1.MX23 EVK 10.05 Linux

Reference Manual

Document Number: 924-76389
Rev. 2010.05
05/2010

L

=~ freescale’

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of
Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

B POWERED

freescale"

semiconductor

ARM

Contents
About This Book

AUdIENCE . . oo vii
CONVENTIONS . ..ot vii
Definitions, Acronyms, and Abbreviations i, vii
Suggested Readingot X
Chapter 1
Introduction
L1 SOftware Baseo 1-1
1.2 FatUNES . . . o 1-2
Chapter 2
Architecture
2.1 Linux BSP Block Diagramo 2-1
2.2 KerNEl . . 2-2
2.2.1 Kernel Configuration i 2-2
2.2.2 Machine Specific Layer (MSL) 2-3
2221 MemOry Map . .. 2-3
2.2.2.2 I UL . . ot 2-3
2.2.2.3 General Purpose Timer (GPT)ot e 2-3
2.2.2.4 DM A APl . 2-4
2.2.25 INpUt/OULPUL (I/O). . .. oo e 2-4
2.2.2.6 Pin MURIPIEXING oo 2-4
2.2.2.7 Shared Peripheral Bus Arbiter (SPBA) 2-5
2.3 DIVEIS .t 2-5
231 Universal Asynchronous Receiver/Transmitter (UART) Driver 2-5
2311 Debug Asynchronous Receiver/Transmitter (UART) oo, 2-5
2.3.1.2 Application Asynchronous Receiver/Transmitter (UART) 2-6
2.3.2 Real-Time Clock (RTC) DIIVero e 2-6
2.3.3 Watchdog Timer (WDOG) DIIVEro e 2-6
2.34 D P . i 2-7
2.3.5 LIMX23 GraphiCs 2-7
2351 L DIF DIIVEL . o et e 2-8
2.35.2 LCD Panel DriVerSo e e 2-8
2.3.5.3 Frame Buffer Driver 2-8
2354 Pixel Pipeline (PXP) DIiVero e 2-8
2.3.6 SOUNG DFIVET. o et e 2-8
2.3.7 KeYPad . . . 2-8
2.3.8 Memory Technology Device (MTD) Drivert 2-9
2.3.8.1 GPMI/INAND . . 2-10
2.3.9 USB DIIVEI . . ot e 2-10
2.39.1 USB Host-Side API Model. 2-10
2.3.9.2 USB Device-Side Gadget Framework i 2-11

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor -iii

2.3.9.3 USB OTG Framework 2-11

2.3.10 General DIIVEIS. . .o 2-12
2.3.10.1 MMC/SD HOSE DIIVEL . . o 2-12
2.3.10.2 Inter-1C (12C) BUS DIiVEro e e e 2-12
2.3.10.3 SPI BUS DIIVEL 2-13
2.3.10.4 Dynamic Power Management (DPM) Driver. ..., 2-13
2.3.10.5 Low-Level Power Management Driver i 2-14
2.3.10.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver. 2-15
2.3.10.7 Backlight DriVer 2-15
2.3.10.8 LED DIIVEI . o ottt e e 2-15
2.3.10.9 Power Source Manager and Battery Charger, 2-15
2.3.10.10 CPUFRIeq DIIVEr . .o e e e e e 2-16
2.4 B0t LOaders. . ..o 2-16
24.1 LMX23 Boot Loader. 2-16
2411 BOOt PreD .o e 2-17
2.4.1.2 LiNUX Prep. ..o e 2-17
24.1.3 U-DOOt. .. 2-17
Chapter 3

Machine Specific Layer (MSL)

3.1 I TUPESo 3-1
3.11 Interrupt Hardware Operation.t e 3-1
3.1.2 Interrupt Software Operation i 3-2
3.1.3 Interrupt Source Code StruCtUre oot 3-2
3.14 Interrupt Programming Interface 3-2
K T I | 1 3-3
3.2.1 Timer Hardware Operation. e 3-3
3.2.2 Timer Software Operationt 3-3
3.2.3 TIMEr FEaUIES . . o ot e e 3-3
3.24 Timer Source Code StIUCTUIEot e 3-4
3.25 Timer Programming Interface 3-4
3.3 MEMOrY VAP . o 3-4
331 Memory Map Hardware Operation.t 3-4
3.3.2 Memory Map Software Operationttt 3-4
3.3.3 Memory Map FeatUIeSt 3-4
3.34 Memory Map Source Code StrUCTUre.ottt 3-4
3.35 Memory Map Programming Interface i 3-5
34 PINMURIPIEXINGo 3-5
34.1 Pin Multiplexing Hardware Operationt 3-5
3.4.2 Pin Multiplexing Software Operation. e 3-5
3.4.3 Pin Multiplexing Source Code Structure i 3-6
344 Pin Multiplexing Programming Interface. i 3-6
3.45 GPIO With Pin MUltiplexXingo e e e 3-6

i.MX23 EVK Linux Reference Manual

-iv Freescale Semiconductor

Chapter 4
Direct Memory Access Controller (DMAC) API

4.1 Hardware Operation i e e 4-1

4.2 Software Operation.t e 4-2

4.3 SOUrCe COde STTUCTUNE . .\ttt e e e e e e e e 4-2

4.4 Programming INterface o 4-2

Chapter 5

Persistent Bits Driver

5.1 Hardware Operation i e 5-1

5.2 Software Operation.t 5-1

5.3 SOUrCe COde STTUCTUNE . ..\ttt e e e e e e e e e 5-2

5.4 Menu Configuration OPtioNSot 5-2

55 Programming INterfaceo 5-2

Chapter 6

Unique ID on Boot Media

6.1 Software Operation.t 6-1

6.2 Programming INterface.t 6-1

6.3 SOUrCe COde STTUCTUNE . . v\ttt e e e e e e e e e 6-1

6.4 Menu Configuration OPLiONSttt e 6-2

Chapter 7

CPU Frequency Scaling (CPUFREQ) Driver

7.1 Software Operationot e 7-1

7.2 Source Code SITUCTUIEot e e e e e e e e 7-1

7.3 Menu Configuration Optionsttt e e 7-2

7.3.1 Board Configuration Optionsttt e 7-2

Chapter 8

1.MX23/I.MX28 Static Power Management Driver

8.1 Hardware Operationt e 8-1

8.2 Software Operation.o 8-1

8.3 SoUrce Code STTUCTUNEttt e e e e e e e 8-2

8.4 Menu Configuration Optionsttt e e e 8-2

Chapter 9

Frame Buffer Driver

9.1 Hardware Operation it 9-1

0.2 Software Operationot 9-1

9.3 Menu Configuration OPtioNSttt e e 9-2
i.MX23 EVK Linux Reference Manual

Freescale Semiconductor -v

94 Source Code STUCKUIEottt e e e e e 9-2

Chapter 10

LCD Interface (LCDIF) Driver

10.1 Hardware Operationt 10-1
10.2 Software Operation.ttt 10-1
10.3 Source Code StIUCTUIEttt 10-1
10.4 Menu Configuration Options i 10-2
10.5 Programming Interfacet 10-2
Chapter 11

Backlight Driver

11,1 Hardware Operationttt e e 11-1
11.2 Software Operation.t 11-1
11.3 Menu Configuration Optionst 11-1
11.4 Source Code StrUCIUIEt e 11-2
Chapter 12

Advanced Linux Sound Architecture (ALSA)
System on a Chip (ASoC) Sound Driver

12,1 SOC SoUNd Card . ..ottt e e 12-1
12.1.1 Stereo CodeC FRAtUIESttt 12-2
12.1.2 Built-in ADC/DAC Audio Codec Features, 12-2
12.1.3 Sound Card INformation o 12-3
12.2 ASOC Driver Source ArChiteCturet e e 12-3
12.3 Menu Configuration Optionst e 12-5
12,4 Hardware Operationttt e 12-5
124.1 Stereo AUAIO COOBC . ..o\ v v 12-5
12.4.2 Built-in ADC/DAC COUBC vttt e e et 12-6
12,5 Software Operation.o 12-6
125.1 Sound Card Registration.ot 12-6
12.5.2 DEVICE OB . ottt 12-6
Chapter 13

Pixel Pipeline (PxP) Driver

13.1 Hardware Operationttt e 13-1
13.2 Software Operation. e 13-1
13.3 Menu Configuration OptioNnst e 13-2
13.4 Source Code StIUCTUIEttt e e e 13-3

i.MX23 EVK Linux Reference Manual

-vi Freescale Semiconductor

Chapter 14
NAND Flash Driver

141 Hardware Operationttt e 14-1
142 Software Operation.ot 14-1
14.2.1 Basic Operations: Read/Write e 14-1
14.2.2 Error COrTeCtION . . .ot 14-2
14.2.3 Boot Control Block Management.t e 14-2
14.2.4 Bad Block Handling 14-2
14.3 Source Code StIUCTUIEttt 14-3
14.4 Menu Configuration Optionst 14-3
Chapter 15

ENET IEEE-1588 Driver

15.1 Hardware Operationttt e 15-1
15.1.1 Transmit TIMeStampPiNgot e 15-1
15.1.2 Receive TIMeStampPingot e e 15-2
15.2 Software Operation.ottt e 15-2
15.3 Source Code STIUCLUME ottt e e e e e e e e e e 15-2
15.4 Linux Menu Configuration OptioNnS ot 15-3
15.5 Programming INterfaceot 15-3
155.1 IXXAT Specific Data structure Defines. i 15-3
15.5.2 IXXAT IOCTL Commands Defines. e 15-4
Chapter 16

Programmable 3-Port Ethernet Switch Driver

16.1 Hardware Operation it 16-1
16.1.1 Passthrough Mode.o 16-3
16.1.2 SWITCh MOde. . . .o 16-3
16.2 Software Operation. e 16-4
16.3 Source Code STIUCTUIE oottt et e e e e e e 16-4
16.4 Linux Menu Configuration OptioNns ot e 16-5
16.5 Programming Interface. 16-5
16.5.1 Device Specific Defineso 16-5
Chapter 17

Low-Level Keypad Driver

17.1 Hardware Operationt e 17-1
17.2 Software Operation.ttt e e 17-1
17.3 Reassigning KeyCodesot 17-1
174 Driver FRatUIesot e 17-2
17.5 Source Code STIUCLUIEottt e e e e e e e e e e e e 17-2
17.6 Menu Configuration Options e e 17-2

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor -vii

17.7 Programming Interface 17-3

17.8 Interrupt ReqUITEMENES oot e e e 17-3
Chapter 18

Touch Screen and ADC Drivers

18.1 DrIVEr OVEIVIEW . . . ottt ettt e e e e e e e e e e 18-1
18.2 Hardware Operationttt 18-1
18.3 Software Operation. e 18-2
18.4 Source Code StIUCTUIE oottt e e e 18-2
18.5 Menu Configuration OPtioNSttt 18-2
18.6 Programming Interface (Exported API) 18-2
18.7 Interrupt ReqUITEMENES oot e e 18-3
Chapter 19

Inter-1C (I12C) Driver

19.1 12C BUS DIIVEr OVEIVIEW . . o oottt e e e e e e e e e e 19-1
19.2 12C Device Driver OVEIVIBWottt e e ettt 19-1
19.3 Hardware Operationttt 19-2
19.4 Software Operation.t e 19-2
194.1 12C Bus Driver Software Operationottt 19-2
19.4.2 12C Device Driver Software Operationt 19-2
105 DIIVEIN FRAIUIES . . o vttt e e e e e e 19-3
19.6 Source Code StIUCTUIE\ttt et e 19-3
19.7 Menu Configuration Optionst e 19-3
19.8 Programming Interface. 19-3
19.9 Interrupt ReqQUITEMENTS oottt e e e e e 19-3
Chapter 20

Data Co-Processor (DCP) Driver

20.1 Hardware Operationttt e 20-1
20.2 Software Operation.ottt e e 20-1
20.3 Source Code SIrUCUIE . . .ottt e e e 20-2
20.4 Menu Configuration OPtioNSottt e 20-2
20.5 Programming INterface ot 20-2
Chapter 21

SPI Bus Driver

21.1 Hardware Operationttt e e 21-1
21.2 Software OpPeration.ottt 21-1
21.2.1 Transmitting Datao 21-1
21.2.2 RECEIVING Dataot 21-2
21.3 Source Code SITUCTUIEo\ttt e e e e e e e e 21-2

i.MX23 EVK Linux Reference Manual

-viii Freescale Semiconductor

21.4 Menu Configuration Optionsttt e 21-2

Chapter 22

MMC/SD/SDIO Host Driver

22.1 Hardware Operationottt 22-1
22,2 SOftware Operationot 22-1
22.3 DIIVEr FaUIES . . . ottt 22-2
224 SoUrce Code SIrUCTUIE . . .ottt e e e e e 22-2
22.5 Menu Configuration OPtioNSttt e 22-2
22.6 Programming INterface o e 22-2
Chapter 23

Universal Asynchronous Receiver-Transmitter (UART) Driver

23.1 Application UART ... 23-1
23.1.1 Hardware Operationttt e e 23-1
23.1.2 Software Operation. 23-1
23.1.3 SoUrce Code SITUCTUNE . ..ottt e e e e e 23-2
23.2 DebUG UART . 23-2
23.2.1 Hardware Operation e e 23-2
23.2.2 Software Operation. ot 23-2
23.2.3 Source Code STTUCTUNEottt e e e e e e e 23-2
23.3 Menu Configuration Options it 23-2
Chapter 24

ARC USB Driver

24.1 Architectural OVEIVIEW.ot e e 24-2
24.2 Hardware Operationottt e e 24-2
24.3 Software Operation.ot e 24-2
244 DIIVEr FaUIES . . . ittt e e e e 24-3
245 Source Code StrUCTUIEot e e e 24-4
24.6 Menu Configuration OPLiONSttt e 24-4
24.7 Programming Interface 24-6
24.8 Default USB Settings oottt e 24-6
Chapter 25

Real Time Clock (RTC) Driver

25.1 Hardware Operationttt e 25-1
25.2 Software Operation.ot 25-1
25.3 Source Code STrUCTUIE . . . oottt e e e e e e e 25-1
25.4 Programming INterfaceo 25-2
25.5 Menu Configuration OpLioNSttt e 25-2

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor -ix

Chapter 26
Watchdog (WDOG) Driver

26.1 Hardware Operationttt e 26-1
26.2 Software Operation.o 26-1
26.3 Programming Interface 26-1
26.4 Menu Configuration OptioNot e 26-1
26.5 Source Code SIrUCTUIEottt e e e e e 26-2
Chapter 27

Battery Charger and Power Source Manager (PSM) Driver

27.1 Hardware Operationttt e e 27-1
27.2 Software Operation. i e 27-1
27.3 S0oUrce Code STTUCTUIE it e e e 27-3
27.4 Menu Configuration OPLiONSttt e 27-4
Chapter 28

LED Pulse Width Modulator (PWM) Driver

28.1 Hardware Operationttt e 28-1
28.2 SOftware OpPeration.ottt 28-1
28.3 Menu Configuration Optionst e 28-1
28.4 Source Code SIrUCTUIEottt e e e e e e 28-1
Chapter 29

Frequently Asked Questions

29.1 NFS Mounting Root File System e 29-1
29.2 Using the Memory AcCeSS TOOIot 29-1

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

Tables

1-1
2-1
3-1
3-2
3-3
4-1
5-1
6-1
7-1
8-1
9-1
10-1
11-1
12-1
15-1
16-1
16-2
17-1
17-2
18-1
19-1
24-1
24-2
25-1
25-2
27-1
27-2

LinuX BSP SUPPOIEd FEAIUIEScivieieciiecieete ettt ettt st e 1-2
Y S I B =T (o] 1SR PT 2-3
INTEITUPE FTIES LIST... .ttt 3-2
MEMOIY MaAP FIIES ...ttt et s e s re et e sreenreene e 3-5
Pin MUltiplexXing SOUICE FIIES......c.oiiiiiei e e e 3-6
DAY N o T TSP 4-2
Persistent BitS DIVEE FIIEScvoviiiiiieiciisee e 5-2
UNIQUE ID FHIBS ...ttt ettt sttt sb et nne e 6-2
CPUFREQ DIIVEE FIIBS ..vieieieieciiesie ettt sttt sneeneeneennas 7-2
Power Management DIIVEN FIIEScvoiiiiiece e 8-2
Frame BUTTer DIIVEr FIlESooiii e e 9-2
OB | B)= g] [P S TS 10-1
BaCKIGNt DIIVEN FIIESooiicie ettt e reeeeeneas 11-2
Built-in ADC/DAC Codec ASOC Driver SoUrce File ... 12-5
ENET 1588 FIle LIStciiiieieieieiere ettt st na e ans 15-2
a0 AN To [14 =T o SRRSO 16-2
ELNErNEt FIlE LIST....ceeieiiee ettt e e 16-5
KEYPAA DIIVEL FIIES ...t bbb 17-2
Keypad Interrupt Timer REQUITEMENTScccveiieiieie e sneas 17-3
TOUCH SCIeen DIIVEE FIIES.......o it 18-2
[2C INterrupt REQUITEMENTS ..ottt bbb 19-3
USB DIIVEE FIIES ...ttt ettt sb e bbb 24-4
DEfaUIt USB SEIINGScveeitieieiiiesieee ettt sttt sttt st be e sbe e sne e 24-6
O B Y= g T L I OSSR 25-1
o O [T O I USSP 25-2
Battery Charger Driver Structure FIeldS ..o 27-2
Battery Charger DIIVET FIlES.........oooiiiiiiiiieee s 27-3

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor -iii

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

-V

Figures

2-1 SRS o Y (o Tod QBT o | Ly o USRS 2-1
2-2 1.MX23 Kernel Graphic COMPONENTSccveieeieiieieeie e e e seeseeste e ste e e e ee e sne e e 2-7
2-3 MTD AFCHITECIUIE ...ttt bbbttt bbb nbe e 2-9
2-4 DPM High LEVEI DESIGN......cciuiiiiiiieiiiie ettt sttt ns 2-14
2-5 DPM Architecture BIOCK DIGQIaMc.ccviieiieieiieieeie e se e sae e eee s 2-14
2-6 1IMIX23 BOOT SEIBAIM ...ttt sttt bbb b e b e ens 2-17
12-1 ALSA SOC SOftWare ArChITECIUIeiiie et 12-1
12-2 ALSA SoC Source File RelationShip......c.ccoeiiiiiiieie e 12-4
15-1 IEEE 1588 FUNCLIONS OVEIVIEWcvviviiriiieiiesiesie sttt sttt 15-1
16-1 VLo g] g - o PSR 16-2
16-2 Passthrough Mode Configuration OVEIVIEW...........ccevuerieiiieiieeseeie e e eee e ste e see e 16-3
16-3 Switch Mode Configuration OVEIVIEWcc.ecveiieiiieie et 16-4
24-1 USB BIOCK DIAQIAIM ...ttt ettt nb b 24-2
i.MX23 EVK Linux Reference Manual
-Vi Freescale Semiconductor

About This Book

The Linux board support package (BSP) represents a porting of the Linux operating system (OS) to the
I.MX processors and its associated reference boards. The BSP supports many hardware features on the
platforms and most of the Linux OS features that are not dependent on any specific hardware feature.

Audience

This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific products.
The audience is expected to have a working knowledge of the Linux 2.6 kernel internals, driver models,
and i.MX processors.

Conventions

This document uses the following notational conventions:

 Courier monospaced type indicate commands, command parameters, code examples, and
file and directory names.

 ltalic type indicates replaceable command or function parameters.
» Bold type indicates function names.

Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address | Address conversion from virtual domain to physical domain
translation

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX | Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load | The percentage of time a bus is busy

CODEC | Coder/decoder or compression/decompression algorithm—used to encode and decode (or compress and
decompress) various types of data

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor Vii

Definitions and Acronyms (continued)

Term Definition
CPU Central Processing Unit—generic term used to describe a processing core
CRC Cyclic Redundancy Check—RBit error protection method for data communication
CSlI Camera Sensor Interface
DFS Dynamic Frequency Scaling
DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers
DPM Dynamic Power Management
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage Frequency Scaling
EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system
Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is stored
in a lower address than the most significant byte. In big endian, the order of the bytes is reversed
EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention
FCS Frame Checker Sequence
FIFO First In First Out
FIPS Federal Information Processing Standards—United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling Federal
government requirements such as for security and interoperability but no acceptable industry standards
FIPS-140 | Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, but Unclassified (SBU) use
Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.
Flash path | Path within ROM bootstrap pointing to an executable Flash application
Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes cleaning
the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software command
GPIO General Purpose Input/Output
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message digest,
is a number generated from a string of text. The hash is substantially smaller than the text itself, and is generated
by a formula in such a way that it is extremely unlikely that some other text produces the same hash value.
110 Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to
video/still image sensors and displays
IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications for

infrared wireless communication

i.MX23 EVK Linux Reference Manual

viii

Freescale Semiconductor

Definitions and Acronyms (continued)

Term Definition
ISR Interrupt Service Routine
JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices
on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port—16-hit peripheral used as a keypad matrix interface or as general purpose input/output (1/O)
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used—a policy for line replacement in the cache
MMU Memory Management Unit—a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video
MPEG There are several standards of compression for moving pictures and video
standards | « MPEG-1 is optimized for CD-ROM and is the basis for MP3
« MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
« MPEG-3 was merged into MPEG-2
« MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash | Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high capacity
data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write, and read
capabilities over NOR architecture
NOR Flash | See NAND Flash
PCMCIA | Personal Computer Memory Card International Association—a multi-company organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase angle
(a lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path | Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to create
other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the lighter
the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

Definitions and Acronyms (continued)

Term Definition

ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—asynchronous serial communication to external devices

uID Unique ID-a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum transfer rate of

480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG |USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

Suggested Reading

The following documents contain information that supplements this guide:
e 1.MX23 PDK Linux Quick Start Guide
* BSP API Document (BSP Doxygen Code Documentation)
e i.MX23 PDK Linux User’ Guide
* i.MX23 PDK Hardware User’s Guide
* 1.MX23 Multimedia Applications Processor Reference Manual (IMX23RM)

» [KERN] Linux kernel coding style. This is included in Linux distributions as the file
Documentation/CodingStyle

* [WSAS] WSAS Coding Conventions, version 0.4
* [ASM] WSAS Assembly Code Conventions
* [DOXY] WSAS Guidelines for Writing Doxygen Comments

i.MX23 EVK Linux Reference Manual

X Freescale Semiconductor

Chapter 1
Introduction

The i.MX family Linux board support package (BSP) supports the Linux operating system (OS) on the
following processor:

* .MX23 Applications Processor

The purpose of this software package is to support Linux on the i.MX family of integrated circuits (ICs)
and their associated platforms (EVK). It provides the necessary software to interface the standard
open-source Linux kernel to the i.MX hardware. The goal is to enable Freescale customers to rapidly build
products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-
specific drivers, hardware-independent software stacks, graphical user interface (GUI) components, Java
Virtual Machine (JVM), and applications required for a product. Some of these are made available in their
original open-source form as part of the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP
functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon
verification test suites.

1.1 Software Base

The i.MX BSP is based on version 2.6.31 of the Linux kernel from the official Linux kernel web site
(http://www.kernel.org). It is enhanced with the features provided by Freescale.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 1-1

http://www.kernel.org

Introduction

1.2 Features

Table 1-1 describes the features supported by the Linux BSP for specific platforms.
Table 1-1. Linux BSP Supported Features

Applicable

Feature Description Chapter Source Platform

Machine Specific Layer

MSL Machine Specific Layer (MSL) supports interrupts, Chapter 3, “Machine Specific All

Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA. Layer (MSL)”

« Interrupts (AITC/AVIC): The Linux kernel contains
common ARM code for handling interrupts. The MSL
contains platform-specific implementations of
functions for interfacing the Linux kernel to the ARM9
interrupt controller.

e Timer (GPT): The General Purpose Timer (GPT) is
set up to generate an interrupt as programmed to
provide OS ticks. Linux facilitates timer use through
various functions for timing delays, measurement,
events, alarms, high resolution timer features, and so
on. Linux defines the MSL timer API required for the
OS-tick timer and does not expose it beyond the
kernel tick implementation.

¢ GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction layer
between the various drivers and the configuration and
utilization of the system, including GPIO, IOMUX, and
external board 1/O. The IO software module is
board-specific, and resides in the MSL layer as a
self-contained set of files. 1/0O configuration changes
are centralized in the GPIO module so that changes
are not required in the various drivers.

* SPBA: The Shared Peripheral Bus Arbiter (SPBA)
provides an arbitration mechanism among multiple
masters to allow access to the shared peripherals.
The SPBA implementation under MSL defines the
API to allow different masters to take or release
ownership of a shared peripheral.

DMAC .Both AHB-to-APBH and AHB-to-APBX DMA support Chapter 4, “Direct Memory Access |i.MX23
configurable DMA descript chain. Controller (DMAC) API”

Persistent Bits | Persistent bits refers to a number of registers that persist | Chapter 5, “Persistent Bits Driver” |i.MX23
over power cycles.

Power Management Drivers

Low-level PM | The low-level power management driver is responsible | Chapter 8, “i.MX23 Static Power |i.MX23

Drivers for implementing hardware-specific operations to meet | Management Driver™
power requirements and also to conserve power on the
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.

CPU Frequency | The CPU frequency scaling device driver allows the Chapter 9, “CPU Frequency i.MX23
Scaling clock speed of the CPUs to be changed on the fly. Scaling (CPUFREQ) Driver”

i.MX23 EVK Linux Reference Manual

1-2 Freescale Semiconductor

Table 1-1. Linux BSP Supported Features (continued)

Introduction

Feature Description Chapter Source Applicable
Platform
Multimedia Drivers
LCD The LCD interface driver supports the Samsung Chapter 10, “LCD Interface i.MX23
LMS430xx 4.3” WQVGA LCD panel. (LCDIF) Driver”
Frame Buffer | The frame buffer driver uses the Linux kernel frame Chapter 11, “Frame Buffer Driver” |i.MX23
buffer driver framework. It implements the platform driver
for a frame buffer device. The implementation uses the
LCDIF API for generic LCD low-level operations.
Back Light The LCD backlight driver uses the Linux kernel frame | Chapter 12, “Backlight Driver” i.MX23
buffer/backlight driver framework.
Pixel Pipeline | The Pixel Pipeline (PxP) is a Linux kernel Video4Linux | Chapter 13, “Pixel Pipeline (PxP) |i.MX23
driver. Driver”
Sound Drivers
ALSA Sound | The Advanced Linux Sound Architecture (ALSA) is a Chapter 14, “Advanced Linux i.MX23
sound driver that provides ALSA and OSS compatible | Sound Architecture (ALSA)
applications with the means to perform audio playback | System on a Chip (ASoC) Sound
and recording functions using the audio components Driver”
provided by Freescale’s PMIC chips. ALSA has a Chapter 14, “Advanced Linux
user-space component called ALSAIlib that can extend | Sound Architecture (ALSA) Sound
the features of audio hardware by emulating the same in | Driver with PMIC Hardware
software (user space), such as resampling, software Support”
mixing, snooping, and so on. The ASoC Sound driver
supports stereo codec playback and capture through
SSI.
Memory Drivers
NAND MTD The NAND MTD driver interfaces with the integrated Chapter 14, “NAND Flash Driver” |i.MX23
NAND controller. It can support various file systems,
such as UBI and UBIFS. The driver implementation
supports the lowest level operations on the external
NAND Flash chip, such as block read, block write and
block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND Flash
are not guaranteed to be good, the NAND MTD driver is
also able to detect bad blocks and feed that information
to the upper layer to handle bad block management.
Input Device Drivers
Keypad The keypad driver interfaces Linux to the keypad Chapter 17, “Low-Level Keypad i.MX23
controller (KPP). The software operation of the keypad | Driver”
driver follows the Linux keyboard architecture. .
Touch Screen | A touch screen and associated Low-Resolution ADC Chapter 18, “Touch Screen and i.MX23
and ADC (LRADC) add measurement functions to the touch ADC Drivers”
screen.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

1-3

Introduction

Table 1-1. Linux BSP Supported Features (continued)

Feature

Description

Chapter Source

Applicable
Platform

Security Drivers

DCP

The DCP cryptography driver is used to accelerate
cryptography operations (AES) in the kernel space and
user-space.

The DCP support AES EBC encryption and decryption
by utilizing the hardware OTP KEYO which is not
readable by softwar

Chapter 20, “Data Co-Processor
(DCP) Driver”

i.MX23

Bus Drivers

The I2C bus driver is a low-level interface that is used to
interface with the 12C bus. This driver is invoked by the
12c chip driver; it is not exposed to the user space. The
standard Linux kernel contains a core 12C module that is
used by the chip driver to access the bus driver to

transfer data over the 12C bus. This bus driver supports:

« Compatibility with the 12C bus standard

« Bit rates up to 400 Kbps

« Standard 1°C master mode

« Power management features by suspending and
resuming I1°C.

Chapter 19, “Inter-IC (12C) Driver”

i.MX23

CSPI

The low-level Configurable Serial Peripheral Interface
(CSPI) driver interfaces a custom, kernel-space API to
both CSPI modules. It supports the following features:
« Interrupt-driven transmit/receive of SPI frames

¢ Multi-client management

 Priority management between clients

« SPI device configuration per client

Chapter 21, “SPI Bus Driver”

i.MX23

SDHC

MMC/SD/SDIO -

The MMC/SD/SDIO Host driver is implemented using
the i.MX23 SPI component, which supports SD/MMC
mode.

Chapter 22, “MMC/SD/SDIO Host
Driver”

i.MX23

UART Drivers

UARTs

Debug and
Application

These are three serial UARTs. One that has no DMA
support and is intended to work as a debug console
(debug UART), and two are high-performance UARTS,
which are intended to be used by applications
(application UART, appUART).

Chapter 23, “Universal
Asynchronous
Receiver-Transmitter (UART)
Driver”

i.MX23

General Drivers

USB

The USB driver implements a standard Linux driver
interface to the ARC USB-OTG controller.

Chapter 24, “ARC USB Driver”

i.MX23

RTC

This is the integrated Real Time Clock (RTC) module.
The RTC is used to keep the time and date while the
system is turned off. Additionally, it provides the PIE
(periodic interrupt at a specific frequency) and AIE
(Wake up the system by providing an alarm) features.

Chapter 25, “Real Time Clock
(RTC) Driver”

i.MX23

i.MX23 EVK Linux Reference Manual

1-4

Freescale Semiconductor

Table 1-1. Linux BSP Supported Features (continued)

Introduction

Feature Description Chapter Source Applicable
Platform
WatchDog The Watchdog Timer module protects against system | Chapter 26, “Watchdog (WDOG) |i.MX23
failures by providing an escape from unexpected hang | Driver”
or infinite loop situations or programming errors. This
WDOG implements the following features.
* Generates a reset signal if it is enabled but not
serviced within a predefined time-out value
« Does not generate areset signal if it is serviced within
a predefined time-out value
Battery Charger | The battery charger device driver for Linux provides Chapter 27, “Battery Charger and |i.MX23
support for controlling the battery interface circuits and | Power Source Manager (PSM)
power source detection. Driver”
PWM LED The PWM LED driver provides a standard framework by | Chapter 28, “LED Pulse Width i.MX23
which to control LEDs attached to PWM interfaces. Modulator (PWM) Driver”
Bootloaders
uBoot uBoot is an open source boot loader. See uBoot User guide i.MX23
GUI
gnome gnome is a Network Object Model Environment See Gnome mobile Note i.MX23
supported by the GUN.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor

1-5

Introduction

i.MX23 EVK Linux Reference Manual

1-6 Freescale Semiconductor

Chapter 2
Architecture

This chapter describes the overall architecture of the Linux port to the i.MX processor. The BSP supports
all platforms in a single development environment, but not every driver is supported by all processors.
Drivers that are common to all platforms are referred as i.MX drivers and drivers unique to a specific
platform are referred by the platform name.

2.1 Linux BSP Block Diagram

Figure 2-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user space
executables, standard kernel components that come from the Linux community, and hardware-specific
drivers and functions provided by Freescale for the i.MX processors.

Machine Specific Layer R]

Applications, Shell Utilities, Libraries GUI (QT and GTK) I Fcrz:)r;]:(\;\éork @ Wiz Teljsr:ifr%rztesvvork @
System Call Interface
TTY Virtual File System Input ALSA Sound Framebuffer Video4Linux2 UsB
Subsystem CramFS RamFS NFS Subsystem = 2 VAL2 Capture Gadget USB
= (< [
. - ALSA SOC £ £ =] > Host IrDA Network
g Serial Core Ext2 FAT JFFS2 5 é 5 3 E- g . Device Stack Stack Stack
> . 2 2 g o 5 E S Stack
IS MTD Block Devices - T X3 L E 3 g £ 9o 3 D5
E _ - 2 2 [E _ E T L 5 3 % g (%
2 & & LbATA mMosD 5 € 3§ 4, 7 g £F & 3 2 5° aRc ARC
=12 =) g Subsystem Memory é @ 3 & 2 = = Device CNC!
E B X =S & @& 3 Host < %
g 8 = § 2 ATADHver M“SAS(SD/ 5 2 IPU 12C Bus enen— - g
K = = = Subsystem ; 2 T E 2
= Subsystem Battery/ = y Transceiver ks 2" z
£ Power 12C Driver
§ [mmTmTmmommmossoosmmssoosssssts o MMCISD Mgmt
%] FSL Custom Drivers ! gm
o ! ! PMIC Protocol
! SAHARA GPU '
£ eaaRNes — S7 23
1 RNG ! Subsystem ! !
2 o o i y : U::; Shacs FSLHW !
= H i i i
S TTTIIIIIIIIIIII I e e e ____s f’ 1 ___ i libraries Specile Code i
(2] [N} 1
Q E Interrupt Time ¥ Y FSL Chip :
i Subsystem Subsystem ~ DMAAPI Clock API i1 Independent Specific Code :
1 . 1 Kernel Cod 1
1 ARM Core Mem Map AVIC Timer SDMA Clocks Pwr Mgt GPIO 10 " erme’ Lode !
E (LPM/DPTC/DVFS) i E Legend i

Figure 2-1. BSP Block Diagram

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-1

Architecture

2.2

Kernel

The i.MX Linux port is based on the standard Linux kernel. The kernel supports most of the features
available in many modern embedded OSs such as:

Process and thread management

Memory management (memory mapping, allocation/deallocation, MMU, and L1/L2 cache
control)

Resource management (interrupts)

Power management

File systems (VFS, cramfs, ext2, ramfs, NFS, devfs, JFFS2, FAT, UBIFS)
Linux Device Driver model

Standardized APIs

Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel configuration and
MSL implementation.

221

Kernel Configuration

For this BSP release, kernel configuration is done through the Linux Target Image Builder (LTIB). See the
LTIB documentation for details. The configuration settings available on some platforms that are different
from the standard features are as follows:

Embedded mode

Module loading/unloading

ARM9

Supported file formats: ELF binaries, a.out, and ECOFF
Block devices: Loopback, Ramdisk

i.MX internal UART

File systems: ext2, dev, proc, sysfs, cramfs, ramfs, JFFS2, FAT, pramfs
Frame buffer

Kernel debugging

Automatic kernel module loading

Power management

Memory Technology Device (MTD) support

USB Host/device multiplexing

Unsorted block images (UBI) support

Flash translation layer (FTL)

CPU frequency scaling

i.MX23 EVK Linux Reference Manual

2-2

Freescale Semiconductor

Architecture

2.2.2 Machine Specific Layer (MSL)

The MSL provides a machine-dependent implementation as required by the Linux kernel, such as memory
map, interrupt, and timer. Each ARM platform has its own MSL directory under the arch/arm directory as
listed in Table 2-1.

Table 2-1. MSL Directories

Platform Directory

i.MX23 <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx23

See Chapter 3, “Machine Specific Layer (MSL),” for more information.

22.2.1 Memory Map

Before the kernel starts running in the virtual space, the physical-to-virtual address mapping for the 1/0
peripherals needs to be provided for the MMU to do the translation for memory/register accesses. The
mapping is done through a table structure in the MSL, specific to a particular platform, with each entry
specifying a peripheral starting address of virtual addresses, starting address of physical addresses, and the
size of the memory region and the type of the region.

2.2.2.2 Interrupts

The standard Linux kernel contains common ARM code for handling interrupts. The MSL contains
platform-specific implementations of functions for interfacing the Linux kernel to the ARM9 Interrupt
Controller (AITC).
Together, they support the following capabilities:

* AVIC initialization

* ARM Interrupt Controller (AITC) initialization

* Interrupt enable/disable control

* ISR binding

* ISR dispatch

* Interrupt chaining

» Standard Linux API for accessing interrupt functions

2.2.2.3 General Purpose Timer (GPT)

The GPT is configured to generate an interrupt every 10 ms to provide OS ticks. This timer is also used by
the kernel for additional timer events. Linux defines the MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick implementation. Linux facilitates timer use through various
functions for timing delays, measurement, events, and alarms. The GPT is also used as the source to
support the high resolution timer feature. The timer tick interrupt is disabled in low-power modes other
than idle.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-3

Architecture

2224 DMA API

The i.MX23device is equipped with two AHB-to-APBH/AHB-to-APBX bridges with built-in DMA
capability that allow programmed data transfers between SDRAM and peripheral devices. The DMA is
abstracted as a number of channels dedicated to on-chip peripheral devices such as UART, DAC/ADC,
GPMI and so on. Each DMA channel is programmed by a set of per-channel registers and special DMA
command structure located in memory. A command describes a single DMA transaction and may be
chained with other commands. The MSL implements an internal DMA API that allows other drivers to
initialize DMA channels and control DMA transfers. The following features are implemented:

» Command structures allocation/de-allocation

* Channel initialization

» Channel execution control: start/stop/freeze a channel
* Channel interrupts control

2.2.2.5 Input/Output (I/O)

The Input/Output (1/0) component in the MSL provides an abstraction layer between the various drivers
and the configuration and utilization of the system, including GP1O, IOMUX, pin multiplexing, and
external board 1/0. The 1/0O software module is board-specific and resides in the MSL layer as a
self-contained set of files. It provides the following features as part of a custom kernel-space API:

 Initialization for the default I/O configuration after boot

» Functions for configuring the various 1/O for active use

» Functions for configuring the various 1/O for low power mode

» Functions for controlling and sampling GP10 and board 1/0

» Functions for enabling, disabling, and binding callback functions to GPIO and EDIO interrupts

» Functions to support different priority levels during ISR registration for different modules; if more
than one interrupt occurs at the same time, the higher priority ISR callback gets called first

» Atomic helper functions for GPI1O, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. This allows I/O configuration
changes to be centralized in the GP1O module without requiring changes in the various drivers. These
functions are used by other device drivers in the kernel space. User level programs do not have access to
the functions in the GPIO module.

The exact API and implementations are different on each platform to account for the differences in
hardware, drivers, and boards. This module is an evolving module. As more drivers are added, more
functions are required from this module. The additions to the module are included in every new release of
the BSP.

2.2.2.6 Pin Multiplexing

The pin multiplexing component is responsible for setting 1/0 pin configuration and routing. Each 1/0 pin
is shared between up to three different i.MX23 modules or can be configured as a GP10 pin and controlled

i.MX23 EVK Linux Reference Manual

2-4 Freescale Semiconductor

Architecture

by software. The MSL implements a kernel-space API used by the MSL board specific components to set
pins configurations corresponding to a particular board. The following features are implemented:

* Pin resource manager to avoid conflicts on pin use
* Pin voltage control

* Pin strength control

* Pin pull-up resistor control

* Pin group configuration

2.2.2.7 Shared Peripheral Bus Arbiter (SPBA)

The SPBA provides an arbitration mechanism to allow multiple masters to have access to the shared
peripherals. The SPBA implementation under MSL defines the API to allow different masters to take or
release ownership of a shared peripheral. These functions are also exported so that they can be used by
other loadable modules.

2.3 Drivers

There are many drivers provided by Freescale that are specific to the peripherals on the i.MX family of
processors or to the development platforms. Many of these drivers are common across all of the platforms.
Most can be compiled into the kernel or compiled as object modules which can be dynamically loaded
from a file system through insmod or modprobe. Modules can be loaded automatically as required using
the kernel auto-load feature. The BSP contains a modules.dep file and a modprobe . conf file that contain the
dependency information for the modules.

The i.MX multimedia applications processors have several classes of drivers, explained in the following
sections.

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver

The i.MX family of processors support a Universal Asynchronous Receiver/Transmitter (UART) driver.

2.3.1.1 Debug Asynchronous Receiver/Transmitter (UART)
The Debug UART driver provides an interface to the i.MX23 Debug UART controller. It provides the
standard Linux serial driver API. The following features are supported:

* Interrupt driven transmit/receive of characters

» Standard Linux baud rates up to 115 Kbps

* Receive and transmit FIFOs support

» Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths

* Odd and even parity

* CTS/RTS hardware flow control

» Send and receive break characters through the standard Linux serial API

» Recognize break and parity errors

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-5

Architecture

e Supports the standard TTY layer IOCTL calls
» Console support needed to bring up the command prompt through Debug serial port
» Power management features by suspending and resuming UART ports

Currently, the Debug UART driver is used by default to bring up the console. DMA is not supported by
this driver. The Debug UART can be accessed through the /dev/ttyamo device file.

2.3.1.2 Application Asynchronous Receiver/Transmitter (UART)
The Application UART driver provides an interface to the i.MX23 Debug UART controller. It provides
the standard Linux serial driver API. The following features are supported:
* Interrupt and DMA driven transmit/receive of characters
» Standard Linux baud rates up to 3Mb/s
» Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths
e Odd and even parity
» CTS/RTS hardware flow control
» Send and receive break characters through the standard Linux serial API
* Recognize break and parity errors
» Supports the standard TTY layer IOCTL calls
* Includes console support needed to bring up the command prompt through the Debug serial port
» Supports power management features by suspending and resuming UART ports

The application UART can be accessed through the 7dev/ttyspo device file.

2.3.2 Real-Time Clock (RTC) Driver

The RTC is the clock that keeps the date and time while the system is running and even when the system
is inactive. The RTC implementation supports IOCTL calls to read time, set time, set up periodic
interrupts, and set up alarms. Linux defines the RTC API.

2.3.3 Watchdog Timer (WDOG) Driver

The Watchdog timer protects against system failures by providing a method of escaping from unexpected
events or programming errors.

The WDOG software implementation provides routines to service the WDOG timer, so that the timeout
does not occur. The WDOG s serviced (at the same time for the platforms with two WDOGS) if it is
already enabled before the Linux kernel boots (enabled by boot loader or ROM) with a configurable
service interval. In addition, compile-time options specify whether the Linux kernel should enable the
watchdog, and if so, which parameters should be used. If the second WDOG is present (used to generate
an interrupt after the timeout occurs), the highest interrupt priority (number 16) is assigned to the WDOG
interrupt.

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported. This is supported under all i.MX platforms.

i.MX23 EVK Linux Reference Manual

2-6 Freescale Semiconductor

Architecture

2.3.4 DCP

The DCP driver performs AES EBC decryption and encryption using the hardware OTP key that is not
accessible from user space. The driver configures the i.MX23 DCP engine to AES 128-bit EBC mode and
only supports encrypting/decrypting of a single 128-bit block.

The main purpose of this driver is to implement an interface to the DCP cryptography engine which is
necessary for boot stream image verification performed before writing the boot stream to NAND flash.
The driver implements a simple IOCTL interface to decrypt and encrypt a single 128-bit block.

2.3.5 1.MX23 Graphics

The graphics component consists of a number of Linux kernel drivers that implement the standard Linux
kernel interface to the i.MX23 hardware to manipulate video buffers and output them to an LCD panel or
TV screen. The graphic support includes the following components:

» Frame buffer driver

* LCDIF driver

* Pixel Pipeline (PxP) driver
e LCD panel driver

Figure 2-2 shows a block diagram of the i.MX23 Linux kernel graphic components and their relationship
to each other.

PxP

LCDIF LCD panel TV Out
‘ k& ¥ = _ Py _
LCDIF | | PxP
Legend Data
LCD -+ » T\/ screen SW - PxP disabled
1 PxP enabled
HW

—- Vide0 output

» Control = Relation

Figure 2-2. 1.MX23 Kernel Graphic Components

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-7

Architecture

2351 LCDIF Driver

The i.MX23 LCDIF driver implements the Linux kernel-space API for basic LCD interface operations
such as initialization, as well as LCD interface DMA abstraction for the callers. The interface is used by
other graphics components like the LCD panel drivers or the Frame buffer driver.

2.35.2 LCD Panel Drivers

LCD panel drivers provide an abstraction of a video output device for the Frame buffer driver. The LCD
panel driver implements specific LCDIF initialization and exposes a set of API calls to the frame buffer
driver so that it can control video output devices and perform dynamic switching between them (for
example, run-time switching between the LCD panel and TV-output).

2.3.5.3 Frame Buffer Driver

The Frame buffer driver implements a standard Linux fbdev interface for user space applications and
controls dynamic switching between different video outputs per user request.

2354 Pixel Pipeline (PXP) Driver

The PxP driver implements a Video for Linux (V4L2) interface to the i.MX23 PxP hardware capable of
performing various manipulations with video buffers such as scaling, cropping, rotation, alpha blending
and so on. The PxP module handles a video stream received from user space from the V4L interface, then
combines it with the frame buffer image and outputs the final image to the LCDIF module.

The graphics components can operate in two modes, with PxP enabled or disabled. Figure 2-2 shows the
different video data flows depending on different modes.

2.3.6 Sound Driver

The components of the audio subsystem are applications, the Advanced Linux Sound Architecture
(ALSA), the audio driver, and the hardware. Applications interface with the ALSA, and the ALSA
interfaces with the audio driver, which in turn controls the hardware of the audio subsystem. For more
information about ALSA, see www.alsa-project.orqg.

The sound driver runs on the ARM processor. Digital audio data is carried over the digital audio link
interface to the codec hardware. This is managed by the audio driver. There may be one or more audio
streams, depending on the codec, such as voice or stereo DAC. The audio driver configures sample rates,
formats, and audio clocks. The audio driver also manages the setup and control of the codec, DMA, and
audio accessories, such as headphones and microphone detection. Stream mixing may also be supported,
depending on the codec.

2.3.7 Keypad

The keypad driver interfaces Linux to the keypad ladder connected to the i.MX23 LRADC controller. The
software operation of the driver follows the Linux keyboard architecture.The driver is driven by interrupts
generated by the LRADC controller when changing a signal on the keypad ladder input pin. The driver

i.MX23 EVK Linux Reference Manual

2-8 Freescale Semiconductor

http://www.opensound.com

Architecture

reads a current voltage on the LRADC pin, detects which key is being pressed and sends a key code to the
upper layer. The driver detects long key presses and reports them as multiple key press events.The keypad
driver may be used as a wake-up source for low-power standby mode.

2.3.8 Memory Technology Device (MTD) Driver

MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of Flashes. As each
memory device has its own idiosyncrasies in terms of read and write, the MTD subsystem provides a
unified and uniform access to the various memory devices.

Figure 2-3 shows the MTD architecture.

(Kernel Virtual Filesystem Layer W

[Disk-5tyle Filesystem]

MTD "User Modules™

(o) () (awom) pmnron) (nme) (o) (T

Memory Technology Devices "glue logic™

e

MTD chip drivers

[Diskﬂnthip] Elncacheil Mhﬂ [RAM. ROM]

{ Virtual] [Block]
. Memo i
[CFI—Complmm flash] [Hon-DiskOnChip HAND flash] b DENiEE

Virtual devices for testing and evaluation

Note: UBI and UBFS User Modules
] are supported in 1.MX23

[Memory Device Hardware

Figure 2-3. MTD Architecture

Figure 2-3 is excerpted from Building Embedded Linux Systems, which describes the MTD subsystem.
The user modules should not be confused with kernel modules or any sort of user-land software
abstraction. The term MTD user module refers to software modules within the kernel that enable access to
the low-level MTD chip drivers by providing recognizable interfaces and abstractions to the higher levels
of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
properties in the mtd_info argument to the add_mtd_device() function. The callbacks an MTD driver has
to provide are called by the MTD subsystem to carry out operations, such as erase, read, write, and sync.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-9

Architecture

2.3.8.1 GPMI/NAND

The GPMI/NAND driver interfaces with the i.MX23 GPMI/NAND module that is able to interact with a
variety of NAND flash chips with 2 Kbyte and 4 Kbyte page sizes. The driver implements a standard
interface for the upper MTD subsystem layer and supports various file systems, such as JFFS2, UBIFS or
different commodity file systems (for example, FAT or EXT2) created on top of the UBI FTL.

The GPMI/NAND driver supports the i.MX23 BCH HW error correcting code (ECC) engine that speeds
up NAND flash read and write operations

2.3.9 USB Driver

The Linux kernel supports two main types of USB drivers: drivers on a host system and drivers on a
device. A common USB host is a desktop computer. The USB drivers for a host system control the USB
devices that are plugged into it. The USB drivers in a device, control how that single device looks to the
host computer as a USB device. Because the term “USB device drivers” is very confusing, the USB
developers have created the term “USB gadget drivers” to describe the drivers that control a USB device
that connects to a computer.

2.3.9.1 USB Host-Side API Model

Within the Linux kernel, host-side drivers for USB devices talk to the usbcore APIs. There are two types
of public usbcore APIs, targeted at two different layers of USB driver:

» General purpose drivers, exposed through driver frameworks such as block, character, or network
devices

» Drivers that are part of the core, which are involved in managing a USB bus.
Such core drivers include the hub driver, which manages trees of USB devices, and several different kinds

of host controller drivers (HCDs), which control individual buses. See Chapter 2 of
http://www.kernel.org/doc/htmldocs/usb.html, for more information.

The device model seen by USB drivers is relatively complex:

» USB supports four kinds of data transfer (control, bulk, interrupt, and isochronous). Two transfer
types use bandwidth as it is available (control and bulk), while the other two types of transfer
(interrupt and isochronous) are scheduled to provide guaranteed bandwidth.

» The device description model includes one or more configurations per device, only one of which
is active at a time. Devices that are capable of high speed operation must also support full speed
configurations, along with a way to ask about the other speed configurations that might be used.

» Configurations have one or more interfaces. Interfaces may be standardized by USB Class
specifications, or may be specific to a vendor or device.

» Interfaces have one or more endpoints, each of which supports one type and direction of data
transfer such as bulk out or interrupt in.

» The only host-side drivers that actually touch hardware (reading/writing registers, handling IRQs,
and so on) are the HCDs.

i.MX23 EVK Linux Reference Manual

2-10 Freescale Semiconductor

http://www.kernel.org/doc/htmldocs/usb.html

Architecture

2.3.9.2 USB Device-Side Gadget Framework
The Linux Gadget API can be used by peripherals, which act in the USB device (slave) role.

Components of the Gadget Framework (see http://www.linux-usb.org/gadget/) are as follows:

» Peripheral Controller Drivers—implement the Gadget API, and are the only layers that talk directly
to the hardware. Different controller hardware needs different drivers, which may also need
board-specific customization. These provide a software gadget device, visible in sysfs. This device
can be thought of as being the virtual hardware to which the higher-level drivers are written.

» Gadget Drivers—use the Gadget API, and can often be written to be hardware-neutral. A gadget
driver implements one or more functions, each providing a different capability to the USB host,
such as a network link or speakers.

» Upper Layers, such as the network, file system, or block 1/0 subsystems—qgenerate and consume
the data that the gadget driver transfers to the host through the controller driver.

2.3.9.3 USB OTG Framework

Systems need specialized hardware support to implement OTG, including a special Mini-AB jack and
associated transceiver to support Dual-Role operation. They can act either as a host, using the standard
Linux-USB host side driver stack, or as a peripheral, using the Gadget framework. To do that, the system
software relies on small additions to those programming interfaces, and on a new internal component (here
called an OTG Controller) affecting which driver stack connects to the OTG port. In each role, the system
can re-use the existing pool of hardware-neutral drivers, layered on top of the controller driver interfaces
(usb_bus or usb_gadget). Such drivers need at most minor changes, and most of the calls added to support
OTG can also benefit non-OTG products.

» Gadget drivers test the is_otg flag, and use it to determine whether or not to include an OTG
descriptor in each of their configurations.

e Gadget drivers may need changes to support the two new OTG protocols, exposed in new gadget
attributes suchasb_hnp_enable flag. HNP support should be reported through a user interface (two
LEDs could suffice), and is triggered in some cases when the host suspends the peripheral. SRP
support can be user-initiated just like remote wakeup, probably by pressing the same button.

» Onthe host side, USB device drivers need to be taught to trigger HNP at appropriate moments,
using usb_suspend_device(). That also conserves battery power, which is useful even for non-OTG
configurations.

» Also on the host side, a driver must support the OTG Targeted Peripheral List, a whitelist used to
reject peripherals not supported with a given Linux OTG host. This whitelist is
product-specific—each product must modify otg_whitelist.h to match its interoperability
specification.

Non-OTG Linux hosts, such as PCs and workstations, normally have some solution for adding drivers, so
that peripherals that are not recognized can eventually be supported. That approach is unreasonable for
consumer products that may never have their firmware upgraded, and where it is usually unrealistic to
expect traditional PC/workstation/server kinds of support model to work. For example, it is often
impractical to change device firmware once the product has been distributed, so driver bugs cannot
normally be fixed if they are found after shipment.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-11

Architecture

Additional changes are needed below those hardware-neutral usb_bus and usb_gadget driver interfaces but
those are not discussed here. Those affect the hardware-specific code for each USB Host or Peripheral
controller, and how the HCD initializes (since OTG can be active only on a single port). They also involve
what may be called an OTG Controller Driver, managing the OTG transceiver and the OTG state machine
logic as well as much of the root hub behavior for the OTG port. The OTG controller driver needs to
activate and deactivate USB controllers depending on the relevant device role. Some related changes were
needed inside usbcore, so that it can identify OTG-capable devices and respond appropriately to HNP or
SRP protocols.

2.3.10 General Drivers

General drivers discussed in the following sections, include the following:
* Multimedia Card (MMC)/Secure Digital (SD) driver
« 12C Client and Bus drivers
* Dynamic Power Management (DPM) driver

2.3.10.1 MMC/SD Host Driver

The MMC/SD card driver implements a standard Linux MMC host driver SSP interface configured to
work in MMC/SD mode. The driver is an underlying layer for the Linux MMC block driver that follows
standard Linux driver API. The driver has the following features:

e MMC/SD cards

e Standard MMC/SD commands

* 1-bit or 4-bit operation

e Card insertion and removal events
» Write protection signal

2.3.10.2 Inter-IC (1°C) Bus Driver

The 12C bus driver is a low-level interface that is used to interface with the 1°C bus. This driver is invoked
by the 12C chip driver. It is not exposed to the user space. The standard Linux kernel contains a core 1°C
module that is used by the chip driver to access the bus driver to transfer data over the 12C bus. The chip
driver uses a standard kernel space API that is provided in the Linux kernel to access the core 12C module.
The standard 12C kernel functions are documented in the files available under bocumentationsi2c in the
kernel source tree. This bus driver supports the following features:

« Compatibility with the 1°C bus standard

* Bit rates up to 400 Kbps

» Start and stop signal generation/detection

» Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer

« Standard 1°C master mode

« Power management features by suspending and resuming 1°C

i.MX23 EVK Linux Reference Manual

2-12 Freescale Semiconductor

Architecture

The 12C slave mode is not supported by this driver.

2.3.10.3 SPI Bus Driver

This low-level SPI module provides an interface to the i.MX23 SSP interface configured to work in SPI
master mode. The driver implements standard kernel space API for the Linux SPI core driver that
implements a kernel-space interface for other drivers for various SPI devices, such as SPI ethernet
controller or power management interface controller (PMIC).

The 1.MX23 implements a single DMA channel for SSP interface which does not allow full-duplex
bidirectional transfers over the SPI bus. This limitation should be taken into account when developing
drivers for SPI devices located on the i.MX23 based boards.

Both DMA and byte-to-byte transfers are supported.

2.3.10.4 Dynamic Power Management (DPM) Driver

DPM refers to power management schemes implemented while programs are running. DPM focuses on
system wide energy consumption while it is running. In any CPU-intensive application, lowering bus
frequencies from their maximum performance points can result in system wide energy savings. DPM
implementation includes the following data structures:

» Operating points
» Operating states
» Policies

» Policy manager

2.3.10.4.1 Policy Architecture

A DPM policy is a named data structure installed in the DPM implementation within the operating system,
and managed by the policy manager, which may be outside of the operating system. Once a DPM system
is initialized and activated, the system is always executing a particular DPM policy.

2.3.10.4.2 Operating Points

At any given point in time, a system is said to be executing at a particular operating point. The operating
point is described using hardware parameters, such as core voltage, CPU and bus frequencies, and the
states of peripheral devices. A DPM system could properly be defined as the set of rules and procedures
that move the system from one operating point to another as events occur.

2.3.10.4.3 Operating States

As already mentioned, the system supports multiple operating points. Some rules and mechanisms are
required to move the system from one operating point to another. Each operating state is associated with
an operating point. The system at a particular operating point is said to be in an operating state.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-13

Architecture

2.3.10.4.4 Policy Managers

A policy maps each operating state to a congruent class of operating points. The system supports multiple
operating states and hence multiple operating points. At any point in time, the system operates using a
single policy. For example, a power management strategy contains at least one policy, and may specify as
many different policies as necessary for different situations. If multiple policies are needed, then a policy
manager must exist in the system to coordinate the activation of different policies.

Figure 2-4 shows the high level design for DPM.

Low-Lewel PM driver

|

CRM/ICSM

Figure 2-4. DPM High Level Design

Figure 2-5 shows the DPM architecture block diagram.

Power mgmt
Request Requirements

Operating/task
State change

Software
Hardware

Sets operating points, Changing
power-performance
levels

| PLLO | | PLL1 | | PLL2 |

.

Low-level PM driver [_Raise or lower New Voltage
Performance Frequency CRM
levels

Figure 2-5. DPM Architecture Block Diagram

2.3.10.5 Low-Level Power Management Driver

The low-level power management driver is responsible for implementing hardware-specific operations to
meet power requirements and also to conserve power. Driver implementation may be different for different
platforms. It is used by the DPM layer. This driver implements dynamic voltage and frequency scaling
(DVFS) or dynamic frequency scaling (DFS) techniques, depending on the platform, and low-power
modes. The DVFS or DFS driver is used to change the frequency/voltage or frequency only when the DPM
layer decides to change the operating point to meet the power requirements. This is done when the system

i.MX23 EVK Linux Reference Manual

2-14 Freescale Semiconductor

Architecture

is in RUN mode which helps in conserving power while the system is running. Low-power modes, such
as WAIT and STOP are also implemented to save power. In all these cases, power consumption is managed
by reducing the voltage/frequency and the severity of clock gating.

2.3.10.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver

The DVFS driver is responsible for varying the frequency and voltage of the ARM core. Other software
modules interface to it through a custom, kernel-space API. The mode can be controlled manually through
the API and automatically on those processors with the required monitor hardware.

2.3.10.7 Backlight Driver

The backlight driver implements a standard Linux kernel-space interface for a Linux kernel backlight core
driver that, in turn, exposes LCD backlight control interface to user space applications by sysfs.

The backlight driver controls the LCD backlight though the i.MX23 PWM modules connected either
directly to the LCD panel backlight LED or to the intermediate backlight controller that sets backlight LED
brightness based on input PWM signal. The LCD panel driver implements a LCD specific part of backlight
control which is registered with the i.MX23 backlight driver. See Section 2.3.5, “i.MX28 Graphics,” for
more details about the LCD panel drivers

2.3.10.8 LED Driver

The LED driver controls on-board LEDs connected to the i.MX23 PWM module. The LED driver
implements a standard interface that is exposed to user space applications by sysfs and other kernel drivers
though the kernel space API, which may use LEDs to warn about different events, such as timer ticks or
MMC data transfers.

2.3.10.9 Power Source Manager and Battery Charger

Power Source Manager and Battery charger drivers controls the i.MX23 power supply module. The
i.MX23 may be powered from different power sources that include:

e 5V wall power supply
« 5VUSB
e Li-lon 3.7 V battery

Regardless of the power input, the power supply supplies voltage to several output voltage rails intended
to power various on-chip and on-board components, such as ARM CPU core, SDRAM, peripheral 1/0
devices and so on. The way that these output voltages are generated depends on which power source is
used. When the device is powered from a 5 V source, it uses internal voltage regulators to convert input
voltage. When the device is powered from a battery source, it uses on-chip DC-DC converters. Certain
software operations are required during transition from one power source to another, for which the power
source manager driver is responsible. Also the power source manager notifies other drivers about power
source changes.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-15

Architecture

The i.MX23 power supply contains a built-in battery charger module capable of charging Li-lon batteries.
The battery charger driver implements a state machine that controls charging current and protects the
battery from damage caused by under or overcharging.

Both drivers are implemented in a single standalone module and do not expose any interfaces to other
kernel or userspace components except subscribing for different events detected by the drivers.

2.3.10.10 CPUFreq Driver

The CPUFreq driver is built on top of the voltage regulators and clock framework and implements a set of
operating points that define clock speed of CPU, SDRAM and AHB bus along with appropriate CPU
voltage value. The CPUFreq driver is plugged into Linux kernel CPUFreq subsystem that, in turn,
implements a set of different policies (governors) that control transitions between different operating
points.

2.4 Boot Loaders
A boot loader is a small program that runs first after a CPU powers up. A boot loader is required to boot
an ARM Linux system. The boot loader for ARM Linux serves several purposes:

e Loads Linux kernel image to SDRAM

» Obtains proper information for the Linux kernel

» Passes control to the Linux kernel

NOTE
Not all boot loaders are supported on all boards.

2.4.1 I.MX23 Boot Loader

For the i.MX23, some boot loader functionality is delegated to the built-in ROM firmware that is capable
of loading a boot stream image containing the Linux kernel from different locations. The boot stream, in
turn, implements hardware initialization and an interface to the Linux kernel. Since the i.MX23 built-in
ROM is entirely implemented in hardware, it is not described in this document.
The i.MX23 boot image may contain the following bootlets implementing general boot loader functions:
» Boot prep
* Linux prep
* U-boot bootloader

i.MX23 EVK Linux Reference Manual

2-16 Freescale Semiconductor

Architecture

Figure 2-6 shows block diagrams of two boot stream images.

Boot sream |corfmands} boot_prep | sdram_prep | linux_prep Linux zimage
Loading Linux kernel with the STMP378x ROM
ROM —
Boot sream commands| PooLPrep | sdram_prep U-boot ~_ (TcPIP)

Linux zlmage

Loading Linux kernel with U-boot via network

Figure 2-6. 1.MX23 Boot Stream

24.1.1 Boot Prep

The boot prep bootlet implements basic power supply, EMI controller initialization and clock initialization
necessary to start the Linux kernel.

2.4.1.2 Linux Prep

This component provides a standard interface between ARM Linux kernel and bootloader, including:

» Generating a list of ARM tags containing necessary information, such as SDRAM size, ARM CPU
and machine identification and Linux kernel command line.

e Jumping to the Linux kernel that has already been downloaded to SDRAM by the i.MX23 ROM
firmware.

2.4.1.3 U-boot

U-boot is an open source universal boot loader for various embedded platforms including ARM, PowerPC,
MIPS and so on. For the i.MX23, U-boot is used to load Linux kernel image to SDRAM over a network
connection because the i.MX23 built-in ROM firmware does not implement a TCP/IP network stack.

The 1.MX23 U-boot port initializes the SSP interface in SPI mode and implements a driver for the
ENC28J60 SPI ethernet controller used to transfer data over TCP/IP network.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 2-17

Architecture

i.MX23 EVK Linux Reference Manual

2-18 Freescale Semiconductor

Chapter 3
Machine Specific Layer (MSL)

The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent
components:

* Interrupts including GPIO and EDIO (only on certain platforms)

o Timer

* Memory map

e General purpose input/output (GPIO) including IOMUX on certain platforms

These modules are normally available in the following directory:
<litb_dir>/rpm/BUILD/linux/arch/arm/mach-mx23 for imx23 platform

The header files are implemented under the following directory:

<ltib_dir>/rpm/BUILD/ 1 inux/arch/arm/plat-mxs/include/mach

The MSL layer contains not only the modules common to all the boards using the same processor, such as
the interrupts and timer, but it also contains modules specific to each board, such as the memory map. The
following sections describe the basic hardware and software operation and the software interfaces for MSL
modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-specific
modules, such as Memory Map and general purpose input/output (GP10) (including IOMUX on some
platforms) are detailed. Each of the following sections contains an overview of the hardware operation.
For more information, see the corresponding device documentation.

3.1 Interrupts

The 1.MX23 uses an Interrupt Collector module. The following sections explain the hardware and software
operation for the interrupts.

3.1.1 Interrupt Hardware Operation

The Interrupt Collector module controls and prioritizes a maximum of 128 internal and external interrupt
sources. Each source can be enabled and disabled by configuring the ENABLE bit in the dedicated
Hardware Interrupt Collector Interrupt register. When an interrupt source is enabled and the corresponding
interrupt source is asserted, the Interrupt Collector asserts a normal or a fast interrupt request to the ARM
core depending on the ENFIQ bit value in the dedicated Hardware Interrupt Collector Interrupt register.

The Interrupt Collectors interrupt requests are prioritized in the order of fast interrupts and normal
interrupts in order of highest priority level. There are four normal interrupt levels, with zero level being
the lowest priority. The interrupt levels are configurable through the PRIORITY bits of the Hardware

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 3-1

Machine Specific Layer (MSL)

Interrupt collector Interrupt register. Only in supervisor mode can the Interrupt Collector registers be
accessed. A number of IRQ sources can be expanded by using GPIO lines to assert interrupts.

3.1.2 Interrupt Software Operation

In ARM based processors, normal interrupt and fast interrupt are two different exceptions. The exception
vector addresses can be configured to start at a low address (0x0) or at a high address (OXFFFF0000). The
ARM Linux implementation chooses the high vector address model. The following file has a detailed
description about the ARM interrupt architecture:

<Itib_dir>/rpm/BUILD/ Il inux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the
irqgchip structure and exports one initialization function, which is called during system startup.

3.1.3 Interrupt Source Code Structure

The MSL interrupt layer is implemented in the source files shown in Table 3-1, located in the directories
indicated at the beginning of this chapter:
Table 3-1. Interrupt Files List

File Description
icoll.c Interrupt manipulation functions
irgs.h Interrupt source numbers
regs-icoll.h Interrupt Collector registers
entry-macro.S Interrupt source detection

3.1.4 Interrupt Programming Interface

The machine specific layer implementation exports a single function that initializes the Interrupt Collector
and register interrupt manipulation routines for each interrupt source in the system. This is done with the
structures irg_chip and mxs_gpio_chip 0f the irg_chip type that contain functions to enable, disable, and
acknowledge interrupt sources.

The irqg_chip is associated with i.MX23 normal 128 interrupt sources while mxs_gpio_chi is used for
external GPIO interrupts. Each interrupt source is associated with one of the irqg_chip structures with the
set_irqg_chip call. After initialization, the interrupt can be used by the drivers through the request_irqQ)
and free_irq() functions to register device-specific interrupt handlers. Upon receiving the interrupt, the
interrupt code uses get_irgnr_and_base to detect the interrupt source, acknowledges the interrupt using
the registered irq_chip structure set by the MSL, and calls the registered device-specific interrupt handler.
Depending on the flags passed to the request_irq function, the code may disable the interrupt using an
irg_chip call before executing the device-specific handler.

i.MX23 EVK Linux Reference Manual

3-2 Freescale Semiconductor

Machine Specific Layer (MSL)

3.2 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system timer (which
generates periodic interrupts) and the dynamic timers (to schedule events). Once the system timer interrupt
occurs, it does the following:

» Updates the system uptime

* Updates the time of day

» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired

» Updates resource usage and processor time statistics

The timer hardware consists of four 16-bit 32 KHz timers.

3.2.1 Timer Hardware Operation

Each of the four timers consists of a 16-bit fixed count value and a 16-bit free-running count value. In most
cases, the free-running count decrements to 0. When it decrements to 0, it sets an interrupt status bit
associated with the counter, which causes:

» Ifthe RELOAD bitis setto 1, the count is automatically copied to the free-running counter and the
count continues

» Ifthe RELOAD bit is not set, the timer stalls when it reaches 0
Each timer has an UPDATE bit that controls whether the free-running-counter is loaded at the same time
that the fixed-count register is written from the CPU. The output of each timer’s source select has a polarity
control that allows the timer to operate on either edge. The timers have multiple clock sources that include

the PWM output signals and the on-chip 32 KHz XTAL that, in turn, can be programmed to 32 KHz,
8 KHz, 4 KHz or 1 KHz timer update cycles.

3.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the
proper clock source, interrupt mode and interrupt interval. The timer then registers its interrupt service
routine and starts timing. The interrupt service routine is required to service the OS for the purposes
mentioned in Section 3.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

3.2.3 Timer Features

The timer implementation supports the following features:
» Functions required by Linux to provide the system timer and dynamic timers.
» Generates an interrupt every 10 ms.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 3-3

Machine Specific Layer (MSL)

3.24 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxs/time-nomatch.c file.

3.25 Timer Programming Interface

The timer module utilizes two hardware timers, 0 and 1, to implement clock source and clock event
objects. This is done with the cksrc_mxs_nomatch structure of struct clocksource type and ckevt_timrot
structure of struct clock_event type. Both structures provide routines required for reading current timer
values and scheduling the next timer event. The module implements a timer interrupt routine that services
the Linux OS with timer events for the purposes mentioned in the beginning of this chapter.

3.3 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to access to the
device registers since the Linux kernel is running under the virtual address space with the Memory
Management Unit (MMU) enabled.

3.3.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping defined by the page
table. For more information, see the ARM Technical Reference Manual (TRM) from ARM Limited.

3.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX platforms as defined in
the <Itib_dir>/rpm/BUILD/ 1 inux/arch/arm/mach-mx23/mx23evk.c file.

3.3.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the physical to virtual
memory map for all the 1/0 modules.

3.34 Memory Map Source Code Structure

The Memory Map module implementation is in mx23evk. c under the platform-specific MSL directory. The
hardware.h header file is used to provide macros for all the 10 module physical and virtual base addresses
and physical to virtual mapping macros. All of the memory map source code is in the in the following
directories:

<Itib_dir>/rpm/BUILD/ 1 inux/arch/arm/plat-mxs/include/mach

<Itib_dir>/rpm/BUILD/ Il inux/arch/arm/mach-imx
<Itib_dir>/rpm/BUILD/ Il inux/arch/arm/mach-<platform>

i.MX23 EVK Linux Reference Manual

3-4 Freescale Semiconductor

Machine Specific Layer (MSL)

Table 3-2 lists the source file for the memory map.
Table 3-2. Memory Map Files

File Description

hardware.h Header files

mx23evk.c Memory map definition file

3.3.5 Memory Map Programming Interface

The Memory Map is implemented in the mx23evk.c file to provide the map between physical and virtual
addresses. It defines an initialization function to be called during system startup.

3.4 Pin Multiplexing

The i.MX23 implements a flexible pin multiplexing mechanism that permits using the same SoC 1/O pins
for different purposes depending on the board hardware configuration. The following section describes the
Pin Multiplexing software and hardware operation.

3.4.1 Pin Multiplexing Hardware Operation

The i.MX23 SoC implements 120 digital interface pins divided into four banks. The first three banks
implement multiplexed pins where each pin can be routed up to three different modules or serve as GPIO.
The fourth bank implements EMI pins which are not multiplexed.
The pin control interface has the following features:

» All digital pins have selectable output drive strengths

* All EMI pins have 1.8/2.5 V and 3.3 V selects

» Several digital pins can be programmed to enable pull up resistors

3.4.2 Pin Multiplexing Software Operation

The MSL contains board specific files that define 1/O pin routing and provide functions for device drivers
to set up pin routing during the initialization stage. These mechanisms allow board-independent drivers
where all board-specific details are hidden within the MSL. The pin multiplexing implements a pin
resource manager intended to prevent conflicting access to shared 1/O pins by different device drivers.

i.MX23 EVK Linux Reference Manual

Freescale Semiconductor 3-5

Machine Specific Layer (MSL)

3.4.3 Pin Multiplexing Source Code Structure

The MSL Pin Multiplexing layer is implemented in the directories listed at the beginning of this chapter.
The files are listed in Table 3-3.

Table 3-3. Pin Multiplexing Source Files

File Description
mx23_pins.h 1/O pins definitions
pinctrl.c Pin Multiplexing APl implementation

3.4.4 Pin Multiplexing Programming Interface

The MSL Pin Multiplexing module provides a kernel-space internal MSL interface to control 1/0 pins.
This interface is not exposed to other device drivers or kernel components. The interface indirectly sets up
pin configuration through driver-specific callbacks implemented by the MSL. Board-specific details are
hidden for easier driver migration.

The Pin Multiplexing API defines the following structures and functions:
enum pin_fun, enum pin_strength, enum pin_voltage
Define pin routing and configuration.
struct pin desc, struct pin group
Describe a group of pins.
int mxs_request_pin(unsigned id, enum pin_fun fun, char *label)
Request access to a pin. The label should be used later to configure pin parameters.
void mxs_release_pin(unsigned id, char *label)
Release the pin.
int mxs_request_pin_group(struct pin_group *pin_group, char *label)
Request access to a group of pins.
void mxs_release_pin_group(struct pin_group *pin_group, char *label
Release pin group.
void mxs_pin_strength(unsigned id, enum pin_strength strength, char *label)
Set pin output strength.
void mxs_pin_voltage(unsigned id, enum pin_voltage voltage, char *label)
Set pin output voltage.

void mxs_pin_pullup(unsigned id, int enable, char *label)
Control pull up resistor of a pin.

3.45 GPIO With Pin Multiplexing

The Pin Multiplexing module allows routing multiplexed pins to the general purpose input/output module
that provides an API to configure pins and a central place to configure GPIO interrupts. Once the i. MX23
pin is routed to the GPIO module, this pin can be manually configured by a set of the pin multiplexing

i.MX23 EVK Linux Reference Manual

3-6 Freescale Semiconductor

Machine Specific Layer (MSL)

registers dedicated to the GPIO module. These registers allow setting pin direction (input or output), pin

output value, and pin configuration as an interrupt source by specifying an interrupt trigger mode (edge or
level, high or low).

Each Linux kernel driver or subsystem can request an external pin to be configured as GPIO and then
control the pin state using a kernel-space standard Linux GP1O API. The GPIO pins are handled with the
standard GP10O API as documented in bocumentation/gpio.txt. The MSL GPIO module implementation
is contained in the gpio.c and gpio.h files in the directories indicated at the beginning of this chapter.

i.MX23 EVK L