
 - 1 -

Manufacturing Tool Client Driver

Development Guide

Version History

VERSION DATE AUTHOR CHANGE DESCRIPTION

1.0 Nov 1
th
, 2009 Li Xingyu – b02754 Original Version

1.1 Aug 5
th
, 2010 Tina Zhu – r65086

Table of Contents

1 The purpose ... - 2 -

2 What is functionality of manufacturing tool client driver - 2 -
3 Driver architecture .. - 2 -

3.1 UCE driver ... - 2 -
3.1.1 USB MSC card reader .. - 2 -
3.1.2 Universal transfer protocol ... - 3 -

3.1.3 Universal client engine ... - 3 -
3.2 Media driver ... - 3 -

3.2.1 NAND Media .. - 4 -
3.2.2 SD/MMC Media ... - 4 -

4 Code organization ... - 4 -
5 Client driver implementation .. - 6 -

5.1 Register settings ... - 6 -

5.2 The process flow .. - 6 -
5.3 HID mode implementation ... - 7 -

5.3.1 i.MX233/28 implementation ... - 7 -
5.3.2 i.MX508 implementation .. - 12 -

5.4 Bulk-IO mode implementation... - 15 -
5.4.1 NAND operation implementation ... - 15 -
5.4.2 SD/MMC operation implementation .. - 15 -
5.4.3 Generate corresponding image ... - 16 -

TM

 - 2 -

1 The purpose
The doc gives an introduction of manufacturing tool (also called universal updater tool)

client driver.

2 What is functionality of manufacturing tool client
driver

To implement UTP protocol and execute commands sent from host.

3 Driver architecture
The client driver consists of UCE driver and media driver.

USB MSC Card Reader

Uinversal Transfer

Protocol

Universal Client Engine

NAND image

Burner

NAND flash

driver

Media Driver

File writer
SD image

Burner

MISC

functions

SD driver

Host

Commands/Data

Transfer

UCE

Driver

3.1 UCE driver

UCE driver acts as a bridge to transfer commands/data between host side and device side.

3.1.1 USB MSC card reader

The layer implements USB MSC protocol and reports USB host as a card reader. To send

commands or data from host to client, host must setup a way to communicate the client.

USB MSC is chosen as a protocol here since it is simple and speed efficient, and

Windows OS pre-installs USB MSC driver, which means we can use the driver directly.

 - 3 -

Card reader which is a subtype of USB MSC is chosen since it can stop the disk

read/write operation from host.

This layer is implemented by two files: Bot.cpp and Block.cpp.

Bot.cpp implements bulk-only transfer routine.

Block.cpp implements USB MSC card reader functions which Contains SCSI-2 direct-

access device emulation implementation. In this way, access operation can be prohibited

when the USB MSC device is recognized by Windows System.

There are limited SCSI commands will be supported, which are listed in

STORE_IsCommandSupported function. And these commands are executed in

STORE_ExecuteCommand function.

NOTE: SCSI_UTP is a vendor defined command which implements manufacturing tool

specific command. Please refer to UTP.doc for detail

The module is quite similar to the sample Microsoft provides. For the more information,

see the Microsoft help document - USB Function Mass Storage Client Driver.

For USB Mass Storage information, please check the following specifications:

Universal Serial Bus Mass Storage Class Specification Overview

USB Mass Storage Class Bulk-Only Transport

Small Computer System Interface - 2 (SCSI-2)

3.1.2 Universal transfer protocol

UTP.cpp implements the protocol which transfers data and message to UCE layer.

3.1.3 Universal client engine

The layer is contains uce.cpp, uce_media.cpp and sdboot.cpp in common folder and

bspuut.cpp in bsp code folder.

Uce.cpp implements universal client engine which parses the commands sent from host

and executes them with related command functions.

For these commands information, see Manufacturing Tool UCL user manual.doc.

Uce_media.cpp invokes corresponding media driver functions to execute the commands.

Sdboot.cpp executes the detail operations relate to SD/MMC.

Bspuut.cpp implements the specific-platform operations.

3.2 Media driver

The task manufacturing tool is to burn all kinds of contents like image, demo files to non-

volatile storage devices. Media driver is used to finish the burning tasks.

Those tasks can be divided to following parts:

1. Image burning: to burn images to specified media.

2. File writing: to write files to specified media.

 - 4 -

3. Other features of customization for customer requirement.

Currently, only NAND flash and SD/MMC media is supported.

It is to access NAND and SD/MMC media, the two medias driver must be supported

firstly. And for using either one of two medias, the corresponding media item must be

selected in UUT project catalog. It is the customers’ responsibility to provide their own

media driver like NAND flash driver, SD/MMC/eMMC/SPI NOR, etc. The way of how

to burn customers’ image totally depends on the requirement of customers theirselves.

Anyway, the UTP protocol implementation should be identical and shouldn’t be changed.

3.2.1 NAND Media

There is the NAND driver to support access NAND media firstly. Then the client driver

need implement NAND boot burner part in NAND driver.

It includes NandBootBurner.c which implements some READ/WRITE operations to

NAND.

For more NAND driver information, see FSL_WSDK_CE600_ReferenceManual.pdf.

3.2.2 SD/MMC Media

The client driver will call SD/MMC driver to write/read SD/MMC media by specialized

IOCTL directly.

For more SD/MMC driver information, see FSL_WSDK_CE600_ReferenceManual.pdf.

4 Code organization

Code organization follows below principles:

1. Try to share common codes for each platform.

Locates in $(_PLATFORMROOT)\COMMON\SRC\SOC\$(_COMMONSOCDIR)\UUT.

2. BSP codes for each platform.

Locates in $(_TARGETPLATROOT)\SRC\ DRIVERS\UUT.

3. Media driver codes for each platform.

Only NAND Boot Burner part need be implemented in client driver. It is in the

site $(_TARGETPLATROOT)\SRC\COMMON\NANDBOOTBURNER or

$(_PLATFORMROOT)\COMMON\SRC\SOC\$(_COMMONSOCDIR)\boot\fmd\nandbootburner

 - 5 -

USB MSC Card Reader

Bot.cpp

Block.cpp

Universal Transfer Protocol

Utp.cpp

Universal Client Engine

Uce.cpp

Uce_media.cpp

Sdboot.cpp

Bspuut.cpp

NandBootBurner.c

NAND flash driver

Media Driver

SD driver

Common codes

Platform codes

NOTE: In fact, media driver is always related to platform. So these operations control

media should be implemented in media driver. But the functions of interrelated SD media

are completed in UCE layer now. It suggests be implemented in SD driver.

USB MSC Card Reader

Bot.cpp

Block.cpp

Universal Transfer Protocol

Utp.cpp

Universal Client Engine

Uce.cpp

Uce_media.cpp

Bspuut.cpp

NandBootBurner.c

NAND flash driver

Media Driver

Common codes

Platform codes

Sdboot.cpp

SD driver

 - 6 -

5 Client driver implementation

There are two types of i.MX devices: HID mode i.MX device and Bulk-IO mode i.MX

device. Till now, i.MX233/28/508 belongs to HID mode i.MX device; i.MX35/51/53

belongs to Bulk-IO mode i.MX device.

This client driver implementation is different with the device mode. And the common

codes are shared for all platforms. The main implementation is about the codes of

platform and the codes of media.

5.1 Register settings

The client driver registry settings are under. The registry settings information, please

refer to the Microsoft help document - USB Function Client Driver Registry Settings.

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=- ; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="UUT"

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\UUT]
 "Dll"="UUT.dll"
 "InterfaceSubClass"=dword:06
; 06h corresponds to the USB mass storage client.
 "InterfaceProtocol"=dword:50
; 50h corresponds to bulk-only transport (BOT).
 "DeviceName"="DSK1:"
 "FriendlyName"="Mass Storage"
 "idVendor"=dword:066F
 "Manufacturer"="Freescale"
 "idProduct"=dword:37FF
 "Product"="UUT"
 "bcdDevice"=dword:0
 "SerialNumber"="0802270905553"
 "DeviceName"="NAND FLASH"

5.2 The process flow

Firstly, the host sends UUT image to the i.MX device. The client driver will call USB

MSC Card Reader layer to recognize the i.MX device as a Card Reader.

Then host send commands and data to the Card Reader. The USB MSC Card Reader

layer will receive the special command “SCSI_UTP” package and send it to Universal

Transfer Protocol layer to check it is a command or data. Then the package will be

transfer to Universal Client Engine layer to handle. If it is a command it will be parsed

and dealt here. Or if it is data it will send with media driver.

The process flow shows as following.

 - 7 -

Is the device recognized as a

card reader?

Y
E

S

NO

DCE receives partial data

DCE sends IOCTL request to

media driver to do partial

image burning

Is all the data transferred?

DCE sends IOCTL request to

media driver to finish partial

image burning

Return Error

YES

End

End

DCE receives command

Is a UTP command

transferred?

Does handle Command

successfully?

 N
O

 YES

Data transfer

Return Error

End

 N
O

Y
E

S

Download UUT image to

device

5.3 HID mode implementation

HID mode i.MX device includes i.MX233, i.MX28 and i.MX508. i.MX233 and i.MX28

will follow one process and i.MX508 will execute another process.

5.3.1 i.MX233/28 implementation

There are three file types: Firmware, Raw data and file data. Transferring xldr/eboot/nk

image use either one of Firmware and Raw data type. And transferring general file uses

file data type. Setting media type and checking media status firstly before receiving and

burning data.

5.3.1.1 NAND operations implementation

 Firstly, set NAND type and check NAND if it is ready for burning.

 - 8 -

Cmd_QueryStoreName()

DCE receives

“MediaType:NAND”

command to tell NAND will

be used

DCE receives “QueryStoreName:NAND

FLASH Storage,Timeout:10” command

to checkl if NAND device is ready

DCE receives

“QueryStoreStatus:DSKn:,Timeout:10”

command to checkl if DSKn

device(NAND media) is ready

Cmd_QueryStoreStatus()

 Then the firmwares are sent and burned to media of NAND. i.MX233/28 uses

Firmware type to transfer xldr/eboot/nk to NAND media.
DCE receives “wfw”

command and prepare

burning image

DCE receives“fwtype” command to set

image type (XL_NB/

EB_SB/NK_SB/EB_NB/NK_NB)

DCE receives “send”

command and prepare buffer

to receive data

Cmd_fwtype()

Transfer Eboot or NK

UceTransData()

Host send firmware data to client,

the full-size is 64K each time

Transfer file type is Firmware

Cmd_send(): Firmware

Get the whole data length transfered: g_Payloadsize

Get the unit size of writing NAND: g_MinBufSize

Alloc the buffer to receive data: g_PayloadBuf

 g_PayloadBuf size = min(g_Payloadsize , g_MinBufSize)

Is g_Payloadsize >

g_MinBufSize?

DCE receives partial

data<=64K

NO

Y
E

S

DCE sends IOCTL request to

NAND driver to do partial

image burning

DCE receives “save” command

Is there remanent data not to

burn to NAND?

DCE sends IOCTL request to

media driver to finish partial

image burning

Y
E

S

End

Cmd_Save()

NO

N
O

YES

Is

min(g_Payloadsize,g_MinBuf

Size) transferred?

Is remain

data(g_Payloadsize%g_

MinBufSize) transferred?

NO
YES

 - 9 -

 The process of files transferred to NAND media shows as below.

DCE receives “wfl”

command and prepare

writing file

DCE receives“filename:NANDFlash\\

XXXX”command to create the specify file

to write

DCE receives “send”

command and prepare buffer

to receive data

DCE receives

“QueryFolderStatus:NANDFlash,Timeout:10

” command to check NAND folder if ready
Cmd_QueryFolderStatus()

Cmd_filename()

UceTransData()

Host send file to client, most size

is trans 64K each time

Transfer file type is File

Cmd_send()

If the send type is file, the handle is more easy than

Firmware and Raw data.

Get the whole file length transfered: g_Payloadsize

DCE calls Write function that

write buffer data to the created

file:NANDFlash\\XXXX

DCE receives “save” command.

Close file handle

End

Cmd_Save()

DCE receives partial

data<=64K

5.3.1.2 SD/MMC operations implementation

 Set SD/MMC media type and check its status.

i.MX233/28 uses MBR mode to burn firmware. The MBR (master boot record) is

the 512-byte boot sector that is the first sector.

The SD/MMC is divided into three partitions: the first is the File partition, the

second is Eboot partition and the three is the NK partition. These partitions size is

 - 10 -

decided by the xml command. And all the partition information is recorded in

MBR.

About the MBR knowledge, see Master Boot Record WIKI.

NOTE: If the SD/MMC isn’t formatted to create a file system, it will not be

capable for files writing. So add the function of CreateOnePartition before writing

MBR is for writing files.

DCE receives

“MediaType:SD/MMC”

command to tell SD/MMC will

be used

Cmd_QueryStoreName()

DCE receives “QueryStoreName:SD

Memory Card,Timeout:10” command to

checkl if SD/MMC device is ready

DCE receives

“QueryStoreStatus:DSKn:,Timeout:10”

command to checkl if DSKn device(SD/

MMC media) is ready

Cmd_QueryStoreStatus()

DCE receives

“Partitions:EBOOT:XXMB,NK:XXMB,File”

command to partition SD/MMC Cmd_Partitions()

Cmd_Paritions()

UceCreatePartitions()

If there are three partitions, using SDWriteMBR()

CreateOnePartition()

Calculate the MBR values

Sends IOCTL request to

write SD/MMC sectors

 The firmwares are sent and burned to media of SD/MMC.

The most processes of SD/MMC are same with NAND’s. But NAND always uses

partial transfer.

 - 11 -

DCE receives “wfw”

command and prepare

burning image

DCE receives“fwtype” command to set

image type (XL_NB/

EB_SB/NK_SB/EB_NB/NK_NB)

DCE receives “send”

command and prepare buffer

to receive data

Cmd_fwtype()

Transfer Eboot or NK

UceTransData()

Host send firmware

data to client, the full-

size is 64K each time

Transfer file type is Firmware

Cmd_send(): Firmware

Get the whole data length transfered: g_Payloadsize

Get the unit size of writing NAND: g_MinBufSize

Alloc the buffer to receive data: g_PayloadBuf

 g_PayloadBuf size = min(g_Payloadsize , g_MinBufSize)

g_PartialTransfer is TRUE, g_Payloadsize>g_MinBufSize

DCE receives partial

data<=64K

N
O

DCE receives “save” command

Is there remanent data not to

burn to SD/MMC?

End

Cmd_Save()

NO

Is remain

data(g_Payloadsize%g_

MinBufSize) transferred?

Is g_PartialTransfer

TRUE?(g_Payloadsize >

g_MinBufSize)

Y
E

S

NO

DCE sends IOCTL request to

SD/MMC driver to do partial

image burning

Is

min(g_Payloadsize,g_M

inBufSize) transferred?

Y
E

S

YES

NO

Is g_PartialTransfer

TRUE?(g_Payloadsize >

g_MinBufSize)

Y
E

S

DCE sends IOCTL request to

SD/MMC driver to finish

image burning

NO

YES

 - 12 -

 The files are written to SD/MMC.

The processes of files written are same with NAND’s processes. Only the media

type change from NAND to SD/MMC.

The processes refer to chapter - 5.3.1.1: The process of files transferred to NAND media.

5.3.1.3 Generate UUT image

I. Create a UUT project.

Selects all modules need be used in catalog, such as NAND, SD, USB modules.

II. Set Environment variables

There are two environment variables must be set: BSP_UUT and IMGUUT.

 BSP_UUT is used for the UUT module built.

 IMGUUT is used in config.bib to get a small image. The NK_SIZE is set by user

based on the actual requirement. An example shows in below.
IF IMGUUT
 #define NK_SIZE 00300000 ;3MB
ENDIF

III. Set platform.reg and platform.bib

Add UUT registry to platform.reg, see 5.1 – Register settings.

Add the following comments in platform.bin:
IF BSP_UUT
 UUT.dll $(_FLATRELEASEDIR)\UUT.dll NK SHK
ENDIF ; BSP_UUT.

IV. Build the UUT project.

It generates nk.sb image. Rename nk.sb as uce.sb. Then the UUT image is

generated as uce.sb.

V. Copy uce.sb to corresponding folder, e.g. “\mfgtool\Profiles\MXxx WinCE Update\OS

firmware”.

5.3.2 i.MX508 implementation

5.3.2.1 NAND operations implementation

N/A.

5.3.2.2 SD/MMC operations implementation

 Set SD/MMC media type and check SD/MMC status.

i.MX508 uses two partitions for SD/MMC: the first is Firmware partition and the

second is File partition. The firmware partition uses to store xldr, eboot and nk image.

 - 13 -

DCE receives

“MediaType:SD/MMC”

command to tell SD/MMC will

be used

Cmd_QueryStoreName()

DCE receives “QueryStoreName:SD

Memory Card,Timeout:10” command to

checkl if SD/MMC device is ready

DCE receives

“QueryStoreStatus:DSKn:,Timeout:10”

command to checkl if DSKn device(SD/

MMC media) is ready

Cmd_QueryStoreStatus()

DCE receives

“Partitions:Firmware:XXMB,File”

command to partition SD/MMC Cmd_Partitions()

Cmd_Paritions()

UceCreatePartitions()

If there are two partitions, using SDCreatePartitions()

CreatePartitionEx() to

create Firmware partition

CreatePartitionEx() to

create File partition

 The raw data are sent and burned to media of SD/MMC.

 - 14 -

DCE receives “wrd:0x400”

command and prepare

burning image

DCE receives “send”

command and prepare buffer

to receive data

UceTransData()

Host send firmware

data to client, the full-

size is 64K each time

Transfer file type is Raw data

Set starting address: g_StartAddr

Cmd_send(): Raw data

Get the starting sector by calling UcePreWriteRawData:

gStartSectorAddrt

Get the whole data length transfered: g_Payloadsize

Get the unit size of writing NAND: g_MinBufSize

Alloc the buffer to receive data: g_PayloadBuf

 g_PayloadBuf size = min(g_Payloadsize , g_MinBufSize)

g_PartialTransfer is TRUE, g_Payloadsize>g_MinBufSize

DCE receives partial

data<=64K

N
O

DCE receives “save” command

Is there remanent data not to

burn to SD/MMC?

End

Cmd_Save()

NO

Is remain

data(g_Payloadsize%g_

MinBufSize) transferred?

Is g_PartialTransfer

TRUE?(g_Payloadsize >

g_MinBufSize)

Y
E

S

NO

DCE sends IOCTL request to

SD/MMC driver to do partial

image burning

Is

min(g_Payloadsize,g_M

inBufSize) transferred?

Y
E

S

YES

NO

Is g_PartialTransfer

TRUE?(g_Payloadsize >

g_MinBufSize)

Y
E

S

DCE sends IOCTL request to

SD/MMC driver to finish

image burning

NO

YES

 - 15 -

 Writing files to SD/MMC.

The processes please refer to chapter - 5.3.1.1: The process of files transferred to

NAND media.

5.3.2.3 Generate corresponding image

I. Create a UUT project

Selects all modules need be used in catalog.

II. Set Environment variables

There are two environment variables must be set: BSP_UUT and IMGTINY.

 BSP_UUT is used for the UUT module built.

 IMGTINY is used in config.bib to make the image as small as possible by

removing most modules. It is defined by Microsoft.

NOTE: Suggest using an environment variables defined by user for the

security such as IMGUUT.

III. Set platform.reg and platform.bib

Add UUT registry to platform.reg, see 5.1 – Register settings.

Add the following comments in platform.bin:
IF BSP_UUT
 UUT.dll $(_FLATRELEASEDIR)\UUT.dll NK SHK
ENDIF ; BSP_UUT.

IV. Get UUT image

 Build the UUT project. It generates nk.nb0 image.

 Rename nk.nb0 as uce.nb0. Then the UUT image is generated as uce.nb0.

 Copy uce.nb0 to corresponding folder, e.g. “\mfgtool\Profiles\MXxx WinCE

Update\OS firmware”.
V. Get eboot_uut image

It is for initialization such like kitl parameters setting.

 Update main.c in $(_TARGETPLATROOT)\SRC\BOOTLOADER\COMMON.

 Rebuild it and generate eboot.nb0

 Rename eboot.nb0 to eboot_uut.nb0

 Copy eboot_uut.nb0 to corresponding folder, e.g. “\mfgtool\Profiles\MXxx

WinCE Update\OS firmware”.

5.4 Bulk-IO mode implementation

i.MX35, i.MX51 and i.MX53 are bulk-IO mode i.MX device.

5.4.1 NAND operation implementation

Please refer to chapter - 5.3.1.1 NAND operations implementation.

The process of UCE is same with 5.3.1.1. The difference is the operations how to control

NAND media.

5.4.2 SD/MMC operation implementation

Please refer to chapter - 5.4.2.1 SD/MMC operations implementation.

The process of UCE is same with 5.4.2.1. And the difference is in the operations how to

control SD/MMC media.

 - 16 -

5.4.3 Generate corresponding image

There are two images shown as below.

 UUT image – uce.nb0

 Eboot_uut image – eboot_uut.nb0

Please refer to chapter - 5.3.2.3 Generate corresponding image to generate the two images.

