
Part Number: 926-77210

 Rev.2009.12
01/2010

i.MX25 PDK Linux
Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary

in different applications and actual performance may vary over time. All operating parameters,

including “Typicals”, must be validated for each customer application by customer’s technical

experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights

of others. Freescale Semiconductor products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Freescale Semiconductor

product could create a situation where personal injury or death may occur. Should Buyer purchase

or use Freescale Semiconductor products for any such unintended or unauthorized application,

Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other

product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -3

About This Book

Audience . 17

Conventions . 17

Definitions, Acronyms, and Abbreviations . 17

Suggested Reading . 20

Chapter 1
Introduction

1.1 Software Base . 1-1

1.2 Features . 1-2

Chapter 2
Architecture

2.1 Linux BSP Block Diagram . 2-1

2.2 Kernel . 2-2

2.2.1 Kernel Configuration . 2-2

2.2.2 Machine Specific Layer (MSL) . 2-3

2.2.2.1 Memory Map . 2-3

2.2.2.2 Interrupts . 2-3

2.2.2.3 General Purpose Timer (GPT) . 2-3

2.2.2.4 Smart Direct Memory Access (SDMA) API . 2-4

2.2.2.5 Input/Output (I/O). 2-5

2.2.2.6 Shared Peripheral Bus Arbiter (SPBA) . 2-5

2.3 Drivers . 2-5

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver . 2-6

2.3.1.1 UART Driver . 2-6

2.3.2 Real-Time Clock (RTC) Driver . 2-6

2.3.3 Watchdog Timer (WDOG) Driver . 2-7

2.3.4 SDMA API Driver . 2-7

2.3.5 Sound Driver. 2-7

2.3.6 Memory Technology Device (MTD) Driver . 2-8

2.3.7 Networking Drivers . 2-9

2.3.7.1 SMSC LAN9217 Ethernet Driver. 2-9

2.3.7.2 FEC driver. 2-9

2.3.8 USB Driver . 2-9

2.3.8.1 USB Host-Side API Model. 2-10

2.3.8.2 USB Device-Side Gadget Framework . 2-10

2.3.8.3 USB OTG Framework . 2-11

2.3.9 Security Drivers . 2-11

2.3.9.1 Security Controller (SCC) Module Driver . 2-12

2.3.10 Power managementGeneral Drivers . 2-12

2.3.10.1 MMC/SD Host Driver . 2-13

2.3.10.2 MMC/SD Slot Driver . 2-13

Contents

i.MX25 PDK Linux Reference Manual

-4 Freescale Semiconductor

2.3.10.3 Inter-IC (I2C) Bus Driver . 2-13

2.3.10.4 Configurable Serial Peripheral Interface (CSPI) Driver. 2-14

2.3.10.5 Dynamic Power Management (DPM) Driver . 2-14

2.3.10.6 Low-Level Power Management Driver . 2-16

2.4 Boot Loaders. 2-16

2.4.1 Functions of Boot Loaders . 2-16

2.4.2 RedBoot . 2-17

Chapter 3
Machine Specific Layer (MSL)

3.1 Interrupts . 3-1

3.1.1 Interrupt Hardware Operation. 3-1

3.1.2 Interrupt Software Operation . 3-2

3.1.3 Interrupt Features . 3-2

3.1.4 Interrupt Source Code Structure . 3-2

3.1.5 Interrupt Programming Interface . 3-3

3.2 Timer. 3-3

3.2.1 Timer Hardware Operation . 3-3

3.2.2 Timer Software Operation . 3-3

3.2.3 Timer Features . 3-4

3.2.4 Timer Source Code Structure . 3-4

3.3 Memory Map . 3-4

3.3.1 Memory Map Hardware Operation. 3-4

3.3.2 Memory Map Software Operation . 3-4

3.3.3 Memory Map Features . 3-4

3.3.4 Memory Map Source Code Structure . 3-4

3.3.5 Memory Map Programming Interface . 3-5

3.4 IOMUX. 3-5

3.4.1 IOMUX Hardware Operation . 3-6

3.4.2 IOMUX Software Operation . 3-6

3.4.3 IOMUX Features . 3-6

3.4.4 IOMUX Source Code Structure . 3-6

3.4.5 IOMUX Programming Interface. 3-6

3.4.6 IOMUX Control Through GPIO Module . 3-6

3.4.6.1 GPIO Hardware Operation . 3-7

3.4.6.2 GPIO Software Operation. 3-7

3.4.6.3 GPIO Features. 3-7

3.4.6.4 GPIO Source Code Structure . 3-7

3.4.6.5 GPIO Programming Interface . 3-8

3.5 General Purpose Input/Output (GPIO) . 3-8

3.5.1 GPIO Software Operation. 3-8

3.5.1.1 API for GPIO . 3-8

3.5.2 GPIO Features. 3-9

3.5.3 GPIO Source Code Structure . 3-9

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -5

3.5.4 GPIO Programming Interface . 3-9

3.6 EDIO. 3-9

3.6.1 EDIO Hardware Operation . 3-9

3.6.2 EDIO Software Operation . 3-9

3.6.3 EDIO Features . 3-10

3.6.4 EDIO Source Code Structure . 3-10

3.6.5 EDIO Programming Interface. 3-10

3.7 SPBA Bus Arbiter. 3-10

3.7.1 SPBA Hardware Operation. 3-10

3.7.2 SPBA Software Operation . 3-10

3.7.3 SPBA Features . 3-11

3.7.4 SPBA Source Code Structure . 3-11

3.7.5 SPBA Programming Interface . 3-11

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview. 4-1

4.2 Hardware Operation . 4-1

4.3 Software Operation . 4-1

4.4 Source Code Structure . 4-3

4.5 Menu Configuration Options . 4-3

4.6 Programming Interface . 4-4

4.7 Usage Example . 4-4

Chapter 5
PMIC (MC34704) Protocol Driver

5.1 Key PMIC Features and Capabilities . 5-1

5.1.1 PMIC Register Access and Arbitration . 5-1

5.1.2 Event Notification. 5-2

5.2 Driver Requirements. 5-2

5.3 Driver Software Operation . 5-2

5.4 Driver Implementation Details . 5-2

5.4.1 Driver Initialization. 5-3

5.4.2 Driver Unloading . 5-3

5.4.3 Register Access. 5-3

5.5 Driver Source Code Structure. 5-3

5.6 Linux Menu Configuration Options . 5-4

Chapter 6
PMIC (MC34704) Regulator Driver

6.1 PMIC Features . 6-1

6.2 Driver Requirements. 6-1

6.3 Driver Software Operation . 6-1

i.MX25 PDK Linux Reference Manual

-6 Freescale Semiconductor

6.4 Regulator APIs . 6-1

6.5 Driver Architecture . 6-2

6.6 Driver Implementation Details . 6-3

6.7 Driver Source Code Structure. 6-3

6.8 Linux Menu Configuration Options . 6-3

Chapter 7
i.MX25 Low-level Power Management (PM) Driver

7.1 Hardware Operation . 7-1

7.1.1 Lower Power Mode . 7-1

7.2 Software Operations . 7-1

7.3 Source Code Structure . 7-2

7.4 Linux Menu Configuration Options . 7-2

7.5 Programming Interface . 7-2

Chapter 8
CPU Frequency Scaling (CPUFREQ) Driver

8.1 Software Operation . 8-1

8.2 Source Code Structure . 8-1

8.3 Menu Configuration Options . 8-1

8.3.1 Board Configuration Options . 8-2

Chapter 9
Liquid Crystal Display Controller (LCDC) Driver

9.1 LCD Driver Overview . 9-1

9.1.1 Hardware Operation . 9-1

9.1.2 Software Operation . 9-1

9.1.3 Graphics Window . 9-2

9.1.4 Architecture . 9-2

9.2 Source Code Structure Configuration. 9-3

9.3 Linux Menu Configuration Options . 9-3

Chapter 10
OmniVision Camera (OV2640) Driver

10.1 Hardware Operation . 10-1

10.2 Software Operation . 10-1

10.3 Source Code Structure . 10-1

10.4 Linux Menu Configuration Options . 10-2

Chapter 11
MXC Camera Sensor Interface (CSI) Driver

11.1 Hardware Operation . 11-1

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -7

11.2 Software Operation . 11-1

11.2.1 CSI Software Operation . 11-1

11.2.2 Video for Linux 2 (V4L2) APIs . 11-1

11.2.2.1 V4L2 Capture Device . 11-2

11.2.2.2 Use of the V4L2 Capture APIs . 11-2

11.3 Source Code Structure . 11-2

11.4 Linux Menu Configuration Options . 11-3

11.5 Programming Interface . 11-3

Chapter 12
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

12.1 SoC Sound Card . 12-1

12.1.1 Stereo Codec Features . 12-2

12.1.2 5.1 Codec Features . 12-2

12.1.3 4-Channel ADC Codec Features. 12-2

12.1.4 Sound Card Information . 12-3

12.2 ASoC Driver Source Architecture . 12-3

12.3 Menu Configuration Options . 12-6

12.4 Hardware Operation . 12-6

12.4.1 Stereo Audio Codec . 12-6

12.4.2 5.1 Audio Codec . 12-7

12.4.3 4-Channel ADC Codec . 12-7

12.5 Software Operation . 12-7

12.5.1 Sound Card Registration . 12-7

12.5.2 Device Open . 12-7

Chapter 13
NAND Flash Memory Technology Device (MTD) Driver

13.1 Overview. 13-1

13.1.1 Hardware Operation . 13-1

13.1.2 Software Operation . 13-1

13.2 Requirements . 13-2

13.3 Source Code Structure . 13-2

13.4 Linux Menu Configuration Options . 13-2

13.5 Programming Interface . 13-2

Chapter 14
Low-Level Keypad Driver

14.1 Hardware Operation . 14-1

14.2 Software Operation . 14-1

14.3 Reassigning Keycodes . 14-3

14.4 Driver Features . 14-3

i.MX25 PDK Linux Reference Manual

-8 Freescale Semiconductor

14.5 Source Code Structure . 14-3

14.6 Menu Configuration Options . 14-4

14.7 Programming Interface . 14-4

14.8 Interrupt Requirements . 14-4

14.9 Device-Specific Information. 14-4

Chapter 15
Touch Screen and ADC Drivers

15.1 Driver Overview . 15-1

15.2 Hardware Operation . 15-1

15.3 Software Operation . 15-2

15.4 Source Code Structure . 15-2

15.5 Menu Configuration Options . 15-2

15.6 Programming Interface (Exported API) . 15-2

15.7 Interrupt Requirements . 15-3

Chapter 16
SMSC LAN9217 Ethernet Driver

16.1 Hardware Operation . 16-1

16.2 Software Operation . 16-1

16.3 Requirements . 16-2

16.4 Source Code Structure . 16-2

16.5 Linux Menu Configuration Options . 16-2

Chapter 17
Fast Ethernet Controller (FEC) Driver

17.1 Hardware Operation . 17-1

17.2 Software Operation . 17-3

17.3 Source Code Structure . 17-3

17.4 Menu Configuration Options . 17-4

17.5 Programming Interface . 17-4

17.5.1 Device-Specific Defines . 17-4

17.5.2 Getting a MAC Address . 17-5

Chapter 18
DryIce Driver

18.1 Dry Ice Driver Features and Capabilities . 18-1

18.2 Driver Requirements. 18-2

18.3 Driver Software Operation . 18-2

18.4 Driver Source Code Structure. 18-3

18.5 Linux Menu Configuration Options . 18-3

18.6 Hardware Configuration . 18-3

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -9

Chapter 19
Security Drivers

19.1 Hardware Overview . 19-1

19.1.1 Boot Security . 19-1

19.1.2 Secure RAM . 19-2

19.1.3 KEM . 19-2

19.1.4 Zeroizable Memory. 19-2

19.1.5 Security Key Interface Module. 19-3

19.1.6 Secure Memory Controller . 19-3

19.1.7 Security Monitor . 19-3

19.1.8 Secure State Controller . 19-4

19.1.9 Security Policy . 19-5

19.1.10 Algorithm Integrity Checker (AIC) . 19-5

19.1.11 Secure Timer. 19-5

19.1.12 Debug Detector . 19-5

19.2 Software Operation . 19-5

19.2.1 SCC Common Software Operations . 19-5

19.3 Driver Features . 19-6

19.4 Source Code Structure . 19-6

19.5 Menu Configuration Options . 19-7

19.5.1 Source Code Configuration Options. 19-7

19.5.1.1 Board Configuration Option . 19-7

Chapter 20
Inter-IC (I2C) Driver

20.1 I2C Bus Driver Overview . 20-1

20.2 I2C Device Driver Overview . 20-1

20.3 Hardware Operation . 20-2

20.4 Software Operation . 20-2

20.4.1 I2C Bus Driver Software Operation . 20-2

20.4.2 I2C Device Driver Software Operation . 20-2

20.5 Driver Features . 20-3

20.6 Source Code Structure . 20-3

20.7 Menu Configuration Options . 20-3

20.8 Programming Interface . 20-3

20.9 Interrupt Requirements . 20-3

Chapter 21
Configurable Serial Peripheral Interface (CSPI) Driver

21.1 Hardware Operation . 21-1

21.2 Software Operation . 21-1

21.2.1 SPI Sub-System in Linux . 21-1

21.2.2 Software Limitations. 21-3

i.MX25 PDK Linux Reference Manual

-10 Freescale Semiconductor

21.2.3 Standard Operations . 21-3

21.2.4 CSPI Synchronous Operation . 21-4

21.3 Driver Features . 21-4

21.4 Source Code Structure . 21-4

21.5 Menu Configuration Options . 21-4

21.6 Programming Interface . 21-5

21.7 Interrupt Requirements . 21-5

Chapter 22
MMC/SD/SDIO Host Driver

22.1 Hardware Operation . 22-1

22.2 Software Operation . 22-2

22.3 Driver Features . 22-3

22.4 Source Code Structure . 22-4

22.5 Menu Configuration Options . 22-4

22.6 Programming Interface . 22-4

Chapter 23
Universal Asynchronous Receiver/Transmitter (UART) Driver

23.1 Hardware Operation . 23-1

23.2 Software Operation . 23-2

23.3 Driver Features . 23-2

23.4 Source Code Structure . 23-3

23.5 Configuration . 23-3

23.5.1 Menu Configuration Options . 23-3

23.5.2 Source Code Configuration Options. 23-4

23.5.2.1 Chip Configuration Options . 23-4

23.5.2.2 Board Configuration Options . 23-4

23.6 Programming Interface . 23-4

23.7 Interrupt Requirements . 23-4

23.8 Device Specific Information . 23-5

23.8.1 UART Ports . 23-5

23.8.2 Board Setup Configuration . 23-5

23.9 Early UART Support . 23-7

Chapter 24
ARC USB Driver

24.1 Architectural Overview. 24-2

24.2 Hardware Operation . 24-2

24.3 Software Operation . 24-2

24.4 Driver Features . 24-3

24.5 Source Code Structure . 24-4

24.6 Menu Configuration Options . 24-5

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -11

24.7 Programming Interface . 24-7

24.8 Default USB Settings . 24-7

Chapter 25
FlexCAN Driver

25.1 Driver Overview . 25-1

25.2 Hardware Operation . 25-1

25.3 Software Operation . 25-1

25.4 Source Code Structure . 25-2

25.5 Linux Menu Configuration Options . 25-2

Chapter 26
Real Time Clock (RTC) (DryIce) Driver

26.1 Hardware Operation . 26-1

26.2 Software Operation . 26-1

26.3 Requirements . 26-1

26.4 Source Code Structure . 26-1

26.5 Programming Interface . 26-1

Chapter 27
SIM Driver

27.1 Hardware Operation . 27-1

27.2 Software Operation . 27-1

27.3 Requirements . 27-3

27.4 Source Code Structure . 27-3

27.5 Linux Menu Configuration Options . 27-3

27.6 Programming Interface . 27-3

Chapter 28
Watchdog (WDOG) Driver

28.1 Hardware Operation . 28-1

28.2 Software Operation . 28-1

28.3 Generic WDOG Driver . 28-1

28.3.1 Driver Features . 28-1

28.3.2 Menu Configuration Options . 28-1

28.3.3 Source Code Structure . 28-2

28.3.4 Programming Interface . 28-2

Chapter 29
Frequently Asked Questions

29.1 Downloading a File. 29-1

29.2 Creating a JFFS2 Mount Point . 29-1

i.MX25 PDK Linux Reference Manual

-12 Freescale Semiconductor

29.3 NFS Mounting Root File System . 29-2

29.4 Error: NAND MTD Driver Flash Erase Failure . 29-3

29.5 Error: NAND MTD Driver Attempt to Erase a Bad Block . 29-3

29.6 How to Use the Memory Access Tool . 29-3

29.7 How to Make Software Workable when JTAG is Attached. 29-4

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -13

Tables
1-1 Linux BSP Supported Features ... 1-2

2-1 MSL Directories.. 2-3

3-1 Interrupt Files .. 3-2

3-2 Memory Map Files.. 3-5

3-3 IOMUX Files .. 3-6

3-4 IOMUX Through GPIO Files ... 3-8

3-5 GPIO Files... 3-9

3-6 EDIO Files .. 3-10

3-7 SPBA Files .. 3-11

4-1 SDMA Channel Usage.. 4-3

4-2 SDMA API Source Files... 4-3

4-3 SDMA Script Files.. 4-3

5-1 Events Supported by Protocol Driver ... 5-2

5-2 PMIC Protocol Driver Files .. 5-3

6-1 MC34704 Power Management Driver Files ... 6-3

7-1 Low Power Modes .. 7-1

7-2 PM Driver Files... 7-2

8-1 CPUFREQ Driver Files .. 8-1

9-1 LCD Driver Files .. 9-3

10-1 Camera Driver Files .. 10-2

11-1 V4L2 and SI Driver Files.. 11-3

12-1 Stereo Codec SoC Driver Files ... 12-4

12-2 5.1 Codec SoC Driver Files .. 12-5

12-3 4 channel ADC codec ASoC Driver Source File .. 12-5

13-1 NAND MTD Driver Files ... 13-2

14-1 Keypad Driver Files .. 14-3

14-2 Keypad Interrupt Timer Requirements ... 14-4

14-3 Key Connections for Keypad .. 14-4

15-1 ADC Driver Files .. 15-2

15-2 Touch Screen Driver Files... 15-2

16-1 Ethernet Driver Files ... 16-2

17-1 Pin Usage in MII, RMII and SNI Modes .. 17-1

17-2 FEC Driver Files ... 17-3

18-1 DryIce Features ... 18-2

18-2 Dry Ice Driver Files .. 18-3

19-1 SCCDriver Files .. 19-6

20-1 I2C Bus Driver Files ... 20-3

20-2 I2C Interrupt Requirements .. 20-3

21-1 CSPI Driver Files .. 21-4

i.MX25 PDK Linux Reference Manual

-14 Freescale Semiconductor

21-2 CSPI Interrupt Requirements .. 21-5

22-1 eSDHC Driver Files MMC/SD Driver Files... 22-4

23-1 UART Driver Files.. 23-3

23-2 UART Global Header Files... 23-3

23-3 UART Interrupt Requirements.. 23-5

23-4 UART General Configuration ... 23-5

23-5 UART Active/Inactive Configuration ... 23-5

23-6 UART IRDA Configuration.. 23-5

23-7 UART Mode Configuration .. 23-5

23-8 UART Shared Peripheral Configuration ... 23-6

23-9 UART Hardware Flow Control Configuration ... 23-6

23-10 UART DMA Configuration .. 23-6

23-11 UART DMA RX Buffer Size Configuration .. 23-6

23-12 UART UCR4_CTSTL Configuration ... 23-6

23-13 UART UFCR_RXTL Configuration... 23-6

23-14 UART UFCR_TXTL Configuration ... 23-6

23-15 UART Interrupt Mux Configuration ... 23-6

23-16 UART Interrupt 1 Configuration... 23-6

23-17 UART Interrupt 2 Configuration... 23-7

23-18 UART interrupt 3 Configuration... 23-7

24-1 USB Driver Files... 24-4

24-2 USB Platform Source Files ... 24-4

24-3 USB Platform Header Files... 24-4

24-4 USB Common Platform Files ... 24-5

24-5 Default USB Settings .. 24-7

25-1 FlexCAN Driver Files ... 25-2

26-1 RTC Driver Files ... 26-1

27-1 Available Platforms... 27-1

27-2 SIM Driver File List.. 27-3

28-1 WDOG Driver Files .. 28-2

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor -15

Figures

i.MX25 PDK Linux Reference Manual

-16 Freescale Semiconductor

Figures
2-1 BSP Block Diagram .. 2-1

2-2 SDMA Block Diagram.. 2-4

2-3 MTD Architecture... 2-8

2-4 DPM High Level Design... 2-15

2-5 DPM Architecture Block Diagram ... 2-15

4-1 SDMA Block Diagram.. 4-2

6-1 MC34704 Regulator Driver Architecture ... 6-2

9-1 LCD Driver Architecture .. 9-3

12-1 ALSA SoC Software Architecture .. 12-1

12-2 ALSA SoC Source File Relationship.. 12-4

14-1 Keypad Driver State Machine... 14-2

14-2 Keypad Button Placement... 14-5

18-1 Software Architecture ... 18-2

19-1 Secure RAM Block Diagram .. 19-2

19-2 Security Monitor Block Diagram.. 19-4

19-3 Secure State Controller State Diagram.. 19-4

21-1 SPI Subsystem... 21-2

21-2 Layering of SPI Drivers in SPI Subsystem... 21-2

21-3 CSPI Synchronous Operation ... 21-4

22-1 MMC Drivers Layering .. 22-3

24-1 USB Block Diagram ... 24-2

27-1 SIM driver ... 27-2

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 17

About This Book

The Linux board support package (BSP) represents a porting of the Linux operating system (OS) to the

i.MX processors and to their associated reference boards. The BSP supports many of the hardware features

on the platforms, as well as most of the Linux OS features not dependent on any specific hardware feature.

Audience

This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific products.

The audience is expected to have a working understanding of the Linux 2.6 kernel internals and driver

models. An understanding of the i.MX processors is also required.

Conventions

This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, and

file and directory names.

• Italic type indicates replaceable command or function parameters.

• Bold type indicates function names.

Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address

translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous data routing

between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm—used to encode and decode (or compress and

decompress) various types of data

i.MX25 PDK Linux Reference Manual

18 Freescale Semiconductor

CPU Central Processing Unit—generic term used to describe a processing core

CRC Cyclic Redundancy Check—Bit error protection method for data communication

CSI Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all the

masters in the system

Endian Refers to byte ordering of data in memory.: little endian means that the least significant byte of the data is stored

in a lower address than the most significant byte, in big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at

regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by the

National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling Federal

government requirements such as for security and interoperability but no acceptable industry standards

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS

140-2) is a standard that describes US Federal government requirements that IT products should meet for

Sensitive, But Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can only be done in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes cleaning

the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message digest,

is a number generated from a string of text. The hash is substantially smaller than the text itself, and is generated

by a formula in such a way that it is extremely unlikely that some other text produces the same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to

video/still image sensors and displays

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications for

infrared wireless communication

Definitions and Acronyms (continued)

Term Definition

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 19

ISR Interrupt Service Routine

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices

on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port—16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used—a policy for line replacement in the cache

MMU Memory Management Unit—a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression and

audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG

standards

There are several standards of compression for moving pictures and video

 • MPEG-1 is optimized for CD-ROM and is the basis for MP3

 • MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD

 • MPEG-3 was merged into MPEG-2

 • MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to

configure radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR) used

in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high capacity

data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write, and read

capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has developed

a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that

have the same rectangular size (85.6 by 54 millimeters), but different widths

physical

address

The address by which the memory in the system is physically accessed

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase angle

(a lock) on the frequency of an input, or reference, signal

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to create

other colors. The abbreviation RGB come from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is

unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the lighter

the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random

numbers as part of the security module

ROM Read Only Memory

Definitions and Acronyms (continued)

Term Definition

i.MX25 PDK Linux Reference Manual

20 Freescale Semiconductor

Suggested Reading

The following documents contain information that supplements this guide:

• i.MX25 PDK Linux Quick Start Guide

• BSP API Document (BSP Doxygen Code Documentation)

• i.MX25 PDK Linux User’s Guide

• i.MX25 PDK Hardware User’s Guide

• i.MX25 Multimedia Applications Processor Reference Manual

• [KERN] Linux kernel coding style. This is included in Linux distributions as the file

Documentation/CodingStyle

• [WSAS] WSAS Coding Conventions, version 0.4

• [ASM] WSAS Assembly Code Conventions

• [DOXY] WSAS Guidelines for Writing Doxygen Comments

ROM

bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting low-/medium-bandwidth

external devices using four wires. SPI devices communicate using a master/slave relationship over two data

lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—asynchronous serial communication to external devices

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1

specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum transfer rate of

480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and

keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.

USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves

depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32 bits

Definitions and Acronyms (continued)

Term Definition

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction

The i.MX family Linux board support package (BSP) supports the Linux operating system (OS) on the

following processor:

• i.MX25 Applications Processor

Because of an order from the United States International Trade Commission, BGA-packaged product lines

and part numbers indicated here currently are not available from Freescale for import or sale in the United

States prior to September 2010: i.MX25,

NOTE

The family of all i.MX processors is known as the i.MX platforms. This

term is used in sections that apply to any of these application processors.

The purpose of this software package is to support Linux on the i.MX family of integrated circuits (ICs)

and their associated platforms (3-Stack board). It provides the software necessary to interface the standard

open-source Linux kernel to the i.MX hardware. The goal is to enable Freescale customers to rapidly build

products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-

specific drivers, hardware-independent software stacks, GUI components, JVM, and applications required

for a product. Some of these are made available in their original open-source form as part of the base

kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP

functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon

verification test suites.

1.1 Software Base

The i.MX BSP is based on version 2.6.31 of the Linux kernel from the official Linux kernel web site

(http://www.kernel.org). It is enhanced with features provided by Freescale.

http://www.kernel.org

Introduction

i.MX25 PDK Linux Reference Manual

1-2 Freescale Semiconductor

1.2 Features

Table 1-1 describes the features supported by the Linux BSP for specific platforms.

Table 1-1. Linux BSP Supported Features

Feature Description Chapter Source
Applicable

Platform

Machine Specific Layer

MSL MSL (Machine Specific Layer) supports interrupts,

Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

 • Interrupts (AITC/AVIC): The Linux kernel contains

common ARM code for handling interrupts. The MSL

contains platform-specific implementations of

functions for interfacing the Linux kernel to the ARM9

interrupt controller.

 • Timer (GPT): The General Purpose Timer (GPT) is

set up to generate an interrupt as programmed to

provide OS ticks. Linux facilitates timer use through

various functions for timing delays, measurement,

events, alarms, high resolution timer features, and so

on. Linux defines the MSL timer API required for the

OS-tick timer and does not expose it beyond the

kernel tick implementation.

 • GPIO/EDIO/IOMUX: The GPIO and EDIO

components in the MSL provide an abstraction layer

between the various drivers and the configuration and

utilization of the system, including GPIO, IOMUX, and

external board I/O. The IO software module is

board-specific, and resides in the MSL layer as a

self-contained set of files. I/O configuration changes

are centralized in the GPIO module so that changes

are not required in the various drivers.

 • SPBA: The Shared Peripheral Bus Arbiter (SPBA)

provides an arbitration mechanism among multiple

masters to allow access to the shared peripherals.

The SPBA implementation under MSL defines the

API to allow different masters to take or release

ownership of a shared peripheral.

Chapter 3, “Machine Specific

Layer (MSL)”

All

SDMA API The Smart Direct Memory Access (SDMA) API driver

controls the SDMA hardware. It provides an API to other

drivers for transferring data between MCU, DSP and

peripherals. The SDMA controller is responsible for

transferring data between the MCU memory space,

peripherals, and the DSP memory space. The SDMA

API allows other drivers to initialize the scripts, pass

parameters and control their execution. SDMA is based

on a microRISC engine that runs channel-specific

scripts.

Chapter 4, “Smart Direct Memory

Access (SDMA) API”

i.MX25

Power Management IC (PMIC) Drivers

PMIC Protocol The PMIC protocol device driver provides low-level

read/write access to PMIC hardware control registers.

Chapter 5, “PMIC (MC34704)

Protocol Driver”

i.MX25

Introduction

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 1-3

PMIC Regulator The MC34704 regulator driver provides the low-level

control of the power supply regulators, selection of

voltage levels, and enabling/disabling of regulators.

Chapter 6, “PMIC (MC34704)

Regulator Driver”

i.MX25

Power Management Drivers

Low-level PM

Drivers

The low-level power management driver is responsible

for implementing hardware-specific operations to meet

power requirements and also to conserve power on the

development platforms. Driver implementations are

often different for different platforms. It is used by the

DPM layer.

 Chapter 7, “i.MX25 Low-level

Power Management (PM) Driver”

i.MX25

CPU Frequency

Scaling

The CPU frequency scaling device driver allows the

clock speed of the CPUs to be changed on the fly.

Chapter 8, “CPU Frequency

Scaling (CPUFREQ) Driver”

i.MX25

Multimedia Drivers

LCDC The i.MX liquid crystal display controller (LCDC)

provides display data for external gray-scale or color

LCD panels. The LCDC is capable of supporting

black-and-white, gray-scale, passive-matrix color

(passive color or CSTN), and active-matrix color (active

color or TFT) LCD panels.

Chapter 9, “Liquid Crystal Display

Controller (LCDC) Driver”

i.MX25

OmniVision

Camera

(OV2640)

The OV2640 Camera driver is designed under Linux

V4L2 architecture. It implements V4L2 capture interface.

Chapter 10, “OmniVision Camera

(OV2640) Driver”

i.MX25

CSI The CSI and camera drivers provide the interfaces to

support image capture and video output

Chapter 11, “MXC Camera Sensor

Interface (CSI) Driver

i.MX25

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a

sound driver that provides ALSA and OSS compatible

applications with the means to perform audio playback

and recording functions using the audio components

provided by Freescale’s PMIC chips. ALSA has a

user-space component called ALSAlib that can extend

the features of audio hardware by emulating the same in

software (user space), such as resampling, software

mixing, snooping, and so on. The ASoC Sound driver

supports stereo codec playback and capture through

SSI.

Chapter 12, “Advanced Linux

Sound Architecture (ALSA)

System on a Chip (ASoC) Sound

Driver”

i.MX25

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX25 PDK Linux Reference Manual

1-4 Freescale Semiconductor

Memory Drivers

NAND MTD The NAND MTD driver interfaces with the integrated

NAND controller. It can support various file systems,

such as CRAMFS and JFFS2. The driver

implementation supports the lowest level operations on

the external NAND Flash chip, such as block read, block

write and block erase as the NAND Flash technology

only supports block access. Because blocks in a NAND

Flash are not guaranteed to be good, the NAND MTD

driver is also able to detect bad blocks and feed that

information to the upper layer to handle bad block

management.

Chapter 13, “NAND Flash Memory

Technology Device (MTD) Driver”

i.MX25

Input Device Drivers

Keypad The keypad driver interfaces Linux to the keypad

controller (KPP). The software operation of the keypad

driver follows the Linux keyboard architecture. It

supports up to an 8×8 external key pad matrix of single

poll switches.

Chapter 14, “Low-Level Keypad

Driver”

i.MX25

Touch Screen

and ADC

A touch screen and associated Analog to Digital

Converter (ADC) drivers add measurement functions to

the touch screen.

Chapter 15, “Touch Screen and

ADC Drivers”

i.MX25

Networking Drivers

LAN9217

Ethernet

The SMSC LAN9217 Ethernet driver interfaces SMSC

LAN9217-specific functions with the standard Linux

kernel network module.

Chapter 16, “SMSC LAN9217

Ethernet Driver”

i.MX25

FEC The FEC Driver performs the full set of IEEE

802.3/Ethernet CSMA/CD media access control and

channel interface functions. The FEC requires an

external interface adaptor and transceiver function to

complete the interface to the Ethernet media. It supports

half or full-duplex operation on 10 Mbps- or 100

Mbps-related Ethernet networks.

Chapter 17, “Fast Ethernet

Controller (FEC) Driver”

i.MX25

DryIce The DryIce driver controls the low-level encryption key

management elements of the Dry Ice. The supported

features include key establishment and selection as well

as tamper detection.

Chapter 18, “DryIce Driver” i.MX25

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 1-5

Bus Drivers

I2C The I2C bus driver is a low-level interface that is used to

interface with the I2C bus. This driver is invoked by the

I2C chip driver; it is not exposed to the user space. The

standard Linux kernel contains a core I2C module that is

used by the chip driver to access the bus driver to

transfer data over the I2C bus. This bus driver supports:

 • Compatibility with the I2C bus standard

 • Bit rates up to 400 Kbps

 • Standard I2C master mode

 • Power management features by suspending and

resuming I2C.

Chapter 20, “Inter-IC (I2C) Driver” i.MX25

CSPI The low-level Configurable Serial Peripheral Interface

(CSPI) driver interfaces a custom, kernel-space API to

both CSPI modules. It supports the following features:

 • Interrupt-driven transmit/receive of SPI frames

 • Multi-client management

 • Priority management between clients

 • SPI device configuration per client

Chapter 21, “Configurable Serial

Peripheral Interface (CSPI) Driver”

i.MX25

MMC/SD/SDIO -

eSDHC

The MMC/SD/SDIO Host driver implements the

standard Linux driver interface to eSDHC.

Chapter 22, “MMC/SD/SDIO Host

Driver”

i.MX25

UART Drivers

MXC UART The Universal Asynchronous Receiver/Transmitter

(UART) driver interfaces the Linux serial driver API to all

of the UART ports. A kernel configuration parameter

gives the user the ability to choose the UART driver and

also to choose whether the UART should be used as the

system console.

Chapter 23, “Universal

Asynchronous

Receiver/Transmitter (UART)

Driver”

i.MX25

General Drivers

USB The USB driver implements a standard Linux driver

interface to the ARC USB-OTG controller.

Chapter 24, “ARC USB Driver” i.MX25

FlexCAN The FlexCAN driver is designed as a network device

driver. It provides the interfaces to send and receive

CAN messages. The CAN protocol was primarily

designed to be used as a vehicle serial data bus,

meeting the specific requirements of this field: real-time

processing, reliable operation in the EMI environment of

a vehicle, cost-effectiveness and required bandwidth.

Chapter 25, “FlexCAN Driver” i.MX25

RTC via DryIce This secure real time clock (RTC) module is part of the

Dry Ice block.

Chapter 26, “Real Time Clock

(RTC) (DryIce) Driver”

i.MX25

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

Introduction

i.MX25 PDK Linux Reference Manual

1-6 Freescale Semiconductor

WatchDog The Watchdog Timer module protects against system

failures by providing an escape from unexpected hang

or infinite loop situations or programming errors. This

WDOG implements the following features.

 • Generates a reset signal if it is enabled but not

serviced within a predefined time-out value

 • Does not generate a reset signal if it is serviced within

a predefined time-out value

Chapter 28, “Watchdog (WDOG)

Driver”

i.MX25

SIM The SIM driver implements a Linux driver interface to the

Subscriber Identification Module (SIM).

i.MX25

Bootloaders

RedBoot RedBoot is an open source boot firmware based on the

eCos Hardware Abstraction Layer. It was designed to be

very portable, extensible, and configurable.

See the document in Redboot

release package

i.MX25

uBoot uBoot is an open source boot loader. See uBoot User guide

i.MX25

GUI

Table 1-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source
Applicable

Platform

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Architecture

This chapter describes the overall architecture of the Linux port to the i.MX processor. The BSP supports

all platforms in a single development environment, but not every driver is supported by all processors.

Drivers common to all platforms are referred to as i.MX drivers and drivers unique to a specific platform

are referred to by the platform name.

2.1 Linux BSP Block Diagram

Figure 2-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user-space

executables, standard kernel components that come from the Linux community, as well as

hardware-specific drivers and functions provided by Freescale for the i.MX processors.

Figure 2-1. BSP Block Diagram

SPI

PMIC Protocol

Battery/
Power

Mgmt
I2C

iM
ag
ic
 C
am
er
a

S
M
S
C
9
1x
x

N
O
R
 M
T
D

M
X
C
 U
A
R
T

16
5
50
 U
A
R
T

A
s
yn
c
F
ra
m
e
bu
ff
er

AVIC ClocksMem Map SDMA Pwr Mgt
(LPM/DPTC/DVFS)

Timer

Machine Specific Layer

E
S
A
I

S
S
I/A
u
d
m
u
x

ALSA Sound

MMC/SD

ATA Driver

N
A
N
D
 M
T
D

MU

V
4L
2
O
u
tp
u
t Network

Stack

CramFS RamFS

FATExt2

NFS

JFFS2

Virtual File System

System Call Interface

Legend

Utilities, Libraries GUI (QT and GTK)Applications, Shell
MM Framework &

Codecs

IPU

IO

Fa
st
 Ir
D
A

USB
Host
Stack

USB

Gadget
Device

Stack

ARC
EHCI

Host

SAHARA

F
le
xC
A
N

FSL H/W

Specifc Code

H/W
Independent

Kernel Code
ARM Core

User space

apps and
libraries

M
P
E
G
4/
H
.2
6
4
D
eb
lo
ck

S
yn
c
F
ra
m
e
b
uf
fe
r

IrDA

Stack

FSL Chip

Specific Code

V4L2 Capture

MTD Block Devices

LibATA
Subsystem

MMC/SD
Memory

MMC/SD/
SDIO

Subsystem

TTY

Subsystem

K
ey
pa
d

P
M
IC
 T
o
u
ch
sc
re
en

Input
Subsystem

Framebuffer

Serial Core

Video4Linux2

I2C Bus
Subsystem

O
m
n
iv
is
io
n

C
am
er
a

ARC
Device

USB OTG

Transceiver
Driver

SPI Bus
Subsystem

A
u
di
o
C
o
de
cs

ASRCRNGA/RNGC

GPIO

FSL Custom Drivers

Interrupt
Subsystem Clock API

Time
Subsystem DMA API

VTE Test Framework &

Unit Tests

O
S
 S
er
vi
ce
s
–
th
re
ad
s,
 s
y
nc
hr
o
ni
za
ti
o
n
, m
em
o
ry
 m
g
t,
 e
tc
.

SCC

ALSA SOC

S
P
D
IF

F
E
C

T
V
 O
u
tp
ut

GPU

Architecture

i.MX25 PDK Linux Reference Manual

2-2 Freescale Semiconductor

2.2 Kernel

The i.MX Linux port is based on the standard Linux kernel. The kernel supports many of the features found

in most modern embedded OSs such as:

• Process and thread management

• Memory management (memory mapping, allocation/deallocation, MMU, and L1/L2 cache

control)

• Resource management (interrupts, IPC)

• Power management

• File systems (VFS, cramfs, ext2, ramfs, NFS, devfs, JFFS2, FAT, UBIFS)

• Linux Device Driver model

• Standardized APIs

• Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel configuration and

machine specific layer (MSL) implementation.

2.2.1 Kernel Configuration

For this BSP release, kernel configuration is done through the Linux Target Image Builder (LTIB). See the

LTIB documentation for details. The following are some of the configuration settings available on some

platforms, that are different from the standard features:

• Embedded mode

• Module loading/unloading

• ARM9

• File formats supported: ELF binaries, a.out and ECOFF

• Block devices: Loopback, Ramdisk

• i.MX internal UART

• File systems: ext2, dev, proc, sysfs, cramfs, ramfs, JFFS2, FAT, pramfs

• Frame buffer

• Kernel debugging

• Automatic kernel module loading

• Power management

• Memory Technology Device (MTD) support

• USB Host/device multiplexing

• Unsorted block images (UBI) support

• Flash translation layer (FTL)

• CPU frequency scaling

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-3

2.2.2 Machine Specific Layer (MSL)

The MSL provides a machine-dependent implementation as required by the Linux kernel, such as memory

map, interrupt, and timer. Each ARM platform has its own MSL directory under the arch/arm directory as

listed in Table 2-1.

For more information, see Chapter 3, “Machine Specific Layer (MSL).”

2.2.2.1 Memory Map

Before the kernel starts running in the virtual space, the physical-to-virtual address mapping for the I/O

peripherals needs to be provided for the MMU to do the translation for memory/register accesses. The

mapping is done through a table structure in the MSL, specific to a particular platform, with each entry

specifying a peripheral starting address of virtual addresses, starting address of physical addresses, and the

size of the memory region and the type of the region.

2.2.2.2 Interrupts

The standard Linux kernel contains common ARM code for handling interrupts. The MSL contains

platform-specific implementations of functions for interfacing the Linux kernel to the ARM9 Interrupt

Controller (AITC).

Together, they support the following capabilities:

• AVIC initialization

• ARM Interrupt Controller (AITC) initialization

• Interrupt enable/disable control

• ISR binding

• ISR dispatch

• Interrupt chaining

• Standard Linux API for accessing interrupt functions

2.2.2.3 General Purpose Timer (GPT)

The GPT is configured to generate an interrupt every 10 ms to provide OS ticks. This timer is also used by

the kernel for additional timer events. Linux defines the MSL timer API required for the OS-tick timer and

does not expose it beyond the kernel tick implementation. Linux facilitates timer use through various

functions for timing delays, measurement, events, and alarms. The GPT is also used as the source to

support the high resolution timer feature. The timer tick interrupt is disabled in low-power modes other

than idle.

Table 2-1. MSL Directories

Platform Directory

i.MX25 3-Stack <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25

Architecture

i.MX25 PDK Linux Reference Manual

2-4 Freescale Semiconductor

2.2.2.4 Smart Direct Memory Access (SDMA) API

The SDMA controller is responsible for transferring data between the MCU memory space, and

peripherals. It is based on a RISC engine that runs channel-specific scripts. The SDMA API allows other

drivers to initialize the scripts, pass parameters, and control their execution. Complete support for SDMA

is provided in three layers as shown in Figure 2-2. The first layer is the I.API, the second layer is the Linux

DMA API, and the third layer is the TTY driver. The first two layers are part of the MSL and both are

custom.

I.API is the lowest layer and it interfaces the Linux DMA API with the SDMA controller. The Linux DMA

API interfaces other drivers (for example: MMC/SD or Sound) with the SDMA controller through the

I.API. It supports the following features:

• Loading channel scripts from the MCU memory space into SDMA internal RAM

• Loading context parameters of the scripts

• Loading buffer descriptor parameters of the scripts

• Controlling execution of the scripts

• Callback mechanism at the end of script execution

Figure 2-2. SDMA Block Diagram

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-5

The TTY driver is only used for IPC and is described in Section 2.3.10.4, “Configurable Serial Peripheral

Interface (CSPI) Driver”.

2.2.2.5 Input/Output (I/O)

The Input/Output (I/O) component in the MSL provides an abstraction layer between the various drivers

and the configuration and utilization of the system, including GPIO, IOMUX, and external board I/O. The

I/O software module is board-specific and resides in the MSL layer as a self-contained set of files. It

provides the following features as part of a custom kernel-space API:

• Initialization for the default I/O configuration after boot

• Functions for configuring the various I/O for active use

• Functions for configuring the various I/O for low power mode

• Functions for controlling and sampling GPIO and board I/O

• Functions for enabling, disabling, and binding callback functions to GPIO and EDIO interrupts

• Functions to support different priority levels during ISR registration for different modules; if more

than one interrupt occurs at the same time, the higher priority ISR callback gets called first

• Atomic helper functions for GPIO, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. This allows I/O configuration

changes to be centralized in the GPIO module without requiring changes in the various drivers. These

functions are used by other device drivers in the kernel space. User level programs do not have access to

the functions in the GPIO module.

The exact API and implementations are different on each platform to account for the differences in

hardware, drivers, and boards. This module is an evolving module. As more drivers are added, more

functions are required from this module. The additions to the module are included in every new release of

the BSP.

2.2.2.6 Shared Peripheral Bus Arbiter (SPBA)

The SPBA provides an arbitration mechanism to allow multiple masters to have access to the shared

peripherals. The SPBA implementation under MSL defines the API to allow different masters to take or

release ownership of a shared peripheral. These functions are also exported so that they can be used by

other loadable modules.

2.3 Drivers

There are many drivers provided by Freescale that are specific to the peripherals on the i.MX family of

processors or to the development platforms. Many of these drivers are common across all of the platforms.

Most can be compiled into the kernel or compiled as object modules which can be dynamically loaded

from a file system through insmod or modprobe. Modules can be loaded automatically as required using

the kernel auto-load feature. The BSP contains a modules.dep file and a modprobe.conf file that contain the

dependency information for the modules.

The i.MX multimedia applications processors have several classes of drivers, explained in the following

sections.

Architecture

i.MX25 PDK Linux Reference Manual

2-6 Freescale Semiconductor

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver

The i.MX family of processors support a Universal Asynchronous Receiver/Transmitter (UART) driver.

2.3.1.1 UART Driver

The UART driver interfaces the Linux serial driver API to all of the UART ports. It supports the following

features:

• Interrupt-driven and SDMA-driven transmit/receive of characters

• Standard Linux baud rates up to 1.5 Mbps

• Transmitting and receiving characters with 7-bit and 8-bit character lengths

• Transmitting one or two stop bits

• Odd and even parity

• XON/XOFF software flow control

• CTS/RTS hardware flow control (both interrupt-driven software controlled hardware flow control

and hardware-driven hardware flow control)

• TIOCMGET IOCTL to read the modem control lines. Supports the constants TIOCM_CTS and TIOCM_CAR,

TIOCM_RI (only in DTE mode) only

• TIOCMSET IOCTL sets modem control lines. Supports the constants TIOCM_RTS and TIOCM_DTR only

• Send and receive of break characters through the standard Linux serial API

• Recognize frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY IOCTLs

• Slow IrDA (IrDA at or below 115200 baud)

• Power management features - suspends and resumes the UART ports

• The standard TTY layer IOCTL calls

• Includes console support which is needed to bring up the command prompt through one of the

UART ports

A kernel configuration parameter gives the user the ability to choose the UART driver, and also to choose

whether the UART should be used as the system console.

All the UART ports can be accessed through the device files /dev/ttymxc0 through /dev/ttymxcX (where

X is the maximum UART number supported by the IC). /dev/ttymxc0 refers to UART 1. Autobaud detection

is not supported.

2.3.2 Real-Time Clock (RTC) Driver

The RTC is the clock that keeps the date and time while the system is running and even when the system

is inactive. The RTC implementation supports IOCTL calls to read time, set time, set up periodic

interrupts, and set up alarms. Linux defines the RTC API.

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-7

2.3.3 Watchdog Timer (WDOG) Driver

The Watchdog timer protects against system failures by providing a method of escaping from unexpected

events or programming errors.

The WDOG software implementation provides routines to service the WDOG timer, so that the timeout

does not occur. The WDOG is serviced (at the same time for the platforms with two WDOGs) if it is

already enabled before the Linux kernel boots (enabled by boot loader or ROM) with a configurable

service interval. In addition, compile-time options specify whether the Linux kernel should enable the

watchdog, and if so, which parameters should be used. If the second WDOG is present (used to generate

an interrupt after the timeout occurs), the highest interrupt priority (number 16) is assigned to the WDOG

interrupt.

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be

supported. This is supported under all i.MX platforms.

2.3.4 SDMA API Driver

The SDMA controller is responsible for transferring data between the MCU memory space and the

peripherals. It is based on a microRISC engine that runs channel specific scripts. The SDMA API allows

other drivers to initialize the scripts, pass parameters, and control their execution. Complete support for

SDMA is provided in three layers (see Figure 2-2). The first layer is the I.API, the second layer is the Linux

DMA API, and the third layer is the TTY driver. The first two layers are part of the MSL and both are

custom. I.API is the lowest layer and it is the interface between the Linux DMA API and the SDMA

controller. The Linux DMA API interfaces with other drivers (for example: MMC/SD, Sound) with the

SDMA controller through the I.API.

Functions of the SDMA API include:

• Loading channel scripts from the MCU memory space into SDMA internal RAM

• Loading context parameters of the scripts

• Loading buffer descriptor parameters of the scripts

• Controlling execution of the scripts

• Callback mechanism at the end of script execution

The TTY driver is only used for IPC and is described in Chapter 4, “Smart Direct Memory Access

(SDMA) API.”

2.3.5 Sound Driver

The components of the audio subsystem are applications, the Advanced Linux Sound Architecture

(ALSA), the audio driver, and the hardware. Applications interface with the ALSA, and the ALSA

interfaces with the audio driver, which in turn controls the hardware of the audio subsystem. For more

information about ALSA, see www.alsa-project.org.

The sound driver runs on the ARM processor. Digital audio data is carried over the digital audio link

interface to the codec hardware. This is managed by the audio driver. There may be one or more audio

streams, depending on the codec, such as voice or stereo DAC. The audio driver configures sample rates,

http://www.opensound.com

Architecture

i.MX25 PDK Linux Reference Manual

2-8 Freescale Semiconductor

formats, and audio clocks. The audio driver also manages the setup and control of the codec, DMA, and

audio accessories, such as headphones and microphone detection. Stream mixing may also be supported,

depending on the codec.

2.3.6 Memory Technology Device (MTD) Driver

MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of Flashes. As each

memory device has its own idiosyncrasies in terms of read and write, the MTD subsystem provides a

unified and uniform access to the various memory devices.

Figure 2-3. MTD Architecture

Figure 2-3 is excerpted from Building Embedded Linux Systems, which describes the MTD subsystem.

The user modules should not be confused with kernel modules or any sort of user-land software

abstraction. The term “MTD user module” refers to software modules within the kernel that enable access

to the low-level MTD chip drivers by providing recognizable interfaces and abstractions to the higher

levels of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and

properties in the mtd_info argument to the add_mtd_device() function. The callbacks an MTD driver has

to provide are called by the MTD subsystem to carry out operations, such as erase, read, write, and sync.

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-9

2.3.7 Networking Drivers

The networking drivers are described in the next sections.

2.3.7.1 SMSC LAN9217 Ethernet Driver

The SMSC LAN9217 Ethernet driver interfaces SMSC LAN9217-specific functions with the standard

Linux kernel network module. The LAN9217 is a full-featured, single-chip 10/100 Ethernet controller

designed for embedded applications where performance, flexibility, ease of integration, and system cost

control are required. The LAN9217 has been specifically designed to provide the highest performance

possible for any 16-bit application. The LAN9217 is fully IEEE 802.3 10BASE-T and 802.3u

100BASE-TX compliant, and supports HP Auto-MDIX.

The SMSC LAN9217 Ethernet Driver has the following features:

• Efficient PacketPage Architecture that can operate in I/O and memory space, and as a DMA slave

• Full duplex operation

• On-chip RAM buffers for transmission and reception of frames

• Programmable transmit features like automatic retransmission on collision and automatic CRC

generation

• EEPROM support for configuration

• MAC address setting

• Obtaining statistics from the device, such as transmit collisions

This network adapter can be accessed through the ifconfig command with interface name (eth0). The

probe function of this driver is declared in drivers/net/Space.c to probe for the device and to initialize

it during boot.

2.3.7.2 FEC driver

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet CSMA/CD media

access control and channel interface functions. The FEC requires an external interface adapter and

transceiver function to complete the interface to the Ethernet media. It supports half or full-duplex

operation on 10 Mbps or 100 Mbps related Ethernet networks.

2.3.8 USB Driver

The Linux kernel supports two main types of USB drivers: drivers on a host system and drivers on a

device. A common USB host is a desktop computer. The USB drivers for a host system control the USB

devices that are plugged into it. The USB drivers in a device, control how that single device looks to the

host computer as a USB device. Because the term “USB device drivers” is very confusing, the USB

Architecture

i.MX25 PDK Linux Reference Manual

2-10 Freescale Semiconductor

developers have created the term “USB gadget drivers” to describe the drivers that control a USB device

that connects to a computer.

2.3.8.1 USB Host-Side API Model

Within the Linux kernel, host-side drivers for USB devices talk to the usbcore APIs. There are two types

of public usbcore APIs, targeted at two different layers of USB driver:

• General purpose drivers, exposed through driver frameworks such as block, character, or network

devices

• Drivers that are part of the core, which are involved in managing a USB bus.

Such core drivers include the hub driver, which manages trees of USB devices, and several different kinds

of host controller drivers (HCDs), which control individual buses. For more information, see Chapter 2 of

http://www.kernel.org/doc/htmldocs/usb.html.

The device model seen by USB drivers is relatively complex:

• USB supports four kinds of data transfer (control, bulk, interrupt, and isochronous). Two transfer

types use bandwidth as it is available (control and bulk), while the other two types of transfer

(interrupt and isochronous) are scheduled to provide guaranteed bandwidth.

• The device description model includes one or more configurations per device, only one of which

is active at a time. Devices that are capable of high speed operation must also support full speed

configurations, along with a way to ask about the other speed configurations that might be used.

• Configurations have one or more interfaces. Interfaces may be standardized by USB Class

specifications, or may be specific to a vendor or device.

• Interfaces have one or more endpoints, each of which supports one type and direction of data

transfer such as bulk out or interrupt in.

• The only host-side drivers that actually touch hardware (reading/writing registers, handling IRQs,

and so on) are the HCDs.

2.3.8.2 USB Device-Side Gadget Framework

The Linux Gadget API can be used by peripherals, which act in the USB device (slave) role.

Components of the Gadget Framework (see http://www.linux-usb.org/gadget/) are as follows:

• Peripheral Controller Drivers—implement the Gadget API, and are the only layers that talk directly

to the hardware. Different controller hardware needs different drivers, which may also need

board-specific customization. These provide a software gadget device, visible in sysfs. This device

can be thought of as being the virtual hardware to which the higher-level drivers are written.

• Gadget Drivers—use the Gadget API, and can often be written to be hardware-neutral. A gadget

driver implements one or more functions, each providing a different capability to the USB host,

such as a network link or speakers.

• Upper Layers, such as the network, file system, or block I/O subsystems—generate and consume

the data that the gadget driver transfers to the host through the controller driver.

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-11

2.3.8.3 USB OTG Framework

Systems need specialized hardware support to implement OTG, including a special Mini-AB jack and

associated transceiver to support Dual-Role operation. They can act either as a host, using the standard

Linux-USB host side driver stack, or as a peripheral, using the Gadget framework. To do that, the system

software relies on small additions to those programming interfaces, and on a new internal component (here

called an OTG Controller) affecting which driver stack connects to the OTG port. In each role, the system

can re-use the existing pool of hardware-neutral drivers, layered on top of the controller driver interfaces

(usb_bus or usb_gadget). Such drivers need at most minor changes, and most of the calls added to support

OTG can also benefit non-OTG products.

• Gadget drivers test the is_otg flag, and use it to determine whether or not to include an OTG

descriptor in each of their configurations.

• Gadget drivers may need changes to support the two new OTG protocols, exposed in new gadget

attributes such as b_hnp_enable flag. HNP support should be reported through a user interface (two

LEDs could suffice), and is triggered in some cases when the host suspends the peripheral. SRP

support can be user-initiated just like remote wakeup, probably by pressing the same button.

• On the host side, USB device drivers need to be taught to trigger HNP at appropriate moments,

using usb_suspend_device(). That also conserves battery power, which is useful even for non-OTG

configurations.

• Also on the host side, a driver must support the OTG Targeted Peripheral List, a whitelist used to

reject peripherals not supported with a given Linux OTG host. This whitelist is

product-specific—each product must modify otg_whitelist.h to match its interoperability

specification.

Non-OTG Linux hosts, such as PCs and workstations, normally have some solution for adding drivers, so

that peripherals that are not recognized can eventually be supported. That approach is unreasonable for

consumer products that may never have their firmware upgraded, and where it is usually unrealistic to

expect traditional PC/workstation/server kinds of support model to work. For example, it is often

impractical to change device firmware once the product has been distributed, so driver bugs cannot

normally be fixed if they are found after shipment.

Additional changes are needed below those hardware-neutral usb_bus and usb_gadget driver interfaces but

those are not discussed here. Those affect the hardware-specific code for each USB Host or Peripheral

controller, and how the HCD initializes (since OTG can be active only on a single port). They also involve

what may be called an OTG Controller Driver, managing the OTG transceiver and the OTG state machine

logic as well as much of the root hub behavior for the OTG port. The OTG controller driver needs to

activate and deactivate USB controllers depending on the relevant device role. Some related changes were

needed inside usbcore, so that it can identify OTG-capable devices and respond appropriately to HNP or

SRP protocols.

2.3.9 Security Drivers

The i.MX processors support many hardware and software security modules, discussed in the following

sections.

Architecture

i.MX25 PDK Linux Reference Manual

2-12 Freescale Semiconductor

2.3.9.1 Security Controller (SCC) Module Driver

The security layer is comprised of two modules, the Secure RAM Module and the Secure Monitor Module.

The Secure RAM module provides a secure way of storing sensitive data in on-chip and off-chip RAM

memory. On-chip data can be cleared if necessary to prevent un-authorized access. Off-chip data is stored

in encrypted form using an encryption key that is unique to each device and is accessible only through

Secure RAM module. The SCC is a part of the Freescale platform independent security architecture

(PISA). It supports the following features:

• Autonomous hardware security state controller with debug inputs that are tied to all platform test

access detection signals to trigger a security shutdown

• Controls to ensure supervisory mode only configuration access

• Controls to ensure that high assurance internal boot is the only mechanism to reach the Secure state

after Reset

• Autonomous hardware security state controller with debug inputs that are tied to all platform test

access detection signals to trigger shutdown

• Self-clearing (zeroing) 2 Kbyte RAM block, which clears itself upon command and can therefore

be used to store security sensitive Red data (that is, security sensitive plain text), such as

cryptographic keys

• Security Timer which is an independent security watchdog timer whose time-out triggers a security

violation

• Algorithm Sequence Checker (ASC) which can be used by software to force software

synchronization to the ASCs internal linear feedback shift register (LFSR) as a software assurance

check

• Bit Bank counter that can be used with the ASC to ensure that a scrambler function uses the same

number of algorithm bits as traffic bits to ensure that no traffic data is accidentally left in the clear

• Plaintext/Ciphertext comparator that may be used to ensure that a cryptographic algorithm

scrambler has not been replaced with a simple pattern EXOR function

• Some portion of the SCC is used during initial boot-up from the iROM

• Some portion is used as a security measure during runtime, for example, tampering of the

hardware. This is used to clear the secure data either in the internal RAM or externally encrypted

data RAM.

2.3.10 Power managementGeneral Drivers

General drivers discussed in the following sections, include the following:

• Multimedia Card (MMC)/Secure Digital (SD) driver

• I2C Client and Bus drivers

• Dynamic Power Management (DPM) driver

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-13

2.3.10.1 MMC/SD Host Driver

The MMC/SD card driver implements a standard Linux MMC host driver SSP interface configured to

work in MMC/SD mode. The driver is an underlying layer for the Linux MMC block driver that follows

standard Linux driver API. The driver has the following features:

• MMC/SD cards

• Standard MMC/SD commands

• 1-bit or 4-bit operation

• Card insertion and removal events

• Write protection signal

2.3.10.2 MMC/SD Slot Driver

The MMC/SD driver implements a standard Linux slot driver as well as a block driver interface to the

MMC/SDHC controller. The interface to the upper layer follows the standard Linux driver API. This

driver supports the following features:

• SDHC module supports MMC and SD cards

• MMC version 3.0 spec is supported. SD Memory Card spec 1.0 and SD I/O card spec 1.0 are

supported.

• Hardware contains 32×16 bit data buffer built in

• Plug and play support

• 100 Mbps Maximum hardware data rate in 4-bit mode

• 1-bit or 4-bit operation

• For SD card access, only SD bus mode is supported. SPI mode is not supported.

• Supports card insertion and removal events

• Supports the standard MMC/SD/SDIO commands

• Supports Power management

• Supports set/reset of password or card lock/unlock commands

• Power management

2.3.10.3 Inter-IC (I2C) Bus Driver

The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This driver is invoked

by the I2C chip driver. It is not exposed to the user space. The standard Linux kernel contains a core I2C

module that is used by the chip driver to access the bus driver to transfer data over the I2C bus. The chip

driver uses a standard kernel space API that is provided in the Linux kernel to access the core I2C module.

The standard I2C kernel functions are documented in the files available under Documentation/i2c in the

kernel source tree. This bus driver supports the following features:

• Compatibility with the I2C bus standard

• Bit rates up to 400 Kbps

• Start and stop signal generation/detection

Architecture

i.MX25 PDK Linux Reference Manual

2-14 Freescale Semiconductor

• Acknowledge bit generation/detection

• Interrupt-driven, byte-by-byte data transfer

• Standard I2C master mode

• Power management features by suspending and resuming I2C

The I2C slave mode is not supported by this driver.

2.3.10.4 Configurable Serial Peripheral Interface (CSPI) Driver

The low-level Configurable Serial Peripheral Interface (CSPI) driver interfaces a custom, kernel-space

API to the CSPI modules. It supports the following features:

• Interrupt-driven transmit/receive of SPI frames

• Multi-client management

• Priority management between clients

• SPI device configuration per client

DMA is not supported.

2.3.10.5 Dynamic Power Management (DPM) Driver

DPM refers to power management schemes implemented while programs are running. DPM focuses on

system wide energy consumption while it is running. In any CPU-intensive application, lowering bus

frequencies from their maximum performance points can result in system wide energy savings. DPM

implementation includes the following data structures:

• Operating points

• Operating states

• Policies

• Policy manager

2.3.10.5.1 Policy Architecture

A DPM policy is a named data structure installed in the DPM implementation within the operating system,

and managed by the policy manager, which may be outside of the operating system. Once a DPM system

is initialized and activated, the system is always executing a particular DPM policy.

2.3.10.5.2 Operating Points

At any given point in time, a system is said to be executing at a particular operating point. The operating

point is described using hardware parameters, such as core voltage, CPU and bus frequencies, and the

states of peripheral devices. A DPM system could properly be defined as the set of rules and procedures

that move the system from one operating point to another as events occur.

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-15

2.3.10.5.3 Operating States

As already mentioned, the system supports multiple operating points. Some rules and mechanisms are

required to move the system from one operating point to another. Each operating state is associated with

an operating point. The system at a particular operating point is said to be in an operating state.

2.3.10.5.4 Policy Managers

A policy maps each operating state to a congruent class of operating points. The system supports multiple

operating states and hence multiple operating points. At any point in time, the system operates using a

single policy. For example, a power management strategy contains at least one policy, and may specify as

many different policies as necessary for different situations. If multiple policies are needed, then a policy

manager must exist in the system to coordinate the activation of different policies.

Figure 2-4 shows the high level design for DPM.

Figure 2-4. DPM High Level Design

Figure 2-5 shows the DPM architecture block diagram.

Figure 2-5. DPM Architecture Block Diagram

Low-level PM driver
CRM

Policy monitor
Daemon

(monitors
system activity)

DPM

Request

Operating/task
State change

Software

Hardware

Device Drivers

Power mgmt
Requirements

Sets operating points, Changing
pow er-performance
levels

Raise or low er
Perform ance
levels

New Voltage
Frequency

PLL0 PLL2PLL1

Architecture

i.MX25 PDK Linux Reference Manual

2-16 Freescale Semiconductor

2.3.10.6 Low-Level Power Management Driver

The low-level power management driver is responsible for implementing hardware-specific operations to

meet power requirements and also to conserve power. Driver implementation may be different for different

platforms. It is used by the DPM layer. This driver implements dynamic voltage and frequency scaling

(DVFS) or dynamic frequency scaling (DFS) techniques, depending on the platform, and low-power

modes. The DVFS or DFS driver is used to change the frequency/voltage or frequency only when the DPM

layer decides to change the operating point to meet the power requirements. This is done when the system

is in RUN mode which helps in conserving power while the system is running. Low-power modes, such

as WAIT and STOP are also implemented to save power. In all these cases, power consumption is managed

by reducing the voltage/frequency and the severity of clock gating.

2.4 Boot Loaders

A boot loader is a small program that runs first after a CPU powers up. A boot loader is required to boot

an ARM Linux system. The boot loader for ARM Linux serves several purposes:

• Sets up the system, such as:

— AHB Lite IP Interface (AIPS)

— Multi Layer Cross Bar Switch (MAX)

— Memory

— Different clocks

• Loads Linux kernel image to SDRAM

• Obtains proper information for the Linux kernel

• Passes control to the Linux kernel

NOTE

Not all boot loaders are supported on all boards.

2.4.1 Functions of Boot Loaders

A boot loader provides the functions outlined in the following steps:

1. Set up AIPS and MAX

2. Set up Phase-Locked Loop (PLLs) for various system clocks

3. Set up and initialize the RAM

4. Initialize one serial port (optional)

5. Detect the machine type

6. Set up the kernel tagged list

7. Jump to the kernel image (either the Image file or the zImage file for compressed kernel)

The first step, setting up AIPS and MAX, is a required step for a boot loader to get access to proper

peripherals, such as Timer and UART. The MAX should also be set up properly for different bus master

priorities.

Architecture

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 2-17

The second step, setting up the PLLs, is necessary because default PLL settings may not be optimal. The

boot loader should tune the settings before trying to execute the image to set up the desired clocks.

For more information about steps three to seven, see the following directory:

<ltib_dir>/rpm/BUILD/linux/Documentation/arm/Booting

In the last step, jump to the kernel image, the boot loader calls the kernel image directly regardless of

whether the kernel is compressed. For a compressed kernel (zImage), the expansion is done by the code

surrounding kernel image during the kernel build.

The following boot loaders are provided in the BSP:

• RedBoot

RedBoot is the boot loader with the most features. RedBoot downloads images using either serial or

Ethernet connections, handles image decompression, scripting and stores the image into Flash. RedBoot

is mainly used for software development.

NOR Flash is controlled by the EIM module, while the NAND Flash is controlled by the integrated NAND

Flash controller. NAND Flash is a sequential access device appropriate for mass storage of code and

applications, while NOR Flash is a random access device appropriate for storage as well as execution of

code and applications. Code stored on NAND Flash must be loaded into RAM for execution. For more

information about these two Flash technologies, see http://www.linux-mtd.infradead.org/.

2.4.2 RedBoot

RedBoot is an open source boot firmware based on the eCos Hardware Abstraction Layer. It was designed

to be very portable, extensible, and configurable. Some of the features are:

• Host connectivity through RS-232 or Ethernet

• Command line interface through RS-232 or Telnet

• Image downloads through HTTP, TFTP, X-Modem, or Y-Modem

• Support for compressed images (download and Flash load)

• Flash Image System for managing multiple Flash images

• Flash stored configuration

• Boot time script execution

• GDB (for debugging)

• BOOTP (for network booting)

• Watchdog servicing

RedBoot supports a wide variety of architectures and is very well documented. It is generally used for

software development. For more information on RedBoot, see http://sources.redhat.com/redboot/.

http://www.linux-mtd.infradead.org/

Architecture

i.MX25 PDK Linux Reference Manual

2-18 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Machine Specific Layer (MSL)

The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent

components:

• Interrupts including GPIO and EDIO (only on certain platforms)

• Timer

• Memory map

• General purpose input/output (GPIO) including IOMUX on certain platforms

• Shared peripheral bus arbiter (SPBA)

• Smart direct memory access (SDMA)

These modules are normally available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25 for MX25 platform

The header files are implemented under the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

The MSL layer contains not only the modules common to all the boards using the same processor, such as

the interrupts and timer, but it also contains modules specific to each board, such as the memory map. The

following sections describe the basic hardware and software operation and the software interfaces for MSL

modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-specific

modules, such as Memory Map and general purpose input/output (GPIO) (including IOMUX on some

platforms) are detailed. Because of the complexity of the SDMA module, its design is explained in

Chapter 4, “Smart Direct Memory Access (SDMA) API.”

Each of the following sections contains an overview of the hardware operation. For more information, see

the corresponding device documentation.

3.1 Interrupts

The following sections explain the hardware and software operation of interrupts on the device.

3.1.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 64 internal and external interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or using the Interrupt

Enable/Disable Number Registers. When an interrupt source is enabled and the corresponding interrupt

source is asserted, the Interrupt Controller asserts a normal or a fast interrupt request depending on the

associated Interrupt Type Register setting.

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-2 Freescale Semiconductor

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt Controller interrupt

requests are prioritized in the order of fast interrupts, and normal interrupts in order of highest priority

level, then highest source number with the same priority. There are sixteen normal interrupt levels for all

interrupt sources, with level zero being the lowest priority. The interrupt levels are configurable through

eight normal interrupt priority level registers. Those registers, along with the Normal Interrupt Mask

Register, support software-controlled priority levels for normal interrupts and priority masking.

3.1.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different exception types. The

exception vector addresses can be configured to start at low address (0x0) or high address (0xFFFF0000).

The ARM Linux implementation chooses the high vector address model.

The following file has a description of the ARM interrupt architecture.

<ltib_dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the

irqchip structure and exports one initialization function, which is called during system startup.

3.1.3 Interrupt Features

The interrupt implementation supports the following features:

• Interrupt Controller interrupt disable and enable

• Functions required by the Linux interrupt architecture as defined in the standard ARM interrupt

source code (mainly the <ltib_dir>/rpm/BUILD/linux/arch/arm/kernel/irq.c file)

3.1.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file (located in the directory

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc):

irq.c (If CONFIG_MXC_TZIC is not selected)

There are also two header files (located in the include directory specified at the beginning of this chapter):

hardware.h

irqs.h

Table 3-1 lists the source files for interrupts.

Table 3-1. Interrupt Files

File Description

hardware.h Register descriptions

irqs.h Declarations for number of interrupts supported

irq.c Actual interrupt functions

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-3

3.1.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function. This function initializes the

Interrupt Controller hardware and registers functions for interrupt enable and disable from each interrupt

source. This is done with the global structure irq_desc of type struct irqdesc. After the initialization, the

interrupt can be used by the drivers through the request_irq() function to register device-specific interrupt

handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the number of interrupts is

also expanded to support GPIO interrupt and (on some platforms) EDIO interrupts. This allows drivers to

use the standard interrupt interface supported by ARM Linux, such as the request_irq() and free_irq()

functions.

3.2 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system timer (which

generates periodic interrupts) and the dynamic timers (to schedule events). Once the system timer interrupt

occurs, it does the following:

• Updates the system uptime

• Updates the time of day

• Reschedules a new process if the current process has exhausted its time slice

• Runs any dynamic timers that have expired

• Updates resource usage and processor time statistics

The timer hardware on most i.MX platforms consists of either Enhanced Periodic Interrupt Timer (EPIT)

or general purpose timer (GPT) or both. GPT is configured to generate a periodic interrupt at a certain

interval (every 10 ms) and is used by the Linux kernel.

3.2.1 Timer Hardware Operation

The General Purpose Timer (GPT) has a 32 bit up-counter. The timer counter value can be captured in a

register using an event on an external pin. The capture trigger can be programmed to be a rising or falling

edge. The GPT can also generate an event on ipp_do_cmpout pins, or can produce an interrupt when the

timer reaches a programmed value. It has a 12-bit prescaler providing a programmable clock frequency

derived from multiple clock sources.

3.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the

proper clock source, interrupt mode and interrupt interval. The timer then registers its interrupt service

routine and starts timing. The interrupt service routine is required to service the OS for the purposes

mentioned in Section 3.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-4 Freescale Semiconductor

3.2.3 Timer Features

The timer implementation supports the following features:

• Functions required by Linux to provide the system timer and dynamic timers.

• Generates an interrupt every 10 ms.

3.2.4 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxc/time.c file.

3.3 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to access to the

device registers since the Linux kernel is running under the virtual address space with the Memory

Management Unit (MMU) enabled.

3.3.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping defined by the page

table. For more information, see the ARM Technical Reference Manual (TRM) from ARM Limited.

3.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX platforms as defined in

the <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-<xxx>/mm.c file.

3.3.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the physical to virtual

memory map for all the I/O modules.

3.3.4 Memory Map Source Code Structure

The Memory Map module implementation is in mm.c under the platform-specific MSL directory. The

hardware.h header file is used to provide macros for all the IO module physical and virtual base addresses

and physical to virtual mapping macros. All of the memory map source code is in the in the following

directories:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-imx

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-<platform>

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-5

Table 3-2 lists the source file for the memory map.

3.3.5 Memory Map Programming Interface

The Memory Map is implemented in the mm.c file to provide the map between physical and virtual

addresses. It defines an initialization function to be called during system startup.

3.4 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes. The IOMUX

module controls a pin usage so that the same pin can be configured for different purposes and can be used

by different modules. This is a common way to reduce the pin count while meeting the requirements from

various customers. Platforms that do not have the IOMUX hardware module can do pin muxing through

the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be configured either as a

functional pin or as a GPIO pin. A functional pin can be subdivided into either a primary function or

alternate functions. The pin operation is controlled by a specific hardware module. A GPIO pin, is

controlled by the user through software with further configuration through the GPIO module. For example,

the TXD1 pin might have the following functions:

• TXD1—internal UART1 Transmit Data. This is the primary function of this pin.

• UART2 DTR—alternate mode 3

• LCDC_CLS—alternate mode 4

• GPIO4[22]—alternate mode 5

• SLCDC_DATA[8]—alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose

and cannot be changed by software. Otherwise, the IOMUX module needs to be configured to serve a

particular purpose that is dictated by the system (board) design. If the pin is connected to an external UART

transceiver and therefore to be used as the UART data transmit signal, it should be configured as the

primary function. If the pin is connected to an external Ethernet controller for interrupting the ARM core,

then it should be configured as GPIO input pin with interrupt enabled. Again, be aware that the software

does not have control over what function a pin should have. The software only configures pin usage

according to the system design.

Table 3-2. Memory Map Files

File Description

mx25.h Header files for the IO module physical addresses

hardware.h Macro header file

mm.c Memory map definition file

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-6 Freescale Semiconductor

3.4.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware module. The

IOMUX controller registers are briefly described here. For detailed information, refer to the pin

multiplexing section of the IC Reference Manual.

• SW_MUX_CTL—Selects the primary or alternate function of a pin. Also enables loopback mode

when applicable.

• SW_SELECT_INPUT—Controls pin input path. This register is only required when multiple pads

drive the same internal port.

• SW_PAD_CTL—Control pad slew rate, driver strength, pull-up/down resistance, and so on.

3.4.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and pad features.

3.4.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are supported by the

hardware.

3.4.4 IOMUX Source Code Structure

Table 3-3 lists the source files for the IOMUX module. The files are in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx<XX>/

<XX> indicates different platforms.

3.4.5 IOMUX Programming Interface

All the IOMUX functions required for the Linux port are implemented in the iomux.c file.

3.4.6 IOMUX Control Through GPIO Module

The following discussion applies to those platforms that control the muxing of a pin through the general

purpose input/output (GPIO) module.

For a multi-purpose pin, the GPIO controller provides the multiplexing control so that each pin may be

configured either as a functional pin (which can be subdivided into either major function or one alternate

function) whose operation is controlled by a specific hardware module, or it can be configured as a GPIO

pin, in which case, the pin is controlled by the user through software with further configuration through

Table 3-3. IOMUX Files

File Description

iomux.c IOMUX function implementation

mx*_pins.h Pin definitions in the iomux_pins enum

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-7

the GPIO module. In addition, there are some special configurations for a GPIO pin (such as output based

A_IN, B_IN, C_IN or DATA register, but input based A_OUT or B_OUT).

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose

which can not be changed by software. Otherwise, the GPIO module needs to be configured properly to

serve a particular purpose that is dictated with the system (board) design. If this pin is connected to an

external UART transceiver, it should be configured as the primary function or if this pin is connected to

an external Ethernet controller for interrupting the core, then it should be configured as GPIO input pin

with interrupt enabled. The software does not have control over what function a pin should have. The

software only configures a pin for that usage according to the system design.

3.4.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub modules. The

following sections briefly describe the hardware operation and for detailed information, refer to the

relevant device documentation.

3.4.6.1.1 Muxing Control

The GPIO In Use Registers control a multiplexer in the GPIO module. The settings in these registers

choose if a pin is utilized for a peripheral function or for its GPIO function. One 32-bit general purpose

register is dedicated to each GPIO port. These registers may be used for software control of IOMUX block

of the GPIO.

3.4.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control every pin of that

port.

3.4.6.2 GPIO Software Operation

The GPIO software implementation provides an API to setup pin functionality and pad features.

3.4.6.3 GPIO Features

The GPIO implementation programs the GPIO module to configure the pins that are supported by the

hardware.

3.4.6.4 GPIO Source Code Structure

The GPIO module is implemented in gpio_mux.c file under the relevant MSL directory. The header file to

define the pin names is under:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-<xxx>/

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-8 Freescale Semiconductor

Table 3-4 lists the source files for the IOMUX.

3.4.6.5 GPIO Programming Interface

All the GPIO muxing functions required for the Linux port are implemented in the gpio_mux.c file.

3.5 General Purpose Input/Output (GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs or outputs. When

configured as an output, the pin state (high or low) can be controlled by writing to an internal register.

When configured as an input, the pin input state can be read from an internal register.

3.5.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX processor

external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly accessing the GPIO

registers. The GPIO interrupt implementation contains functions, such as the interrupt service routine

(ISR) registration/un-registration and ISR dispatching once an interrupt occurs. All driver-specific GPIO

setup functions should be made during device initialization in the MSL layer to provide better portability

and maintainability. This GPIO interrupt is initialized automatically during the system startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since it is not initialized

by a dedicated hardware module. Setting the pad pull-up, pull-down, slew rate and so on, with the pad

control function may be required as well.

3.5.1.1 API for GPIO

The GPIO implementation supports the following features:

• An API for registering an interrupt service routine to a GPIO interrupt. This is made possible as

the number of interrupts defined by NR_IRQS is expanded to accommodate all the possible GPIO

pins that are capable of generating interrupts.

• Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of request/free

function calls are provided. The user should check the return value of the request calls to see if the

pin has already been reserved before modifying the pin state. The free function calls should be

made when the pin is not needed. See the API document for more details.

• Aligned parameter passing for both IOMUX and GPIO function calls. In this implementation the

same enumeration for iomux_pins is used for both IOMUX and GPIO calls and the user does not

have to figure out in which bit position a pin is located in the GPIO module.

Table 3-4. IOMUX Through GPIO Files

File Description

mx<xxx>_3stack_gpio.c IOMUX function implementation

mx*_pins.h Pin name definitions

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-9

• Minimal changes required for the public drivers such as Ethernet and UART drivers as no special

GPIO function call is needed for registering an interrupt.

3.5.2 GPIO Features

This GPIO implementation supports the following features:

• Implements the functions for accessing the GPIO hardware modules

• Provides a way to control GPIO signal direction and GPIO interrupts

3.5.3 GPIO Source Code Structure

All of the GPIO module source code is in the MSL layer, in the following files, located in the directories

indicated at the beginning of this chapter:
.

3.5.4 GPIO Programming Interface

For more information, see the API documents for the programming interface.

3.6 EDIO

Not all platforms have the EDIO hardware module. This section applies only to those that do. The EDIO

module provides external interrupt capability to the processors.

3.6.1 EDIO Hardware Operation

The interrupt (EDIO) module recognizes the external asynchronous signal as an interrupt source. When it

matches the selected criteria, low level or edge (rising, falling or both edges), it asserts an interrupt request

to the processor interrupt controller. This module can handle eight such interrupts simultaneously with

selectable configurations for each incoming signal reaching EDIO.

3.6.2 EDIO Software Operation

The EDIO interrupt has been integrated into the generic platform level interrupt implementation as in

irq.c in the <ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc directory. For drivers that need to set up the

interrupt attributes, such as interrupt edges or levels, the set_irq_type() can be called. The interrupt

clearing that is needed for the EDIO interrupts is hidden from the driver.

Table 3-5. GPIO Files

File Description

mx*_pins.h GPIO private header file

gpio.h GPIO public header file

gpio.c Function implementation

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-10 Freescale Semiconductor

3.6.3 EDIO Features

The EDIO module controls the EDIO interrupt attributes provided by the hardware.

3.6.4 EDIO Source Code Structure

All of the EDIO module source code is in the files below in the

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach and

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc directories.

3.6.5 EDIO Programming Interface

For more information, see the API documents for the programming Interface.

3.7 SPBA Bus Arbiter

Not all platforms have the SPBA hardware module. Therefore, this section only applies to the platforms

with SPBA module in them. The SPBA bus arbiter provides arbitration mechanism among multiple

masters to have access to the shared peripherals.

3.7.1 SPBA Hardware Operation

The SPBA is a three-to-one IP-Bus arbiter, with a resource locking mechanism. The masters can access up

to thirty-one shared peripherals through the SPBA. It has the following features:

• Multi-master bus arbiter

• 32-bit data access

• Supports up to 31 shared peripherals, each consuming 16 Kbytes of address space

• Can be considered as the 32nd peripheral, used for resource ownership and access control

mechanism to the 31 peripherals

• Provides 31 sets of Out of Band Steering Control signals to the off-module steering logic

• Operating frequency up to 67 MHz

• Clocks: ipg_clk, ipg_clk_s (mcu clock domain)

3.7.2 SPBA Software Operation

Functions are provided to allow different masters to take/release ownership of a shared peripheral. These

functions are also exported to be used by other loadable modules.

Table 3-6. EDIO Files

File Description

mx25.h Header files for the IO module physical addresses

irq.c Common functions for various boards

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 3-11

3.7.3 SPBA Features

This SPBA implementation supports the following features:

• Provides an API to allow different masters to take/release ownership of a shared peripheral

3.7.4 SPBA Source Code Structure

All of the SPBA module source code is in the MSL layer. The following files are available in the

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach and

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc directories:

3.7.5 SPBA Programming Interface

For more information, see the API documents for the programming interface.

Table 3-7. SPBA Files

File Description

spba.h SPBA public header file

spba.c Common SPBA functions

Machine Specific Layer (MSL)

i.MX25 PDK Linux Reference Manual

3-12 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview

The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware. It provides an API

to other drivers for transferring data between MCU memory space and the peripherals. It supports the

following features:

• Loading channel scripts from the MCU memory space into SDMA internal RAM

• Loading context parameters of the scripts

• Loading buffer descriptor parameters of the scripts

• Controlling execution of the scripts

• Callback mechanism at the end of script execution

4.2 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory space and peripherals

and includes the following features.

• Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels

• Powered by a 16-bit Instruction-Set microRISC engine

• Each channel executes specific script

• Very fast context-switching with two-level priority based preemptive multi-tasking

• 4 Kbytes ROM containing startup scripts (that is, boot code) and other common utilities that can

be referenced by RAM-located scripts

• 8 Kbyte RAM area is divided into a processor context area and a code space area used to store

channel scripts that are downloaded from the system memory.

4.3 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels run dedicated

scripts, according to peripheral and transfer types. The SDMA API driver is responsible for loading the

scripts into SDMA memory, initializing the channel descriptors, and controlling the buffer descriptors and

SDMA registers.

Smart Direct Memory Access (SDMA) API

i.MX25 PDK Linux Reference Manual

4-2 Freescale Semiconductor

Complete support for SDMA is provided in three layers (see Figure 4-1):

• I.API

• Linux DMA API

• TTY driver or DMA-capable drivers, such as ATA, SSI and the UART driver.

Figure 4-1. SDMA Block Diagram

The first two layers are part of the MSL and customized for each platform. I.API is the lowest layer and it

interfaces with the Linux DMA API with the SDMA controller. The Linux DMA API interfaces other

drivers (for example, MMC/SD, Sound) with the SDMA controller through the I.API.

Table 4-1 provides a list of drivers that use SDMA and the number of SDMA physical channels used by

each driver. A driver can specify the SDMA channel number that it wishes to use (static channel allocation)

or can have the SDMA driver provide a free SDMA channel for the driver to use (dynamic channel

Smart Direct Memory Access (SDMA) API

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 4-3

allocation). For dynamic channel allocation, the list of SDMA channels is scanned from channel 32 to

channel 1. On finding a free channel, that channel is allocated for the requested DMA transfers.

4.4 Source Code Structure

The source file, sdma.h (header file for SDMA API) is available in the directory

/<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach.

Table 4-2 shows the source files available in the directory,

/<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/sdma.

Table 4-3 shows the header files available in the directory,

/<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx<platform>/.

4.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this options, use

the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

Table 4-1. SDMA Channel Usage

Driver Name

Number of

SDMA

Channels

SDMA Channel Used

SDMA CMD 1 Static Channel allocation—uses SDMA channels 0

Unified IPC 8 Static Channel allocation—uses SDMA channels 1, 2, 3, 4, 5, 6, 7, 8

SSI 2 per device Dynamic channel allocation

UART 2 per device Dynamic channel allocation

Fast IR (FIRI) 2 per device Dynamic channel allocation

SPDIF 2 per device Dynamic channel allocation

ESAI 2 per device Dynamic channel allocation

ATA 2 Dynamic channel allocation

Table 4-2. SDMA API Source Files

File Description

sdma.c SDMA API functions

sdma_malloc.c SDMA functions to get memory that allows DMA

iapi/ iAPI source files

Table 4-3. SDMA Script Files

File Description

sdma_script_code.h SDMA RAM scripts for i.MX25

Smart Direct Memory Access (SDMA) API

i.MX25 PDK Linux Reference Manual

4-4 Freescale Semiconductor

• CONFIG_MXC_SDMA_API—This is the configuration option for the SDMA API driver. In

menuconfig, this option is available under

System type > Freescale MXC implementations > MX25 Options > Use SDMA API.

By default, this option is Y.

• CONFIG_SDMA_IRAM—This is the configuration option to support Internal RAM as SDMA

buffer or control structures.

• CONFIG_SDMA_IRAM_SIZE: This is the configuration option to set the size of IRAM for

SDMA. It must be a multiple of 512bytes.

4.6 Programming Interface

The module implements custom API and partially standard DMA API. Custom API is needed for

supporting non-standard DMA features such as loading scripts, interrupts handling and DVFS control.

Standard API is supported partially. It can be used along with custom API functions only. Refer to the API

document for more information on the functions implemented in the driver (in the doxygen folder of the

documentation package).

4.7 Usage Example

Refer to one of the drivers from Table 4-1 that uses the SDMA API driver for a usage example.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 5-1

Chapter 5
PMIC (MC34704) Protocol Driver

This chapter describes the power management integrated circuit (PMIC) protocol device driver for Linux.

The PMIC driver provides the low-level read/write access to the PMIC hardware control registers. The

PMIC protocol driver handles all low-level communications between many other Linux device drivers

and the PMIC hardware. The PMIC function of i.MX25 3-Stack is implemented by a Freescale MC34704

power IC.The PMIC protocol driver uses the I2C1 bus to communicate with the PMIC chip.

One key objective of the PMIC protocol driver and the other PMIC-related drivers is to provide a com-

plete API interface to all supported PMIC chips, despite differences in hardware design and implementa-

tion. This is necessary to minimize the effort to design, implement, test, and support PMIC device

drivers.

With a single API interface, a single application can be reused without any changes across all supported

PMIC chips. Such an application, however, must either restrict itself to a core set of features supported by

all PMIC chips, or detect at runtime which PMIC chip is installed before performing any PMIC-specific

operations.

5.1 Key PMIC Features and Capabilities

The MC34704 PMIC protocol provides hardware support for the following subset of i.MX PMIC

functions:

• Power supply control and power management support

• Event notification of regulator faults through hardware polling

5.1.1 PMIC Register Access and Arbitration

The main purpose of the PMIC protocol driver is to provide the necessary read/write access to the PMIC

control registers using the I2C bus interfaces to support all of the higher-level PMIC client drivers.

• Access–access to the control registers of the PMIC is implemented through the I2C1 bus interface.

The MC34704 acts as a I2C client. The lower part of the protocol driver registers chip as an I2C

client and provides APIs for accessing the actual registers of the chip. The upper part of the

protocol driver implements a universal pseudo register space and maps these registers to the actual

registers of MC34704. Thus the protocol driver as a whole can provide a set of common APIs for

accessing the PMIC module.

• Arbitration–the arbitration of accessing PMIC registers is implemented inside the I2C host driver.

PMIC (MC34704) Protocol Driver

i.MX25 PDK Linux Reference Manual

5-2 Freescale Semiconductor

5.1.2 Event Notification

The MC34704 does not provide an interrupt signal. The internal regulator fault conditions must be polled

by software. When event notification is requested, the driver starts a kernel polling task to periodically

sample the fault status register of the PMIC. As a result, there is a delay (up to 100 ms) in the triggering

of event handling.

Table 5-1 lists all events that the PMIC protocol driver supports. Regulator faults can be over current, short

circuit, over/under voltage, or thermal shutdown.

5.2 Driver Requirements

The PMIC protocol driver module (also called the core driver in the Linux source tree) is responsible for

providing two types of services for all of the PMIC client driver components:

• Control Services

• Event Notification Services

The PMIC protocol driver may be built as a Linux loadable kernel module and manually loaded following

system boot. However, the protocol driver is typically configured to be built into the Linux kernel image

itself, because the PMIC card is not intended to be dynamically added or removed once the system has

been powered on. Also, some of the Linux power management functions require that the PMIC protocol

driver be properly loaded and fully operational.

5.3 Driver Software Operation

The PMIC protocol driver controls the PMIC by reading and writing the PMIC hardware control registers.

Both read and write access to the PMIC hardware control registers is done through the I2C driver.

5.4 Driver Implementation Details

This section describes implementation-specific details associated with the PMIC protocol driver. The

device driver source files should also be consulted to fully understand the implementation of the PMIC

protocol driver. Chapter 20, “Inter-IC (I2C) Driver” should also be consulted if required.

Table 5-1. Events Supported by Protocol Driver

Event Description

Regulator 1 Fault Fault indicated in Regulator 1

Regulator 2 Fault Fault indicated in Regulator 2

Regulator 3 Fault Fault indicated in Regulator 3

Regulator 4 Fault Fault indicated in Regulator 4

Regulator 5 Fault Fault indicated in Regulator 5

Regulator 6 Fault (unused on i.MX25 3-stack) Fault indicated in Regulator 6

Regulator 7 Fault (unused on i.MX25 3-stack) Fault indicated in Regulator 7

Regulator 8 Fault (unused on i.MX25 3-stack) Fault indicated in Regulator 8

PMIC (MC34704) Protocol Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 5-3

5.4.1 Driver Initialization

The PMIC protocol driver performs the following operations when it is first loaded/initialized:

• Registers MC34704 as an I2C client

• Creates either a /dev/pmic character device entry and registers the new device with the kernel

• Initializes all driver-specific global variables

5.4.2 Driver Unloading

The following operations are performed when unloading or deinitializing the PMIC protocol driver:

• Remove the /dev/pmic device entry and tell the kernel to deregister this device

• Unregister MC34704 I2C client

5.4.3 Register Access

The PMIC protocol driver exports APIs that allow other device drivers to read and write the PMIC control

registers. The PMIC control registers are accessed using the I2C interface. Externally, the PMIC protocol

driver simply provides APIs to read and write to and from the PMIC control registers.

Some registers of the MC34704 are write-only. To provide readability to the upper layer, a register cache

of MC34704 is employed.

5.5 Driver Source Code Structure

The source files for the PMIC protocol driver are available in the drivers directory,

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/pmic/core.

Table 5-2 shows the device driver source files.

In addition to the driver-specific source files, there also exists a Kconfig file that is used to define the device

driver build configuration (see Section 5.6, “Linux Menu Configuration Options”) and a Makefile that is

used during the Linux kernel image build process.

Table 5-2. PMIC Protocol Driver Files

File Description

pmic_external.c This file contains client API implementation, define SPI interface

pmic_event.c This file manage all event of PMIC component

pmic-dev.c This provides /dev interface to the user-space programs

pmic.h Declaration of all the functions whose implementation differs from PMIC chip to PMIC chip

mfd/mc34704/core.h Define Regulator macros and values for the MC34704 PMIC

mc34704.c Low level driver for the MC34704 PMIC

PMIC (MC34704) Protocol Driver

i.MX25 PDK Linux Reference Manual

5-4 Freescale Semiconductor

5.6 Linux Menu Configuration Options

The PMIC protocol driver is configured using the same mechanisms that are provided to configure the

Linux kernel image. That is, a Kconfig file within the source files directory is used to select whether or not

the device driver is to be included in the kernel build process and whether it is to be built as a loadable

kernel module or not. Any of the standard kernel configuration tools, such as menuconfig, can be used to

select and configure the PMIC protocol driver.

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• Device Drivers > MXC Support Drivers > MXC PMIC Support > MC34704 PMIC

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 6-1

Chapter 6
PMIC (MC34704) Regulator Driver

The MC34704 regulator driver provides the low-level control of the power supply regulators, selection of

voltage levels, and enabling/disabling of regulators. This device driver makes use of the PMIC protocol

driver (see Chapter 5, “PMIC (MC34704) Protocol Driver”) to access the PMIC hardware control

registers.

6.1 PMIC Features

The MC34704 integrates eight high-performance, high-efficiency DC-DC switching regulators. Other

functions include a reset driver and a 2-wire I2C serial interface.

An I2C-compatible, 2-wire serial interface controls a variety of MC34704 functions:

• Dynamic voltage scaling setting for each regulator

• On/Off for three regulator groups

• Fault status for each regulator (over/under voltage, over current, short-circuit, and high

temperature shutdown)

6.2 Driver Requirements

The MC34704 PMIC regulator driver is based on the PMIC protocol driver and regulator core driver. It

provides services for regulator control of the PMIC component.

• Switch ON/OFF all voltage regulators

• Set the value for all voltage regulators

• Get the current value for all voltage regulators

6.3 Driver Software Operation

The MC34704 regulator client driver performs operations by reconfiguring the PMIC hardware control

registers. This is done by calling protocol driver APIs with the required register settings.

6.4 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and current

regulators within the Linux 2.6 kernel. It is intended to provide voltage and current control to client or

consumer drivers and also to provide status information to user space applications through a sysfs

interface.

PMIC (MC34704) Regulator Driver

i.MX25 PDK Linux Reference Manual

6-2 Freescale Semiconductor

The intention is to allow systems to dynamically control regulator output in order to save power and

prolong battery life. This applies to both voltage regulators (where voltage output is controllable) and

current sinks (where current output is controllable).

For more details visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operation can be done but the following unified API calls:

1. regulator_get – lookup and obtain a reference to a regulator

struct regulator *regulator_get(struct device *dev, const char *id);

2. regulator_put – free the regulator source

void regulator_put(struct regulator *regulator, struct device *dev);

3. regulator_enable – enable regulator output

int regulator_enable(struct regulator *regulator);

4. regulator_disable – disable regulator output

int regulator_disable(struct regulator *regulator);

5. regulator_is_enabled – is the regulator output enabled

int regulator_is_enabled(struct regulator *regulator);

6. regulator_set_voltage – sets regulator output voltage

int regulator_set_voltage(struct regulator *regulator, int uV);

7. regulator_get_voltage – gets regulator output voltage

int regulator_get_voltage(struct regulator *regulator);

Find more APIs and details in the regulator core source code in drivers/regulator/core.c.

6.5 Driver Architecture

Figure 6-1 shows the basic architecture of the MC34704 regulator driver.

Figure 6-1. MC34704 Regulator Driver Architecture

Regulator Core Driver

MC34704 Regulator Driver

PMIC Protocol Driver

I2C Driver

PMIC (MC34704) Regulator Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 6-3

6.6 Driver Implementation Details

The access to the MC34704 regulator is provided through the APIs of the regulator core driver. The

MC34704 regulator driver provides the following regulator controls:

• MC34704 REG1 through REG5 supply voltage to BKLT, CPU, CORE, DDR, and PERS power

supply rails

All of the regulator functions are handled by setting the appropriate PMIC hardware register values. This

is done by calling the PMIC protocol driver APIs to access the PMIC hardware registers.

6.7 Driver Source Code Structure

Table 6-1 shows the MC34704 regulator driver files that are available in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/regulator.

6.8 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• Device Drivers > Voltage and Current Regulator Support> MC34704 Regulator Support

Table 6-1. MC34704 Power Management Driver Files

File Description

reg-mc34704.c Implementation of the MC34704 regulator client driver

PMIC (MC34704) Regulator Driver

i.MX25 PDK Linux Reference Manual

6-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 7-1

Chapter 7
i.MX25 Low-level Power Management (PM) Driver

This section describes the low-level PM driver which controls the low-power modes.

7.1 Hardware Operation

The low-power modes on the i.MX25 device are controlled by software using the clock controller module

(CCM). The CCM:

• Controls the system frequency

• Distributes clocks to various parts of the chip

• Controls the reset mechanism of the chip

• Provides advanced low-power management

7.1.1 Lower Power Mode

The i.MX25 supports a versatile list of power modes, as shown in Table 7-1, including power and clock

domains status and applied power techniques.

State-retention mode is when the logic core supply is lowered from 1.1 V to 1.0 V in Stop mode. Static

stop mode is when the Osc24M is powered off and all clocks are off including CKIL.

NOTE

The i.MX25 3-Stack does not support VSTBY. VSTBY signal is connected

to the PMIC and the PMIC does nothing when VSTBY is asserted.

Therefore, state-retention mode is disabled in the CCM (VSTBY bit is set

to ‘0’).

7.2 Software Operations

For Doze and Stop modes, software should disable interrupts before executing a wait-for-interrupt (WFI)

instruction and then re-enable interrupts afterwards.

Table 7-1. Low Power Modes

Mode Core ARM MAX Modules MPLL UPLL Osc24M Osc32K Perclk

RUN Active Active Active, Idle or Disable On On/off On On Some On

WAIT Disable Active Active, Idle or Disable On On/off On On Some On

DOZE Disable Disable Active, Idle or Disable On On/off On On Some On

STOP Disable Disable Disable Off Off On/Off On Off

i.MX25 Low-level Power Management (PM) Driver

i.MX25 PDK Linux Reference Manual

7-2 Freescale Semiconductor

Use the following steps to enter and exit low power mode:

1. Setup wakeup interrupt before entering lower power mode.

2. Program the LP CTL field in the CCM CCTL register. For Stop mode, configure the VSTBY and

OSC24M_DOWN bit according to the hardware design.

3. Call cpu_do_idle to execute WFI pending instructions.

4. Generate a wakeup interrupt and exit low power mode.

The i.MX25 PM driver maps the low-power modes to the kernel power management states as listed below:

• Standby – maps to Doze mode which offers minimal power saving, while providing a very

low-latency transition back to a working system

• Mem (suspend to RAM) – maps to Stop mode which offers significant power saving as all blocks

in the system is put into a low-power state, except for memory, which is placed in self-refresh mode

to retain its contents

• System idle – maps to Wait mode

7.3 Source Code Structure

Table 7-2 shows the PM driver source files. These files are available in

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25/

7.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_PM – Build support for power management. In menuconfig, this option is available under

Power management options > Power Management support.

By default, this option is Y.

• CONFIG_SUSPEND – Build support for suspend. In menuconfig, this option is available under

Power management options > Suspend to RAM and standby.

7.5 Programming Interface

he mxc_cpu_lp_set API is provided for low-power modes. This implements all the steps required to put

the system into Wait, Doze, or Stop mode.

Table 7-2. PM Driver Files

File Description

pm.c Supports suspend operation

system.c Supports lower power modes

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 8-1

Chapter 8
CPU Frequency Scaling (CPUFREQ) Driver

The CPU frequency scaling device driver allows the clock speed of the CPU to be changed on the fly. Once

the CPU frequency is changed, the GP voltage is changed to the voltage value defined in cpu_wp_auto. This

method can reduce power consumption (thus saving battery power), because the CPU uses less power as

the clock speed is reduced.

8.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on the fly. If the

frequency is not defined in cpu_wp_auto, the CPUFREQ driver changes the CPU frequency to the nearest

frequency in the array. The frequencies are manipulated using the clock framework API, while the voltage

is set using the regulators API. Refer to the API document for more information on the functions

implemented in the driver (in the doxygen folder of the documentation package).

To view what values the CPU frequency can be changed to in KHz (The values in the first column are the

frequency values) use this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for example, to 800

MHz) use this command:

echo 800000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 800000 is in KHz, which is 800 MHz.

Use the following command to view the current CPU frequency in KHz:

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

8.2 Source Code Structure

Table 8-1 shows the source files and headers available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/

8.3 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

• CONFIG_CPU__FREQ—In menuconfig, this option is located under

Table 8-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

CPU Frequency Scaling (CPUFREQ) Driver

i.MX25 PDK Linux Reference Manual

8-2 Freescale Semiconductor

CPU Power Management > CPU Frequency scaling

The following options can be selected:

— CPU Frequency scaling

— CPU frequency translation statistics

— Default CPU frequency governor (userspace)

— Performance governor

— Powersave governor

— Userspace governor for userspace frequency scaling

— On-demand CPU frequency policy governor

— Conservative CPU frequency governor

— CPU frequency driver for i.MX CPUs

— CPU idle PM support

8.3.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Liquid Crystal Display Controller (LCDC) Driver

The LCDC provides display data for external gray-scale or color LCD panels. The LCDC is capable of

supporting black-and-white, gray-scale, passive-matrix color (passive color or CSTN), and active-matrix

color (active color or TFT) LCD panels. The detailed hardware operation of the LCDC can be found in the

Multimedia Applications Processor Reference Manual

9.1 LCD Driver Overview

The LCD driver is designed under the Linux frame buffer driver framework. It provides hardware ability

to support the frame buffer driver. The frame buffer device provides an abstraction for the graphics

hardware. It represents the frame buffer of video hardware and allows application software to access the

graphics hardware through a well-defined interface, so the software does not need to know anything about

the lower level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters in the kernel

configuration. To supplement the frame buffer driver, the kernel builder may also include support for fonts

and a startup logo. This depends on the Virtual Terminal (VT) console for switching from serial to graphics

mode.

The device is accessed through special device nodes, usually located in the /dev/fb* directory. Except for

physical memory allocation and LCD panel configuration, the common kernel video API is utilized for

setting colors, palette registration, image blitting, and memory mapping. The LCDC reads the raw pixel

data from the frame buffer memory and sends it to the panel for display.

The frame buffer driver supports different panels. Support for new panels can be added by defining new

timing values for the structure fb_videomode. The panel to be enabled during Linux booting up can be

specified by appending video options onto the kernel command line.

9.1.1 Hardware Operation

The frame buffer interacts with the LCDC hardware module. Refer to the LCDC section in the Multimedia

Applications Processor Reference Manual for more information.

9.1.2 Software Operation

A frame buffer device is a memory device like /dev/mem and it has the same features. It can be read from,

written to, a location in it can be seeked and the mmap() function can be used (the main usage). The

difference is that the memory that appears in the file is not the whole memory, but the frame buffer of some

video hardware.

Liquid Crystal Display Controller (LCDC) Driver

i.MX25 PDK Linux Reference Manual

9-2 Freescale Semiconductor

/dev/fb* also allows several IOCTLs to operate on it, by which information about the hardware can be

queried and set. The color map handling operates through IOCTLs as well. linux/fb.h contains more

information about what IOCTLs exist and which data structures they use. Here is a brief overview:

• Unchangeable information about the hardware such as the name, organization of the screen

memory (planes, packed pixels, and so on) and address and length of the screen memory can be

requested.

• Variable information about the hardware, such as the visible and virtual geometry, depth, color map

format, timing, and so on can be requested and changed. If this information is changed, the driver

may round up some values to meet the hardware capabilities (or return EINVAL if the change is

not possible).

• Parts of the color map can be retrieved and set. Communication is with 16 bits per color part (red,

green, blue, and transparency) to support all existing hardware. The driver makes the necessary

computations to apply values to the hardware (round down to less bits, throw away transparency

and so on).

The hardware abstraction makes the implementation of application programs easier and more portable. For

example, the Qt/Embedded server operates completely on /dev/fb* and therefore does not need to know,

for example, how the color registers of the concrete hardware are organized. Only the screen organization

(bitplanes or chunky pixels) must be built into application programs, because they work on the frame

buffer image data directly.

The frame buffer driver (<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc/mx2fb.c) interacts closely

with the generic Linux frame buffer driver (<ltib_dir>/rpm/BUILD/linux/drivers/video/fbmem.c).

9.1.3 Graphics Window

The graphics window is supported by the LCDC for viewfinder functions in a color display. The graphics

window and background plane can be alpha blended. In addition, one of the pixel colors can be chosen for

color keying in which the selected pixel color is made totally transparent. Memory used by the graphics

window can be different from the memory used by the background plane. Thus two frame buffer devices

are implemented by this driver, one for the background plane and the other for the graphics window.

Since the graphics window is a special display (for example, the graphics window supports alpha blending

and color keying), additional IOCTLs are provided to support these features.

9.1.4 Architecture

The architecture diagram is shown in Figure 9-1.

Liquid Crystal Display Controller (LCDC) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 9-3

Figure 9-1. LCD Driver Architecture

9.2 Source Code Structure Configuration

Table 9-1 shows the LCD driver source files that are located in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc
.

9.3 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_FB_MXC – This is the configuration option for the frame buffer driver. This option is

dependent on the CONFIG_FB option. In the menuconfig, this option is available under

Device Drivers > Graphics support > MXC Framebuffer support.

By default, this option is Y.

Table 9-1. LCD Driver Files

File Description

mx2fb.c Source file

mx2fb.h Header file

Application

LCD Controller

Linux Kernel

LCD Driver

Graphic

Window

Driver

(fb1)

Background

Plane

 Driver

(fb0)

Framebuffer Driver

Liquid Crystal Display Controller (LCDC) Driver

i.MX25 PDK Linux Reference Manual

9-4 Freescale Semiconductor

• CONFIG_FB_MXC_SYNC_PANEL – This is the configuration option for the synchronous LCD

frame buffer device. This option is dependent on CONFIG_FB_MXC option. In the menuconfig

this option is available under

Device Drivers > Graphics support > Synchronous Panel Framebuffer.

By default, this option is Y.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 10-1

Chapter 10
OmniVision Camera (OV2640) Driver

The OV2640FSL is a small on-board camera sensor and lens module with low power consumption. The

camera driver is located under the Linux V4L2 architecture. and it implements the V4L2 capture

interfaces. Applications cannot use the camera driver directly. Instead, the applications use the V4L2

capture driver to open and close the camera for preview and image capture, controlling the camera, getting

images from camera, and starting the camera preview.

10.1 Hardware Operation

The OV2640FSL uses the serial camera control bus (SCCB) interface to control the sensor operation. It

works as an I2C client, and CSI interface of IPU works as the I2C master, which uses I2C bus to control

camera operation.

The CSI interface of IPU also provides the sensor clock to the camera when the camera is working so that

the IPU can receive image data from camera through the CSI interface. The pixel clock, horizontal

reference output and vertical synchronization output generated from camera are used by the CSI interface

to get image data from camera.

Refer to OV2640 and OV2640FSL datasheet to get more information on the sensor. Refer to the i.MX25

Multimedia Applications Processor Reference Manual for more information on CSI and IPU (IPU is not

supported on all platforms).

10.2 Software Operation

The camera driver implements the V4L2 capture interface and applications use the V4L2 capture interface

to operate the camera. The supported operations of V4L2 capture are:

• Preview

• Capture still mode

The supported picture formats are:

• RGB565

• YUV422P

• YUV420

10.3 Source Code Structure

Table 10-1 shows the camera driver source files available in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

OmniVision Camera (OV2640) Driver

i.MX25 PDK Linux Reference Manual

10-2 Freescale Semiconductor

10.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera

> MXC Camera/V4L2 PRP Features support > OmniVision ov2640 camera support.

Table 10-1. Camera Driver Files

File Description

ov2640.c Camera driver implementation

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 11-1

Chapter 11
MXC Camera Sensor Interface (CSI) Driver

The CSI driver enables the i.MX device to directly connect to external CMOS sensors and CCIR656 video

sources. The CSI and sensor drivers are implemented in the Video for Linux Two (V4L2) driver

framework. It consists of the image capture driver and the video output driver.

11.1 Hardware Operation

The CSI driver configures and operates with the hardware registers for the CSI module. It provides:

• Configurable interface logic to support most commonly available CMOS sensors.

• Full control of 8-bit/pixel, 10-bit/pixel or 16-bit/pixel data format to 32-bit receive FIFO packing.

• 128×32 FIFO to store received image pixel data.

• Receive FIFO overrun protection mechanism.

• Embedded DMA controllers to transfer data from receive FIFO or statistic FIFO through AHB bus.

• Support for double bufferring two frames in the external memory.

• Single interrupt source to interrupt controller from maskable interrupt sources: Start of Frame, End

of Frame and so on.

• Configurable master clock frequency output to sensor.

For more information, see the CSI chapter in the i.MX25 Multimedia Applications Processor Reference

Manual.

11.2 Software Operation

11.2.1 CSI Software Operation

The CSI driver initializes the CSI interface. Applications use the V4L2 interface to operate the CSI

interface.

11.2.2 Video for Linux 2 (V4L2) APIs

Video for Linux Two (V4L2) is a Linux standard. The API specification is available at

http://v4l2spec.bytesex.org/spec/.

The V4L2 capture device includes two interfaces: the capture interface and the overlay interface. The

capture and overlay interface use the CSI embeded DMA controller to implement the function. The V4L2

MXC Camera Sensor Interface (CSI) Driver

i.MX25 PDK Linux Reference Manual

11-2 Freescale Semiconductor

driver implements the standard V4L2 API for capture and overlay devices. The following is the data flow

of capture and overlay.

1. The camera sends the data to the CSI receive FIFO, through the 8-bit/10-bit data port.

2. The embeded DMA controllers transfer data from the receive FIFO to external memory through

the AHB bus.

3. The data is save to user space memory or output to the frame buffer directly.

11.2.2.1 V4L2 Capture Device

V4L2 capture support can be selected during kernel configuration. The driver for this device is in the

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/csi_v4l2_capture.c file.

The memory map stream API is supported. Supported V4L2 IOCTLs include the following:

• VIDIOC_QUERYCAP

• VIDIOC_G_FMT

• VIDIOC_S_FMT

• VIDIOC_OVERLAY

• VIDIOC_G_FBUF

• VIDIOC_S_FBUF

• VIDIOC_S_PARM

• VIDIOC_G_PARM

• VIDIOC_QUERYBUF

• VIDIOC_REQBUFS

• VIDIOC_DQBUF

• VIDIOC_QBUF

• VIDIOC_STREAMON

• VIDIOC_STREAMOFF

11.2.2.2 Use of the V4L2 Capture APIs

The following are some sample use cases for the V4L2 capture APIs:

1. Sets the capture pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation.

3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver creates a chain

of buffers (currently the maximum number of frames is 3).

4. Memory maps the buffer to its user space.

5. Executes the IOCTL VIDIOC_DQBUF.

6. Passes the data that requires post-processing to the buffer.

7. Queues the buffer using the IOCTL command VIDIOC_QBUF.

8. Starts the stream by executing IOCTL VIDIOC_STREAMON.

• VIDIOC_STREAMON and VIDIOC_OVERLAY cannot be enabled simultaneously.

11.3 Source Code Structure

Table 11-1 shows the CSI sensor and V4L2 driver source files available in the following directory:

MXC Camera Sensor Interface (CSI) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 11-3

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture

11.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• VIDEO_MXC_CSI_CAMERA – Includes support for the CSI Unit and V4L2 capture device. In

menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video For Linux > Video Capture Adapters > MXC

Camera/V4L2 PRP Features support

By default, this option is M.

• CONFIG_MXC_CAMERA_OV2640 – Option for the OV2640 sensor driver. In menuconfig, this

option is available under:

Device Drivers > Multimedia devices > Video For Linux > Video Capture Adapters > MXC

Camera/V4L2 PRP Features support

By default, this option is M.

11.5 Programming Interface

For more information, see the V4L2 Specification and the API Documents for the programming interface.

Table 11-1. V4L2 and SI Driver Files

File Description

fsl_csi.c CSI driver source file

fsl_csi.h CSI driver header file

csi_v4l2_capture.c V4L2 capture device driver source file

mxc_v4l2_capture.h V4L2 capture device driver header file

ov2640.c Camera driver source file

MXC Camera Sensor Interface (CSI) Driver

i.MX25 PDK Linux Reference Manual

11-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

This section describes the ASoC driver architecture and implementation. The ASoC architecture is

imported to provide a better solution for ALSA kernel drivers. ASoC aims to divide the ALSA kernel

driver into machine, platform (CPU), and audio codec components. Any modifications to one component

do not impact another components. The machine layer registers the platform and the audio codec device,

and sets up the connection between the platform and the audio codec according to the link interface, which

is supported both by the platform and the audio codec. More detailed information about ASoC can be

found at http://www.alsa-project.org/main/index.php/ASoC.

Figure 12-1. ALSA SoC Software Architecture

The ALSA SoC driver has the following components as seen in Figure 12-1:

• Machine driver—handles any machine specific controls and audio events, such as turning on an

external amp at the beginning of playback.

• Platform driver—contains the audio DMA engine and audio interface drivers (for example, I2S,

AC97, PCM) for that platform.

• Codec driver—platform independent and contains audio controls, audio interface capabilities, the

codec DAPM definition, and codec I/O functions.

12.1 SoC Sound Card

Currently the stereo codec (sgtl5000), 5.1 codec (wm8580), 4-channel ADC codec (ak5702), built-in

ADC/DAC codec and Bluetooth codec drivers are implemented using SoC architecture. The four sound

card drivers are built in independently. The stereo sound card supports stereo playback and mono capture.

The 5.1 sound card supports up to six channels of audio playback. The 4-channel sound card supports up

to four channels of audio record. The Bluetooth sound card supports Bluetooth PCM playback and record

with Bluetooth devices. The built-in ADC/DAC codec supports stereo playback and record.

Machine (board)

Platform

(cpu)

Codec DAI link

S
o

c-co
re.c Cpu

DA

I

Codec

DAI I

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

12-2 Freescale Semiconductor

NOTE

The 5.1 codec is only supported on the i.MX35 and i.MX25 platform.

The 4-channel ADC codec is only supported on the i.MX25 platform.

12.1.1 Stereo Codec Features

The stereo codec supports the following features:

• Sample rates for playback and capture are 32 KHz, 44.1 KHz, 48 KHz, and 96 KHz

• Channels:

— Playback: supports two channels. (stereo)

— Capture: supports two channels. (Only one channel has valid voice data due to hardware

connection)

• Audio formats:

— Playback:

– SNDRV_PCM_FMTBIT_S16_LE

– SNDRV_PCM_FMTBIT_S20_3LE

– SNDRV_PCM_FMTBIT_S24_LE

— Capture:

– SNDRV_PCM_FMTBIT_S16_LE

– SNDRV_PCM_FMTBIT_S20_3LE

– SNDRV_PCM_FMTBIT_S24_LE

12.1.2 5.1 Codec Features

• Supported sample rates for playback are:

8 KHz, 11.025 KHz, 16 KHz, 22.05 KHz, 32 KHz, 44.1 KHz,

48 KHz, 64 KHz, 88.2 KHz, 96 KHz, 176.4 KHz, and 192 KHz

• Supported channels for playback: 1-6 channels

• Supported audio formats for playback:

— SNDRV_PCM_FMTBIT_S16_LE

— SNDRV_PCM_FMTBIT_S24_LE

12.1.3 4-Channel ADC Codec Features

• Supported sample rates for record are:

8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24kHz, 32 kHz, 44.1 kHz, 48 kHz

• Supported channels for record: 1-4 channels

• Supported audio formats are:

SNDRV_PCM_FMTBIT_S16_LE

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 12-3

12.1.4 Sound Card Information

The registered sound card information can be listed as follows by the command aplay -l and arecord -l.

root@freescale /$ aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: imx3stack_1 [imx-3stack], device 0: wm8580 WM8580 PAIFRX-PCM-0 []

 Subdevices: 1/1

Subdevice #0: subdevice #0

root@freescale /$ arecord -l

**** List of CAPTURE Hardware Devices ****

card 0: imx3stack [imx-3stack], device 0: SGTL5000 SGTL5000-PCM-0 []

 Subdevices: 1/1

Subdevice #0: subdevice #0

12.2 ASoC Driver Source Architecture

As illustrated in Figure 12-2, imx-pcm.c is shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC

driver and the Bluetooth codec driver. This file is responsible for pre-allocating DMA buffers and

managing DMA channels.

The stereo codec is connected to the CPU through the SSI interface. imx-ssi.c registers the CPU DAI

driver for the stereo ALSA SoC and configures the on-chip SSI interface. sgtl5000.c registers the stereo

codec and hifi DAI drivers. The direct hardware operations on the stereo codec are in sgtl5000.c.

imx-3stack-sgtl5000.c is the machine layer code which creates the driver device and registers the stereo

sound card.

The 5.1 codec is connected to the CPU through the ESAI interface. imx-esai registers the CPU DAI driver

for the 5.1 ALSA SoC and configures the on-chip ESAI interface. wm8580.c is the codec driver that

operates on the 5.1 codec directly, as well as on the ESAI configuration on the codec side. The machine

layer code is implemented in imx-3stack-wm8580.c to register the sound card and setup the link between

the CPU and the codec.

The 4-channel ADC is connected to the CPU through the ESAI interface. imx-esai registers the CPU DAI

driver for the 4-channel ALSA SoC and configures the on-chip ESAI interface. ak5702.c is the codec

driver that operates on the 4-channel ADC directly, as well as on the ESAI configuration on the codec side.

The machine layer code is implemented in imx-3stack-ak5702.c to register the sound card and setup the

link between the cpu and the codec.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

12-4 Freescale Semiconductor

Figure 12-2. ALSA SoC Source File Relationship

Table 12-1 shows the stereo codec SoC driver source files. These files are under the

<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 12-1. Stereo Codec SoC Driver Files

File Description

imx/imx-3stack-sgtl5000.c Machine layer for stereo codec ALSA SoC

imx/imx-pcm.c Platform layer for stereo codec ALSA SoC

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 12-5

Table 12-2 shows the 5.1 codec SoC driver source files. These files are also under the

<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 12-3 shows the 4-channel ADC SoC driver source files. These files are also under the

<ltib_dir>/rpm/BUILD/linux/sound/soc directory.

imx/imx-pcm.h Header file for PCM driver and AUDMUX register definitions

imx/imx-ssi.c Platform DAI link for stereo codec ALSA SoC

imx/imx-ssi.h Header file for platform DAI link and SSI register definitions

imx/imx-ac97.c AC97 driver for i.MX chips

codecs/sgtl5000.c Codec layer for stereo codec ALSA SoC

codecs/sgtl5000.h Header file for stereo codec driver

Table 12-2. 5.1 Codec SoC Driver Files

File Description

imx/imx-3stack-wm8580.c Machine layer for 5.1 ALSA SoC

imx/imx-pcm.c Platform layer for 5.1 codec ALSA SoC

imx/imx-pcm.h Header file for pcm driver

imx/imx-esai.c Platform DAI link for 5.1 codec ALSA SoC

imx/imx-esai.h Header file for platform DAI link

codecs/wm8580.c Codec layer for 5.1 codec ALSA SoC

codecs/wm8580.h Header file for 5.1 codec driver

Table 12-3. 4 channel ADC codec ASoC Driver Source File

File Description

imx/imx-3stack-ak5702.c Machine layer for 4-channel ADC ALSA SoC

imx/imx-pcm.c Platform layer for 4-channel ADC ALSA SoC

imx/imx-pcm.h Header file for pcm driver

imx/imx-esai.c Platform DAI link for 4-channel ADC ALSA SoC

imx/imx-esai.h Header file for platform DAI link

codecs/ak5702.c codec layer for 4-channel ADC ALSA SoC

codecs/ak5702.h Header file for 4-channel ADC driver

Table 12-1. Stereo Codec SoC Driver Files (continued)

File Description

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

12-6 Freescale Semiconductor

12.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• SoC Audio support for i.MX SGTL5000. In menuconfig, this option is available under

Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC

audio support > SoC Audio for the Freescale i.MX CPU

• CONFIG_SND_MXC_SOC_IRAM: This config is used to allow audio DMA playback buffers in

IRAM. In menuconfig, this option is available under

Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC

audio support > Locate Audio DMA playback buffers in IRAM

• Device drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC

audio support > SoC Audio for the Freescale i.MX CPU, SoC Audio support for IMX - WM8580

• Device drivers-> Sound card support-> Advanced Linux Sound Architecture-> ALSA for SoC

audio support > SoC Audio for the Freescale i.MX CPU, SoC Audio support for IMX - AK5702

12.4 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

12.4.1 Stereo Audio Codec

The stereo audio codec is controlled by the I2C interface. The audio data is transferred from the user data

buffer to/from the SSI FIFO through the DMA channel. The DMA channel is selected according to the

audio sample bits. AUDMUX is used to set up the path between the SSI port and the output port which

connects with the codec. The codec works in master mode and provides the BCLK and LRCLK. The

BCLK and LRCLK can be configured according to the audio sample rate.

The SGTL5000 ASoC codec driver exports the audio record/playback/mixer APIs according to the ASoC

architecture. The ALSA related audio function and the FM loopback function cannot be performed

simultaneously.

The codec driver is generic and hardware independent code that configures the codec to provide audio

capture and playback. It does not contains code that is specific to the target platform or machine. The codec

driver handles:

• Codec DAI and PCM configuration

• Codec control I/O—using I2C

• Mixers and audio controls

• Codec audio operations

• DAC Digital mute control

The SGTL5000 codec is registered as an I2C client when the module initializes. The APIs are exported to

the upper layer by the structure snd_soc_dai_ops. The io_probe routine initializes the codec hardware to

the desired state.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 12-7

Headphone insertion/removal can be detected through a MCU interrupt signal. The driver reports the event

to user space through sysfs.

12.4.2 5.1 Audio Codec

The 5.1 audio codec is controlled by the SPI interface. The audio data is transferred from the user data

buffer to the ESAI FIFO through a DMA channel. The DMA channel is selected according to the audio

sample bits. The 5.1 codec works in master mode and the codec provides the BCLK and LRCLK. The

BCLK and LRCLK can be configured according to the audio sample rate. The ESAI supports up to three

TX ports, and each port transmits two channels of data in I2S format. The TX port is enabled or disabled

according to the audio channel number.

12.4.3 4-Channel ADC Codec

The 4-channel ADC is controlled by the I2C interface. The audio data is transferred from the user data

buffer to the ESAI fifo through a DMA channel. The DMA channel is selected according to audio sample

bits. The 4-channel ADC works in master mode as the codec provides the BCLK and LRCLK. The BCLK

and LRCLK can be configured according to the audio sample rate. The ESAI supports up to 4 receivers.

On the i.MX25 3-stack board, two receivers are used, each receives two channels of data in the I2S format.

Both receivers are enabled for 4-channel record.

12.5 Software Operation

The following sections describe the hardware operation of the ASoC driver.

12.5.1 Sound Card Registration

The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver and their operation functions

2. The platform driver registers the PCM driver, CPU DAI driver and their operation functions,

pre-allocates buffers for PCM components and sets playback and capture operations as applicable

3. The machine layer creates the DAI link between codec and CPU registers the sound card and PCM

devices

12.5.2 Device Open

The ALSA driver:

• Allocates a free substream for the operation to be performed

• Opens the low level hardware device

• Assigns the hardware capabilities to ALSA runtime information. (the runtime structure contains all

the hardware, DMA, and software capabilities of an opened substream)

• Configures DMA read or write channel for operation

• Configures CPU DAI and codec DAI interface.

Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX25 PDK Linux Reference Manual

12-8 Freescale Semiconductor

• Configures codec hardware

• Triggers the transfer

After triggering for the first time, the subsequent DMA reads and writes are configured by the DMA

callback.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 13-1

Chapter 13
NAND Flash Memory Technology Device (MTD) Driver

13.1 Overview

The NAND Flash MTD driver is for the NAND Flash Controller (NFC) on the i.MX series processor. For

the NAND MTD driver to work, only the hardware specific layer has to be implemented. The rest of the

functionality, such as Flash read/write/erase, is automatically handled by the generic layer provided by the

Linux MTD subsystem for NAND devices.

13.1.1 Hardware Operation

NAND Flash is a non-volatile storage device used for embedded systems. It does not support random

access of memory as in the case of RAM or NOR Flash. Reading or writing to NAND Flash has to be

through the NFC in the i.MX processors. It uses a multiplexed I/O interface with some additional control

pins. It is a sequential access device appropriate for mass storage applications. Code stored on NAND

Flash cannot be executed from the NAND Flash. It must be loaded into RAM memory and executed from

there.

The NFC in the i.MX processors implements the interface to standard NAND Flash devices. It provides

access to both 8-bit and 16-bit NAND Flash. The NAND Flash Control block of the NFC generates all the

control signals that control the NAND Flash. The NFC hardware versions vary across i.MX platforms.

13.1.2 Software Operation

The Linux MTD covers all memory devices, such as RAM, ROM, and different kinds of NOR and NAND

Flash devices. The MTD subsystem provides a unified and uniform access to the various memory devices.

There are three layers of NAND MTD drivers:

• MTD driver

• Generic NAND driver

• Hardware specific driver

The MTD driver provides a mount point for the file system. It can support various file systems, such as

YAFFS2, UBIFS, CRAMFS and JFFS2.

The hardware specific driver interfaces with the integrated NFC on the i.MX processors. It implements the

lowest level operations on the external NAND Flash chip, such as read and write. It defines the static

partitions and registers it to the kernel. This partition information is used by the upper filesystem layer. It

initializes the nand_chip structure to be used by the generic layer.

NAND Flash Memory Technology Device (MTD) Driver

i.MX25 PDK Linux Reference Manual

13-2 Freescale Semiconductor

The generic layer provides all functions, which are necessary to identify, read, write and erase NAND

Flash. It supports bad block management, because blocks in a NAND Flash are not guaranteed to be good.

The upper layer of the file system uses this feature of bad block management to manage the data on the

NAND Flash. NAND MTD driver is part of the kernel image. For detailed information on the NAND

MTD driver architecture and the NAND API documentation refer to http://www.linux-mtd.infradead.org/.

13.2 Requirements

This NAND Flash MTD driver implementation meets the following requirements:

• Provides necessary hardware-specific information to the generic layer of the NAND MTD driver

• Provides software Error Correction Code (ECC) support

• Supports both 16-bit and 8-bit NAND Flash

• Conforms to the Linux coding standard

13.3 Source Code Structure

Table 13-1 shows the source files available for the NAND MTD driver. These files are under the

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/nand directory.

13.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

The following options are available under Device Driver > Memory Technology Device (MTD) support >

NAND Device Support > MXC NAND Support:

• CONFIG_MTD_NAND_MXC_V2 – This is the configuration option for the NAND MTD driver

for the i.MX processors having NFC hardware version 2.

13.5 Programming Interface

The generic NAND driver nand_base.c provides all functions that are necessary to identify, read, write,

and erase NAND Flash. The hardware-dependent functions are provided by the hardware driver

mxc_nd.c/mxc_nd2.c depending on the NFC version. It mainly provides the hardware access information

and functions for the generic NAND driver. Refer to the API documents for the programming interface.

Table 13-1. NAND MTD Driver Files

File Description

mxc_nd2.c Hardware-specific layer for NAND MTD driver for NFC version 2 and above

mxc_nd2.h Register declaration for NFC version 2 and above

http://www.linux-mtd.infradead.org/

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 14-1

Chapter 14
Low-Level Keypad Driver

The low-level keypad driver interfaces with the keypad port hardware (KPP) in the i.MX device. The

keypad driver is implemented as a standard Linux 2.6 keyboard driver, modified for the i.MX device.

The keypad driver supports the following features:

• Interrupt-driven scan code generation for keypress and release on a keypad matrix

• Keypad as a standard input device

The keypad driver can be accessed through the /dev/input/event0 device file. The numbering of the event

node depends on whether the other input devices are loaded or not.

14.1 Hardware Operation

The KPP supports a keypad matrix with as many as eight rows and eight columns. The i.MX25 3-Stack

keypad has 16 keys in a 4×4 array. Any pins that are not being used for the keypad are available as general

purpose input/output pins.

The keypad port interfaces with a keypad matrix. On a keypress, the intersecting row and column lines are

shorted together. The keypad has two mode of operation, Run mode and Low Power mode. In both modes

the KPP detects any keypress event, but in low power mode the keypress event is detected even when the

MCU clock is not running.

14.2 Software Operation

The keypad driver generates scan-codes for key press and release events on the keypad matrix. The

operation is as follows:

1. When a key is pressed on the keypad, the keypad interrupt handler is called

2. In the keypad interrupt handler, the mxc_kpp_scan_matrix function is called to scan for key-presses

and releases

3. The keypad scan timer function is called every 10 ms to scan for any keypress or release on the

keypad

4. The scan-code for the keypress or release is generated by the mxc_kpp_scan_matrix function

5. The generated scancodes are converted to input device keycodes using the mxckpd_keycodes array

Low-Level Keypad Driver

i.MX25 PDK Linux Reference Manual

14-2 Freescale Semiconductor

Every keypress or release follows the debounce state machine shown in Figure 14-1. The

mxc_kpp_scan_matrix function is called for every keypress and release interrupt.

Figure 14-1. Keypad Driver State Machine

The keypad driver registers the input device structure within the __init function by calling

input_register_device(&mxckbd_dev).

The driver sets input bit fields and conveys all the events that can be generated by this input device to other

parts of the input systems. The keypad driver can generate only EV_KEY type events. This can be indicated

using __set_bit(EV_KEY, mxckbd_dev.evbit).

The keypress key codes are reported by calling input_event(). The reported key press/release events are

passed to the event interface (/dev/input/event0). This event interface is created when the evdev.c

executable, located in <ltib_dir>/rpm/BUILD/linux/drivers/input, is compiled. The event interface is a

generic input event interface. It passes the events generated in the kernel to the user space with timestamps.

Blocking reads, non-blocking reads and select() can be done on /dev/input/event0.

The structure of input_event is as follows:

struct input_event {

struct timeval time;

unsigned short type;

unsigned short code;

unsigned int value;

};

Low-Level Keypad Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 14-3

where:

• time is the timestamp at which the key event occurred

• code is the i.MX keycode for keypress or release

• value equals 0 for key release and 1 for keypress

The functions mentioned in this section are implemented as a low-level interface between the Linux OS

and the KPP hardware. They cannot be called from other drivers or from a user application.

The keypress and release scancodes can be derived using the following formula,

scancode (press) = (row × 8) + col;

scancode (release) = (row × 8) + col + 128;

Refer to Table 14-3 for map codes and scan codes.

14.3 Reassigning Keycodes

The keypad driver takes advantage of the input subsystem’s ability to remap key codes. A user space

application can use the EVIOCGKEYCODE and EVIOCSKEYCODE IOCTLs on the device node (for example

/dev/input/event0) to get and set key codes. Applications such as keyfuzz and input-kbd (from the

input-utils package) use these IOCTLs which are handled by the input subsystem. See the kernel

Documentation/input/input-programming.txt for details on remapping codes.

14.4 Driver Features

The keypad driver supports the following features:

• Returns the input keycode for every key that is pressed or released

• Interrupt driver for keypress or release

• Blocking and non-blocking reads

• Implemented as a standard input device

14.5 Source Code Structure

Table 14-1 shows the keypad driver source files that are available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/input/keyboard

<ltib_dir>/rpm/BUILD/linux/include/linux

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25

Table 14-1. Keypad Driver Files

File Description

mxc_keyb.c Low-level driver implementation

mxc_keyb.h Driver structures, control register address definitions

nput.h Generic Linux keycode definitions

arch/arm/mach-mx25/mx25_

3stack.c, , , ,

Contains the platform-specific keymapping keycode array

Low-Level Keypad Driver

i.MX25 PDK Linux Reference Manual

14-4 Freescale Semiconductor

14.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MXC_KEYBOARD—MXC Keypad driver used for the MXC KPP. In menuconfig this

option is available under

Device Drivers > Input device support > Keyboards > MXC Keypad Driver.

• CONFIG_INPUT_EVDEV—Enabling this option creates the device node /dev/input/event0. In

menuconfig, this option is available under

Device Drivers > Input device support > Event interface.

The following source code configuration options are available for this module:

• Matrix config—The keypad matrix can be configured for up to eight rows and eight columns. The

keypad matrix configuration can be done by changing the rowmax and colmax members in the

keypad_plat_data structure in the platform specific file (see Table 14-1).

• Debounce delay—The user can configure the debounce delay by changing the variable KScanRate

defined in mxc_keyb.c

14.7 Programming Interface

User space applications can get information about the keypad driver through the standard proc and sysfs

files such as /proc/bus/input/devices and the files under /sys/class/input/event0/.

14.8 Interrupt Requirements

Table 14-2 lists the keypad interrupt timer requirements.
.

14.9 Device-Specific Information

Table 14-3 shows key connections, key scan codes, and key map codes of the keys on the keypad for a

specific platform.

Table 14-2. Keypad Interrupt Timer Requirements

Parameter Equation Typical Worst-Case

Key scanning interrupt (X number of instruction/MHz) × 64 (X/MHz) × 64 (X/MHz) × 64

Alarm for key polling None 10 ms 10 ms

Table 14-3. Key Connections for Keypad

Key Row Column Scancode Linux Key Code Platform

SW40 0 0 0 KEY_UP i.MX25

SW36 0 1 1 KEY_DOWN i.MX25

SW34 0 2 2 KEY_VOLUMEDOWN i.MX25

Low-Level Keypad Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 14-5

Figure 14-2 shows the button switch placement on the bottom of the i.MX25 Personality board.

Figure 14-2. Keypad Button Placement

SW32 0 3 3 KEY_HOME i.MX25

SW39 1 0 4 KEY_RIGHT i.MX25

SW31 1 1 5 KEY_LEFT i.MX25

SW18 1 2 6 KEY_ENTER i.MX25

SW17 1 3 7 KEY_VOLUMEUP i.MX25

SW38 2 0 8 KEY_F6 i.MX25

SW29 2 1 9 KEY_F8 i.MX25

SW14 2 2 10 KEY_F9 i.MX25

SW13 2 3 11 KEY_F10 i.MX25

SW37 3 0 12 KEY_F1 i.MX25

SW30 3 1 13 KEY_F2 i.MX25

SW10 3 2 14 KEY_F3 i.MX25

SW9 3 3 15 KEY_POWER i.MX25

Table 14-3. Key Connections for Keypad (continued)

Key Row Column Scancode Linux Key Code Platform

Low-Level Keypad Driver

i.MX25 PDK Linux Reference Manual

14-6 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Touch Screen and ADC Drivers

15.1 Driver Overview

The Touch Screen controller and the associated Analog to Digital Converter (ADC) together provide a

resistive touch screen solution for low cost PDAs, cell phones, ePOS devices, and multi-media players.

The module implements simultaneous touch screen control and auxiliary ADC operation for temperature,

voltage and other measurement functions. It includes the driver switches for controlling the screen and an

input multiplexer to allow one of four additional inputs to be supported. The ADC reference voltage can

be configurable in differential and single ended modes. The controller supports pen touching screen

detection for automatically interrupting the processor to measure only as needed.

15.2 Hardware Operation

The touch screen controller includes the following features:

• Supports 12-bit, 125 KHz ADC

• Supports ratiometric measurements drivers configurable in single ended or differential

(ratiometric) topologies

• Supports either built-in voltage reference generator or external reference voltage

• Supports 4-wire and 5-wire touch screens with five inputs channels for touch screen purpose

measurement (x+, x–, y+, y–, w)

• Supports general purpose measurements (for example temperature, voltage) with three input

channels (aux0, aux1, aux2)

• Two independent measurement queues (TCQ for touch screen purpose, GCQ for general purpose

measurement)

• Includes two independent FIFOs, each with 16 entries × 16 bits, for storing TCQ and GCQ

conversion results

• Supports a touch detection interrupt feature to awaken the system from sleep mode

• Supports three power modes: always-off mode, power-saving mode, always-on mode

• Configurable pen down de-bounce logic

• Configurable LCD noise reducing logic

• Configurable settling time before each measurement

• Configurable multi-sample for each measurement

Touch Screen and ADC Drivers

i.MX25 PDK Linux Reference Manual

15-2 Freescale Semiconductor

15.3 Software Operation

The ADC driver implements a complete IOCTL interface. Applications use the IOCTL interface to operate

the ADC. The supported operations of the IOCTL interface are init, deinit, conversion with single channel,

and conversion with multiple channels. The touch screen driver is designed as a Linux standard input

device. It uses some functions provided by the ADC driver to get the samples of the X and Y values, and

then transfers these values to the Linux input subsystem.

15.4 Source Code Structure

Table 15-1 shows the ADC driver source files available in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/adc.
/

Table 15-2 shows the touch screen driver source files found in the directory

<ltib_dir>/rpm/BUILD/linux/drivers/input/touchscreen.
/

15.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• IMX_ADC—Provided for the ADC driver. In the menuconfig, this option is found under

Device Driver > MXC support drivers > i.MX ADC support > i.MX ADC.

• TOUCHSCREEN_IMX_ADC—Provided for the Touch screen driver. This option depends on the

IMX_ADC configuration option. In the menuconfig, this option is found under

Device Driver > Input device support > Touchscreens > Freescale i.MX ADC touchscreen input

driver.

15.6 Programming Interface (Exported API)

The ADC driver, imx_adc_ts.c, provides a complete IOCTL programming interface to control the ADC

hardware. The application interface to the ADC driver is the standard POSIX device interface (for

example, open, close IOCTL). The application interface to the touch screen driver is the standard Linux

input device interface.

Table 15-1. ADC Driver Files

File Description

imx_adc.c Implementation file

imx_adc_reg.h Header file

Table 15-2. Touch Screen Driver Files

File Description

imx_adc_ts.c Touch screen driver implementation file

Touch Screen and ADC Drivers

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 15-3

15.7 Interrupt Requirements

The touch screen module generates interrupts when the pen is down. The ADC driver does not generate

interrupts.

Touch Screen and ADC Drivers

i.MX25 PDK Linux Reference Manual

15-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 16-1

Chapter 16
SMSC LAN9217 Ethernet Driver

The SMSC LAN9217 Ethernet driver interfaces SMSC LAN9217-specific functions with the standard

Linux kernel network module. The LAN9217 is a full-featured, single-chip 10/100 Ethernet controller

designed for embedded applications where performance, flexibility, ease of integration, and system cost

control are required. The LAN9217 has been specifically designed to provide the highest performance

possible for any 16-bit application. The LAN9217 is fully IEEE 802.3 10BASE-T and 802.3

100BASE-TX compliant, and supports HP Auto-MDIX.

The SMSC LAN9217 Ethernet driver has the following features:

• Efficient PacketPage architecture can operate in I/O and memory space, and as a DMA slave

• Supports full duplex operation

• Supports on-chip RAM buffers for transmission and reception of frames

• Supports programmable transmit features like automatic retransmission on collision and automatic

CRC generation

• EEPROM support for configuration

• Supports MAC address setting

• Supports obtaining statistics from the device, such as transmit collisions

This network adapter can be accessed through the ifconfig command with interface name (normally eth0;

however, in the case of a FEC driver enabled it is eth1). The probe function of this driver is declared in

<ltib_dir>/rpm/BUILD/linux/drivers/net/Space.c to probe for the device and to initialize it during boot.

16.1 Hardware Operation

The SMSC LAN9217 Ethernet controller interfaces the system to the LAN network. A brief overview of

the device functionality is provided here. For details, see LAN9217 Ethernet Controller Data Sheet.

The LAN9217 includes an integrated Ethernet MAC and PHY with a high-performance SRAM-like slave

interface. The simple, yet highly functional host bus interface provides glue-less connection to most

common 16-bit microprocessors and microcontrollers as well as 32-bit microprocessors with a 16-bit

external bus. The LAN9217 includes large transmit and receive data FIFOs to accommodate high latency

applications. In addition, the LAN9217 memory buffer architecture allows the most efficient use of

memory resources by optimizing packet granularity.

16.2 Software Operation

The SMSC LAN9217 Ethernet Driver has the functions:

• Module initialization – Initializes the module with the device specific structure

SMSC LAN9217 Ethernet Driver

i.MX25 PDK Linux Reference Manual

16-2 Freescale Semiconductor

• Driver entry points – Provides standard entry points for transmission

• Interrupt servicing routine

• Miscellaneous routines – Setting and programming MAC address

16.3 Requirements

The Ethernet driver meets the following requirements:

• Provides all the entry points to interface with the Linux kernel 2.6 net module

• Implements the default data configuration function to set the MAC address and interface media

used in case of EEPROM failure

• Follows Linux kernel coding style. This is included in Linux distributions as the file

Documentation/Coding Style

16.4 Source Code Structure

 Table 16-1 shows the source files available in the

<ltib_dir>/rpm/BUILD/linux/drivers/net directory:
.

16.5 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• CONFIG_SMSC911X – Provided for this module. This option is available under

Device Drivers > Network Device Support > Ethernet (10 or 100 Mbit) > SMSC

LAN911x/LAN921x families embedded ethernet support.

Table 16-1. Ethernet Driver Files

File Description

smsc911x.h Header file defining registers

smsc911x.c Linux driver for Ethernet LAN controller

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Fast Ethernet Controller (FEC) Driver

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet CSMA/CD media

access control and channel interface functions. The FEC requires an external interface adapter and

transceiver function to complete the interface to the Ethernet media. It supports half or full-duplex

operation on 10 Mbps or 100 Mbps related Ethernet networks.

The FEC driver supports the following features:

• Full duplex operation

• Link status change detect

• Auto-negotiation (determines the network speed and full or half-duplex operation)

• Transmit features such as automatic retransmission on collision and CRC generation

• Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name eth0. The driver

auto-probes the external adaptor (PHY device).

17.1 Hardware Operation

The FEC is an Ethernet controller that interfaces the system to the LAN network. The FEC supports

different standard MAC-PHY (physical) interfaces for connection to an external Ethernet transceiver. The

FEC supports the 10/100 Mbps MII and the 10 Mbps-only 7-wire serial network interface (SNI), which

uses a subset of the MII pins. In addition, the FEC supports 10/100 Mbps RMII.

A brief overview of the device functionality is provided here. For details see the FEC chapter of the i.MX25

Multimedia Applications Processor Reference Manual.

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by the EMAC. SNI

and RMII modes uses a subset of the 18 signals. These signals are listed in Table 17-1.

Table 17-1. Pin Usage in MII, RMII and SNI Modes

Direction
EMAC Pin

Name
MII Usage SNI Usage RMII Usage

In/Out FEC_MDIO Management Data Input/Output General I/O Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 General output Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 General output Not Used

Out FEC_TXD[3] Data out, bit 3 General output Not Used

Fast Ethernet Controller (FEC) Driver

i.MX25 PDK Linux Reference Manual

17-2 Freescale Semiconductor

The MII management interface consists of two pins, FEC_MDIO and FEC_MDC. These pins are

configured through the GPIO settings. The FEC hardware operation can be divided in the following parts.

For detailed information consult the i.MX25 Multimedia Applications Processor Reference Manual.

• Transmission—The Ethernet transmitter is designed to work with almost no intervention from

software. Once ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet

MAC is able to transmit onto the network. When the transmit FIFO fills to the watermark (defined

by the TFWR), the MAC transmit logic asserts FEC_TX_EN and starts transmitting the preamble

(PA) sequence, the start frame delimiter (SFD), and then the frame information from the FIFO.

However, the controller defers the transmission if the network is busy (FEC_CRS asserts).

Before transmitting, the controller waits for carrier sense to become inactive, then determines if

carrier sense stays inactive for 60 bit times. If the transmission begins after waiting an additional

36 bit times (96 bit times after carrier sense originally became inactive). Both buffer (TXB) and

frame (TXF) interrupts may be generated as determined by the settings in the EIMR.

• Reception—The FEC receiver is designed to work with almost no intervention from the host and

can perform address recognition, CRC checking, short frame checking, and maximum frame

length checking. When the driver enables the FEC receiver by asserting ECR[ETHER_EN], it

immediately starts processing receive frames. When FEC_RX_DV asserts, the receiver checks for

a valid PA/SFD header. If the PA/SFD is valid, it is stripped and the frame is processed by the

receiver. If a valid PA/SFD is not found, the frame is ignored. In MII mode, the receiver checks for

at least one byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is

detected prior to the SFD byte, the frame is ignored.

After the first six bytes of the frame have been received, the FEC performs address recognition on

the frame. During reception, the Ethernet controller checks for various error conditions and once

the entire frame is written into the FIFO, a 32-bit frame status word is written into the FIFO. This

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error General output Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Collision Not Used

In FEC_TX_CLK Transmit Clock Transmit Clock Synchronous clock reference (REF_CLK)

In FEC_RX_ER Receive Error General input Receive Error

In FEC_RX_CLK Receive Clock Receive Clock Not Used

In FEC_RX_DV Receive Data Valid Receive Data Valid Not Used

In FEC_RXD[0] Data in, bit 0 Data in Data in, bit 0

In FEC_RXD[1] Data in, bit 1 General input Data in, bit 1

In FEC_RXD[2] Data in, bit 2 General input Not Used

In FEC_RXD[3] Data in, bit 3 General input Not Used

Table 17-1. Pin Usage in MII, RMII and SNI Modes (continued)

Direction
EMAC Pin

Name
MII Usage SNI Usage RMII Usage

Fast Ethernet Controller (FEC) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 17-3

status word contains the M, BC, MC, LG, NO, CR, OV, and TR status bits, and the frame length.

Receive Buffer (RXB) and Frame Interrupts (RXF) may be generated if enabled by the EIMR

register. When the receive frame is complete, the FEC sets the L bit in the RxBD, writes the other

frame status bits into the RxBD, and clears the E bit. The Ethernet controller next generates a

maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that a frame has

been received and is in memory. The Ethernet controller then waits for a new frame.

• Interrupt management—When an event occurs that sets a bit in the EIR, an interrupt is generated

if the corresponding bit in the interrupt mask register (EIMR) is also set. The bit in the EIR is

cleared if a one is written to that bit position; writing zero has no effect. This register is cleared

upon hardware reset. These interrupts can be divided into operational interrupts,

transceiver/network error interrupts, and internal error interrupts. Interrupts which may occur in

normal operation are GRA, TXF, TXB, RXF, RXB, and MII. Interrupts resulting from

errors/problems detected in the network or transceiver are HBERR, BABR, BABT, LC, and RL.

Interrupts resulting from internal errors are HBERR and UN. Some of the error interrupts are

independently counted in the MIB block counters. Software may choose to mask off these

interrupts as these errors are visible to network management through the MIB counters. For PHY

interrupt, which is interfaced through PBC (CPLD), it is optional for link status detect.

17.2 Software Operation

The FEC driver supports the following functions:

• Module initialization—Initializes the module with the device specific structure

• Driver entry points—Provides standard entry points for transmission, such as

fec_enet_start_xmit and for reception of Ethernet packets through the ISR, such as

fec_enet_interrupt

• Interrupt servicing routine—Supports events, such as TXF, RXF and MII

• Miscellaneous routines—Different routines come under this category, such as fec_timeout for

waking up network stack

17.3 Source Code Structure

 Table 17-2 shows the source files available in the

<ltib_dir>/rpm/BUILD/linux/drivers/net directory.
.

For more information about the generic Linux driver, see the

<ltib_dir>/rpm/BUILD/linux/drivers/net/fec.c source file.

Table 17-2. FEC Driver Files

File Description

fec.h Header file defining registers

fec.c Linux driver for Ethernet LAN controller

Fast Ethernet Controller (FEC) Driver

i.MX25 PDK Linux Reference Manual

17-4 Freescale Semiconductor

17.4 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

• CONFIG_FEC—Provided for this module. This option is available under

Device Drivers > Network device support > Ethernet (10 or 100Mbit) > FEC Ethernet controller.

To mount NFS-rootfs through FEC, disable the other Network config in the menuconfig if need.

17.5 Programming Interface

Table 17-2 lists the source files for the FEC driver. The following section shows the modifications that

were required to the original Ethernet driver source for porting it to the i.MX device.

17.5.1 Device-Specific Defines

Device-specific defines are added to the header file (fec.h) and they provide common board configuration

options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For example,

/*

 * Define the buffer descriptor structure.

 */

typedef struct bufdesc {

unsigned short cbd_datlen; /* Data length */

unsigned short cbd_sc; /* Control and status info */

unsigned long cbd_bufaddr; /* Buffer address */

} cbd_t;

/*

 * Define the register access structure.

 */

typedef struct fec {

unsigned long fec_reserved0;

unsigned long fec_ievent; /* Interrupt event reg */

unsigned long fec_imask; /* Interrupt mask reg */

unsigned long fec_reserved1;

unsigned long fec_r_des_active; /* Receive descriptor reg */

unsigned long fec_x_des_active; /* Transmit descriptor reg */

unsigned long fec_reserved2[3];

unsigned long fec_ecntrl; /* Ethernet control reg */

unsigned long fec_reserved3[6];

unsigned long fec_mii_data; /* MII manage frame reg */

unsigned long fec_mii_speed; /* MII speed control reg */

unsigned long fec_reserved4[7];

unsigned long fec_mib_ctrlstat; /* MIB control/status reg */

unsigned long fec_reserved5[7];

unsigned long fec_r_cntrl; /* Receive control reg */

unsigned long fec_reserved6[15];

unsigned long fec_x_cntrl; /* Transmit Control reg */

unsigned long fec_reserved7[7];

unsigned long fec_addr_low; /* Low 32bits MAC address */

unsigned long fec_addr_high; /* High 16bits MAC address */

Fast Ethernet Controller (FEC) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 17-5

unsigned long fec_opd; /* Opcode + Pause duration */

unsigned long fec_reserved8[10];

unsigned long fec_hash_table_high; /* High 32bits hash table */

unsigned long fec_hash_table_low; /* Low 32bits hash table */

unsigned long fec_grp_hash_table_high; /* High 32bits hash table */

unsigned long fec_grp_hash_table_low; /* Low 32bits hash table */

unsigned long fec_reserved9[7];

unsigned long fec_x_wmrk; /* FIFO transmit water mark */

unsigned long fec_reserved10;

unsigned long fec_r_bound; /* FIFO receive bound reg */

unsigned long fec_r_fstart; /* FIFO receive start reg */

unsigned long fec_reserved11[11];

unsigned long fec_r_des_start; /* Receive descriptor ring */

unsigned long fec_x_des_start; /* Transmit descriptor ring */

unsigned long fec_r_buff_size; /* Maximum receive buff size */

unsigned long reserved8[9]; /* Transmit descriptor ring */

unsigned long fec_fifo_ram[112]; /* FIFO RAM buffer */

} fec_t;

17.5.2 Getting a MAC Address

The following statement gets the MAC address through the IIM (IC Identification).

static void __inline__ fec_get_mac(struct net_device *dev)

If the MAC address is not programmed, the driver sets the MAC address to

“0x00:0x00:0x00:0x00:0x00:0x00:”, which is not an acceptable address. The MAC address can also be

set by the REDBOOT command fconfig.

Fast Ethernet Controller (FEC) Driver

i.MX25 PDK Linux Reference Manual

17-6 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 18-1

Chapter 18
DryIce Driver

This chapter describes the DryIce driver for Linux that provides low-level encryption key storage. The

DryIce driver controls the key management elements of the Dry Ice hardware block of the i.MX device.

The supported features include key establishment and selection as well as tamper detection. A different

driver controls the Real Time Clock of the Dry Ice block as described in Chapter 26, “Real Time Clock

(RTC) (DryIce) Driver”.

18.1 Dry Ice Driver Features and Capabilities

The Dry Ice peripheral provides the following features:

• Volatile storage for a software-programmable secret key and a hardware-generated secret key

• Key selection for a hardware encryption engine

• Non-secure RTC with alarm

• Secure RTC with alarm and monotonic counter

• Tamper detection circuits to monitor voltage, temperature and clock inputs, as well as wire mesh

and external tamper detect pins

• Locks to protect against re-provisioning or re-configuration

• Separately supplied LP domain to maintain clock, counter and tamper detection when IC is

powered down.

The Secure Hardware (SHW) driver API is a largely SHW-independent API, which integrates a number

of underlying SHW-specific drivers. The idea is that applications in both user and kernel mode interface

to the SHW API rather than the SHW-specific drivers themselves. The major exception to this is the

Security Controller (SCC) driver, which has a specific kernel-mode interface. The concept is illustrated in

Figure 18-1.

DryIce Driver

i.MX25 PDK Linux Reference Manual

18-2 Freescale Semiconductor

Figure 18-1. Software Architecture

18.2 Driver Requirements

Table 18-1 shows the Dry Ice driver features.

The DryIce driver is integrated into the FSL SHW API. Most of the function calls can be blocking or

non-blocking.

18.3 Driver Software Operation

The Dry Ice driver is integrated into the FSL SHW API, and key management functions should be accessed

at the FSL SHW API level. See the DOXYGEN documentation provided driver implementation details

(see files in Drivers > mxc > security)

Table 18-1. DryIce Features

Interface Name Description

Set Programmed Key Write a given key into the Dry Ice Programmed Key

Get Programmed Key Read out the Dry Ice Programmed Key to a given buffer

Release Programmed Key Allow a fresh Programmed Key to be set

Set Random Key Generate and load a new Dry Ice Random Key

Select Key Select the key to use in the SCC

Check Key Selection Confirm the selected key is used in the SCC

Release Key Selection Allow a fresh key selection to be made

Get Tamper Event Return Dry Ice tamper detection status and optional timestamp

User mode

Kernel

mode

User mode
interface

SCC
Drive

r

Dry Ice

FSL SHW API

User mode adaptor

FSL SHW API

RNG SCC

User mode user

Kernel mode user

RNG Driver Dry Ice Driver

Users

API

Drivers

Hardware

DryIce Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 18-3

18.4 Driver Source Code Structure

Table 18-2 shows the DryIce driver source files that are available in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/security

18.5 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, please do as follows:

• Enable DryIce driver:

Device Drivers > MXC Support Drivers > MXC Security Drivers > MXC DryIce driver

18.6 Hardware Configuration

The following jumpers must be set on the i.MX25 CPU board:

• J7[1–2]

• J7[9-10]

• J7[11–12]

All others must be left open.

Table 18-2. Dry Ice Driver Files

File Description

dryice.c Implementation of the dryice driver

dryice.h Interface definitions of the dryice driver

DryIce Driver

i.MX25 PDK Linux Reference Manual

18-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 19-1

Chapter 19
Security Drivers

The security drivers provide several APIs that facilitate access to various security features in the processor.

The secure controller (SCC) consists of two modules, a secure RAM module and a secure monitor module.

The SCC key encryption module (KEM) has a security feature for storing encrypted data in the on-chip

RAM (Red data = unencrypted data, Black data = encrypted data), with a total size of 2 Kbytes. This

module is needed in cases where data must be stored securely in external memory in encrypted form. This

module can clear the secure RAM during intrusion.

The security design covers the following modules:

• Boot Security

• SCC (Secure RAM, Secure Monitor)

• Algorithm Integrity Checker

• Security Timer

• Key Encryption Module (KEM), Zeroization module

19.1 Hardware Overview

The platform has several different security blocks. The details of the individual blocks are described in the

following sections.

19.1.1 Boot Security

During boot, the boot pins must be set to enable the processor to boot. The SCC module must be enabled

by blowing specific fuses. By booting in this manner, the integrity of the data in the Flash (kernel image)

can be assured. Any violation in the data integrity raises an alarm.

Security Drivers

i.MX25 PDK Linux Reference Manual

19-2 Freescale Semiconductor

19.1.2 Secure RAM

Figure 19-1 shows the SCC-Secure RAM and its modules. Individual modules are described in the

following sections.

Figure 19-1. Secure RAM Block Diagram

19.1.3 KEM

The KEM uses the 3DES algorithm and a 168-bit key for encryption of data. The key is programmed

during manufacture and is accessible only to the encryption module. It is not accessible on any bus external

to the secure memory module. The data in the external RAM is stored in an encrypted format. The data is

encrypted using 3DES algorithm so that it can be decoded only using the SCC module.

19.1.4 Zeroizable Memory

The memory module can be multiplexed in and out of the RAM to allow the memory controller to switch

paths according to the Secure RAM state and the host read and write accesses. When zeroing sections of

memory, only the memory controller has access. When encrypting or decrypting, only the KEM module

Security Drivers

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 19-3

has access. When the Secure RAM is in the Idle state, the host can access the memory. The Zeroize Done

signal is used to reset the encryption module and the memory controller. While the Zeroize Done signal is

low, any attempted access by the host is ignored. When the Zeroize signal is asserted, or when the Zeroize

Memory bit in the Interrupt Control register is set, not only is the Red and Black memory initialized, but

most of the registers are also reset. The Red Start, Black Start, Length, Control, Error Status, Init Vector 0,

and Init Vector 1 registers are cleared. The encryption engine is also reset. The Zeroization takes place

whenever there is a security violation like external bus intrusion. The Red and Black memory area is

usually cleared during system boot-up.

19.1.5 Security Key Interface Module

The Security Key Interface module uses a 168-bit encryption key. The physical structures for the

encryption key resides elsewhere. The Secret Key Interface contains a key mux to select between the

encryption key and the default key and test the logic to determine the validity of the encryption key. In the

Secure state the encryption key is used. In the Non-Secure state, the default key prevents unauthorized

access to SCC-encrypted data and is useful for test purposes.

19.1.6 Secure Memory Controller

The Secure Memory controller implements an internal data handler that moves data in and out of the KEM,

a memory clear function, and all of the supervisor-accessible Control and Status registers.

19.1.7 Security Monitor

The Security Monitor (SMN) is a critical component of security assurance for the platform. It determines

when and how Secure RAM resources are available to the system, and it also provides mechanisms for

verifying software algorithm integrity. This block ensures that the system is running in such a manner as

to provide protection for the sensitive data that is resident in the SCC. The Security Monitor consists of

five main sub-blocks:

• Secure State Controller

• Security Policy

• Algorithm Integrity Checker (AIC)

• Security Timer

• Debug Detector

Security Drivers

i.MX25 PDK Linux Reference Manual

19-4 Freescale Semiconductor

Figure 19-2 shows a block diagram of the SMN.

Figure 19-2. Security Monitor Block Diagram

19.1.8 Secure State Controller

The Secure State Controller, shown in Figure 19-3, is a state machine that controls the security states of

the chip.

Figure 19-3. Secure State Controller State Diagram

Security Drivers

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 19-5

19.1.9 Security Policy

The Security Policy block uses state information from the Secure State Controller along with inputs from

the Secure RAM to determine what access to the Secure RAM is allowed based on the policy table. The

policy table is available in the L3 specification document of the corresponding platform.

19.1.10 Algorithm Integrity Checker (AIC)

The Algorithm Integrity Checker (AIC) is used in conjunction with software to provide assurance that

critical software (such as a software encryption algorithm) operates correctly. It is also an integral part of

the power-up procedure as it must be used to achieve a secure state.

19.1.11 Secure Timer

The Secure Timer is a 32-bit programmable timer. It is used in conjunction with the Secure State Controller

during power-up to ensure that the transition to the Secure state happens in the appropriate amount of time.

After power-up, the timer can be used as a watchdog timer for any time-critical routines or algorithms. If

the timer is allowed to expire, it generates an error.

19.1.12 Debug Detector

The debug detector monitors the various debug and test signals and informs the secure state controller of

the status. The secure state controller receives an alert when debug modes, such as JTAG and scan are

active. The debug detector status register can be read by the host processor to determine which debug

signals are currently active. Refer to the SCC section in L3 specification document of the corresponding

platform for more information on the SCC-Debug Detector.

19.2 Software Operation

Besides the hardware security modules, there is optional, specialized software that helps to deliver

security.

19.2.1 SCC Common Software Operations

The SCC driver is only available to other kernel modules. That is, there is no node file in /dev. Thus, it is

not possible for a user-mode program to access the driver, and it is not possible for a user program to access

the device directly.

The driver does not allow storage of data in either the Red or Black memories. Any decrypted information

is returned to the user. If the user wants to use the information at a later point, the encrypted form must

again be passed to the driver, and it must be decrypted again.

The SCC encrypts and decrypts using 3DES with an internally stored key. When the SCC is in Secure

mode, it uses its secret, unique-per-chip key. When it is in Non-Secure mode, it uses a default key. This

ensures that secrets stay secret if the SCC is not in Secure mode.

Security Drivers

i.MX25 PDK Linux Reference Manual

19-6 Freescale Semiconductor

Not all functions are implemented, such as interfaces to the ASC/AIC components and the timer functions.

These and other features must be accessed through scc_read_register() and scc_write_register(), using

the #define values provided.

19.3 Driver Features

The SCC driver supports the following features:

• Checks whether the SCC fuse is blown or not (SCC Disabled/Enabled)

• Configures the Red and Black memory area addresses and number of blocks to be

encrypted/decrypted

• Loads the data to be encrypted

• Loads the data to be decrypted

• Starts the Ciphering mechanism

• Reports back the status of the KEM module

• Zeros blocks in the Red/Black memory area

• Checks for the boot type: internal or external

• Raises a software alarm

• Reports back the status of the Zeroize module

• Configures the AIC start and end algorithm sequence number

• Checks the sequence of the algorithm

• Finds the next sequence number given the current sequence number

• Configures the Security Timer

• Reports back the status of the Security Timer module

19.4 Source Code Structure

This section contains the various files that implement the Security modules. Table 19-1 lists the headers

and source files associated with the security driver.

• The C source files are available in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/security directory.

• Header files are available in the directory, <ltib_dir>/rpm/BUILD/linux/include/linux.

• The RNG driver also depends on the header files in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/security/sahara2/include.

Table 19-1. SCCDriver Files

File Description

Makefile Used to compile, link and generate the final binary image

rng/rng_driver.c Contains the core driver

rng/include/ Contains the include files

Security Drivers

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 19-7

19.5 Menu Configuration Options

The following Linux kernel configurations are provided for this module. In order to get to the security

configuration, use the command ./ltib -c when located in the <ltib dir>. In the screen select Configure

kernel, exit and a new screen appears.

• CONFIG_MXC_SECURITY_SCC—Use the SCC module. In menuconfig, it is available under

Device Drivers > MXC Support drivers > MXC Security Drivers > MXC_SCC_Driver.

• CONFIG_MXC_SECURITY_RNG—Use the RNG module core API. In menuconfig, it is

available under

Device Drivers > MXC Support drivers > MXC Security Drivers > MXC_RNG_Driver.

By default, this option is Y

• CONFIG_RNG_TEST_DRIVER—Debug the RNG module. In menuconfig, it is available under

Device Drivers > MXC Support drivers > MXC Security Drivers > MXC RNG Driver > MXC

RNG debug register

By default, this option is N for platform. This configuration should be enabled for

rnga_read_register() and rnga_write_register() functions to be defined and exported. This may

affect inserting the test driver modules, which might assume the availability of these functions.

19.5.1 Source Code Configuration Options

19.5.1.1 Board Configuration Option

To Configure the SCC, perform the following steps:

1. Install Icepick and point it to the license file

• Blow the following fuses to SCC key 0–SCC key 20. Refer to the i.MX25 Multimedia Applications

Processor Reference Manual for register details.

SCC Key0 = 0x77

SCC Key1 = 0xff

SCC Key2 = 0x3a

SCC Key3 = 0x76

SCC Key4 = 0x02

SCC Key5 = 0xb0

SCC Key6 = 0x0a

SCC Key7 = 0x0d

SCC Key8 = 0x90

SCC Key9 = 0x76

SCC Key10 = 0xf8

SCC Key11 = 0x07

SCC Key12 = 0x13

mxc_scc_driver.h Header file related to SCC module interface

mxc_scc_internals.h Header file which contains definitions needed by the SCC driver. This is intended to be

the file that contains most or all of the code or changes needed to port the driver.

Table 19-1. SCCDriver Files (continued)

File Description

Security Drivers

i.MX25 PDK Linux Reference Manual

19-8 Freescale Semiconductor

SCC Key13 = 0x9e

SCC Key14 = 0x36

SCC Key15 = 0xd3

SCC Key16 = 0xfa

SCC Key17 = 0x00

SCC key18 = 0x00

SCC Key19 = 0x9d

SCC Key20 = 0xfe

Follow the instructions below to program the SCC key using Icepick:

1. Run Icepick

2. Issue the following commands

openSocket <IP Address of ICE>

initZas

source util_fuse_<platform>.tcl

init_iim

blow_fuse bank row bit

The final command writes the desired fuse. The parameters passed to blow_fuse are bank, row and

bit. For information about parameters to be passed refer to the L3 specification for the appropriate

platform.

The following example shows how to program the value 0x77 into SCC Key0:

blow_fuse 1 1 0

blow_fuse 1 1 1

blow_fuse 1 1 2

blow_fuse 1 1 4

blow_fuse 1 1 5

blow_fuse 1 1 6

3. Issue this command:

sense_fuse bank row bit

This command reads the desired fuse value.

4. Write the following ASC Sequence in the debugger script (init_sdram.txt)

setmem /32 0x53FAD008 =0x00005CAA

setmem /32 0x53FAD00C =0x00002E55

setmem /32 0x53FAD010 =0x00002E55

5. Configure the boot mode pins SW7-1 and SW7-2 to Internal Boot.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Inter-IC (I2C) Driver

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange,

minimizing the interconnection between devices. The I2C driver for Linux has two parts:

• I2C bus driver—low level interface that is used to talk to the I2C bus

• I2C chip driver—acts as an interface between other device drivers and the I2C bus driver

20.1 I2C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user space. The standard

Linux kernel contains a core I2C module that is used by the chip driver to access the I2C bus driver to

transfer data over the I2C bus. The chip driver uses a standard kernel space API that is provided in the

Linux kernel to access the core I2C module. The standard I2C kernel functions are documented in the files

available under Documentation/i2c in the kernel source tree. This bus driver supports the following

features:

• Compatible with the I2C bus standard

• Bit rates up to 400 Kbps

• Starts and stops signal generation/detection

• Acknowledge bit generation/detection

• Interrupt-driven, byte-by-byte data transfer

• Standard I2C master mode

20.2 I2C Device Driver Overview

The I2C device driver implements all the Linux I2C data structures that are required to communicate with

the I2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer data to the

device that is connected to the I2C bus. Internally these API functions use the standard I2C kernel space

API to call the I2C core module. The I2C core module looks up the I2C bus driver and calls the appropriate

function in the I2C bus driver to do the data transfer. This driver provides the following functions to other

device drivers:

• Read function to read the device registers

• Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

Inter-IC (I2C) Driver

i.MX25 PDK Linux Reference Manual

20-2 Freescale Semiconductor

20.3 Hardware Operation

The I2C module provides the functionality of a standard I2C master and slave. It is designed to be

compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock

frequencies that can be programmed by setting a value to the frequency divider register (IFDR). It also

generates an interrupt when one of the following occurs:

• One byte transfer is completed

• Address is received that matches its own specific address in slave-receive mode

• Arbitration is lost

20.4 Software Operation

The I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver.

20.4.1 I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important field in this

structure is struct i2c_algorithm *algo. This field is a pointer to the i2c_algorithm structure that

describes how data is transferred over the I2C bus. The algorithm structure contains a pointer to a function

that is called whenever the I2C chip driver wants to communicate with an I2C device.

On startup, the I2C bus adapter is registered with the I2C core when the driver is loaded. Certain

architectures have more than one I2C module. If so, the driver registers separate i2c_adapter structures for

each I2C module with the I2C core. These adapters are unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end of a data

transmission before transmitting the next byte. It times out and returns an error if the transfer complete

signal is not received. Because the I2C bus driver uses wait queues for its operation, other device drivers

should be careful not to call the I2C API methods from an interrupt mode.

20.4.2 I2C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver, describes the I2C

chip driver. The fields of interest in this structure are flags and attach_adapter. The flags field is set to a

value I2C_DF_NOTIFY so that the chip driver can be notified of any new I2C devices, after the driver is

loaded. The attach_adapter callback function is called whenever a new I2C bus driver is loaded in the

system. When the I2C bus driver is loaded, this driver stores the i2c_adapter structure associated with this

bus driver so that it can use the appropriate methods to transfer data.

Inter-IC (I2C) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 20-3

20.5 Driver Features

The I2C driver supports the following features:

• I2C communication protocol

• I2C master mode of operation

• Does not support the I2C slave mode of operation

20.6 Source Code Structure

Table 20-1 shows the I2C bus driver source files available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/i2c/busses.
.

20.7 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following options to enable this module:

• Device Drivers > I2C support > I2C Hardware Bus support > MXC I2C support.

20.8 Programming Interface

The I2C device driver can use the standard SMBus interface to read and write the registers of the device

connected to the I2C bus. For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

20.9 Interrupt Requirements

The I2C module generates many kinds of interrupts. The highest interrupt rate is associated with the

transfer complete interrupt as shown in Table 20-2.
.

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a baud rate of

400 Kbps (the maximum supported by the I2C interface).

Table 20-1. I2C Bus Driver Files

File Description

mxc_i2c.c I2C bus driver source file

mxc_i2c_reg.h Register definitions

Table 20-2. I2C Interrupt Requirements

Parameter Equation Typical Best Case

Rate Transfer Bit Rate/8 25,000/sec 50,000/sec

Latency 8/Transfer Bit Rate 40 µs 20 µs

Inter-IC (I2C) Driver

i.MX25 PDK Linux Reference Manual

20-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 21-1

Chapter 21
Configurable Serial Peripheral Interface (CSPI) Driver

The CSPI driver implements a standard Linux driver interface to the CSPI controllers. It supports the

following features:

• Interrupt- and SDMA-driven transmit/receive of bytes

• Multiple master controller interface

• Multiple slaves select

• Multi-client requests

21.1 Hardware Operation

CSPI is used for fast data communication with fewer software interrupts than conventional serial

communications. Each CSPI is equipped with a data FIFO and is a master/slave configurable serial

peripheral interface module, allowing the processor to interface with external SPI master or slave devices.

The primary features of the CSPI includes:

• Master/slave-configurable

• Two chip selects allowing a maximum of four different slaves each for master mode operation

• Up to 32-bit programmable data transfer

• 8 × 32-bit FIFO for both transmit and receive data

• Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

21.2 Software Operation

The following sections describe the CSPI software operation.

21.2.1 SPI Sub-System in Linux

The CSPI driver layer is located between the client layer (PMIC and SPI Flash are examples of clients)

and the hardware access layer. Figure 21-1 shows the block diagram for SPI subsystem in Linux.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in FIFO order, and

complete asynchronously through completion callbacks. There are also some simple synchronous

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX25 PDK Linux Reference Manual

21-2 Freescale Semiconductor

wrappers for those calls, including ones for common transaction types like writing a command and then

reading its response.

Figure 21-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they must all be sharing the same

controller driver. Only the controller driver can interact with the underlying SPI hardware module.

Figure 21-2 shows how the different SPI drivers are layered in the SPI subsystem.

Figure 21-2. Layering of SPI Drivers in SPI Subsystem

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

PMIC driver Client#2 driver Client#3 driver….

SPI Subsystem

CSPI Hardware

PMIC Client#2 Client#3….

Electrical Interface

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host

Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver

Interface

Client Driver

Interface

Freescale SPI
driver (mxc_spi.c)

SPI Slave
(PMIC)

CSPI Controller

CSPI Controller Driver

SPI Core Driver

SPI Client Driver

PMIC(MC13783)

CSPI Host

Controller Driver

SPI core driver

SPI slave driver

Electrical Interface

SPI Bus Interface

Controller Driver

Interface

Client Driver

Interface

Freescale SPI
driver (mxc_spi.c)

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 21-3

21.2.2 Software Limitations

The CSPI driver limitations are as follows:

• Does not currently have SPI slave logic implementation

• Does not support a single client connected to multiple masters

• Does not support the SDMA function for CSPI1

• Does not currently implement the user space interface with the help of the device node entry but

supports sysfs interface

21.2.3 Standard Operations

The CSPI driver is responsible for implementing standard entry points for init, exit, chip select and

transfer. The driver implements the following functions:

• Init function mxc_spi_init()—Registers the device_driver structure.

• Probe function mxc_spi_probe()—Performs initialization and registration of the SPI device

specific structure with SPI core driver. The driver probes for memory and IRQ resources.

Configures the IOMUX to enable CSPI I/O pins, requests for IRQ and resets the hardware.

• Chip select function mxc_spi_chipselect()—Configures the hardware CSPI for the current SPI

device. Sets the word size, transfer mode, data rate for this device.

• SPI transfer function mxc_spi_transfer()—Handles data transfers operations.

• SPI setup function mxc_spi_setup()—Initializes the current SPI device.

• SPI driver ISR mxc_spi_isr()—Called when the data transfer operation is completed and an

interrupt is generated.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX25 PDK Linux Reference Manual

21-4 Freescale Semiconductor

21.2.4 CSPI Synchronous Operation

Figure 21-3 shows how the CSPI provides synchronous read/write operations.

Figure 21-3. CSPI Synchronous Operation

21.3 Driver Features

The CSPI module supports the following features:

• Implements each of the functions required by a CSPI module to interface to Linux

• Multiple SPI master controllers

• Multi-client synchronous requests

21.4 Source Code Structure

Table 21-1 shows the source files available in the devices directory:

<ltib_dir>/rpm/BUILD/linux/drivers/spi/
.

21.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_SPI—Build support for the SPI core. In menuconfig, this option is available under

Table 21-1. CSPI Driver Files

File Description

mxc_spi.c SPI Master Controller driver

Client

Driver

SPI Core

Driver

CSPI

Hardware

spi_read/write

SPI Controller

Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Client

Driver

SPI Core

Driver

CSPI

Hardware

spi_read/write

SPI Controller

Driver

spi_transfer

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready intr

spi_getRxData

callback after
transfer completion

return

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 21-5

Device Drivers > SPI Support.

• CONFIG_BITBANG—Library code that is automatically selected by drivers that need it.

SPI_MXC selects it. In menuconfig, this option is available under

Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.

• CONFIG_SPI_MXC—Implements the SPI master mode for MXC CSPI. In menuconfig, this

option is available under

Device Drivers > SPI Support > MXC CSPI controller as SPI Master.

• CONFIG_SPI_MXC_SELECTn—Selects the CSPI hardware modules into the build (where n = 1

or 2). In menuconfig, this option is available under

Device Drivers > SPI Support > CSPIn.

• CONFIG_SPI_MXC_TEST_LOOPBACK—To select the enable testing of CSPIs in loop back

mode. In menuconfig, this option is available under

Device Drivers > SPI Support > LOOPBACK Testing of CSPIs.

By default this is disabled as it is intended to use only for testing purposes.

21.6 Programming Interface

This driver implements all the functions that are required by the SPI core to interface with the CSPI

hardware. For more information, see the API document generated by Doxygen (in the doxygen folder of

the documentation package).

21.7 Interrupt Requirements

The SPI interface generates interrupts. CSPI interrupt requirements are listed in Table 21-2.

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl) of 1 and a 32-bit

transfer length. The worst-case is based on a baud rate of 12 Mbps (max supported by the SPI interface)

with a 8-bits transfer length.

Table 21-2. CSPI Interrupt Requirements

Parameter Equation Typical Worst Case

BaudRate/

Transfer Length

(BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX25 PDK Linux Reference Manual

21-6 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 22-1

Chapter 22
MMC/SD/SDIO Host Driver

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO) Host driver

implements a standard Linux driver interface to the enhanced MMC/SD host controller (eSDHC). The host

driver is part of the Linux kernel MMC framework.

The MMC driver has following features:

• 1-bit or 4-bit operation for MCC/SD and SDIO cards

• Supports card insertion and removal events

• Supports the standard MMC commands

• PIO and DMA data transfers

• Power management

22.1 Hardware Operation

The MMC communication is based on an advanced 7-pin serial bus designed to operate in a low voltage

range. The eSDHC module support MMC along with SD memory and I/O functions. The eSDHC controls

the MMC, SD memory, and I/O cards by sending commands to cards and performing data accesses to and

from the cards. The SD memory card system defines two alternative communication protocols: SD and

SPI. The eSDHC only support the SD bus protocol.

The eSDHC command transfer type and eSDHC command argument registers allow a command to be

issued to the card. The eSDHC command, system control and protocol control registers allow the users to

specify the format of the data and response and to control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the eSDHC. The eSDHC reads

these four registers to get the command response directly. The eSDHC uses a fully configurable

128×32-bit FIFO for read and write. The buffer is used as temporary storage for data being transferred

between the host system and the card, and vice versa. The eSDHC data buffer access register bits hold

32-bit data upon a read or write transfer.

For receiving data, the steps are as follows:

1. The eSDHC controller generates a DMA request when there are more words received in the buffer

than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the eSDHC FIFO to system

memory by reading the data buffer access register

To transmitting data, the steps are as follows:

1. The eSDHC controller generates a DMA request whenever the amount of the buffer space exceeds

the value set in the WR_WML register

MMC/SD/SDIO Host Driver

i.MX25 PDK Linux Reference Manual

22-2 Freescale Semiconductor

2. Upon receiving this request, the DMA engine starts moving data from the system memory to the

eSDHC FIFO by writing to the Data Buffer Access Register for a number of pre-defined bytes

The read-only eSDHC Present State and Interrupt Status Registers provide eSDHC operations status,

application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set the

corresponding Status Register bits. The eSDHC interrupt status enable and signal enable registers allow

the user to control if these interrupts occur.

22.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols. The MMC block

driver handles the file system read/write calls and uses the low level MMC host controller interface driver

to send the commands to the eSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit, request, and set_ios.

The driver implements the following functions:

• The init function sdhci_drv_init()—Registers the device_driver structure.

• The probe function sdhci_probe and sdhci_probe_slot()—Performs initialization and

registration of the MMC device specific structure with MMC bus protocol driver. The driver

probes for memory and IRQ resources. Configures the IOMUX to enable eSDHC I/O pins and

resets the hardware.

• sdhci_set_ios()—Sets bus width, voltage level, and clock rate according to core driver

requirements.

• sdhci_request()—Handles both read and write operations. Sets up the number of blocks and block

length. Configures an DMA channel, allocates safe DMA buffer and starts the DMA channel.

Configures the eSDHC transfer type register eSDHC command argument register to issue a

command to the card. This function starts the SDMA and starts the clock.

• MMC driver ISR sdhci_cd_irq()—Called when the MMC/SD card is detected or removed.

• MMC driver ISR sdhci_irq()—Interrupt from eSDHC called when command is done or errors

like CRC or buffer underrun or overflow occurs.

• DMA completion routine sdhci_dma_irq()—Called after completion of a DMA transfer. Informs

the MMC core driver of a request completion by calling mmc_request_done() API.

MMC/SD/SDIO Host Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 22-3

Figure 22-1 shows how the MMC-related drivers are layered.

Figure 22-1. MMC Drivers Layering

22.3 Driver Features

The MMC driver supports the following features:

• Supports multiple eSDHC modules

• Provides all the entry points to interface with the Linux MMC core driver

• MMC and SD cards

• Recognizes data transfer errors such as command time outs and CRC errors

• Power management

 File System (Ext2fs/FAT driver)

Block Client Driver (Storage)

Kinds of Bus Protocol Drivers

Host Controller Driver

MMC/SD/SDIO/CE-ATA Devices

Host Controller

Application/Server interface

block.c: block

driver for

peripheral media.

core.c, sd.c,

Freescale MMC driver

mx_sdhci.c or

mxc_mmc.c

Client Driver interface

Host controller Driver interface

Local Bus Interface

Slot Electrical interface

Etc sd, mmc,

sdio, ce-ata

and so on.

......

MMC/SD/SD

IO/CE-ATA

Devices

SDIO APP

MMC/SD/SDIO Host Driver

i.MX25 PDK Linux Reference Manual

22-4 Freescale Semiconductor

22.4 Source Code Structure

Table 22-1 shows the eSDHC source files available in the source directory:

<ltib_dir>/rpm/BUILD/linux/drivers/mmc/host/.

22.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_MMC—Build support for the MMC bus protocol. In menuconfig, this option is

available under

Device Drivers > MMC/SD/SDIO Card support

By default, this option is Y

• CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to

mount the file system. In menuconfig, this option is available under

Device Drivers > MMC/SD Card Support > MMC block device driver

By default, this option is Y

• CONFIG_MMC_IMX_ESDHCI—Driver used for the i.MX eSDHC ports. In menuconfig, this

option is found under

Device Drivers > MMC/SD Card Support > Freescale i.MX Secure Digital Host Controller

Interface support

• CONFIG_MMC_IMX_ESDHCI_PIO_MODE—Sets i.MX Multimedia card Interface to PIO

mode. In menuconfig, this option is found under

Device Drivers > MMC/SD Card support > Freescale i.MX Secure Digital Host Controller

Interface PIO mode

This option is dependent on CONFIG_MMC_IMX_ESDHCI. By default, this option is not set and

DMA mode is used.

• CONFIG_MMC_UNSAFE_RESUME—Used for embedded systems which use a

MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under

Device drivers > MMC/SD/SDIO Card Support > Allow unsafe resume

22.6 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with the i.MX

eSDHC module. For additional information, see the BSP API document (in the doxygen folder of the

documentation package).

Table 22-1. eSDHC Driver Files MMC/SD Driver Files

File Description

mx_sdhci.h Header file defining registers

mx_sdhci.c eSDHC driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 23-1

Chapter 23
Universal Asynchronous Receiver/Transmitter (UART)
Driver

The low-level UART driver interfaces the Linux serial driver API to all the UART ports. It has the

following features:

• Interrupt-driven and SDMA-driven transmit/receive of characters

• Standard Linux baud rates up to 4 Mbps

• Transmit and receive characters with 7-bit and 8-bit character lengths

• Transmits one or two stop bits

• Supports TIOCMGET IOCTL to read the modem control lines. Only supports the constants TIOCM_CTS

and TIOCM_CAR, plus TIOCM_RI in DTE mode only

• Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants TIOCM_RTS and

TIOCM_DTR only

• Odd and even parity

• XON/XOFF software flow control. Serial communication using software flow control is reliable

when communication speeds are not too high and the probability of buffer overruns is minimal

• CTS/RTS hardware flow control—both interrupt-driven software-controlled hardware flow and

hardware-driven hardware-controlled flow

• Send and receive break characters through the standard Linux serial API

• Recognizes frame and parity errors

• Ability to ignore characters with break, parity and frame errors

• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY IOCTL. Some

programs like setserial and dip use this feature to make sure that the baud rate was set properly

and to get general information on the device.The UART type should be set to 52 as defined in the

serial_core.h header file.

• Serial IrDA

• Power management feature by suspending and resuming the URT ports

• Standard TTY layer IOCTL calls

All the UART ports can be accessed through the device files /dev/ttymxc0 through /dev/ttymxc4,

where /dev/ttymxc0 refers to UART 1. Autobaud detection is not supported.

23.1 Hardware Operation

Refer to the i.MX25 Multimedia Applications Processor Reference Manual to determine the number of

UART modules available in the device. Each UART hardware port is capable of standard RS-232 serial

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

23-2 Freescale Semiconductor

communication and has support for IrDA 1.0. Each UART contains a 32-byte transmitter FIFO and a

32-half-word deep receiver FIFO. Each UART also supports a variety of maskable interrupts when the data

level in each FIFO reaches a programmed threshold level and when there is a change in state in the modem

signals. Each UART can be programmed to be in DCE or DTE mode.

23.2 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations that are common

across UART drivers for various platforms. The low-level UART driver is responsible for supplying

information such as the UART port information and a set of control functions to this core UART driver.

These functions are implemented as a low-level interface between the Linux OS and the UART hardware.

They cannot be called from other drivers or from a user application. The control functions used to control

the hardware are passed to the core driver through a structure called uart_ops, and the port information is

passed through a structure called uart_port. The low level driver is also responsible for handling the

various interrupts for the UART ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration options are provided

in the mxc_uart.h header file. The user can specify the size of the DMA receive buffer. The minimum size

of this buffer is 512 bytes. The size should be a multiple of 256. The driver breaks the DMA receive buffer

into smaller sub-buffers of 256 bytes and registers these buffers with the DMA system. The DMA transmit

buffer size is fixed at 1024 bytes. The size is limited by the size of the Linux UART transmit buffer (1024).

The driver requests two DMA channels for the UARTs that need DMA transfer. On a receive transaction,

the driver copies the data from the DMA receive buffer to the TTY Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer to the DMA

transmit buffer and sends this buffer to the DMA system. The user should use hardware-driven hardware

flow control when using DMA data transfer. For more information, see the Linux documentation on the

serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow control and

hardware-driven hardware flow control. The hardware flow control method can be configured using the

options provided in the header file. The user has the capability to de-assert the CTS line using the available

IOCTL calls. If the user wishes to assert the CTS line, then control is transferred back to the receiver, as

long as the driver has been configured to use hardware-driven hardware flow control.

23.3 Driver Features

The UART driver supports the following features:

• Baud rates up to 4 Mbps

• Recognizes frame and parity errors only in interrupt-driven mode; does not recognize these errors

in DMA-driven mode

• Sends, receives and appropriately handles break characters

• Recognizes the modem control signals

• Ignores characters with frame, parity and break errors if requested to do so

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 23-3

• Implements support for software and hardware flow control (software-controlled and

hardware-controlled)

• Get and set the UART port information; certain flow control count information is not available in

hardware-driven hardware flow control mode

• Implements support for Serial IrDA

• Power management

• Interrupt-driven and DMA-driven data transfer

23.4 Source Code Structure

Table 23-1 shows the UART driver source files that are available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/serial.

Table 23-2 shows the header files associated with the UART driver.

The source files, serial.c and serial.h, are associated with the UART driver that is available in the

directory: <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25. The source file contains UART

configuration data and calls to register the device with the platform bus.

23.5 Configuration

This section discusses configuration options associated with Linux, chip configuration options, and board

configuration options.

23.5.1 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

Table 23-1. UART Driver Files

File Description

mxc_uart.c Low level driver

serial_core.c Core driver that is included as part of standard Linux

mxc_uart_reg.h Register values

mxc_uart_early.c Source file to support early serial console for UART

Table 23-2. UART Global Header Files

File Description

<ltib_dir>/rpm/BUILD/linux/

arch/arm/plat-mxc/include/mach/mxc_uart.h

UART header that contains UART configuration data structure definitions

<ltib_dir>/rpm/BUILD/linux/

arch/arm/mach-mx35/board-mx35_3stack.h

Contains UART board specific configuration options

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

23-4 Freescale Semiconductor

• CONFIG_SERIAL_MXC—Used for the UART driver for the UART ports. In menuconfig, this

option is available under

Device Drivers > Character devices > Serial drivers > MXC Internal serial port support.

By default, this option is Y.

• CONFIG_SERIAL_MXC_CONSOLE—Chooses the Internal UART to bring up the system

console. This option is dependent on the CONFIG_SERIAL_MXC option. In the menuconfig this

option is available under

Device Drivers > Character devices > Serial drivers > MXC Internal serial port support > Support

for console on a MXC/MX27/MX21 Internal serial port.

By default, this option is Y.

23.5.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

23.5.2.1 Chip Configuration Options

The following chip-specific configuration options are provided in mxc_uart.h. The x in UARTx denotes the

individual UART number. The default configuration for each UART number is listed in Table 23-5.

23.5.2.2 Board Configuration Options

The following board specific configuration options for the driver can be set within

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25/board-mx25_.h:

• UART Mode (UARTx_MODE)—Specifies DTE or DCE mode

• UART IR Mode (UARTx_IR)—Specifies whether the UART port is to be used for IrDA.

• UART Enable / Disable (UARTx_ENABLED)—Enable or disable a particular UART port; if disabled,

the UART is not registered in the file system and the user can not access it

23.6 Programming Interface

The UART driver implements all the methods required by the Linux serial API to interface with the UART

port. The driver implements and provides a set of control methods to the Linux core UART driver. For

more information about the methods implemented in the driver, see the API document.

23.7 Interrupt Requirements

The UART driver interface generates many kinds of interrupts. The highest interrupt rate is associated with

transmit and receive interrupt.

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 23-5

The system requirements are listed in Table 23-3.

The baud rate is set in the mxcuart_set_termios function. The typical values are based on a baud rate of

57600 with a receiver trigger level (Rxtl) of one and a transmitter trigger level (Txtl) of two. The worst

case is based on a baud rate of 1.5 Mbps (maximum supported by the UART interface) with an Rxtl of one

and a Txtl of 31. There is also an undetermined number of handshaking interrupts that are generated but

the rates should be an order of magnitude lower.

23.8 Device Specific Information

23.8.1 UART Ports

The UART ports can be accessed through the device files /dev/ttymxc0, /dev/ttymxc1, and so on, where

/dev/ttymxc0 refers to UART 1. The number of UART ports on a particular platform are listed in

Table 23-4.

23.8.2 Board Setup Configuration

Table 23-4. UART General Configuration

Table 23-3. UART Interrupt Requirements

Parameter Equation Typical Worst Case

Rate (BaudRate/(10))*(1/Rxtl + 1/(32–Txtl)) 5952/sec 300000/sec

Latency 320/BaudRate 5.6 ms 213.33 µs

Platform Number of UARTs Max Baudrate

i.MX25 5 4000000 (4 Mbps)

Table 23-5. UART Active/Inactive Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 1 1 0 0 0 --

Table 23-6. UART IRDA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 NO_IRDA NO_IRDA NO_IRDA NO_IRDA NO_IRDA --

Table 23-7. UART Mode Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 MODE_DCE MODE_DCE MODE_DCE MODE_DTE MODE_DTE --

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

23-6 Freescale Semiconductor

.

Table 23-8. UART Shared Peripheral Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 -1 -1 SPBA_UART3 SPBA_UART4 SPBA_UART5 --

Table 23-9. UART Hardware Flow Control Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 1 1 1 1 1 --

Table 23-10. UART DMA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 0 0 1 1 1 --

Table 23-11. UART DMA RX Buffer Size Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 0 0 512 512 512 --

Table 23-12. UART UCR4_CTSTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 16 16 16 16 16 --

Table 23-13. UART UFCR_RXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 16 16 16 16 16 --

Table 23-14. UART UFCR_TXTL Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 16 16 16 16 16 --

Table 23-15. UART Interrupt Mux Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED INTS_MUXED --

Table 23-16. UART Interrupt 1 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 INT_UART1 INT_UART2 INT_UART3 INT_UART4 INT_UART5 --

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 23-7

23.9 Early UART Support

The kernel starts logging messages on a serial console when it knows where the device is located. This

happens when the driver enumerates all the serial devices, which can happen a minute or more after the

kernel begins booting.

Linux kernel 2.6.10 and later kernels have an early UART driver that operates very early in the boot

process. The kernel immediately starts logging messages, if the user supplies an argument as follows:

console=mxcuart,0xphy_addr,115200n8

Where phy_addr represents the physical address of the UART on which the console is to be used and

115200n8 represents the baud rate supported.

Table 23-17. UART Interrupt 2 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 -1 -1 -1 -1 -1 --

Table 23-18. UART interrupt 3 Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX25 -1 -1 -1 -1 -1 --

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX25 PDK Linux Reference Manual

23-8 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 24-1

Chapter 24
ARC USB Driver

The universal serial bus (USB) driver implements a standard Linux driver interface to the ARC USB-HS

OTG controller. The USB provides a universal link that can be used across a wide range of

PC-to-peripheral interconnects. It supports plug-and-play, port expansion, and any new USB peripheral

that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This USB driver has the

following features:

• High Speed/Full Speed Host Only core (HOST1)

• High speed and Full Speed OTG core

• Host mode—Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP (Still

Image) drivers

• Peripheral mode—Supports MSC, MTP, and CDC (Communication Devices Class) drivers

• Embedded DMA controller

ARC USB Driver

i.MX25 PDK Linux Reference Manual

24-2 Freescale Semiconductor

24.1 Architectural Overview

A USB host system is composed of a number of hardware and software layers. Figure 24-1 shows a

conceptual block diagram of the building block layers in a host system that support USB 2.0.

Figure 24-1. USB Block Diagram

24.2 Hardware Operation

For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at

http://www.usb.org/developers/docs/.

24.3 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only

implements the hardware specified initialization functions. For the USB peripheral, it implements the

gadget framework.

static struct usb_ep_ops fsl_ep_ops = {

.enable = fsl_ep_enable,

.disable = fsl_ep_disable,

.alloc_request = fsl_alloc_request,

.free_request = fsl_free_request,

http://www.usb.org/developers/docs/

ARC USB Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 24-3

.queue = fsl_ep_queue,

.dequeue = fsl_ep_dequeue,

.set_halt = fsl_ep_set_halt,

.fifo_status = arcotg_fifo_status,

.fifo_flush = fsl_ep_fifo_flush, /* flush fifo */

};

static struct usb_gadget_ops fsl_gadget_ops = {

.get_frame = fsl_get_frame,

.wakeup = fsl_wakeup,

/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */

.vbus_session = fsl_vbus_session,

.vbus_draw = fsl_vbus_draw,

.pullup = fsl_pullup,

};

• fsl_ep_enable—configures an endpoint making it usable

• fsl_ep_disable—specifies an endpoint is no longer usable

• fsl_alloc_request—allocates a request object to use with this endpoint

• fsl_free_request—frees a request object

• arcotg_ep_queue—queues (submits) an I/O request to an endpoint

• arcotg_ep_dequeue—dequeues (cancels, unlinks) an I/O request from an endpoint

• arcotg_ep_set_halt—sets the endpoint halt feature

• arcotg_fifo_status—get the total number of bytes to be moved with this transfer descriptor

For OTG, an OTG finish state machine (FSM) is implemented.

24.4 Driver Features

The USB stack supports the following features:

• USB device mode

• Mass storage device profile—subclass 8-1 (RBC set)

• USB host mode

• HID host profile—subclasses 3-1-1 and 3-1-2. (USB mouse and keyboard)

• Mass storage host profile—subclass 8-1

• Ethernet USB profile—subclass 2

• DC PTP transfer

• MTP device mode

ARC USB Driver

i.MX25 PDK Linux Reference Manual

24-4 Freescale Semiconductor

24.5 Source Code Structure

Table 24-1 shows the source files available in the source directory,

<ltib_dir>/rpm/BUILD/linux/drivers/usb.
/

Table 24-2 shows the platform related source files.

Table 24-3 shows the platform-related source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx25/

Table 24-1. USB Driver Files

File Description

host/ehci-hcd.c Host driver source file

host/ehci-arc.c Host driver source file

host/ehci-mem-iram.c Host driver source file for IRAM support

host/ehci-hub.c Hub driver source file

host/ehci-mem.c Memory management for host driver data structures

host/ehci-q.c EHCI host queue manipulation

host/ehci-q-iram.c Host driver source file for IRAM support

gadget/arcotg_udc.c Peripheral driver source file

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file

otg/fsl_otg.h OTG driver header file

otg/otg_fsm.c OTG FSM implement source file

otg/otg_fsm.h OTG FSM header file

Table 24-2. USB Platform Source Files

File Description

arch/arm/plat-mxc/include/mach/arc_otg.h USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table 24-3. USB Platform Header Files

File Description

usb_dr.c Platform-related initialization

usb_h2.c Platform-related initialization

ARC USB Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 24-5

Table 24-4 shows the common platform source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc.

24.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_USB—Build support for USB

• CONFIG_USB_EHCI_HCD—Build support for USB host driver. In menuconfig, this option is

available under

Device drivers > USB support > EHCI HCD (USB 2.0) support.

By default, this option is M.

• CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In menuconfig,

this option is available under

Device drivers > USB support > Support for Freescale controller.

By default, this option is Y.

•

• CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In

menuconfig, this option is available under

Device drivers > USB support > Support for Host-side USB > EHCI HCD (USB 2.0) support >

Support for Freescale controller.

By default, this option is Y.

• CONFIG_USB_EHCI_ROOT_HUB_TT—Build support for OHCI or UHCI companion. In

menuconfig, this option is available under

Device drivers > USB support > Root Hub Transaction Translators.

By default, this option is Y selected by USB_EHCI_FSL && USB_SUPPORT.

• CONFIG_USB_STORAGE—Build support for USB mass storage devices. In menuconfig, this

option is available under

Device drivers > USB support > USB Mass Storage support.

By default, this option is Y.

• CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is

available under

Device drivers > HID Devices > USB Human Interface Device (full HID) support.

By default, this option is M.

Table 24-4. USB Common Platform Files

File Description

utmixc.c Internal UTMI transceiver driver

usb_common.c Common platform related part of USB driver

ARC USB Driver

i.MX25 PDK Linux Reference Manual

24-6 Freescale Semiconductor

• CONFIG_USB_GADGET—Build support for USB gadget. In menuconfig, this option is

available under

Device drivers > USB support > USB Gadget Support.

By default, this option is M.

• CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > USB Peripheral Controller (Freescale

USB Device Controller).

By default, this option is Y.

• CONFIG_USB_GADGET_ARC_OTG—Build support for the USB OTG port in HS/FS

peripheral mode. In menuconfig, this option is available under

Device Drivers > USB support > USB Gadget Support.

By default, this option is Y.

• CONFIG_USB_OTG—OTG Support, support dual role with ID pin detection.

By default, this option is N.

• CONFIG_UTMI_MXC_OTG—USB OTG pin detect support for UTMI PHY, enable UTMI PHY

for OTG support.

By default, this option is N.

• CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, this option is available

under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet

Support).

By default, this option is M.

• CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDIS protocol. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC Ethernet

Support) > RNDIS support.

By default, this option is Y.

• CONFIG_USB_FILE_STORAGE—Build support for Mass Storage gadget. In menuconfig, this

option is available under

Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.

By default, this option is M.

• CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is

available under

Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC ACM support).

By default, this option is M.

ARC USB Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 24-7

24.7 Programming Interface

This driver implements all the functions that are required by the USB bus protocol to interface with the

i.MX USB ports. For more information, see the BSP API document.

24.8 Default USB Settings

Table 24-5 shows the default USB settings.

Only TO 1.1 silicon is supported for i.MX25.

Table 24-5. Default USB Settings

Platform OTG HS OTG FS Host1 Host2(HS) Host2(FS)

i.MX25 3DS enabled N/A N/A N/A enabled

ARC USB Driver

i.MX25 PDK Linux Reference Manual

24-8 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 25-1

Chapter 25
FlexCAN Driver

25.1 Driver Overview

FlexCAN is a communication controller implementing the CAN protocol according to the CAN 2.0B

protocol specification. The CAN protocol was primarily designed to be used as a vehicle serial data bus,

meeting the specific requirements of this field such as real-time processing, reliable operation in the EMI

environment of a vehicle, cost-effectiveness and required bandwidth. The standard and extended message

frames are supported. The maximum message buffer is 64. The driver is a network device driver of

PF_CAN protocol family.

For the detailed information, see http://lwn.net/Articles/253425 or Documentation/networking/can.txt in

Linux source directory.

25.2 Hardware Operation

For the information on hardware operations, see the i.MX25 Multimedia Applications Processor Reference

Manual.

25.3 Software Operation

The CAN driver is a network device driver. For the common information on software operation, refer to

the documents in the kernel source directory Documentation/networking/can.txt.

The driver includes parameters that need to be set by the user to use CAN such as the bitrate, clock source,

and so on. Currently the driver only supports the configuration when the device is not activated. To

configure the CAN parameters, enter directory /sys/devices/platform/FlexCAn.x/ (x is the device

number):

• br_clksrc configures the clock source

• bitrate configures the bitrate. Currenlty, this parameter only shows the bitrate that is supported.

To ensure bitrate exactly, set the individual parameters:

— br_presdiv configures prescale divider

— br_rjw configures RJW

— br_propseg configures the length of the propagation segment

— br_pseg1 configures the length of phase buffer segment 1

— br_pseg2 configures the length of phase buffer segment 2

• abort enables or disables abort feature

• bcc sets backwards compatibility with previous FlexCAN versions

FlexCAN Driver

i.MX25 PDK Linux Reference Manual

25-2 Freescale Semiconductor

• boff_rec configures support of recover from bus off state

• fifo enables or disables FIFO work mode

• listen enables or disables listen only mode

• local_priority enables or disables the local priority. In current version, this parameter is not used

• loopback sets hardware at loopback mode or not

• maxmb sets the maximum message buffers

• smp sets the sampling mode

• srx_dis disables or enables the self-reception

• state shows the device status

• ext_msg configures support for extended message

• std_msg configures support for standard message

• tsyn enables or disables timer synchronization feature

• wak_src sets wakeup source

• wakeup enables or disables self-wakeup

• xmit_maxmb sets the maximum message buffer for the transmission

There are two operations to activate or deactivate CAN interface. Using the CAN0 interfaces as an

example:

• ifconfig can0 up

• ifconfig can0 down

25.4 Source Code Structure

Table 25-1 shows the driver source file available in the directory,

<ltib_dir>/rpm/BUILD/linux/drivers/net/can/flexcan.

/

25.5 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_CAN – Build support for PF_CAN protocol family. In menuconfig, this option is

available under

Networking > CAN bus subsystem support.

Table 25-1. FlexCAN Driver Files

File Description

dev.c Operation about parameters

drv.c Network device driver

mbm.c Management of message buffer

flexcan.h Head file of FlexCAN

FlexCAN Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 25-3

• CONFIG_CAN_RAW – Build support for Raw CAN protocol. In menuconfig, this option is

available under

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with CAN-ID

filtering).

• CONFIG_CAN_BCM – Build support for Broadcast Manager CAN protocol. In menuconfig, this

option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol (with content

filtering).

• CONFIG_CAN_VCAN – Build support for Virtual Local CAN interface (also in Ethernet

interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local CAN Interface

(vcan).

• CONFIG_CAN_DEBUG_DEVICES – Build support to produce debug messages to the system

log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices debugging

messages.

• CONFIG_CAN_FLEXCAN – Build support for FlexCAN device driver. In menuconfig, this

option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale FlexCAN.

FlexCAN Driver

i.MX25 PDK Linux Reference Manual

25-4 Freescale Semiconductor

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 26-1

Chapter 26
Real Time Clock (RTC) (DryIce) Driver

Each i.MX processor has an integrated RTC module. The RTC is used to keep the time and date while the

system is turned off. The driver can also generate an interrupt using the alarm feature (AIE).

26.1 Hardware Operation

The RTC has its own 32.768 KHz clock, which is used to increment a 47-bit counter. The RTC also

includes a 47-bit alarm register which is used to generate an interrupt whenever the value in the timer

register matches the value contained in the alarm register. The RTC is part of the LP (Low Power) domain

of the i.MX chip so that it can maintain time, even when the processor is powered off. The RTC hardware

cannot generate periodic interrupts.

26.2 Software Operation

The RTC module software implementation is through an RTC driver. Besides the initialization function, it

provides IOCTL functions to set up the RTC timer, interrupt, and so on. Since the RTC driver does not

deal with fractional seconds, hardware time and alarm values are truncated to one-second resolution.

26.3 Requirements

This RTC implementation meets the following requirements:

• Implements all the functions required by Linux to provide the real time clock and alarm interrupt

• Conforms to the Linux coding standard as documented in the Coding Conventions chapter

26.4 Source Code Structure

Table 26-1 shows the RTC driver source files.

The source file, rtc-imxdi.c, implements the RTC functions.

26.5 Programming Interface

All the Linux RTC functions are implemented in the drivers/rtc/class.c and drivers/rtc/interface.c

files. The include/linux/rtc.h file specifies all the IOCTLs for RTC.

Table 26-1. RTC Driver Files

File Description

rtc-imxdi.c Implementation file

Real Time Clock (RTC) (DryIce) Driver

i.MX25 PDK Linux Reference Manual

26-2 Freescale Semiconductor

The following RTC IOCTLs are supported by this driver.

• RTC_RD_TIME

• RTC_SET_TIME

• RTC_ALM_READ

• RTC_ALM_SET

• RTC_WKALM_RD

• RTC_WKALM_SET

• RTC_AIE_ON

• RTC_AIE_OFF

See the API documentation for the detailed programming interface.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 27-1

Chapter 27
SIM Driver

The SIM driver implements a Linux driver interface to the Subscriber Identification Module (SIM).

The SIM driver has following features:

• Supports card insertion and removal events

• Supports T0 Smart Card, and compatible with the ISO7816-3 spec

27.1 Hardware Operation

The detailed hardware operation of SIM module is detailed in the hardware documentation.

27.2 Software Operation

The SIM interface driver package for the i.MX familiy consist of two basic parts: the SIM kernel interface

driver and the a user space library to simplify development.

The kernel device driver is pretty much built around a finite state machine for received characters. This

FSM has three mayor states: card removed, discovering and parsing the ATR (answer to reset) after card

detection and data transfer (command/response/status) during normal operation. The second part is the

interfacing to user space, implemented as ioctl() calls. Finally, the kernel driver is completed by functions

for ramping up / shutting down or cold/warm reset SIM cards.

The user space library with it's API is pretty mach a wrapper around the ioctl-calls plus an event handler

that ramps up or powers down the interface apon card detection or removal.

Device driver state machines and the present state

The present state reflects the abstracted state of the interface. It can be

• SIM_PRESENT_REMOVED No card inserted

• SIM_PRESENT_DETECTED Card has just been inserted, ATR is under way

• SIM_PRESENT_OPERATIONAL After ATR receiption, interface is in operational state

Table 27-1. Available Platforms

Module Name Available Platform

SIM i.MX25

SIM Driver

i.MX25 PDK Linux Reference Manual

27-2 Freescale Semiconductor

Figure 27-1. SIM driver

Right after card insertion, the driver is in "detected" state. The "detected" state holds a sequence of five

sub-states which reflects the parsing of the ATR from T0, TS, the interface characters TXI (TA1, TB1, ...

, TD4), historic bytes and the check sum. Certain states may be ommited while parsing the ATR in case

they are not present in the answer to reset, i.e. TS may indicate that there are no interface characters, the

number of historic bytes may be zero and TCK only applies for protocol T=1.

After reception of a valid ATR the state machine switches to the "operational" state. The "operational" state

has six sub-states which split up into two paths: a TPDU transfer will run through a command, response

and status word sequence, potentially ommiting the response state. A PTS transfer will transfer a given

SIM Driver

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 27-3

number of bytes without checking for ACK or status words in order to support the protocol type selection

string transfer.

When a card is removed, then the state machine goes to the "removed" state, no matter in which sub-state

the driver currently is.

27.3 Requirements

• Support T0 Smart Card, and compatible with the ISO7816-3 spec

• Conforms to the Linux coding standards

27.4 Source Code Structure

The following tabke lists the SIM source files available in the source directory

The mxc_sim_interface.h is located in <ltib_dir>/rpm/BUILD/linux/include/linux/

<ltib_dir>/rpm/BUILD/linux/drivers/char/.

Table 27-2. SIM Driver File List

27.5 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these options,

use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure

the Kernel and exit. When the next screen appears, select the following options to enable this module:

• CONFIG_IMX_SIM–Build support for the SIM driver. In menuconfig, this option is available

under

Device Drivers > Character devices > IMX SIM support.

By default, this option is M.

27.6 Programming Interface

This driver implements the functions required by the Linux to interface with the i.MX SIM module. The

following listed the programming interface.

• The ioctl interface

The ioctl interface enables a user space application to access the SIM kernel driver.

Amongst others, there are functions to check card presense and for data transfer.

— SIM_IOCTL_GET_PRESENSE

Check if the card is present and operational

— SIM_IOCTL_GET_ATR

File Description

imx_sim.c SIM driver

mxc_sim_interface.h Header file defining the programming interfaces and so on

SIM Driver

i.MX25 PDK Linux Reference Manual

27-4 Freescale Semiconductor

Get the received ATR string.

— SIM_IOCTL_GET_PARAM_ATR

Get communication parameters determined from the ATR. If you like to apply the

communication parameters, you need to use SIM_IOCTL_SET_PARAM.

— SIM_IOCTL_GET_PARAM

Get currently set communication parameters. The default communication parameters are

FI=372, DI=1, PI1=5V, II=50mA and WWT=10. Please note that PI1, II and WWT are

currently not supported.

— SIM_IOCTL_SET_PARAM

Set desired set communication parameters. Please note that PI1, II and WWT are

currently not supported.

— SIM_IOCTL_XFER

Transfer a TPDU or PTS. A TPDU needs to be at least five bytes ins size. A PTS needs

to be at least one byte in size.

— SIM_IOCTL_POWER_ON

Run the power on sequence.

— SIM_IOCTL_POWER_OFF

Run the power off sequence.

— SIM_IOCTL_WARM_RESET

Run the warm reset sequence.

— SIM_IOCTL_COLD_RESET

Run the cold reset sequence.

— SIM_IOCTL_CARD_LOCK

Run the card lock sequence. The current implementation will indicate a card lock by

LED no matter if a card is present.

— SIM_IOCTL_CARD_EJECT

Run the card eject sequence. The current implementation will indicate a card eject

by LED no matter if a card is present.

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 28-1

Chapter 28
Watchdog (WDOG) Driver

The Watchdog Timer module protects against system failures by providing an escape from unexpected

hang or infinite loop situations or programming errors. Some platforms may have two WDOG modules

with one of them having interrupt capability.

28.1 Hardware Operation

Once the WDOG timer is activated, it must be serviced by software on a periodic basis. If servicing does

not take place in time, the WDOG times out. Upon a time-out, the WDOG either asserts the wdog_b signal

or a wdog_rst_b system reset signal, depending on software configuration. The watchdog module cannot

be deactivated once it is activated.

28.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for a specific

platform. WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently. Since

some bits of the WGOD registers are only one-time programmable after booting, ensure these registers are

written correctly.

28.3 Generic WDOG Driver

The generic WGOD driver is implemented in the

<ltib_dir>/rpm/BUILD/linux/drivers/watchdog/mxc_wdt.c file. It provides functions for various IOCTLs

and read/write calls from the user level program to control the WDOG.

28.3.1 Driver Features

This WDOG implementation includes the following features:

• Generates the reset signal if it is enabled but not serviced within a predefined timeout value

(defined in milliseconds in one of the WDOG source files)

• Does not generate the reset signal if it is serviced within a predefined timeout value

• Provides IOCTL/read/write required by the standard WDOG subsystem

28.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to this option, use the

./ltib -c command when located in the <ltib dir>. On the screen displayed, select Configure the

Kernel and exit. When the next screen appears, select the following option to enable this module:

Watchdog (WDOG) Driver

i.MX25 PDK Linux Reference Manual

28-2 Freescale Semiconductor

• CONFIG_MXC_WATCHDOG—Enables Watchdog timer module. This option is available under

Device Drivers > Watchdog Timer Support > MXC watchdog.

28.3.3 Source Code Structure

Table 28-1 shows the source files for WDOG drivers that are in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/watchdog.
.

Watchdog system reset function is located under

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/wdog.c

28.3.4 Programming Interface

The following IOCTLs are supported in the WDOG driver:

• WDIOC_GETSUPPORT

• WDIOC_GETSTATUS

• WDIOC_GETBOOTSTATUS

• WDIOC_KEEPALIVE

• WDIOC_SETTIMEOUT

• WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see

<ltib_dir>/rpm/BUILD/linux/Documentation/watchdog.

Table 28-1. WDOG Driver Files

File Description

mxc_wdt.c WDOG function implementations

mxc_wdt.h Header file for WDOG implementation

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 29-1

Chapter 29
Frequently Asked Questions

29.1 Downloading a File

There are various ways to download files onto a Linux system. The following procedure gives instructions

on how to do this through a serial download.

To download a file through the serial port using a Windows host system, follow these steps:

1. Make sure the Linux serial prompt goes to the Windows terminal. For more information about how

to set this up, see the User Guide.

2. Make sure Linux boots to the serial prompt and log in using root

3. Type rz under the serial prompt at /mnt/ramfs/root

4. Under Hyper Terminal, click on Transfer > Send File > Browse... >, then go to the directory with

the file to download.

5. Click on Open and then Send. The protocol should be Zmodem with Crash Recovery, which is the

default.

This should start the downloading process. For the file transfer, the lrzsz package is required. Another way

to transfer a file is to use FTP which makes the download much faster than through the serial port. To use

FTP, the Ethernet interface has to be set up first.

29.2 Creating a JFFS2 Mount Point

To mount a pre-built JFFS2 file system onto the target, mkfs.jffs2 can be used to generate the JFFS2 file

system on the development system (the host) first and then mount it on the target. The following steps

describe how to do this. If an empty JFFS2 file system is sufficient, then only step 2 is required.

1. Generate the JFFS2 file system under the host:

Create a temporary directory on the host, for example jffs2 under /tmp and then move all the files

and directories to place inside the JFFS2 file system into the jffs2 directory. Issue the following

command from /tmp:

mkfs.jffs2 -d jffs2 -o fs.jffs2 -e 0x20000 --pad=0x400000

jffs2 is the source directory. -e: erase block size. --pad=0x400000 is to pad 0xff up to 4 Mbytes.

The output file is fs.jffs2.

NOTE

• Make sure the fs.jffs2 file is within this size limit of 4 Mbyte.

• Download the prebuilt version of the mkfs.jffs2 from

ftp://sources.redhat.com/pub/jffs2/mkfs.jffs2.

Frequently Asked Questions

i.MX25 PDK Linux Reference Manual

29-2 Freescale Semiconductor

2. Mount the JFFS2 file system on the target system:

The JFFS2 file system can be mounted on one of the MTD partitions. The partition table is set up

in two ways: static and dynamic. If no RedBoot partition is created when Linux boots on the target,

a static partition table is used from the MTD map driver source code (mxc_nor.c for example).

Otherwise, the RedBoot partition is used instead of the static one.

In most cases, it is more flexible to set up a partition in RedBoot for JFFS2 that can be used by

Linux. To do this, use RedBoot to program (use fis create) the newly created JFFS2 image into

the Flash on some unused space and then create a partition using fis create.

The following example illustrates how to do this in more detail.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point

RedBoot 0xA0000000 0xA0000000 0x00040000 0x00000000

kernel 0xA0100000 0x00100000 0x00200000 0x00100000

root 0xA0300000 0x00300000 0x00D00000 0x00300000

jffs2 0xA1200000 0xA1200000 0x00200000 0xFFFFFFFF

FIS directory 0xA1FE0000 0xA1FE0000 0x0001F000 0x00000000

RedBoot config 0xA1FFF000 0xA1FFF000 0x00001000 0x00000000

The above shows that a RedBoot partition called jffs2 is created which contains the JFFS2 image

inside the Flash. When booting Linux, the kernel is able to recognize the RedBoot partitions and

create MTD partitions correspondingly when CONFIG_MTD_REDBOOT_PARTS=y is in the kernel

configuration (it is the default configuration on all i.MX platforms). With the above example, the

Linux kernel boot message shows:

Searching for RedBoot partition table in phys_mapped_flash at offset0x1fe0000

6 RedBoot partitions found on MTD device phys_mapped_flash

Creating 6 MTD partitions on "phys_mapped_flash":

0x00000000-0x00040000 : "RedBoot"

0x00100000-0x00300000 : "kernel"

0x00300000-0x01000000 : "root"

0x01200000-0x01400000 : "jffs2"

0x01fe0000-0x01fff000 : "FIS directory"

The JFFS2 is the fourth MTD partition under Linux in this case. To mount this MTD partition after

booting Linux, type:

cd /tmp

mkdir jffs2

mount -t jffs2 /dev/mtdblock/3 /tmp/jffs2

This mounts /dev/mtdblock/3 to the /tmp/jffs2 directory as the JFFS2 file system (directory name can be

something other than jffs2). The static partition method uses the partition table defined in the NOR MTD

map driver source code. The way to mount it is very similar to what is described above.

29.3 NFS Mounting Root File System

1. Assuming the root file system is under /tmp/fs, modify the /etc/exports file on the Linux host by

adding the following line:

/tmp/fs *(rw,no_root_squash)

2. Make sure the NFS service is started on the Linux host machine. To start it on the host machine,

issue:

service nfs start

Install NFS RPM if not already installed.

Frequently Asked Questions

i.MX25 PDK Linux Reference Manual

Freescale Semiconductor 29-3

3. To boot with a NFS mounted file system under RedBoot, use the following command:

exec -b 0x100000 -l 0x200000 -c "noinitrd console=tty0 console=ttymxc1 root=/dev/nfs

nfsroot=1.1.1.1:/tmp/fs rw init=/linuxrc ip=dhcp"

The above example assumes the Linux host IP address is 1.1.1.1. This needs to be modified in the

command line used.

NOTE

The /etc/fstab mounts several ramfs drives in places like /root and /mnt

(see /etc/fstab for the complete list). This is desirable when the root file

system is burned into Flash as it provides some read/write disk space.

However, this causes problems when doing an NFS mount of the root file

system because any files added or modified on these directories exists only

in RAM, not on the NFS mount. In addition, these drives hide any contents

of their respective directories on the host NFS mount. Not all directories of

the root file system are affected by this, only the ones that fstab loads a ramfs

on top of. This can be fixed by editing /etc/fstab and deleting or

commenting out all lines that have the word “ramfs” in them.

29.4 Error: NAND MTD Driver Flash Erase Failure

The NAND MTD driver may report an error while erasing/writing the NAND Flash. One possible reason

for this failure is the NAND Flash is write protected.

29.5 Error: NAND MTD Driver Attempt to Erase a Bad Block

This error indicates that a block marked as bad is attempting to be erased, which the MTD layer does not

allow. Sometimes many or all the blocks of the NAND Flash are reported as bad. This could be because

garbage was written to the block OOB area, possibly during testing of the board. To overcome this, the

Flash must be erased at a low level, bypassing the MTD layer. For this, the NAND driver needs to be

recompiled by enabling MXC_NAND_LOW_LEVEL_ERASE definition in the mxc_nd.c file. This

produces an MXC NAND driver, which upon loading, erases the entire NAND Flash during initialization.

Be careful when using this feature. Loading the NAND driver causes the entire NAND device to be erased

at a low-level, without obeying the manufacturer-marked bad block information.

29.6 How to Use the Memory Access Tool

The memory access tool is used to access kernel memory space from user space. The tool can be used to

dump registers or write registers for debug purposes.

To use this tool, run the executable file memtool located in /unit_test:

• Type memtool without any arguments to print the help information

• Type memtool [-8 | -16 | -32] addr count to read data from a physical address

• Type memtool [-8 | -16 | -32] addr=value to write data to a physical address

If a size parameter is not specified, the default size is 32-bit access. All parameters are in hexadecimal.

Frequently Asked Questions

i.MX25 PDK Linux Reference Manual

29-4 Freescale Semiconductor

29.7 How to Make Software Workable when JTAG is Attached

When the JTAG is attached, add option jtag=on in the command line when launching the kernel.

	Contents
	Tables
	Figures
	Figures
	About This Book
	Chapter 1 Introduction
	1.1 Software Base
	1.2 Features

	Chapter 2 Architecture
	2.1 Linux BSP Block Diagram
	2.2 Kernel
	2.2.1 Kernel Configuration
	2.2.2 Machine Specific Layer (MSL)

	2.3 Drivers
	2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver
	2.3.2 Real-Time Clock (RTC) Driver
	2.3.3 Watchdog Timer (WDOG) Driver
	2.3.4 SDMA API Driver
	2.3.5 Sound Driver
	2.3.6 Memory Technology Device (MTD) Driver
	2.3.7 Networking Drivers
	2.3.8 USB Driver
	2.3.9 Security Drivers
	2.3.10 Power managementGeneral Drivers

	2.4 Boot Loaders
	2.4.1 Functions of Boot Loaders
	2.4.2 RedBoot

	Chapter 3 Machine Specific Layer (MSL)
	3.1 Interrupts
	3.1.1 Interrupt Hardware Operation
	3.1.2 Interrupt Software Operation
	3.1.3 Interrupt Features
	3.1.4 Interrupt Source Code Structure
	3.1.5 Interrupt Programming Interface

	3.2 Timer
	3.2.1 Timer Hardware Operation
	3.2.2 Timer Software Operation
	3.2.3 Timer Features
	3.2.4 Timer Source Code Structure

	3.3 Memory Map
	3.3.1 Memory Map Hardware Operation
	3.3.2 Memory Map Software Operation
	3.3.3 Memory Map Features
	3.3.4 Memory Map Source Code Structure
	3.3.5 Memory Map Programming Interface

	3.4 IOMUX
	3.4.1 IOMUX Hardware Operation
	3.4.2 IOMUX Software Operation
	3.4.3 IOMUX Features
	3.4.4 IOMUX Source Code Structure
	3.4.5 IOMUX Programming Interface
	3.4.6 IOMUX Control Through GPIO Module

	3.5 General Purpose Input/Output (GPIO)
	3.5.1 GPIO Software Operation
	3.5.2 GPIO Features
	3.5.3 GPIO Source Code Structure
	3.5.4 GPIO Programming Interface

	3.6 EDIO
	3.6.1 EDIO Hardware Operation
	3.6.2 EDIO Software Operation
	3.6.3 EDIO Features
	3.6.4 EDIO Source Code Structure
	3.6.5 EDIO Programming Interface

	3.7 SPBA Bus Arbiter
	3.7.1 SPBA Hardware Operation
	3.7.2 SPBA Software Operation
	3.7.3 SPBA Features
	3.7.4 SPBA Source Code Structure
	3.7.5 SPBA Programming Interface

	Chapter 4 Smart Direct Memory Access (SDMA) API
	4.1 Overview
	4.2 Hardware Operation
	4.3 Software Operation
	4.4 Source Code Structure
	4.5 Menu Configuration Options
	4.6 Programming Interface
	4.7 Usage Example

	Chapter 5 PMIC (MC34704) Protocol Driver
	5.1 Key PMIC Features and Capabilities
	5.1.1 PMIC Register Access and Arbitration
	5.1.2 Event Notification

	5.2 Driver Requirements
	5.3 Driver Software Operation
	5.4 Driver Implementation Details
	5.4.1 Driver Initialization
	5.4.2 Driver Unloading
	5.4.3 Register Access

	5.5 Driver Source Code Structure
	5.6 Linux Menu Configuration Options

	Chapter 6 PMIC (MC34704) Regulator Driver
	6.1 PMIC Features
	6.2 Driver Requirements
	6.3 Driver Software Operation
	6.4 Regulator APIs
	6.5 Driver Architecture
	6.6 Driver Implementation Details
	6.7 Driver Source Code Structure
	6.8 Linux Menu Configuration Options

	Chapter 7 i.MX25 Low-level Power Management (PM) Driver
	7.1 Hardware Operation
	7.1.1 Lower Power Mode

	7.2 Software Operations
	7.3 Source Code Structure
	7.4 Linux Menu Configuration Options
	7.5 Programming Interface

	Chapter 8 CPU Frequency Scaling (CPUFREQ) Driver
	8.1 Software Operation
	8.2 Source Code Structure
	8.3 Menu Configuration Options
	8.3.1 Board Configuration Options

	Chapter 9 Liquid Crystal Display Controller (LCDC) Driver
	9.1 LCD Driver Overview
	9.1.1 Hardware Operation
	9.1.2 Software Operation
	9.1.3 Graphics Window
	9.1.4 Architecture

	9.2 Source Code Structure Configuration
	9.3 Linux Menu Configuration Options

	Chapter 10 OmniVision Camera (OV2640) Driver
	10.1 Hardware Operation
	10.2 Software Operation
	10.3 Source Code Structure
	10.4 Linux Menu Configuration Options

	Chapter 11 MXC Camera Sensor Interface (CSI) Driver
	11.1 Hardware Operation
	11.2 Software Operation
	11.2.1 CSI Software Operation
	11.2.2 Video for Linux 2 (V4L2) APIs

	11.3 Source Code Structure
	11.4 Linux Menu Configuration Options
	11.5 Programming Interface

	Chapter 12 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	12.1 SoC Sound Card
	12.1.1 Stereo Codec Features
	12.1.2 5.1 Codec Features
	12.1.3 4-Channel ADC Codec Features
	12.1.4 Sound Card Information

	12.2 ASoC Driver Source Architecture
	12.3 Menu Configuration Options
	12.4 Hardware Operation
	12.4.1 Stereo Audio Codec
	12.4.2 5.1 Audio Codec
	12.4.3 4-Channel ADC Codec

	12.5 Software Operation
	12.5.1 Sound Card Registration
	12.5.2 Device Open

	Chapter 13 NAND Flash Memory Technology Device (MTD) Driver
	13.1 Overview
	13.1.1 Hardware Operation
	13.1.2 Software Operation

	13.2 Requirements
	13.3 Source Code Structure
	13.4 Linux Menu Configuration Options
	13.5 Programming Interface

	Chapter 14 Low-Level Keypad Driver
	14.1 Hardware Operation
	14.2 Software Operation
	14.3 Reassigning Keycodes
	14.4 Driver Features
	14.5 Source Code Structure
	14.6 Menu Configuration Options
	14.7 Programming Interface
	14.8 Interrupt Requirements
	14.9 Device-Specific Information

	Chapter 15 Touch Screen and ADC Drivers
	15.1 Driver Overview
	15.2 Hardware Operation
	15.3 Software Operation
	15.4 Source Code Structure
	15.5 Menu Configuration Options
	15.6 Programming Interface (Exported API)
	15.7 Interrupt Requirements

	Chapter 16 SMSC LAN9217 Ethernet Driver
	16.1 Hardware Operation
	16.2 Software Operation
	16.3 Requirements
	16.4 Source Code Structure
	16.5 Linux Menu Configuration Options

	Chapter 17 Fast Ethernet Controller (FEC) Driver
	17.1 Hardware Operation
	17.2 Software Operation
	17.3 Source Code Structure
	17.4 Menu Configuration Options
	17.5 Programming Interface
	17.5.1 Device-Specific Defines
	17.5.2 Getting a MAC Address

	Chapter 18 DryIce Driver
	18.1 Dry Ice Driver Features and Capabilities
	18.2 Driver Requirements
	18.3 Driver Software Operation
	18.4 Driver Source Code Structure
	18.5 Linux Menu Configuration Options
	18.6 Hardware Configuration

	Chapter 19 Security Drivers
	19.1 Hardware Overview
	19.1.1 Boot Security
	19.1.2 Secure RAM
	19.1.3 KEM
	19.1.4 Zeroizable Memory
	19.1.5 Security Key Interface Module
	19.1.6 Secure Memory Controller
	19.1.7 Security Monitor
	19.1.8 Secure State Controller
	19.1.9 Security Policy
	19.1.10 Algorithm Integrity Checker (AIC)
	19.1.11 Secure Timer
	19.1.12 Debug Detector

	19.2 Software Operation
	19.2.1 SCC Common Software Operations

	19.3 Driver Features
	19.4 Source Code Structure
	19.5 Menu Configuration Options
	19.5.1 Source Code Configuration Options

	Chapter 20 Inter-IC (I2C) Driver
	20.1 I2C Bus Driver Overview
	20.2 I2C Device Driver Overview
	20.3 Hardware Operation
	20.4 Software Operation
	20.4.1 I2C Bus Driver Software Operation
	20.4.2 I2C Device Driver Software Operation

	20.5 Driver Features
	20.6 Source Code Structure
	20.7 Menu Configuration Options
	20.8 Programming Interface
	20.9 Interrupt Requirements

	Chapter 21 Configurable Serial Peripheral Interface (CSPI) Driver
	21.1 Hardware Operation
	21.2 Software Operation
	21.2.1 SPI Sub-System in Linux
	21.2.2 Software Limitations
	21.2.3 Standard Operations
	21.2.4 CSPI Synchronous Operation

	21.3 Driver Features
	21.4 Source Code Structure
	21.5 Menu Configuration Options
	21.6 Programming Interface
	21.7 Interrupt Requirements

	Chapter 22 MMC/SD/SDIO Host Driver
	22.1 Hardware Operation
	22.2 Software Operation
	22.3 Driver Features
	22.4 Source Code Structure
	22.5 Menu Configuration Options
	22.6 Programming Interface

	Chapter 23 Universal Asynchronous Receiver/Transmitter (UART) Driver
	23.1 Hardware Operation
	23.2 Software Operation
	23.3 Driver Features
	23.4 Source Code Structure
	23.5 Configuration
	23.5.1 Menu Configuration Options
	23.5.2 Source Code Configuration Options

	23.6 Programming Interface
	23.7 Interrupt Requirements
	23.8 Device Specific Information
	23.8.1 UART Ports
	23.8.2 Board Setup Configuration

	23.9 Early UART Support

	Chapter 24 ARC USB Driver
	24.1 Architectural Overview
	24.2 Hardware Operation
	24.3 Software Operation
	24.4 Driver Features
	24.5 Source Code Structure
	24.6 Menu Configuration Options
	24.7 Programming Interface
	24.8 Default USB Settings

	Chapter 25 FlexCAN Driver
	25.1 Driver Overview
	25.2 Hardware Operation
	25.3 Software Operation
	25.4 Source Code Structure
	25.5 Linux Menu Configuration Options

	Chapter 26 Real Time Clock (RTC) (DryIce) Driver
	26.1 Hardware Operation
	26.2 Software Operation
	26.3 Requirements
	26.4 Source Code Structure
	26.5 Programming Interface

	Chapter 27 SIM Driver
	27.1 Hardware Operation
	27.2 Software Operation
	27.3 Requirements
	27.4 Source Code Structure
	27.5 Linux Menu Configuration Options
	27.6 Programming Interface

	Chapter 28 Watchdog (WDOG) Driver
	28.1 Hardware Operation
	28.2 Software Operation
	28.3 Generic WDOG Driver
	28.3.1 Driver Features
	28.3.2 Menu Configuration Options
	28.3.3 Source Code Structure
	28.3.4 Programming Interface

	Chapter 29 Frequently Asked Questions
	29.1 Downloading a File
	29.2 Creating a JFFS2 Mount Point
	29.3 NFS Mounting Root File System
	29.4 Error: NAND MTD Driver Flash Erase Failure
	29.5 Error: NAND MTD Driver Attempt to Erase a Bad Block
	29.6 How to Use the Memory Access Tool
	29.7 How to Make Software Workable when JTAG is Attached

