entered: 0x00000004	
Start write leveling calibration	
Write leveling calibration completed	
MMDC_MFWLDECIRL0 ch0 after write level cal: 0x002H002I	
MMDC_MPWLDECTRLØ ch1 after write level cal: 0x0016002C	
MMDC_MPWLDECTRL1 ch1 after write level cal: 0x00140022	Ţ

Figure 3-9 write leveling calibration window

NOTE

If write-leveling delay is larger than 0x2f, it is suggested to set the WALAT value on MMDCx_MDMISC register to 1 in the initialization script and re-run the DDR_Stress_Tester.

9. DQS gating calibration

The read DQS gating calibration is used to adjust the read DQS gating with the middle of the read DQS preamble.

The DQS gating includes a delay of up to 7 cycles (The delay is chosen according to two fields MPDGCTRL#[DG_HC_DEL#] and MPDGCTRL#[DG_DL_ABS_OFFSET#]).

DQS gating calibration will only be performed for DDR3 as DQS gating is not supported when using LPDDR2.

After running the DQS gating calibration, the following intermediate result will be displayed. The "start" and "end" show the start value and end value of DQS gating "window". Mean is the middle point of the window. The suggested DQS gating value is calculated base on the formula max[mean(start,end),end-0.5*tCK].

BYTE 0:

Start:	HC=0x01 ABS=0x58
End:	<i>HC</i> =0 <i>x</i> 04 <i>ABS</i> =0 <i>x</i> 34
Mean:	<i>HC</i> =0 <i>x</i> 03 <i>ABS</i> =0 <i>x</i> 06
End-0.5*tCK:	<i>HC</i> =0 <i>x</i> 03 <i>ABS</i> =0 <i>x</i> 34
Final:	<i>HC</i> =0 <i>x</i> 03 <i>ABS</i> =0 <i>x</i> 34

On the result, HC means 0.5 cycle, ABS represents 1/256 of a cycle. For example, HC=0x01 ABS=0x58 means that the delay is 0.5 + 88/256 cycle.

as Admini	istrator: Command P	rompt	<u>- 🗆 ×</u>
Would y	ou like to run	the DQS gating, read/write delay calibration? (y/n)	▲ I
Startin	g DQS gating ca	alibration	
BYTE Ø			
	Start:	HC=0×01 ABS=0×58	
	End:	$HC=0\times04$ $ABS=0\times34$	
	Mean:	$HC=0\times03$ $ABS=0\times06$	
	End-0.5*tCK:	HC=0×03 ABS=0×34	
BUTE 1.	Final:	HC=0X03 HB2=0X34	
DILL I.	Start:	HC=0x01 ABS=0x48	
	End:	$HC = 0 \times 04$ ABS $= 0 \times 24$	
	Mean:	HC=0x02 ABS=0x75	
	End-0.5*tCK:	$HC=0\times03$ $ABS=0\times24$	
	Final:	HC=0x03 ABS=0x24	
BALE 5:	04	UC-0-01 ADC-0-40	
	Start: Fod:	HC=0x01 HB5=0x48 HC=0x01 HB5=0x48	
	Mean:	$HC = 0 \sqrt{02} + BS = 0 \sqrt{21}$	
	End-0.5*tCK:	$HC = 0 \times 03$ ABS $= 0 \times 1C$	
	Final:	$HC = 0 \times 03$ ABS $= 0 \times 1C$	
BYTE 3:			
	Start:	$HC=0\times01$ $ABS=0\times54$	
	End:	HC=UXU3 ABS=UX2U	
	Mean: End_0 ExtCV:	HG=0x02 HBS=0x3H HC=0x02 ABS=0x3H	
	Final:	$HC = 0 \times 02$ $HBS = 0 \times 20$	
BYTE 4:	11001.		
	Start:	HC=0x01 ABS=0x54	
	End:	HC=0x04 ABS=0x34	
	Mean:	$HC=0\times03$ $ABS=0\times04$	
	End-0.5*tCK:	$HC=0\times03$ ABS= 0×34	
DUTE E.	Final:	HC=0×03 HBS=0×34	
BYIE 5.	Stant.	ዘር=ወ~01_ ዕጽና=ወ~4ር	
	End:	$HC=0\times04$ ABS= 0×28	
	Mean:	$HC = 0 \times 02$ ABS $= 0 \times 79$	
	End-0.5*tCK:	$HC = 0 \times 03$ $ABS = 0 \times 28$	
	Final:	HC=0×03 ABS=0×28	
BYTE 6:	0 · · · ·		
	Start:	HC=0x01 HBS=0x34	
	Ena: Moor	HC-0x03 HBS-0x70 HC-0x02 ADS-0x52	
	Fod-Ø 5*+CK:	$HC = 0 \times 02$ $ABS = 0 \times 70$	
	Final:	$HC = 0 \times 02$ ABS = 0×70	
BYTE 7:			
	Start:	$HC=0\times01$ $ABS=0\times4C$	
	End:	HC=0×04 ABS=0×28	
	Mean: End-0 ExtOX:	HC=0x02 HB5=0x79	
	Final:	HC=0x03 HB3=0x28	
	I INGI.		
DQS cal	ibration MMDC0	MPDGCTRL0 = 0x43240334, MPDGCTRL1 = 0x023A031C	
DQS cal	ibration MMDC1	MPDGCTRL0 = 0x43280334, MPDGCTRL1 = 0x03280270	-

Figure 3-10 DQS calibration window

10. Read/write delay calibration

The read/write calibration is used to adjust the delay DQS between data for read and write operations. The intermediate result will be shown when running read/write delay calibration, so the user can know the window (lower and upper delay value for proper operation) for each data byte. The delay value is increased on each step and the result shows that particular byte can perform read or write properly with the delay value. For the result, the first digit on the right is byte 0, the second digit is byte 1, third digit is byte 2, and so forth. A '1' means the byte failed the read/write test with the delay value. A '0' means the byte can read/write properly.

Administrator: Command Prompt	IX
Note: Array result[] holds the DRAM test result of each byte. Ø: test pass. 1: test fail 4 bits respresent the result of 1 byte. result 0000001:byte 0 fail. result 00000011:byte 0.1 fail.	
Starting Read calibration	
ABS_OFFSET=0x00000000 result[00]=0x11111111 ABS_OFFSET=0x04040404 result[01]=0x1111111 ABS_OFFSET=0x00000000 result[02]=0x11111111 ABS_OFFSET=0x100000000 result[03]=0x01011011 ABS_OFFSET=0x10101010 result[04]=0x00011010 ABS_OFFSET=0x1111111 result[04]=0x00011000 ABS_OFFSET=0x1111111 result[05]=0x00011000 ABS_OFFSET=0x1111111 result[06]=0x00011000 ABS_OFFSET=0x1111111 result[06]=0x0001000 ABS_OFFSET=0x120202020 result[08]=0x0001000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[08]=0x00000000 ABS_OFFSET=0x202020200 result[08]=0x00000000 ABS_OFFSET=0x20202020 result[00]=0x00000000 ABS_OFFSET=0x30303030 result[00]=0x000000000 ABS_OFFSET=0x34343434 result[00]=0x000000000 ABS_OFFSET=0x34343434 result[10]=0x000000000 ABS_OFFSET=0x444444444 result[11]=0x000000000 <td></td>	
HBS_OFFSEI=0x36363636 result[17]=0x1110110 ABS_OFFSET=0x60606060 result[18]=0x11101111 ABS_OFFSET=0x64646464 result[19]=0x11101111 ABS_OFFSET=0x64646464 result[19]=0x11101111 ABS_OFFSET=0x66666668 result[11]=0x11101111 ABS_OFFSET=0x66666666 result[11]=0x11101111 ABS_OFFSET=0x6666666 result[11]=0x1111111 ABS_OFFSET=0x6666666 result[11]=0x11111111 ABS_OFFSET=0x7070700 result[11]=0x11111111 ABS_OFFSET=0x74747474 result[11]=0x11111111 ABS_OFFSET=0x76776767 result[11]=0x11111111 ABS_OFFSET=0x7777767 result[11]=0x11111111 ABS_OFFSET=0x777777 result[11]=0x11111111 ABS_OFFSET=0x7777777 result[11]=0x11111111 ABS_OFFSET=0x7777777 result[11]=0x11111111 ABS_OFFSET=0x7777777 result[11]=0x11111111 ABS_OFFSET=0x7777777 result[11]=0x11111111 ABS_OFFSET=0x72777777 result[11]=0x11111111 ABS_OFFSET=0x72777777 result[11]=0x11111111 ABS_OFFSET=0x7277777 result[11]=0x11111111 ABS_OFFSET=0x7277777 result[11]=0x11111111	

Figure 3-11 read/write delay calibration window

The average between lower and upper boundaries is calculated for the final read/write delay value. When the read/write delay calibration is completed, the tool will update the MPRDDLCTL and MPWRDLCTL registers for the DDR stress test.

11. Calibration result

After the whole calibration process completes, DQS gating, read/write delay value will be displayed and the corresponding registers will be updated for the memory stress test afterward. However, the user should update the values of MMDC registers in initialization script file according to the calibration results.

Figure 3-12 calibration result of DDR3

🛤 Administrator: Command Prompt - DDR_Stress_Tester.exe -t mx6x -df scripts\MX61_init_LPDDR2_528MHz 💶 🗖 🗙
MMDC registers updated from calibration
Read calibration MPRDDLCTL PHY0 <0x021b0848> = 0x42343636 MPRDDLCTL PHY1 <0x021b4848> = 0x3A3C3440
Write calibration MPWRDLCTL PHY0 (0x021b0850) = 0x2A2E342C MPWRDLCTL PHY1 (0x021b4850) = 0x36243636

Figure 3-13 calibration result of LPDDR2

DDR stress test will run memory test with different test patterns and go through the memory space specified in step 4. The user can input the start and end frequency which is in the range from 135MHz to 672MHz. If any failure occurs, the test will stop and show the failure data pattern.

Administrator: Command Prompt	긔뇌
The DDR stress test can run with an incrementing frequency or at a static freq To run at a static freq, simply set the start freq and end freq to the same value Would you like to run the DDR Stress Test (y/n)?	
Enter desired START freq (135 to 672 MHz), then hit enter. Note: DDR3 minimum is ~333MHz, do not recommend to go too much below this. 400	
The freq you entered was: 400	
Enter desired END freq (135 to 672 MHz), then hit enter. Make sure this is equal to or greater than start freq 450	
The freq you entered was: 450	
Beginning stress test	
loop: 1 DDR Freg: 396 MHz t0: memcpy11 SSN test t1: memcpy8 SSN test t2: byte-wise SSN test t3: memcpy11 random pattern test t4: IRAM_to_DDRv2 test t5: IRAM_to_DDRv1 test t6: read noise walking ones and zeros test	
DDR Freq: 413 MHz t0: memcpy11 SSN test t1: memcpy8 SSN test t2: byte-wise SSN test t3: memcpy11 random pattern test	
t4: IRAM_to_DDRv2 test t5: IRAM_to_DDRv1 test t6: read noise walking ones and zeros test	
DDR Freq: 432 MHz t0: memcpy11 SSN test	

Figure 3-14 run DDR stress test

It is suggested to run the stress test at the target DDR operating frequency (528 MHz for i.MX6Q and i.MX6D, 400 MHz for i.MX6DL, i.MX6S, and i.MX6SL) for an extended period of time to verify the DDR performance on the target board. Entering the same value for START and END frequency will allow the application to perform the stress test in loop at the same frequency. It is not suggested to run the stress test at higher frequencies for verifying the stability of the DDR as the DDR signals waveform would be very different at higher frequencies and it is not meaningful.

In case the target board fails the stress test at the target operating frequency, you could try to run at the lower frequency to confirm the DDR connections and setup are correct first. Afterward, you can review the MMDC settings and DDR pins drive strength, modify the DDR initialization script and re-run the calibrations and stress test.

Chapter 4 DDR init script

When DDR_Stress_Tester runs, a DDR init scrip file (*.inc) should be selected. The script file contains parameters for DDR initialization. The users can use the script files in the release package as template to create the script file for their own boards.

The command format in script file is as below and the comment starts with "//"

setmem /32 address = value // comment

The following is a DDR script file sample:

//init script for i.MX6SL LPDDR2

// Enable all c	locks (they are disab	oled by ROM code)	
setmem /32	0x020c4068 =	Oxffffffff	
setmem /32	0x020c406c =	Oxffffffff	
setmem /32	0x020c4070 =	Oxffffffff	
setmem /32	0x020c4074 =	Oxffffffff	
setmem /32	0x020c4078 =	Oxffffffff	
setmem /32	0x020c407c =	Oxffffffff	
setmem /32	0x020c4080 =	Oxffffffff	
setmem /32	0x020c4084 =	Oxffffffff	
setmem /32	0x020c4018 =	0x00260324	//DDR clk to 400MHz
// DDR IOMU	JX configuration		
//DDR IO TY	PE:		
setmem /32	0x020e05c0 =	0x00020000	// IOMUXC_SW_PAD_CTL_GRP_DDRMODE
setmem /32	0x020e05b4 =	0x00000000	// IOMUXC_SW_PAD_CTL_GRP_DDRPKE

//CLOCK:			
setmem /32	0x020e0338 =	0x0000028	// IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_0
//Constantly			
//Control:	0.020.0200	0.00000000	WONTING ON DAD OTH DAD DDANG GAG
setmem /32	0x020e0300 =	0x00000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_CAS
setmem /32	0x020e031c =	0x00000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_RAS
setmem /32	0x020e0320 =	0x00000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_RESET
setmem /32	0x020e032c =	0x00000000	// IOMUXC_SW_PAD_CTL_PAD_DRAM_SDBA2 - DSE
configured us	ing Group Control	Register: IOMUX	C_SW_PAD_CTL_GRP_CTLDS
//setmem /32	0x020e033c =	0x0000008	//IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT0
//setmem/32	0x020e0340 =	0x0000008	// IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT1
setmem /32	0x020e05ac =	0x0000030	// IOMUXC_SW_PAD_CTL_GRP_ADDDS
setmem /32	0x020e05c8 =	0x0000030	// IOMUXC_SW_PAD_CTL_GRP_CTLDS
//Data Strobe	S:		
setmem /32	0x020e05b0 =	0x00020000	// IOMUXC_SW_PAD_CTL_GRP_DDRMODE_CTL
setmem /32	0x020e0344 =	0x00003030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0
setmem /32	0x020e0348 =	0x00003030	//IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1
setmem /32	0x020e034c =	0x00003030	//IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2
setmem /32	0x020e0350 =	0x00003030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3
//Deter			
setmem /32	0x020e05d0 =	0x00080000	// IOMUXC SW PAD CTL GRP DDR TYPE
setmem /32	0x020e05c4 =	0x00000030	// IOMUXC_SW_PAD_CTL_GRP_B0DS
setmem /32	0x020e05cc =	0x00000030	// IOMUXC SW PAD_CTL_GRP_B1DS
setmem /32	0x020e05d4 =	0x00000030	// IOMUXC SW PAD_CTL_GRP_B2DS
setmem /32	0x020e05d8 =	0x00000030	// IOMUXC_SW_IAD_CTL_GRP_B3DS
settien 752	0x020c05u0 -	0.000000000	// IOMOXe_5 w_174b_e1t_okt_b5b5
setmem /32	0x020e030c =	0x00000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM0
setmem /32	0x020e0310 =	0x0000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM1
setmem /32	0x020e0314 =	0x0000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM2
setmem /32	0x020e0318 =	0x0000030	// IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM3
//=======			
// DDR Contr	oller Registers		
//=======			

// Manufacturer: Samsung
// Device Part Number: K4P8G304EB-AGC1
// Clock Freq.: 400MHz

// Density per	r CS in Gb: 4		
// Chip Selec	ts used: 2		
// Total DRA	M density (Gb)	8	
// Number of	Banks: 8		
// Row addres	ss: 14		
// Column ad	dress: 10		
// Data bus w	ridth 32		
//=======			
// MMDC0_N	MDSCR, set the Co	onfiguration request	t bit during MMDC set up
setmem /32	0x021b001c =	0x00008000	// Chan 0
setmem /32	0x021b085c =	0x1b4700c7	//LPDDR2 ZQ params
//======			
// Calibration	setup.		
setmem /32	0x021b0800 =	0xa1390003	// DDR_PHY_P0_MPZQHWCTRL, enable one time ZQ calibration
setmem /32	0x021b0890 =	0x00300000	//ca bus abs delay
setmem /32	0x021b08b8 =	0x00000800	//frc_msr.
// read delays	, settings recomme	nded by design to r	remain constant
setmem /32	0x021b081c =	0x33333333	// DDR_PHY_P0_MPREDQBY0DL3
setmem /32	0x021b0820 =	0x33333333	// DDR_PHY_P0_MPREDQBY1DL3
setmem /32	0x021b0824 =	0x33333333	// DDR_PHY_P0_MPREDQBY2DL3
setmem /32	0x021b0828 =	0x33333333	// DDR_PHY_P0_MPREDQBY3DL3
// write delay	s, settings recomme	ended by design to	remain constant
setmem /32	0x021b082c =	0xf3333333	//DDR_PHY_P0 all byte 0 data & dm delayed by 3
setmem /32	0x021b0830 =	0xf3333333	//DDR_PHY_P0 all byte 0 data & dm delayed by 3
setmem /32	0x021b0834 =	0xf3333333	//DDR_PHY_P0 all byte 0 data & dm delayed by 3
setmem /32	0x021b0838 =	0xf3333333	//DDR_PHY_P0 all byte 0 data & dm delayed by 3
// Read and w	vrite data delay, per	byte.	
// For optimiz	zed DDR operation	it is recommended	to run mmdc_calibration on your board, and replace 4 delay register
assigns with	resulted values		
// Note:			
// a. DQS gat	ing is not relevant f	for LPDDR2. DSQ	gating calibration section should be skipped, or the following write/read
calibration w	ill stall		
// b. The calil	bration code that ru	ns for both MMDC	C0 & MMDC1 should be used.
setmem /32	0x021b0848 =	0x4241444a	// MPRDDLCTL PHY0
setmem /32	0x021b0850 =	0x3030312b	// MPWRDLCTL PHY0

//PHY0 dqs gating dis

Freescale Semiconductor	i.MX6 DDR Stress Tester User's Guide,	Rev. V1.0.2

0x20000000

setmem /32 0x021b083c =

setmem /32 setmem /32	0x021b0840 = 0x021b08b8 =	0x0 0x00000800	//frc_msr.			
//=======						
// Calibration setup end						
//=======						
// Channel0 - starting address 0x8000000						
setmem /32	0x021b000c =	0x33374133	// MMDC0_MDCFG0			
setmem /32	0x021b0004 =	0x00020024	// MMDC0_MDPDC			
setmem /32	0x021b0010 =	0x00100A82	// MMDC0_MDCFG1			
setmem /32	0x021b0014 =	0x00000093	// MMDC0_MDCFG2			
setmem /32	0x021b0018 =	0x00001688	// MMDC0_MDMISC			
setmem /32	0x021b002c =	0x0F9F26D2	// MMDC0_MDRWD			
setmem /32	0x021b0030 =	0x0000020E	// MMDC0_MDOR			
setmem /32	0x021b0038 =	0x00190778	// MMDC0_MDCFG3LP			
setmem /32	0x021b0008 =	0x00000000	// MMDC0_MDOTC			
setmem /32	0x021b0040 =	0x0000004F	// Chan0 CS0_END			
setmem /32	0x021b0000 =	0xC3110000	// MMDC0_MDCTL			
//=======						
// LPDDR2 M	Iode Register Writes	5				
//=======						
// Channel 0 G	CSO					
setmem /32	0x021b001c =	0x003F8030	// MRW: BA=0 CS=0 MR_ADDR=63 MR_OP=0 (Reset)			
setmem /32	0x021b001c =	0xFF0A8030	// MRW: BA=0 CS=0 MR_ADDR=10 MR_OP=0xff (IO calibration,			
calibration co	de)					
setmem /32	0x021b001c =	0x82018030	// MRW: BA=0 CS=0 MR_ADDR=1 MR_OP=see Register			
Configuration	1					
setmem /32	0x021b001c =	0x04028030	// MRW: BA=0 CS=0 MR_ADDR=2 MR_OP=see Register			
Configuration						
setmem /32	0x021b001c =	0x02038030	// MRW: BA=0 CS=0 MR_ADDR=3 MR_OP=see Register			
Configuration	1					
// Channel 0 CS1						
//setmem/32	0x021b001c =	0x003F8038	// MRW: BA=0 CS=1 MR_ADDR=63 MR_OP=0 (Reset)			
setmem /32	0x021b001c =	0xFF0A8038	// MRW: BA=0 CS=1 MR_ADDR=10 MR_OP=0xff (IO calibration,			
calibration co	de)					
setmem /32	0x021b001c =	0x82018038	// MRW: BA=0 CS=1 MR_ADDR=1 MR_OP=see Register			
Configuration						
setmem /32	0x021b001c =	0x04028038	// MRW: BA=0 CS=1 MR_ADDR=2 MR_OP=see Register			
Configuration						
setmem /32	0x021b001c =	0x02038038	// MRW: BA=0 CS=1 MR_ADDR=3 MR_OP=see Register			

Configuration

setmem /32

setmem /32

setmem /32

0x0

0x0000800

0x00025564

0x00011006

0x00000000

//final DDR setup, before operation start:					
setmem /32	0x021b0800 =	0xa1310003			
setmem /32	0x021b0020 =	0x00001800			

0x021b0004 =

0x021b0404 =

0x021b001c =

setmem /32 0x021b0818 =

setmem /32 0x021b08b8 =

bit as initialization is complete)...

// DDR_PHY_P0_MPZQHWCTRL, enable automatic ZQ calibration
// MMDC0_MDREF
// DDR_PHY_P0_MPODTCTRL
// DDR_PHY_P0_MPMUR0, frc_msr
// MMDC0_MDPDC now SDCTL power down enabled
//MMDC0_MAPSR ADOPT power down enabled
// MMDC0_MDSCR, clear this register (especially the configuration

NOTE

The DDR initialization script included in this release are dedicated for Freescale reference boards. Customers should fine tune the script for their own board.

Chapter 5 FAQ

• How to configure the test to run in 16-bit, 32-bit, and 64-bit data bus mode? The test will read the DDR initialization script and determine the data bus size based on the setting in the script.

• Do I need to update the DDR initialization script after running the calibration?

Yes. The calibration results are stored in the MMDC registers during the test only. It is suggested to update the initialization script and re-run the test on different boards to confirm the DDR performance and make sure the MMDC register settings are correctly ported to the firmware.

• When should I skip the calibration?

The calibration results depend on the PCB layout. PCBs with the same layout can use the same calibration results. So, you can skip the calibration when you are verifying the DDR performance on PCBs with same layout. Please make sure the calibration results are incorporated in the initialization script.

• Can I perform the calibration on one channel only when using two-channel LPDDR2?

No. The tool supports calibration on both channels. If you want to test the DDR performance on one channel only, you can run the calibration and update the initialization script with the calibration results. Then, re-run the test and skip the calibration.

Chapter 6 Reference Documents

- i.MX 6 Series Multimedia Applications Processor Reference Manual
- AN4467 i.MX6 Series DDR Calibration
- DDR3 SDRAM JESD79-3D JEDEC Standard
- LPDDR2 JESD209-2D JEDEC Standard

Chapter 7 Revision History

Table 1 provides a revision history for this user guide.

Rev. Number	Date	Substantive Change(s)
Rev. 1	09/2013	Initial public release.
Rev. 2	10/2013	Update for 1.0.1 release
Rev. 3	12/2013	Update for 1.0.2 release

Table 1. Document Revision History