I.MX 6Dual/6Quad Linux Reference
Manual

Document Number: IMX6QLXRM
Rev L3.0.35_4.1.0, 09/2013

<&,

Z“ freescale

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

Contents
Section number Title Page
Chapter 1
About this Book
Lol AUGIEIICE. ..t et e bbb h ettt ettt s a e 23
LLT CONVENTIONS.cuiiiiiiiiiitiic ittt sttt sa e a e bt sa e b bbb e ae s seene e 23
1.1.2 Definitions, Acronyms, and ADDIEVIALIONS.cc.eeuteriiiieitiiierie ettt ettt ee et ee st et steeeesaeeeesbeeeesbeenaesaeans 23
Chapter 2
Machine Specific Layer (MSL)
2 B Vi (o7 1117 510) s OO 27
2.2 INLEITUPLS (OPCIALION)....eueeeutieuiieitenitete ettt ettt ettt ett et et et e ebe e bt e et e ebteeb e eabeesbeebteabe e bt eatesbeesbe e bt emaesbeesbeenaeeatesbeenbeenneeaee 28
2.2.1 Interrupt HardWare OPETatiON...........cocueiritiriieriieenieeriteeteeeteestteesttesiteesiteesatesabeesabeesbeeenbeesabeessseeseesabeessseenseeas 28
2.2.2 Interrupt SOFEWArE OPEIAtION.eecuieutieeiertieteete et stee st erteetesitesaee bt eateeaeesaeesteenteeneeeseenbeanseentesasesbeeseensesneesnean 28
2.2.3 INEEITUPE FEATUIES. .. .eoutiiieiiieiiieiteteete ettt ettt ettt eb bbbt e bt e s bt et eatesbeenbeenbesbaesbeenbeenaesaeen 29
2.2.4 Interrupt SOUTCE COUE SIIUCTUIE.cuuteritiiiitieeiieeiteeetee et e et e st e ettt e sbeeeabeesbeesabeesabtesabeesbeesnbeesabeesnbeesbaesaseeas 29
2.2.5 Interrupt Programming INtEITaCe.couiiiriiiiiiiiiiiiiiint ettt 29
2.3 TTHIMIET ettt etk h et e a e a e a e aeea e bt e h e eh e bt b e sa e b b s et 30
2.3.1 Timer SOftWare OPEIALION.eiiuiiiriiiiiiieiieeiie ettt ettt et e ettt et e ettt e sbte ettt ebteebeeeabbesnbeeenbaeebeessaesnseeas 30
2.3.2 THMET FRALUIES.eieutitieiieteee ettt ettt ettt ettt ettt e bt et e eat e e et e sbe et e enbeeseeebeanbeenbeeneeabeenbeensesnneanean 30
2.3.3 Timer SoUrce Code SIUCTUIR.cc.iiuiitiriiiiiiteteiet ettt ettt ettt ettt ettt eae bbb b s eaeeae e 31
2.3.4 Timer Programming INTEITACE.coouiiiiiiiiiiiiiiiteee ettt ettt et et e st e b e st e e sbaeebeenaee s 31
2.4 MEIMOTY MAP ..ttt ettt ettt e sa e bt e bt e e st eea bt e e bt e bt e e bt e bt e e bt e bt e ea bt e sht e e eate e baeebeenatee 31
2.4.1 Memory Map Hardware OPETration..........cc.cecueruiiriieiinieniinienitete ettt site sttt st et et st esae e sae et saeesieeaesaeen 31
242 Memory Map SOftWare OPETALION..........eerieiiuieiriieeiieeieeeitt et ettt et e et ee st e st e e sttt estbe s baeebeesabeesaseesaseessseeaseeas 31
243 MemOTY Map FEALUIES.cooviiiiiiiiiiiteeteeeetee ettt et et e sa e sa e e bt e s bt e sat e e s bt e et e sabeessseenbeees 31
2.4.4 Memory Map Source Code STIUCIUIR.cotirutiriiriiriieiteeiteettet ettt sttt et ettt st sbee bt e bt et eareeeresbaenaeen 32
2.4.5 Memory Map Programming INtEIfaCe...........covuiiiiiiiiiiiiiiiieiic ettt ettt s 32
2.5 TOMUX .ottt ettt h et bt b et h et h e bt et a bt b et b e bRt b et h et b et h e bt bt b e st s bt be e 32
2.5.1 TOMUX Hardware OPEIAtiON.ceuerteruterieeieeteetientteteeteeetesttesttesteesteeseesstesttesueeteesteeatesteesseenbeenseessessaenseen 33
2.5.2 TOMUX SOftWATE OPETALION.eetierireeiteeieeniteentte et estteetee sttt esbteeiteesbtesbeestteebeeeabeesbaeenbeessseeseesnseensaeeseenseean 33

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 3

Section number Title Page
2.5.3 TOMUX FEALULES.uiiuiiiiiiiiiiiiiiietec et s st sae s 34
2.5.4 TOMUX SOUICE COUE STITUCLUIR.ceiutruieiuieteenieiteerteeteette it e te et esteetesate bt eeesseesbeeneesseesseeneesseesbeensesneenseensesneas 34
2.5.5 IOMUX Programming INtEITACE.cocueriiiiiiiiiiiiiiieieie ettt st 34
2.5.6 IOMUX Control Through GPIO MOUIE..........coiuiiiiiiiiiiiieiiieeiee ettt sttt st s n 34
2.5.6.1 GPIO HardWare OPEIation..........ccceeeeruerierueeierteeiesieeeesteetesteeteeseeteeseensesseesseeneessessesseesesseesesseans 35
2.5.6.1.1 MUXING CONLIOL ...ttt ettt ettt st sbe st beestesbe e nieens 35
2.5.6.1.2 PULLUP CONLIOL....c.ocuiiiiiiiiiiieiinietiteee ettt 35
2.5.6.2 GPIO Software Operation (ZENETAL)..........ccuieiuieiiriieieeie ettt ettt eae e ee et e aeeeeeeseeenneas 35
2.5.6.3 GPIO IMPIEMENTALION.ceotiiitiriiitieieeiteriteteeit ettt ettt ettt sttt et s bt e bt e bt e s bt ebesstesbeenaeeaeesaeen 36
2.5.6.4 GPIO Source Code STIUCTUIE.........coeouiiiiiiiiiiiiiiii et 36
2.5.6.5 GPIO Programming INTEITaCe.c.eeiuiiiuiiiiiiiiiieie ettt ettt s 36
2.6 General Purpose Input/Output(GPIO)........cc.coiiiiiiiiiiiiitii ettt ettt 36
2.6.1 GPIO SOftWATe OPETAtION...c.uuieruriiitiieiieriiteriteette st e ettt ettt et eesateesttesbeesabeesstesabeesabeesateesbtesabeesnseenseesabeessseenseeas 36
2.0.1.1 APLTON GPIO ..ottt ettt ettt ettt b ettt ne bttt ebenaenea 37
2.6.2 GPIO FEALUIES. ..ottt ettt et b e et s a e bbb b s st be s ea e 37
2.6.3 GPIO Module Source Code SIIUCTULE...........ccuiiiiiiiiiiiiiiiieiee e 38
2.6.4 GPIO Programming INTEITACE 2........couiiuiiiiiiiiiiieiieete ettt ettt ettt ebe ettt et seeesbeebeeneesneas 38
Chapter 3
Smart Direct Memory Access (SDMA) API
T8 B)< 1 1< 2O 39
3 1.1 HAardware OPEIAtiON......c..ceoueieirieriiriienieeterttete et sttt et et e e sttesb e et e st b e bt estesbse bt eabe st e e beeabesbeenbeessenbeenbesbnenaeens 39
3.1.2 SOFtWATE OPETATION. ..c.uuiiiutiieitieritteite ettt ettt et e et e sttt ettt e bt e eabee s bt e eabe e bt e e ateeabeesabeesateesabeessteesbeenseesabeesaneenns 39
3.1.3 SOUTCE COUE SIIUCTUTE. ...ccuutiiiiieiieeriieeettt ettt ettt ettt et e e et e bt s e et e e s be e e bt esabeeeabeesabeeeateesabeesaseenabeenneeenns 40
3.1.4 Menu Configuration OPLIONS.ccouteuiriirtertieieeiteettestt ettt ettt ettt et e bt satesbee bt esteebeesbeebeesteentesbeenseens 41
3.1.5 Programming INEETTACE.coouiiiiiiiiiiie ettt ettt st e st e et e st e st e e st e e sabee e 41
31,6 USAZE EXAMPIE. ...c.eeitieniiiiieiieet ettt etttk e et e e e e e bt e e bt e bt e bt e nteeaeesae e bt enteeneeeteetens 41
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
4 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 4
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
A1 OVRIVIEW .ottt e b b st e ettt ettt et b bt et b e eae et 43
411 HardwWare OPEIAtION.ceeuieruteriieeiteeitestteettesittesteestteebee sttt esbeeebeesateesssesabtesabeessseeabeeanbeensseeassesaseesaseanaeesases 43
4.1.2 SOTEWAIE OPETALION. ... eeutieuiieitietiettete ettt ette et et eateett e bt e bt este et ee bt e st estesseenbeeabeemeesseenbeenseemeesaeeaaeenseeneesneenaeenseenes 44
4.1.3 SoUICE COA@ SIIUCLUIE.eouiiiiiieiieiieiete ettt ettt s b ettt s e s et s b eae e eenesaeas 44
4.1.4 Menu Configuration OPLOMNS.ueerttiiieeiieeiteeite et te et te st e ete ettt e stteebtesbeesabeesabeesabeesabeessbeenbseenseesbaeeseesases 45
4.1.5 Programming INEEITACE........ccouiiiiiiiiiieiietiet ettt ettt ettt et e bt e bt e bt e e eetesseesaeesbeebeeneeenee 45
4.1.6 USAZE EXAMPIE....coiiiiiiiiiiiiiieiit et st 45
Chapter 5
Image Processing Unit (IPU) Drivers
S.1 0 INEEOAUCHION. c..ceiiiiiiiciieiee ettt ettt ettt et a et e ae s b e eb e bt et ea e b b st 47
5.2 HArdWAre OPETAtION.eciuieeieeiuieeiieniteeitte et estte et e e sttt ebeeesbeesbteeabeesaeeaabaeeabeaabtesabeessteenbeeeaseenstesabeenabeeabeesabeeseesabeenasesnses 48
5.3 SOFtWAIE OPEIALION. ...cueiuiiuiiiiiiieitiitetetet ettt ettt sttt sttt b e sb bt e b e e bt et e eb e bt e bt e st e st e st e st es s e st et e st et et emtensenaebenaenaenenee 49
5.3.1 Overview of IPU Frame Buffer DITVETS.......c..cccooiiiiiiiiiiiiiiiccieeecece e 50
5.3.1.1 IPU Frame Buffer Hardware Operation...........ccocueeruieriiierieiniieiiieeieesiieeite sttt et siee e s 51
5.3.1.2 TPU Frame Buffer SOftware OPeration.ceiueieerieniieieeieeiiesieeie et eteetee e eee e sieesaeeseeeee e 51
5.3.1.3 Synchronous Frame Buffer DITVer.........ccoccoiiiiiiiiiiiiiitceeece e 52
5.3.2 TPU BaCKIIZNE DITVET.c...ciiiiiiiiiiiiieeiteeteete ettt ettt ettt ettt e st e s it e st e e bae e bt e sa bt e saseesabeessbeenbeeen 53
5.3.3 TPU DEVICE DITVET....cuuiiuiiiiiiiiieitiett ettt ettt ettt e a e bt e bt et e et e s et e sae e bt e bt eateeseeeneebeenseensesneeanean 53
5.4 S0UICE COUE SLIUCTUIEoouiiiiiiiiiiiitieteeit ettt ettt sttt ettt et ettt a et b eb e bt sa e e bt ettt et esaene e eae e 54
5.4.1 Menu Configuration OPLIONS.eeeueerteerieerieerteeriteeriteetteetteeteesbee sttt essseesateebaeesstesabeesbeesaseesnseensseesssesnseeas 55
TR S B 11] A OSSPSR 58
551 Framebuffer TeSES....c.ooiiiiiiiiiiicicc et e 59
5.5.2 Video4Linux APILESt......ccuiiiiiiiiiiiiiiiii e 59
5.5.3 TPU DEVICE UL LESE...cuueiueeiiieitieteete et ettt ettt et ettt et e st e e et et e etee bt et e eneeesee bt enbeesbeebeebeenteensesseenseenseeneennean 60
Chapter 6
MIPI DSI Driver
(O B Vi (o7 1817 510) 3 OO OO 65
6.1.1 Overview of MIPI DSIIP DITVET......cc.coiiiiiiiiiiiiiiiiciiieiceiet ettt st s e 65

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 5

Section number Title Page
6.1.2 Overview of MIPI DSI Display Panel DITVeT.........ccccuiiiiiiiiiiiiiiiieieeie ettt sttt et st 66
6.1.3 HArdWare OPETAtiON.c..eeiuieuiiruieieeiieett et ette sttt et e steetesate et eeeeaee bt eaeesaeesseeneesaeenseemeesaeensesntesneensesneenseensesnean 66

6.2 SOTTWATE OPETALION.eeiuiiiieniiiiieniteie ettt ettt ettt ettt b et s bt s bt et s bt e st e et she e s bt eateshe e bt emtesb e e bt eatesbee bt eseesbeenaeenee 66
6.2.1 MIPI DSIIP Driver SOftware OPeTatiOn...........ccccueerueerieeriueenitesieesteeeteesteesteesteesbeesbeesaseesbeesseesseesnsees 66
6.2.2 MIPI DSI Display Panel Driver Software Operation............coeeueiueeueriieiienieieeiienteeieeseeeeeseeeee it eeesreeeeseeens 67

6.3 DIIIVET FALUIES. ...ttt et b e s et a e sttt et et ea e b b sae b 67
6.3.1 S0UrCe COde SIIUCTUIE.oiuiiiiiiiiiiiiiie it st s 68
6.3.2 Menu Configuration OPLIONS.cc.eeueeierieitieite et ete et et et eee st et e eteeseeeeeesteenteenteeseesbeenseenteensesbeeseensesneesneas 68
6.3.3 Programming INTEITACE.ccueiiiiiiiiiitite ettt et ettt et naeen 68

Chapter 7
LVDS Display Bridge(LDB) Driver

Tl INEEOAUCHION. c..eiiiiiiieiietiei ettt ettt ettt et e a et eae bt b e eb e b e ebeeaeebe b sae et ne e 69
T.1 T HArdWare OPETatION.eeiuriiriieeiieritteriteeite et ettt ette ettt estteeteesateesateesbeesabeesabeebaeeabeesaseensbesaseesabeenstesabeesnseenseean 69
T 1.2 SOFtWAE OPEIALION.cuititiiiitietieiteit ettt ettt sttt ettt et a ettt ettt st e be s bttt beebe bt e st st et e e et enenaennenne 69
T.1.3° S0UICE COAE SIIUCLUIE. ...c..eviiiiiiiiiiieierie ettt sttt et s b e sttt a e s ettt a e e 70
7.1.4 Menu Configuration OPLIONS.eeeueerreerieeerttesteertteerite ettt ettesteesbee sttt esaseessteebeeesseesabeesbeesateesaseessseesssesnseeas 70

Chapter 8
Video for Linux Two (V4L2) Driver

8.l INIOAUCTION. ...ttt et b e b b n e sa e 71

8.2 VAL CaPLUIE DEVICE. ... ceeetiiuieeiieitiete ettt ettt ettt sttt ettt e bt e bt e aee e a e e bt eaeesaeeebe e et eaeess e e st emeesaee st enseeneesseenseenes 72
8.2.1 VAL Capture IOCTLS. ...c..eiieiiiiiiiitete ettt ettt ettt ettt sae et et bt e sbeenbeebteebtesbeeteens 72
8.2.2 Using the VAL Capture APIS.........ooiiiiiieiiieeiieeteeete ettt ettt e et e sit ettt e bt e e bt e sbeesabeesabeesanee e 74

8.3 VAL OULPUL DEVICE. ...c.eieutieiietieieet ettt ettt ettt et eat et et et e et e sae e bt e et e e st eaeeeb e enbeemee bt emseebeenbeeseenbeenseeseenteeseeneeenes 75
8.3.1 VAL2 OULPUL JOCTLS. ...ttt ettt ettt ettt ettt b et ea s nens 75
8.3.2 Using the VAL OULPUL APIS......ciiiiiiiiiiiiteteee ettt sttt et st s e st e st e e sbbeebeesabeesbbesnbee e 76

8.4 SOUICE COUE STITUCTUIReoutieuiiitietiete ettt et ettt et e bt et e eate et e e bt eatees e e st enbeemseeseeabeenbeeaeeemeesbeenseemeesaeesseanaeeneesseenseenneenee 76
8.4.1 Menu Configuration OPLIONS.cooueeiiriiriieiieteeiteettet ettt ettt sttt sb e et et e satesatenaeesteebeesbeebeesteebsesbeenbeens 77
8.4.2 VAL2 Programming INEITACE.cccueiiiiiiiiiiii ettt ettt ettt e st e st e sbaeebeesbeesanee e 77

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
6 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 9
Graphics Processing Unit (GPU)
0.1 INEFOAUCHION. c..eiiiiiiicticiiei ettt ettt ettt ettt a e st eae bt b e eb e b e bt eae e b e b saeeaeeae e 79
O.1.1 DIIVEI FEALUIES.oiuiiiiiiiiiiiiiciic e s 79
O.1.1.1 Hardware OPETatiOn..........ceeeueeueeuieuieteuieiteiteieeiteiteitet et et eseease s essesse e esaesesaesense st ensensesaensenaesaensenne 80
9.1.1.2 SOFtWAIE OPEIALION.eruiiiieiiiiiiitiritete ettt ettt ettt et eat et b et eabesbee s bt e bt estesaeesaee et enaeeaee 80
9.1.1.3 Source Code SIIUCTULEc.cciiiiiiiiiiiiiii ittt s e 80
O.1.1.4 LIDIArY STITUCKUTIReouviuiiuiiiteiieietetetest et est ettt sttt st ettt sttt et ea et ettt et et et ea e ae e e aenaesaenene 81
9115 APT REfEIENCES. ...c.eiuiiiiiiiiiiiiiictie ettt 82
9.1.1.6 Menu Configuration OPLOMNS..........eeiiierieiritieieeriteesite ettt esite et e ssteesbeesbeesabeesbeesbeesbeesaseesaseesaseenns 82
Chapter 10

Direct FB
LO.1 INErOQUCTION. ...ttt e e a e ea e b sasea e ne s en b e 85
10.1.1 HArdWare OPETAtiON..........eeueeueeruieieetietteteettenteeteettesteeseesteesteeseesateseeneesseeseeaeesseesesneesseanseeneesseensesneesseensesneas 85
10.2 SOFEWATE OPETALION. ...c...eiuiiniiiniiritertteie ettt ettt ettt ettt ea et e st s ate s bt ea et sbe e bt ea et s bt e st e eatesb e e bt eatesbee bt estesbee bt eneesbeenaeenee 85
10.2.1 DirectFB Acceleration ATCHILECTULE...........cciiiiiiiiiiiiiiiiie it 86
10.2.2 1. MX DirectFB DIiver DELails........cc.oiieiieiiiiiiitiie ettt ettt ettt et sa et e et eeeeesreeeneas 87
10.2.3 The gal_config File for i.MX DireCtFB DITVET........ccccocteriiiiniiiiiirtiniteteeieeteettete ettt et 87
10.3 DIIECtEB EGL.......oiiiiiiiiiieece ettt sttt ettt 88
10.4 Setting Up DirectFB ACCEIETAION.c..eouiriiriiiiiitietirie ittt et ebe e 89

Chapter 11

HDMI Driver

IO O 01 0T 1817 510)3 OO R PR RPRRST 91
T1.1.1 Hardware OPETatiON.......c..ccuerueeruiriirieeriietenttente et ettesteestesteesteestesut e bt ebtesbteaeebtesbeestesatesbeenaesbeenbeebesbeesbeensenseen 91
T1.2 SOFtWATE OPETAION. ..c.ueieiuiiiiieeiie ettt ettt et et et et e et e st e ettt e beeeabeesabeessbeeabeesabeesase e baeesseesabeesaseeabeeenbeeeabeesnseanseenases 93
T1.201 COT@ ettt ettt e b et et e h e e bt et e h bt e bt e e et e e bt e e bt e e et e e ehbe ettt e bt e e bt e e beeeaeenbee s 93
T1.2.2 VEA@O ettt ettt b et b et 94
11.2.3 Display Device Registration and INTaliZation...........cueeriiiiiiinieiiieeie ettt e 95
11.2.4 Hotplug Handling and Video Mode Changes...........cccerieriririieiiieieieieienieniesrese sttt sae e sne e 96
L1205 AUAIO. c.tietinetiee ettt bbbttt bt ae e 96

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 7

Section number Title Page
L1206 CEC ...ttt ettt h ettt 98
11.3 SOUICE COUE STIUCLUTR.euiiitienieeie ettt ettt ettt et e bt et e et e et e enbeeaeeebeenteemeeeste bt embeemseeseeabeembeemeesseebeeneesneenseenseenes 98
11.3.1 Linux Menu Configuration OPTIONS.c..uerueiiertierierienieeteniteieeit ettt et et ettt e et estesaeeaesbeesaeeseesbeenaesaees 100
L1i4 UL TSE. ittt st sttt et b e s b e s et et a e a et b et e b et bt be e s s 101
TLAA T VAR utietiteetee e e e e e e e e e t e e b e bbbt b e bbbt b bbbt b et b bbbt b e 101
L1422 AUGIO. .ttt ettt bbb bbbt bbbttt 102
L1.4.3 CEC ..ttt et 102
Chapter 12
X Windows Acceleration
12,1 INEEOQUCTION. ...ttt e e b e e n e eas b n e ene s en b e 103
12.2 HardWare OPEIALION.c..eeuietieuiertieteetieteette et eteette et eatesteetesteeseeseeseemeesbeemseeseenseeseenbeeaseaseanseeseanteeneeebeanseeseenseeneenseenes 103
12.3 SOFIWATE OPETALION.euiiiiinieiitiitete ettt ettt ettt ettt ettt bt e bt st sbt e bt e st e ebte bt eate s bt e bt eatesbe e bt estesbeenaeeatesbeenaeenee 103
12.3.1 X Windows Acceleration ArChIteCTUIR.c.ovuiiiiiiiiiiiiiiiiiieicee e 104
12.3.2 1.MX 6 Driver for X-WindOWS SYSIEIM.....cc.eiuiitiiiiitietieiertieteett et et eteeteetee et tesseenteeseesaeesesseesseeneesaeesesneas 105
12.3.3 1.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows SyStem..........ccccceveeriiniinienieneeneeneeneenee. 107
12.3.4 EGL- X LIDTATYitiuiieiiicieiieteee sttt sttt 108
12.3.5 XOTZ.CONT FOT TIMX B...eniieiie ettt ettt et s a e bttt e a e e bt et e e st e sbe e bt eseesaeenbeensesseebeenseenean 108
12.3.6 Setup X-Windows SyStem ACCEIEIATION.cevutrtiriiriiiiirtienteete ettt ettt ettt ettt sbe et s sbeenaesiees 110
Chapter 13
Video Processing Unit (VPU) Driver
13,1 HAardwWare OPETAtiON.c..ce.ueueriertieieetteteetteete ettt ettt et et e bt etesbe e bt eaeesbeesaesbe et e eb b e bt eebesbeeateebtenbeebtenbeeatesbeenbeebeenseenee 113
13101 SOFtWATE OPEIALION. ...ccutiiiiiitiiiiieeite ettt ettt ettt sat e st e bt e e bt e eabeesabeesabeesubeessbeebbeenbeesabeesnseesabeesaneanseean 114
13.1.2 SOUICE COAE SIIUCLUTE.....ceutiiiiieiiiieeitteett ettt ettt et et e st esb bt e sateesbe e e sbte e bt e e sbbeebeeesbbeeabeeenbbesabeeebaeebeean 115
13.1.3 Menu Configuration OPLIONS.cc.eeuerieriiiriiieiieritente ettt ettt ettt et es bt este s bt e bt esbeeabesbbesbeebeeasesaaenbees 116
13.1.4 Programming INEEITACE.coiuiiiiiiiiieiiee ettt ettt ettt e st e ettt e bt e e bt e e sateeabee e baeenbeean 117
13.1.5 Defining an APPIICATION. ... ceueiuietieieeitieteetiet ettt ettt et ete et et e eate et e e bt eseeeseenbeeseesseeneesseenseeneesseensesneesaeensesneas 118
Chapter 14
OmniVision Camera Driver
14.1 OVS5640 USing MIPI CSI-2 INEETTACE.ccueouiruieiieiieiieieietesteteste ettt ettt st sb ettt saene e 119
14.1.1 HAardware OPETAtiON.......c..ceueeueeruiriiriieniieteettenteeiteeteenteeitesteesteestesatetesatesbt e tesbtesbeesbesatesbeenaesseenbeetesbeenbeensenseen 119
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
8 Freescale Semiconductor, Inc.

Section number Title Page
T4. 1.2 SOFtWATE OPEIALION. ...ccuutiiiieiiieiiieeitee ettt ettt et et e et e sttt e sat e e bt e e bt e eabeesabeeeabeesabeassteebbeenbeesabeesaseessseanaseanseean 119
14. 1.3 SOUICE COAE SIIUCLUTE.....ceoutiieiiieitieeite ettt ettt ettt e et ettt e et e sb bt e saeeesbteesbe e e bt e e sbbeeebeeesbbeebeeenbbesbeeenbaeenbeean 120
14.1.4 Linux Menu Configuration OPTIONS.c..uerueeierierierieniietenie ettt ettt ettt et et ettt et estesaeeeesbeesaeeseesbeesesaees 120

142 OV5640 UsSiNg paralle] TNLETTACE.eeitiiiiiiiiieiie ettt ettt ettt et e et e s bt e st e sabeesateenbaeenseesases 121
14.2.1 HAardWare OPETAtiON..........eeueeuieruieieeteetteteettentteteettesteetesteesteeseeeatateemeesseeseeaeesseesesneesseansesneesseensesseesseensesneas 121
14.2.2 SOFtWAIE OPEIATION. c..eeuveiiiiriiiieiieeite sttt ettt ettt eb ettt et b e bt eat e eateeb e e bt eabeeat e s bt e bt eabeebbesbeenbeenbesanenbeen 121
14.2.3 SoUrce Code SIIUCTUIE.c.iiiiiiiiiiiii ittt st s 122
14.2.4 Linux Menu Configuration OPTIONS.uerueeieitierteeieiteeteeti et etteeteeteeteeteeaeesteetesseen st eseesseesesseesseeneesaeensesneas 122

Chapter 15
MIPI CSI2 Driver

LT B (1 0T 1817 510)3 OSSP U PRSPPI 123
15.1.1 MIPI CSI2 DITVEI OVEIVIEW...c..icviiiiiiiiiiiieiiie sttt sttt st st st st st st s s 123
15.1.2 HArdWare OPETatiON.eiiuuiiiuieritieriteeiteetteeteetteebte sttt estteeteesateesateeabeesabeessteeabaeeaseesaseensbesaseesabeenseesnbeesnseenseean 124

15.2 SOTEWATE OPEIALION.euieiienitiiieite ettt ettt ettt e ste e et sa e e eteeatesaeenbeemeesaee bt eateeaee st eateseee st enteeaee bt entesaee st eneeeneeneeenes 124
15.2.1 MIPI CSI2 Driver Initialize OPeration.cccueeruiriiriiriiniieieeieeieeitesite sttt ettt ettt esbe et ebeeetesenesiaenaees 124
15.2.2 MIPI CSI2 CommON APT OPETAtION.eeriiiitiiiiieriieeitteeieesite et e sttt e et et ebtessbeebeessbeesbeesbeessseenbaesnseenseean 125

15.3 DIIVET FRATUIES.eeeeutiiiete ettt ettt ettt ettt e h et e b et et et e e st et e e mee e et emee e et embeeheembeeseenseeseenbeeneenteeneenseeneenseenes 125
15.3.1 S0UICE COAE SIIUCLUIE.ocuiiuiiiiiiiiieieeie ettt ettt st sttt 126
15.3.2 Menu Configuration OPLIONS.eeueerrierieeriieerite ettt esieeettesteesteesbeesiteessteessteebaeaseesbeesbeessteessseensseesssesnseean 126
15.3.3 Programming INEITACE.cccuiiiiiieitiee ettt ettt ettt st e et ettt et e e st e ea et e e be et e et e eneeaneas 126
15.3.4 INteITuPt REQUITEIMEIIS.eiuieiiiiiiiiiete ettt ettt ettt ettt e b et et s bt sbtesb e e bt et ea b e e bt e sbee bt enbeesbeeabesbaenbeen 127

Chapter 16
Low-level Power Management (PM) Driver

16,1 HAardwWare OPETALION.c..eeuteuiiuiertieieettete ettt ettt et ettt ete bt etesb e e bt ebtesbeesaesbe et e eb b e bt eabesbeesteebeenbeebeenbeentesbeenbeebeenaeenee 129
16.1.1 SOFtWATE OPEIALION. ...ccutiiiiiiiitiiieeitte ettt ettt ettt ettt e st e st e e bt e e bt e e bt e sabeesabeesabeessteebbeenbeesabeesaseesabeesaneaseean 129
16.1.2 SOUTCE COAE SIITUCTUTIE.....cuuteutieuieeiieitieett ettt ettt et et et et este et e esbe e beeabeeaeeeseesseesbee bt eneeeseeeseenseenbeenseensesneenneas 130
16.1.3 Menu Configuration OPLIONS.cc.eeueriiriiiriiiieiieritenie ettt ettt ettt et es bt eatesbt e bt esbeeabesbtenbeebeessesasenaees 130
16.1.4 Programming INEEITACE.cooiiiiiiiiiiieiiieet ettt ettt et ettt e sab e ettt e bt e ebb e e bt e e bt e e baeenbeean 131
TO.1.5 UL TSt utenttintetiteeiet ettt ettt b ettt b et bbb s bbbt bbbt b et b et b bbbt bese e b et ebe e e 131

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 9

Section number Title Page
Chapter 17
PF100 Regulator Driver
17,1 INEEOQUCHION. c..c.eiiiiiiiciiiici ettt ettt ettt et et ea et e a e bt e bt ea e b e e b sa e b b saeene b e 133
17.2 HAardWare OPETAtION.cc.eeeuierrierieetteetteeteetteeteestteebeesaeeebeeeaseesseesabeeeabeeabeesabeenssesabeesaseeabeesabeenstesabeesnseenseesnbeananenases 133
17.2.1 DIIVET FRATUIES.eteiutieiiitieite ettt ettt ettt ettt et ettt e s bt e et e eb e en bt ese et e en b e ebeenteesee st ameeenee st eseesseeneesaeensesnean 134
17.3 SOFIWATE OPETALION. ...c...euieriiiniiiiterttete ettt ettt ettt ettt sa e st e st s h e s bt ea bt sbt e bt ea bt sbtenbeeatesb e e bt eatesbee bt estesbee bt eatesbeenaeenee 134
17.3.1 REGUIALOT APTS.c...eiiniiiiiieeeee ettt et ettt e b e e bt e e st e bt e et e e sat e e ssbeeabeesabeensteenbeesnseenseean 134
17.4 DIIVET ATCHITECIUIR.eiuiitieiit ittt ettt ettt ettt et ea e e s te et e s et e s bt em et ea e e bt eatesate bt eaeeseee bt emteeaee bt emeesaee st eneesneeneeenes 135
17.4.1 Driver Interface DEtails.........ccoiiiiiiiiiiiiiiiiiiicieiecee et s e 137
17.4.2 Source Code SIIUCTULE.c.iiiiiiiiiiii ittt st s 137
17.4.3 Menu Configuration OPLIONS.cc.eeuirtereerteeie et ie st et et eete st e et et e eaeesaeenseenteenteeseesseenbeenseesseaseeseensesnsesneas 137
Chapter 18
CPU Frequency Scaling (CPUFREQ) Driver
LT B Vi (0T 1817 510)3 OO O PRSP RPRRRT 139
L8.1.1 SOFtWAIE OPEIATION. . ceuveiutiiiieieiieeie ettt ettt ettt eb ettt et bt e bt et eat e eb e e bt eab e ebt e e bt e bt eabeeebesbeenbeensesasenbeen 139
18.1.2 SoUrce Code SIIUCTULE.cuiiuiiiiiiiiiii ittt s 140
18.2 Menu Configuration OPTIOMS.eeuieuierueeteetierteete et tertteteettesteeteseeesteeteaseesseenteestessee st eaeeaseenseemeesseensesneesaeeseeneesseenseenes 140
18.2.1 Board Configuration OPLiONS........co.eeeueetertietirieniieteetteete ettt et eite st et estesaeestesstesbeeaeesbeenaeeseesbeenaesseesbeensenseen 141
Chapter 19
Dynamic Voltage Frequency Scaling (DVFS) Driver
19,1 INEEOQUCHION. c..c.eiiiiiiiitiiici ettt ettt ettt et et et ebe et et e bt bt e bt ea e e b e e b sa e b e b saeene b e 143
TO LT OPCIALION. ...ttt ettt ettt ettt ettt e et et e s et e e bt e s et e e sabeeab e e s abeeabeesabeeabeenbeessbeenbeesabeebeeeabeenbbeenseensnean 143
19.1.2 SOFtWAIE OPEIALION.cuirtitiriiitietieiteitet ettt ettt sttt ettt b ettt ettt e b s bt sa e e bbbt et ettt esnene e eneae 143
19.1.3 S0UICE COAE SIIUCLUIE.oouiiiiiiiiiieieieite ettt sttt sttt et sa e s et 144
19.2 Menu ConfigUuration OPLIOMNS.cccuueeuierieeiieeriteetteetee sttt esiteeteesbeesateesteeesttesabeesabeessteeabaeesstesateessseenseesnbaesaseessseenseesnses 144
19.2.1 Board Configuration OPLIONS.cccrueeterieriintirertintietenteeteste sttt ste st st e ete st sae st s besaessesbesaesbesbesaestesbesaeseennenne 144
Chapter 20
Thermal Driver
20,1 INEFOQUCTION. ¢ttt ettt ettt et e e e et e e et su e e et e aee bt e s eeeeeeaeesaeembeesee bt emseebeembeeseembeessenteenseebeenseeneenseeneeneeenes 145
20.1.1 Thermal DITVEIr OVEIVIEW......cc.iiiiiiiiiiiiiiiiiiiiieiieiietee ettt ettt ettt s st s s 145

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

10 Freescale Semiconductor, Inc.

Section number Title Page

20.2 HArAWAre OPETAtION.eeuieeuieeitteeiteriteertte et ettt etee sttt ebeeesbeeshteeabeessteaabaesaseaaseesabeessseeabeesabeenseesabeensteeabeesabeeseesabeenseenases 145
20.2.1 Thermal Driver SOftware OPEIation.ccueeeeiuierieeieriieitienteeeetesete st et esteeteeaee st ee bt eneeeseesaeenbeeseensesneesneas 146

20.3 DIIVEI FEAIUTES....c..eviiiiiiiiicieietee ettt ettt et ettt et b b bbb sa e st et s ettt et ebt bt e st eseebeebeeueeaenes 146
20.3.1 SoUrce Code SIIUCTULE.c.eiuiiiiiiiiiii ettt s et 146
20.3.2 Menu Configuration OPLIONS.c.eeuietirieieerteeieete sttt et e ete st este e bt eateeseesteenteenteeseesteenseensesneeaseeseensesneesnean 146
20.3.3 Programming INEEITACE.cccueiiiiiiiiiiiiee ettt ettt ettt et et e b e et en 147
20.3.4 INterrupt REQUITEIMENLS.cc.utiiiiiiiiieiieetie ettt ettt e st et e st e e sttt e s abe e bt e e sabeebbeesbbeenbeeensbeebeeesaeenseean 147

204 UL TSE.utueeuiteiirteierteit ettt ettt ettt b et b et b e st b e st s st e st e bt e b et e b et e b et e bt e bt st e bt se e bt e b e bt et e st e b e st e b e st e b et e b et e b et b et benene 147

Chapter 21
Anatop Regulator Driver

B0 I B (Vi (0T 1117 (0)3 OO OO 149
21.1.1 Hardware OPETatiON..........cocueeeirueeriiritenieeteeitente et ette st eatestte et eatesbeestesatesbeenteeseesbeetesatesaeentesbeesbeenaesstenseensesaeen 149

21.2 DIIIVEE FEATUIES. ...ttt e ettt ea e e 149
21.2.1 SOFEWAIE OP@IATION. ...ccuteeuteiiieieietiete et etee et eete et e ste et eaee et e e bt eateesee st enteemeeesee st enbeesseebee st enteemsesneenseenseennesnean 150
21.2.2 ReZUIALOT APTS ..ttt ettt et sttt et sttt et bttt et bt ettt be e eaeen 150
21.2.3 Driver Interface Details..........cocooiiiiiiiiiiiiiiiiiiii e 151
21.2.4 SOUICE COAE STIUCLUTE.....eeiutieitiiitit ettt ettt ettt e ettt e st e e sat e e sateesbteesate e b et e sbbe e bt e esbbeebeeebaeebeeebaesareeas 151
21.2.5 Menu Configuration OPLIONS.cc.eeuertiriirtienieiierte sttt ettt et ettt et et eat e st e e bt eabeesbesaaesbeenbeessesbaesaeen 151

Chapter 22
SNVS Real Time Clock (SRTC) Driver

22,1 INEFOQUCTION. ...ttt ettt ettt et ettt et et e st bt e bt e b e e bt eaeeb e ebesaeeae b sue et 153
22.1.1 HAardWare OPETatION. ..c...eeruriiriieetieitteniteette et ettt estteetee sttt esteesateesateebeesabeessbeebaeeaseessseensbesaseesabeenstesabeesnseenseean 153

P N To) iV (0 o153 15 (o) | E OSSPSR 153
22.2.1 TOCT Lttt ettt ettt ettt b ettt n et b et 153
22.2.2 Keeping Alive in the POWer Off State.........cooouiiiiiiiiiiiiiieieeie ettt st 154

22.3 DIIVET FRATUIES.eeieitieiietieieet ettt ettt ettt e bttt e e a et e st et e en e e eb e eaeeee e enbe e et emtesheembeeseenseeseenbeeneenbeeneenseeneeneeenee 154
22.3.1 SoUICE COAE SIIUCLUIE. ...c..eouiiuiiiiiiiiitiieite ettt ettt s e b e sttt b sae b et e e e 155
22.3.2 Menu Configuration OPLIONS.ueeueerrieriueeriterieertteesiteeteeetteeteesibee sttt esateessteebeeeseesabeesseessseessseessseesssesnseean 155

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 11

Section number Title Page
Chapter 23
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

23.1 ALSA Sound Driver INrOQUCHION.coeciiiiiiiiiiiiieitcee ettt 157

23.2 SOC SOUNA CAIA ...t bbb 160
23.2.1 Stere0 CODEQC FEATUIES.cuttitiiiiieeiee ittt ettt ettt ettt ettt ettt e sab e et esateesabeesbteesaseenbteenbaeebeees 160
23.2.2 7.1 Audio COAEC FRATUIES.cc.eeuiiuiiiiiiieiiiiieiieiieiet ettt 161
23.2.3 AM/FM COdeC FEATUTES......c.cooiiiiiiiiiiiiiiiiiiiiiciicic e st 161
23.2.4 Sound Card INFOIMAION.cc.uiitiiiiitieeet ettt ettt ettt et b ettt e e et e bt e st ebe e st e ebeeneesbeeneesbeensesseensesnnans 161

23.3 HAardwWare OPEIATION.c..eeuerutertertertteteett ettt sttt et et e et sbe et sbee bt eaeesbe e tesbee bt eatesbeembeebt e bt eabenbeeab e et b et e eatesbeenteebeeaeenee 162
23.3.1 Stereo AUdio CODEC.........coiiiiiiiiiiiieeee ettt ettt 162
23.3.2 7.1 AUGIO COURC. ...ttt ettt ettt ettt et b e b et e e e st e sa e e eb e e bt e bt emeeeae e bt e bt emteeseeeaeebeenseenseeneeanean 163
23.3.3 AM/EM COCC.... ettt ettt ettt b et e b et n et b e 163

234 SOFtWATE OPETALION. ..c.uvtieuiieriiieiieeiee ettt et e et e s bt e sttt eteesabeesaeeesbaeeabeesabeesabeeaseesabeeesbeesateenbeesabeesaseebteenbaesabeesaseeseenates 163
23.4.1 ASOC Driver SOUICE ATCRITECTUIE.ccueitiiieiieetieiteett ettt ee b ettt et aeeseeesbe et e eateeaeeeseesaeebeenseensesneesnean 164
23.4.2 Sound Card REZISIIATION.c..certteiiiiiitieieeteett ettt ettt ettt ettt sb e et et s bt e bt et e satesb e e bt eabesbtesbeenbeeaaesaees 165
2343 DIEVICE OPCI...eiutiiiiiiiie ittt et te ettt ette st et e st e s ateeabeesate e btesateesateeabeesabeaabeesate e bteeabeesbteeabeessbeenbaesaseebaeenbeenseean 165
23.4.4 PlatfOrm DAta.......ooiuiiiieiieiieteeeee ettt ettt ettt et h bt a e bt e bt et e eh e e bt e bt enteebe e bt enteene e beenteenean 166
23.4.5 Menu Configuration OPLIONS.cc.eeueriiriirierieeierite sttt ettt et ettt e bt et eate et e esbe et e esbeeaaesbeenbeensessaesnees 166

23.5 UL TESE. ittt sttt st st a et et b et 167
23.5.1 Stere0 CODEQC UNIt TESE .. .uiiuiertieieitiete ettt et ee st ettt e bt et esaeestesatesbeebesmeesbeensesseesseensesseeaseensesneenseensesnean 167
23.5.2 7.1 Audio Codec UnIt TESt......ccuiiiiiiiiiiiiiiitieie ettt st s et 168
23.5.3 AM/EFM COAEC UNIt TESL.....ceiuiiiiieiiiiiiriiieterc ettt 169

Chapter 24
Asynchronous Sample Rate Converter (ASRC) Driver

241 INEEOAUCTION. ...ttt ettt e a e e a e b e bbb e 171
24.1.1 HAardWare OPETAtION.c..eeiuieutiruietieeiertteteeteesteeteettesteetesutesteeseesateaseeaeesaeenseaaeesseanseemeeaseensesneesneensesneesseensesnean 171

242 SOFEWATE OPETALION.eeutiiiiiiietieiteettett ettt ettt ettt ettt et eat e ebt et e e st e e st e bt e st e eatesbe e st e ebtesbeenteebtesbeenteeatesaeenteeneesbeenseenee 172
24.2.1 Sequence for Memory t0 ASRC tO MEMOTY........ccouiiiiiiiiiiieiieeiieeite ettt ettt et et sibeesbeesabeesaree s 173
24.2.2 Sequence for Memory to ASRC t0 Peripheral...........cccoooiiiiiiiiiiiei et 173

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
12 Freescale Semiconductor, Inc.

Section number Title Page
243 S0UICE COUE STIUCTUIE. ...ttt ettt s b e b e b et a e e 174
24.3.1 Linux Menu Configuration OPLIONS.c.ueiuteueruierieeieiteeteettete et steeteeteesteeseeeteenteesee et eneesseesesneenseensesseensesneas 174
244 Platform Data........ccocouiiiiiiiiiiitie e e bbb a e s a bbb 174
24.4.1 Programming Interface (Exported API and TOCTLS).....cccueiiiiiiiiniiiiierieeiee ettt 175
Chapter 25
The Sony/Philips Digital Interface (S/PDIF) Driver
25,1 INErOQUCTION. ..ottt e a e et 177
25.1.1 S/PDIF OVEIVIBW......c..eeutietietieuteetienteeuteettenteeteesteeteeaeestee et eatesbeeneeeaeeaseenseeate st ameesseenbeemeesatenseemeesaeensesneesseensesnean 177
25.1.2 HArdwWare OVEIVIBW........cc.couiriiiiiriiiiiiiiiiieie ettt ettt t e s e b et ettt ettt et sa et 178
25.1.3 SOFtWArE OVEIVIEW.iiuiiiiiiiiiiiiiiiii et st s 179
25.1.4 ASOC JAYET ..cnintiiteietetet ettt ettt ettt sttt b ettt a et be bt b et et b e et be e e b e 179
252 S/PDIF TX DITVEI....iiuiiiiiiiiiiiiiieieeeet ettt et sttt ettt eae e e s b b s 179
25.2.1 DIIVET DESIZN...ccuiiiiiiiiiieiiteeeet ettt ettt ettt et e st ettt s bt e st e e bt e e bt e s abe e bt e e bt e sateesabeenbeesabeennbeeabeeenbeeaee s 180
25.2.2 Provided USEr INEEITACE.cuiiiiiiieitiett ettt ettt et sttt e bt ettt e st e e st e bt e bt enbeenseeseeanean 180
253 S/PDIF RX DITVET..c.cuiiiiieiiiiiieiitcieit ettt ettt ettt b et bttt b e 181
25.3.1 DIIVET DESIZN...ceutiiiiiiiiieiiie ettt ettt ettt e st et e s bt e st e e bt e e bt e eabe e bt e ea bt e sateesabeeabeesabeenstesabeeenbeennee s 182
25.3.2 Provided USEr INEITACES.oouiiiiiieitieie ettt ettt et sttt ettt e se e be st e sbeenaesneesseenaeenean 182
254 SOUICE COE STIUCTUIReouviuiiiiiiitiitieii ettt ettt sttt e a bt et et et et a et sbesa et ebesaeebe e bt ebs e st et e s ea et ebesaeanes 184
25.5 Menu Configuration OPLIOMNS.oc.ueerueeeruterieerieeiteette et e siteesttesbee s bt e sttt e bteeabeesabeessteebaeesbeesateessseanbeesbaesaseessseenseesases 185
25.60 PlatfOrmm DaAta.......ccuoiiiiiiiieie ettt ettt a ettt et e bt a e ekt et e e et ekt et e eh e et e e n e e et e ebeeneeehee bt eneenaeenee 185
25.7 INterrupts and EXCEPLIONS. ...ccc.tetiiiiitiitieteeiteett ettt sttt ettt b e b ettt e bt bt e bt e st e b e e s bt e bt et bt b b e eaee 186
25.8 UNIt TSt PrEPATALION. ...cecutiiiiiiiiiiiite ittt ettt ettt e b ettt esa bt e s st e ettt e bt e s ab e e bt e e bt e sabeesabeebeeenbaesabeesabeeaeesases 186
B T B G (T A 1<) o SO SU PR STUSUSRUP 186
25.8.2 RE LB STOP . ueeuteeutertteteeite ettt ettt ettt sht ettt sttt et s bt e s bt et e bt e sb e e st bt e bt et e bt s bt et h e na et s bt e nheenbesbee bt eaesaeen 186
Chapter 26
SPI NOR Flash Memory Technology Device (MTD) Driver
261 INEFOQUCTION. c...iiiiiiiieii ettt ettt et et ekttt ekttt et e bt et e bt e b e e bt ebeebeeb e saeeae b e saeeaenes 189
26.1.1 HArdWare OPETAtION. ..c...eiruriiriieriiesiteeriteette et ettt e bt e ete e sttt eteesateesateeatesbeesabeenbaeesbeesaseenssesnseesnseanntesabeesnseenseean 189
26.1.2 SOFtWAIE OPEIALION.cuitietiriiitietieiteiteet ettt sttt st ettt et be ettt et et ettt b s bttt ebeebe bt e bt ese e s e e et enaenaennenne 190

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 13

Section number Title Page
26.1.3 DIIVET FEALUIES.oouiiiiiiiiiiiiiiiii e 190
20.1.4 SOUTCE COAE SIITUCTUIR.....c..eeutieuiieiteeiie ettt ettt ettt et e bt et este et e e eb e et e e bt eaeeeaeesaeesaee bt enteeneeeseeeaeenbeenseensesneeaneas 190
26.1.5 Menu Configuration OPLIONS.cc.eeueeiiriirtienieiierte sttt sttt et ettt e st et eate et e esbe et e esbeebaesbeenbeensessaesaees 191

Chapter 27
MMC/SD/SDIO Host Driver

271 INEFOQUCTION. ...ttt ettt ettt ettt ettt ekttt et e st et e bt e b e e bt eaeeu e ebesaeeue b e sueeae s 193
27.1.1 HardWare OPETAtION. ...c..eirurieriiertieritteniteette et ettt estteeite e sttt ettesateesateesbeesabeesabeebaeeaseesaseenssesabeesabeenstesabeesnseenseean 193
27.1.2 SOFtWAIE OPEIALION.cuirtietiriiitietieiteit ettt ettt sttt ettt et ae ettt et et et st be s bttt besbe bt e st eseease s et enenaennenee 194

272 DIIVET FEALUIES. ...ttt ettt b e s et b e b e et a e st ettt et eae b ebesueeae b e 196
27.2.1 Source Code SIIUCTULE.c.oiiiiiiiiiiii et st 197
27.2.2 Menu Configuration OPLIONS.cc.eoietiririeieieietetetenteeteste sttt st ettt ettt et esae st e besaesbe bt eaeeaee e ensenensennenne 197
27.2.3 PlatfOrm Data.......c.oouiiiiiiiiiiiiiiiiic e ettt 198
27.2.4 Programming INTEITACE.eeiiiiiiiiiiiiieetie ettt ettt et ettt st e e bt e s bt e e bt e e bt e ebeeebbeeabee s 198
27.2.5 Loadable ModUle OPEIatiONnS........cccceeerirueriirtirerientintenieeteste st etes e s steste st stesbesae st sbesaestesbesaesaesbesaessesbesaesaennenee 199

Chapter 28
NAND GPMI Flash Driver

B T B Vi (0T 1817 510)3 OO 201
28.1.1 HAardware OPETatiON..........cccueeiirueeriiriienieetieitenie et ette st ettt e bt et e sbtestesatesbeentesseesbeentesatesutentesbtesbeenaesatesbeenaesaeen 201

28.2 SOFtWATE OPETALION. ..c.ueteeitieritieiteitte et ettt et et et e sttt et esbeeeateesbteebeesabeeeabeeabeesabeesabeessteenstesabeesabeenbeeebaesabeesaseeseenases 201
28.2.1 Basic Operations: REAA/WIIE.co.uiiuiiiiiieie ettt ettt ettt et et et e s et e et e seeeteemeesbeeneesseeneeeneas 202
28.2.2 EXTOI COITECHOMN.cuuiuiiiiiiiititi ittt ettt st s st b e s b bbb bt e ae sttt ettt s et e b e saesaeae e 202
28.2.3 Boot Control BIOCK ManaQZEeMENL..........cccuuieruiiiiiieniieiieeeieesittesite ettt esiteebteeite st e ebeesabeessbeessseesaseenbseensbessees 202
28.2.4 Bad BIOCK HanAIING........cc.eeiiiiiiiieieiieteee ettt ettt et e bt et e et et eaee s bt entesaeebeeneesseeneeenean 203

28.3 SOUICE COE STIUCTUIR.ouviiiiiiiitietieit ettt ettt sttt ettt et ettt a et sb e sa et e bt ea e ebe e bt ebe e st et e s enenesesaennes 203
28.3.1 Menu Configuration OPLIONS.ueeueerreeriieertterteertteesiteetteeteeeteesbee ettt e sttt esateebaeestesabeesseessseesnseensseesssesnseeas 203

Chapter 29
SATA Driver

20.1 HArAWAre OPETAtION.eevieeiieetteetieetteette et ettt etee sttt ebeeeste ettt eabeessteaabeeeaseaabeesabeesaeenbeesabeenstesabeensteeabeesabeebeesabeenseenases 205
29.1.1 SOFtWAE OPEIALION.cuirtietiiieiietieiteit ettt ettt sttt ettt et ae ettt ettt st b sae st e e bt ebe e bt e bt eae e s e e et ennenaennenee 205
29.1.2 Source Code Structure CONfIGUIAION.eotiriieiiriiriieieeiteett ettt ettt ettt ettt sbaesbeesbeeaesaees 205

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
14 Freescale Semiconductor, Inc.

Section number Title Page
29.1.3 Linux Menu Configuration OPHONS.eeueiritiritenieeniie ettt esiteeiteestteste e sttt esbeesteesbaesbeessseesbeesaseesbaeeseensees 205
29.1.4 Board Configuration OPLIONS.cceeueetereruirtinenieeteete sttt este sttt ste et st st ste st sae st e besaesae b saestesbesaesbesbesaessennenae 206

29.2 Programming INTEITACE.coouiiiiriiiiiiiieeteeete ettt ettt et ettt st bt et s beesae et et sbee bt e eaee 206
20.2.1 USAE EXAMPIE2.....cooiiiiiiiiiieiite ettt ettt et ettt e b ettt e et e et e e st e e e bt esa bt e sabeesabeesab e e bt e e sabeenbbe e bbeeabee s 206
29.2.2 USAZE EXAMPIE......eiuiiiiiiiiiiitieie ettt sttt ettt et sttt e e e 207

Chapter 30
Inter-IC (I12C) Driver

T2 B 633 (o6 1 (<5 10 | OO PRSPPI 209
30.1.1 T2C BUS DITVEI OVEIVIEW...c.eiiiiiiiiiiiiiiiiiieiiciieiet ettt sttt sae s 209
30.1.2 I2C Device DIIVET OVEIVIEW.....c.cccuiiiiiiiiiiiiiiiiitieieci ettt s 210
30.1.3 HAardwWare OPEIaAtiON.........ceoueiueeiueeieitierteeiteattenteeteatteteestesteeteeseesseesteeseeseenseeseeseansesseenseansesseanseensenseenseesnenseans 210

30.2 SOFEWAIE OPETALION.eoutiiiiiiiitieiteettett ettt ettt ettt ettt et e bt st e bt e bt e st e eb e e bt e st e e bt e sbe e st e ebeesaeeateebtesbeenteebtesbeenbeentesbeenaeenee 210
30.2.1 T12C Bus Driver SOftware OPEIation..........cc.eecueerieriieiieeieeniteeteesite st e stte st estteebeebeesbeebeesabeesbeesaseebeesasesnnes 210
30.2.2 I2C Device Driver SOftware OPEratiOn..........cccueieerieruiertietieieeteeteeeesitesetestee et e et enteeetesetesneesseesseesseenseenseans 211

303 DIIVEI FRAIUIES. ...ttt ettt ettt et e b et bbb sb e st et se e ettt at st eaeebeebesueeaenes 211
30.3.1 SoUICE COAE STIUCTULE.ecuiiuiiiiiiiiiitictieit ettt st s b e e 212
30.3.2 Menu Configuration OPLIONS.cecuteuteiiriiertiete et ette st eteetteette bt eteetesaeesbeebeesesaeesaee st enteeseesseenseenseensesseenseans 212
30.3.3 Programming INEITACE.coiiriiriiiiiitieiect ettt ettt e be et sb e bt et et eas 212
30.3.4 INEITUPt REQUITEIMENES. ..ccuutiiiiieiiieiiteeitt ettt et ettt ettt et e e s bt e et e s b ee e bt e sabeesabeesabeeeabeesabeesaseesnbeannneenes 212

Chapter 31
Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

L1 INEFOAUCTION. ...ttt e b ea s ea e b e sa b 215
31.1.1 HAardwWare OPEIAtiON.........ceoueiuieiueeeeitienteeteatienteeteateeteestesteeteeseeateesteeseeaseemseeseeseansesseenseensesseanseensenseenseensenseans 215

31.2 SOFEWAIE OPETALION.eeuiiiiiiiiitieiieet ettt ettt ettt ettt ettt et ea e eb et e e st e bt e bt e st eatesbe e st e ebtesbeeabeebtesbeemteebtesbee bt eaeesbeeneeenee 215
31.2.1 SPI SUb-SyStem N LINUX...cotiiiiiiiiiiiieiieeitie ettt ettt ettt e st e st e e bt e sabeesatesbeesabeesabeenbaesnseenes 216
31.2.2 SOftWATE LAMIEATIONS.vetieutieiieteeiieetiete ettt ettt et et e st e bt et e seeeatesue e beeaeesueeabeeseebeentesbeenseeseenbeensesseenseensensnans 217
31.2.3 Standard OPEIATIONS.c..eerueruterteeieritente ettt ettt ettt s bt et eat e s bt e bt et s e bt esbesbtesbeeabe st tebeeabesbeenbeeabenbeenbestnenaeens 217
31.2.4 ECSPI Synchronous OPETatiOn.......cccueerueertierieeriieeitesiteesiteeiteesteessteetteeseessteessteesseessbeesstesabeesseessseesssessseesns 218

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 15

Section number Title Page
313 DIIVEI FRATUIES....c..oviiiiiiiiii e s sttt ea e n e sa e 220
31.3.1 SOUTCE COAE SIIUCTUTE. ...ccuuvtirutieiieeriteeette ettt ettt ettt e ebt ettt et e e bt e e bee e bt e s bt e e bt e s bt e sabeesabeeeabeesabeeenteenmbeenaeeenns 220
31.3.2 Menu Configuration OPLIONS.ccoueetiriiriteriieiieiteettest ettt ettt ettt sb e et et e satesat e bt estesbeesbeebeesteebeesbeenseens 220
31.3.3 Programming INTETTACE.ccoviiiiiiiiiiie ittt ettt e st e st e et e s bt e sateesabeesanee e 220
31.3.4 INtrTUPt REQUITEIMEIIES.eeutieitieiietietiet et ettt ettt et e te et e st e bt e st emteeaeeeb e e bt enbeeaaeemeesaeesseebeensesneeeneanseanseans 221
Chapter 32
FlexCAN Driver
32,1 DIIVEE OVEIVIEW ...ttt et ettt et et et e et en bt eat e et e e bt embeeate e bt e bt eateesteabeem bt emeeeseeeb e e st emeesaeenseenseemeeeaeenaeeneeeneesneeneeenee 223
32.1.1 HAardware OPEIAtiON......c..ccoueiierterrieriientertentt et ettt et et e st etesttesbe et et s e bt estesbte bt esbesbe e beetbesbeenbeessenbeenbessnenueens 223
32.1.2 SOFtWATE OPETATION. ..cuuiiiutieeiiieriieeeite ettt et et ettt e sttt e sttt ettt e bteeabeesabeeeabe e bt e esbbeeabeesabeesaseesabeenateesbesnseesabeenaseenns 223
32.1.3 SOUTCE COUE SIIUCTUTE. ...cc.uutirutieiieeriieeettt ettt ettt ettt ettt et ettt e bt e e bt e e b e e e bt esbe e e bt e s bt e eabeesabeeeabeesabeesaseesabeenneeenns 224
32.1.4 Linux Menu Configuration OPtIONS.c.ueruteiirtiiiieienieeteeteete ettt et sitente st steete st estesbeesbeessesbeenbesbaenbeesnenaeens 224
Chapter 33
Media Local Bus Driver
3301 INEFOQUCTION. c..eiiiieiieiieii ettt ettt ettt ekttt e a et e bt et e bt eaeeb e ebesaeeae b s ueeae s 227
33.1.1 MLB Device MOAUIE........ccciiiiiiiiiiiiiiiiiiicccc e 227
33.1.2 SUPPOTLEA FRALUIE.cuuieuiieiiietietiete ettt ettt b ettt e ae e st e e bt es e e s et e st e eateeaeeesee bt eneeeneenseenbeenseeseanseans 228
33.1.3 MOAES Of OPEIALION. ...c..eiuiiiientieiteeitenit ettt ettt ettt ebt e eb et e bt e st e abesb b e bt e bt eabeestesbtesbee bt enbeebtesbeesbeenseans 229
33.1.4 MLB DIIVET OVEIVIBW.....ccuiiuiiiiiiiiiiiiiiiiiiiiiiiic e s s b e s 229
R IV | D1 D) 4 A< OSSR 229
33.2.1 SUPPOTLEA FRALUIES.eoutiiiiniiiiiiteitteittet ettt ettt ettt et sb et sttt ea e sbe et sbt e bt satesbe et e sbeebesbaenbeeanenieens 229
33.2.2 MLB Driver ArChItECTUIR.couiiiiiiiiiiiiiiiiicii sttt 229
33.2.3 SOEWATE OPEIALION.eeutieiietietieiteetieeteet ettt et et e bt este e st e bt eteeaeesbee bt eabeeseeeaee st enseeaeeesteteeneeeneenseanteensesseanneans 231
333 DIIVET LS.ttt ettt s et 232
33.4 Menu Configuration OPLIOMS.c.eeeteerueeriieeieeeteesiteerite et e et e sttt e stteebeesabeessteeabeeebeesabeesabeabeesabeesaseenbseeseesaseesaseensnean 232
Chapter 34
ARC USB Driver
341 INEFOAUCTION. c...uiiiiiiiiieii ettt a e b a e ea e ea e en s sa b s 233
34.1.1 ATCHItECUIAL OVEIVIEWiiuiitieiiieiieettete ettt ettt ettt et ete et e steeatesh e e beeetesaeembeesee bt eateebeanbeeseebeenseeseenbeennanseans 233
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
16 Freescale Semiconductor, Inc.

Section number Title Page
342 HardwWare OPETALION.eevuveeiuieriiieiieeitesiteetee sttt ette sttt esateebee sttt ebeesate e bteeabeesseeaaseessseesaeeabeebaeesbeessseenbaesaseenbaesnseensnean 234
34.2.1 SOFEWATE OPEIALION.eeuteeuiitietieiteetteet et et e et et eteestesaee bt e beeaaesseesbeeaeeseesaee bt enseeaeeeseeteenseeneenseenteensenseanseans 234
34.2.2 S0UICE COAE SIUCTUIE.eouiiuieiiiiiiieitietiite ettt sttt ettt st st ea et sa et sa et eae et seennesaennes 235
34.2.3 Menu Configuration OPLIONS.co.ueerveiriieeriieiiteeiee st ee et ettt esite ettt esitesbeesbeesateesabeessteessteenseessbeesnseesabeessseens 236
34.2.4 Programming INTETTACE.ccueoiiiiiiiriiitiii ettt sttt sttt 239
343 SYSEIM WAKEUP..c.ueiiiiiiiiiiiieeiteteet ettt ettt ettt h e et e bt et eh e et e bt et e st e s bt e st e s bt e s et e bt et eb e et eb b et ebee e enee 239
34.3.1 USB WaKEUP USAZE...eeeuvteeutiteiteeieeetteeittesttesiteesteesiteesateesute ettt etteesteeastesbaeeateesabeesaseesabaesaseesabeesaseesabeennneenns 239
34.3.2 How to Enable USB WakeUp System ADILILY......ccccoceeiriirieriiiiiieieicieteiteere ettt 239
34.3.3 WakeUp Events Supported DY USB........cooiiiiiiiiiiiiertee ettt ettt 240
34.3.4 How to Close the USB Child Device POWET..........cccccoeiiiiiiiiiiiiiiiiiiiiiicicccceeecec e 241
Chapter 35
i.MX 6 PCI Express Root Complex Driver
35.1 INEFOQUCTION. ...ttt et a e ea e ea e b ea e 243
35101 PCIeu ittt bbbt b b st h bbb st s b st b et bbbt nes 243
35.1.2 Terminology and CONVENTIONS.c..cerutrttrtterieetierteete sttt ettt et et e st etesbtesbeeate s bt ebeebaesbeeabesbsenbeennesbeenbessnenseens 243
35.1.3 PCle Topology on i.MX 6 in PCIe RC MOGE.........ccccuiiiiiiiiiiiiiiiieeieesitete ettt ettt e 245
35,114 FALUIES. ...t eeetiente ettt ettt ettt ettt ettt e a et e et e s et e enteea e et e e a et e st e bt emt e ea e e b e em bt en b e eh e et e enbeehe et e enbeenee bt enbeeneenteans 247
35.2 Linux PCI Subsystem and RC AIIVET........cc.cocuiiiiiiriiiiiiinieeie sttt ettt ettt et s 247
35.2.1 RC driver SOUICE flES.......ccuiiiiiiiiiiiiiiiiiiiiicicc e s 248
35.2.2 Kernel CONTIGUIATIONS.euteuieitietietieitteie ettt ettt ettt et et e bt et e st e e et eaee bt emeesaeenbesse e beemeesbeensesseenbeeseenbeensennnans 248
35.3 System Resource: MemOTY LayOUL........co.coiiriiiiiiiieiieieeteie ettt ettt ettt ettt et b et sbe et saeenaesaeen 249
35.3.1 System Resource: INTEITUPL TINES. ...cc.ueiruiiiiiiiiieiiieeie ettt ettt sttt e st e st esabeesaseesabeesaneees 249
35.4 Using PCle Endpoint and running TeSS..........eeouiiieiuirieitietiete ettt ete st te st ete st etesteeteese e beesee st eseesseeneesseeneesaeensesnean 250
35.4.1 Ensuring PCIe System INitialiZation........cccoooieriiniiiiniiniiicecee ettt 251
3542 TOSES ittt h et a et s ettt s e n et b e n e nens 251
35.4.3 KNOWI ISSUCS.ueeiieit ittt ettt ettt et e a et e e st ea e et e e st e e et e ebeenteeneeebeenteenbeeneenbeentesneenaeans 252
35.5 1.MX 6Quad SD PCle RC/EP Validation SYSTEIM.......cc.ceuiiiiriiiniieiieiieieeieste sttt ettt sttt 252
35.5.1 HATAWATE SELUP.....eeiutiiiieieiieiteeite ettt ettt ettt st ettt bt e et e e bt e e b e e s at e e bt e eabe e bt e eabeesate e baeeabeesbseeseesateennbesnseenns 252
35.5.2 SOftwWare CONTIGUIATIONS.cecutiiirtietietieite ettt et ette et e st e e eete et ee bt ebeeaeesseesbe e seeaeesaeenseenteeseesneenseenteensesseanseans 252

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 17

Section number Title Page
35.5.3 FRALUIES.cviiiiiiiiiiice et s e 253
35.5.4 RESUILS. ...ttt ettt ettt sttt ettt e e e h e et e e et e e a e e bt e et e bt e beeh e e bt ea s e eh e e been e e bt eabeeh e e beenteebeenbeennenaeans 253

Chapter 36

WEIM NOR Driver

T B 633 (o 16 11 (<5 10 | OO P USRS 257
30.2 HAardWare OPEIATION.c..eeruerttirtiiteetieteett ettt ettt ettt ettt et shte bt eatesbe e bt sbee bt eatesbeenbeeb b e bt eabenbeen b e et s et e eatesbeenteebeenaeenee 257
30.3 SOFIWATE OPETALION.eeieieiieeiiteeite ettt te et ettt ettt et e ettt esbeeebtesateesabeeabeeeabteeabeebeeanseesabeesaseeabtesabeesabeessbeenseesabeesaseeseean 257
30.4 SOUICE COUR....c.ueeeeeieenee ettt ettt ettt ettt e e b et e ea e e bt et e e st e bt em b e es e et e ea b e es e et e em e e eseenteem e e st anteen s e st enseenee st eneeeseenneenee 257
36.5 Enabling the WEIM NORcccciiiiiiiiiiiieietet ettt ettt ettt ettt b et s b e et e ea et ebt e bt ebtesbeentesbeenaesueen 257

Chapter 37

Fast Ethernet Controller (FEC) Driver

371 INEFOQUCTION. c..eiiiiiiiieit ettt ettt et ettt et e st et e bt et e e bt eaeeb e b esaeeue b eueeaenes 259
37.2 Hardware OPETALION.cevuueruieriiieiieetteniteettesiteestte st estteebeeshteesbeesate e bteeabeesseeaabeessseeseesaseeabbeesbeensteestesaseenbaeenseennsean 259
37.2.1 SOFEWATE OPEIALION.eeutieeietietieiieetteet et et e et et e bt esteeaee bt eteesaeeseesbeenbeeaeeeaee bt eaeesaeeeseenbeeneeeneenseanteensesseanseans 262
37.2.2 S0UICE COAE SIUCTUIE.euiuiiiiiniiieitieteitt ettt ettt sttt ettt st b st eb et s et sa et eae et ennennesaenes 262
37.2.3 Menu Configuration OPLIONS.ccueeruieiriieeriie ettt eiee et ee et e sttt estte ettt et e sbeesbeesateesabeesseeessteesseessbeesseesbeesnseenns 262
37.3 Programming INEEITACE.ccuiiiiiiiie ettt ettt ettt et b ettt e st e bt e beeabesseesbeebeemeesaeeeaeenbeeneeeneeneeenneenee 263
37.3.1 Device-SPeCifiC DETINES.coiiriiiiiiiieiieiee ettt ettt sttt e ae et sa e st e st et eas 263
37.3.2 GettiNg @ IMAC AdATESS...c.uvieiieeiieeiieeite ettt ettt ettt et e st e st e e bt e s bt e bt e sabeesatesabeesabeeabeesabeenatesabeesasesbeenes 264

Chapter 38

ENET IEEE-1588 Driver
3.1 HArdWare OPETALION.eevuuieiieriiieiieeiiteitte et e sttt te sttt e stt e e bt e sttt ebeesute e bte e bt esbeeeabeeaaseebeeeabeebaeesbeensseensaesaseenbaeenseennnean 265
38.1.1 TranSmit TIMESTAMPING.eerueeueiuieiteeteeteettertt et eee st e bt etesteesteeateeseesseenteeseeesee st enseeneesseenseenseeseanseenseeseanseans 266
38.1.2 RECEIVE TIMESTAIMPING....c.veeureiiiteritetieitentt ettt ettt ettt et e et e sbeeatesbee bt estesbeemtesbeetesaeesbeesbesbeenbesbsenbeesnenueens 266
38.2 SOFIWATE OPETALION.eeiieeitieeiieeite ettt te et e sttt ettt et e e ettt e sbt e e beesateesabeeabteeabeeeabeesbaeeabeesabeesaseebteeabaesabeesabeenseesabeesaseeneean 266
38.2.1 SOUICE COUE SIIUCTUTE. ...ccuuteiiiieiieeriieeette ettt ettt ettt ettt et e bt e bt ettt s bt e e bt e s be e e bt e s abeesabeesabeeeateesabeesaseenmbeenneeenns 267
38.2.2 Linux Menu Configuration OPtIONS.cc.uevuieiirtieitieienieeteeteente ettt et sitete st steetesbeeste st e sbeessesbeebesbaenbeesnenaeens 267
38.3 Programming INEETTACE.cccueiiiiiiiiiiii ettt et ettt bt e st e e s et e e s at e e bt e e bt e e bt e e bt e sateesateebee s 267
38.3.1 IXXAT Specific Data structure Defines..........ccoeiiruieiieiiiieiieiee ettt ettt aens 267
38.3.2 IXXAT IOCTL Commands DEefines...........cccevuiriiiiiriiniiiiiniiiiiieiiee st st s s 268
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

18 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 39
Universal Asynchronous Receiver/Transmitter (UART) Driver
30,1 INEFOQUCTION. ..ttt ettt ettt et ettt et et e bbbt e b e e bt eaeeu e eb e saeeue b e sueeae s 271
39.2 HAardwWare OPETALION.eeruuiriuieriieeieeeittenite et e siteestte sttt estteeabee sttt ebeesute e steeabeessbeaabeesateestesabeenbaeenbeensseesaesaseenbaesnseenanean 272
39.2.1 SOFtWAIE OPETALION. ..c.uictiruieiieiieiteiieteit ettt sttt ettt ettt et ettt et et st et sae et s bt sbeebe e bt eb e et e e ease s entensenaennen 272
39.2.2 DIIVEI FRALUIES.couiiuiiiiiiiiiiiiiitieieeie ettt ettt ettt ettt eae e saesb e sae e 273
39.2.3 S0UICE COAE STIUCTUIE.eouiiuiiiiiiiiiiiiit ettt sttt s e 273
30.3 CONFIGUIALION. c..cuvititititeie sttt ettt ettt ettt a ettt e b et ea e a ettt et et e st et easea s et est et et et et e s et ensenaesennenaennen 274
39.3.1 Menu Configuration OPLIONS.ccoueetiriiriertieiieiteett ettt ettt ettt ettt sb e et e te st e saeeste e bt ebeesbeebeesbeeusesbeenseens 274
39.3.2 Source Code Configuration OPLIONS.ccueerruierieerieeriieeiie ettt site et e et e etee sttt esatesbeesbeesabeessbeenseesbeesseenes 275
39.3.3 Chip Configuration OPLONS.ceeeutrieuiririeieiiettettete sttt ettt ettt et st sttt s be et ebesaesaeebesaesaeebesaesteenesaesaenen 275
39.3.4 Board Configuration OPLIONS.ccoueeiiriieriiriereeie ettt sttt ettt ettt sbeete st et e ebte s bt et e st benbeeasesbeenbessnenieens 275
39.4 Programming INEETTACE.ccuiiiiiiiiiiiit ettt ettt ettt et e bt e s it e s it e e e st e e bt e e bt e st e e e bt e sateesabeebee s 275
39.4.1 INterrupt REQUITEIMENES.cc.eeutiuriiiieniietiitt ettt ettt sttt ettt ettt st ettt et e b se et ae et et eneennenaennen 275
Chapter 40
AR6003 WiFi
40.1 HArdWare OPETALION.ccueiueeiuieuieitieteetienteeeteeteeteette bt estesteaate et eentteaeeaseameesaeenseaseesaeeaeesseensesaeenseamtesseensesseenseeseenseensenseans 277
40.1.1 SOTEWATE OPETALION. .. .eetieuiiiitieititeeie ettt ettt ettt ettt eet e st e e bt et e s e sbe e bt e bt eatesbeenbeenaeeatesbeenaeenteentesbeenbeeneeenee 277
40.1.2 DIIVET TRATUIES. ...ttt ettt ea e e 277
40.1.3 SOUICE COUE SIUCTUTE.vteiiieiiteriieeette ettt ettt ettt ettt ettt ettt bt e e b et s bt e e bt e s be e e bt e s bt e eabeesabeeeabeesabeeeabeesabeesaseesanee 278
40.1.4 Linux Menu Configuration OPLIONS...........ceeeuirtertiriintenie ettt sttt ettt et e sttt st et et esbeestesbeenaeenee 278
Chapter 41
Bluetooth Driver
411 INEOAUCHION.cutiiiiiiieicet ettt st e et e ettt ettt et b e e st e bt b e e b eaeebesue et ebe e 279
A1.1.1 HardwWare OPEIALION.cevuierueeriieeiteeitesiteettesttesteesttesbee sttt esbeeebeesateesseesabeesabeessteeabeesnbeessteenstesaseessseenanesases 279
41.2 SOFEWAIE OPEIATION. ...ccutieutitientieiieeteete et ete et e etteetteteesee et e enteeseeeseanteeseeabeemteeseeeseanteeseeeseamseemee st enseensesbeenseeneenbeenseeneenseans 281
41.2.1 UART CONLIOL ..ttt et st ettt et eae e e 282
41.2.2 Reset and POWET CONIOL...........ociiiiiiiiiiiiiiiiic e s 283
L G T 1071 =13 L5 10 | OSSPSR 283
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 19

Section number Title Page

Chapter 42

Pulse-Width Modulator (PWM) Driver

421 INEOAUCHION.cuiiiieiieice ettt st a et s et ettt et et e e st e bt ea e eb e e b et ebesae et b e 285
42.1.1 HardwWare OPEIALION.eouierieeitieeiteettestteettesttesteetteebee ettt e sbeeebeesateessbesabeesabeessseeabeeenbeesateenstesnseesaseenanesases 285
4212 CIOCKS. c.vtteiteteitete ettt bttt bbb bbbt h b st bbbt b et bt b et 286
42.1.3 SOTEWAIE OPETALION. .. .cetiiuiiiitirititeeie ettt ettt ettt et et eat et e e bt et ea b s bt e bt e bt eatesbeenbe e bt eatesbeenaeemeeentesbeenaeeneeeaee 287
42.1.4 DIIVET FEAUIES.cuiiviiiiiiiiiii it s sa e s 287
42.1.5 SOUICE COUE STIUCTUTE.vtiiutiiiiteiiieetie ettt ettt ettt ettt ettt ettt e bt e bt e s b e e e bt e e b e e e bt e e b e e e bt e sabeeeabeesabeeeabeesabeesaseesanee 287
42.1.6 Menu Configuration OPLIONS.c..eerueerueeierteritenttett ettt et et ett ettt eebeettesbeesbeesbesseesbtesbeebeeaeesaeesbeenaeeneesaee 288

Chapter 43

Watchdog (WDOG) Driver

431 INEOAUCHION.cuiiiiiiiieice ettt sttt ettt et ettt et ea et eat bt eb e eaeeae b eae et be e 289
43.1.1 Hardware OPEIALION.eeuierieeitieeiieeteesiteette st e st etteebee sttt e sbeeebeesateesatesabeesabeessbeeabeesnbeessseensbesaseesaseenaeesases 289
43.1.2 SOFtWATE OPETATION.ctitiriietitiitieiieit ettt ettt sttt sttt ettt et ettt e aesaesbe s bt sae e bt ebeeueeaeeneensensensennenuens 289
43.2 Generic WDOG DITVET......coooiiiiiiiiiiieieeet ettt st st st s a ettt st 289
43.2.1 DIIVET FEAUIES.cuiiiiiiiiiiiiiiiiii e s s 290
43.2.2 Menu Configuration OPLIOMNS.ccuevuerirtiririeiieteiiet ettt ettt ettt ettt et easesae s e besaesbesbesbeeueeaeensesnensenenuens 290
43.2.3 S0UICe COU@ SIIUCLUIE.eouiitiiiieiieiieiiie ettt ettt ettt st b ettt b e saeeb e b eae e eenesaeas 290
43.2.4 Programming INEEITACE.cc.uiiiuiiiiiiiiie ettt ettt e ettt e e b e e et e e st e et e st e e eabeeeates 291

Chapter 44

OProfile

441 INEOAUCTION. ...ttt ettt e a e a e a e ea e 293
T B B €)< 4 1<) OSSPSR 293
AA.T.2 FRALUIES. ...ttt ettt ettt s a b b s h bbbt e b e e bt e bt b et ea ettt ettt n et et a et besae 293
44.1.3 HardwWare OPEIALION.ceeuterueeriiteiteeeteestteettesteesteestteebeesuteesbeeebeesateesssesabeesabeessseeabeesnbeesaseensbesaseesaseenaeesases 294
442 SOFEWATE OPECIALION.c.uieuireirtieterieetiete ettt ettt ettt ettt ettt et ettt ee et e e st et e st es e et e st et et et et et ent et enseae st et e sentenbenaenteneee 294
44.2.1 Architecture SPecific COMPONENLS.ccc.eetiriiriirtieriieteeteete ettt ettt ettt ettt e bt eabe e besbaesbtesbeenaeeaeeneeeaee 294
44.2.2 oprofilefs PSEUAO FIlESYSIEM.c...iiiuiiiiiiiiiii ittt sttt e st et b et e et aesbeeeates 295
44.2.3 GeNEriC KeIMEI DITVET.......ccuiiiiitiiiieiietiete ettt ettt et b et et e b et e bt et e ese e beenteeseenteeneenaeenee 295
44.2.4 OProfile DaGMON.....c..ocuiiiiiiiiiiiiiiiiiiieiectee sttt ettt sttt et et 295

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

20

Freescale Semiconductor, Inc.

Section number Title Page
44.2.5 POSt PrOfIIING TOOIS. .ccuuiiitieiiieiiit ettt ettt ettt ettt ettt e bt et e e b bt e bt e e abbeenbeesabeeenbeesabeesnseesases 296
443 REQUITEIMENLS. c..cueiuteutiutiiteteterte sttt sttt sttt ettt ettt et ea s et eae et et eat e ae st eabesae et e ebesaeeb e s bt e bt ebeebeebe e st eseeasensentensentensenaenaenenee 296
44.3.1 SoUICE COU@ SIIUCLULE.eiuiiiiiiieiiiiieiiie sttt ettt ettt b e s et e s besae b e e beeae e e e enesaeas 296
44.3.2 Menu Configuration OPUONS.ueerttiriieeiie ettt eieeette et e sttt e site ettt e sateebeeebtesabeesabeesabeesabeessbeenbaeenseesbeesseesases 296
44.3.3 Programming INEEITACE.c..eoirieiiiiiiiecetiee ettt ettt ettt st eb et 297
44.3.4 Interrupt REQUITEIIENTS.c..eoruiiiiiiiiieiiieitet ettt ettt sttt ettt et b e bt e bt e bt et s aaesbeesbeenbeeaeemeeeaee 297
44.3.5 Example SOftware CONTIGUIAtION.cccuuiiiiiiierieetie sttt ettt ettt eb e st e bt esat e e bt e sabeeabeesabeenbeesaneebeesaeean 297
Chapter 45
CAAM (Cryptographic Acceleration and Assurance Module)
45.1 CAAM Device DITVEr OVEIVIEW.cc.oiuiiiiiiiiiiiiiiiiiiiieicee ettt st s s s 299
45.2 Configuration and JOb EXECUION LEVEL......cc.coiiiiiiiiiiiiiiiiiiiieeeit ettt st st 299
45.3 Control/Configuration DITVET..........ccooiiriiiiiiiiiietteteett ettt sttt ettt ettt st esbe et e st e sbeesaeenbeeitesbeenbeens 300
454 JOD RING DITVET ... eiiiiiiiieiieeitt ettt ettt ettt st e s et e et e s ab e e bt e s ab e e satesab e e sabeeabtesabeesabeeabeesabeeseesabeesabesnseens 300
455 APLINEEITACE LEVEL....c.eiiiiiiiiiieieeee ettt ettt ettt et e bt e et e s ae et e s bt e bt saee bt eaeeebeenbeeseebeeseenbeennenseans 301
45.6 DIIVEr CONTIZUIATION. ..c..eiutiitiiiietiiteeitente ettt ettt ettt bttt e bt et eb et eb e e st e e st e s bt eatesbeeab e s bt esbe s bt enbeebe et e ebeenteebeeneeeae 304
45. 7T LIMITALONS. c.c.eiiiiiiiiiiiiiiiieiee et a e e b e e b b e b b e b b s a b e s 305
45.8 Limitations in the Existing Implementation OVEIVIEW...........ccueruiriertirieriieiente ettt et sttt ettt et ese et eneeneeeseeneeenes 305
45.9 Initialize Keystore Management INTEITACE.coouiiiiriiiiiiiniiticete ettt sttt 306
45.10 Detect Available Secure Memory Storag@e UNILS........c.eevuiiiiiiritiniieeiieiieerie ettt et e sttt et e sbeesibeesbeesbeesnbeessee e 306
45.11 Establish Keystore in Detected UNIt.........c.eeiuieiuirieitieieetiesteeie ettt ettt et e et e bt estesbe et e este st eenbeeneesbeenseessenseans 307
45,12 REICASE KRYSTOTEC.ecutitieitiiietieiteste ettt sttt ettt ettt ettt et e h et eb e et e ebtesb e e st e s bt e st e s bt eab e s bt esbe e bt esbeebe et e ebt et e ebeeneeeae 307
45.13 Allocate a S1ot from the KEYSIOTE......c...eiruiiiiiiiieiit ettt sttt e e st e e bt e sabe e bt e sabeesaeesans 308
45.14 Load Data into @ KEYSTOIE SIOT......cccuiiiiiiiiiiiieie ettt ettt sttt et b et e e st e bt et e e bt enbeesee bt enbeeseenbeennenseans 308
45.15 Demo IMAZE UPAALE.....cc.eiriiiiiiiiiiiiieete ettt ettt ettt sttt et sb e bt e bt e bt e s bt et ebtesbe et e eatesbeebeesbesbnenbeens 309
45.16 Decapsulate Data N the KEYSIOTE.cc.uiiitiiiiieiiieiteetie ettt ettt et ettt e sabeesbteebtesabeesabeesbeeenbeesnbeenes 309
45.17 Read Data From @ KEYSTOIE SLOT......c..ieuiiiieitieiieieeiie ittt ettt ettt ettt et e et e et et e sste s bt e bt enbeeateseeesaee bt entesneesseaseans 310
45.18 Release a S1ot back t0 the KEYSIOTE......cc.iiiiriiiiiiiieiieice ettt ettt ettt st e sbe e b sanenbeens 311
45.19 CAAM/SNVS - Security Violation Handling Interface OVerVIEW.........c.covuiiiiiiiiiiieniieeieesiieeieesite ettt 313
45.20 OPCIATION. ¢..ceutttienteeieerteete st ete et ete et e eate et e ea et eueeseeeaee et eaee bt eaeeebeemeeeaeemseabeemseeseemseeseemtees e emsees e e st emeeaaeentesseenteeneenneabeenneeneans 313

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 21

Section number Title Page
45.21 Configuration INEEITACE..........eiiuiiiiiieiieeiie ettt ettt e sttt et e bt e bt e e bt e s st e e bee e beesabe e bbeenbeesabeenabesnbeenes 313
45.22 INSAIl @ HANALET.......eiiiieiiieieecieecee ettt ettt e et e et e et eesabe e teeeabeeesaaeteeessaessseessaeessaesseensaeesseesseenseessseenssannseenns 314
45.23 Remove an INStAlled DIIVET.....cc.eouiiiiiiiiiiierieee ettt ettt ettt s be e ettt eb et e bt ebtesbe et e esbesbnenbeens 314
45.24 Driver Configuration CAAM/SINVS ... oottt ettt e et e st e st e e bt e e s bt e e bt e s bt e eabeesbaeeabeesabeesaneenns 315

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

22 Freescale Semiconductor, Inc.

Chapter 1
About this Book

1.1 Audience

This document is targeted to individuals who will port the 1.MX Linux BSP to customer-
specific products.

The audience is expected to have a working knowledge of the Linux 3.0 kernel internals,
driver models, and 1.MX processors.

1.1.1 Conventions
This document uses the following notational conventions:

* Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.

* Bold type indicates function names.

1.1.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface
ARMA® Advanced RISC Machines processor architecture

Table continues on the next page...

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 23

Audience
Term Definition
AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces
BCD Binary Coded Decimal
bus A path between several devices through data lines
bus load The percentage of time a bus is busy
CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data
CPU Central Processing Unit-generic term used to describe a processing core
CRC Cyclic Redundancy Check-Bit error protection method for data communication
CSl Camera Sensor Interface
DFS Dynamic Frequency Scaling
DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers
DPM Dynamic Power Management
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage Frequency Scaling
EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system
Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed
EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention
FCS Frame Checker Sequence
FIFO First In First Out
FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards
FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use
Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.
Flash path Path within ROM bootstrap pointing to an executable Flash application
Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command
GPIO General Purpose Input/Output
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.
I/0 Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays
Table continues on the next page...
i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
24 Freescale Semiconductor, Inc.

Chapter 1 About this Book

Term Definition
IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication
ISR Interrupt Service Routine
JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices
on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used-a policy for line replacement in the cache
MMU Memory Management Unit-a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video
MPEG Several standards of compression for moving pictures and video:
standards + MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
* MPEG-3 was merged into MPEG-2
¢ MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multi-company organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory
ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap
RTIC Real-Time Integrity Checker-a security hardware module
SCC SeCurity Controller-a security hardware module

Table continues on the next page...

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

25

Audience
Term Definition

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOS/

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus-an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

26 Freescale Semiconductor, Inc.

Chapter 2
Machine Specific Layer (MSL)

2.1 Introduction

The Machine Specific Layer (MSL) provides the Linux kernel with the following
machine-dependent components:

e Interrupts including GPIO and EDIO (only on certain platforms)

e Timer

* Memory map

* General Purpose Input/Output (GPIO) including IOMUX on certain platforms
» Shared Peripheral Bus Arbiter (SPBA)

e Smart Direct Memory Access (SDMA)

These modules are normally available in the following directory:
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6 for i.MX 6 platform

The header files are implemented under the following directory:
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operations and the software interfaces for MSL. modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 27

Interrupts (Operation)

2.2 Interrupts (Operation)

This section explains the hardware and software operation of interrupts on the device.

2.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external
interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
settings.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts for the highest priority level, then highest source number with the same
priority. There are 16 normal interrupt levels for all interrupt sources, with level zero
being the lowest priority. The interrupt levels are configurable through eight normal
interrupt priority level registers. Those registers, along with the Normal Interrupt Mask
Register, support software-controlled priority levels for normal interrupts and priority
masking.

2.2.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different
exception types. The exception vector addresses can be configured to start at low address
(0x0) or high address (OxFFFF0000).

The ARM Linux implementation chooses the high vector address model.

The following file describes the ARM interrupt architecture.

<ltib_dirs>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

28 Freescale Semiconductor, Inc.

Chapter 2 Machine Specific Layer (MSL)

2.2.3 Interrupt Features
The interrupt implementation supports the following features:

* Interrupt Controller interrupt disable and enable

* Functions required by the Linux interrupt architecture as defined in the standard
ARM interrupt source code (mainly the <lItib_dir>/rpm/BUILD/linux/arch/arm/
kernel/irq.c file)

2.2.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file (located in the directory
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc):

irg.c (If CONFIG MXC TZIC is not selected)
tzic.c (If CONFIG MXC TZIC is selected)
gic.c (If CONFIG ARM GIC is selected)

There are also two header files (located in the include directory specified at the beginning
of this chapter):

hardware.h
irgs.h

The following table lists the source files for interrupts.

Table 2-1. Interrupt Files

File Description
hardware.h Register descriptions
irgs.h Declarations for number of interrupts supported
gic.c Actual interrupt functions for GIC modules

2.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 29

A ————
Timer

In addition to the native interrupt lines supported by the Interrupt Controller, the number
of interrupts is also expanded to support GPIO interrupt and (on some platforms) EDIO
interrupts. This allows drivers to use the standard interrupt interface supported by ARM
Linux, such as the request_irq() and free_irq() functions.

2.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it performs the following operations:

» Updates the system uptime.

» Updates the time of day.

» Reschedules a new process if the current process has exhausted its time slice.
* Runs any dynamic timers that have expired.

» Updates resource usage and processor time statistics.

The timer hardware on most 1.MX platforms consists of either Enhanced Periodic
Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is configured to
generate a periodic interrupt at a certain interval (every 10 ms) and is used by the Linux
kernel.

2.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in Timer.
Another function provides the time elapsed as the last timer interrupt.

2.3.2 Timer Features
The timer implementation supports the following features:

* Functions required by Linux to provide the system timer and dynamic timers.
* Generates an interrupt every 10 ms.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

30 Freescale Semiconductor, Inc.

4
Chapter 2 Machine Specific Layer (MSL)

2.3.3 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxc/time.c file.

2.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

2.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

2.4.1 Memory Map Hardware Operation

The MMU, as a part of the ARM core, provides the virtual-to-physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

2.4.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX
platforms as defined in the file in <Itib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/
mm.c .

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 31

A
IOMUX

2.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to create the
physical-to-virtual memory map for all the I/O modules.

2.4.4 Memory Map Source Code Structure

The Memory Map module implementation is in mm.c under the platform-specific MSL
directory. The hardware.h header file is used to provide macros for all the I/O module
physical and virtual base addresses and physical to virtual mapping macros. All of the
memory map source code is in the following directory:

<ltib dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach
The following table lists the source files for the memory map.

Table 2-2. Memory Map Files

File Description

mx6.h Header files for the 1/0 module physical addresses

mm.c Memory map definition file

2.4.5 Memory Map Programming Interface

The Memory Map is implemented in the mm.c file to provide the map between physical
and virtual addresses. It defines an initialization function to be called during system
startup.

2.5 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

32 Freescale Semiconductor, Inc.

L __4

Chapter 2 Machine Specific Layer (MSL)
The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

e TXDI1: internal UART1 Transmit Data. This is the primary function of this pin.
e UART2 DTR: alternate mode 3

e LCDC_CLS: alternate mode 4

* GPIO4[22]: alternate mode 5

e SLCDC_DATA[8]: alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design.

* If the pin is connected to an external UART transceiver and therefore to be used as
the UART data transmit signal, it should be configured as the primary function.

* If the pin is connected to an external Ethernet controller for interrupting the ARM
core, it should be configured as GPIO input pin with interrupt enabled.

The software does not have control over what function a pin should have. The software
only configures pin usage according to the system design.

2.5.1 IOMUX Hardware Operation

The following information applies only to those processors that have an IOMUX
hardware module.

The IOMUX controller registers are briefly described in this section.
For detailed information, see the pin multiplexing section of the IC reference manual.

* SW_MUX_CTL.: Selects the primary or alternate function of a pin, and enables
loopback mode when applicable.

 SW_SELECT_INPUT: Controls pin input path. This register is only required when
multiple pads drive the same internal port.

* SW_PAD_CTL: Controls pad slew rate, driver strength, pull-up/down resistance, and
SO on.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 33

A
IOMUX

2.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functions and pad
features.

2.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

2.5.4 IOMUX Source Code Structure

The following table lists the source files for the [IOMUX module. The files are in the
directory:

<ltib _dir>/rpm/BUILD/arch/arm/plat-mxc/

<ltib_dir>/rpm/BUILD/arch/arm/plat-mxc/include/mach

Table 2-3. IOMUX Files

File Description

iomux-v3.c IOMUX function implementation

iomux-mx6q.h Pin definitions in the iomux_pins enum

2.5.5 IOMUX Programming Interface

All the IOMUX functions required for the Linux port are implemented in the iomux-v3.c
file.

2.5.6 IOMUX Control Through GPIO Module

For a multi-purpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

34 Freescale Semiconductor, Inc.

4
Chapter 2 Machine Specific Layer (MSL)

through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which can not be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design.

* If this pin is connected to an external UART transceiver, it should be configured as
the primary function.

* If this pin is connected to an external Ethernet controller for interrupting the core, it
should be configured as GPIO input pin with interrupt enabled.

The software does not have control over what function a pin should have. The software
only configures a pin for that usage according to the system design.

2.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, refer to the relevant device documentation.

2.5.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPIO port.
These registers may be used for software control of [OMUX block of the GPIO.

2.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 35

A ————
General Purpose Input/Output(GPIO)

2.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functions and pad
features.

2.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

2.5.6.4 GPIO Source Code Structure

The GPIO module is implemented in the iomux.cgpio_mux.c file under the relevant MSL
directory. The header file to define the pin names is under:

<ltib_dirs>/rpm/BUILD/arch/arm/plat-mxc/include/mach

The following table lists the source files for the IOMUX.
Table 2-4. IOMUX Through GPIO Files

File Description

iomux-mx6q.h Pin name definitions

2.5.6.5 GPIO Programming Interface

All the GPIO muxing functions required for the Linux port are implemented in the
iomux-v3.c file.

2.6 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

36 Freescale Semiconductor, Inc.

4
Chapter 2 Machine Specific Layer (MSL)

2.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the 1. MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization at the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured to GPIO by the IOMUX, the state of the pin should also be set
because it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-
down, slew rate and so on, with the pad control function may be required as well.

2.6.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.
The GPIO implementation supports the following features:

* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

 Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is
located in the GPIO module.

e Minimal changes required for the public drivers such as Ethernet and UART drivers
as no special GPIO function call is needed for registering an interrupt.

2.6.2 GPIO Features

This GPIO implementation supports the following features:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 37

General Purpose Input/Output(GPIO)

* Implementing the functions for accessing the GPIO hardware modules
* Provideing a way to control GPIO signal direction and GPIO interrupts

2.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is at the MSL layer, in the following files, located in
the directories indicated at the beginning of this chapter:

Table 2-5. GPIO Files

File

Description

iomux-mx 6q.h

IOMUX common header file

gpio.h

GPIO public header file

gpio.c

Function implementation

2.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio.txt under the Linux source code
directory for the programming interface.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

38

Freescale Semiconductor, Inc.

Chapter 3
Smart Direct Memory Access (SDMA) API

3.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space and
the peripherals. It supports the following features:

* Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

» Loading buffer descriptor parameters of the scripts

* Controlling execution of the scripts

* Callback mechanism at the end of script execution

3.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals. It has the following features:

e Multi-channel DMA, supporting up to 32 time-division multiplexed DMA channels.

» Powered by a 16-bit Instruction-Set micro-RISC engine.

* Each channel executes specific script.

* Very fast context-switching with two-level priority based preemptive multi-tasking.

* 4-KB ROM containing startup scripts (that is, boot code) and other common utilities
that can be referenced by RAM-located scripts.

» 8-KB RAM area is divided into a processor context area and a code space area used
to store channel scripts that are downloaded from the system memory.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 39

Overview

3.1.2 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that 1t wishes to use, which is called static channel allocation. It can also have the SDMA
driver and provide a free SDMA channel for the driver to use, which is called dynamic
channel allocation. For dynamic channel allocation, the list of SDMA channels is scanned
from channel 32 to channel 1. Upon finding a free channel, that channel is allocated for
the requested DMA transfers.

Table 3-1. SDMA Channel Usage

Driver Name Number of SDMA Channel Used
SDMA Channels
SDMA CMD 1 Static Channel allocation-uses SDMA channels 0
SSI 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
SPDIF 2 per device Dynamic channel allocation
ESAI 2 per device Dynamic channel allocation

3.1.3 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory /<Itib_dir>/
rpm/BUILD/linux/include/linux

The following table shows the source files available in the directory /<ltib_dir>/rpm/
BUILD/linux/drivers/dma

Table 3-2. SDMA API Source Files

File Description

dmaengine.c SDMA management routine

imx-sdma.c SDMA implement driver

The following table shows the image files available in the directory /<ltib_dir>/rpm/
BUILD/linux/firmware/imx/sdma

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
40 Freescale Semiconductor, Inc.

4
Chapter 3 Smart Direct Memory Access (SDMA) API

Table 3-3. SDMA Script Files

File Description
sdma-mx6q-to1.bin.ihex SDMA RAM scripts

3.1.4 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this options, use the ./ltib -c command when located in the </tib dir>. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

 CONFIG_IMX_SDMA_: This is the configuration option for the SDMA API driver.
In menuconfig, this option is available under DMA Engine support.

* System type > Freescale MXC implementations > MX6 Options: > Use SDMA APL.

* By default, this option is Y.

3.1.5 Programming Interface

The module implements standard DMA API. For more information on the functions
implemented in the driver, refer to the API documents, which are included in the Linux
documentation package. For additional information, refer to the ESAI driver.

3.1.6 Usage Example

Refer to one of the drivers, such as SPDIF driver, UART driver or SSI driver, that uses
the SDMA API driver as a usage example.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 41

Overview

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

42 Freescale Semiconductor, Inc.

Chapter 4
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

4.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK.

(The H in APBH indicates that the APBH is synchronous to HCLK.)

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/0O to the APB devices, a central DMA facility for devices on this bus and a vectored
interrupt controller for the ARM core. Each one of the APB peripherals, including the
vectored interrupt controller, is documented in its own chapter in this document.

There is no separated DMA bus for these devices. An internal arbitration logic solves the
conflict that occurs when the DMA uses the APBH bus and the AHB-to-APB bridge
functions use the APBH. For conflict between these two units, the DMA 1s master and
the AHB is standby, which will report "not ready" through its HREADY output until the
bridge transfer is complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every four rounds of transfer on the APB.

4.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals. It has the following features:

e Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels

* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes specific script

* Very fast context-switching with preemptive multi-tasking based on two-level
priority

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 43

Overview

* 4-KB ROM containing startup scripts (that is, boot code) and other common utilities
that can be referenced by RAM-located scripts

* 8-KB RAM area divided into a processor context area and a code space area used to
store channel scripts that are downloaded from the system memory.

4.1.2 Software Operation

The DMA supports 16 channels of DMA services, as shown in the following table. The
shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up by using the general structure.

Table 4-1. APBH DMA Channel Assignments

APBH DMA Channel # Usage
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

|l N[O =|O

—_
o

—_
—_

—_
N

—_
w

—
N

—_
(¢)]

4.1.3 Source Code Structure

The following table shows the source files available in the directory drivers/dma/

Table 4-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

44 Freescale Semiconductor, Inc.

__4
Chapter 4 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

4.1.4 Menu Configuration Options

MXS_DMA is the configuration option for the APBH DMA driver. In menu
configuration, this option is available under Device Drivers > DMA Engine support >
MXS DMA support.

4.1.5 Programming Interface

The module implements standard DMA API. For more information on the functions
implemented in the driver such as GPMI NAND driver, refer to the API documents,
which are located in the Linux documentation package.

4.1.6 Usage Example

Refer to one of the drivers, such as the GPMI NAND driver, that uses the APBH DMA
driver as a usage example.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 45

Overview

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

46 Freescale Semiconductor, Inc.

Chapter 5
Image Processing Unit (IPU) Drivers

5.1 Introduction

The image processing unit (IPU) is designed to support video and graphics processing
functions and to connect with video and still image sensors and displays. The [PU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete IPU processing flow. For example,

* A complete IPU processing flow (logical channel) might consist of reading a YUV
buffer from memory, performing post-processing, and writing an RGB buffer to
memory.

* A logical channel maps one to three IDMA channels and maps to either zero or one
IC tasks.

* A logical channel can have one input, one output, and one secondary input IDMA
channel.

The IPU API consists of a set of common functions for all channels. It aims to initialize
channels, set up buffers, enable and disable channels, link channels for auto frame
synchronization, and set up interrupts.

Typical logical channels include:

e CSI direct to memory

* CSI to viewfinder pre-processing to memory

* Memory to viewfinder pre-processing to memory

* Memory to viewfinder rotation to memory

* Previous field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Current field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Next field channel of memory to video deinterlacing and viewfinder pre-processing
to memory

» CSI to encoder pre-processing to memory

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 47

A
Hardware Operation

e Memory to encoder pre-processing to memory

* Memory to encoder rotation to memory

* Memory to post-processing rotation to memory

* Memory to synchronous frame buffer background

* Memory to synchronous frame buffer foreground

* Memory to synchronous frame buffer DC

* Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the IPU sub-modules are as
follows:

* Synchronous frame buffer functions
* Panel interface initialization

* Set foreground positions

 Set local/global alpha and color key
e Set gamma

» CSI functions

 Sensor interface initialization

* Set sensor clock

* Set capture size

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level API.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

48 Freescale Semiconductor, Inc.

Chapter 5 Image Processing Unit (IPU) Drivers
5.2 Hardware Operation

The detailed hardware operation of the IPU is described in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

DEpEY
SEHSH CMO S — MuttlFIFGD
“if— Sengor 1 Coktm | r—
ij— |y o E e (OM FCo
— sy ¥
Im age Sigval Proc. i —
(& F) ——
Wideo De-lntarlacer
— Db - ==
LISFB Dlsp By
f— vt mace l I .z
q—p' (on Im a2 g Im age
CoNUe ter DA
(el Controlkr h EMB
(DM &) [p—
Dk play

Processor

Dlgplay [ol— (0P} i L EPBEY

WAkl FIFO
':':'E:'"':'I ot =
(o) o (0 M FE)
Contral ||Tlage
Modnle Rotator IR
©my (R

Figure 5-1. IPUV3EX/IPUv3H IPU Module Overview

5.3 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.
It consists of a custom kernel-level API for the following blocks:

* Synchronous frame buffer driver
* Display Interface (DI)

 Display Processor (DP)

* Image DMA Controller IDMAC)
* CMOS Sensor Interface (CSI)

* Image Converter (IC)

The following figure shows the interaction between the different graphics/video drivers
and the IPU.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 49

Software Operation

— PR = Lypplication
era fpp o ConfApp | IEPPE'!.EF ——p Oher Data Flow (LITjspe]i Ivbde)

e Comitrol Calls

¥ ¥ r Biiddk ware
[hutimedia Framework] i User Ivbde)

¥ ¥ “wPU Plugin J
AL WL Wideo Sink ¥
Capurz Augin Plgin

. | WP Library
L= Cri
¥ ¥ L N r
WALE Output Cher |3y Syme Syne Liall
Diriver FrameBuf | FRmeBuf | FrameBuf kamel
DCriver Driwer Mrinier

Ton quliy {01
DYOCESSInE

driver "‘--..__‘____
r L

EL i [IFU Common AR | IPU Display AF|
{ e | FRRENC J_FRF'U'FJ PP | ORDCTI] driver
i & J

& | [IPU 1 WP Hatrbarare
.l

Figure 5-2. Graphics/Video Drivers Software Interaction for IPUv3

Eerrel Ivode

Camera Sensor
Criver

The IPU drivers are sub-divided as follows:

* Device drivers: include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the IPU processing driver that
provides a system interface to the user space or V4L2 drivers. The frame buffer
device drivers are available in the <lItib_dir>/rpm/BUILD/linux/drivers/video/mxc
directory of the Linux kernel. The V4L2 device drivers are available in the
<ltib_dir>/rpm/BUILD/linux/drivers/media/video directory of the Linux kernel.

e The MXC display driver is a simple framework to manage interaction between the
IPU and display device drivers (such as LCD, LVDS, HDMI, and MIPI).

* Low-level library routines: connect to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the directory of the Linux kernel.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

50 Freescale Semiconductor, Inc.

4
Chapter 5 Image Processing Unit (IPU) Drivers

5.3.1 Overview of IPU Frame Buffer Drivers

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows the application software to access the
graphics hardware through a well-defined interface. Therefore, the software is not
required to know anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. tb0 is generally
the primary frame buffer.

Besides the physical memory allocation and LCD panel configuration, the common
kernel video API is used for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

5.3.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the IPU hardware driver module.

5.3.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it, which is the main function. The difference is that the memory that appears in the
special file is not the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see
<lItib_dir>/rpm/BUILD/linux/include/linux/fb.h. The following are some of the IOCTLs
functions:

e Requesting general information about the hardware, such as name, organization of
the screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

* Requesting and changing variable information about the hardware, such as visible
and virtual geometry, depth, color map format, timing. The driver suggests values to

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 51

A
Software Operation
meet the hardware capabilities (the hardware returns EINVAL if that is not possible)
if this information is changed.

* Getting and setting parts of the color map. Communication is 16 bits-per-pixel
(values for red, green, blue, transparency) to support all existing hardware. The
driver does all the calculations required to apply the options to the hardware (round
to fewer bits, possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver () interacts closely with the generic Linux frame buffer
driver (<Itib_dir>/rpm/BUILD/linux/drivers/video/fbmem.c).

5.3.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer
driver API for synchronous LCD panels or those without memory. The synchronous
frame buffer screen driver is the top-level kernel video driver that interacts with kernel
and user level applications. This is enabled by selecting the Synchronous Panel Frame
buffer option under the graphics support device drivers in the kernel configuration. To
supplement the frame buffer driver, the kernel builder may also include support for fonts
and a startup logo. This depends on the VT console for switching from serial to graphics
mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is used for color setting, palette registration, image blitting and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver by using custom APIs that allow:

* Initialization of panel interface settings
* Initialization of IPU channel settings for LCD refresh
* Changing the frame buffer address for double buffering support

The following features are supported:

» Configurable screen resolution

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

52 Freescale Semiconductor, Inc.

L __4
Chapter 5 Image Processing Unit (IPU) Drivers
* Configurable RGB 16, 24 or 32 bits per pixel frame buffer
* Configurable panel interface signal timings and polarities
* Palette/color conversion management

* Power management
* LCD power off/on

User applications use the generic video API (the standard Linux frame buffer driver API)
to perform functions with the frame buffer. These include the following:

* Obtaining screen information, such as the resolution or scan length
 Allocating user space memory by using mmap for performing direct blitting
operations

A second frame buffer driver supports a second video/graphics plane.

5.3.2 IPU Backlight Driver

The IPU backlight driver implements IPU PWM backlight control for panels. It exports a
system control file under /sys/class/backlight/pwm-backlight.0/brightness to user space.
The default backlight intensity value is 128.

5.3.3 IPU Device Driver

IPU (processing) device driver provide image processing features, including resizing,
rotation, CSC, combination, and deinterlacing based on IC/IRT modules in IPUV3.

The IPU device driver is task based. Users only need to prepare for task setting, queue
task, and then the block waits for the task to finish. The driver now supports the blocking
method only, and the non-block method will be added in the future. The task structures
are as follows:

struct ipu task {
struct ipu input input;
struct ipu output output;

bool overlay en;
struct ipu overlay overlay;

#define IPU TASK PRIORITY NORMAL 0
#define IPU TASK PRIORITY HIGH 1
us priority;

#define IPU_TASK ID ANY
#define IPU TASK ID VF
#define IPU TASK ID PP
#define IPU TASK ID MAX
us task_1id;

wWN RO

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 53

A
Source Code Structure

int timeout;

Vi

struct ipu_input {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
dma_addr_t paddr;

struct ipu deinterlace deinterlace;
dma_addr_t paddr_n; /*valid when deinterlace enable*/

Vi

struct ipu overlay {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
struct ipu alpha alpha;
struct ipu colorkey colorkey;
dma_addr_t
paddr;

Vi

struct ipu output

{

u32 width;
u32 height;
u32 format;
u8 rotate;
struct ipu crop crop;
dma_addr t paddr;
Vi
To prepare for the task, users only need to enter the task.input, task.overlay(if need
combine) and task.output parameters, and then queue task either by inc
ipu_queue_task (struct ipu task *task); 1f from kernel level(v412 driver for example), or by

IPU_QUEUE_TASK ioctl under /dev/mxc_ipu if from application level.

5.4 Source Code Structure

Table 5-1 lists the source files associated with the IPU, Sensor, V4L2, and Panel drivers.
These files are available in the following directories:

<ltib dir>/rpm/BUILD/linux/drivers/mxc/ipu3

<ltib dirs/rpm/BUILD/linux/drivers/video/mxc
<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc
<ltib_dir>/rpm/BUILD/linux/drivers/video/backlight

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

54 Freescale Semiconductor, Inc.

Chapter 5 Image Processing Unit (IPU) Drivers
Table 5-1. IPU Driver Files

File

Description

ipu_common.c

IPU common library functions

ipu_ic.c

IPU IC base driver

ipu_device.c

IPU driver device interface and fops functions

ipu_capture.c

IPU CSI capture base driver

ipu_disp.c

IPU display functions

ipu_calc_stripes_sizes.c

Multi-stripes method functions for ipu_device.c

mxc_ipuv3_fb.c

Driver for synchronous frame buffer

mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD support
mxc_hdmi.c Display Driver for HDMI interface
Idb.c Driver for synchronous frame buffer for on chip LVDS

mxc_dispdrv.c

Display Driver framework for synchronous frame buffer

mxc_dvi.c Display Driver for DVI interface
mxc_edid.c Driver for EDID
vdoa.c VDOA post-processing driver, used by ipu_device.c

Table 5-2 lists the global header files associated with the IPU and Panel drivers. These

files are available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3/
<ltib dirs/rpm/BUILD/linux/include/linux/
<ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/

Table 5-2. IPU Global Header Files

File Description

ipu_param_mem.h Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers
ipu_regs.h IPU register definitions
vdoa.h Header file for VDOA drivers

mxc_dispdrv.h Header file for display driver

mxcfb.h Header file for the synchronous framebuffer driver

ipu.h Header file for ipu basic driver

5.4.1 Menu Configuration Options

The following Linux kernel configuration options are provided for the [IPU module.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

Source Code Structure

To get to these options, use the command ./ltib -¢c when located in the <lItib dir>. On the
displayed screen, select Configure the kernel and exit. When the next screen appears,
select the options to configure.

* CONFIG_MXC_IPU: includes support for the Image Processing Unit. In menu

configuration, this option is available under:
Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.

If ARCH_MX37 or ARCH_MX35 is true, CONFIG_MXC_IPU_V3 will be set.
Otherwise, CONFIG_MXC _IPU_V1 will be set.

CONFIG_MXC_CAMERA_OV5640_MIPI: option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the MXC_IPU
option. In menu configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OV 5640 Camera
support using mipi

Only one sensor should be installed at a time.

CONFIG_MXC_CAMERA_OV5642: option for both the OV5642 sensor driver and
the use case driver. This option is dependent on the MXC_IPU option. In menu
configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642
camera support

Only one sensor should be installed at a time.

CONFIG_MXC_CAMERA_OV5642: option for both the OV5642 sensor driver and
the use case driver. This option is dependent on the MXC_IPU option. In menu
configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov3640
camera support

Only one sensor should be installed at a time.

CONFIG_MXC_IPU_PRP_VF_SDC: option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

56

Freescale Semiconductor, Inc.

4
Chapter 5 Image Processing Unit (IPU) Drivers

Use case driver for dumb sensor or
CSI > IC(PRP VF) > MEM
for smart sensors. In menu configuration, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.
* CONFIG_MXC_IPU_PRP_ENC: option for the IPU:
Use case driver for dumb sensors
CSI > IC > MEM MEM > IC (PRP ENC) > MEM
or for smart sensors
CSI > IC(PRP ENC) > MEM.
In menu configuration, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.

 CONFIG_VIDEO_MXC_CAMERA: option for V4L2 capture Driver. This option is
dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menu configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

* CONFIG_VIDEO_MXC_OUTPUT: option for V4L.2 output Driver. This option is
dependent on VIDEO_DEV && MXC_IPU option. In menu configuration, this
option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

By default, this option is Y for all.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 57

AR
Unit Test

* CONFIG_FB: includes frame buffer support in the Linux kernel. In menu
configuration, this option is available under:
Device Drivers > Graphics support > Support for frame buffer devices

By default, this option is Y for all architectures.

* CONFIG_FB_MXC: option for the MXC Frame buffer driver. This option is
dependent on the CONFIG_FB option. In menu configuration, this option is
available under:

Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

* CONFIG_FB_MXC_SYNC_PANEL: chooses the synchronous panel framebuffer.
This option is dependent on the CONFIG_FB_MXC option. In menu configuration,
this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

* CONFIG_FB_MXC_LDB: selects the LVDS module on iMX53 chip. This option is
dependent on CONFIG_FB_MXC_SYNC_PANEL and CONFIG_MXC_IPU_V3
option. In menu configuration, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

* CONFIG_FB_MXC_SII9022: selects the SI19022 HDMI chip. This option is
dependent on CONFIG_FB_MXC_SYNC_PANEL option. In menu configuration,
this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image S119022 DVI/HDMI Interface Chip

5.5 Unit Test
NOTE

In order to execute the tests properly, make sure that you select
the util-linux package and load the following modules:

insmod ipu prp_ enc.ko
insmod ipu bg overlay sdc.ko
insmod ipu_ fg overlay sdc.ko

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

58 Freescale Semiconductor, Inc.

4
Chapter 5 Image Processing Unit (IPU) Drivers

insmod ipu_csi_enc.ko
insmod ov5642_ camera.ko
insmod mxc_v412 capture.ko

5.5.1 Framebuffer Tests

There is a test application named mxc_fb_test.c under the <Itib_dir>/rpm/BUILD/imx-
test-"version"/test/mxc_fb_test directory.

Execute the fb test as follows:
Jmxc_fb_test.out

The result should be Exiting PASS. The test includes fbO(background) and
fbl(foreground) devices open, framebuffer parameters configure, global alpha blending,
fb pan display test and gamma test.

Redirect an image directly to the framebuffer device as follows:

cat image.bin > /dev/fb0

5.5.2 Video4Linux API test

There are test applications named mxc_v412_test.c and mxc_v412_output.c under the
<Itib_dir>/rpm/BUILD/imx-test-"version"/test/mxc_v412_test directory.

Before running the v412 capture test application, make sure that the /dev/v4l/videoO is
created.

Test ID: FSL-UT-V4L2-capture-0010

mxc v41l2 capture.out -iw 640 -ih 480 -m 0 -r 0 -c 50 -fr 30 test.yuv

Capture the camera and store the 50 frames of YUV420 (VGA size)to a file called
test.yuv and set the frame rate to 30 fps. Look at mxc v41l2 capture.out -help to see
usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0010

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of
interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc v41l2 overlay.out -help to see the usage.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 59

AR
Unit Test

Test ID: FSL-UT-V4L2-overlay-sdc-0020

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
4 -t 50 -d 0 -fr 30

Direct preview (90 degree rotation) the camera to SDC background, and set frame rate
to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0010

mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
0 -t 50 -d 1 -fg -fr 30

Direct preview the camera to foreground, and set frame rate to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0020

mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
4 -t 50 -d 1 -fg -fr 30

Direct preview (90 degree rotation) the camera to foreground, and set frame rate to
30
fps.

Test ID: FSL-UT-V4L2-output-0010

mxc v412 output.out -iw 640 -ih 480 -ow 1024 -oh 768 -r 0 -fr 60 test.yuv

Read the YUV420 stream file on test.yuv created by the mxc v412 capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then
display on the framebuffer.

NOTE
The PRP channels require the stride line to be a multiple of 8.
For example, with no rotation, the width needs to be 8 bit
aligned; with 90 degree rotation, the height needs to be 8 bit
aligned. Downsizing cannot exceed 8:1. For example, for a
VGA sensor, the smallest downsize will be 80x60.

5.5.3 IPU Device Unit test

There is a test application named mxc_ipudev_test.c under the <Itib_dir>/rpm/BUILD/
imx-test-"version"/test/mxc_ipudev_test directory.

Before running the ipu device test application, make sure that the /dev/mxc_ipu is
created.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

60 Freescale Semiconductor, Inc.

4
Chapter 5 Image Processing Unit (IPU) Drivers

Run the test as follows:

./mxc_ipudev_test.out -C config file raw data file

./mxc_ipudev_test.out -command line options raw data file

For file configuration instructions, refer to <lItib_dir>/rpm/BUILD/imx-test-"version"/
test/ipudev_config_file.

Below is a simple test source code of IPU device overlay which useS alpha (global/local)
blending to combine two layers:

static unsigned int fmt to bpp (unsigned int pixelformat)
unsigned int bpp;

switch (pixelformat) ({

case IPU PIX FMT RGB565:
/*interleaved 422%/
case IPU PIX FMT YUYV:
case IPU PIX FMT UYVY:
/*non-interleaved 422%/
case IPU PIX FMT YUV422P:
case IPU PIX FMT YVU422P:

bpp = 16;

break;
case IPU_PIX FMT BGR24:
case IPU PIX FMT RGB24:
case IPU PIX FMT YUV444:

bpp = 24;

break;
case IPU PIX FMT BGR32:
case IPU PIX FMT BGRA32:
case IPU PIX FMT RGB32:
case IPU_PIX FMT RGBA32:
case IPU PIX FMT ABGR32:

bpp = 32;

break;
/*non-interleaved 420%*/
case IPU PIX FMT YUV420P:
case IPU PIX FMT YVU420P:
case IPU PIX FMT YUV420P2:
case IPU_PIX FMT NV12:

bpp = 12;

break;
default:

bpp = 8;

break;

}

return bpp;

}

static void dump ipu task(struct ipu task *t)
{
printf ("====== ipu task ======\n");
printf ("input:\n") ;
printf ("\twidth: %d\n", t->input.width);
printf ("\theight: %d\n", t->input.height) ;
printf ("\tcrop.w = %d\n", t->input.crop.w) ;
printf ("\tcrop.h = %d\n", t->input.crop.h);
printf ("\tcrop.pos.x = %d\n", t->input.crop.pos.x)
printf ("\tcrop.pos.y = %d\n", t->input.crop.pos.y);
printf ("output:\n") ;
printf ("\twidth: %d\n", t-s>output.width) ;

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 61

AR
Unit Test

printf ("\theight: %d\n", t->output.height) ;
printf ("\tcrop.w = %d\n", t->output.crop.w);
printf ("\tcrop.h = %d\n", t->output.crop.h);
printf ("\tcrop.pos.x = %d\n", t->output.crop.pos.Xx);
printf ("\tcrop.pos.y = %d\n", t->output.crop.pos.y);

if (t-soverlay en) {
printf ("overlay:\n") ;

printf ("\twidth: %d\n", t->overlay.width) ;

printf ("\theight: %d\n", t-s>overlay.height);

printf ("\tcrop.w = %$d\n", t-s>overlay.crop.w);

printf ("\tcrop.h = %d\n", t-soverlay.crop.h);

printf ("\tcrop.pos.x = %d\n", t->overlay.crop.pos.x);
printf ("\tcrop.pos.y = %d\n", t->overlay.crop.pos.y);

}

int main(int argc, char *argv([])
{
int fd, fd_fb, isize, ovsize, alpsize, cnt = 50;
int blank, ret;
FILE * file in = NULL;
struct ipu task task;
struct fb_var_ screeninfo fb_var;
struct fb_fix screeninfo fb_fix;
void *inbuf, *ovbuf, *alpbuf, *vdibuf;

fd = open("/dev/mxc_ipu", O _RDWR, O0);
fd fb = open("/dev/fbl", O RDWR, 0);
file in = fopen(argv[argc-1], "rb");

memset (&task, 0, sizeof (task));

/* input setting */

task.input.width = 320;
task.input.height = 240;
task.input.crop.pos.x = 0;
task.input.crop.pos.y = 0;
task.input.crop.w = 0;

task.input.crop.h = 0;

task.input.format = IPU_PIX FMT_YUV420P;

isize = task.input.paddr =
task.input.width * task.input.height
* fmt to bpp(task.input.format)/8;
ioctl (fd, IPU ALLOC, &task.input.paddr) ;
inbuf = mmap (0, isize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.input.paddr) ;

/*overlay setting */
task.overlay en = 1;
task.overlay.width = 1024;
task.overlay.height = 768;
task.overlay.crop.pos.x = 0;
task.overlay.crop.pos.y
task.overlay.crop.w = 0;
task.overlay.crop.h = 0;
task.overlay.format = IPU PIX FMT RGB24;

#ifdef GLOBAL_ALP
task.overlay.alpha.mode = IPU_ALPHA MODE_GLOBAL;
task.overlay.alpha.gvalue = 255;
task.overlay.colorkey.enable = 1;
task.overlay.colorkey.value = 0x555555;

#else
task.overlay.alpha.mode = IPU ALPHA MODE_LOCAL;
alpsize = task.overlay.alpha.loc alp paddr =

task.overlay.width * task.overlay.height;

ioctl(fd, IPU_ALLOC, &task.overlay.alpha.loc_alp_ paddr) ;
alpbuf = mmap (0, alpsize, PROT READ | PROT WRITE,

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

62 Freescale Semiconductor, Inc.

4
Chapter 5 Image Processing Unit (IPU) Drivers

MAP_SHARED, fd, task.overlay.alpha.loc_alp paddr) ;
alpbuf, 0x00, alpsize/4);

alpbuf+alpsize/4, 0x55, alpsize/4);
alpbuf+alpsize/2, 0x80, alpsize/4);
alpbuf+alpsize*3/4, Oxff, alpsize/4);

memset
memset
memset
memset

#endif

ovsize = task.overlay.paddr =
task.overlay.width * task.overlay.height
* fmt to bpp(task.overlay.format)/8;
ioctl (fd, IPU ALLOC, &task.overlay.paddr) ;
ovbuf = mmap (0, ovsize, PROT READ | PROT_WRITE,
MAP_SHARED, fd, task.overlay.paddr) ;
#ifdef GLOBAL_ALP
memset (ovbuf, 0x55, ovsize/4) ;
memset (ovbuf+ovsize/4, Oxff, ovsize/4);
memset (ovbuf+ovsize/2, 0x55, ovsize/4);
memset (ovbuf+ovsize*3/4, 0x00, ovsize/4);
#else
memset (ovbuf, 0x55, ovsize);
#endif
#endif

/* output setting*/
task.output.width = 1024;
task.output.height = 768;
task.output.crop.pos.x = 0;
task.output.crop.pos.y = 0
task.output.crop.w = 0;
task.output.crop.h = 0;
task.output.format = IPU PIX FMT RGB565;
task.output.rotate = IPU ROTATE NONE;

ioctl (fd fb, FBIOGET VSCREENINFO, &fb var);
fb_var.xres = task.output.width;

fb _var.xres virtual = fb var.xres;
fb_var.yres = task.output.height;
fb_var.yres_virtual = fb var.yres * 3;
fb_var.activate |= FB_ACTIVATE FORCE;
fb_var.nonstd = task.output.format;
fb_var.bits_per_pixel = fmt_to_ bpp (task.output.format) ;
ioctl (fd fb, FBIOPUT VSCREENINFO, &fb var);
ioctl (fd_fb, FBIOGET VSCREENINFO, &fb var) ;
ioctl (fd fb, FBIOGET FSCREENINFO, &fb fix);
task.output.paddr = fb_fix.smem start;
blank = FB_BLANK UNBLANK;

ioctl (fd fb, FBIOBLANK, blank);

task.priority = IPU_TASK_PRIORITY_NORMAL;
task.task_id = IPU_TASK ID ANY;
task.timeout = 1000;

again:
ret = ioctl(fd, IPU CHECK TASK, &task);

if (ret != IPU CHECK OK) ({
if (ret > IPU CHECK ERR MIN) ({
if (ret == IPU CHECK ERR _SPLIT INPUTW_OVER)
task.input.crop.w -= 8;

goto again;

if (ret == IPU CHECK ERR SPLIT INPUTH OVER) {
task.input.crop.h -= 8;
goto again;

}

if (ret == IPU CHECK ERR SPLIT OUTPUTW_ OVER) {
task.output.crop.w -= 8;
goto again;

}

if (ret == IPU CHECK ERR SPLIT OUTPUTH_OVER) ({

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 63

Unit Test

task.output.crop.h -

goto again;
ret = -1;
return ret;

dump_ ipu task (&task) ;

(--cnt > 0) {
fread(inbuf, 1, isize, file in);
ioctl (fd, IPU QUEUE TASK, &task);

while

}

munmap (ovbuf, ovsize);

task.input.paddr) ;
task.overlay.paddr) ;

ioctl (f4,
ioctl (£4d,

IPU_FREE,
IPU_FREE,

close (f4d) ;

close (fd_fDb) ;
fclose(file in);

NOTE

= 8;

The overlay width and height must be the same as those of the
output. For example, if the input is 240x320, and the output is
1024x768 which uses rotation of 90 degree, the overlay must be
the same as the output, that is, 1024x768.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

64

Freescale Semiconductor, Inc.

Chapter 6
MIPI DSI Driver

6.1 Introduction
The MIPI DSI driver for Linux is based on the IPU framebuffer driver.
This driver has two parts:

e MIPI DSI IP driver: low-level interface used to communicate with MIPI device
controller on the display panel.

» MIPI DSI display panel driver: provides an interface to configure the display panel
through MIPI DSI.

6.1.1 Overview of MIPI DSI IP Driver

The MIPI DSI IP driver is registered through the IPU framebuffer driver interface and it
1s not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS related
system resources and registers framebuffer event notifier for blank/unblank operation.
Additionally, the driver initializes MIPI D-PHY and configures the MIPI DSI IP
according to the MIPI DSI display panel. The MIPI DSI driver supports the following
features:

* Compatibility with MIPI Alliance Specification for DSI, Version1.01.00.

» Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00.

* Supports up to two D-PHY data lanes.

* Bidirectional Communication and Escape Mode Support through Data Lane 0.

* Programmable display resolutions, from 160x120 (QQVGA) to 1024x768 (XVGA).

* Video Mode Pixel Formats, 16bpp (565RGB),18bpp (666RGB) packed, 18bpp
(666RGB) loosely, 24bpp (888RGB).

» Supports the transmission of all generic commands.

» Supports ECC and checksum capabilities.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 65

A ————
Software Operation

» Supports End-of-Transmission Packet(EoTp).

* Supports ultra low power mode.

6.1.2 Overview of MIPI DSI Display Panel Driver
The MIPI DSI display panel driver is used to configure the MIPI DSI display panel.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there 1s a MIPI DSI slave controller integrated on the display panel.
After being powered on and reset, the MIPI DSI display panel needs to be configured
through standard MIPI DCS command or MIPI DSI Generic command according to
manufacturer's specification.

6.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on exisiting MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from host to peripheral in high speed mode. It also generates an interrupt when an error
occurs.

6.2 Software Operation

The MIPI DSI driver for Linux has two parts: MIPI DSI IP driver and MIPI DSI display
panel driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

66 Freescale Semiconductor, Inc.

4
Chapter 6 MIPI DSI Driver

6.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The IPU instance to
which the MIPI DSI IP is attached is described in the field int ipu_id while the DI
instance inside IPU is described in the field int disp_id

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_lcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter or leave low power
mode.

The MIPI DSI IP driver provides three APIs for MIPI DSI display panel driver to
configure the display module.

6.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through the MIPI
DSI interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to set up display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

6.3 Driver Features
The MIPI DSI driver supports the following features:

e MIPI DSI communication protocol
e MIPI DSI command mode and video mode
* MIPI DCS command operation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 67

Driver Features

NOTE
The MIPI DSI driver does not support the DBI-2 mode, because
the DBI-2 and DPI-2 cannot be enabled at the same time on this
controller.

6.3.1 Source Code Structure
Table below shows the MIPI DSI driver source files available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc.
Table 6-1. MIPI DSI Driver Files

File Description
mipi_dsi.c MIPI DSI IP driver source file
mipi_dsi.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

6.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the ./Itib -c command when located in the <Itib dir>. On the displayed
screen, select Configure the Kernel and exit. When the next screen appears, select the
following options to enable this module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

6.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see <ltib_dir>/rpm/BUILD/linux/driver/video/mxc/mipi_dsi.h.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
68 Freescale Semiconductor, Inc.

Chapter 7
LVDS Display Bridge(LDB) Driver

7.1 Introduction

This section describes the LVDS Display Bridge(LDB) driver which controls LDB
module to connect with external display devices through the LVDS interface.

7.1.1 Hardware Operation

The purpose of the LDB is to support the flow of synchronous RGB data from IPU to
external display devices through the LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices; displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

For detailed information about LDB, see the LDB chapter of the Multimedia Applications
Processor Reference Manual.

7.1.2 Software Operation

LDB driver is functional if the driver is built-in and if the user adds ldb option to boot-up
command line.

When more options with ldb= prefixed are added, LDB can be configured when the
device is probed, including the LVDS channel mapping mode and bit mapping mode.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 69

A
Introduction

When the LDB device is probed properly, the driver will configure LDB reference
resistor mode and LDB regulator by using platform data information. The LDB driver
probe function will also try to match video modes for external display devices to LVDS
interface. The display signal polarities control bits of LDB are set according to the
matched video modes. LVDS channel mapping mode and bit mapping mode of LDB are
set according to the bootup LDB option chosen by the user, if available. Otherwise, an
appropriate LDB setting is chosen by the driver if the video mode can be found in local
video mode database. LDB is fully enabled in probe function if the driver identifies a
display device with LVDS interface as the primary display device.

The driver takes the following steps to enable a LVDS channel:

Set the 1db_di_clk's parent clk and the parent clk's rate.

Set the 1db_di_clk's rate.

Enable both 1db_di_clk and its parent clk.

Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.

5. Enable related LVDS channels.

b NS

LDB driver registers FB event handler to control LDB and related clocks when the FB is
blanked or unblanked.

See <1tib dirs>/rpm/BUILD/linux/drivers/video/mxc/1db.c for more information.

7.1.3 Source Code Structure

The source code is available in the following location:

<ltib dirs/rpm/BUILD/linux/drivers/video/mxc/1ldb.c

7.1.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

To get to these options, use the ./1tiv -c command when located in the <itiv airs. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following options as build-in status to enable this module:

Device Drivers -> Graphics support -> MXC Framebufer support ->
' Synchronous Panel Framebuffer -> MXC LDB

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

70 Freescale Semiconductor, Inc.

Chapter 8
Video for Linux Two (V4L2) Driver

8.1 Introduction

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions.

The V4L2 camera driver implements support for all camera related functions. The V412
capture device takes incoming video images, either from a camera or a stream, and
manipulates them. The output device takes video and manipulates it, and then sends it to
a display or similar device. The V4L2 Linux standard API specification is available at
http://v412spec.bytesex.org/spec

The features supported by the V4L2 driver are as follows:

* Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

* Direct preview to graphics frame buffer (without synchronized to LCD refresh)

* Color keying or alpha blending of frame buffer and overlay planes

» Streaming (queued) capture from IPU encoding channel

* Direct (raw Bayer) still capture (sensor dependent)

* Programmable pixel format, size, frame rate for preview and capture

* Programmable rotation and flipping using custom API

* RGB 16-bit, 24-bit, and 32-bit preview formats

» Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and
4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture

» Control of sensor properties including exposure, white-balance, brightness, and
contrast

* Plug-in of different sensor drivers

 Link post-processing resize and CSC, rotation, and display IPU channels

* Streaming (queued) input buffer

* Double buffering of overlay and intermediate (rotation) buffers

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 71

http://v4l2spec.bytesex.org/spec

A
V4L2 Capture Device

» Configurable 3+ buffering of input buffers

e Programmable input and output pixel format and size

* Programmable scaling and frame rate

* RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved

input formats
* TV output

The driver implements the standard V4L2 API for capture, output, and overlay devices.
The command modprobe mxc_v412_capture must be run before using these functions.

8.2 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

 Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video
stream

* Overlay interface-uses the IPU device driver to display the preview video to the SDC
foreground and background panel.

V4L.2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in <ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/.

The V4L2 capture device driver is in the mxc_v412_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWRB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in <lItib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/capture/

8.2.1 VA4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L.2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

72 Freescale Semiconductor, Inc.

4
Chapter 8 Video for Linux Two (V4L2) Driver
* VIDIOC_S_FMT
* VIDIOC_REQBUFS
* VIDIOC_QUERYBUF
* VIDIOC_QBUF
* VIDIOC_DQBUF
* VIDIOC_STREAMON
* VIDIOC_STREAMOFF
* VIDIOC_OVERLAY
* VIDIOC_G_FBUF
* VIDIOC_S_FBUF
* VIDIOC_G_CTRL
* VIDIOC_S_CTRL
* VIDIOC_CROPCAP
* VIDIOC_G_CROP
* VIDIOC_S_CROP
* VIDIOC_S_PARM
* VIDIOC_G_PARM
* VIDIOC_ENUMSTD
* VIDIOC_G_STD
e VIDIOC_S_STD
* VIDIOC_ENUMOUTPUT
* VIDIOC_G_OUTPUT
e VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0-Normal operation

* 1-Vertical flip

 2-Horizontal flip

* 3-180° rotation

* 4-90° rotation clockwise

* 5-90° rotation clockwise and vertical flip

* 6-90° rotation clockwise and horizontal flip
* 7-90° rotation counter-clockwise

The following figure shows a block diagram of V4L2 Capture API interaction.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 73

A ————
V4L2 Capture Device

Application
User Space

Femel Space

Common Yideo for inus 2 Drver

Poallwait | mec_vwdl_camera_ops

iohain of buffers

I singnal the _
Setup the EBA of IDMA Polling function Stream On/Off, Open/Close
Channels acconding o the when frame
buter Queuad ready
ISF mxc_vdl cameara_ops

Lowwer level MXC Driver

Figure 8-1. Video4Linux2 Capture API Interaction

8.2.2 Using the V4L2 Capture APIs

This section describes a sample V4L.2 capture process. The application completes the
following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.

3. Requests a buffer by using IOCTL VIDIOC_REQBUFS. The common V4L2 driver

creates a chain of buffers (currently the maximum number of frames is 3).

Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream by using the IOCTL VIDIOC_STREAMON. This IOCTL enables

the IPU tasks and the IDMA channels. When the processing is completed for a

frame, the driver switches to the buffer that is queued for the next frame. The driver

also signals the semaphore to indicate that a buffer is ready.

7. Takes the buffer from the queue by using the [OCTL VIDIOC_DQBUF. This
IOCTL blocks until it has been signaled by the ISR driver.

AN

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

74 Freescale Semiconductor, Inc.

L __4
Chapter 8 Video for Linux Two (V4L2) Driver
8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

For the V4L.2 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the [IOCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

For the V412 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

8.3 V4L2 Output Device

The V4L2 output driver uses the IPU post-processing functions for video output.

The driver implements the standard V4L2 API for output devices. V4L2 output device
support can be selected during kernel configuration. The driver is available at <Itib_dir>/
rpm/BUILD/linux/drivers/media/video/mxc/output/mxc_vout.c.

8.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
e VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 75

A
Source Code Structure

e VIDIOC_G_CROP

e VIDIOC_S_CROP

e VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this purpose, the ID is V4L2_CID_MXC_MOTION. Supported values include the
following:

¢)-Medium motion
e 1-Low motion
 2-High motion

8.3.2 Using the V4L2 Output APIs

This section describes a sample V4L2 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size by using IOCTL VIDIOC_S_FMT.

2. Sets the control information by using IOCTL VIDIOC_S_CTRL, for rotation and de-
interlace motion (if need).

Sets the output information by using IOCTL VIDIOC_S_CROP.

Requests a buffer by using IOCTL VIDIOC_REQBUFS. The common V4L2 driver
creates a chain of buffers (not allocated yet).

Memory maps the buffer to its user space.

Executes IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer by using the [IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing [OCTL VIDIOC_STREAMON.

Stops the stream by excuting IOCTL VIDIOC_STREAMOFF.

W

SN R R

o

8.4 Source Code Structure
The following table lists the source and header files associated with the V4L2 drivers.

These files are available in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

76 Freescale Semiconductor, Inc.

Chapter 8 Video for Linux Two (V4L2) Driver

Table 8-1. V2L2 Driver Files

File

Description

capture/mxc_v4l2_capture.c

V4L2 capture device driver

output/mxc_vout.c

V4L2 output device driver

capture/mxc_v4I2_capture.h

Header file for V4L2 capture device driver

capture/ipu_prp_enc.c

Pre-processing encoder driver

capture/ipu_prp_vf_adc.c

Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c

Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c

Pre-processing view finder (synchronous background) driver

capture/ipu_fg_overlay_sdc.c

synchronous forground driver

capture/ipu_bg_overlay_sdc.c

synchronous background driver

capture/ipu_still.c Pre-processing still image capture driver

Drivers for specific cameras can be found in <ltib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/capture/

Drivers for specific output can be found in <lItib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/output/

8.4.1 Menu Configuration Options
The Linux kernel configuration options are provided in the chapter on the IPU module.

See Menu Configuration Options.

8.4.2 V4L2 Programming Interface

For more information, see the V412 Specification and the APl Documents for the
programming interface.

The API Specification is available at LINUX MEDIA INFRASTRUCTURE APL.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 77

http://v4l2spec.bytesex.org/spec/

Source Code Structure

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

78 Freescale Semiconductor, Inc.

Chapter 9
Graphics Processing Unit (GPU)

9.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is based on the Vivante GC2000 core, which
1s an embedded engine that accelerates user level graphics Application Programming
Interface (APIs) such as OpenGL ES 1.1, OpenGL ES 2.0 and OpenCL 1.1EP. The 2D
graphics processing unit (GPU2D) is based on the Vivante GC320 core, which is an
embedded 2D graphics accelerator targeting graphical user interfaces (GUI) rendering
boost. The VG graphics processing unit (GPUVG) is based on the Vivante GC355 core,
which is an embedded vector graphic accelerator for supporting the OpenVG 1.1 graphics
API and feature set. The GPU driver kernel module source is in kernel source tree, but
the libs are delivered as binary only.

9.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.4 API defined by
Khronos Group.

* OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

* OpenGL ES 2.0 API defined by Khronos Group.

* OpenVG (OpenVG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 79

A ————
Introduction
* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.
* OpenGL 2.1 API defined by Khronos Group.
* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

9.1.1.1 Hardware Operation

For detailed hardware operation and programming information, see the GPU chapter in
the i. MX 6 Dual/6QuadApplications Processor Reference Manual.

9.1.1.2 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack . This layer provides the essential hardware
access, device management, memory management, command queue management,
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1 and 2.0 API
« EGL 1.4 API

* OpenVG 1.1 API

* OpenCL 1.1 EP API

9.1.1.3 Source Code Structure

Table below lists GPU driver kernel module source structure:

<Itib_dir>/rpm/BUILD/linux/drivers/mxc/gpu-viv
Table 9-1. GPU Driver Files

File Description
Kconfig Kbuild config kernel configure file and makefile
arch/XAQ2/hal/kernel hardware specific driver code for GC2000 and GC320
arch/GC350/hal/kernel hardware specific driver code for GC350
hal/kernel Kernel mode HAL driver
hal/os os layer HAL driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

80 Freescale Semiconductor, Inc.

Chapter 9 Graphics Processing Unit (GPU)

9.1.1.4 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib
Table 9-2. GPU Library Files
File Description

libCLC.so OpenCL frontend compiler library
libEGL.so* EGL1.4 library
libGAL.so* GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library

(without EGL API, no float point support API)
libGL.s0.1.2 OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)
libGLESv1_CL.so OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)
libGLESv1_CM.so OpenGL ES 1.1 common library

(with EGL AP, include float point support API)
libGLESv2.s0 OpenGL ES 2.0 library
libGLSLC.so OpenGL ES shader language compiler library
libOpenCL.so OpenCL 1.1 EP library
libOpenVG.so* OpenVG 1.1 library
libVDK.so VDK wrapper library.
libVIVANTE.so* Vivante user mode driver.
directfb-1.4-0/gfxdrivers/libdirectfb_gal.so DirectFB 2D acceleration library.
dri/vivante_dri.so DRI library for OpenGL2.1.

* These libraries are actually symbolic links to the actual library file in the folder.

By default, these symbolic links are installed to point to the frame buffer version of the
libraries as such:

1ibGAL.so -> 1libGAL-fb.so
1ibEGL.so -> libEGL-fb.so
1ibVIVANTE.so -> libVIVANTE-fb.so
1libOpenvVG.so -> l1libOpenVG 3D.so

On X11 systems, the symbolic links to these libraries need to be redirected. This can be
done using the following sequence of commands:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 81

Introduction

> cd <ROOTFS>/usr/1lib

> sudo 1ln -s 1libGAL-x11l.so 1libGAL.so

> sudo 1ln -s 1ibEGL-x11l.so 1libEGL.so

> sudo 1ln -s 1ibEGL-x11.so 1libEGL.so.1l

> sudo 1ln -s 1ibVIVANTE-x1l.so 1ibVIVANTE.so

On directFB backend, the symbolic links to these libraries need to be redirected. This can
be done using the following sequence of commands:

> cd <ROOTFS>/usr/lib

> sudo 1ln -s 1libGAL-dfb.so 1ibGAL.so

> sudo 1ln -s 1libEGL-dfb.so 1ibEGL.so
>
>

sudo 1ln -s 1libEGL-dfb.so 1ibEGL.so.1l
sudo 1ln -s 1ibVIVANTE-dfb.so 1ibVIVANTE.so

For 1libOpenVGé.so, there are two libraries for OpenVG feature. 1ibOpenVG_3D.so is
£c2000 based OpenVG library. libOpenVG_355.s0 is gc355 based OpenVG library. If
gc355 based OpenVG library want to be used, this can be done by using the following
sequence of commands:

> cd <ROOTFS>/usr/1lib
> sudo 1ln -s 1libOpenVG 355.so0 1libOpenVG.so

9.1.1.5 API References
Refer to the following web sites for detailed specifications:

* OpenGL ES 1.1 and 2.0 API: http://www.khronos.org/opengles/
* OpenCL 1.1 EP http://www.khronos.org/opencl/

* EGL 1.4 API: http://www .khronos.org/egl/

* OpenVG 1.1 API: http://www.khronos.org/openvg/

9.1.1.6 Menu Configuration Options
The following Linux kernel configurations are provided for GPU driver:

CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In menucon
figuration this option is available under Device Drivers > MXC support drivers > MXC

Vivante GPU support > MXC Vivante GPU support.

To get to the GPU library package in LTIB, use the command ./Itib -c when located in the
<Itib dir>. On the displayed screen, select Configure the kernel, select Device Drivers >
MXC support drivers > MXC Vivante GPU support > MXC Vivante GPU support, and
then exit. When the next screen appears, select the following options to enable the GPU
driver:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

82 Freescale Semiconductor, Inc.

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/

4
Chapter 9 Graphics Processing Unit (GPU)

» Package list > gpu-viv-bin-mx6q
 This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 83

Introduction

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

84 Freescale Semiconductor, Inc.

Chapter 10
Direct FB

10.1 Introduction

DirectFB is a thin library that provides hardware graphics acceleration, input device
handling and abstraction, integrated windowing system with support for translucent
windows and multiple display layers, not only on top of the Linux Framebuffer Device. It
1s a complete hardware abstraction layer with software fallbacks for every graphics
operation that is not supported by the underlying hardware. DirectFB adds graphical
power to embedded systems and sets a new standard for graphics under Linux.

10.1.1 Hardware Operation
DirectFB acceleration uses the Vivante GPU.

The process is described in the Driver Features. Acceleration is also dependent on the
frame buffer memory.

10.2 Software Operation
The DirectFB version which is currently supported is DirectFB-1.4.0.
Subsequent versions have not been tested and are not officially supported.

Since DirectFB is a thin Graphics library, it is lightweight and has a small footprint
optimized for embedded devices. It is not a client/server model like X11.

It provides a hardware abstraction layer for hardware graphics acceleration: Anything
that is not supported by hardware and still supported by software, but uses hardware
where possible.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 85

A ————
Software Operation

10.2.1 DirectFB Acceleration Architecture

DirectFB Care

Screens

Layers

Graphics
Devices

Frame Buffer/Graphics Acceal.

Figure 10-1. DirectFB Acceleration Architecture

Headar Maodule Declaration/Re aticn Required Functions
Systems sSrefcore/system.h OFE_CORE SYSTEM | -<name) Sae CoreSys temFuncain
srofocre foore system.h core_system.h and
system.h

Graphice src/core/graphics driver DFBE_GBAPHICS DRIVER [<name>) SeeGraphicsDriverFun

Drivars «h co in
grapnies driver.n

Graphics src/corefgizcard.h vigdriver init driwverd} in Bes

Davices GraphicabriverFuncs GraphicsDeviceFuncs in
gixcard.h

Screans sro/core/screens.h dfbh screens register() 588 SoresnFuncs in
screens . h

Layers src/eoraflaysrs.h dfb layers register(} Geg DisplaylLayerFuncs
in layers.h

Figure 10-2. DirectFB Acceleration Architecture Details

Systems provides frame buffer and hardware management to access to the resources.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

86 Freescale Semiconductor, Inc.

4
Chapter 10 Direct FB

10.2.2 i.MX DirectFB Driver Details

The following are the types of operations that are accelerated for DirectFB:

* Rectangle filling/drawing

* Triangle filling/drawing

e Line drawing

* Flat shaded triangles

e Simple blitting

* Stretched blitting

» Textured triangles (perspective correct)

* Blending with an alphachannel (per pixel alpha)
 Blending with an alpha factor (alpha modulation)
* Nine source and destination blend functions

* Porter/Duff rules are supported

* Premultiplied alpha supported

* Colorized blitting (color modulation)

* Source color keying

* Destination color keying

Management

DirectFB has its own resource management for video memory. Resources like display
layers or input devices can be locked for exclusive access, for example, for fullscreen
games. DirectFB provides abstraction for the different graphics targets such as display
layers, windows and any general purpose surfaces. The programming effort for switching
from windowed to fullscreen and back is minimized to set the desired cooperative level.

DirectFB Modules

The API and structure of DirectFB is designed to provide an easy way of implementing
the following parts:

* Graphics acceleration

* Input devices (currently keyboard, serial and PS/2 mice, joysticks)

* Image Provider (currently PNG, GIF and JPEG)

* Video Provider (currently Video4Linux, AVI (using avifile), MPEG1/2 (using
libmpeg3))

* Font Provider (currently DirectFB bitmap font, TrueType via FreeType 2)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 87

A
DirectFB EGL

10.2.3 The gal_config File for i.MX DirectFB Driver

This is the configuration file for Vivante GFX plug-in driver. You can use this file to
control which primitive is accelerated with specific features.

For example, if you want to accelerate blit with alpha blending and rotate180 features,
add the following line to the file.

blit=alphachannel,coloralpha,rotate180

Then blit with other features (including xor and src_colorkey) are not accelerated by HW.
Even blit without any features is not accelerated.

"none" in the feature list means the rendering primitive without any features.
Following is the full matrix of the primitives and features:
drawline=none,xor,blend

drawrectangle=none,xor,blend

fillrectangle=none,xor,blend

filltriangle=none,xor,blend
blit=none,xor,alphachannel,coloralpha,src_colorkey,rotate 180
stretchblit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

To use the configuration file, set environment variable GAL_CONFIG_FILE pointing to
this file. For example, for a bash user,

export GAL_CONFIG_FILE=/home/gfx/gal_config

If you don't set the environment variable, a default configuration matrix will be used. The
default configuration matrix is as follows:

fillrectangle=none,xor,blend

filltriangle=none,xor,blend

filltriangle=none,xor,blend
blit=none,xor,alphachannel,coloralpha,src_colorkey,rotate 180
stretchblit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

Configuration file has higher priority.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

88 Freescale Semiconductor, Inc.

4
Chapter 10 Direct FB

10.3 DirectFB EGL
EGL in DirectFB can be used for OpenGL and OpenVG applications.

To enable DirectFB EGL, you need to increase the size of FBDEV, which can be
achieved by increasing the size in memory of /dev/fb0. This can be done by using fbset.

The typical size to of the fb is the same as the one used for triple buffer:
fbset -tb /dev/fb0 -g Xsize Ysize Xsize 3*Ysize BPP

For the hanstar lvds panel:

fbset -fb /dev/fb0 -g 1024 768 2034 32

For more information on fbset, check the fbset man pages.

10.4 Setting Up DirectFB Acceleration

Perform the following actions to set up DirectFB Acceleration:

1. Install Itib and select "min profile" or "gnome Mobile profile" and build with the
default settings.

2. Cross compile DirectFB and their examples. You can do it by using the toolchain and
follow the instructions in the DirectFB-1.4.0 package or have LTIB to do it all
(recommended). The next steps use LTIB.

3. Because ltib checks the mdSsum of the tar.gz, you need to to generate .md5 file for
DirectFB-examples-1.2.0 in the pkgs directory:

e Md5sum DirectFB-examples.l1.2.0.tgz > DirectFB-examples-1.2.0.tgz.md5
NOTE
You may also need to verify that the .spec file has the
correct version:/Itib/dist/Ifs-5.1/DirectFB/DirectFB-
examples.spec

4. Run Itib with command
e -/ltib -m config

b

Make sure that “Configure the kernel” is selected
6. When configuring Itib, go to Package List and select

e Jpu-viv-bin-mxé6g
DirectFB

DirectFB-examples
zlib

7. Exit and save your configuration.
8. Run Itib

o -/ltib

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 89

A ————
Setting Up DirectFB Acceleration
9. Now you should be in the kernel configuration. Go to Device Drivers-> MXC
Support Drivers->MXC Vivante GPU Support and include

e -/MXC Vivante GPU Support

10. Exit, save your configuration and wait for the build.

NOTE
Make sure that you do “insmod /lib/modules/kernel-version/
kernel/drivers/mxc/gpu-viv/galcore.ko” before trying to run
DirectFB applications.

To run the DFB examples, run “/usr/bin/df_dok™. It will perform a series of benchmarks
and show the results, but they require settings such as jpgs, pngs, and fonts, which are in
the DirectFB-examples tar file. Refer to the DirectFB-examples-1.2.0.tar.gz README
for more details.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
90 Freescale Semiconductor, Inc.

Chapter 11
HDMI Driver

11.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module, which provides the capability to transfer
uncompressed video, audio, and data by using a single cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multi-function device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

* Integration with the MXC Display Device framework, used for managing display
device connections with the IPU(s)

e HDMI video output up to 1080p60 resolution

* Support for reading EDID information from an HDMI sink device

» Hotplug detection

* Support for CEC

e Automated clock management to minimize power consumption

* Support for system suspend/resume

* HDMI audio playback (2, 4, 6, or 8 channels, 16 bit, for sample rates 32 KHz to 192
KHz)

* IEC audio header information exposed through ALSA by using ‘iecset’ utility

11.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
following figure.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 91

A
Introduction

Output data is transmitted through three Transition-Minimized Differential Signaling
(TMDS) channels to an HDMI sink device external to the SoC. Additionally, the HDMI
carries a VESA Data Display Channel (DDC). The DDC is an I2C interface which allows
the HDMI source to query the HDMI sink for Extended Display Identification Data
(EDID). A CEC channel provides optional high-level control functions between the
source and sink device.

w HDMI
Image Parallel I/F = X
Processing > 5
Unit &
TMDS _DATA
External AHB master % HOMI 7 >
Memory (e e —> PTHXY TMDS_CLK -
Interface =
< HDMI
T
Controller CEC -
‘. DDG(I’C)
AHB Slave 2 2
» 5
=
<]
5]
J
4]
m
2
» —P & HDCP
Clocks —]
> z A A
Inferrupts
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 11-1. HDMI HW Integration

For additional details of the hardware operation of the HDMI module, see the HDMI
section of the 1.MX 6Dual/6Quad reference manual.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

92 Freescale Semiconductor, Inc.

Chapter 11 HDMI Driver

The video input to the HDMI is configurable and may come from either of the two IPU
modules in the 1.MX 6Dual/6Quad, and from either of the two Display Interface (DI)
ports of the IPU, DIO or DII1. This configuration is controlled through the IOMUX
module by using the HDMI_MUX_CTRL register field. The following figure shows an
illustration of this interconnection.

Memory

IPU #1 IPU #2

Do DN DIO DI

HDMI MUX [e——HDMI_MUX_CTRL

: = Y

Parallel LCD,
LVDS, MIPI DPI, HDOMI
etc.

HDM| Out
Figure 11-2. IPU-HDMI Hardware Interconnection

11.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 93

Software Operation
11.2.1 Core

The HDMI core driver manages resources that must be shared between the HDMI audio
and video drivers. The HDMI audio and video drivers depend on the HDMI core driver,
and the HDMI core driver should always be loaded and initialized before audio and
video. The core driver serves the following functions:

e Mapping the HDMI register region and providing APIs for reading and writing to
HDMI registers.

* Performing one-time initialization of key HDMI registers.

e Initializing the HDMI IRQ and providing shared APIs for enabling and disabling the
IRQ.

* Providing a means for sharing information between the audio and video drivers (such
as the HDMI pixel clock).

* Providing a means for synchronization between HDMI video and HDMI audio while
blank/unbalnk, plug in/plug out events occur. HDMI audio cannot start work while
the HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable is plugged out, the core driver would pause HDMI audio DMA controller if
its PCM is registered. When HDMI is unblanked or the cable is plugged in, the core
driver would firstly check if the cable is in the state of plug in, the video state is
unblank and the PCM is registered. If items listed above are all yes, the core driver
would restart HDMI audio DMA.

11.2.2 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

94 Freescale Semiconductor, Inc.

4
Chapter 11 HDMI Driver

MX 6x Framebuffer and Display Device Software Architecture

[Registration/
Applications D Kernel Core Software unregistration requests
l] Freescale BSP Software from display device
Display device initialization
D Hardware trigger and capture of
Framebuffer Core display device settings

Display device initialization
7 {driven by trigger from IPL
FB driver)

FB notifications (blank,
l unblank, video mode change)
to HOMI driver

FB video mode change
requests from HOM| driver

Software
Hardware Y

Parallel LCD LDB
HDMI MIPI DFI e

IPU

Figure 11-3. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad supports many different types of display output devices (such as
LVDS, LCD, HDMI, and MIPI displays) connected to and driven by the IPU modules.
The MXC Display Driver API provides a system for registering display devices and
configuring how they should be connected to each of the IPU DIs. The HDMI driver
registers itself as a display device by using this API to receive the correct video input
from the IPU.

11.2.3 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the IPU FB driver through the MXC Display Driver system:

1. During the HDMI video driver initialization, mxc_dispdarv_register () is called to
register the HDMI module as a display device and to set the mxc_ndmi_disp_init ()
function as the display device init callback.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 95

A ————
Software Operation

2. When the IPU FB driver is initialized, mxc_disparv_init () 18 called. This results in an
initialization call to all registered display devices.

3. The mxc_nami_disp_init () callback is executed. The HDMI driver receives a structure
from the IPU FB driver containing frame buffer information (fbi). The HDMI driver
also provides return information about which IPU and DI to select and the preferred
output format for video data from the IPU. The HDMI driver registers itself to
receive notifications of FB driver events. Finally, the HDMI driver can complete its
initialization by configuring the HDMI to receive a hotplug interrupt.

NOTE
All display device drivers must be initialized before the IPU FB
driver for all display devices to be registered as MXC Display
Driver devices before the IPU FB driver can initialize them.

11.2.4 Hotplug Handling and Video Mode Changes

Once the connection between the IPU and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt,
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and IPU FB are conducted through
the Linux Frame Buffer APIs. The following list demonstrates the software flow to
recognize an HDMI sink device and configure the IPU FB driver to drive video output to
it:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device, constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls tb_set_var () to change the video mode in the IPU FB
driver. The IPU FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), an FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode..

4. The HDMI module is enabled to generate output to the HDMI sink device.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

96 Freescale Semiconductor, Inc.

4
Chapter 11 HDMI Driver

11.2.5 Audio

The HDMI Tx audio driver uses the ALSA SoC framework, so it is broken into several
files, as 1s listed in Table 11-4. Most of the code is in the platform DMA driver (sound/
soc/imx/imx-hdmi-dma.c) and the codec driver (sound/soc/codecs/mxc_hdmi.c). The
machine driver (sound/soc/imx/imx-hdmi.c) exists to allocate the SoC audio device and
link all the SoC components together. The DAI driver (sound/soc/imx/imx-hdmi-dai.c)
mostly exists because SoC wants there to be a DAI driver; it gets the platform data, but
doesn’t do anything else.

The HDMI codec driver does most of the initialization of the HDMI audio sampler. The
HDMI Tx block only implements the AHB DMA audio and not the other audio interfaces
(SSI, S/PDIF, etc). The other main function of the HDMI codec driver is to set up a struct
of the IEC header information which needs to go into the audio stream. This struct is
hooked into the ALSA layer, so the IEC settings will be accessible in userspace using the
‘lecset’ utility.

The platform DMA driver handles the HDMI Tx block’s DMA engine. Note that HDMI
audio uses the HDMI block’s DMA as well as SDMA. SDMA is used to help implement
the multi-buffer mechanism. The HDMI Tx block does not automatically merge the IEC
audio header information into the audio stream, so the platform DMA driver does this in
its hdmi_dma_copy() (for no memory map use) or hdmi_dma_mmap_copy() (for
memory map mode use) function before the DMA sends the buffers out. Due to IEC
audio header adding operation,the user space application may not be able to get enough
CPU periods to feed data into HDMI audio driver in time, especially when system
loading is high. In this case, some spark noise would be heard. In different audio
framework (ALSA LIB, or PULSE AUDIO), different log about this noise may be
printed. For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are
printed.

HDMI audio playback depends on HDMI pixel clock. So while in the state of HDMI
blank and cable plug out, HDMI audio would be stopped or can't be played. See detailed
infomation in software_operation_core.

Because HDMI audio driver needs to add an IEC header, the driver needs to know the
quantity of data that the application writes into HDMI audio driver. If the application is
not able to tell the data quantity (for example, DMIX plugin in ALSA LIB), the HDMI
audio driver is not able to work properly. There would be no sound heard.

The HDMI audio supports the following features:

* Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* capability of HDMI sink

* Playback Channels:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 97

A
Source Code Structure

©2,4,6,8

* capability of HDMI sink

* Playback audio formats:
* SNDRV_PCM_FMTBIT_S16_LE

11.2.6 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products. The HDMI CEC driver implements software part of HDMI
CEC low-Level protocol. It includes getting Logical address, CEC message sending and
receiving, error handle, and message re-transmitting.

Zpplication

e B

(123 uoIIUNng

s e B R N W

i P

——————————

CEC user space driver

|
|
g

ner Wwiol

CEC kernel space driver

Figure 11-4. HDMI CEC SW Architecture

11.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
98 Freescale Semiconductor, Inc.

4
Chapter 11 HDMI Driver

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the <Itib_dir>/rpm/BUIL D/
linux/drivers/mfd/ directory.

Table 11-1. HDMI Core Driver File List

File Description
mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the <ltib_dir>/rpm/BUIL D/
linux/include/linux/mfd/ directory.

Table 11-2. HDMI Core Display Driver Public Header File List

File Description
mxc-hdmi-core.h HDMI core driver header file

The source code for the HDMI display driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers/video/ directory.

Table 11-3. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the <Itib_dir>/rpm/BUIL D/
linux/drivers and sound/soc/ directory. Although the HDMI is one hardware block, the
audio driver is divided into four c files corresponding to the ALSA SoC layers:

Table 11-4. HDMI Audio Driver File List

File Description
codecs/mxc_hdmi.c HDMI Audio SoC codec driver implemention
imx/imx-hdmi-dai.c HDMI Audio SoC DAI driver implemention
imx/imx-hdmi-dma.c HDMI Audio SoC platform DMA driver implemention
imx/imx-hdmi.c HDMI Audio SoC machine driver implemention

The source code for the HDMI CEC driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers/mxc/ directory.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 99

Source Code Structure
Table 11-5. HDMI CEC Driver File List

File Description

drivers/mxc/hdmi-cec.c HDMI CEC driver implemention

The source code for the HDMI lib is available in the <Itib_dir>/rpm/BUIL D/imx-lib/
hdmi-cec/ directory.

Table 11-6. HDMI CEC lib File List

File Description
hdmi-cec/mxc_hdmi-cec.c HDMI CEC lib implemention
hdmi-cec/hdmi-cec.h HDMI CEC lib header file
hdmi-cec/android.mk HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the <ltib_dir>/rpm/BUILD/
linux/arch/arm/plat-mxc/ directory.

Table 11-7. HDMI Platform File List

File Description
devices/platform-mxc-hdmi-core.c HDMI core driver platform device code
devices/platform-mxc_hdmi.c HDMI display driver platform device code
devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code
devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code
include/mach/mxc_hdmi.h HDMI register defines

11.3.1 Linux Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menu configuration at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
100 Freescale Semiconductor, Inc.

4

Chapter 11 HDMI Driver
The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menu configuration at the following
location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

When either of the previous two configuration options is selected, the MXC HDMI Core
configuration option, CONFIG_MFD_MXC_HDMI will be selected. This option can
also be found in the menu configuration here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menu configuration at the following menu location:

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

11.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.

The HDMI video driver does not lend itself well to automated testing, so a number of
manual tests are required to verify the correct functionality. For audio driver testing, the
aplay audio file player and iecset utility provide confirmation of the the driver's proper
integration into the ALSA framework. The following two section describe unit testing for
both the HDMI audio and video drivers.

11.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1. Linux kernel command line-based tests: The initial mode used to display HDMI
video can be specified through the Linux kernel command line boot parameters. Try
several different valid display resolutions through the kernel parameters, re-booting
the system each time and verifying that the desired resolution is displayed on the
connected HDMI display.

2. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 101

Unit Test

video mode, based on the modes read via EDID from the HDMI sink, and display
that mode on the sink device.

HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

11.4.2 Audio

The following sequence of tests can verify the correct operation of the HDMI audio
driver:

1.

2.

3.

Ensure that an HDMI cable is connected between the 1.MX board and the HDMI sink
device, and that the HDMI video image is being properly displayed on the device.
Use 'aplay -I' (that's a single dash and a lower-case L) to list the audio playback cards
and determine the card number. This is different on our various boards.

For example, if the hdmi ends up being card 2, use this command line to play out a
pcm audio file "file.wav":

$ aplay -Dplughw:2,0 file.wav
Use 'iecset' to list out the IEC information about the device. You will need to specify

card number like:

S iecset -c2

NOTE
HDMI audio is dependent on a reasonable pixel clock rate
being established. If this is not the case, error messages
indicating “pixel clock not supported” will appear. This is
because there is no clock regenerator cts value that could be
calculated for the current pixel clock.

11.4.3 CEC
The following test can be used to simple verify HDMI CEC function:

$ /unit_test/mxc_cec_test

Bootup device and connect HDMI sink to board, and then run the above command. The
HDMI CEC will send Poweroff command to HDMI sink.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

102

Freescale Semiconductor, Inc.

Chapter 12
X Windows Acceleration

12.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows System can run with a default frame buffer driver which handles all drawing
operations to the main display. Because there is a 2D GPU (graphics processing unit)
available, some drawing operations can be accelerated. High level X operations may get
decomposed into many low-level drawing operations where these low level operations
are accelerated for X-Windows System.

12.2 Hardware Operation
X-Windows System acceleration on 1.MX 6 uses the Vivante GC320 2D GPU.

Acceleration is also dependent on the frame buffer memory.

12.3 Software Operation

X-Windows acceleration is supported by X.org X Server version 1.7.6 and later versions,
as well as the EXA interface version 2.5.

The types of operations that are accelerated for X11 are as follows. All operations
involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
* Upload image from the system memory to the video memory.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 103

A
Software Operation
* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.
* Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
* Porter-Duff blending of source with target.
 Source alpha masking.

The following are additional features supported by the X-Windows acceleration:

e X pixmaps can be allocated directly in frame buffer memory.
e EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

12.3.1 X Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

Applications

__ 1!______________________________________
ibraries

Comemoy | [__oma_
L RN | ORISR RS e —— | S
\‘ +| ‘

Hardware m | FBM(:morv | m

Figure 12-1. X Driver Architecture

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

104 Freescale Semiconductor, Inc.

L __4

Chapter 12 X Windows Acceleration
The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some of the families in the
1.MX 6 series, such as the .MX 6SoloLite, do not contain 3D HW module. The
components shown in light gray are the standard components in the X-Windows System
without acceleration. The components shown in orange are those added to support X-
Windows System acceleration and are briefly described here.

The i.MX X Driver library module (vivante-arv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for i.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /gev/fbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ivcar.so) contains the register-level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the i.MX X Driver code.

The EGL-X library module (1ibrcr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

12.3.2 i.MX 6 Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The implementation details are as follows:

* The implementation builds upon the source from the fbdev frame buffer driver for X,
so that it can be the fallback when the acceleration is disabled.

e The implementation is based on X server EXA version 2.5.0.

* The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 1024x1024 pixels, in which case software failure may occur.

* The EXA copy operation is accelerated, except for source/target drawables
containing less than 1024x1024 pixels, in which case software failure may occur.

* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels, in which case software failure may
occur.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 105

A ————
Software Operation
» For EXA solid fill, only solid plane masks and only GXcopy raster-op operations are
accelerated.
* For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, GXnand) are not accelerated.
* EXA composite allows for many options and combinations of source/mask/target for
rendering. Commonly used EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 1024x1024 pixels (operations with mask not supported).

* Constant source (with or without alpha mask) composite with target.

» Repeating pattern source (with or without alpha mask) composite with target.

* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these need to support the accelerated component-
alpha blending).

* In general, the following types of less commonly used EXA composite operations are
not accelerated:

* Transformed (meaning scaled, rotated) sources and masks.
* Gradient sources.
* Alpha masks with repeating patterns.

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt may fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel, which are being requested
for the pixmap, are less than 8. If the attempt to allocate from the GPU accessible
memory fails, the memory is allocated from the system. If the pixmap memory is
allocated from the system, this pixmap cannot be involved in GPU accelerated option.
The number of pitch bytes used to access the pixmap memory may be different
depending on whether it was allocated from GPU accessible memory or from the system.

Once the memory for X pixmap has been allocated, no matter it is from GPU accessible
memory or from the system, the pixmap is locked and can never migrate to other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation. More memory, however, becomes available
(through de-allocation) at a later time.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

106 Freescale Semiconductor, Inc.

L __4

Chapter 12 X Windows Acceleration
The GPU accessible memory pitch (horizontal) alignment for the GC320 is 8 pixels.
Because the memory can be allocated from GPU accessible memory, these pixels could
be used in EGL for OpenGL/ES drawing operations.

All of the memory allocated for /aev/£00 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/f00 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension.

X extension is provided, so that X clients can query the physical GPU address associated
with an X pixmap if that X pixmap was allocated in the GPU accessible memory.

12.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-
Windows System

The Direct Rendering Infrastructure, also known as the DRI, is a framework that allows
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important function for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APIs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

* The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

* The libdri.so implements Vivante’s customized DRI protocol that passes the buffer
information between X server and X clients (GL or GLES applications).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 107

A
Software Operation

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

1. GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

2. In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

3. Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

12.3.4 EGL- X Library
The EGL-X library implements the low-level EGL interface used in X-Windows System.
The implementation details are as follows:

* The egipispiay native display type is "pispilay+" in X-Windows.
* The egiwindowsurface native window surface type is "window" in X-Windows.
* The egirixmapsurface native pixmap surface type is "pixmap" in X-Windows.

When an egiwindowsurface 18 created, the back buffers, used for double-buffering, can have
different representations from the window surface (based on the selected egiconfig). An
attempt is made to create each back buffer by using the representation, which provides
the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers 1s called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the 1.MX X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

12.3.5 xorg.conf for i.MX 6
The /etc/X11/xorg.conf file must be properly configured to use the .MX 6 X Driver.

This configuration appears in a pevice section of the file which contains both mandatory
and optional entries. The following example shows a preferred configuration for using
the 1.MX 6 X Driver:

Section "Device"

Identifier "i .MX Accelerated Framebuffer Device"
Driver "vivante"

Option "fhdev" "/dev/fbo"

Option "vivante fbdev" "/dev/fb0o"

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

108 Freescale Semiconductor, Inc.

Chapter 12 X Windows Acceleration

Option "HWcursor" "false"
EndSection

Section "Monitor"
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"

Monitor "Configured Monitor"

Device "i . MX Accelerated Framebuffer Device"
EndSection

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Some important entries recognized by the 1.MX X Driver are described as follows:
* Device Identifier and Screen Device String

The mandatory Identifierentry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "i MX Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the pevice string in a screen section of the xorg.cont file. For
example,

Section "Screen"
Device "i .MX Accelerated Framebuffer Device"

EndSectiéﬁ'
e Device Driver String

The mandatory Driver entry specifies the name of the loadable i.MX X driver.

Section "Device"
Driver "vivante"

EndSection

* Device fbdevPath Strings

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 109

Software Operation

The mandatory entries fbdev and vivante_devspecifies the path for the frame buffer
device to use.

Section "Device"

Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
EndSection

12.3.6 Setup X-Windows System Acceleration

Setup of X-Windows system acceleration consists of package installation and
verification, file verification, and verifying acceleration. The debian packages are only

available for ubuntu root fs. There's no gpu driver for X11 on gnome mobile root fs or
LTIB

» Package installation and verification:
» Verify that the following packages are available and installed:

gpu-viv-bin-mxé6g <bsp-version> armel.deb

 This package contains gpu driver develop headers, and is installed in the /usr/
include folder

 This package contains gpu driver hal libraryiivear.so

 This package contains 3D client libraries, include 1ibecL.so, 1ibGLESVI_ . so,
1ibGLESv2 . so, lIbGL.so, vivante_dri.so ... library

 All above libraries are installed in the /usr/1iv folder except vivante_dri.so,
which is installed at /usr/lib/dri

e Xserver-xorg-video-imx-viv_<bsp-version> armel.deb

 This package contains the vivante-drv.so and libdri.so driver module for X
acceleration and 1s installed in the folder with all the other X.org driver modules

* File verification:

* Verify that the device file /dev/gaicore is present.

 Verify that the file /etc/x11/x0rg.cont contains the correct entries as described in
the previous section.

* Verify acceleration:

* Assuming the above steps have been performed, do the following to verify that
X Window System acceleration is indeed operating.

* Examine the log file /var/10g/x0rg.0.109 and confirm that the following lines
present:

[33.767] (II) LoadModule: "vivante"
[33.782] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

110 Freescale Semiconductor, Inc.

Chapter 12 X Windows Acceleration

[33.881] (II) VIVANTE(O): using default device

[33.881] (WW) VGA arbiter: cannot open kernel arbiter, no multi-card support

[33.881] (II) VIVANTE(O0): Creating default Display subsection in Screen section
"Default Screen" for depth/fbbpp 16/16

[33.881] (==) VIVANTE(O): Depth 16, (==) framebuffer bpp 16

[33.881] (==) VIVANTE(O0): RGB weight 565

[33.881] (==) VIVANTE(O): Default visual is TrueColor

[33.881] (==) VIVANTE(O): Using gamma correction (1.0, 1.0, 1.0)

[33.881] (II) VIVANTE(O): hardware: mxc_elcdif_ fb (video memory: 2250kB)

[33.882] (II) VIVANTE(O): checking modes against framebuffer device...

[33.882] (II) VIVANTE(O0): checking modes against monitor...

[33.882] (--) VIVANTE(O): Virtual size is 800x480 (pitch 800)

[33.882] (**) VIVANTE(O0): Built-in mode "current": 33.5 MHz, 31.2 kHz, 58.6 Hz

[33.882] (II) VIVANTE(O): Modeline "current"x0.0 33.50 800 964 974 1073 480

490 500 533 -hsync -vsync -csync (31.2 kHz)

[33.882] (==) VIVANTE(O): DPI set to (96, 96)

[34.228] (II) VIVANTE(O): FB Start = 0x333a8000 FB Base = 0x333a8000 FB

Offset = (nil)

[34.228] (II) VIVANTE(O): test Initializing EXA

[34.228] (II) EXA(0): Driver allocated offscreen pixmaps

[34.229] (II) EXA(0): Driver registered support for the following operations:

[34.229] (II) Solid

[34.229] (II) Copy

[34.229] (II) Composite (RENDER acceleration)

[34.229] (II) UploadToScreen

[34.244] (==) VIVANTE(0): Backing store disabled

[34.244] (==) VIVANTE(O): DPMS enabled

* Note:
 Although there's some error info for AIGLX, it could be ignored. AIGLX 1is for
glx non-DRI implementation, while our glx library will never call AIGLX
module at X server, since our glx is a library for DRI.

[7.205] (EE) AIGLX error: vivante exports no extensions (/usr/lib/arm-linux-
gnueabihf/dri/vivante dri.so: undefined symbol: _ driDriverExtensions)

[7.214] (EE) AIGLX: reverting to software rendering

[7.278] (II) AIGLX: Loaded and initialized swrast

[7.278] (II) GLX: Initialized DRISWRAST GL provider for screen 0

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 111

Software Operation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

112 Freescale Semiconductor, Inc.

Chapter 13
Video Processing Unit (VPU) Driver

13.1 Hardware Operation

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex
and efficient multimedia codec system.

The VPU hardware data flow is shown in the MPEG4 decoder example in the following
figure.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 113

Hardware Operation

w

Bit Code Download

met PIC_RUM Parameters

¥

et Inittal Parameters

¥
Eit Bun Start

PIC EUN Command
Funiider = 1]
FunCoditd =0
FumCommaad = 3

BusyFlag =07

Iy

BusyFlag= 07

JY

Set3EQ INIT Parameters

Checle B eturn Status

4

r

SEQ INIT Command
Fumidex =11

FoCodd¥d = 0 fliF 4 DEC)
RmCommeand =1

=EQ END Comimand
Funiider = 1]

FumCodisd =1
FumCommaad = 2

BusyFlag=07 _

Fead Feturn Farameters

l

Figure 13-1. VPU Hardware Data Flow

13.1.1 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

114

Freescale Semiconductor, Inc.

4

Chapter 13 Video Processing Unit (VPU) Driver
for the application layer in user-space as a path to access system resources. The
application in user-space calls related [OCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device specific structure

* Device initialization which initializes the VPU clock and hardware and request the
IRQ

* Interrupt servicing routine which supports events that one frame has been finished

* File operation routine which provides the following interfaces to user space:

* File open
* File release
* File synchronization
* File IOCTL to provide interface for memory allocating and releasing
* Memory map for register and memory accessing in user space
* Device Shutdown: shuts down the VPU clock and hardware, and releases the IRQ

The VPU user space driver has the following functions:

* Codec lib

* Downloads executable bitcode for hardware

* Initializes codec system

* Sets codec system configuration

* Controls codec system by command

» Reports codec status and result

* System I/O operation

* Requests and frees memory

e Maps and unmaps memory/register to user space
* Device management

13.1.2 Source Code Structure

The following table lists the kernel space source files available in the following
directories:

<ltib dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/

<ltib dirs>/rpm/BUILD/linux/drivers/mxc/vpu/

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 115

Hardware Operation

Table 13-1. VPU Driver Files

File Description
mxc_vpu.h Header file defining IOCTLs and memory structures
MXC_Vpu.c Device management and file operation interface implementation

The following table lists the user-space library source files available in the <Itib_dir>/
rpm/BUILD/imx-1ib-11.11.00/vpu directory:

Table 13-2. VPU Library Files

File Description
vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory
vpu_io.h Header file for IOCTLs
vpu_lib.c Core codec implementation in user space
vpu_lib.h Header file of the codec
vpu_reg.h Register definition of VPU
vpu_util.c File implementing common utilities used by the codec
vpu_util.h Header file

The following table lists the firmware files available in the following directories:

<ltib dir>/rpm/BUILD/firmware-imx-11.11.00/1lib/firmware/vpu/ directory
Table 13-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

NOTE
To get the to files in Table 2, run the command: ./Itib -m prep -
p imx-lib in the console

13.1.3 Menu Configuration Options

To get to the VPU driver, use the command ./Itib -¢c when located in the <Itib dir>. On the
displayed screen, select Configure the kernel and exit. When the next screen appears,
select the following options to enable the VPU driver:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

116 Freescale Semiconductor, Inc.

4
Chapter 13 Video Processing Unit (VPU) Driver

* CONFIG_MXC_VPU, provided for the VPU driver. In menu configuration, this
option is available under

* Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit)
support

13.1.4 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

The codec library APIs are listed below:

RetCode wvpu Init (void *);
void vpu UnInit (void) ;
RetCode vpu GetVersionInfo (vpu versioninfo * verinfo);

RetCode vpu EncOpen (EncHandle* pHandle, EncOpenParam* pop) ;
RetCode vpu EncClose (EncHandle encHandle) ;
RetCode vpu EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);
RetCode vpu EncRegisterFrameBuffer (EncHandle handle, FrameBuffer * bufArray,
int num, int frameBufStride, int
sourceBufStride,
PhysicalAddress subSampBaseAl,
PhysicalAddress subSampBaseB,
ExtBufCfg *scratchBuf) ;
RetCode vpu EncGetBitstreamBuffer (EncHandle handle, PhysicalAddress* prdPrt,
PhysicalAddress* pwrPtr, Uint32*
size) ;
RetCode wvpu EncUpdateBitstreamBuffer (EncHandle handle, Uint32 size);
RetCode vpu EncStartOneFrame (EncHandle encHandle, EncParam* pParam) ;
RetCode vpu EncGetOutputInfo (EncHandle encHandle, EncOutputInfo* info);
RetCode vpu EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam) ;
RetCode vpu DecOpen (DecHandle* pHandle, DecOpenParam* pop) ;
RetCode vpu DecClose (DecHandle decHandle) ;
RetCode vpu DecGetBitstreamBuffer (DecHandle pHandle, PhysicalAddress* pRdptr,
PhysicalAddress* pWrptr, Uint32* size);
RetCode vpu DecUpdateBitstreamBuffer (DecHandle decHandle, Uint32 size);
RetCode vpu DecSetEscSeqgInit (DecHandle pHandle, int escape);
RetCode vpu DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);
RetCode vpu DecRegisterFrameBuffer (DecHandle decHandle, FrameBuffer* pBuffer, int num,
int stride, DecBufInfo* pBuflInfo);
RetCode vpu DecStartOneFrame (DecHandle handle, DecParam* param) ;
RetCode vpu DecGetOutputInfo (DecHandle decHandle, DecOutputInfo* info);
RetCode vpu DecBitBufferFlush (DecHandle handle) ;
RetCode vpu DecClrDispFlag(DecHandle handle, int index) ;
RetCode vpu DecGiveCommand (DecHandle pHandle, CodecCommand cmd, void* pParam) ;
int vpu IsBusy(void) ;
int vpu WaitForInt (int timeout in ms) ;
RetCode vpu SWReset (DecHandle handle, int index) ;

System I/O operations are listed below:

int IOGetPhyMem (vpu mem desc* buff) ;

int IOFreePhyMem(vpu mem desc* buff) ;
int IOGetVirtMem (vpu mem desc* buff) ;
int IOFreeVirtMem (vpu mem desc* buff) ;

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 117

Hardware Operation

13.1.5 Defining an Application

The most important definition for an application is the codec memory descriptor. It is
used for request, free, mmap and munmap memory as follows:

typedef struct vpu mem desc

int size; /*request memory size*/
unsigned long phy addr; /*physical memory get from system*/
unsigned long cpu_addr; /*address for system usage while freeing,

user doesn't need
to handle or use it*/

unsigned long virt uaddr; /*virtual user space address*/
} vpu_mem desc;

For how to use API in the application, refer to .MX 6Dual/6Quad VPU Application
Programming Interface Linux Reference Manual.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
118 Freescale Semiconductor, Inc.

Chapter 14
OmniVision Camera Driver

14.1 OV5640 Using MIPI CSI-2 interface

This 1s an introduction to the OV5640 camera driver that uses the MIPI CSI-2 interface.

14.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low-power consumption.
The camera driver is located under the Linux V4L2 architecture and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V412 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client. V4L2 driver uses I?C bus to control camera
operation.

OV5640 supports two transfer modes: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to .MX AP chip through the MIPI CSI-2
interface. MIPI receives the sensor data and transfers them to IPU CSI.

Refer to OV5640 datasheet to get more information on the sensor.

Refer to the i. MX 6 Multimedia Applications Processor Reference Manual for more
information on MIPI CSI-2 and IPU CSI.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 119

OV5640 Using MIPI CSI-2 interface
14.1.2 Software Operation

The camera driver implements the V4L2 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L.2 capture are:

e Capture stream mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
e 720P
* 1080P

14.1.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

Table 14-1. Camera Driver Files

File Description

ov5640_mipi.c Camera driver implementation for ov5640 using MIPI CSI-2 interface

14.1.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./Itib -c command when located in the <Itib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640

camera support using mipi.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
120 Freescale Semiconductor, Inc.

Chapter 14 OmniVision Camera Driver

14.2 OV5640 Using parallel interface

This is an introduction to the OV5640 camera driver that uses the parallel interface.

14.2.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low-power consumption.
The camera driver is located under the Linux V412 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client. V4L2 driver uses I2C bus to control camera
operation.

OV5640 supports only parallel interface.
Refer to OV5640 datasheet to get more information on the sensor.

Refer to the i. MX 6 Multimedia Applications Processor Reference Manual for more
information on CSI.

14.2.2 Software Operation

The camera driver implements the V4L2 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

 Capture stream mode
* Capture still mode

The supported picture formats are:

* UYVY
* YUYV

The supported picture sizes are:
* QVGA

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 121

OV5640 Using parallel interface

- VGA
« 720P

« 1080P

« QSXGA

14.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

Table 14-2. Camera Driver Files

File Description

ov5640.c Camera driver implementation for ov5640 using parallel interface

14.2.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./Itib -c command when located in the <Itib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640

camera support.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
122 Freescale Semiconductor, Inc.

Chapter 15
MIPI CSI2 Driver

15.1 Introduction

MIPI CSI-2 for 1.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2 compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and allows it to co-work with
MIPI sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

* MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU id, CSI id, etc.) from the MIPI CSI2 driver.

15.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the mipi sensor driver and IPU CSI module. It is not
exposed to the user space.

MIPI CSI2 driver supports the following features:

* Supporting 1-4 lanes
e Supporting IPU(0,1) and CSI(0,1).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 123

A ————
Software Operation
* Supporting 0-3 virtual channels.
* Supporting the following date types:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
* YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAWI10, RAW12, RAWI14

15.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface, including
PHY error handling.

» Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection.

* Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame level
and line level.

* Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events.

15.2 Software Operation
MIPI CSI2 driver for Linux has two parts:

* MIPI CSI2 driver: initializes the mipi_csi2_info structure
e MIPI CSI2 common APIs: exports APIs for the CSI module driver and mipi sensor
driver

15.2.1 MIPI CSI2 Driver Initialize Operation

The steps for MIPI CSI2 driver initialization are as follows:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

124 Freescale Semiconductor, Inc.

e
Chapter 15 MIPI CSI2 Driver
1. MIPI CSI2 driver initializes the mipi_csi2_info structure, some key information
about mipi sensor, such as connected [PU ID, CSI ID, virtual channel and date type.
2. The driver initilizes the D-PHY clock and pixel clock. The pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI.
3. The driver waits for sensor connection.

15.2.2 MIPI CSI2 Common API Operation
MIPI CSI2 driver exports a large number of APIs to manage MIPI D-PHY.
The following is the introduction to all APIs:

* mipi_csi2_get_info: get the mipi_csi_info

* mipi_csi2_enable: enable mipi csi2 interface

* mipi_csi2_disable: disable mipi csi2 interface

* mipi_csi2_get_status: get mipi csi2 interface disable/enable status

* mipi_csi2_get_bind_ipu: get the ipu id which mipi csi2 will connect

* mipi_csi2_get_bind_csi: get the csi id which mipi csi2 will connect

* mipi_csi2_get_virtual_channel: get the virtual channel number by which mipi sensor
will tansfer data to MIPI D-PHY

* mipi_csi2_set_lanes: set the lanes number by which mipi sensor will tansfer data to
MIPI D-PHY

* mipi_csi2_set datatype: set the mipi sensor data type

* mipi_csi2_get_datatype: get the mipi sensor data type; This function will be called
by csi module to set csi register

* mipi_csi2_dphy_status: get the MIPI D-PHY status

* mipi_csi2_get_errorl: get the mipi errorl register information

* mipi_csi2_get_error2: get the mipi error2 register informaiton

» mipi_csi2_pixelclk_enable: enable the pixel clock

* mipi_csi2_pixelclk_disable: disable the pixel clock

» mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

15.3 Driver Features
MIPI CSI2 driver supports the following features:

e Supporting 1-4 lanes

* Supporting IPU(0,1) and CSI(0,1)

* Supporting 0-3 virtual channels

» Supporting the following date types:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 125

Driver Features

* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAW10, RAWI12, RAW14

15.3.1 Source Code Structure
Table below shows the MIPI CSI2 driver source files available in the directory.

<Itib_dir>/rpm/BUILD/linux/drivers/mxc/mipi.
Table 15-1. MIPI CSI2 Driver Files

File Description

mXC_mipi_csi2.c mipi csi2 driver source file

15.3.2 Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./Itib -c command when located in the <lItib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following options to enable this module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

15.3.3 Programming Interface

MIPI CSI2 Common APIs can only be called by the MIPI sensor driver and IPU CSI
module driver.

Before calling the API, in system initialization stage, use the mipi_csi2_platform_data
structure and imx6q_add_mipi_csi2 funciton to add a MIPI CSI2 driver.

For the MIPI sensor driver, the initialization steps are as follows:
* Get MIPI information by calling mipi_csi2_get_info().
* Enable the MIPI CSI2 interface by calling mipi_csi2_enable().
 Set the lanes by calling mipi_csi2_set_lanes().
» Reset the MIPI D-PHY by calling mipi_csi2_reset().
* Configure the MIPI sensor.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

126 Freescale Semiconductor, Inc.

4
Chapter 15 MIPI CSI2 Driver
* Wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_errorl().
* When uninstalling the sensor driver, disable the MIPI CSI2 interface by calling
mipi_csi2_disable().

For sample code that explains how the MIPI sensor uses MIPI APIs, refer to the
OV5640_mipi driver source code.

For the [PU CSI module driver, the call steps are as follows:

* Get the MIPI information by calling mipi_csi2_get_info().

* Get the IPU ID and CSI ID to assure configuration of the correct CSI module by
calling mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi().

 Get the data type and virtual channel from MIPI CSI2 driver and configure the CSI
module by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel().

* Perform other configuration operations for the CSI module and enable CSI.

* Enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling
mipi_csi2_pixelclk_enable().

* When all tasks are done, disable the CSI module first,and then disable the MIPI pixel
clock by calling mipi_csi2_pixelclk_disable().

For sample code that explains how CSI module driver uses MIPI APISs, refer to the IPU
CSI module driver source code.

15.3.4 Interrupt Requirements
No interrupt is needed for the MIPI CSI12 driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 127

Driver Features

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

128 Freescale Semiconductor, Inc.

Chapter 16
Low-level Power Management (PM) Driver

16.1 Hardware Operation

This section describes the low-level Power Management (PM) driver which controls the
low-power modes.

The 1.MX 6 supports four low-power modes: RUN, WAIT, STOP, and DORMANT.

Table below lists the detailed clock information for different low-power modes.

Table 16-1. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off Off On
DORMANT Power off Disable Off Off On

For the detailed information about lower power modes, see the MCIMX 6Dual/6Quad
Multimedia Applications Processor Reference Manual (MCIMX6DQRM).

16.1.1 Software Operation

The 1.MX 6 PM driver maps the low-power modes to the kernel power management
states as follows:

» Standby: maps to STOP mode that offers significant power saving, as all blocks in
the system are put into a low-power state, except for ARM core that is still powered
on, and memory is placed in self-refresh mode to retain its contents.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 129

A ————
Hardware Operation
* Mem (suspend to RAM): maps to DORMANT mode that offers most significant
power saving as all blocks in the system are put into a low-power state, except for
memory that is placed in self-refresh mode to retain its contents.
e System idle: maps to WAIT mode.

The 1.MX 6 PM driver performs the following steps to enter and exit low-power mode:

1. Allow the Coretex-A9 platform to issue a deep-sleep mode request.
2. If it is in STOP or DORMANT mode:
e Program CCM CLPCR register to set low-power control register.
e If it is in DORMANT mode, request switching off CPU power when pdn_req is
asserted.
* Request switching off embedded memory peripheral power when pdn_req is
asserted.
e Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute mx6_do_suspend in IRAM.
If it is in DORMANT mode, save the ARM context, change the drive strength of
MMDC PADs to "low" to minimize the power leakage in DDR PADs. Execute WFI
pending instructions for stop mode.
6. Generate a wakeup interrupt and exit low-power mode. If it is in DORMANT mode,
restore the ARM core and DDR drive strength.

SNk w

In DORMANT and STOP mode, the .MX 6 can assert the VSTBY signal to the PMIC
and request a voltage change. The Machine Specific Layer (MSL) usually sets the
standby voltage in STOP mode according to 1.MX 6 data sheet.

16.1.2 Source Code Structure

Table below shows the PM driver source files. These files are available in <ltib_dir>/
rpm/BUILD/linux/arch/arm/mach-mx6/.

Table 16-2. PM Driver Files

File Description
pm.c Supports suspend operation
system.c Supports low-power modes
mx6_suspend.S Assembly file for CPU suspend

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

130 Freescale Semiconductor, Inc.

4
Chapter 16 Low-level Power Management (PM) Driver

16.1.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the ./Itib -c command when located in the <Itib dir>. On the displayed
screen, select Configure the Kernel and exit. When the next screen appears, select the
following options to enable this module:

* CONFIG_PM builds support for power management. In menu configuration, this
option is available under:
* Power management options > Power Management support
* By default, this option is Y.
e CONFIG_SUSPEND builds support for suspend. In menu configuration, this option
1s available under:
* Power management options > Suspend to RAM and standby

16.1.4 Programming Interface

The mxc_cpu_lp_set API in the system.c function is provided for low-power modes. This
implements all the steps required to put the system into WAIT and STOP modes.

16.1.5 Unit Test

To enter different system-level low-power modes:

echo mem > /sys/power/state
echo standby > /sys/power/state

To wake up system from low-power modes:

enable wake up source first, USB device, debug uart or RTC etc.

can be used as wakeup source, below is the example of uart wakeup and rtc wakeup:

echo enabled > /sys/devices/platform/imx-uart.'x'/tty/ttymxc'x'/power/wakeup; Here 'x' is
your debug uart's index;

echo +x > /sys/class/rtc/rtc0/wakealarm; RTC will wake up system after x seconds.

To test this mode automatically, refer to the script in /unit_tests/suspend_auto.sh

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 131

Hardware Operation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

132 Freescale Semiconductor, Inc.

Chapter 17
PF100 Regulator Driver

17.1 Introduction
PF100 is a PMIC chip that is implemented on the 1.MX 6 series development platforms.

The PF100 regulator driver provides the low-level control of the power supply regulators,
selection of voltage levels, and enabling/disabling of regulators. This device driver makes
use of the PF100 core driver to access the PF100 hardware control registers. The PF100
core driver is based on the MFD structure and it is attached to the kernel I2C bus.

17.2 Hardware Operation

PF100 provides reference and supply voltages for the application processor and
peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and other circuitry.

Linear regulators are directly supplied from the battery or from the switchers, including
supplies for I/O and peripherals, audio, camera, BT, and WLAN. Naming conventions
are suggestive of typical or possible use case applications, but the switchers and
regulators may be used for other system power requirements within the guidelines of
specified capabilities.

The only power on event of PF100 is that PWRON is high, and the only power off event
of PF100 is that PWRON is low. PMIC_ON_REQ pin of i.MX 6, which is controlled by
SNVS block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off,
so that system can power off.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 133

Software Operation

17.2.1 Driver Features

The PF100 regulator driver is based on PF100 core driver and regulator core driver. It
provides the following services for regulator control of the PMIC component:

* Switch ON/OFF all voltage regulators.
* Set the value for all voltage regulators.
 Get the current value for all voltage regulators.
» Write/Read PF100 registers by sysfs interface.

17.3 Software Operation

PF100 regulator client driver performs operations by reconfiguring the PMIC hardware
control registers.

This is done by calling PF100 core driver APIs with the required register settings.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

17.3.1 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output is
controllable) and current sinks (where current output is controllable).

For more details, visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

134 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

L __4
Chapter 17 PF100 Regulator Driver

struct regulator *regulator_get (struct device *dev, const char *id);
* regulator_put 1S an unified API call to free the regulator source:

void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable 1S an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

* regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);

* regulator_is_enabled 1S the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

* regulator_set_voltage 18 an unified API call to set regulator output voltage:

int regulator set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux
kernelfﬁ:<ltib_dir>/rpm/BUILD/linux/drivers/regulator/core.c.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 135

Driver Architecture
17.4 Driver Architecture

Figure below shows the basic architecture of the PF100 regulator driver.

Device drivers

PF100 driver
Regulator core driver

l

PF100 regulator driver

PF100 core driver(MFD)

l

12C or SPI driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
136 Freescale Semiconductor, Inc.

L __4
Chapter 17 PF100 Regulator Driver

17.4.1 Driver Interface Details
Access to PF100 regulator is provided through the API of the regulator core driver.
The PF100 regulator driver provides the following regulator controls:

* Four buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWI1C, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register
(PF100_SWxSTANDBY) in advance.

 Six Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG6.

* One LDO/Switch supply for VSNVS support on 1.MX processors.

* One Low current, high accuracy, voltage reference for DDR Memory reference
voltage.

* One Boost regulator with USB OTG support.

* Most power rails from PF100 have been programmed properly according to the
hardware design. Therefore, you cannot find the kernel by using PF100 regulators.
The PF100 regulator driver has implemented these regulators so that customers can
use it freely if default PF100 value can't meet their hardware design.

17.4.2 Source Code Structure

The PF100 regulator driver is located in the regulator device driver directory:

<ltib dir>/rpm/BUILD/linux/drivers/regulator

Table 17-1. PF100 core Driver Files

File Description
drivers/mfd/pf100- Linux kernel interface for regulators.
core.cC
drivers/regulator/ Implementation of the PF100 regulator client driver.
pfl00-regulator.c

The PF100 regulators for MACH_MX6Q_SABRESD board are registered under
<Itib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/mx6q_sabresd_pmic_pf100.c.

The PF100 regulators for MACH_MX6Q_SABREAUTO board are registered under
<Itib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/mx6q_sabreauto_pmic_pf100.c.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 137

Driver Architecture

17.4.3 Menu Configuration Options
The following are menu configuration options:

1. When located in the <itiv airs, to get to the PMIC power configuration, use the
command:
./1ltib -c

2. On the configuration screen select Configure Kernel, and then exit. When the next
screen appears, choose the following:

Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF100 PMIC.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
138 Freescale Semiconductor, Inc.

Chapter 18
CPU Frequency Scaling (CPUFREQ) Driver

18.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage VDDCORE,
VDDSOC and VDDPU are changed to the voltage value defined in cpu_op-mx6.c . This
method can reduce power consumption (thus saving battery power), because the CPU
uses less power as the clock speed is reduced.

18.1.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in cpu_op-mx6.c, the CPUFREQ driver changes the CPU
frequency to the nearest higher frequency in the array. The frequencies are manipulated
using the clock framework API, while the voltage is set using the regulators API. The
CPU frequencies in the array are based on the boot CPU frequency which can be changed
by using the clock command in U-Boot. Interactive CPU frequency governor is used and
it cannot be changed manually. To change CPU frequency manually, you can use the
userspace CPU frequency governor.

Refer to the API document for more information on the functions implemented in the
driver.

To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values), use this command:

cat /sys/devices/system/cpu/cpul/cpufreq/stats/time in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz), use this command:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 139

Menu Configuration Options

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked by using this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling max_freg
Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

18.1.2 Source Code Structure

Table below shows the source files and headers available in the following directory.

<ltib dir>/rpm/BUILD/linux/arch/arm/plat-mxc/

Table 18-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

For CPU frequency working point settings, see arch/arm/mach-mx6/cpu_op-mx6.c.

18.2 Menu Configuration Options

The following Linux kernel configuration is provided for this module:
CONFIG_CPU_FREQ: In menu configuration, this option is located under: CPU Power
Management > CPU Frequency scaling

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
140 Freescale Semiconductor, Inc.

4
Chapter 18 CPU Frequency Scaling (CPUFREQ) Driver

The following options can be selected:

* CPU Frequency scaling

* CPU frequency translation statistics

» Default CPU frequency governor (interactive)

* Performance governor

* Powersave governor

» Userspace governor for userspace frequency scaling
* Interactive CPU frequency policy governor

* Conservative CPU frequency governor

* CPU frequency driver for i.MX CPUs

18.2.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 141

Menu Configuration Options

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

142 Freescale Semiconductor, Inc.

Chapter 19
Dynamic Voltage Frequency Scaling (DVFS) Driver

19.1 Introduction

In order to improve power consumption, the Bus Frequency driver dynamically manages
the various system frequencies.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24MHz and its
maximum frequency. Similarly the AHB frequency is varied between 24MHz and
132MHz.

19.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc) based on peripheral activity and CPU loading.

19.1.2 Software Operation

The bus frequency depends on the usecount of the various clocks in the system for its
operation. Drivers enable/disable their clocks based on peripheral activity. Every
peripheral is associated with a frequency setpoint. The bus frequency will set the system
frequency to highest frequency setpoint based on the peripherals that are currently active.

The following setpoints are defined for all i.MX 6 platforms:

1. High Frequency Setpoint: AHB is at 132MHz, AXI is at 264Mhz and DDR is at the
maximum frequency. This mode is used when most periphrals that need higher frequency
for good performance are active. For ex, video playback, graphics processing etc.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 143

Menu Configuration Options

2. Audio Playback setpoints : AHB is at 25MHz, AXI is at 50MHz and DDR is at
S0MHz. This mode is used in audio playback mode.

3. Low Frequency setpoint: AHB is at 24MHz, AXI is at 24MHz and DDR is at 24MHz.
This mode is used when the system is idle waiting for user input (display is off).

To Enable the bus frequency driver, use the following command:
echo 1 > /sys/devices/platform/imx _busfreq.0/enable
To Disable the bus frequency driver, use the following command:

echo 0 > /sys/devices/platform/imx busfreq.0/enable

19.1.3 Source Code Structure

Table below lists the source files and headers available in the following directory:
<ltib dir>/rpm/BUILD/linux/arch/arm/mach-mx6

Table 19-1. BusFrequency Driver Files

File Description

bus_freq.c Bus Frequency functions

mx6_mmdc.c, mx6_ddr freqg.S DDR frequency change functions

19.2 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers is
included and enabled by default.

19.2.1 Board Configuration Options

There are no board configuration options for the Linux busfreq device driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

144 Freescale Semiconductor, Inc.

Chapter 20
Thermal Driver

20.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines three trip points: critical, hot, and active. Cooling device will take actions to
protect the SoC according to different trip points that SoC has reached:

* When reaching critical point, cooling device will reset the system.

* When reaching hot point, cooling device will lower CPU frequency and notify GPU
to run at a lower frequency.

* When the temperature drops to below active point, cooling device will release all the
cooling actions.

Thermal driver has two parts:

e Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to different trip points.

20.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitoring function and protection.
It creates a system file interface of /sys/class/thermal/thermal_zone(/ for user. Internally,
the thermal driver will monitor the SoC temperature and do necessary protection
according to different trip points that SoC's temperature reaches.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 145

Driver Features
20.2 Hardware Operation

The thermal driver uses an internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

All the related modules are in SoC.

20.2.1 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. The structure
thermal zone device ops describes the necessary interface that the thermal framework
needs. The framework will call the related thermal zone interface to monitor the SoC
temperature and do the cooling protection.

20.3 Driver Features
The thermal driver supports the following features:

e Thermal zone monitors the SoC temperature.
* Cooling device protects the SoC when the temperature reaches hot or critical points.

20.3.1 Source Code Structure

Table below shows the driver source files available in the directory:

<Itib_dir>/rpm/BUILD/linux/drivers/mxc/thermal
Table 20-1. Thermal Driver Files

File Description

thermal.c thermal zone driver source file

cooling.c cooling device source file

20.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the ./Itib -c command when located in the <lItib dir>. On the displayed
screen, select Configure the Kernel and exit. When the next screen appears, select the
following options to enable this module:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

146 Freescale Semiconductor, Inc.

4
Chapter 20 Thermal Driver

Device Drivers > MXC support drivers > ANATOP_THERMAL > Thermal Zone

20.3.3 Programming Interface

The thermal driver can be accessed through /sys/class/thermal/thermal_zone/.

20.3.4 Interrupt Requirements

The thermal driver uses irq #81. Set the alarm value to critical trip point. When the
temperature exceeds the critical trip point, the interrupt handler will reset the system to
protect SoC.

20.4 Unit Test

Modify the trip point's temperature through /sys/class/thermal/thermal_zone(/
trip_point_x_temp. Here, 'x' can be 0, 1 and 2, indicating critical, hot and active trip
point, and the value of trip points should be critical > hot > active. Then run some
program to make SoC in heavy loading. When the SoC temperature reaches the trip
points, the thermal driver will take action to do some protections according to each trip

point's mechanism. Restore the trip point's temperature. When SoC temperature drops to

below active trip point, thermal driver will remove all the protections.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

147

A
Unit Test

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

148 Freescale Semiconductor, Inc.

Chapter 21
Anatop Regulator Driver

21.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

21.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Using seven LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, the number of external supplies is reduced to
two. Missing from this external supply total are the necessary external supplies to power
the desired memory interface. This will change depending on the type of external
memory selected. Other supplies might also be necessary to supply the voltage to the
different I/O power segments if their I/O voltage needs to be different than what is
provided above.

Some internal regulators can be bypassed, so that external PMIC can supply these power
directly to decrease power numer, such as VDD_SOC and VDD_ARM.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 149

Driver Features
21.2 Driver Features

The Anatop regulator driver is based on regulator core driver. The following services are
provided for regulator control:

» Switching ON/OFF all voltage regulators.
* Setting the value for all voltage regulators.
 Getting the current value for all voltage regulators.

21.2.1 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

21.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux 2.6 kernel. It is intended to provide voltage and
current control to client or consumer drivers and also provide status information to user
space applications through a sysfs interface. The intention is to allow systems to
dynamically control regulator output to save power and prolong battery life. This applies
to both voltage regulators (where voltage output is controllable) and current sinks (where
current output is controllable).

For more details, visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:

e Struct regulator *regulator get (struct device *dev, const char *id);

* regulator put Used to free the regulator source:
e void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable USed to enable regulator output:

e 1nt regulator enable(struct regulator *regulator) ;

* regulator_disable USed to disable regulator output:

e 1int regulator disable(struct regulator *regulator);

* regulator_is_enabled 1S the regulator output enabled:
e 1int regulator_ is enabled(struct regulator *regulator) ;

* regulator_set_voltage USed to set regulator output voltage:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

150 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

4
Chapter 21 Anatop Regulator Driver

e 1nt regulator_set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage USed to get regulator output voltage:

e 1nt regulator get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel, see:
<Itib_dir>/rpm/BUILD/linux/drivers/regulator/core.c.

21.2.3 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

e Seven LDO regulators.

 All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

21.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:
<ltib dirs/rpm/BUILD/linux/drivers/regulator

Table 21-1. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators for i.MX 6Quad ARM?2 or 1.MX 6Quad sabrelite board are
registered under

<ltib _dir>/rpm/BUILD/linux/arch/arm/mach-mx6/mx6_ anatop_ regulator.c.

21.2.5 Menu Configuration Options

To get to the Anatop regulator configuration, use the command ./Itib -c when located in
the <ltib dir>. On the configuration screen, select Configure Kernel, and then exit. The
following Linux kernel configurations are provided for the Anatop Regulator driver:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 151

A ————
Driver Features
» Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.
* System Type > Freescale MXC Implementations > Internal LDO in i.MX 6Quad and
1.MX 6DualLite bypass.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

152 Freescale Semiconductor, Inc.

Chapter 22
SNVS Real Time Clock (SRTC) Driver

22.1 Introduction

The SNVS Real Time Clock (SRTC) module is used to keep the time and date. It
provides a certifiable time to the user and can raise an alarm if tampering with counters is
detected. The SRTC is composed of two sub-modules: Low power domain (LP) and High
power domain (HP). The SRTC driver only supports the LP domain with low security
mode.

22.1.1 Hardware Operation
The SRTC is a real-time clock with enhanced security capabilities.

It provides an accurate and constant time, regardless of the main system power state and
without the need to use an external on-board time source, such as an external RTC. The
SRTC can wake up the system when a preset alarm threshold is reached.

22.2 Software Operation

The following sections describe the software operation of the SRTC driver.

22.2.1 I0CTL

The SRTC driver complies with the Linux RTC driver model. See the Linux

documentation in <Itib_dir>/rpm/BUILD/linux/Documentation/rtc.txt for information on
the RTC API.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 153

A ————
Driver Features

Besides the initialization function, the SRTC driver provides IOCTL functions to set up
the RTC timers and alarm functions. The following RTC IOCTLs are implemented by the
SRTC driver:

e RTC_RD_TIME

e RTC_SET_TIME
« RTC_AIE_ON

« RTC_AIE_OFF

« RTC_ALM_READ
e RTC_ALM_SET

The driver information can be access by the proc file system. For example:

root@freescale /unit_ tests$ cat /proc/driver/rtc

rtc_time : 12:48:29
rtc_date : 2009-08-07
alrm time : 14:41:16
alrm date : 1970-01-13
alarm_ IRQ : no

alrm pending : no

24hr : yes

22.2.2 Keeping Alive in the Power Off State

To preserve the time when the device is in the power-off state, the SRTC clock source
should be set to CKIL and the voltage input, NVCC_SRTC_POW, should remain active.
Usually these signals are connected to the PMIC and software can configure the PMIC
registers to enable the SRTC clock source and power supply.

Generally, when the main battery is removed and the device is in power-off state, a coin-
cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of
the coin-cell battery should be sufficient to power the SRTC. If the coin-cell battery is
chargeable, it is recommended to automatically enable the coin-cell charger so that the
SRTC is properly powered.

22.3 Driver Features
The SRTC driver includes the following features:

* Implementing all the functions required by Linux to provide the real-time clock and
alarm interrupt.

* Reserveing time in power-ff state.

e Alarm wakes up the system from low-power modes.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

154 Freescale Semiconductor, Inc.

4
Chapter 22 SNVS Real Time Clock (SRTC) Driver

22.3.1 Source Code Structure

The RTC module is implemented in the following directory:
<ltib_dir>/rpm/BUILD/linux/drivers/rtc

Table below shows the RTC module files.
Table 22-1. RTC Driver Files

File Description

rtc-snvs.c SNVS RTC driver implementation file

The source file for the SRTC specifies the SRTC function implementations.

22.3.2 Menu Configuration Options

To get to the SRTC driver, use the command ./Itib -c when located in the <Itib dir>. On
the displayed screen, select Configure the kernel and exit. When the next screen
appears, select the following options to enable the SRTC driver:

e Device Drivers > Real Time Clock > Freescale SNVS Real Time Clock

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 155

Driver Features

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

156 Freescale Semiconductor, Inc.

Chapter 23
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver

23.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

« Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces

* Fully modularized sound drivers

e SMP and thread-safe design

 User space library (alsa-lib) to simplify application programming and provide higher
level functionality

 Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:

* CODEC independence, allows reuse of CODEC drivers on other platforms and
machines.

» Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 157

A ————
ALSA Sound Driver Introduction
* Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.
* Machine specific controls, allows machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

158 Freescale Semiconductor, Inc.

Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 23-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 159

A ————
SoC Sound Card
* Machine driver-handles any machine specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, I?S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC I/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the linux source tree at linux/Documentation/sound/alsa/soc and at http://www.alsa-
project.org/main/index.php/ASoC.

23.2 SoC Sound Card

Currently, the stereo CODEC (wm8962), 7.1 CODEC (cs42888), and AM/FM CODEC
drivers are implemented by using SoC architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback, while enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC is only supported on the .MX 6Quad Sabre-
Al platform.

The AM/FM CODEC is only supported on the .MX 6Quad
Sabre-Al platform.

23.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

» Sample rates for playback and capture are 8KHz, 32 KHz, 44.1 KHz, 48 KHz, and 96
KHz

e Channels:

* Playback: supports two channels.

e Capture: supports two channels.
* Audio formats:

* Playback:

* SNDRV_PCM_FMTBIT_S16_LE

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
160 Freescale Semiconductor, Inc.

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
* SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

23.2.2 7.1 Audio Codec Features

» Sample rates for playback and record:
e 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8k, 11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k, 96k,
176.4k, 192k(ASRC enabled)
* Channels:
* Playback: 2, 4, 6, 8 channels
» Playback(ASRC enabled): 2, 6 channels
» Capture: 2, 4 channels
* Audio formats:
* Playback:
* SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
« SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S24_LE
* Capture:
« SNDRV_PCM_FMTBIT_S16_LE
« SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

23.2.3 AM/FM Codec Features

* Supported sample rate for Capture: 48 KHz
* Supported channels:
e Capture: supports two channels.
* Supported audio formats:
* Capture: SNDRV_PCM_FMTBIT_S16_LE

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 161

Hardware Operation

23.2.4 Sound Card Information

The following is the registered sound card information, using the commands aplay -1 and
arecord -1. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -1

%* T,igt of PLAYBACK Hardware Deviceg *x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

23.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

23.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I°C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8962 ASoC CODEC driver exports the audio record/playback/mixer APIs
according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/0-using I>C
* Mixers and audio controls

* CODEC audio operations
* DAC Digital mute control

The WM8962 CODEC is registered as an I?C client when the module initializes. The
APIs are exported to the upper layer by the structure snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

162 Freescale Semiconductor, Inc.

4
Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

23.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the I12C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2-channel or 6-channel playback through ASRC. On the i.MX 6 Sabre-Al board, a
cs42888 codec with 4 audio in port is used, each port receive two channels of data in the
I2S format (network mode), providing 8-channel of playback functionality. This codec
also has two audio output ports connected with ESAI, providing 4-channel of recording
functionality.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

* Codec DAI and PCM configuration
* Codec control I/0, using 12C

* Mixers and audio controls

* Codec audio operations

* DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

23.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SST FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which

connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

23.4 Software Operation

The following sections describe the software operation of the ASoC driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 163

Software Operation

23.4.1 ASoC Driver Source Architecture

File imx-pcm-dma-mx2.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC
driver and other CODEC driver. This file is responsible for preallocating DMA buffers
and managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. imx-ssi.c registers
the CPU DALI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wmg8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8962.c. imx-wm8962.c is the machine layer
code which creates the driver device and registers the stereo sound card.

The multi-channel codec is connected to the CPU through the ESAI interface. imx-esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multi-channel CODEC and hifi DAI drivers. The direct
hardware operations on the multi-channel CODEC are in cs42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. imx-ssi.c
registers the CPU DALI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. s14763.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si4763.c. imx-si4763.c is the machine layer
code which creates the driver device and registers the sound card.

The following table shows the stereo CODEC SoC driver source files. These files are
under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 23-1. Stereo Codec SoC Driver Files

File Description
imx/imx-wm8962.c Machine layer for stereo CODEC ALSA SoC
imx/imx-pcm-dma-mx2.c Platform layer for stereo CODEC ALSA SoC
imx/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
imx/imx-ssi.c Platform DAI link for stereo CODEC ALSA SoC
imx/imx-ssi.h Header file for platform DAI link and SSI register definitions
codecs/wm8962.c CODEC layer for stereo CODEC ALSA SoC
codecs/wm8962.h Header file for stereo CODEC driver

The following table lists the AM/FM CODEC SoC driver source files. These files are
under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

164 Freescale Semiconductor, Inc.

Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
Table 23-2. AM/FM Codec SoC Driver Source Files

File Description
imx/imx-si4763.c Machine layer for AM/FM CODEC ALSA SoC
imx/imx-si4763.h Header file for AM/FM CODEC ALSA SoC
imx/imx-pcm-dma-mx2.c Platform layer for stereo CODEC ALSA SoC
imx/imx-pcm.h Header file for pcm driver and AUDMUX register definitions
imx/imx-ssi.c Platform DAI link for stereo CODEC ALSA SoC
imx/imx-ssi.h Header file for platform DAl link and SSI register definitions
codecs/si4763.c Codec layer for stereo CODEC ALSA SoC

The following table shows the multiple-channel ADC SoC driver source files. These files
are also under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 23-3. CS42888 ASoC Driver Source File

File Description
imx/imx-cs42888.c Machine layer for mutliple-channel CODEC ALSA SoC
imx/imx-pcm-dma-mx2.c Platform layer for mutliple-channel CODEC ALSA SoC
imx/imx-pcm.h Header file for pcm driver
imx/imx-esai.c Platform DAI link for mutliple-channel CODEC ALSA SoC
imx/imx-esai.h Header file for platform DAI link
codecs/cs42888.c CODEC layer for mutliple-channel codec ALSA SoC
codecs/cs42888.h Header file for mutliple-channel CODEC driver

23.4.2 Sound Card Registration

The CODECsSs have the same registration sequence:

1. The CODEC driver registers the CODEC driver, DAI driver, and their operation
functions.

2. The platform driver registers the PCM driver, CPU DALI driver and their operation
functions, pre-allocates buffers for PCM components and sets playback and capture
operations as applicable.

3. The machine layer creates the DAI link between CODEC and CPU registers the
sound card and PCM devices.

23.4.3 Device Open
The ALSA driver performs the following functions:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 165

A ————
Software Operation

* Allocates a free substream for the operation to be performed.

* Opens the low-level hardware device.

» Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened
substream).

* Configures DMA read or write channel for operation.

* Configures CPU DAI and CODEC DALI interface.

* Configures CODEC hardware.

» Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

23.4.4 Platform Data

struct mxc_audio_platform_data defined in include/linux/fsl_devices.h is used to pass the
platform data of audio CODEC.

The value of platform data needs to be updated according to Hardware design.

Take wm8962 CODEC platform data as a example to show the parameter of
mxc_audio_platform_data. See header file for the details of more variables.

* =si_num Indicates which SSI channel is used.

* src_port indicates which AUDMUX port is connected with SSI.

* oxt_port indicates which AUDMUX port is connected with external audio CODEC.

* hp_gpio: The IRQ line used for headphone detection.

* np_active_low: When headphone is inserted, the detection pin status. If pin voltage
level is low, the value should be 1.

* mic_gpio: The IRQ line used for micphone detection

* mic_active_ low: When micphone is inserted, the detection pin status, if pin voltage
level is low, the value should be 1.

* init: The callback function to initialize audio CODEC. For example, configure the
clock of audio CODEC.

* clock_enable: The callback function to enable or disable clock for audio CODEC.

23.4.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

166 Freescale Semiconductor, Inc.

L __4

Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
To get to these options, use the ./ltib -c command when located in the <Itib dir>. Select
Configure the Kernel on the displayed screen and exit. When the next screen appears,
select the following options to enable this module:

* SoC Audio supports for wm8962 CODEC. In menu configuration, this is option is
available under Device drivers > Sound card support > Advanced Linux Sound
Architecture > ALSA for SoC audio support > SoC Audio for the Freescale 1. MX
CPU, SoC Audio support for WM8962

* SoC Audio supports for i.MX cs42888. In menu configuration, this is option is
available under Device drivers > Sound card support > Advanced Linux Sound
Architecture > ALSA for SoC audio support > SoC Audio support for IMX -
(CS42888

e SoC Audio supports for AM/FM. In menu configuration, this is option is available
under Device drivers-> Sound card support-> Advanced Linux Sound Architecture->
ALSA for SoC audio support > SoC Audio for the Freescale .MX CPU, SoC Audio
support for IMX SI14763

23.5 Unit Test

This section shows how to use ALSA driver, and assume the rootfs is GNOME.

23.5.1 Stereo CODEC Unit Test

Stereo CODEC driver supports playback and record features. There are a default volume,
and you may adjust volume by alsamixer command.

Playback feature may be tested by the following command:
 aplay [-Dplughw:0,0] audio.wav

Record feature supports analog micphone and digital micphone. The default is digital
micphone if analog micphone isn't plug-in.

Because analog micphone is connected to IN3R port of WM8962 CODEC, the following
amixer commands are needed to input into command line for enabling analog micphone.

e amixer sset 'MIXINR IN3R' on
e amixer sset ' INPGAR IN3R' on

The recording feature may be tested by the following command:

e arecord [-Dplughw:0,0] -r 44100 -f S16_LE -c 2 -d 5 record.wav

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 167

AR
Unit Test

More usage for aplay/arecord/amixer may be obtained by the following commands.

e aplay --h
e arecord --h
e amixer --h

23.5.2 7.1 Audio Codec Unit Test

The 7.1 Audio codec driver supports multi-channel playback and record feature. The
codec has a default volume, and you can adjust volume by alsamixer command.

The playback feature can be tested by the following command:
 aplay [-Dplughw:0,0] audio.wav

While enabling ASRC, the 7.1 audio codec should use the device 1 for playback. The
codec has a default volume, and you can adjust volume by alsamixer command.
e aplay [-Dplughw:0,1] audio.wav

The recording feature supports line in and mic in simultaneously. While on i.MX 6
Sabre-Al board, LINE-IN (L/R) uses AIN1/AIN2, and MICS1/MICS2 uses AIN3/AIN4.
By default, 2-ch record uses AIN1/AIN2, and 4-ch record uses AIN1/AIN2/AIN3/AIN4

together.
The recording feature can be tested by following command:

e arecord [-Dplughw:0,0] -r 48000 -f S16_LE -c 2 -d 5 record.wav

Note:The default ALSA config file, asound.conf located under /etc/, only supports stereo
playback and record, which means, if you want to test 4,6,8-ch playback or 4-ch
recording, and use aplay audio.wav or arecord -c 4 audio.wav(without -Dplughw), you
will have to make slight changes to the configure file as following:

* Make sure that playback PCM uses dmix_48000 and capture PCM uses
dsnoop_48000 under pcm.asymed{ }.

e Add "channels x" to the end of struct pcm.dmix_48000{ } if you want to playback x-
ch wav file(x is greater than 2).

* Add "channels x" to the end of struct pcm.!dsnoop_48000{ } if you want to record to
x-ch wav(x is greater than 2).

If plug plughw is used to make a playback or record, examples are as follows:

e aplay: Dplughw:0,0 audio.wav or
e arecord: Dplughw:0,0 -c¢ 4 -r 48000 -f S16_LE record.wav

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

168 Freescale Semiconductor, Inc.

4
Chapter 23 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

You are not required to change asound.conf because this configuration file is not used
here.

More usage for aplay/arecord/amixer can be obtained by the following commands.

e aplay --h
e arecord --h
e amixer --h

23.5.3 AM/FM Codec Unit Test

This test turns on the AM/FM radio tuner (SI4763). It also sets and gets the current
station.

NOTE: An underrun error may occur sometimes.

This underrun behaviour is normal, since the test connects the AM/FM output to the
audio codec by a simple pipe.

There is no synchronization method between them. Upper layers (such as gstreamer
plugins) should be responsible for synchronization.

Input the following command in command line to start unit test:

e /mxc_tuner_test.sh

The following infomation will be output to console window:
Welcome to radio menu.

1. Turn on the radio

. Get current frequency

. Set current frequency

. Turn off the radio

O B~ W

. Exit.

* To turn on the radio, select option 1.

» To get the current frequency, select option 2.

* To set the desire frecuency, select option 3 <enter> set the frequency <9740>.
* To turn off the radio, select option 4.

» To Exit select, option 9.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 169

A
Unit Test

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

170 Freescale Semiconductor, Inc.

Chapter 24
Asynchronous Sample Rate Converter (ASRC)
Driver

24.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal
to a signal of different sampling rate. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to
three sampling rate pairs simultaneously.

24.1.1 Hardware Operation
ASRC includes the following features:

 Supports ratio (Fsin/Fsout) ranging from 1/24 to 8.

* Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.

 Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but
with less performance (see IC spec for more details).

 Other output sampling rates in the range of 30 KHz to 100 KHz are also supported,
but with less performance.

* Automatic accommodation to slow variations in the incoming and outgoing sampling
rates.

* Tolerant to sample clock jitter.

* Designed mainly for real-time streaming audio usage. Can be used for non-realtime
streaming audio usage when the input sampling clocks are not available.

* In any usage case, the output sampling clocks must be activated.

* In case of real-time streaming audio, both input and output clocks need to be
available and activated.

* In case of non-realtime streaming audio, the input sampling rate clocks can be
avoided by setting ideal-ratio values into ASRC interface registers.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 171

Software Operation

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in
the platform for better performance. The ASRC supports the following DMA channels:

* Peripheral to peripheral, for example: ASRC to ESAI
* Memory to peripheral, for example: memory to ASRC
* Peripheral to memory, for example: ASRC to memory

For more information, see the chapter on ASRC in the Multimedia Applications
Processor documentation.

24.2 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends
on the use cases in the platform.

Currently ASRC is used in following two scenarios:

* Memory > ASRC > Memory, ASRC is controlled by user application or ALSA plug-
in.
e Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA driver.

LpplicationTliddleware

ALSA lib/plugin)
F Y F Y F Y
¥
¥ ¥ ¥ ASEC Stream
Alsa driver Alza driver Alza driver Interface
tor spdif f tor stereo for 5.1 codec 4+ ¥
r 3 r 3 r 3 » M ASEC
driver
¥ ¥ ¥
=SPIDENLE Stereo codec 5.1 codec
driver driver driver

Figure 24-1. Audio Driver Interactions

As illustrated in figure above, the ASRC stream interface provides the interface for the
user space. The ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/
driver/asrc when the module is inserted. proc is used to track the channel number for each

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

172 Freescale Semiconductor, Inc.

4

Chapter 24 Asynchronous Sample Rate Converter (ASRC) Driver
pair. If all the pairs are not used, users can adjust the channel number through the proc
file. The total channels number should be 10. Otherwise, the adjusted value cannot be
saved properly.

Now 7.1 audio codec driver supports calling ASRC driver for memroy > ASRC >
perripheral(ESAI TX). The input audio file is convert into board defined sampling
rate(for example, 48khz). This use case only supports 2-channel or 6-channel playback.
To call this use case, perform the the following steps::

 Call aplay -1 | grep ASRC to get the card number and device number of playback
PCM. The device name i1s CS42888_ASRC. For example, the card number is 0 and
the device number is 1.

* Play the audio file with the cardOdevicel device. For example, aplay -Dplughw:0,1
$AUDIO_FILE.

24.2.1 Sequence for Memory to ASRC to Memory

e Start the /dev/mxc_asrc device.

* Request ASRC pair. (ASRC_REQ_PAIR)

* Configure ASRC pair. (ASRC_CONIFG_PAIR)

 Start ASRC. (ASRC_START_CONYV)

» Write the raw audio data (to be converted) into the user maintained input buffer. Fill
asrc_convert_buffer struct with input/output buffer length and address. Driver would
copy output data to user maintained output buffer address according to the output
buffer size. Repeat this step until all data is converted. (ASRC_CONVERT)

* Stop ASRC conversion: (ASRC_STOP_CONYV)

» Release ASRC pair. (ASRC_RELEASE_PAIR)

e Shut down the /dev/mxc_asrc device.

24.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1
audio sound card, a new device with the name of CS42888_ASRC is specified for
playback with ASRC. The steps below show the flow of calling ASRC to memroy to
peripheral:

* The sound device (PCM) has been registered and start to enable the DMA channel in
ALSA driver.

* Request ASRC pair. (asrc_req_pair)
e Configure ASRC pair. (asrc_config_pair)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 173

A ————
Source Code Structure
* Enable the DMA channel from Memory to ASRC and from ASRC to Memory.
e Start DMA channel and start ASRC conversion. (asrc_start_conv)
* When audio data playback complete, stop DMA channel and ASRC.
(asrc_stop_conv)
* Release ASRC pair. (asrc_release_pair)

24.3 Source Code Structure

Table below lists the source files available in the devices directory.

<ltib dirs/rpm/BUILD/linux/drivers/mxc/asrc
<ltib dirs>/rpm/BUILD/linux/include/linux/
<ltib dirs>/rpm/BUILD/linux/sound/soc/imx/
<ltib_dir>/rpm/BUILD/linux/sound/soc/codec/

Table 24-1. ASRC Source File List

File Description
mXc_asrc.c ASRC driver implementation codes including stream interface
mxc_asrc.h ASRC register definitions and export function declarations
imx-cs42888.c memory to ASRC to ESAI TX implementation in 7.1 audio codec machine driver.
imx-pcm-dma-mx2.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec platform driver.
imx-esai.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec cpu driver.
cs42888.c memory to ASRC to ESAI TX implementation in 7.1 audio codec codec driver.

24.3.1 Linux Menu Configuration Options

Device drivers > MXC support drivers > MXC Asynchronous Sample Rate Converter
support > ASRC support.

The ASRC driver can only be configured with build-in module.

24.4 Platform Data

struct mxc_asrc_platform_data defined in arch/arm/plat-mxc/include/mach/mxc_asrc.h is
used to transfer the platform information of ASRC according to different SOC.

 channel_bits: indicates the channel bit information.
 clk_map_ver: The mapping relationships in different SOC are different. This version
number can be used to indicate clock map information.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

174 Freescale Semiconductor, Inc.

4
Chapter 24 Asynchronous Sample Rate Converter (ASRC) Driver
* asrc_core_clk: ASRC core clock information, which is used for ASRC register
access.
* asrc_audio_clk: ASRC process clock, which is used for input/output clock source.

24.41 Programming Interface (Exported APl and IOCTLSs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.
ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in
struct asrc_config. Items in asrc_config are as follows:

e pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).

e channel num: channel number.

* buffer_num: buffer number required by input and output buffer. The input/output
buffers are allocated inside ASRC driver. The user is responsible for remapping it
into user space.

» dma_buffer_size: buffer size for input and output buffers. The buffer size should be
in the unit of page size. Usually, 4 KB is used.

* input_sample_rate: input sampling rate. Input sample rate should be 5.512k, 8k,
11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k 96k, 176.4k, or 192k.

* output_sample_rate: output sampling rate. Output sampling rate should be 32k,
44.1k, 48k, 64k, 88.2k, 96k, 176.4k, or 192k.

* input_word_width: word width of input audio data. The input data word width can be
16 bit or 24 bit.

* output_word_width: word width of output audio data. The output data word width
can be 16 bit or 24 bit.

* inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock,
SPDIF RX clock, MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock,
SPDIF TX clock, ASRCLKI clock, or NONE. If using clock except NONE, the user
should make sure that the clock is available.

* outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by
ASRC_CONFIG_PAIR. Driver would copy input_buffer_length bytes data from the
input_buffer_vaddr for conversion. After conversion, the driver fills the

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 175

Platform Data

output_buffer_length according to data number generated by ASRC and copy
output_buffer_length to output_buffer_vaddr. However, before calling
ASRC_CONVERT, the user needs to fill the output_buffer_length according to the ratio
of input sample rate and output sample rate. If the generated buffer size is larger than the
user filled output_buffer_size, the driver would only copy user filled output_buffer_size
to output_buffer_vaddr. If the generated buffer size is smaller than user filled
output_buffer_size (with the difference of less than 64 bytes), calling ASRC_CONVERT
would fail.

* input_buffer_vaddr: virtual address of input buffer.

* output_buffer_vaddr: virtual address of output buffer.
e input_buffer_length: length of input buffer(bytes).
 output_buffer_length: length of output buffer(bytes).

ASRC_START_CONYV:
Start ASRC pair convert.
ASRC_STOP_CONYV:
Stop ASRC pair convert.
ASRC_STATUS:

Query ASRC pair status.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

176 Freescale Semiconductor, Inc.

Chapter 25
The Sony/Philips Digital Interface (S/PDIF) Driver

25.1 Introduction

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that
allows the processor to receive and transmit digital audio. The S/PDIF transceiver allows
the handling of both S/PDIF channel status (CS) and User (U) data. The frequency
measurement block allows the S/PDIF RX section to derive the receive clock from the
incoming S/PDIF stream.

25.1.1 S/PDIF Overview
The following figure shows the block diagram of the S/PDIF interface.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 177

AR
Introduction

IP BLE

L~
- 32-Bit

2d-Bit
| CChannal H Rx Reg |-—=—#=
SRCSH
24-Bit

SPOIF — | GChannal L RxReg |—<=—m

BRCEL
2PDIFIN[p-| PECEVEER 24-Bi

BLOCK ————— = LiChanrel Ax Reg |—<—fm

24-Bil

4-1 QChannal Rx Rag

SAG 24-Bil

R FIFOLEFT R FIEG RIGHT™
L A
{HBx24 g (12

.

SPOIFOUT] Jeg— |-s——SPDIF OFF

-

SRL |Left Fx Data Reg Right Rx Data Req| SRR
a4-git

..-_| CChannelCora_H Tx Reg |_.._‘_r,,:r“_

STCSGEH 24-Bil

-¢—| CChanralCona_L Te Reg |....+

STOS0L
EPDIF 4Bt

TRANSMITTER T FIFG LEFT 1 FFFORGRF

aLack (16x2d) ' {16x24)

ITL Lafl Tu Derla Reg Left Tw Data Reqy | STR

Figure 25-1. S/PDIF Transceiver Data Interface Block Diagram

25.1.2 Hardware Overview
The S/PDIF is composed of two parts:

» The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the
data in the S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are
also extracted from each frame and placed in the corresponding registers. The S/
PDIF receiver provides a bypass option for direct transfer of the S/PDIF input signal
to the S/PDIF transmitter.

* For the S/PDIF transmitter, the audio data is provided by the processor through the
SPDIFTxLeft and SPDIFTxRight registers. The Channel Status bits are provided
through the corresponding registers. The S/PDIF transmitter generates a S/PDIF

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

178 Freescale Semiconductor, Inc.

4
Chapter 25 The Sony/Philips Digital Interface (S/PDIF) Driver
output bitstream in the biphase mark format (IEC958), which consists of audio data,
channel status and user bits.

In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of
the S/PDIF Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF
internal clock dividers and the sources are from outside of the S/PDIF block. The S/PDIF
receiver can recover the S/PDIF Rx clock from the S/PDIF stream. Figure 25-1 shows the
clock structure of the S/PDIF transceiver.

25.1.3 Software Overview

The S/PDIF driver is designed at the ALSA System on Chip (ASoC) layer. The ASoC
driver for S/PDIF provides one playback device for Tx and one capture device for Rx.
The playback output audio format can be linear PCM data or compressed data with 16-
bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 and 32 KHz. The
capture input audio format can be linear PCM data or compressed 24-bit data and the
allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface
for PCM and compressed data transmission.

25.1.4 ASoC layer

The ASoC layer divides audio drivers for embedded platforms into separated layers that
can be reused. ASoC divides an audio driver into a codec driver, a machine layer, a DAI
(digital audio interface) layer, and a platform layer. The Linux kernel documentation has
some concise description of these layers in linux/Documentation/sound/alsa/soc. In the
case of the S/PDIF driver, you can reuse the platform layer (imx-pcm-dma-mx2.c) that is
used by the ssi stereo codec driver.

25.2 S/PDIF Tx Driver
The S/PDIF Tx driver supports the following features:
* 32,44.1 and 48 KHz sample rates.

* Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the
24-bit output sample file must have 32-bits in each channel per frame. Only the 24
LSBs are valid.

* In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

e Two channels.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 179

A
S/PDIF Tx Driver

* Information query.
* The device ID can be determined by using the "aplay -1" utility to list out the
playback audio devices.

For example:

root@freescale ~$ aplay -1

****x Tigt of PLAYBACK Hardware Devices ****

card 0: imxspdif [imx-spdif], device 0: IMX SPDIF mxc-spdif-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

. NOTE
The number at the beginning of the MXC_SPDIF line is the
card ID. The string in the square brackets is the card name.

e The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers

#aplay -Dplughw:0,0 audio.wav

NOTE
The -D parameter of aplay indicates the PCM device with
card ID and PCM device ID: hw:[card id],[pcm device id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#ciecset -c 1

25.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are
initialized. During S/PDIF playback, the channel status bits are fixed. The DMA and
interrupts are enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel
respectively. When both FIFOs are empty, an empty interrupt is generated if the empty
interrupt is enabled. If no data are refilled in the 20.8 ps (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel
every time. If auto re-synchronization is enabled, the hardware checks if the left and right
FIFO are in synchronization. If not, it sets the filling pointer of the right FIFO to be equal
to the filling pointer of the left FIFO and an interrupt is generated.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

180 Freescale Semiconductor, Inc.

4
Chapter 25 The Sony/Philips Digital Interface (S/PDIF) Driver

25.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the
user besides the common PCM operations interface. It provides the interface for the user
to write S/PDIF channel status codes into the driver so they can be sent in the S/PDIF
stream. The input parameter of this interface is the IEC958 digital audio structure shown
below, and only status member is used:

struct snd_aes_iec958 {

unsigned char status[24]; /* AES/IEC958 channel status bits */
unsigned char subcode[147]; /* AES/IEC958 subcode bits */
unsigned char pad; /* nothing */

unsigned char dig subframe[4]; /* AES/IEC958 subframe bits */

25.3 S/PDIF Rx Driver

The S/PDIF Rx driver supports the following features:

* 16,32, 44.1, 48, 64 and 96 KHz receiving sample rates.
* Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each
channel bit length in PCM recorded frame is 32 bits, and only the 24 LSBs are valid.

In ALSA subsystem, the supported format is defined to S24_LE.

* Two channels.
* The device ID can be determined by using the arecord -1 to list out record devices.

For example:

root@freescale ~$ arecord -1

%x T,igt of CAPTURE Hardware Devices **

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: IMX SPDIF mxc-spdif-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

* The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers.

#tarecord -Dplughw:1,0" -c 2 -r 44100 -f S24 LE record.wav

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 181

A
S/PDIF Rx Driver
NOTE
The -D parameter of the arecord indicates the PCM device
with card ID and PCM device ID: hw:[card id],[pcm device
1d]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

25.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for
the internal DPLL to be locked. By using the high speed system clock, the internal DPLL
can extract the bit clock (advanced pulse) from the input bit stream. When this internal
DPLL is locked, the LOCK bit of PhaseConfig Register is set and the driver configures
the interrupt, clock and SDMA channel. After that, the driver can receive audio data,
channel status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers.
The driver reads them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD.
The mode is determined by the USyncMode (bit 1 of CDText_Control register). The user
can call the sound control interface to set the mode (see Table 25-1), but no matter what
the mode is, the driver handles the user bits in the same way. For the S/PDIF Rx, the
hardware block copies the Q bits from the user bits to the QChannel registers and puts the
user bits in UChannel registers. The driver allocates two queue buffers for both U bits
and Q bits. The U bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2
bytes in size, and queue buffers are filled in the U/Q Full, Err and Sync interrupt
handlers. This means that the user can get the previous ready U/Q bits while S/PDIF
driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt
status upon reception. A sound control interface is provided for the user to get the status
of this valid bit.

25.3.2 Provided User Interfaces

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

182 Freescale Semiconductor, Inc.

4
Chapter 25 The Sony/Philips Digital Interface (S/PDIF) Driver

Table 25-1. S/PDIF Rx Driver Interfaces
Interface Type | Mode’ Parameter Comment
Common PCM |PCM - - PCM open/close
prepare/trigger
hw_params/sw_params
Rx Sample Sound r Integer Get sample rate. It is not accurate due to DPLL
Rate Control? Range: [16000, 96000] frquengy measure module. So the user
application must do a correction to the get
value.
USyncMode Sound rw Boolean Set 1 for CD mode
Control Value: O or 1 Set 0 for non-CD mode
Channel Status | Sound r struct snd_aes_iec958 -
Control Only status [6] array member is used
User bit Sound r Byte array -
Control 96 bytes for U bits
12 bytes for Q bits
No good V bit |Sound r Boolean An interrupt is associated with the valid flag.
Control Value: 0 or 1 (interrupt 16 - SPDIFValNoGood). This interrupt

is set every time a frame is seen on the SPDIF
interface with the valid bit set to invalid.

1. The mode column shows the interface attribute: r (read) or w (write)
2. The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 25-2 to use the S/PDIF Rx

driver.

1. The application opens the S/PDIF Rx PCM device, waits for the DPLL to lock the
input bit stream, and gets the input sample rate. If the USyncMode needs to be set,
set it before reading the U/Q bits.

2. Set the hardware parameters, including the channel number, format and capture
sample rate which is obtained from the driver.

3. Call the preparation and triggering function to start S/PDIF Rx stream reading.

4. Call the reading function to get the data. During the reading process, applications can
read the U/Q bits and channel status from the driver and validates the illegal bits.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

183

Source Code Structure

pom apen snd ctl
_! get *RX Sample Rate”
LR __BR BB BN BB NN _J8 28 _J§ XN BB KN XN _JEE___ELE _EX _J '
1r* o f
Ll'
zet channel = 2 1
r
-
~
¥ - 1
. !
set format = S24_LE . |
.ll"- -
l o 1
F'F.-'
set rate = gotten rate fM==—=="" snd cfl
* set *USyncMode COText™ On Off
pcrm
prepare
[r snd ol }
w .
read !
e) -
— — — — — — i — 1 — — i — 1 — — + Snd Dtl
Yy T _Tr %7 _3r _Tr. ™ L net RIII‘II’:I‘II"F!.'"GRII"I
L I
rlnse I i
snd ctl

""" * and control

—* Prooram flow tnom likh

Figure 25-2. S/PDIF Rx Application Program Flow

25.4 Source Code Structure

The following table lists the source files for the driver.

These files are under the <Itib_dir>/rpm/BUILD/linux/ directory.
Table 25-2. S/PDIF Driver Files

File Description
sound/soc/codecs/mxc_spdif.c S/PDIF ALSA SOC codec driver
sound/soc/codecs/mxc_spdif.h S/PDIF ALSA SOC codec driver header
sound/soc/imx/imx-spdif.c S/PDIF ALSA SOC machine layer

Table continues on the next page...

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

184 Freescale Semiconductor, Inc.

Chapter 25 The Sony/Philips Digital Interface (S/PDIF) Driver
Table 25-2. S/PDIF Driver Files (continued)

File Description
sound/soc/imx/imx-spdif-dai.c S/PDIF ALSA SOC DAI layer
sound/soc/imx/imx-pcm-dma-mx2.c ALSA SOC platform layer
sound/soc/imx/imx-pcm.h ALSA SOC platform layer header

25.5 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

To get to these options, use the ./Itib -c command when located in the <ltib dir>. Select
Configure the Kernel on the displayed screen and exit. When the next screen appears,
select the following options to enable this module:

* CONFIG_SND_MXC_SPDIF: Configuration option for the S/PDIF driver. In the
menuconfig, this option is available under Device Drivers > Sound card support >
Advanced Linux Sound Architecture > ALSA for SoC audio support > SoC Audio
for Freescale 1.MX CPUs > SoC Audio support for IMX - S/PDIF

25.6 Platform Data

struct mxc_spdif_platform_data is used to transfer board-specific data to the S/PDIF
driver.

It is defined in include/linux/fsl_devices.h.

e spdif_tx : is 1 if TX is supported on the board.

e spdif_rx :is 1 if RX is supported on the board.

 spdif_clk_44100 : the 44.1KHz transmit clock for the STC register. -1 indicates that
it does not support this sample rate.

 spdif_clk_48000 : the transmit clock used for 48KHz and 32KHz for the STC
register. -1 indicates that it does not support these sample rates.

 spdif_div_44100 : 44.1KHz clock division factor in the STC register.

» spdif_div_48000 : 48KHz clock division factor in the STC register.

 spdif_div_32000 : 32KHz clock division factor in the STC register.

 spdif_rx_clk : rx clock source in mux in SRPC register. Leave as 0 to get clock from
rx stream.

 spdif_core_clk : S/PDIF core clock.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 185

Interrupts and Exceptions

25.7 Interrupts and Exceptions

S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and
event.

The driver handles the following interrupts:

* DPLL Lock and Loss Lock: saves the DPLL lock status. This is used when getting
the Rx sample rate.

» U/Q Channel Full and overrun/underrun: puts the U/Q channel register data into
queue buffer, and update the queue buffer write pointer.

* U/Q Channel Sync: saves the ID of the buffer whose U/Q data is ready for read out.

* U/Q Channel Error: resets the U/Q queue buffer.

25.8 Unit Test Preparation

In order to prepare to run a unit test, perform the following actions:

* Set up the M-Audio Transit USB sound card by installing the M-Audio Transit driver
on your PC.
* Install WaveLab tools on your PC.

25.8.1 Tx test step
1. Plug optical line into [lineloptical] port of M-Audio transit.

NOTE
Make sure that the [optical out] port of M-Audio transit has
no output (red light off) after plugging the optical line.

2. Start WaveLab, press the record button on the toolbar, set the record file name,
sample rate, channel number, and then start recording.
3. Run the following command on the board to play one wave file:

#aplay -D hw: [card id], [pcm id] audioXXkYYS.wav

* After finishing aplay, stop recording in WaveLab.
* Play the recorded wav file in wavelab to check if it works properly.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
186 Freescale Semiconductor, Inc.

4
Chapter 25 The Sony/Philips Digital Interface (S/PDIF) Driver

25.8.2 Rx test step

1. Plug optical line into [optical port] of M-Audio transit.

2. Start WaveLab, open a test wav file: audioXXkYYS.wav to play in loop.

3. Run the following command on the board to record one wave file. After finishing
recording, you may play back the recorded wav file on other audio card on the board
or PC.

#arecord -D hw: [card id], [pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24_LE record.wav

NOTE
The sample rate argument in the arecord command must be
consistent with the wav file played on WaveLab.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 187

Unit Test Preparation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

188 Freescale Semiconductor, Inc.

Chapter 26
SPI NOR Flash Memory Technology Device (MTD)
Driver

26.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash. If RedBoot partitions exist, they have higher priority than static partitions, and the
MTD partitions can be created from the RedBoot partitions.

26.1.1 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it

properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high speed SPI-compatible bus up to 7SMHz. The memory is
organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide. Thus,
the whole memory can be viewed as consisting of 16384 pages, or 4,194,304 bytes. The
memory can be programmed 1 to 256 bytes at a time using the Page Program instruction.
The whole memory can be erased using the Bulk Erase instruction, or a sector at a time,
using the Sector Erase instruction.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 189

A ————
Introduction

Unlike conventional Flash memories that are accessed randomly, these two SPI NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

26.1.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. Figure below illustrates the relationships between some of the
standard components.

c
@
m
P
£
i
E

r
RAMFS |

i
[]
]
]
[]
1
[]
1
i
]
1
]
1
i
]
1
]
]
]
[]
1
1
1
]
1
i
1
1
1
1
i
1
i
]
1
1
1
1
i
1
i
=

; o ||
Figure 26-1. Components of a Flash-Based File System

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash
and RAM, providing simple read, write, and erase access to physical memory devices.
Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMES file
systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the kernel
by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects a data

Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI NOR
MTD driver also provides the interfaces to read, write, and erase NOR Flash.

26.1.3 Driver Features
This NOR MTD implementation supports the following features:

* Provides necessary information for the upper layer MTD driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

190 Freescale Semiconductor, Inc.

4
Chapter 26 SPI NOR Flash Memory Technology Device (MTD) Driver

26.1.4 Source Code Structure

The SPI NOR MTD driver is implemented in the following directory:
<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/

Table below shows the driver files:

Table 26-1. SPI NOR MTD Driver Files

File Description

m25p80.c Source file

26.1.5 Menu Configuration Options

To get to the SPI NOR MTD driver, use the command ./Itib -c when located in the <lItib
dir>. On the screen displayed, select Configure the kernel and exit. When the next screen
appears select the following options to enable the SPI NOR MTD driver accordingly:

* CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

* Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 191

Introduction

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

192 Freescale Semiconductor, Inc.

Chapter 27
MMC/SD/SDIO Host Driver

27.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC) .

The host driver is part of the Linux kernel MMC framework.
The MMC driver has the following features:

* 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

* Supports card insertion and removal detections.

* Supports the standard MMC commands.

* PIO and DMA data transfers.

* Power management.

» Supports 1/4/8-bit operations for MMC cards.

* Support eMMC4.4 SDR and DDR modes.

e Support SD3.0 SDR50 and SDR104 modes.

27.1.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 193

A ————
Introduction

The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

27.1.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols.
The MMC block driver handles the file system read/write calls and uses the low level
MMC host controller interface driver to send the commands to the uSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit,
request, and set_ios. The driver implements the following functions:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

194 Freescale Semiconductor, Inc.

4
Chapter 27 MMC/SD/SDIO Host Driver
* The init function esdanc_pitem init () initializes the platform hardware and set platform
dependant flags or values to sdhci_host structure.
* The exit function esdnc pitfm exit () deinitializes the platform hardware and frees the
memory allocated.
e The function esdnc_pitfm get_max_clock () gets the maximum SD bus clock frequency
supported by the platform.
* The function esahc_pitfm get min_clock () gets the minimum SD bus clock frequency
supported by the platform.
* esdhc_pltfm get ro() gets the card read only status.
* pit_sbit_width() handles 8 bit mode switching on the platform.
* pit_cik_ctrl() handles clock management on the platform.
* esdhc_prepare_tuning() handles the preparation for tuning. It's only used for SD3.0
UHS-I mode.
* esdhc_post_tuning () handles the post operation for tuning.
* esdhc_set_clock () handles the clock change request.
* cd_irq() it's the interrupt routine for card detect.

Figure below shows how the MMC-related drivers are layered.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 195

Driver Features

File System (Ext2fs/FAT driver) SDIO APP

Applic ation/Server interface i

. 2

blockc: block . .
driver for ¢ LN 2
peripheral media. \ Client Drer interface
core.c, sil.c, A Ftc sd, roane,
Kinds of Bus Protocol Drivers ,
silio, ce-atn
Host ¢ ontroller Drtver mcerface t and s0 on.
sdhei.c/sdhei-pltfm.c

sdhei-esdhe-imx.c Local Bus Interface

¥

Host Conimoller
Skt Electrical interface i
' MM /SD/SD
MMC/SD/SDIOCE-ATA Devices I0/CE-ATA

Devices

Figure 27-1. MMC Drivers Layering

27.2 Driver Features
The MMC driver supports the following features:

 Supports multiple uSDHC modules.

* Provides all the entry points to interface with the Linux MMC core driver.

* MMC and SD cards.

» SDIO cards.

e SD3.0 cards.

* Recognizes data transfer errors such as command time outs and CRC errors.
* Power management.

* [t supports to be built as loadable or builtin module

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
196 Freescale Semiconductor, Inc.

Chapter 27 MMC/SD/SDIO Host Driver

27.2.1 Source Code Structure

Table below shows the uSDHC source files available in the source directory: <ltib_dir>/
rpm/BUILD/linux/drivers/mmc/host/.

Table 27-1. uSDHC Driver Files MMC/SD Driver Files

File Description
sdhci.c sdhci standard stack code
sdhci-pltfm.c sdhci platform layer
sdhci-esdhc-imx.c uSDHC driver
sdhci-esdhc.h uSDHC driver header file

27.2.2 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

To get to these options, use the ./ltib -c command when located in the <lItib dir>. On the
screen displayed, select Configure the Kernel and exit. When the next screen appears,
select the following options to enable this module:

* CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this
option is available under:

* Device Drivers > MMC/SD/SDIO Card support

* By default, this option is Y.

* CONFIG_MMC_BLOCK builds support for MMC block device driver which can be
used to mount the file system. In menuconfig, this option is available under:

* Device Drivers > MMC/SD Card Support > MMC block device driver

* By default, this option is Y.

 CONFIG_MMC_SDHCI_ESDHC_IMX is used for the .MX USDHC ports. In
menuconfig, this option is found under:

* Device Drivers > MMC/SD Card Support > Secure Digital Host Controller
Interface support > SDHCI support on the platform specific bus > SDHCI
platform support for the Freescale eSSDHC 1.MX controller

To compile SDHCI driver as a loadable module, several options should be selected

as indicated below:
e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card

Support > Secure Digital Host Controller Interface support

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 197

A ————
Driver Features

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as
indicated below:

* CONFIG_MMC_SDHClI=y, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

* CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers > MMC/
SD Card Support > Secure Digital Host Controller Interface support > SDHCI
support on the platform specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

* CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under:

* Device drivers > MMC/SD/SDIO Card Support > Assume MMC/SD cards are

non-removable.

27.2.3 Platform Data

struct esdhc_platform_data defined in arch/arm/plat-mxc/include/mach/esdhc.h is used to
pass platform informaton:

* .wp_gpio: GPIO used for write protect detection

* .cd_gpio: GPIO used for card detection

» .always_present: 1 indicates the card is inserted and non-removable, and the card
detect is ignored

e .support_18v: indicate the board could provide 1.8v power to the card.

* _support_8bit: indicate 8 data pins are connected to the card slot.

* .platform_pad_change: callback function used to change the pad settings due to
different SD bus clock frequency

» keep_power_at_suspend: keep MMC/SD slot power when system enters suspend

* .delay_line: delay line setting for DDR mode

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

198 Freescale Semiconductor, Inc.

4
Chapter 27 MMC/SD/SDIO Host Driver

27.2.4 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with
the 1.MX uSDHC module.

See the Linux document generated from build: make htmldocs.

27.2.5 Loadable Module Operations
The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.

e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

2. How to load and unload SDHCI module.

Due to dependency, please load or unload the module following the module sequence
shown below.

run the following commands to load module:
* load modules via insmod command, assuming the files of sdhci.ko and sdhci-
platform.ko exist in current directory.

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

* load modules via modprobe command, please make sure the files of sdhci.ko and
sdhci-platform.ko exist in corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
¢ unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

* unload modules via modprobe command.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 199

Driver Features

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

200 Freescale Semiconductor, Inc.

Chapter 28
NAND GPMI Flash Driver

28.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the i.MX 6Dual/6Quad.

Only the hardware specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

28.1.1 Hardware Operation
NAND Flash is a nonvolatile storage device used for embedded systems.

It does not support random accesses of memory as in the case of RAM or NOR Flash.
Reading or writing to NAND Flash must be done through the GPMI. NAND Flash is a
sequential access device appropriate for mass storage applications. Code stored on
NAND Flash can not be executed from there. Code must be loaded into RAM memory
and executed from there. The 1.MX 6Dual/6Quad contains a hardware error-correcting
block.

28.2 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 201

A
Software Operation

or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The
hardware specific driver interfaces with the GPMI module on i.MX 6Dual/6Quad. It
implements the lowest level operations such as read, write and erase. If enabled, it also
provides information about partitions on the NAND device-this information has to be
provided by platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at http://www.linux-
mtd.infradead.org

28.2.1 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

mil ecc_read page (with ECC)
mil_ecc_write page (with ECC)

mil read byte (without ECC)

mil read buf (without ECC)

mil_write_buf (without ECC)

mil_ecc_read oob (with ECC)

mil ecc_write oob (with ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the mil_incoming_buffer_dma_begin function is called, which creates
the DMA chain, submits it to execute, and waits for completion. The write case is a bit
more complex: the data to be written is mapped and flushed out by calling
mil_incoming_buffer_dma_begin before processing the command

NAND_CMD_PAGEPROG.

28.2.2 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k +
218) the page layout of 8K page is (8K + 448).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

202 Freescale Semiconductor, Inc.

http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

4
Chapter 28 NAND GPMI Flash Driver

28.2.3 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are
found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

28.2.4 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved. The driver decides if bad block
marks should be moved if there is no NAND control block. Then, to prevent another
move of bad block marks, the driver writes the default NCB to the Flash.

The following functions that deal with bad block handling are grouped together in the
gpmi-nfc-mil.c file:

mil block bad
mil scan bbt

28.3 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/gpmi-nfc directory.
The following files are included in the NAND driver:

gpmi-nfc.c
hal-mx50.c
hal-mxs.c
gpmi-nfc.h
gpmi-regs.h
bch-regs.h
gpmi-regs-mx50.h
bch-regs-mx50.h

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 203

Source Code Structure

28.3.1 Menu Configuration Options
To enable the NAND driver, the following options must be set:

« CONFIG_IMX_HAVE_PLATFORM_GPMI_NFC = [Y]
* CONFIG_MTD_NAND_GPMI_NFC =[Y | M]

In addition, these MTD options must be enabled:

« CONFIG_MTD_NAND = [y | m]

« CONFIG_MTD =y

« CONFIG_MTD_PARTITIONS =y
« CONFIG_MTD_CHAR =y

« CONFIG_MTD_BLOCK =y

In addition, these UBI options must be enabled:

« CONFIG_MTD_UBI=y
 CONFIG_MTD_UBI_WL_THRESHOLD=4096
« CONFIG_MTD_UBI_BEB_RESERVE=1
 CONFIG_UBIFS_FS=y

« CONFIG_UBIFS_FS_LZO=y

« CONFIG_UBIFS_FS_ZLIB=y

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

204 Freescale Semiconductor, Inc.

Chapter 29
SATA Driver

29.1 Hardware Operation

The detailed hardware operation of SATA is detailed in the Synopsys DesignWare Cores
SATA AHCI documentation, named SATA_Data_Book.pdf.

29.1.1 Software Operation

The details about the libata APIs, see the ibATA Developer's Guide named libata.pdf
pulished by Jeff Gazik.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel . FSL integrated AHCI linux driver combined the standard AHCI
drivers handle the details of the integrated freescale's SATA AHCI controller, while the
LIBATA layer understands and executes the SATA protocols. The SATAdevice, such as
a hard disk, is exposed to the application in user space by the /dev/sda* interface.
Filesystems are built upon the block device. The AHCI specified integrated DMA engine,
which assists the SATA controller hardware in the DMA transfer modes.

29.1.2 Source Code Structure Configuration

The source codes of freescale's AHCI sata driver is integrated into the plat-mxc relative
files. <ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/ahci_sata.c.

The standard AHCI and AHCI platform drivers are used to do the actual sata operations.

The source codes of the standard AHCI and AHCI platform drivers are located in drivers/
ata/ folder, named as ahci.c and ahci-platform.c.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 205

Programming Interface

29.1.3 Linux Menu Configuration Options
The following Linux kernel configurations are provided for SATA driver:

* CONFIG_SATA_AHCI_PLATFORM: Configure options for SATA driver. In the
menuconfig this option is available under "Device Drivers --->Serial ATA (prod) and
Parallel ATA (experimental) drivers -> Platform AHCI SATA support".

In busybox, enable "fdisk" under "Linux System Utilities".

29.1.4 Board Configuration Options
With the power off, install the SATA cable and hard drive.

29.2 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for
example: open, close, read, write, and ioctl) on /dev/sda*.

29.2.1 Usage Example2

NOTE
There may be a known error message when few kinds of SATA
disks are initialized, such as:

atal.00: serial number mismatch '090311PB0300QKG3TB1A"!

_n

atal.00: revalidation failed (errno=-19)
pls ignore that.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target,
and log in as root.

2. Make sure that the AHCI and AHCI paltform drivers are built in kernel or loaded
into kernel. Use the following commands to load the drivers into kernel.

insmod libata.ko
insmod libahci.ko

insmod ahci-platform.ko

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

206 Freescale Semiconductor, Inc.

4
Chapter 29 SATA Driver

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci.0: AHCI 0001.0100 32 slots 1 ports 3 Gbps 0xl impl platform mode
ahci ahci.0: flags: ncg sntf stag pm led clo only pmp pio slum part ccc
scsi0 : ahci

atal: SATA max UDMA/133 irg stat 0x00000040, connection status changed irg 28
atal: SATA link up 1.5 Gbps (SStatus 113 SControl 300)

atal.00: ATA-8: Hitachi HTS545032B9A300, PB30C60G, max UDMA/133

atal.00: 625142448 sectors, multi 0: LBA48 NCQ (depth 31/32)

atal.00: serial number mismatch '090311PB0300QKG3TB1A' != '!

atal.00: revalidation failed (errno=-19)

atal: limiting SATA link speed to 1.5 Gbps

atal.00: limiting speed to UDMA/133:PIO3

atal: SATA link up 1.5 Gbps (SStatus 113 SControl 310)

atal.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA Hitachi HTS54503 PB30 PQ: 0 ANSI: 5

sd 0:0:0:0: [sdal 625142448 512-byte logical blocks: (320 GB/298 GiB)

sd 0:0:0:0 [sda] Write Protect is off

sd 0:0:0:0: [sdal Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal sda2 sda3

sd 0:0:0:0: [sda] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for
example: fdisk and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to
check basic kernel settings for the drive, execute hdparm /dev/sda.

29.2.2 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the
hard disk is pre-formatted, this command shows the size of the hard disk, partitions, and
filesystem type:

$fdisk -1 /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following
command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note
this command can corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/sdal bs=1024 count=5

The response should be as follows:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 207

Programming Interface

540 records in
5+0 records out

To write a file content to the card enter the following text, substituting the name of the
file to be written for file_name, do the following:

$dd if=file name of=/dev/sdal

To read 1KB of data from the card enter the following text, substituting the name of the
file to be written for output_file, do the following:

$dd if=/dev/sdal of=output file bs=1024 count=1
Files System Tests
Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

Smkfs.ext2 /dev/sdal
Smkfs.vfat /dev/sdal

Mount the file system as follows:

$mkdir /mnt/sdal
$mount -t ext2 /dev/sdal /mnt/sdal

After mounting, file/directory, operations can be performed in /mnt/sdal.

Unmount the filesystem as follows:

Sumount /mnt/sdal

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

208 Freescale Semiconductor, Inc.

Chapter 30
Inter-IC (12C) Driver

30.1 Introduction

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The I2C driver for Linux has two parts:

* 12C bus driver-low level interface that is used to talk to the I2C bus
 12C chip driver-acts as an interface between other device drivers and the 12C bus
driver

30.1.1 12C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user
space.

The standard Linux kernel contains a core I12C module that is used by the chip driver to
access the I2C bus driver to transfer data over the I2C bus. The chip driver uses a
standard kernel space API that is provided in the Linux kernel to access the core 12C
module. The standard I2C kernel functions are documented in the files available under
Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

e Compatible with the I2C bus standard

* Bit rates up to 400 Kbps

* Starts and stops signal generation/detection
* Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer
 Standard 12C master mode

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 209

Software Operation

30.1.2 12C Device Driver Overview

The 12C device driver implements all the Linux I12C data structures that are required to
communicate with the I2C bus driver. It exposes a custom kernel space API to the other
device drivers to transfer data to the device that is connected to the I2C bus. Internally,
these API functions use the standard I2C kernel space API to call the I2C core module.
The I2C core module looks up the I2C bus driver and calls the appropriate function in the
I2C bus driver to transfer data. This driver provides the following functions to other
device drivers:

* Read function to read the device registers
» Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

30.1.3 Hardware Operation
The I12C module provides the functionality of a standard I2C master and slave.

It is designed to be compatible with the standard Philips I2C bus protocol. The module
supports up to 64 different clock frequencies that can be programmed by setting a value
to the Frequency Divider Register (IFDR). It also generates an interrupt when one of the
following occurs:

* One byte transfer is completed
» Address is received that matches its own specific address in slave-receive mode
* Arbitration is lost

30.2 Software Operation

The 12C driver for Linux has two parts: an I2C bus driver and an I12C chip driver.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

210 Freescale Semiconductor, Inc.

4
Chapter 30 Inter-IC (I12C) Driver

30.2.1 12C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important
field in this structure is struct i2c_algorithm *algo. This field is a pointer to the
12c¢_algorithm structure that describes how data is transferred over the 12C bus. The
algorithm structure contains a pointer to a function that is called whenever the I2C chip
driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one I2C module. If so, the driver registers
separate 12c_adapter structures for each 12C module with the I2C core. These adapters are
unregistered (removed) when the driver is unloaded.

After transmitting each packet, the 12C bus driver waits for an interrupt indicating the end
of a data transmission before transmitting the next byte. It times out and returns an error
if the transfer complete signal is not received. Because the I2C bus driver uses wait
queues for its operation, other device drivers should be careful not to call the 12C API
methods from an interrupt mode.

30.2.2 12C Device Driver Software Operation

The I2C driver controls an individual 12C device on the I2C bus. A structure, i2¢_driver,
describes the I12C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value I2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. The attach_adapter
callback function is called whenever a new I12C bus driver is loaded in the system. When
the I12C bus driver is loaded, this driver stores the 12c_adapter structure associated with
this bus driver so that it can use the appropriate methods to transfer data.

30.3 Driver Features

The 12C driver supports the following features:

* [2C communication protocol
* [2C master mode of operation

NOTE
The I2C driver does not support the I2C slave mode of
operation.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 211

Driver Features

30.3.1 Source Code Structure

Table below shows the 12C bus driver source files available in the directory:

<Itib_dir>/rpm/BUILD/linux/drivers/i2c/busses.
Table 30-1. 12C Bus Driver Files

File Description

i2c-imx.c I12C bus driver source file

30.3.2 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./Itib -c
command when located in the <lItib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

Device Drivers > 12C support > [2C Hardware Bus support > IMX I2C interface.

30.3.3 Programming Interface

The I12C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the 12C bus.

For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

30.3.4 Interrupt Requirements
The I2C module generates many kinds of interrupts.

The highest interrupt rate is associated with the transfer complete interrupt as shown in
table below.

Table 30-2. 12C Interrupt Requirements

Parameter Equation Typical Best Case
Rate Transfer Bit Rate/8 25,000/sec 50,000/sec
Latency 8/Transfer Bit Rate 40 T14s 20 Tt4s

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

212 Freescale Semiconductor, Inc.

4
Chapter 30 Inter-IC (12C) Driver

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a
baud rate of 400 Kbps (the maximum supported by the 12C interface).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 213

Driver Features

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

214 Freescale Semiconductor, Inc.

Chapter 31
Enhanced Configurable Serial Peripheral Interface
(ECSPI) Driver

31.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.
It supports the following features:

* Interrupt-driven transmit/receive of bytes
* Multiple master controller interface

* Multiple slaves select

* Multi-client requests

31.1.1 Hardware Operation

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications.

Each ECSPI is equipped with a data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master
or slave devices.

The primary features of the ECSPI includes:

* Master/slave-configurable

* Four chip select signals to support multiple peripherals

» Up to 32-bit programmable data transfer

* 64 x 32-bit FIFO for both transmit and receive data

» Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 215

Software Operation
31.2 Software Operation

The following sections describe the ECSPI software operation.

31.2.1 SPI Sub-System in Linux

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. Figure below shows the block diagram for SPI
subsystem in Linux.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR Client #2 driver | " Client #3 driver
mtd driver
SPI Subsystem
ECSPI Hardware
h 4 h 4 ¥
SPI-NOR Flash Client #2 Client #3

Figure 31-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. Figure below shows how the different SPI drivers are
layered in the SPI subsystem.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

216 Freescale Semiconductor, Inc.

4
Chapter 31 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

SPI client Driver SPI slave driver
Client Driver Interface {}
SPI Core Driver SPI core driver
Controller Driver Interace {\r
FSL Eici%F;(I driver ECSPI host
(spl_imx.c) ECSPI Controller Driver controller driver
SPI Bus Interface {}
ECSPI Controller
Electrical Interface @
SPI slave device
SPI Slave
(SPI-NOR Flash)

Figure 31-2. Layering of SPI Drivers in SPI Subsystem

31.2.2 Software Limitations
The ECSPI driver limitations are as follows:

* Does not currently have SPI slave logic implementation

* Does not support a single client connected to multiple masters

* Does not currently implement the user space interface with the help of the device
node entry but supports sysfs interface

31.2.3 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

* Init function spi_imx_init() registers the device_driver structure.

 Probe function spi_imx_probe() performs initialization and registration of the SPI
device specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/0 pins, requests for IRQ
and resets the hardware.

 Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

 SPI transfer function spi_imx_transfer() handles data transfers operations.

 SPI setup function spi_imx_setup() initializes the current SPI device.

» SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed
and an interrupt is generated.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 217

Software Operation

31.2.4 ECSPI Synchronous Operation

Figure below shows how the ECSPI provides synchronous read/write operations.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
218 Freescale Semiconductor, Inc.

Client Driver

spi_read/write

Chapter 31 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

return

SPI Core SPI Controller ECSPI
Driver Driver Hardware
> o

spi transfer
> spi_enable_rx_intr
)
spi_load_TxFifo
>

e

callback after

spi_init_exchange

Rx_Data_Ready_intr

-
spi_getRxData

transfer completion

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc.

219

Driver Features

31.3 Driver Features
The ECSPI module supports the following features:

* Implements each of the functions required by a ECSPI module to interface to Linux
* Multiple SPI master controllers
e Multi-client synchronous requests

31.3.1 Source Code Structure

Table below shows the source files available in the devices directory:

<ltib dirs/rpm/BUILD/linux/drivers/spi/
Table 31-1. CSPI Driver Files

File Description

spi_imx.c SPI Master Controller driver

31.3.2 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the ./Itib -c
command when located in the <Itib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

* CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:
* Device Drivers > SPI Support.
* CONFIG_BITBANG is the Library code that is automatically selected by drivers
that need it. SPI_IMX selects it. In menuconfig, this option is available under:
* Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.
e CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:
* Device Drivers > SPI Support > Freescale 1.MX SPI controllers.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

220 Freescale Semiconductor, Inc.

4
Chapter 31 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

31.3.3 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

31.3.4 Interrupt Requirements
The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 31-2. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case

BaudRate/ Transfer Length (BaudRate/(TransferLength)) |31250 1500000
* (1/Rxtl)

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 221

Driver Features

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

222 Freescale Semiconductor, Inc.

Chapter 32
FlexCAN Driver

32.1 Driver Overview

FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see http://lwn.net/Articles/253425 or Documentation/
networking/can.txt in Linux source directory.

32.1.1 Hardware Operation

For the information on hardware operations, see the i. MX 6 Multimedia Applications
Processor Reference Manual.

32.1.2 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

The CAN network device driver interface.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 223

http://lwn.net/Articles/253425

A ————
Driver Overview

The CAN network device driver interface provides a generic interface to setup, configure
and monitor CAN network devices. The user can then configure the CAN device, like

setting the bit-timing parameters, via the netlink interface using the program "ip" from
the "[PROUTE2" utility suite.

Starting and stopping the CAN network device.

A CAN network device is started or stopped as usual with the command "ifconfig canX
up/down" or "ip link set canX up/down". Be aware that you *must* define proper bit-
timing parameters for real CAN devices before you can start it to avoid error-prone
default settings:

* ip link set canX up type can bitrate 125000

The iproute?2 tool also provides some other configuration capbilities for can bus such as
bit-timing setting. For details, please refer to kernel doc: Documentation/networking/
can.txt

32.1.3 Source Code Structure

Table below shows the driver source file available in the directory, <ltib_dir>/rpm/
BUILD/linux/drivers/net/can/

Table 32-1. FlexCAN Driver Files

File Description

flexcan.c flexcan driver

32.1.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the ./Itib -c command when located in the <lItib dir>. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

* CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this
option is available under

Networking > CAN bus subsystem support.

* CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this
option is available under

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

224 Freescale Semiconductor, Inc.

4
Chapter 32 FlexCAN Driver

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with
CAN-ID filtering).

* CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol
(with content filtering).

* CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in
Ethernet interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local
CAN Interface (vcan).

* CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to
the system log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices
debugging messages.

* CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale
FlexCAN.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 225

Driver Overview

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

226 Freescale Semiconductor, Inc.

Chapter 33
Media Local Bus Driver

33.1 Introduction

MedialLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST
Network data or to communicate with other applications with minimum effort. MedialLB
supports all the MOST Network data transport methods: synchronous stream data,
asynchronous packet data, and control message data. MedialLB also supports an
1sochronous data transport method. For detailed information about the MedialLB, see the
Media Local Bus Specification.

33.1.1 MLB Device Module

The MedialLB module implements the Physical Layer and Link Layer of the MedialLB
specification, interfacing the i.MX to the MedialLB controller.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 227

Introduction

MLE Chamns| Buffer RAR

RAM In1crﬁ:|n:c1

F'y
. KedlalBE
- ﬂﬂ:ﬂf Channel Mecial B
i |ty TS ey Buitr [Lrklogic [
: (il i) Logic irmie_Iink}
- A {milb_uf)
$: $ ——» MLEDLT
3
L J E — H-:diaLE-l_:arhfgl.reriim Lagia Hgiﬂﬂj-ﬂ ¢ ¥ WMLBESIS
- R {mib_core] o WLEC LK
v
MedalB Clock, Power ond Resst Logic
milb_car)

Figure 33-1. MLB Device Top-Level Block Diagram

The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It
does not implement MedialLB controller functionality. All MedialLB devices support a set
of physical channels for sending data over the MedialLB. Each physical channel is 4 bytes
in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction
(transmit or receive).

The MLB provides support for up to 16 logical channels and up to 31 physical channels
with a maximum of 124 bytes of data per frame. Each logical channel is referenced using
an unique channel address and represents a unidirectional data path between a MedialLB
device transmitting the data and the MedialLB device(s) receiving the data.

33.1.2 Supported Feature

* Synchronous, asynchronous, control and isochronous channel.

e Up to 16 logical channels and 31 physical channels running at a maximum speed of
1024Fs

* Transmission of commands and data and reception of receive status when
functioning as the transmitting device associated with a logical channel address

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

228 Freescale Semiconductor, Inc.

L __4
Chapter 33 Media Local Bus Driver
* Reception of commands and data and transmission as receive status responses when
functioning as the receiving device associated with a logical channel address
* MedialLB lock detection
e System channel command handling

33.1.3 Modes of Operation

* Normal mode. The MedialLB Device dictates two particular methods:
* Ping-Pong Buffering mode
* Circular Buffering mode (only used on synchronous type transfer)
* Loop-Back test mode

33.1.4 MLB Driver Overview

The MLB driver is designed as a common linux character driver. It implements one
asynchronous and one control channel device with Ping-Pong buffering operation mode.
The supported frame rates are 256, 512, and 1024Fs. The MLB driver uses common read/
write interfaces to receive/send packets and uses the ioctl interface to configure the MLB
device module.

33.2 MLB Driver

Functionality of the MLB driver is described in supported features, MLB driver
architecture, and software operation.

33.2.1 Supported Features

e 256Fs, 512Fs and 1024Fs frame rates
» Asynchronous and control channel types
* The following configurations to MLB device module:
* Frame rate
* Device address
* Channel address
* MLB channel exception get interface. All the channel exceptions are sent and
handled by the application.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 229

AR
MLB Driver

33.2.2 MLB Driver Architecture

The MLB driver is a common linux character driver and the architecture is shown in
figure below.

POCTI) v v e 1 witit e palld read(

I User space

MLB ssttings:
Epead]

[device ad dresz] 1
[zhannel add ress]

Ehannel start’zhuotdown]

exgeption
awvenit
L

— MLE D e, IRAM

I . -

Figure 33-2. MLB Driver Architecture Diagram

The MLB driver creates two minor devices, one for control tx/rx channel and the other
for asynchronous. Their device files are /dev/ctr]l and /dev/async. Each minor device has
the same interfaces, and handle both Tx and Rx operation. The following description is
for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission
and reception between module and IRAM is handled by the MLLB module DMA. The
driver is responsible for configuring the buffer start and end pointer for the MLLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a
packet arrives, the MLLB module puts the received packet into the IRAM Rx buffer, and
notifies the driver by interrupt. The driver then copy the packet from the IRAM to one
ring buffer node indicated by the write position, and updates the write position with the
next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read completed, it
updates the read position with the next available buffer node. There is no received packet
in the ring buffer when the read and write position is the same.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

230 Freescale Semiconductor, Inc.

4
Chapter 33 Media Local Bus Driver

For transmission, the driver writes the packet given by the writer application into the
IRAM Tx buffer, updates the Tx status and sets MLB device module Tx buffer pointer to
start transmission. After transmission completes, the driver is notified by interrupt and
updates the Tx status to accept the next packet from the application.

The driver supports NON BLOCK I/0O. User applications can poll to check if there are
packets or exception events to read, and also they can check if a packet can be sent or not.
If there are exception events, the application can call ioctl to get the event. The ioctl also
provides the interface to configure the frame rate, device address and channel address.

33.2.3 Software Operation
The MLB driver provides a common interface to application.

 Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only
one packet can be read or written at once. The minimum read length must be greater
or equal to the received packet length, meanwhile the write length must be shorter
than 1024 Bytes.
* Polling-The MLB driver provide polling interface which polls for three status,
application can use select to get current I/O status:
» Packet available for read (ready to read)
* Driver is ready to send next packet (ready to write)
* Exception event comes (ready to read)
e ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS
Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the i.MX35.
MLB_SET_DEVADDR

Argument type: unsigned char

Set MLLB device address, which is used by the system channel MIbScan command.
MLB_CHAN_SETADDR

Argument type: unsigned int

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 231

Driver Files

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx
channel address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1]

MLB_CHAN STARTUP

Startup the corresponding type of channel for transmit and reception.
MLB_CHAN_ SHUTDOWN

Shutdown the corresponding type of channel.

MLB_CHAN GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of
enumeration:

MLB_EVT TX PROTO ERR CUR
MLB_EVT_TX_ BRK_DETECT CUR
MLB_EVT RX_ PROTO ERR CUR
MLB_EVT RX BRK DETECT CUR

33.3 Driver Files

Table below lists the source file associated with the MLB driver that are found in the
directory <ltib_dir>/rpm/BUILD/linux/drivers/mxc/mlb/.

Table 33-1. MLB Driver Source File List

File Description

mxc_mlb.c Source file for MLB driver

include/linux/mxc_mlb.h Include file for MLB driver

33.4 Menu Configuration Options

To get to the MedialLB configuration, use the command ./Itib -c when located in the <Itib
dir>. In the screen, select Configure Kernel, exit, and a new screen appears. This option
1s available under:

* Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB
support.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

232 Freescale Semiconductor, Inc.

Chapter 34
ARC USB Driver

34.1 Introduction

The universal serial bus (USB) driver implements a standard Linux driver interface to the
ARC USB-HS OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-
peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This
USB driver has the following features:

* High speed OTG core supported

* High Speed Host Only core(Host1), high speed, full speed, and low devices are
supported.

e High Speed Inter-Chip core(Host2 & Host3)

* Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)

* Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers
which include ethernet and serial support

* Embedded DMA controller

34.1.1 Architectural Overview
The USB host system is composed of a number of hardware and software layers.

Figure below shows a conceptual block diagram of the building block layers in a host
system that support USB 2.0.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 233

Hardware Operation

Host Interconnect Physical Device
-

Client SW I Function Function Layer

USE Lodglcal
USE:HELsiam ; Devige USE Device

' Layer
USB Bus

USE Host H UsSEB Bus

Contraller : Interface Interface Layer

M Actual communications flow

Loglcal communlcations flow
l 1 Implementation Focus Area

Figure 34-1. USB Block Diagram

34.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at http://www.usb.org/developers/docs/

34.2.1 Software Operation
The Linux OS contains a USB driver, which implements the USB protocols.

For the USB host, it only implements the hardware specified initialization functions. For
the USB peripheral, it implements the gadget framework.
static struct usb _ep ops fsl ep ops = {

.enable = fsl ep enable,

.disable = fsl ep disable,

.alloc_request = fsl alloc request,
.free request = fsl free request,

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

234 Freescale Semiconductor, Inc.

4
Chapter 34 ARC USB Driver

.queue = fsl ep queue,

.dequeue = fsl ep dequeue,

.set_halt = fsl ep set halt,

.fifo status = arcotg fifo status,

.fifo_flush = fsl ep_fifo_ flush, /* flush
fifo */

static struct usb_gadget ops fsl gadget ops = {

.get_frame = fsl get frame,

.wakeup = fsl wakeup,
/* .set_selfpowered = fsl set selfpowered, */ /*
Always selfpowered */

.vbus_session = fsl vbus_session,

.vbus_draw = fsl vbus_draw,

.pullup = fsl pullup,

7

fsl_ep_enable-configures an endpoint making it usable

fsl_ep_disable-specifies an endpoint is no longer usable
fsl_alloc_request-allocates a request object to use with this endpoint
fsl_free_request-frees a request object

* arcotg_ep_queue-queues (submits) an I/O request to an endpoint
arcotg_ep_dequeue-dequeues (cancels, unlinks) an I/O request from an endpoint
e arcotg_ep_set_halt-sets the endpoint halt feature

arcotg_fifo_status-get the total number of bytes to be moved with this transfer
descriptor

For OTG, ID dynamic switch host/device modes are supported. Full OTG functions are
temporarily not supported.

34.2.2 Source Code Structure

Table below shows the source files available in the source directory, <Itib_dir>/rpm/
BUILD/linux/drivers/usb.

Table 34-1. USB Driver Files

File Description

host/ehci-hcd.c

Host driver source file

host/ehci-arc.c

Host driver source file

host/ehci-mem-iram.c

Host driver source file for IRAM support

host/ehci-hub.c

Hub driver source file

host/ehci-mem.c

Memory management for host driver data structures

host/ehci-g.c

EHCI host queue manipulation

host/ehci-g-iram.c

Host driver source file for IRAM support

gadget/arcotg_udc.c

Peripheral driver source file

gadget/arcotg_udc.h

USB peripheral/endpoint management registers

otg/fsl_otg.c

OTG driver source file

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Table continues on the next page...

Freescale Semiconductor, Inc.

A ————
Hardware Operation

Table 34-1. USB Driver Files (continued)

File Description
otg/fsl_otg.h OTG driver header file
otg/otg_fsm.c OTG FSM implement source file
otg/otg_fsm.h OTG FSM header file
gadget/fsl_updater.c FSL manufacture tool USB char driver source file
gadget/fsl_updater.h FSL manufacture tool USB char driver header file

Table below shows the platform related source files.

Table 34-2. USB Platform Source Files

File Description
arch/arm/plat-mxc/include/mach/arc_otg.h USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table below shows the platform-related source files in the directory:
<ltib dir>/rpm/BUILD/linux/arch/arm/mach-mx6/

Table 34-3. USB Platform Header Files

File Description
usb_dr.c Platform-related initialization
usb_h1.c Platform-related initialization
usb_h2.c Platform-related initialization
usb_h3.c Platform-related initialization

Table below shows the common platform source files in the directory:
<ltib dir>/rpm/BUILD/linux/arch/arm/plat-mxc.

Table 34-4. USB Common Platform Files

File Description
isp1504xc.c ULPI PHY driver (USB3317 uses the same driver as ISP1504)
utmixc.c Internal UTMI transceiver driver
usb_hsic_xcvr.c HSIC featured phy's interface
usb_common.c Common platform related part of USB driver
usb_wakeup.c Handle USB wakeup events

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

236 Freescale Semiconductor, Inc.

4
Chapter 34 ARC USB Driver

34.2.3 Menu Configuration Options

To get to the Linux kernel configuration options available for this module, use the ./Itib -c
command when located in the <lItib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

e CONFIG_USB-Build support for USB

* CONFIG_USB_EHCI_HCD-Build support for USB host driver. In menuconfig, this
option is available under Device drivers > USB support > EHCI HCD (USB 2.0)
support.

By default, this optionis Y.

* CONFIG_USB_EHCI_ARC-Build support for selecting the ARC EHCI host. In
menuconfig, this option is available under Device drivers > USB support > Support
for Freescale controller.

By default, this option is Y.

* CONFIG_USB_EHCI_ARC_OTG-Build support for selecting the ARC EHCI OTG
host. In menuconfig, this option is available under

Device drivers > USB support > EHCI HCD (USB 2.0) support > Support for DR
host port on Freescale controller.

By default, this optionis Y.
e CONFIG _USB_EHCI_ARC_HSIC Freescale HSIC USB Host Controller
By default, this option is N.

* CONFIG_USB_EHCI_ROOT_HUB_TT-Some EHCI chips have vendor-specific
extensions to integrate transaction translators, so that no OHCI or UHCI companion
controller is needed. In menuconfig this option is available under

Device drivers > USB support > Root Hub Transaction Translators.
By default, this option is Y selected by USB_EHCI_ARC && USB_EHCI_HCD.

* CONFIG_USB_STORAGE-Build support for USB mass storage devices. In
menuconfig this option is available under

Device drivers > USB support > USB Mass Storage support.
By default, this option is Y.

* CONFIG_USB_HID-Build support for all USB HID devices. In menuconfig this
option is available under

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 237

Hardware Operation

Device drivers > HID Devices > USB Human Interface Device (full HID) support.
By default, this option is Y.

* CONFIG_USB_GADGET-Build support for USB gadget. In menuconfig, this option
1s available under

Device drivers > USB support > USB Gadget Support.
By default, this option is M.

* CONFIG_USB_GADGET_ARC-Build support for ARC USB gadget. In
menuconfig, this option is available under

Device drivers > USB support > USB Gadget Support > USB Peripheral Controller
(Freescale USB Device Controller).

By default, this option is Y.

* CONFIG_IMX_USB_CHARGER Freescale 1.MX 6 USB Charger Detection
By default, this option is N.

* CONFIG_USB_OTG-OTG Support, support dual role with ID pin detection.
By default, this optionis Y.

* CONFIG_MXC_OTG-USB OTG pin detect support for Freescale USB OTG
Controller

By default, this optionis Y.

* CONFIG_USB_ETH-Build support for Ethernet gadget. In menuconfig, this option
1s available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support).

By default, this option is M.

* CONFIG_USB_ETH_RNDIS-Build support for Ethernet RNDIS protocol. In
menuconfig, this option is available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support) > RNDIS support.

By default, this option is Y.

 CONFIG_USB_FILE_STORAGE-Build support for Mass Storage gadget. In
menuconfig, this option is available under

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

238 Freescale Semiconductor, Inc.

4
Chapter 34 ARC USB Driver

Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.
By default, this option is M.

* CONFIG_USB_G_SERIAL-Build support for ACM gadget. In menuconfig, this
option is available under

Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC
ACM support).

By default, this option is M.

34.2.4 Programming Interface

This driver implements all the functions that are required by the USB bus protocol to
interface with the 1.MX USB ports.

See the BSP API document, for more information.

34.3 System WakeUp

Both host and device connect/disconnect event can be system wakeup source, as well the
device remote wakeup.

But all the wakeup functions depend on the USB PHY power supply, including 1p1, 2p5,
3p3, no power supply, all the wakeup function behavior will be unpredictable.

For host remote wake feature, there is a limitation that our system clock needs a short
time to be stable after resume, if the resume signal sent by the connected device only last
very short time (less than the time need to make clock stable), the remote wakeup may
fail. At such case, we should not turn off some clocks to decrease the time needs to be
stable to fix such issue.

34.3.1 USB Wakeup usage

USB wakeup usage is outlined in three procedures: how to enable USB wakeup system,
what kinds of wakeup events USB supports, and how to close USB child device power.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 239

A ————
System WakeUp

34.3.2 How to Enable USB WakeUp System Ability
For otg port:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup
For device-only port:

echo enabled > /sys/devices/platform/fsl-usb2-udc/power/wakeup
For host-only port:

echo enabled > /sys/devices/platform/fsl-ehci.x/power/wakeup
(x is the port num)

For USB child device:

echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

34.3.3 WakeUp Events Supported by USB
USBOTG port is used as an example.

Device mode wakeup:

connect wakeup: when USB line connects to usb port, the other port is connected to PC
(Wakeup signal: vbus change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

Host mode wakeup:

connect wakeup: when USB device connects to host port (Wakeup signal: ID/(dm/dp)
change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

disconnect wakeup: when USB device disconnects to host port (Wakeup signal: ID/(dm/
dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

remote wakeup: press USB device (i.e. press USB key on the USB keyboard) when USB
device connects to host port (Wakeup signal: ID/(dm/dp) change):

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE
For the hub on board, it is necessary to enable hub's wakeup
first. For remote wakeup, it is necessary to perform the three
steps outlined below:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

240 Freescale Semiconductor, Inc.

4
Chapter 34 ARC USB Driver

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup (enable the roothub's wakeup)
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup (enable the second level hub's wakeup)
(1-1 is the hub name)

echo enabled > /sys/bus/usb/devices/1-1.1/power/wakeup (enable the USB device wakeup, that
device connects at second level hub)

(1-1.1 is the USB device name)

34.3.4 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at usb device)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 241

A ————
System WakeUp

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

242 Freescale Semiconductor, Inc.

Chapter 35
i.MX 6 PCI Express Root Complex Driver

35.1 Introduction

PCI Express hardware module, contained in 1.MX 6 SoC, can either be configured to act
as a Root Complex or a PCIe Endpoint.

This chapter describes the PCI Express Root Complex implementation on 1.MX 6Dual/
6Quad/6Solo/6DualLite SOC's families.

It also describes the drivers that need to be configured and operated on the i.MX 6 PCI
Express device as Root Complex.

35.1.1 PCle

PCI Express (PCle) is Third Generation I/O Interconnect, targeting low cost, high
volume, multi-platform interconnection usages. It has the concepts with earlier PCI and
PCI-X and offers backwards compatibility for existing PCI software with following
differences:

* PCle is a point-to-point interconnect

e Serial link between devices

e Packet based communication

* Scalable performance via aggregated Lanes from X1 to X16

e Need PCle switch to have connection between more than two PCle devices

35.1.2 Terminology and Conventions
Following terminologies and conventions are used in this document:

* Bridge

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 243

A
Introduction
A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express
Port with an internal component interconnect or with another PCI/PCI-X bus
segment or PCI Express Port.

* Downstream
* 1. The relative position of an interconnect/System Element (Port/component)
that is farther from the Root Complex. The Ports on a Switch that are not the
Upstream Port are Downstream Ports. All Ports on a Root Complex are
Downstream Ports. The Downstream component on a Link is the component
farther from the Root Complex.
* 2. A direction of information flow where the information is flowing away from
the Root Complex.
* Endpoint

One of several defined System Elements. A Function that has a Type 00h
Configuration Space header.

e Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and
resources, such as Memory (RAM) that can be shared across multiple PCIe nodes
connected through a Root Complex.

* Lane
A set of differential signal pairs, one pair for transmission and one pair for reception.
e Link

The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex
communications path between two components.

e PCle Fabric

A topology comprised of various PCI Express nodes, also referred as devices. A
device in the fabric can be Root Complex, Endpoint, PCle-PCI/PCI-X Bridge or a
Switch.

* Port
* 1. Logically, an interface between a component and a PCI Express Link.
2. Physically, a group of Transmitters and Receivers located on the same chip
that define a Link.
* Root Complex

RC A defined System Element that includes a Host Bridge, zero or more Root
Complex Integrated Endpoints, zero or more Root Complex Event Collectors, and
one or more Root Ports

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

244 Freescale Semiconductor, Inc.

Chapter 35 i.MX 6 PCI Express Root Complex Driver
* Root Port

A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through
an associated virtual PCI-PCI Bridge.

» Upstream
* 1. The relative position of an interconnect/System Element (Port/component)

that is closer to the Root Complex. The Port on a Switch that is closest
topologically to the Root Complex is the Upstream Port. The Port on a
component that contains only Endpoint or Bridge Functions is an Upstream Port.
The Upstream component on a Link is the component closer to the Root
Complex.

* http://intellinuxwireless.org/n=Info

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'.
All PCle Endpoint ports (including termination points for bridges) and Switch ports,
which are closer to RC are called Upstream Ports on that device. A Upstream Flow is the
communication moving towards RC.

35.1.3 PCle Topology on i.MX 6 in PCle RC Mode
There is one PCle port on the 1.MX 6.
The following figure describes the diagram of the PCle RC port on i.MX 6.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 245

http://intellinuxwireless.org/?n=Info

AR
Introduction

1.MX CPU, Memary and so an
Platform :
BUS #0 Virtual PCI-PCI bridge

PCle RC downstream Port

BUS#1

PCle EP upstream Port

PCle EP devices

Figure 35-1. diagram of the PCle RC port on i.MX 6
PCI Enumeration Mapping

Since PCI Express is point to point topology, to maintain compatibility with legacy PCI
Bus - Device notion used for Software Enumeration, we introduce following concepts
which allow identifying various nodes and their internals (e.g., PCle Switches) in terms
of PCI devices/functions:

* Host Bridge: A bridge, integrated into RC to have PCI compatible connection to
Host. The PCI side of this bridge is Bus #0 always. This means, the device on this
bus will be the host itself.

e Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is
treated as a virtual PCI-PCI bridge. This means each port has a primary and
secondary PCI bus and the downstream is mapped into the remote configuration
space.

» Root port associated virtual bridge has Bus #0 on the primary side with secondary
bus on the downstream.

e Each PClIe Switch is viewed as collection of as many virtual PCI-PCI bridges as
number of downstream ports, connected to a virtual PCI bus which is actually
secondary bus of another PCI-PCI bridge forming the upstream port of the switch.

* The upstream port of each EP can either be part of the secondary bus segment of
virtual PCI-PCI Bridge representing downstream port of a switch or of the root port.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

246 Freescale Semiconductor, Inc.

4
Chapter 35 i.MX 6 PCI Express Root Complex Driver

35.1.4 Features

Listed below are the various features supported by i.MX 6 as a PCI Express Root
Complex driver.

» Express Base Specification Revision 2.0 compliant

* Genl operation with x1 link supporting 5 GT/s raw transfer rate in single direction

* Support Legacy Interrupts (INTx), and MSI

* Configurable Max_Payload_Size size (128 bytes to 4 KB)

* 4-KB maximum Request size

e It fits into Linux PCI Bus framework to provide PCI compatible software
enumeration support

* In addition, it provides interface to Endpoint Drivers to access the respective devices
detected downstream.

* The same interface can be used by the PCI Express Port Bus Driver framework in
Linux to perform AER, ASP etc handling

* Interrupt handling facility for EP drivers either as Legacy Interrupts (INTX).

* Access to EP I/O BARs through generic I/O accessories in Linux PCI subsystem.

e Seamless handling of PCle errors

NOTE
Out of the above, MSI, 1/O access, Port Bus Driver
integration are currently incomplete.

35.2 Linux PCI Subsystem and RC driver

In Linux, the PCI implementation can roughly be divided into following main
components: PCI BIOS architecture specific Linux implementation, Host Controller (RC)
Module, and Core.

* PCI BIOS Architecture specific Linux implementation to kick off PCI bus
initialization. It interfaces with PCI Host Controller code as well as the PCI Core to
perform bus enumeration and allocation of resources such as memory and interrupts.
The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers
(referred as Slave Drivers). PCI can take control of them using the facilities provided
by PCI Core. It is possible to skip resource allocation (if they were assigned before
Linux was booted, for example PC scenario).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 247

A ————
Linux PCI Subsystem and RC driver

* Host Controller (RC) Module handles hardware (SoC + Board) specific initialization
and configuration and it invokes PCI BIOS. It should provide callback functions for
BIOS as well as PCI Core, which will be called during PCI system initialization and
accessing PCI bus for configuration cycles. It provides resources information for
available memory/IO space, INTx interrupt lines, MSI. It should also facilitate IO
space access (as supported) through in _x_ () out _x_ () You may need to provide
indirect memory access (if supported by h/w) through read _x_ () write _x_ ()

» Core creates and initializes the data structure tree for bus devices as well as bridges
in the system, handles bus/device numberings, creates device entries and proc/sysfs
information, provides services for BIOS and slave drivers and provides hot plug
support (optional/as supported by h/w). It targets (EP) driver interface query and
initializes corresponding devices found during enumeration. It also provides MSI
interrupt handling framework and PCI express port bus support. It provides Hot-Plug
support (if supported), advanced error reporting support, power management event
support, and virtual Channel support to run on PCI express ports (if supported).

35.2.1 RC driver source files

The driver files are present at the following path relative to extracted kernel source
directory.

arch/arm/mach-mx6/pcie.c (RC driver source)

arch/arm/mach-mx6/include/mach/pci.h (Define the platform data structure for RC
driver)

35.2.2 Kernel configurations
Root Complex is not supported by the default kernel configurations on 1.MX 6 boards.

To set the default configuration, execute the following command as follows:
make CROSS COMPILE=arm-none-linux-gnueabi- ARCH=imx6 defconfig
Configure the Root Complex to be built in:

Prompt: PCI Express support

Defined at arch/arm/mach-mx6/Kconfig:171
Depends on: ARCH MXC [=y] && ARCH MX6 [=y]
Location:

-> System Type

-> Freescale MXC Implementations

Selects: PCI [=y]

NOTE
PCI Express support can't be built as a module.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

248 Freescale Semiconductor, Inc.

4
Chapter 35 i.MX 6 PCI Express Root Complex Driver

35.3 System Resource: Memory Layout

PCle host configuration space
0Ox01FF_C000 ------ Ox01FF_FFFF (16K bytes)

PCle device configuration space
0x01F0_0000 ------ Ox01FE_FFFF ((1M - 64K) bytes)

[

PCle memory space
0x0100_0000 ------ Ox01FD_FFFF (14M bytes)

Figure 35-2.

* 1O and memory spaces are two address spaces used by the devices to communicate
with their device driver running in the Linux kernel on CPU.
* The upper 16Kbytes PCle host configuration space.
e This memory segment is used to map the configuration space of PCle RC. SW
can access PCle RC core configuration space through the DBI interface.
* PCle device configuration space.
» Used to map the configuration spaces of PCle EP devices that are inserted to the
RC downstream port.

35.3.1 System Resource: Interrupt lines

1.MX 6 Root Complex driver uses interrupt line 155 for legacy interrupts.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 249

A ————
Using PCle Endpoint and running Tests

35.4 Using PCle Endpoint and running Tests
Perform the following steps to use PCle endpoint and run test:
Configure the driver according to PCle Endpoint device.

Run "make menuconfig" after run "make ARCH=arm imx6_defconfig".

Kernel configuration:
* -> System Type

-> Freescale MXC Implementations
Select the PCI Express support.

Implement the following configurations according to the PCle EP devices:

e PCle to USB card driver

Symbol: USB_XHCI HCD [=y]
Type : tristate
Prompt: XHCI HCD (USB 3.0) support (EXPERIMENTAL)

Defined at drivers/usb/host/Kconfig:20

Depends on: USB_SUPPORT [=y] && USB [=y] && PCI [=y] && EXPERIMENTAL [=Yy]

Location:

-> Device Drivers
-> USB support (USB_SUPPORT [=y])

* Intel CT gigabit network card driver

Symbol: E1000E [=y]
Type : tristate
Prompt: Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support
Defined at drivers/net/Kconfig:2139
Depends on: NETDEVICES [=y] && NETDEV_1000 [=y] && PCI [=y] && (!SPARC32 || BROKEN [=n])
Location:
-> Device Drivers
-> Network device support (NETDEVICES [=y])
-> Ethernet (1000 Mbit) (NETDEV_lOOO [=y])

* Generic IEEE 802.11 Networking Stack (mac80211) used by WIFI devices

Symbol: MAC80211 [=y]
Type : tristate
Prompt: Generic IEEE 802.11 Networking Stack (mac80211)
Defined at net/mac80211/Kconfig:1
Depends on: NET [=y] && WIRELESS [=y] && CFG80211 [=y]
Location:
-> Networking support (NET [=y])
-> Wireless (WIRELESS [=y])

e Intel iwl4965 or iwl6300 card driver

Symbol: IWL4965
[=n]

Type
tristate

Prompt: Intel Wireless WiFi 4965AGN
(iwl4965)

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

250 Freescale Semiconductor, Inc.

4
Chapter 35 i.MX 6 PCI Express Root Complex Driver

Defined at drivers/net/wireless/iwlegacy/Kconfig:

65
Depends on: NETDEVICES [=y] && WLAN [=y] && PCI [=n] && MAC80211
[=n]
Location:
-> Device
Drivers
-> Network device support (NETDEVICES
[=y])

-> Wireless LAN (WLAN [=y])
Selects: IWLWIFI LEGACY [=n]

To enable the wifi driver, we need to enable one of the two options: IWL4965 or
IWLAGN. You must choose one, but not both.

CONFIG_ IWLAGN:

Select to build the driver supporting the:
Intel Wireless WiFi Link Next-Gen AGN

This option enables support with the following hardware:

Intel Wireless WiFi Link 6250AGN Adapter

Intel 6000 Series Wi-Fi Adapters (6200AGN and 6300AGN)
Intel WiFi Link 1000BGN

Intel Wireless WiFi 5150AGN

Intel Wireless WiFi 5100AGN, 5300AGN, and 5350AGN
Intel 6005 Series Wi-Fi Adapters

Intel 6030 Series Wi-Fi Adapters

Intel Wireless WiFi Link 6150BGN 2 Adapter

Intel 100 Series Wi-Fi Adapters (100BGN and 130BGN)
Intel 2000 Series Wi-Fi Adapters

» WIFI firmware configurations:

In order to install the mandatory required firmware by Intel IWL WIFI devices, please
refer to the following link for guidance http://intellinuxwireless.org/n=Info

35.4.1 Ensuring PCle System Initialization

Run 'Ispci' after login the consol. There should be the following similar message if the
PCle link is established.

root@freescale ~$ Ispci
00:00.0 PCI bridge: Unknown device 16¢3:abcd (rev 01)
01:00.0 Network controller: Intel Corporation Unknown device 4237

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
Freescale Semiconductor, Inc. 251

http://intellinuxwireless.org/?n=Info

i.MX 6Quad SD PCle RC/EP Validation System

35.4.2 Tests

Run different tests according the different PCle EP devices.

* Intel Iwl6300 mini-PCle x1 WIFI card
* Iperf, netperf
* Overnight different packet ping
* Intel CT gigabit standard PCle X1 network card
* NFS mount/data IO through NFS
e Iperf, netperf
* Overnight different packet ping
* PCIe to USB3.0 standard PCIe X1 card
* General tests
« * Block storage device, recognization,
e * Partition creation, format and so on.
* * Hundreds MB data read/write by copy command
* Stress tests

e -/lozone -a -n 2000m -g 2000m -i O -i 1 -f /mnt/src/iozone.tmpfile -Rb ./iozone

35.4.3 Known Issues

* You can connect an external WIFI antenna to enlarge the WIFI signal strength if the
WIFI card tests cannot work properly.

35.5 i.MX 6Quad SD PCle RC/EP Validation System

35.5.1 Hardware Setup

There are two 1.MX 6Quad SABRE-SD boards: one is used as PCle RC; and the other is
used as PCle EP. They are connected by two mini_PCle-to-standard_PCle adaptors, two
PEX cable adaptors, and then one PCle cable.

35.5.2 Software Configurations
When building the RC image, make sure that:

CONFIG_IMX PCIE=y
CONFIG IMX PCIE EP MODE IN EP RC SYS is not set

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

252 Freescale Semiconductor, Inc.

4
Chapter 35 i.MX 6 PCI Express Root Complex Driver

CONFIG_IMX PCIE_RC MODE_IN_EP RC_SYS=y
When building the EP image, make sure that:

CONFIG_IMX PCIE=y
CONFIG_IMX PCIE_EP MODE_IN EP_RC_SYS=y
CONFIG_IMX_PCIE RC_MODE_IN EP RC_SYS is not set

35.5.3 Features
Set up the link between RC and EP by their stand-alone 125MHz running internally.

In the EP system, EP can access the reserved DDR memory (default address:
0x40000000) of the PCle RC system by the interconnection between PCle EP and PCle
RC.

NOTE

* The layout of the 1G DDR memory on the SD board is
0x1000_0000-0x4FFF_FFFF). Use mem=768M in the
kernel command line to reserve the
0x4000_0000-0x4FFF_FFFF DDR memory space for the
EP access test.

* Boot up the PCle EP system, and then boot up the PCle RC
system.

« Example of the RC kernel command line:

noinitrd console=ttymxc0,115200, mem=768M root=/dev/nfs
nfsroot=<your rootfs> ip=dhcp rw

35.5.4 Resulis

When the ARM core is used as the bus master (define EP_SELF_IO_TEST in pcie.c
driver):

Regarding to the log listed in the following table, the data size of each TLP when the
cache is enabled, is about 4 times of the data size in write, and 2 times of the data size in
read, when the cache is disabled.

ARM core used as the bus master, ARM core used as the bus master,
and the cache is disabled and the cache is enabled
Data size in one write TLP 8 bytes 32 bytes
Write speed ~109 MB/s ~298 MB/s

Table continues on the next page...

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 253

i.MX 6Quad SD PCle RC/EP Validation System

and the cache is disabled

ARM core used as the bus master,

ARM core used as the bus master,
and the cache is enabled

Data size in one read TLP 32 bytes

64 bytes

~29 MB/s

Read speed

~100 MB/s

When the cache is enabled:

PCIe EP: Starting data transfer...

PCIe EP: Data transfer is successful,
162814us.

PCIe EP: Data write speed is 298 MB/s.

PCIe EP: Data read speed is 100 MB/s.

The snapshot of the analyzer log is as follows:

tv_countl 54840us,

tv_count2

P LeCroy PETracer(TM) - PCI Express Protocol Analyzer - [C:\Users\Public\Documents\LeCroy\PETracer datab4787. pex] =] e
File | Setup Record Generate Report Search View Tools Window Help REE
SH P WiE e T LY R SR RIS I e =) i | & || P Link Spil b

ess st BE |Last BE

Mem

010:00000

4: ETSFCCDQ ETSFCCD4 E7SFCCDE ETSFCCDC

"~ LinkTra " I Length
24 il 010:00000

™ LinkTra
24024

4: ETSFCCF0 ETSFCCF4 ETSFCCFE E75FCCEC

Mem

Time Stamp

1stBE [Last BE v D F— #Pazket, Time Della B
001:00:0 | u |l auFFEFAu {1111] 1111][0: E75FCCA0 ETSFCCA4 ETSFCCAB ETSFCCAC Packet #2010157 | [HEHIed 104.000 ns [0006 . 787 496 838 &
4: E7SFCCBO ETSFCCB4 E7SFCCBE ETSFCCEC
Tag|[Addre 1 VC D etrics Pack i
001000 | 0 || 40FFBFCO_|| 1111 | 1111 ||0: EISFCCCO ETSECCCA ETSECCCE ETSFCCCC|| 0 ||Packet#2910159 || 1 96.000ns 0006 . 787 496 942 5

Time Delta Time Stamp

Tag| [Address | [1stBE [LastBE VD etics Packets [Time Della E
001.00:0 | 0 || 40FFBFED |[1111 | 1111 |[0: £75FCCEQ ETSFCCE4 ET5SFCCES EISECCEC|| 0 ||Packet#2010150 | (i 2 26.860 ps_| 0006 . 787 437 038 5

Time Stamp

Time Delta

MR Length 1stBE LastBE v D - Pa(k i
000:00000 16 || 001:00:0 |1n\| mnnnnnn || IR R EE Packe! #2910187 = 40.000 ns

Time Stamp
0006 787523898 s

Length

1stBE Las(BE V MEU’\(i
001:00:0 |11 |l 4UUUUU4U | IR R Packet#2910187 [1424ps |

|
o Lengh]| [Tag| [Completenid_|[_status HBCM\Bytecm\meddr
[oioot0i0 | 16 || ootooe |10]| oooooo || Sc_ || o | 64 | owo |

™ LinkTra
524026

[]
8

Time Defta Time Stamp

UUUE 787523938

D[implicitAck
EG600DOC E6600D10 E6500D14 EG600DLE E6600DIC Packet #2010192

E6600D2C E6600D30 E6600D34 E6600D38 E6600D3C

: E6600DO0 E6600D04 E6600DO3
: E6600D20 E6600D24 E6600D28

yetncs 7 Packets [imebsiiay _ Time Stamp
S 168.000 ns | 0006 787 525 362 5
0

[CplD Tag|[CompleteriD |[Status | [BCM [Byte Cnt[LwrAddr
sc ||

™ Link Tra ngth | [|
| otoot010 [18 || ootomo [11| coooo || 0| 84 | x40

524027

D Explicit ACK
E6600D4C E6600D50 E6600D54 E6600D5E E6E00DSC|| 0 |[Packet#2910192
E€600D6C E6600DT0 E6600DT4 EEE00DTE EE600DTC

0: E6600D40 E6600D44 E6600D48
8

: E6600DE0 E6600D64 E6600D68

'M " Packets | Time Delta Time Stamp
e 2 792.000ns 0006 . 787 525 530 5

000:00000

Time Stamp
0006 . 787 526 322 5

"~ LinkTra " MRd(32) Length TstEE LastBE v D [#Pa(keL Time Delta
2 = 16 ||__o001000 |12\| annnnnen | IEEEER IR Packe! #2010199 | |1k 40.000 ns

Time Stamp
0006 . 787 526 362 s

™ Link Tra

Mem

M
000:00000

" LinkTra - MR Length [Address | [1stBE [LastBE| (— #Pack.eta Time Delta
524029 000:00000 | 16 001:00:0 | 13 || 400000E0_|[1111 M‘H Packet #2010199 = 40.000 ns

(Lenulh AStBE [Last BE v D M #Pmet, Time Delta

001:00:0 | . i ADDDDUCD | I I Packet #2910199 | [EHIE 412.000 ns

Time Stamp
0006 . 787 526 402 5

[Tag|[CompleteriD |[Status HBCM\Bytecm\Lerddr

[
[CpiD [Length]|
I

ciD| ImplicitACK
| 0 ||Packet#2910202

|
C"‘\ 010:01010 | 16 001:00:0 |12 || 000000 || sCc |0 | B4 | o0x00 |
bMEt”E . #Packets || Time Defta Time Stamp
- 168.000 ns | 0006 . 787 526 814 5
™ LinkTra 5. [_CpD__ [Length]| [Tao] [CompletenD || Status | [BCM [Eyte Cnt | LwrAddr

I
C"‘\ 010:01010 | 16 |[oot0om |13 oooooo [sc J[o | &4 [oxE0

| 0 |[Packetz2010202] |+ |

3

ST I NI

w00am | |
329013 |

]

Figure 35-3. Analyzer log for enabled cache

When the cache is disable:

PCIe EP: Starting data transfer...

PCIe EP: Data transfer is successful,
552099us.

PCIe EP: Data write speed is 109 MB/s.

PCIe EP: Data read speed is 29 MB/s.

The snapshot of the write/read log is as follows:

tv_countl 1496l6us,

tv_count2

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

254

Freescale Semiconductor, Inc.

4
Chapter 35 i.MX 6 PCI Express Root Complex Driver

3 LeCroy PETracer(TM) - PCI Express Protocel Analyzer - [EAPCle_Lecory\peic_ep\20130327_ep_suceed _2_access_rc_mem.pex] o[)
File Setup Record Genmerate Report Search View Toals Window Help REES
=H P EiE A Y - R e M AN CECE R = Rarey s

Length

Packet T
T M

1stBE [Last BE Time Delta Time Stamp [=]
010:00000 001.00:0 | u Il 4[IFFEIFCE |11 | 1111 |[E75FCCCE ETSFCCCC [Ix‘\EBA\[H[IS 100.000 ns [0005. 151069 954 5
1st BE |Last BE LCRC Idle Time np
010:00000 2 || ooto00 | u |l 4UFFEIFDU J[1111 | 1111 |[E75FCCDO ETSFCCDE UXUFECEUB‘I 0.000ns [0005.1510700548
Length 1stBE [Last BE LCRC Idle Time
00100:0 | n Il mrrarns |11 [1111 |[e75eCCD8 E75FCCDC|[OXAEAFATET 0000ns _[0005 151 n?nms
[[RequesteriD |Tag|[Address | [TstEE [LastBE LCRC
001:00:0 | 0 || 40FFBFE0 || 1111 | 1111 |[E7SFCCED E75FCCE4 || 0x7CD6230E 0.000ns [0005.151070 166 s
Tag|[_ Address | [1stBE [LastBE LCRC Idle Time Stamp
001:00:0 | 0 || 40FFBFES || 1111 | 1111 ||ETSFCCES ETSFCCEC|| OxFCDASBA4 0000ns [0005.1510702225
1stBE [Last BE LCRC Time Delta Time Stamp
001:00:0 | n || mFFBFFn J[1111 | 1111 |[275ECCFO _ET5FCCF4 || OxESECHATR 8.000ns [0005.151070 2785

Packet
14

Packet " I
14 il 010:00000

Packet
14

3
Mem

Mem

Pa;ke‘

Mem

Pa(ks\ 2 Time Delta Time
2158 48.000ns 0005151 u?u zsss
Packet - I 1stBE [Last BE LCRC Time Delta Time Stamp
14 sl 010:00000 001:00:0 | n |l anrrerra |[1111 | 1111 |[e75ECCFE E75FCCEC|| 0x44FFFDCO_|| 564.000ns [0005. 151070 3345 1
Packet ACK AckNak_Seq _Num Time Delta Time Stamp
14 2162 220.000ns |0005.151070898 5

Pa(ks‘

Packet
14

PBKkE‘

MR Length Tag. Address 1stBE |Last BE LCRC Time Delta

[
000:00000 8 || 00100 [o |[40000000 || 1111 [1111 || OxBC4ADEC3 || 476.000ns |0005 1510711185

H_CRC F F"@Eﬁ!
0: E6600D00 E6600D04 E6600D08 E6600DOC|| Ox8B2FCF15 160.000 ns_|0005. 151 071594 s

4: E6600D10 E6600D14 E6600D18 E6600DIC

Mem

[CpiD Tiengtn|] [Tag][CompleterD || Status HBCM\Bercm\Lerddr
01001010 | 8 || ootoo: | o || ooowoo [sc [0 | 32 | mx00

ACK AckNak_Seq Num Time Delta Time Stamp

2163 512.000ns | 0005151071858 s

] Address | [1stBE [Last BE [cre |[E
uu uuuuu | ooto00 | 1 H 40000020 || 1111 [1111 ungBFgFaE 0000ns [0005.1510723705

Time Delta Time |
440000 ns | 0005151072 410 s

= [CplD [Length]] [Taa|[CompleteriD][Status |[BCM [Byte Cnt[LwrAddr |
Pl [oto01010 | 8 || 001000 |1 || 000000 || _SC_ || 0 | 32 | 0x20 ||0: E6600D20 £6500D24 EE600D23 EGG00D2C|| D3AEAS144 || 124.000ns |0005. 1510728508

4: E6600D30 E6600D34 E6600D38 EA600D3C

Pa(ks\ Time Delta Time Stamp
2164 336.000 0z |0005. 1510730785

" [gt o] [Agaes] 7o [][o | [T _
(@]9 |%] -]e]E] @] z = 1

Figure 35-4. Write/Read log for disabled cache

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 255

A ————
i.MX 6Quad SD PCle RC/EP Validation System

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

256 Freescale Semiconductor, Inc.

Chapter 36
WEIM NOR Driver

36.1 Introduction

The Wireless External Interface Module (WEIM) NOR driver supports the Parallel NOR
flash.

36.2 Hardware Operation

By default, there is a parallel NOR in the 1. MX 6Quad/6Dual SABRE-AI boards. The
parallel NOR has more pins than the SPI NOR. On some boards, the
M29W256GL7ANGE is equipped. Refer to the datasheet for details on the parallel NOR.

36.3 Software Operation

Similar to the SPI NOR, the parallel NOR uses the MTD subsystem. Because the parallel
NOR is very small, you may only use the jffs2 but cannot use the UBIFS for it.

36.4 Source Code

To set the proper timing only for the parallel NOR, refer to mx6q_setup_weimes () in arch/
arm/mach-mx6/board-mx6q_sabreauto.c.

36.5 Enabling the WEIM NOR

Add weim-nor to the kernel command line to enable the WEIM NOR. The WEIM NOR
has pin conflict with some other modules, such as the SPI.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 257

A ————
Enabling the WEIM NOR

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

258 Freescale Semiconductor, Inc.

Chapter 37
Fast Ethernet Controller (FEC) Driver

37.1 Introduction

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet
CSMA/CD media access control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the
interface to the Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100
Mbps or 1000 Mbps related Ethernet networks.

The FEC driver supports the following features:

 Full/Half duplex operation

* Link status change detect

* Auto-negotiation (determines the network speed and full or half-duplex operation)

* Transmits features such as automatic retransmission on collision and CRC generation
» Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name
ethx. The driver auto-probes the external adaptor (PHY device).

37.2 Hardware Operation
The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to
an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII, and 10/100
Mbps RMIL. In addition, the FEC supports 1000 Mbps RGMII, which uses 4-bit reduced
GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details see the FEC
chapter of the i. MX 6 Multimedia Applications Processor Reference Manual.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 259

Hardware Operation

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII and RGMII modes uses a subset of the 18 signals. These signals
are listed in table below.

Table 37-1. Pin Usage in MIl, RMIl and RGMII Modes

Direction EMAC Pin MIl Usage RMIl Usage RGMII Usage
Name
In/Out FEC_MDIO Management Data Input/Output |Management Data |Management Data Input/Output
Input/output
Out FEC_MDC Management Data Clock General output Management Data Clock
Out FEC_TXDI[0] Data out, bit 0 Data out, bit 0 Data out, bit 0
Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1
Out FEC_TXD[2] Data out, bit 2 Not Used Data out, bit 2
Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3
Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable
Out FEC_TX_ER Transmit Error Not Used Not Used
In FEC_CRS Carrier Sense Not Used Not Used
In FEC_COL Collision Not Used Not Used
In FEC_TX_CLK |Transmit Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)
In FEC_RX_ER Receive Error Receive Error Not Used
In FEC_RX_CLK |Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)
In FEC_RX_DV Receive Data Valid Receive Data Valid |RXDV XOR RXERR on the falling edge
and generate CRS |of FEC_RX_CLK.
In FEC_RXD[0] Data in, bit O Data in, bit 0 Data in, bit 0
In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1
In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2
In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The
FEC hardware operation can be divided in the parts listed below. For detailed information
consult the i. MX 6 Multimedia Applications Processor Reference Manual.

* Transmission-The Ethernet transmitter is designed to work with almost no
intervention from software. Once ECR[ETHER_EN] is asserted and data appears in
the transmit FIFO, the Ethernet MAC is able to transmit onto the network. When the
transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic
asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start
frame delimiter (SFD), and then the frame information from the FIFO. However, the
controller defers the transmission if the network is busy (FEC_CRS asserts).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

260

Freescale Semiconductor, Inc.

L __4
Chapter 37 Fast Ethernet Controller (FEC) Driver
» Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If the transmission begins
after waiting an additional 36 bit times (96 bit times after carrier sense originally
became inactive), both buffer (TXB) and frame (TXF) interrupts may be generated as
determined by the settings in the EIMR.

» Reception-The FEC receiver is designed to work with almost no intervention from
the host and can perform address recognition, CRC checking, short frame checking,
and maximum frame length checking. When the driver enables the FEC receiver by
asserting ECR[ETHER_EN], it immediately starts processing receive frames. When
FEC_RX DV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD
is valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is
not found, the frame is ignored. In MII mode, the receiver checks for at least one
byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is
detected prior to the SFD byte, the frame is ignored.

* After the first six bytes of the frame have been received, the FEC performs address
recognition on the frame. During reception, the Ethernet controller checks for various
error conditions and once the entire frame 1s written into the FIFO, a 32-bit frame
status word is written into the FIFO. This status word contains the M, BC, MC, LG,
NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and
Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the
receive frame is complete, the FEC sets the L bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E bit. The Ethernet controller next generates
a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a
new frame.

* Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is
generated if the corresponding bit in the interrupt mask register (EIMR) is also set.
The bit in the EIR is cleared if a one is written to that bit position; writing zero has
no effect. This register is cleared upon hardware reset. These interrupts can be
divided into operational interrupts, transceiver/network error interrupts, and internal
error interrupts. Interrupts which may occur in normal operation are GRA, TXF,
TXB, RXF, RXB. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting from
internal errors are HBERR and UN. Some of the error interrupts are independently
counted in the MIB block counters. Software may choose to mask off these interrupts
as these errors are visible to network management through the MIB counters.

* PHY management-phylib was used to manage all the FEC phy related operation such
as phy discovery, link status, and state machine.MDIO bus will be created in FEC
driver and registered into the system.You can refer to Documentation/networking/
phy.txt under linux source directory for more information.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 261

Hardware Operation

37.2.1 Software Operation
The FEC driver supports the following functions:

* Module initialization-Initializes the module with the device specific structure
e Rx/Tx transmition

* Interrupt servicing routine

* PHY management

e FEC management such init/start/stop

* 1.MX 6 FEC module use little-endian format

37.2.2 Source Code Structure
Table below shows the source files.

They are available in the

<ltib_dir>/rpm/BUILD/linux/drivers/net directory.
Table 37-2. FEC Driver Files

File Description

fec.h Header file defining registers

fec.c Linux driver for Ethernet LAN controller

For more information about the generic Linux driver, see the <ltib_dir>/rpm/BUILD/
linux/drivers/net/fec.c source file.

37.2.3 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./1tib -c
command when located in the <Itib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following option to enable this module:

* CONFIG_FEC is provided for this module. This option is available under:
* Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) >
FEC Ethernet controller.
* To mount NFS-rootfs through FEC, disable the other Network config in the
menuconfig if need.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

262 Freescale Semiconductor, Inc.

4
Chapter 37 Fast Ethernet Controller (FEC) Driver

37.3 Programming Interface
Table 37-2 lists the source files for the FEC driver.

The following section shows the modifications that were required to the original Ethernet
driver source for porting it to the 1.MX device.

37.3.1 Device-Specific Defines

Device-specific defines are added to the header file (fec.h) and they provide common
board configuration options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For
example,

/*
* Define the buffer descriptor structure.
*/
struct bufdesc {
unsigned short cbd_datlen; /* Data length */
unsigned short cbd_sc; /* Control and status info */
unsigned long cbd bufaddr; /* Buffer address */

#ifdef CONFIG_ ENHANCED BD
unsigned long cbd esc;
unsigned long cbd prot;
unsigned long cbd bdu;
unsigned long ts;
unsigned short reso0[4];

#endif
/*

* Define the register access structure.

*

/
#define FEC IEVENT 0x004 /* Interrupt event reg */
#define FEC_ IMASK 0x008 /* Interrupt mask reg */
#define FEC R DES ACTIVE 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII DATA 0x040 /* MII manage frame reg */
#define FEC_MII_ SPEED 0x044 /* MII speed control reg */
#define FEC_MIB CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC_R_CNTRL 0x084 /* Receive control reg */
#define FEC X CNTRL 0x0c4 /* Transmit Control reg */
#define FEC ADDR LOW 0x0e4 /* Low 32bits MAC address */
#define FEC_ADDR HIGH 0x0e8 /* High 16bits MAC address */
#define FEC OPD 0x0ec /* Opcode + Pause duration */
#define FEC HASH TABLE HIGH 0x118 /* High 32bits hash table */
#define FEC_HASH TABLE LOW 0x1llc /* Low 32bits hash table */

#define FEC_GRP_HASH TABLE HIGH 0x120 /* High 32bits hash table */
#define FEC_GRP_HASH TABLE LOW 0x124 /* Low 32bits hash table */

#define FEC_X WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND 0xl4c /* FIFO receive bound reg */
#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
#define FEC_R DES START 0x180 /* Receive descriptor ring */
#define FEC X DES_START 0x184 /* Transmit descriptor ring */
#define FEC_R BUFF_SIZE 0x188 /* Maximum receive buff size */

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 263

Programming Interface

#define FEC _MIIGSK CFGR 0x300 /* MIIGSK config register */
#define FEC_MIIGSK ENR 0x308 /* MIIGSK enable register */

37.3.2 Getting a MAC Address

The following statement gets the MAC address through the OCOTP (IC Identification)
by default for i.MX 6.

The MAC address can be set through bootloader such as u-boot. FEC driver will use it to
confiure the MAC address for network devices. 1.MX 6 user needs to provide MAC
address by kernel command line so that user can use sb_loader to load kernel and run it
without bootloader interaction.

Due to certain pin conflicts (FEC RMII mode need to use GPIO_16 or RGMII_TX_CTL
pin as reference clock input/output channel), the one of the both pins cannot connect to
branch lines for other modules use because the branch lines have serious influence on
clock.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

264 Freescale Semiconductor, Inc.

Chapter 38
ENET IEEE-1588 Driver

38.1 Hardware Operation

ENET IEEE-1588 driver performs a set of functions that enabling precise
synchronization of clocks in network communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies
with the IXXAT stack interfaces.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the
ENET MAC is combined with a time-stamping module to support precise time stamping
of incoming and outgoing frames. 1588 Support is enabled when the register bit
ENA_1588 1ssetto'l".

MAC with 1588

Frame Dat 1010041000 MAC
— (mac) < »| PHY

AL Adjustable 1PPS
Control/ Timin Timer Module Events :

Status
(tsm) gen
1 controv
Status
v Il
[Data Control

User Application

Figure 38-1. IEEE 1588 Functions Overview

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 265

Software Operation

38.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for
example, the MAC driver) should detect 1588 event frames and set the signal
ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0)
with the frame sequence number (tx_ts_id(3:0)) and the transmit status. The transmit
status bit tx_ts_stat (5) indicates that the application had the ff_tx_ts_frm signal asserted
for the frame.

If ff_tx_ts_frmis set to '1', the MAC additionally memorizes the timestamp for the frame

in the register TS_TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate
that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal
when it transmits the frame it needs a timestamp for and then waits on the EIR
(TS_AVAIL) interrupt bit to know when the timestamp is available. It then can read the
timestamp from the TS_TIMESTAMP register. This is done for all event frames; other
frames do not use the ff _tx_ts_frm indicator and hence do not interfere with the

timestamp capture.

38.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD
field is detected and provides the captured timestamp on ff_rx_ts(31:0). This is done for
all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame
into the corresponding field within the receive descriptor for software access.

38.2 Software Operation
The 1588 Driver has the functions listed below:

* Module initialization-Initializes the module with the device specific structure, and
registers a character driver.

* IXXAT stack interface-Respond to protocol stackis command by IOCTL routine,
such as GET_TX_TIMESTAMP, SET_RTC_TIME.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

266 Freescale Semiconductor, Inc.

__4
Chapter 38 ENET IEEE-1588 Driver

* Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The
driver shares interrupt servicing routine with FEC driver.
* Miscellaneous routines-Maintain the timestamp circle queue.

38.2.1 Source Code Structure

Table below lists the source files available in the <ltib_dir>/rpm/BUILD/linux/drivers/net
directory.

Table 38-1. ENET 1588 File List

File Description

fec_1588.h Header file defining registers
fec_1588.c Linux driver for ENET 1588 timer

For more information about the generic Linux driver, see the <lItib_dir>/rpm/BUILD/
linux/drivers/net/fec_1588.c source file.

38.2.2 Linux Menu Configuration Options

To get to the ENET 1588 configuration, use the command ./ltib -c when located in the
<ltib dir>.

In the screen, select Configure Kernel, exit, and a new screen appears.

The CONFIG_FEC_1588 Linux kernel configuration is provided for this module. This
option is available under Device Drivers > Network device support > Ethernet (10 or 100
Mbit) > Enable FEC 1588 timestamping.

38.3 Programming Interface
The 1588 driver complies with the IXXAT protocol stack interface.
Stack-specific defines are added to the header file (fec_1588.h).

38.3.1 IXXAT Specific Data structure Defines
Protocol-specific defines are added to the header file (fec_1588.h).

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 267

Programming Interface

/* PTP standard time representation structure */
struct ptp time{

u64 sec; /* seconds, unsigned */

u32 nsec; /* nanoseconds, signed */
Vi
/* interface for PTP driver command GET TX TIME */
struct ptp_ts data {

/* PTP version */

u8 version;

/* PTP source port ID */

u8 spid[10];

/* PTP sequence ID */

ulé seq_ ID;

/* PTP message type */

u8 message_type;

/* PTP timestamp */
| ptp_time ts;
/* interface for PTP driver command SET_RTC_TIME/GET CURRENT TIME */
struct ptp_rtc time {
| ptp_time rtc_time;

/* interface for PTP driver command SET COMPENSATION */
struct ptp_set comp {
u32 drift;

/* interface for PTP driver command GET_ORIG COMP */
struct ptp _get comp {
/* the initial compensation value */
u32 dw_origComp;
/* the minimum compensation value */
u32 dw_minComp;
/*the max compensation value*/
u32 dw_maxComp;
/*the min drift applying min compensation value in ppm*/
u32 dw minDrift;
/*the max drift applying max compensation value in ppm*/
u32 dw_maxDrift;

/* PTP default message type */

#define DEFAULT_msg_Sync 0x0
#define DEFAULT msg_Delay Req 0x1

#define DEFAULT msg Peer Delay Reqg 0x2

#define DEFAULT msg_Peer Delay Resp 0x3

/* PTP message version */

#define PTP_1588 MSG VER 1 1

#define PTP 1588 MSG VER 2 2

38.3.2 IXXAT IOCTL Commands Defines
Command: PTP_GET_TX_TIME

Description: command provides the timestamp of the transmit packet with specific PTP
sequence ID and returns the timestamp, the sender port-ID, the PTP version, and the
message type through the ptp_ts_data structure.

Command: PTP_GET_RX_TIME

Description: command provides the timestamp of the receive packet with specific PTP
sequence ID and returns the timestamp, the sender port-ID, the PTP version, and the
message type, through the ptp_ts_data structure.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

268 Freescale Semiconductor, Inc.

__4
Chapter 38 ENET IEEE-1588 Driver

Command: PTP_SET_RTC_TIME

Description: command sets the RTC time register with provided PTP time through the
ptp_rtc_time structure.

Command: PTP_SET COMPENSATION

Description: command sets the drift compensation with provided compensation value
through the ptp_set_comp structure.

Command: PTP_GET_CURRENT_TIME

Description: command provides the current RTC time and returns the timestamp through
the ptp_rtc_time structure.

Command: PTP_FLUSH_TIMESTAMP
Description: command flushes the transmit and receive timestamp queues.
Command: PTP_GET_ORIG_COMP

Description: command provides the original frequency compensation, minimum
frequency compensation, maximum frequency compensation, minimum drift and
maximum drift of RTC through the ptp_get_comp structure.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 269

Programming Interface

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

270 Freescale Semiconductor, Inc.

Chapter 39
Universal Asynchronous Receiver/Transmitter
(UART) Driver

39.1 Introduction
The low-level UART driver interfaces the Linux serial driver API to all the UART ports.
It has the following features:

* Interrupt-driven and SDMA-driven transmit/receive of characters

» Standard Linux baud rates up to 4 Mbps

» Transmit and receive characters with 7-bit and 8-bit character lengths

* Transmits one or two stop bits

e Supports TIOCMGET IOCTL to read the modem control lines. Only supports the
constants TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only

* Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants
TIOCM_RTS and TIOCM_DTR only

* Odd and even parity

* XON/XOFF software flow control. Serial communication using software flow
control is reliable when communication speeds are not too high and the probability of
buffer overruns is minimal

e CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow

» Send and receive break characters through the standard Linux serial API

» Recognizes frame and parity errors

* Ability to ignore characters with break, parity and frame errors

e Get and set UART port information through the TIOCGSSERIAL and
TIOCSSERIAL TTY IOCTL. Some programs like setserial and dip use this feature
to make sure that the baud rate was set properly and to get general information on the
device. The UART type should be set to 52 as defined in the serial_core.h header
file.

e Serial [rDA

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 271

A ————
Hardware Operation

* Power management feature by suspending and resuming the URT ports
e Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttymxcO to /dev/ttymxcl.
Autobaud detection is not supported.

NOTE
If you want to use the DMA support for UART please also
enable the RTS/CTS for it. The DMA may be abnormal if you
do not enable the RTS/CTS.

39.2 Hardware Operation

Refer to the i. MX 6 Dual/6Quad Applications Processor Reference Manual to determine
the number of UART modules available in the device.

Each UART hardware port is capable of standard RS-232 serial communication and has
support for IrDA 1.0.

Each UART contains a 32-byte transmitter FIFO and a 32-half-word deep receiver FIFO.
Each UART also supports a variety of maskable interrupts when the data level in each
FIFO reaches a programmed threshold level and when there is a change in state in the
modem signals. Each UART can be programmed to be in DCE or DTE mode.

39.2.1 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations
that are common across UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART
port information and a set of control functions to the core UART driver. These functions
are implemented as a low-level interface between the Linux OS and the UART hardware.
They cannot be called from other drivers or from a user application. The control
functions used to control the hardware are passed to the core driver through a structure
called uart_ops, and the port information is passed through a structure called uart_port.
The low level driver is also responsible for handling the various interrupts for the UART
ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration
options are provided in the mxc_uart.h header file. The user can specify the size of the
DMA receive buffer. The minimum size of this buffer is 512 bytes. The size should be a
multiple of 256. The driver breaks the DMA receive buffer into smaller sub-buffers of

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

272 Freescale Semiconductor, Inc.

4

Chapter 39 Universal Asynchronous Receiver/Transmitter (UART) Driver
256 bytes and registers these buffers with the DMA system. DMA transmit buffer size is
fixed at 1024 bytes. The size is limited by the size of the Linux UART transmit buffer
(1024).

The driver requests two DMA channels for the UARTSs that need DMA transfer. On a
receive transaction, the driver copies the data from the DMA receive buffer to the TTY
Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer
to the DMA transmit buffer and sends this buffer to the DMA system. The user should
use hardware-driven hardware flow control when using DMA data transfer. For more
information, see the Linux documentation on the serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow
control and hardware-driven hardware flow control. The hardware flow control method
can be configured using the options provided in the header file. The user has the
capability to de-assert the CTS line using the available IOCTL calls. If the user wishes to
assert the CTS line, then control is transferred back to the receiver, as long as the driver
has been configured to use hardware-driven hardware flow control.

39.2.2 Driver Features
The UART driver supports the following features:

* Baud rates up to 4 Mbps

* Recognizes frame and parity errors only in interrupt-driven mode; does not recognize
these errors in DMA-driven mode

* Sends, receives, and appropriately handles break characters

* Recognizes the modem control signals

* Ignores characters with frame, parity, and break errors if requested to do so

* Implements support for software and hardware flow control (software-controlled and
hardware-controlled)

* Get and set the UART port information; certain flow control count information is not
available in hardware-driven hardware flow control mode

e Implements support for Serial IrDA

* Power management

e Interrupt-driven and DMA-driven data transfer

39.2.3 Source Code Structure

Table below shows the UART driver source files that are available in the directory:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 273

Configuration

<ltib_dir>/rpm/BUILD/linux/drivers/tty/serial.
Table 39-1. UART Driver Files

File Description

imx.c Low level driver

Table below shows the header files associated with the UART driver.
Table 39-2. UART Global Header Files

File Description

<ltib_dir>/rpm/BUILD/linux/ arch/arm/plat-mxc/ UART header that contains UART configuration data structure definitions
include/mach/imx-uart.h

39.3 Configuration

This section discusses configuration options associated with Linux, chip configuration
options, and board configuration options.

39.3.1 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the ./ltib -c
command when located in the <Itib dir>. On the screen displayed, select Configure the
Kernel and exit. When the next screen appears, select the following options to enable this
module:

 CONFIG_SERIAL_IMX -Used for the UART driver for the UART ports. In
menuconfig, this option is available under

Device Drivers > Character devices > Serial drivers > IMX serial port support.
By default, this optionis Y.

* CONFIG_SERIAL_IMX_CONSOLE-Chooses the Internal UART to bring up the
system console. This option is dependent on the CONFIG_SERIAL_IMX option. In
the menuconfig this option is available under

Device Drivers > Character devices > Serial drivers > IMX serial port support >
Console on IMX serial port

By default, this optionis Y.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

274 Freescale Semiconductor, Inc.

Chapter 39 Universal Asynchronous Receiver/Transmitter (UART) Driver

39.3.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

39.3.3 Chip Configuration Options

39.3.4 Board Configuration Options

For 1.MX 6Quad, the board specific configuration options for the driver is set within:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/board-mx6q_arm2.c

39.4 Programming Interface

The UART driver implements all the methods required by the Linux serial API to
interface with the UART port.

The driver implements and provides a set of control methods to the Linux core UART
driver. For more information about the methods implemented in the driver, see the API
document.

39.4.1 Interrupt Requirements
The UART driver interface generates only one interrupt.
The status is used to determine which kinds of interrupt occurs, such as RX or TX.

With the SDMA enabled, the DMA RX interrupt occurs only when the received data fills
all the 4K buffer. The DMA TX interrupt occurs when the data is sent out.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 275

Programming Interface

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

276 Freescale Semiconductor, Inc.

Chapter 40
AR6003 WiFi

40.1 Hardware Operation
The officially supported WiFi chip with FSL BSP is AR6003 from Atheros.

The Atheros AR6003 is a single chip, small form factor IEEE 802.11 a/b/g/n MAC/
baseband/ radio optimized for low-power mobile applications.

40.1.1 Software Operation
FSL BSP uses the open source ath6kl driver from kernel 3.0.35 for AR6003.

40.1.2 Driver features

ARG6003 is a single stream, SDIO based 802.11 chipset from Atheros optimized for
mobile and embedded devices. ath6kl is a cfg80211 driver for AR6003 and supports both
the station and AP mode of operation.

Station mode supports 802.11 a/b/g/n with HT20 on 2.4/5GHz and HT40 only on 5GHz.
Some of the other features include WPA/WPA2,WPS, WMM, WMM-PS, and BT
coexistence. AP mode can be operated only in b/g mode with support for a subset of
features mentioned above.

The driver supports cfg80211 but comes with its own set of wext ioctls which have
historically supported some of our customers with features like BT 3.0 and AP mode of
operation.

For further details, refer to http://wireless.kernel.org/en/users/Drivers/ath6kl

The driver requires firmware that runs on the chip's network processor. The majority of it
1s stored in ROM. The binaries that are downloaded and executed from RAM are as
follows:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 277

http://wireless.kernel.org/en/users/Drivers/ath6kl

Hardware Operation

1) Patch against the code in ROM for bug fixes and feature enhancements.
2) Code to copy the data from the OTP region of the memory into RAM.
3) Calibration file carrying board specific data.

The above files need to be present in the directory '/lib/firmware/ath6k/AR6003/hw2.0/'
for the driver to initialize the chip upon enumeration. The files can be downloaded from
the link specified at the following location http://wireless.kernel.org/en/users/Drivers/

ath6kl

This driver is only provided in the interim while we work on the mac80211 replacement,
ath6k. Once the mac80211 driver achieves feature parity with the ath6kl driver, the
ath6kl will be deprecated and removed from staging.

40.1.3 Source Code Structure

The AR6003 driver source files are available in the directory, <ltib_dir>/rpm/BUILD/
linux/drivers/staging/ath6kl/

40.1.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module:
CONFIG_ATH6K_LEGACY-Build support for AR6003 support (non mac80211).

Note: There are also a few other options under CONFIG_ATH6K_LEGACY. By default
you may not need to use them. Refer to the option help for details.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

278 Freescale Semiconductor, Inc.

http://wireless.kernel.org/en/users/Drivers/ath6kl
http://wireless.kernel.org/en/users/Drivers/ath6kl

Chapter 41
Bluetooth Driver

41.1 Introduction

The Bluetooth driver provides synchronous and asynchronous wireless connection among
multiple devices.

The synchronous oriented channel provides voice transmission. The asynchronous
channel allows more time delay in data transmission. The synchronous and asynchronous
data transfer between the host and Bluetooth chip is performed by different hardware
interfaces. The SSI interface is used to transfer voice from the host to the Bluetooth chip.
UART or USB is used for asynchronous data communication.

Based on the wireless connection, many services can be supported by profiles defined by
the Bluetooth Group. On the 1.MX platform, the A2DP and AVRCP profile is used to
play music (mp3, wav, and so forth). The FTP profile provides access to the file system
on another device. The SPP profile emulates a serial cable to provide a simply
implemented wireless replacement for the existing RS-232 based serial communications
applications. The handset profile is reserved for future support, so the SSI interface is
reserved. The UART interface is used for communication between the host and the
Bluetooth chip.

41.1.1 Hardware Operation
The platform uses the Atheros Bluetooth debug board.

Atheros Bluetooth debug board is a Bluetooth module that integrates Atheros Bluetooth
soc on it with a mini usb port used to get power supply from external USB. Also there is
a reset button on the board which is used to give a hardware reset to the SoC core.

Figure below illustrates the hardware interface between 1.MX 6 and the Atheros
Bluetooth module. UART is used for data communication.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 279

Introduction

MX6

UART

Antenna

Atheros Bluetooth
Debug Board

Feset USB Power
Button supply

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

280

Freescale Semiconductor, Inc.

4
Chapter 41 Bluetooth Driver

41.2 Software Operation

BlueCore"™ Host Software (BCHS) is a Bluetooth protocol provided by a third-party
company, Cambridge Silicon Radio (CSR).

The porting of BCHS to Linux is divided into:

* A user space port, in which the BCHS protocol stack runs in user space together
with the application.

A kernel space port, in which the BCHS protocol stack runs in kernel space and the
application runs in user space.

There are two ways to set up the user space port:

* The application and the BCHS protocol stack are running within the same process.
e The application and the BCHS protocol stack are running in two different processes.

In 1.MX platform, the BCHS protocol stack runs in user space. And the application runs
in the same process, as shown in figure below.

Encoding is used to minimize the bandwidth required for transferring the audio data.
Thus, the encoding compresses the audio before transmission over the air. The A2DP
profile mandates support for SBC encoding, and other codecs, such as MP3 and WMA,
are optional. The A2DP source checks the capabilities of sink and then configures sink to
select the dedicated codec.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 281

Software Operation

Host

Fﬁ]gp]ication and BCHS Process

— T = e ey

Scheduler

Application
ECHS Interface Likg

f §
T

BECHS

f §
T

I I
I I
I I
I I
I I
I I
I I
I I
| Core Stack I
I I
I I
I I
I I
I I
I I
I I

f §
T

BCSPHADS

L

cenal Port Interface
Tser Space [{“_____n

Eemel Space

Figure 41-2. BCHS Protocol Stack

41.2.1 UART Control

For user space porting, first configure the universal asynchronous receiver transmitter
(UART). On the 1.MX platforms, UART?2 is used for communication between the CPU
chip and the Bluetooth chip. The BCHS protocol opens /dev/ttymxcl and configures the
device according to profile requirements.

The minimum baud rate for the A2DP profile is 460.8 kbps; 921.6 kbps baudrate is
recommended. Table below maps the relationship between the UART baud rate and
maximum SBC bit rate.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

282 Freescale Semiconductor, Inc.

Chapter 41 Bluetooth Driver

Table 41-1. UART Mapping

Baud Rate (kbps) Max SBC bit rate (kbps)
115.2 75
230.4 150
460.8 300
600.0 400
921.6 410

The following table describes the UART configuration files.

41.2.2 Reset and Power control

Currently we use an external bluetooth debug board for the bluetooth communication,
The bt module needs an usb cable connected with it to get the power supply, also in the
debug board there is a reset button used to reset the whole bt module.

41.2.3 Configuration

To get to the Bluetooth configuration, use the command ./Itib -c when located in the <Itib
dir>. In the screen, select Configure Kernel, exit, and a new screen will appear.

The Linux kernel configuration option CONFIG_MXC_BLUETOOTH is provided for
the MXC processors. In the menuconfig this option is available under Device Drivers —>
MXC support drivers -> MXC Bluetooth support -> MXC Bluetooth support. By default,
this option is M for all architectures.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 283

Software Operation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

284 Freescale Semiconductor, Inc.

Chapter 42
Pulse-Width Modulator (PWM) Driver

42.1 Introduction

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate
sound from stored sample audio images and generate tones.

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The
software module is composed of a Linux driver that allows privileged users to control the
backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

42.1.1 Hardware Operation
Figure below shows the PWM block diagram.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 285

Introduction

Clack off 5}:"‘:1'1!'111
Peripheral
ipg_l:]l-: = 12 bit Bus
—_—
pz_clk_ighireq Prescaler
- Prescaler Clock
ipg_clk_32k - Outpur (FCLE)
IRQ B

CLESRC
I¢ 16-bit Counter
f——
-—— P lmtenmpn R&gisrer

|« CMPIE <:
= CMP <L_ | 16-bit Period
* CMIP Register
PO s |-
I - /’C/":I:/ 16-11
£ -bit Sample
'ﬂ'l ROV \\4: Register
POUTC - —_ __I__ _ — —
- - ———
e 27
— ROVIE T T T T N
- Iyl axiseaFrFo |l
| | | L - = |_|
=~— [RQEN | - —— — — —— - - _IJ
L — — _|

Figure 42-1. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not
interface with any other modules inside the device except for the clock and reset inputs
from the Clock Control Module (CCM) and interrupt signals to the processor interrupt
handler. The PWM includes a single external output signal, PMWO. The PWM includes
the following internal signals:

 Three clock inputs

* Four interrupt lines

* One hardware reset line

* Four low power and debug mode signals
* Four scan signals

 Standard IP slave bus signals

42.1.2 Clocks
The clock that feeds the prescaler can be selected from:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

286 Freescale Semiconductor, Inc.

Chapter 42 Pulse-Width Modulator (PWM) Driver

* High frequency clock-provided by the CCM. The PWM can be run from this clock in

low power mode.
» Low reference clock-32 KHz low reference clock provided by the CCM. The PWM

can be run from this clock in the low power mode.
* Global functional clock-for normal operations. In low power modes this clock can be

switched off.

The clock input source is determined by the CLKSRC field of the PWM control register.
The CLKSRC value should only be changed when the PWM is disabled.

42.1.3 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width
of a series of pulses to the power source. One common and effective use of the PWM is
controlling the backlight of a QVGA panel with a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Table 42-1. PWM Driver Summary

Function Description

struct pwm_device *pwm_request(int pwm_id, const char *label) Request a PWM device

void pwm_free(struct pwm_device *pwm) Free a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration
int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

The function pwm_config() includes most of the configuration tasks for the PWM
module, including the clock source option, and period and duty cycle of the PWM output
signal. It is recommended to select the peripheral clock of the PWM module, rather than
the local functional clock, as the local functional clock can change.

42.1.4 Driver Features
The PWM driver includes the following software and hardware support:

* Duty cycle modulation
* Varying output intervals
* Two power management modes-full on and full of

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 287

Introduction
42.1.5 Source Code Structure

Table below lists the source files and headers available in the following directories:

<ltib dirs/rpm/BUILD/linux/arch/arm/plat-mxc/pwn.c
<ltib _dir>/rpm/BUILD/linux/include/linux/pwm.h

Table 42-2. PWM Driver Files

File Description

pwm.h Functions declaration

pwm.c Functions definition

42.1.6 Menu Configuration Options

To get to the PWM driver, use the command ./Itib -c when located in the <Itib dir>. On
the screen displayed, select Configure the kernel and exit. When the next screen appears
select the following option to enable the PWM driver:

* System Type > Enable PWM driver
 Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic
PWM based Backlight Driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

288 Freescale Semiconductor, Inc.

Chapter 43
Watchdog (WDOG) Driver

43.1 Introduction

The Watchdog Timer module protects against system failures by providing an escape
from unexpected hang or infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt
capability.

43.1.1 Hardware Operation
Once the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the
WDOG either asserts the wdog_b signal or a wdog_rst_b system reset signal, depending
on software configuration. The watchdog module cannot be deactivated once it is
activated.

43.1.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for
a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.
Since some bits of the WGOD registers are only one-time programmable after booting,
ensure these registers are written correctly.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 289

A
Generic WDOG Driver

43.2 Generic WDOG Driver

The generic WGOD driver is implemented in the <lItib_dir>/rpm/BUILD/linux/drivers/
watchdog/imx2_wdt.c file.

It provides functions for various IOCTLs and read/write calls from the user level program
to control the WDOG.

43.2.1 Driver Features
This WDOG implementation includes the following features:

» Generates the reset signal if it is enabled but not serviced within a predefined timeout
value (defined in milliseconds in one of the WDOG source files)

* Does not generate the reset signal if it is serviced within a predefined timeout value

* Provides IOCTL/read/write required by the standard WDOG subsystem

43.2.2 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./Itib -c
command when located in the <lItib dir>. On the screen displayed, select Configure the
Kernel and exit. When the next screen appears, select the following option to enable this
module:

* CONFIG_IMX2_WDT-Enables Watchdog timer module. This option is available
under Device Drivers > Watchdog Timer Support > IMX2+ Watchdog.

43.2.3 Source Code Structure

Table below shows the source files for WDOG drivers that are in the following directory:

<ltib _dir>/rpm/BUILD/linux/drivers/watchdog.
Table 43-1. WDOG Driver Files

File Description

imx2_wdt.c WDOG function implementations

Watchdog system reset function is located under <lItib_dir>/rpm/BUILD/linux/arch/arm/
plat-mxc/system.c

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

290 Freescale Semiconductor, Inc.

4
Chapter 43 Watchdog (WDOG) Driver

43.2.4 Programming Interface
The following IOCTLs are supported in the WDOG driver:

« WDIOC_GETSUPPORT

* WDIOC_GETSTATUS

* WDIOC_GETBOOTSTATUS
« WDIOC_KEEPALIVE

* WDIOC_SETTIMEOUT

* WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see <ltib_dir>/rpm/BUILD/linux/
Documentation/watchdog.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 291

A
Generic WDOG Driver

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

292 Freescale Semiconductor, Inc.

Chapter 44
OProfile

44.1 Introduction

OProfile is a system-wide profiler for Linux systems, capable of profiling all running
code at low overhead.

OProfile is released under the GNU GPL. It consists of a kernel driver, a daemon for
collecting sample data, and several post-profiling tools for turning data into information.

44.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of
a wide variety of interesting statistics, which can also be used for basic time-spent
profiling.

All code is profiled: hardware and software interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

44.1.2 Features

OProfile has the following features.

» Unobtrusive-No special recompilations or wrapper libraries are necessary. Even
debug symbols (-g option to gcc) are not necessary unless users want to produce
annotated source. No kernel patch is needed; just insert the module.

* System-wide profiling-All code running on the system is profiled, enabling analysis
of system performance.

 Performance counter support-Enables collection of various low-level data and
association for particular sections of code.

* Call-graph support-With an 2.6 kernel, OProfile can provide gprof-style call-graph
profiling data.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 293

A
Software Operation
» Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling
frequency and workload.
 Post-profile analysis-Profile data can be produced on the function-level or
instruction-level detail. Source trees, annotated with profile information, can be
created. A hit list of applications and functions that utilize the most CPU time across
the whole system can be produced.
* System support-Works with almost any 2.2, 2.4 and 2.6 kernels, and works on based
platforms.

44.1.3 Hardware Operation
OProfile is a statistical continuous profiler.

In other words, profiles are generated by regularly sampling the current registers on each
CPU (from an interrupt handler, the saved PC value at the time of interrupt is stored), and
converting that runtime PC value into something meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of
which task was running at the time of the interrupt, and converting the values into a file
offset against a particular binary file. Each PC value is thus converted into a tuple (group
or set) of binary-image offset. The userspace tools can use this data to reconstruct where
the code came from, including the particular assembly instructions, symbol, and source
line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and
how often and, more often than not, this statistical approximation is good enough to
reflect reality. In common operation, the time between each sample interrupt is regulated
by a fixed number of clock cycles. This implies that the results reflect where the CPU is
spending the most time. This is a very useful information source for performance
analysis.

The ARM CPU provides hardware performance counters capable of measuring these
events at the hardware level. Typically, these counters increment once per each event and
generate an interrupt on reaching some pre-defined number of events. OProfile can use
these interrupts to generate samples and the profile results are a statistical approximation
of which code caused how many instances of the given event.

44.2 Software Operation

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

294 Freescale Semiconductor, Inc.

4
Chapter 44 OProfile

44.2.1 Architecture Specific Components

OProfile supports the hardware performance counters available on a particular
architecture. Code for managing the details of setting up and managing these counters can
be located in the kernel source tree in the relevant <ltib_dir>/rpm/BUILD/linux/arch/arm/
oprofile directory. The architecture-specific implementation operates through filling in
the oprofile_operations structure at initialization. This provides a set of operations, such
as setup(), start(), stop(), and so on, that manage the hardware-specific details the
performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample().
This is where a particular sample taken at interrupt time is fed into the generic OProfile
driver code.

44.2.2 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from
userspace at /dev/oprofile. This consists of small files for reporting and receiving
configuration from userspace, as well as the actual character device that the OProfile
userspace receives samples from. At setup() time, the architecture-specific code may add
further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various
OProfile events.

44.2.3 Generic Kernel Driver

The generic kernel driver resides in <lItib_dir>/rpm/BUILD/linux/drivers/oprofile/, and
forms the core of how OProfile operates in the kernel. The generic kernel driver takes
samples delivered from the architecture-specific code (through oprofile_add_sample()),
and buffers this data (in a transformed configuration) until releasing the data to the
userspace daemon through the /dev/oprofile/buffer character device.

44.2.4 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to
the disk. It takes the single data stream from the kernel and logs sample data against a
number of sample files (available in /var/lib/oprofile/samples/current/). For the benefit of

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 295

Requirements

the separate functionality, the names and paths of these sample files are changed to
reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that is, changes
in the running of the system do not invalidate stored data). This enables the post-profiling
tools to run on this data at any time (assuming the original binary files are still available
and unchanged).

44.2.5 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the
post-profiling tools. In general, they collate a subset of the available sample files, load
and process each one correlated against the relevant binary file, and produce user
readable information.

44.3 Requirements
OProfile has the following requirements.

* Add Oprofile support with Cortex-A8 Event Monitor

44.3.1 Source Code Structure

Oprofile platform-specific source files are available in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/oprofile/

Table 44-1. OProfile Source Files

File Description
op_arm_model.h Header File with the register and bit definitions
common.c Source file with the implementation required for all platforms

The generic kernel driver for Oprofile is located under <ltib_dir>/rpm/BUILD/linux/
drivers/oprofile/

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

296 Freescale Semiconductor, Inc.

4
Chapter 44 OProfile

44.3.2 Menu Configuration Options
The following Linux kernel configurations are provided for this module.

To get to the Oprofile configuration, use the command ./1tib -¢ from the <Itib dir>. On the
screen, first go to Package list and select oprofile. Then return to the first screen and,
select Configure Kernel, then exit, and a new screen appears.

* CONFIG_OPROFILE-configuration option for the oprofile driver. In the
menuconfig this option is available under

» General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling
(EXPERIMENTAL)

44.3.3 Programming Interface

This driver implements all the methods required to configure and control PMU and 1.2
cache EVTMON counters.

More information, see the Linux document generated from build: make htmldocs.

44.3.4 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The
latency requirements are not needed.

The rate at which interrupts are generated depends on the event.

44.3.5 Example Software Configuration
The following steps show and example of how to configure the OProfile:

1. Use the command ./Itib -¢ from the <Itib dir>. On the screen, first go to Package list
and select oprofile. The current version in Itib is 0.9.5.

2. Then return to the first screen and select Configure Kernel, follow the instruction
from Menu Configuration Options, to enable Oprofile in the kernel space.

3. Save the configuration and start to build.

4. Copy Oprofile binaries to target rootfs. Copy vmlinux to /boot directory and run
Oprofile

root@ubuntu: /boot# opcontrol --separate=kernel --vmlinux=/boot/vmlinux
root@ubuntu: /boot# opcontrol --reset
Signalling daemon... done

root@ubuntu: /boot# opcontrol --setup --event=CPU CYCLES:100000

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 297

Requirements

root@ubuntu: /boot# opcontrol --start
Profiler running.
root@ubuntu: /boot# opcontrol --dump
root@ubuntu: /boot# opreport
Overflow stats not available
CPU: ARM V7 PMNC, speed 0 MHz (estimated)
Counted CPU _CYCLES events (Number of CPU cycles) with a unit mask of 0x00 (No un
it mask) count 100000
CPU_CYCLES:100000 |
samples | % |
4 22.2222 grep
CPU_CYCLES:100000 |
samples | % |
4 100.000 libc-2.9.so0
2 11.1111 cat
CPU_CYCLES:lOOOOO|
samples| % |
1 50.0000 1d-2.9.so0
1 50.0000 libc-2.9.s0

root@ubuntu: /boot# opcontrol --stop
Stopping profiling.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013
298 Freescale Semiconductor, Inc.

Chapter 45
CAAM (Cryptographic Acceleration and Assurance
Module)

45.1 CAAM Device Driver Overview

This section discusses implementation specifics of the kernel driver components
supporting CAAM (Cryptographic Acceleration and Assurance Module) within the Linux
kernel.

CAAM's base driver packaging can be categorized on two distinct levels:

» Configuration and Job Execution Level
* API Interface Level

Configuration and Job Execution Level consists of:

* a control and configuration module which maps the main register page and writes
global or system required configuration information.
* a module that feeds jobs through job rings, and reports status.

API Interface Level consists of:

* An interface to the Scatterlist Crypto API supporting asynchronous single-pass
authentication-encryption operations, and common blockciphers - caamaig.

* An interface to the Scatterlist Crypto API supporting asynchronous hashes - caamhash.

* An interface to the hwrng API supporting use of the Random Number Generator -

caamrng.

45.2 Configuration and Job Execution Level

This section has two parts:

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 299

A
Control/Configuration Driver

* Control/Configuration Driver

 Job Ring Driver

45.3 Control/Configuration Driver

The control and configuration driver is responsible for initializing and setting up the
master register page, initializing early-on feature initialization, providing limited debug
and monitoring capability, and generally ensuring that all other dependent driver
subsystems can connect to a correctly-configured device.

Step by step, it performs the following actions at startup:

» Allocates a private storage block for this level.

* Maps a virtual address to the full CAAM register page.

* Maps a virtual address for the SNVS register page.

e Maps a virtual (cache coherent) address for Secure Memory.

» Registers the security violation interrupt.

* Selects the correct DMA address size for the platform, and sets DMA address masks
to match.

* Identifies other pertinent interrupt connections

e Initializes all job ring instances

* If the system configuration includes a DPAA Queue Interface, that interface has
frame-pop enabled.

NOTE

1.MX 6 configurations do not contain this logic.

* If the instance contains a TRNG, it's oscillator/entropy configuration is set and then
"kickstarted".

* Configuration information is sent to the system console to indicate that the driver is
alive, and what configuration it has assumed.

» If CONFIG_DEBUG_FS is selected in the kernel configuration, then entries are
added to enable debugfs views to useful registers in the performance monitor.
Register views are accessible under the caam/ctl directory at the debugfs root entry.

45.4 Job Ring Driver

The Job Ring driver is responsible for providing job execution service to higher-level
drivers. It takes care of overall management of both input and output rings and interrupt
service driving the output ring.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

300 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

One driver call is available for higher layers to use for queueing jobs to a ring for
execution:

int caam jr enqueue (struct device *dev, u32 *desc, void (*cbk) (struct device
*dev, u32 *desc, u32 status, void *areq), void *areq) ;

Arguments:

dev Pointer to the struct device associated with the job ring for use. In the current
configuration, one or more struct device entries exist in the controller's private data block,
one for each ring.

desc Pointer to a CAAM job descriptor to be executed. The driver will map the descriptor
prior to execution, and unmap it upon completion. However, since the driver can't
reasonably know anything about the data referenced by the descriptor, it is the caller's
responsibility to map/flush any of this data prior to submission, and to unmap/invalidate
data after the request completes.

<ok Pointer to a callback function that will be called when the job has completed
processing.

areq Pointer to metadata or context data associated with this request. Often, this can
contain referenced data mapping information that request postprocessing (via the
callback) can use to clean up or release resources once complete.

Callback Function Arguments:
dev Pointer to the struct device associated with the job ring for use.
desc Pointer to the original descriptor submitted for execution.

status Completion status received back from the CAAM DECO that executed the request.
Nonzero only if an error occurred. Strings describing each error are enumerated in
error.c.

areq Metadata/context pointer passed to the original request.
Returns:

» Zero on successful job submission
* -EBUSY if the input ring was full
* -EIO if driver could not map the job descriptor

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 301

A
API Interface Level

45.5 API Interface Level

caamalg module provides a connection through the Scatterlist Crypto API both for
common symmetric blockciphers, and for single-pass authentication-encryption services.
This table lists all installed authentication-encryption algorithms by their common name,
driver name, and purpose. Note that certain platforms, such as i.MX 6, contain a low-
power MDHA accelerator, which cannot support SHA384 or SHAS512.

Name Driver Name Purpose
authenc(hmac(md5),cbc(aes)) authenc-hmac-md5-cbc-aescaam Single-pass authentication/encryption
using MD5 and AES-CBC
authenc(hmac(sha1),cbc(aes)) authenc-hmac-sha1-cbc-aescaam Single-pass authentication/encryption
using SHA1 and AES-CBC
authenc(hmac(sha224),cbc(aes)) authenc-hmac-sha224-cbcaes-caam Single-pass authentication/encryption
using SHA224 and AES-CBC
authenc(hmac(sha256),cbc(aes)) authenc-hmac-sha256-cbcaes-caam Single-pass authentication/
encryptionusing SHA256 and AES-CBC
authenc(hmac(sha384),cbc(aes)) authenc-hmac-sha384-cbcaes-caam Single-pass authentication/encryption
using SHA384 and AES-CBC
authenc(hmac(sha512),cbc(aes)) authenc-hmac-sha512-cbcaes-caam Single-pass authentication/encryption
using SHA512 and AES-CBC
authenc(hmac(md5),cbc(des3_ede)) authenc-hmac-md5-cbcdes3_ede-caam | Single-pass authentication/encryption
using MD5 and Triple-DES-CBC
authenc(hmac(sha1),cbc(des3_ede)) authenc-hmac-sha1-cbcdes3_ede-caam | Single-pass authentication/encryption
using SHA1 and Triple-DES-CBC
authenc(hmac(sha224),cbc(des3_ede)) | authenc-hmac-sha224-cbcdes3_ede- Single-pass authentication/encryption
caam using SHA224 and Triple-DES-CBC
authenc(hmac(sha256),cbc(des3_ede)) | authenc-hmac-sha256-cbcdes3_ede- Single-pass authentication/encryption
caam using SHA256 and Triple-DES-CBC
authenc(hmac(sha384),cbc(des3_ede)) | authenc-hmac-sha384-cbcdes3_ede- Single-pass authentication/encryption
caam using SHA384 and Triple-DES-CBC
authenc(hmac(sha512),cbc(des3_ede)) | authenc-hmac-sha512-cbc-des3_ede- | Single-pass authentication/encryption
caam using SHA512 and Triple-DES-CBC
authenc(hmac(md5),cbc(des)) authenc-hmac-md5-cbc-descaam Single-pass authentication/encryption
using MD5 and Single-DES-CBC
authenc(hmac(sha1),cbc(des)) authenc-hmac-sha1-cbc-descaam Single-pass authentication/encryption
using SHA1 and Single-DES-CBC
authenc(hmac(sha224),cbc(des)) authenc-hmac-sha224-cbcdes-caam Single-pass authentication/encryption
using SHA224 and Single-DES-CBC
authenc(hmac(sha256),cbc(des)) authenc-hmac-sha256-cbcdes-caam Single-pass authentication/encryption
using SHA256 and Single-DES-CBC
authenc(hmac(sha384),cbc(des)) authenc-hmac-sha384-cbcdes-caam Single-pass authentication/encryption
using SHA384 and Single-DES-CBC
authenc(hmac(sha512),cbc(des)) authenc-hmac-sha512-cbcdes-caam Single-pass authentication/encryption
using SHA512 and Single-DES-CBC

This table lists all installed symmetric key blockcipher algorithms by their common
name, driver name, and purpose.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

302 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

Name Driver Name Purpose
cbc(aes) cbc-aes-caam AES with a CBC mode wrapper
cbc(des3_ede) cbc-3des-caam Triple DES with a CBC mode wrapper
cbc(des) cbc-des-caam Single DES with a CBC mode wrapper

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

The caamhashmodule provides a connection through the Scatterlist Crypto API both for
common asynchronous hashes.

This table lists all installed asynchronous hashes by their common name, driver name,
and purpose. Note that certain platforms, such as 1.MX 6, contain a low-power MDHA
accelerator, which cannot support SHA384 or SHAS512.

Name Driver Name Purpose
sha1 shal-caam SHA1-160 Hash Computation
sha224 sha224-caam SHA224 Hash Computation
sha256 sha256-caam SHA256 Hash Computation
sha384 sha384-caam SHA384 Hash Computation
sha512 sha512-caam SHA512 Hash Computation
md5 md5-caam MD5 Hash Computation
hmac(sha1t) hmac-shai-caam SHA1-160 Hash-based Message
Authentication Code
hmac(sha224) hmac-sha224-caam SHA224 Hash-based Message
Authentication Code
hmac(sha256) hmac-sha256-caam SHA256 Hash-based Message
Authentication Code
hmac(sha384) hmac-sha384-caam SHA384 Hash-based Message
Authentication Code
hmac(sha512) hmac-sha512-caam SHA512 Hash-based Message
Authentication Code
hmac(md5s) hmac-md5-caam MD5 Hash-based Message
Authentication Code

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

The caamrng module installs a mechanism to use CAAM's random number generator to
feed random data into a pair of buffers that can be accessed through /dev/hw_random.

/dev/hw_random 1S commonly used to feed the kernel's own entropy pool, which can be used
internally, as an entropy source for other random data "devices".

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 303

Driver Configuration

For more information regarding support for this service, see rng-too1s available in http://
sourceforge.net/projects/gkernel/files/rng-tools.

45.6 Driver Configuration

Configuration of the driver is controlled by the following kernel confguration parameters
(found under Cryptographic API -> Hardware Crypto Devices):

CRYPTO DEV_FSL_CAAM

Enables building the base controller driver and the job ring backend.

CRYPTO DEV_FSI, CAAM RINGSIZE

Selects the size (e.g. the maximum number of entries) of job rings. This is selectable as a
power of 2 in the range of 2-9, allowing selection of a ring depth ranging from 4 to 512
entries.

The default selection is 9, resulting in a ring depth of 512 job entries.

CRYPTO _DEV_FSI, CAAM TINTC

Enables the use of the hardware's interrupt coalescing feature, which can reduce the
amount of interrupt overhead the system incurs during periods of high utilization.
Leaving this disabled forces a single interrupt for each job completion, simplifying
operation, but increasing overhead.

CRYPTO_DEV_FSL_CAAM INTC COUNT THLD

If coalescing is enabled, selects the number of job completions allowed to queue before
an interrupt is raised. This is selectable within the range of 1 to 255. Selecting 1
effectively defeats the coalescing feature. Any selection of a size greater than the job ring
size will force a situation where the interrupt times out before ever raising an interrupt.

The default selection 1s 255.

CRYPTO _DEV_FSI, CAAM INTC TIME_THLD

If coalescing is enables, selects the count of bus clocks (divided by 64) before a
coalescing timeout where, if the count threshold has not been met, an interrupt is raised at
the end of the time period. The selection range is an integer from 1 to 65535.

The default selection 1s 2048.

CRYPTO DEV_FSL_CAAM CRYPTO API

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

304 Freescale Semiconductor, Inc.

http://sourceforge.net/projects/gkernel/files/rng-tools
http://sourceforge.net/projects/gkernel/files/rng-tools

4

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)
Enables Scatterlist Crypto API support for asynchronous blockciphers and for single-pass
autentication-encryption operations through the API using CAAM hardware for
acceleration.

CRYPTO _DEV_FSI, CAAM AHASH APT

Enables Scatterlist Crypto API support for asynchronous hashing through the API using
CAAM hardware for acceleration.

CRYPTO DEV_FSI, CAAM RNG API

Enables use of the CAAM Random Number generator through the hwrng API. This can
be used to generate random data to feed an entropy pool for the kernels pseudo-random
number generator.

CRYPTO_DEV_FSL_CAAM RNG TEST

Enables a captive test to ensure that the CAAM RNG driver is operating and buffering
random data.

45.7 Limitations

* Components of the driver do not currently build and run as modules. This may be
rectified in a future version.

* Interdependencies exist between the controller and job ring backends, therefore they
all must run in the same system partition. Future versions of the driver may separate
out the job ring back-end as a standalone module that can run independently (and
support independent API and SM instances) in it's own system partition.

* The full CAAM register page is mapped by the controller driver, and derived
pointers to selected subsystems are calculated and passed to higher-layer driver
components. Partition-independent configurations will have to map their own
subsystem pointers instead.

» Upstream variants of this driver support only Power architecture. This ARM-specific
port is not upstreamed at this time, although portions may be upstreamed at some
point.

* TRNG kickstart may need to be moved to the bootloader in a future release, so that
the RNG can be used earlier.

* The Job Ring driver has a registration and de-registration functions that are not
currently necessary (and may be rewritten in future editions to provide for shutdown
notifications to higher layers.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 305

Initialize Keystore Management Interface

45.8 Limitations in the Existing Implementation Overview

This chapter describes a prototype of a Keystore Management Interface intended to
provide access to CAAM Secure Memory.

Secure memory provides a controlled and access-protected area where critical system
security parameters can be stored and processed in a running system without bus-level
exposure of clear secrets. Secrets can be imported into and exported from secure
memory, but never exported from secure memory in their cleartext form. Instead, secrets
may be exported from secure memory in a covered form, using keys never visible to the
outside.

This driver, with it's kernel-level API, exposes a basic interface to allow kernel-level
services access to secure memory functionality. It is split into two pieces:

» Keystore Initialization and Maintenance Interfaces
» Keystore Access Interface

The initialization and maintenance services exist to initialize and define the instance of a
keystore interface. Likewise, the access interface allows kernel-level services to use the
API for management of security parameters.

45.9 |Initialize Keystore Management Interface

Installs a set of pointers to functions that implement an underlying physical interface to
the keystore subsystem.

In the present release, a default (and hidden) suite of functions implement this interface.
Future implementations of this API may provide for the installation of an alternate
interface. If this occurs, an alternate to this call can be provided.

void sm_init keystore(struct device *dev);
Arguments:

dev pOINtS to a struct device established to manage resources for the secure memory
subsystem.

45.10 Detect Available Secure Memory Storage Units

Returns the number of available units ("pages") that can be accessed by the local instance
of this driver. Intended for use as a resource probe.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

306 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

u32 sm_detect keystore_ units(struct device *dev);
Arguments:

dev Points to a struct gevice established to manage resources for the secure memory
subsystem.

Returns: Number of detected units available for use, O through n - 1 may be used with
subsequent calls to all other API functions.

45.11 Establish Keystore in Detected Unit

Sets up an allocation table in a detected unit that can be used for the storage of keys (or
other secrets). The unit will be divided into a series of fixed-size slots, each one of which
1s marked available in the allocation table. The size of each slot is a build-time selectable
parameter.

No calls to the keystore access interface can occur until sm_establish_keystore () has been
called.

sm_establish keystore () should follow a call to sm_detect_keystore units().

int sm _establish keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().
Returns:

 Zero on successful return

* -EINVAL if the keystore subsystem was not initialized

» -ENOSPC if no memory was available for the allocation table and associated context
data.

45.12 Release Keystore

Releases all resources used by this keystore unit. No further calls to the keystore access
interface can be made.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 307

Allocate a Slot from the Keystore
void sm release keystore (struct device *dev, u32 unit);
Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

45.13 Allocate a Slot from the Keystore

Allocate a slot from the keystore for use in all other subsequent operations by the
keystore access interface.

int sm keystore slot alloc(struct device *dev, u32 unit, u32 size, u32*slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

size Desired size of data for storage in the allocated slot.

s1ot Pointer to the variable to receive the allocated slot number, once known.
Returns:

 Zero for successful completion.
* -EKEYREJECTED if the requested size exceeds the selected slot size.

45.14 Load Data into a Keystore Slot

Load data into an allocated keystore slot so that other operations (such as encapsulation)
can be carried out upon it.

int sm _keystore slot_ load(struct device *dev, u32 unit, u32 slot, constu8 *key data, u32
key length) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

308 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

unit One of the units detected with a call to sm_detect_keystore_units().
key_length Length (in bytes) of information to write to the slot.

xey_data Pointer to buffer with the data to be loaded. Must be a contiguous buffer.
Returns:

* Zero for successful completion.
» -EFBIG if the requested size exceeds that which the slot can hold.

45.15 Demo Image Update

Encapsulate data written into a keystore slot as a Secure Memory Blob.

int sm keystore slot encapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1lot Slot holding the input secret, loaded into that slot by sm_keystore_slot_load().
Note that the slot containing this secret should be overwritten or deallocated as soon as
practical, since it contains cleartext at this point.

outslot Allocated slot to hold the encapsulated output as a Secure Memory Blob.

secretlen Length of the secret to be encapsulated, not including any blob storage overhead
(blob key, MAC, etc.).

xeymod Key modifier component to be used for encapsulation. The key modifier allows an
extra secret to be used in the encapsulation process. The same modifier will also be
required for decapsulation.

xeymodlen Lenth of key modifier in bytes.
Returns:

e Zero on success
* CAAM job status if a failure occurs

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 309

Read Data From a Keystore Slot
45.16 Decapsulate Data in the Keystore

Decapsulate data in the keystore into a Black Key Blob for use in other cryptographic
operations. A Black Key Blob allows a key to be used "covered" in main memory
without exposing it as cleartext.

int sm_keystore_slot_ decapsulate (struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resourcesfor the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1ot Slot holding the input data, processed by a prior call to
sm_keystore slot encapsulate (), and Containing a Secure Memory Blob.

outslot Allocated slot to hold the decapsulated output data in the form of a Black Key
Blob.

secretlen Length of the secret to be decapsulated, without any blob storage overhead.
xeymod Key modified component specified at the time of encapsulation.

xeymodlen Lenth of key modifier in bytes.

Returns:

e Zero on success
* CAAM job status if a failure occurs

45.17 Read Data From a Keystore Slot

Extract data from a keystore slot back to a user buffer. Normally to be used after some
other operation (e.g. decapsulation) occurs.

int sm keystore slot read(struct device *dev, u32 unit, u32 slot, u32
key length, u8 *key data);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

310 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

s1ot Allocated slot to read from.

key_length Length (in bytes) of information to read from the slot.

xey_data Pointer to buffer to hold the extracted data. Must be a contiguous buffer.
Returns:

 Zero for successful completion.
» -EFBIG if the requested size exceeds that which the slot can hold.

45.18 Release a Slot back to the Keystore

Release a keystore slot back to the available pool. Information in the store is wiped clean
before the deallocation occurs.

int sm_keystore_slot_dealloc (struct device *dev, u32 unit, u32 slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect keystore units().
s1ot Number of the allocated slot to be released back to the store.
Returns:

 Zero for successful completion.
* -EINVAL if an unallocated slot is specified.

Configuration of the Secure Memory Driver / Keystore API is dependent on the
following kernel configuration parameters:

CRYPTO DEV_FSI, CAAM SM

Turns on the secure memory driver in the kernel build.

CRYPTO DEV_FSI, CAAM SM_SLOTSIZE

Configures the size of a secure memory "slot".

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 311

AR
Release a Slot back to the Keystore

Each secure memory unit is block of internal memory, the size of which is
implementation dependent. This block can be subdivided into a number of logical "slots"
of a size which can be selected by this value. The size of these slots needs to be set to a
value that can hold the largest secret size intended, plus the overhead of blob parameters
(blob key and MAC, typically no more than 48 bytes).

The values are selectable as powers of 2, limited to a range of 32 to 512 bytes. The
default value is 7, for a size of 128 bytes.

CRYPTO DEV_FSL_CAAM SM TEST

Enables operation of a captive test / example module that shows how one might use the
API, while verifying it's functionality. The test module works along this flow:

* Creates a number of known clear keys (3 sizes).

* Allocated secure memory slots.

* Inserts those keys into secure memory slots and encapsulates.

» Decapsulates those keys into black keys.

* Enrcrypts DES, AES128, and AES256 plaintext with black keys. Since this uses
symmetric ciphers, same-key encryption/decryption results will be equivalent.

* Decrypts enciphered buffers with equivalent clear keys.

* Compares decrypted results with original ciphertext and compares. If they match, the
test reports OK for each key case tested.

Normal output is reported at the console as follows:

platform caam sm.0: caam sm test: 8-byte key test match OK platform
caam_sm.0: caam sm test: 16-byte key test match OK platform caam sm.0:
caam_sm test: 32-byte key test match OK

* The secure memory driver is not implemented as a kernel module at this point in
time.

* Implementation is presently limited to kernel-mode operations.

* One instance is possible at the present time. In the future, when job rings can run
independently in different system partitions, a multiple instance secure memory
driver should be considered.

 All storage requests are limited to the storage size of a single slot (which is of a
build-time configurable length). It may be possible to allow a secret to span multiple
slots so long as those slots can be allocated contiguously.

* Slot size is fixed across all pages/partitions.

* Encapsulation/Decapsulation interfaces could allow for authentication to be
specified; the underlying interface does not request it.

* Encapsulation/Decapsulation interfaces return a job status; this status should be
translated into a meaningful error from errno.n

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

312 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

45.19 CAAM/SNVS - Security Violation Handling Interface
Overview

This chapter describes a prototype of a driver component and control interface for SNVS
Security Violations. It provides a means of installing, managing, and executing
application defined handlers meant to process security violation events as a response to
their occurrence in a system.

SNVS allows for the continuous monitoring of a number of possible attack vectors in a
running system. If the occurrence of one of these attach vectors is sensed, (e.g. a Security
Violation has been detected), SNVS can, along with erasing critical security parameters
and transitioning to a failure state. generate an interrupt indicating that the violation has
occurred. This interrupt can dispatch an application-defined routine to take cleanup action
as a consequence of the violation, such that an orderly shutdown of security services
might occur.

Therefore, the purpose of this interface is to allow system-level services to install
handlers for these types of events. This will allow the system designer to select how he
wants to respond to specific security violation causes using a simple function call written
to his system-specific requirements.

45.20 Operation

For existing platforms, 6 security violation interrupt causes are possible within SNVS. 5
of these violation causes are normally wired for use, and these causes are defined as:

* SECVIO_CAUSE_CAAM_VIOLATION - Violation detected inside CAAM/SNVS
* SECVIO_CAUSE JTAG_ALARM - JTAG activity detected
 SECVIO_CAUSE_WATCHDOG - Watchdog expiration
 SECVIO_CAUSE_EXTERNAL_BOQOT - External bootload activity

* SECVIO_CAUSE_TAMPER_DETECT - Tamper detection logic triggered

Each of these causes can be associated with an application-defined handler through the
API provided with this driver. If no handler is specified, then a default handler will be
called. This handler does no more than to identify the interrupt cause to the system
console.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 313

Install a Handler
45.21 Configuration Interface

The following interface can be used to define or remove application-defined violation
handlers from the driver's dispatch table.

45.22 Install a Handler

int caam_secvio_install handler (struct device *dev, enum secvio_cause
cause, void (*handler) (struct device *dev, u32 cause, void *ext), u8
*cause description, void *ext);

Arguments:
dev Points to SNVS-owning device.
cause Interrupt source cause from the above list of enumerated causes.

nandler Application-defined handler, gets called with dev, source cause, and locally-
defined handler argument

cause_description POINtS to a string to override the default cause name, this can be used as
an alternate for error messages and such. If left NULL, the default description string is
used. ext pointer to any extra data needed by the handler.

Returns:

e Zero on success.
* -EINVAL if an argument was invalid or unusable.

45.23 Remove an Installed Driver

int caam_secvio_remove_handler (struct device *dev, enum secvio_cause
cause) ;

Arguments:

dev Points to SNVS-owning device.
cause Interrupt source cause.
Returns:

e 7ero on success.
* -EINVAL if an argument was invalid or unusable.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

314 Freescale Semiconductor, Inc.

4
Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

45.24 Driver Configuration CAAM/SNVS

CRYPTO_DEV_FSL CAAM SECVIO

Enables inclusion of Security Violation driver and configuration interface as part of the
build configuration. Note that the driver is not buildable as a module in its present form.

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 315

A ————
Driver Configuration CAAM/SNVS

i.MX 6Dual/6Quad Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

316 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: IMX6QLXRM
Rev. L3.0.35_4.1.0
09/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM and ARM Cortex-A9 are registered trademarks of ARM
Limited.

© 2013 Freescale Semiconductor, Inc.

=
]
oc
w
=
<)
o
]

ARM

> freescale"

	Chapter 1: About this Book
	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 2: Machine Specific Layer (MSL)
	Introduction
	Interrupts (Operation)
	Interrupt Hardware Operation
	Interrupt Software Operation
	Interrupt Features
	Interrupt Source Code Structure
	Interrupt Programming Interface

	Timer
	Timer Software Operation
	Timer Features
	Timer Source Code Structure
	Timer Programming Interface

	Memory Map
	Memory Map Hardware Operation
	Memory Map Software Operation
	Memory Map Features
	Memory Map Source Code Structure
	Memory Map Programming Interface

	IOMUX
	IOMUX Hardware Operation
	IOMUX Software Operation
	IOMUX Features
	IOMUX Source Code Structure
	IOMUX Programming Interface
	IOMUX Control Through GPIO Module
	GPIO Hardware Operation
	Muxing Control
	PULLUP Control

	GPIO Software Operation (general)
	GPIO Implementation
	GPIO Source Code Structure
	GPIO Programming Interface

	General Purpose Input/Output(GPIO)
	GPIO Software Operation
	API for GPIO

	GPIO Features
	GPIO Module Source Code Structure
	GPIO Programming Interface 2

	Chapter 3: Smart Direct Memory Access (SDMA) API
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example

	Chapter 4: AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example

	Chapter 5: Image Processing Unit (IPU) Drivers
	Introduction
	Hardware Operation
	Software Operation
	Overview of IPU Frame Buffer Drivers
	IPU Frame Buffer Hardware Operation
	IPU Frame Buffer Software Operation
	Synchronous Frame Buffer Driver

	IPU Backlight Driver
	IPU Device Driver

	Source Code Structure
	Menu Configuration Options

	Unit Test
	Framebuffer Tests
	Video4Linux API test
	IPU Device Unit test

	Chapter 6: MIPI DSI Driver
	Introduction
	Overview of MIPI DSI IP Driver
	Overview of MIPI DSI Display Panel Driver
	Hardware Operation

	Software Operation
	MIPI DSI IP Driver Software Operation
	MIPI DSI Display Panel Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	Chapter 7: LVDS Display Bridge(LDB) Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Chapter 8: Video for Linux Two (V4L2) Driver
	Introduction
	V4L2 Capture Device
	V4L2 Capture IOCTLs
	Using the V4L2 Capture APIs

	V4L2 Output Device
	V4L2 Output IOCTLs
	Using the V4L2 Output APIs

	Source Code Structure
	Menu Configuration Options
	V4L2 Programming Interface

	Chapter 9: Graphics Processing Unit (GPU)
	Introduction
	Driver Features
	Hardware Operation
	Software Operation
	Source Code Structure
	Library Structure
	API References
	Menu Configuration Options

	Chapter 10: Direct FB
	Introduction
	Hardware Operation

	Software Operation
	DirectFB Acceleration Architecture
	i.MX DirectFB Driver Details
	The gal_config File for i.MX DirectFB Driver

	DirectFB EGL
	Setting Up DirectFB Acceleration

	Chapter 11: HDMI Driver
	Introduction
	Hardware Operation

	Software Operation
	Core
	Video
	Display Device Registration and Initialization
	Hotplug Handling and Video Mode Changes
	Audio
	CEC

	Source Code Structure
	Linux Menu Configuration Options

	Unit Test
	Video
	Audio
	CEC

	Chapter 12: X Windows Acceleration
	Introduction
	Hardware Operation
	Software Operation
	X Windows Acceleration Architecture
	i.MX 6 Driver for X-Windows System
	i.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System
	EGL- X Library
	xorg.conf for i.MX 6
	Setup X-Windows System Acceleration

	Chapter 13: Video Processing Unit (VPU) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Defining an Application

	Chapter 14: OmniVision Camera Driver
	OV5640 Using MIPI CSI-2 interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	OV5640 Using parallel interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 15: MIPI CSI2 Driver
	Introduction
	MIPI CSI2 Driver Overview
	Hardware Operation

	Software Operation
	MIPI CSI2 Driver Initialize Operation
	MIPI CSI2 Common API Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 16: Low-level Power Management (PM) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Unit Test

	Chapter 17: PF100 Regulator Driver
	Introduction
	Hardware Operation
	Driver Features

	Software Operation
	Regulator APIs

	Driver Architecture
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options

	Chapter 18: CPU Frequency Scaling (CPUFREQ) Driver
	Introduction
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options

	Chapter 19: Dynamic Voltage Frequency Scaling (DVFS) Driver
	Introduction
	Operation
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options

	Chapter 20: Thermal Driver
	Introduction
	Thermal Driver Overview

	Hardware Operation
	Thermal Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Unit Test

	Chapter 21: Anatop Regulator Driver
	Introduction
	Hardware Operation

	Driver Features
	Software Operation
	Regulator APIs
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options

	Chapter 22: SNVS Real Time Clock (SRTC) Driver
	Introduction
	Hardware Operation

	Software Operation
	IOCTL
	Keeping Alive in the Power Off State

	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 23: Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	ALSA Sound Driver Introduction
	SoC Sound Card
	Stereo CODEC Features
	7.1 Audio Codec Features
	AM/FM Codec Features
	Sound Card Information

	Hardware Operation
	Stereo Audio CODEC
	7.1 Audio Codec
	AM/FM Codec

	Software Operation
	ASoC Driver Source Architecture
	Sound Card Registration
	Device Open
	Platform Data
	Menu Configuration Options

	Unit Test
	Stereo CODEC Unit Test
	7.1 Audio Codec Unit Test
	AM/FM Codec Unit Test

	Chapter 24: Asynchronous Sample Rate Converter (ASRC) Driver
	Introduction
	Hardware Operation

	Software Operation
	Sequence for Memory to ASRC to Memory
	Sequence for Memory to ASRC to Peripheral

	Source Code Structure
	Linux Menu Configuration Options

	Platform Data
	Programming Interface (Exported API and IOCTLs)

	Chapter 25: The Sony/Philips Digital Interface (S/PDIF) Driver
	Introduction
	S/PDIF Overview
	Hardware Overview
	Software Overview
	ASoC layer

	S/PDIF Tx Driver
	Driver Design
	Provided User Interface

	S/PDIF Rx Driver
	Driver Design
	Provided User Interfaces

	Source Code Structure
	Menu Configuration Options
	Platform Data
	Interrupts and Exceptions
	Unit Test Preparation
	Tx test step
	Rx test step

	Chapter 26: SPI NOR Flash Memory Technology Device (MTD) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 27: MMC/SD/SDIO Host Driver
	Introduction
	Hardware Operation
	Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Platform Data
	Programming Interface
	Loadable Module Operations

	Chapter 28: NAND GPMI Flash Driver
	Introduction
	Hardware Operation

	Software Operation
	Basic Operations: Read/Write
	Error Correction
	Boot Control Block Management
	Bad Block Handling

	Source Code Structure
	Menu Configuration Options

	Chapter 29: SATA Driver
	Hardware Operation
	Software Operation
	Source Code Structure Configuration
	Linux Menu Configuration Options
	Board Configuration Options

	Programming Interface
	Usage Example2
	Usage Example

	Chapter 30: Inter-IC (I2C) Driver
	Introduction
	I2C Bus Driver Overview
	I2C Device Driver Overview
	Hardware Operation

	Software Operation
	I2C Bus Driver Software Operation
	I2C Device Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 31: Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver
	Introduction
	Hardware Operation

	Software Operation
	SPI Sub-System in Linux
	Software Limitations
	Standard Operations
	ECSPI Synchronous Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 32: FlexCAN Driver
	Driver Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 33: Media Local Bus Driver
	Introduction
	MLB Device Module
	Supported Feature
	Modes of Operation
	MLB Driver Overview

	MLB Driver
	Supported Features
	MLB Driver Architecture
	Software Operation

	Driver Files
	Menu Configuration Options

	Chapter 34: ARC USB Driver
	Introduction
	Architectural Overview

	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	System WakeUp
	USB Wakeup usage
	How to Enable USB WakeUp System Ability
	WakeUp Events Supported by USB
	How to Close the USB Child Device Power

	Chapter 35: i.MX 6 PCI Express Root Complex Driver
	Introduction
	PCIe
	Terminology and Conventions
	PCIe Topology on i.MX 6 in PCIe RC Mode
	Features

	Linux PCI Subsystem and RC driver
	RC driver source files
	Kernel configurations

	System Resource: Memory Layout
	System Resource: Interrupt lines

	Using PCIe Endpoint and running Tests
	Ensuring PCIe System Initialization
	Tests
	Known Issues

	i.MX 6Quad SD PCIe RC/EP Validation System

	Chapter 36: WEIM NOR Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code
	Enabling the WEIM NOR

	Chapter 37: Fast Ethernet Controller (FEC) Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Programming Interface
	Device-Specific Defines
	Getting a MAC Address

	Chapter 38: ENET IEEE-1588 Driver
	Hardware Operation
	Transmit Timestamping
	Receive Timestamping

	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Programming Interface
	IXXAT Specific Data structure Defines
	IXXAT IOCTL Commands Defines

	Chapter 39: Universal Asynchronous Receiver/Transmitter (UART) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure

	Configuration
	Menu Configuration Options
	Source Code Configuration Options
	Chip Configuration Options
	Board Configuration Options

	Programming Interface
	Interrupt Requirements

	Chapter 40: AR6003 WiFi
	Hardware Operation
	Software Operation
	Driver features
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 41: Bluetooth Driver
	Introduction
	Hardware Operation

	Software Operation
	UART Control
	Reset and Power control
	Configuration

	Chapter 42: Pulse-Width Modulator (PWM) Driver
	Introduction
	Hardware Operation
	Clocks
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 43: Watchdog (WDOG) Driver
	Introduction
	Hardware Operation
	Software Operation

	Generic WDOG Driver
	Driver Features
	Menu Configuration Options
	Source Code Structure
	Programming Interface

	Chapter 44: OProfile
	Introduction
	Overview
	Features
	Hardware Operation

	Software Operation
	Architecture Specific Components
	oprofilefs Pseudo Filesystem
	Generic Kernel Driver
	OProfile Daemon
	Post Profiling Tools

	Requirements
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements
	Example Software Configuration

	Chapter 45: CAAM (Cryptographic Acceleration and Assurance Module)
	CAAM Device Driver Overview
	Configuration and Job Execution Level
	Control/Configuration Driver
	Job Ring Driver
	API Interface Level
	Driver Configuration
	Limitations
	Limitations in the Existing Implementation Overview
	Initialize Keystore Management Interface
	Detect Available Secure Memory Storage Units
	Establish Keystore in Detected Unit
	Release Keystore
	Allocate a Slot from the Keystore
	Load Data into a Keystore Slot
	Demo Image Update
	Decapsulate Data in the Keystore
	Read Data From a Keystore Slot
	Release a Slot back to the Keystore
	CAAM/SNVS - Security Violation Handling Interface Overview
	Operation
	Configuration Interface
	Install a Handler
	Remove an Installed Driver
	Driver Configuration CAAM/SNVS

