
Windows Embedded CE 6.0

Reference Manual

Part Number: 924-76370
 Rev. 2010.08

08/2010

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor ii

Contents

About This Book

Chapter 1
Introduction

1.1 Getting Started . 1-1
1.2 Windows Embedded CE 6.0 Architecture . 1-1

Chapter 2
Audio Driver

2.1 Audio Driver Summary . 2-1
2.2 Supported Functionality . 2-2
2.3 Hardware Operation . 2-2
2.3.1 Audio Hardware Design . 2-2
2.3.2 Audio Playback. 2-2
2.3.3 Audio Recording. 2-3
2.3.4 Required SoC Peripherals . 2-4
2.3.5 Conflicts with SoC Peripherals. 2-4
2.3.6 Conflicts with Board Peripherals . 2-4
2.3.7 Known Issues . 2-4
2.4 Software Operation . 2-4
2.4.1 Audio Playback. 2-4
2.4.2 Audio Recording. 2-5
2.4.3 Audio Driver Compile-Time Configuration Options . 2-5
2.4.4 DMA Support . 2-6
2.4.5 Power Management . 2-7
2.4.6 Audio Driver Registry Settings. 2-8
2.5 Unit Test . 2-9
2.5.1 Unit Test Hardware. 2-9
2.5.2 Unit Test Software . 2-9
2.5.3 Building the Audio Driver CETK Tests . 2-10
2.5.4 Running the Audio Driver CETK Tests . 2-10
2.6 System Level Audio Driver Tests. 2-10
2.6.1 Checking for a Boot-Time Musical Tune . 2-10
2.6.2 Confirming Touchpanel Taps and Keypad Key Presses . 2-10
2.6.3 Playing Back Sample Audio and Video Files Using the Media Player 2-11
2.6.4 Using the SDK Sample Audio Applications for Testing . 2-11
2.7 Audio Driver API Reference . 2-11
2.8 Audio Driver Troubleshooting Guide. 2-11
2.8.1 Checking Build-Time Configuration Options . 2-11
2.8.2 Media Player Application Not Found. 2-11
2.8.3 Media Player Fails to Load and Play an Audio File . 2-12

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

iii Freescale Semiconductor

Chapter 3
Backlight Driver

3.1 Backlight Driver Summary . 3-1
3.2 Supported Functionality . 3-1
3.3 Hardware Operation . 3-1
3.3.1 i.MX28-EVK Hardware Operation. 3-2
3.4 Software Operation . 3-2
3.4.1 Backlight Driver Registry Settings . 3-2
3.4.2 Power Management . 3-2
3.5 Unit Test . 3-3
3.5.1 Unit Test Hardware. 3-3
3.5.2 Unit Test Software . 3-3
3.5.3 Running the Backlight Application Test . 3-4
3.6 Backlight API Reference . 3-4

Chapter 4
Battery Driver

4.1 Battery Driver Summary. 4-1
4.2 Supported Functionality . 4-1
4.3 Hardware Operation . 4-2
4.3.1 Conflicts with Other SoC Peripherals. 4-2
4.4 Software Operation . 4-2
4.4.1 Battery Driver Registry Settings. 4-2
4.4.2 Power Management . 4-2
4.5 Unit Test . 4-3
4.5.1 Unit Test Hardware. 4-3
4.6 Battery API Reference . 4-3

Chapter 5
Boot from Secure Digital/MultiMedia Card (SD/MMC)

5.1 Boot from SD/MMC Summary . 5-1
5.2 Supported Functionality . 5-1
5.3 Hardware Operation . 5-2
5.3.1 Conflicts with Other Peripherals and Catalog Items . 5-2
5.4 Software Operation . 5-2
5.5 Card Flashing Tool . 5-2
5.5.1 Write Image (EBOOT) to SD Card . 5-2
5.5.2 System Boot . 5-2

Chapter 6
Chip Support Package Driver Development Kit (CSPDDK)

6.1 CSPDDK Driver Summary. 6-1

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor iv

6.2 Supported Functionality . 6-1
6.3 Hardware Operation . 6-2
6.3.1 Conflicts with Other Peripherals and Catalog Items . 6-2
6.4 Software Operation . 6-2
6.4.1 Communicating with the CSPDDK . 6-2
6.4.2 Compile-Time Configuration Options . 6-2
6.4.3 Registry Settings . 6-2
6.4.4 Power Management . 6-2
6.5 Unit Test . 6-3
6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference . 6-3
6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference. 6-6
6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference . 6-8
6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference. 6-10

Chapter 7
Configurable Serial Peripheral Interface (CSPI) Driver

7.1 CSPI Driver Summary . 7-1
7.2 Supported Functionality . 7-1
7.2.1 Conflicts with Other Peripherals and Catalog Items . 7-1
7.2.2 Conflicts with EVK Peripherals . 7-2
7.3 Software Operation . 7-2
7.3.1 Registry Settings . 7-2
7.3.2 Communicating with the CSPI . 7-2
7.3.3 Creating a Handle to the CSPI . 7-2
7.3.4 Data Transfer Operations . 7-3
7.3.5 . Closing the Handle to the CSPI7-4
7.3.6 Power Management . 7-4
7.4 Unit Test . 7-5
7.4.1 Building the Unit Tests . 7-5
7.5 CSPI Driver API Reference . 7-5
7.5.1 CSPI Driver IOCTLs . 7-6
7.5.2 CSPI Driver SDK Wrapper. 7-6
7.5.3 CSPI Driver Structures . 7-7

Chapter 8
Display Driver for LCDIF and PXP

8.1 Display Driver Summary . 8-1
8.2 Supported Functionality . 8-1
8.3 Hardware Operation . 8-2
8.3.1 Conflicts with Other Peripherals and Catalog Items . 8-2
8.4 Software Operation . 8-2
8.4.1 Software Driver Components . 8-3
8.4.2 Communicating with the Display . 8-4
8.4.3 Configuring the Display . 8-5

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

v Freescale Semiconductor

8.4.4 Power Management . 8-6
8.5 Unit Test . 8-7
8.5.1 Unit Test Hardware. 8-7
8.5.2 Unit Test Software . 8-7
8.5.3 Building the Unit Tests . 8-8
8.5.4 Running the Unit Tests . 8-9
8.6 Display Driver API Reference . 8-9

Chapter 9
Dynamic Voltage and Frequency Control (DVFC) Driver

9.1 DVFC Driver Summary . 9-1
9.2 Supported Functionality . 9-1
9.2.1 i.MX28 Supported Functionality . 9-2
9.3 Hardware Operation . 9-2
9.3.1 Conflicts with Other Peripherals and Catalog Items . 9-2
9.3.2 i.MX28 EVK Configuration . 9-2
9.4 Software Operation . 9-2
9.4.1 i.MX28 Registry Settings . 9-2
9.4.2 Loading and Initialization . 9-2
9.4.3 Operation . 9-2
9.4.4 DDK Interface. 9-3
9.4.5 Power Management . 9-3
9.5 Unit Test . 9-4
9.5.1 i.MX28 Unit Testing. 9-4

Chapter 10
Ethernet MAC Controller (ENET) Driver

10.1 Ethernet MAC Driver Summary. 10-1
10.2 Supported Functionality . 10-1
10.3 Hardware Operations . 10-2
10.3.1 Conflicts with Other Peripherals and Catalog Items . 10-2
10.4 Software Operations . 10-2
10.4.1 ENET Driver Registry Settings . 10-2
10.4.2 IEEE 1588 Features . 10-4
10.5 Unit Tests . 10-6
10.5.1 Unit Test Hardware. 10-6
10.5.2 Unit Test Software . 10-6
10.5.3 Building the Unit Tests . 10-7
10.5.4 Running the Unit Tests . 10-8
10.6 Ethernet ENET Driver API Reference . 10-10

Chapter 11

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor vi

Inter-Integrated Circuit (I2C) Driver

11.1 I2C Driver Summary. 11-1
11.2 Supported Functionality . 11-1
11.3 Hardware Operation . 11-1
11.3.1 Conflicts with Other Peripherals and Catalog Items . 11-2
11.4 Software Operation . 11-2
11.4.1 Registry Settings . 11-2
11.4.2 Communicating with the I2C . 11-3
11.4.3 Creating a Handle . 11-3
11.4.4 Configuring the I2C . 11-3
11.4.5 Data Transfer Operations . 11-4
11.4.6 Closing the Handle . 11-5
11.5 Unit Test . 11-5
11.5.1 Unit Test Hardware. 11-5
11.5.2 Unit Test Software . 11-5
11.5.3 Building the Unit Tests . 11-5
11.5.4 Running the Unit Tests . 11-5
11.6 Hardware Limitations . 11-5
11.7 I2C Driver API Reference. 11-5
11.7.1 I2C Driver IOCTLS . 11-5
11.7.2 I2C Driver SDK Encapsulation. 11-7
11.7.3 I2C Driver Structures . 11-11

Chapter 12
Keypad Driver

12.1 Keypad Driver Summary . 12-1
12.2 Supported Functionality . 12-1
12.3 Hardware Operation . 12-1
12.3.1 Conflicts with Other Peripherals and Catalog Items . 12-2
12.3.2 Keypad . 12-2
12.4 Software Operation . 12-2
12.4.1 Keypad Scan Codes and Virtual Keys . 12-2
12.4.2 Power Management . 12-3
12.4.3 Keypad Registry Settings . 12-3
12.5 Unit Test . 12-4
12.5.1 Unit Test Hardware. 12-4
12.5.2 Unit Test Software . 12-4
12.5.3 Building the Unit Tests . 12-4
12.5.4 Running the Unit Tests . 12-4

Chapter 13
LR Analog-Digital Converter (LRADC) Driver

13.1 LRADC Driver Summary . 13-1

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

vii Freescale Semiconductor

13.2 Supported Functionality . 13-1
13.3 Hardware Operation . 13-2
13.3.1 Conflicts with Other Peripherals and Catalog Items . 13-2
13.4 Software Operation . 13-2
13.4.1 ADC Registry Settings . 13-2
13.4.2 Interfacing with the LRADC Driver . 13-2
13.5 Power Management . 13-2
13.5.1 LDC_PowerUp . 13-3
13.5.2 LDC_PowerDown . 13-3
13.5.3 IOCTL_POWER_CAPABILITES . 13-3
13.5.4 IOCTL_POWER_SET . 13-3
13.5.5 IOCTL_POWER_GET. 13-3
13.6 Unit Test . 13-3
13.7 LRADC SDK API Reference . 13-3
13.7.1 LRADCOpenHandle. 13-3
13.7.2 LRADCCloseHandle . 13-4
13.7.3 LRADCConfigureChannel . 13-4
13.7.4 LRADCEnableInterrupt . 13-4
13.7.5 LRADCClearInterruptFlag . 13-5
13.7.6 LRADCSetDelayTrigger . 13-5
13.7.7 LRADCCLearDelayChannel . 13-5
13.7.8 LRADCSetDelayTriggerKick . 13-6
13.7.9 LRADCGetAccumValue . 13-6
13.7.10 LRADCEnableBatteryMeasurement . 13-6
13.7.11 LRADCEnableDieMeasurement . 13-7
13.7.12 LRADCClearAccum. 13-7
13.7.13 LRADCEnableTouchDetect . 13-7
13.7.14 LRADCGetTouchDetect . 13-7
13.7.15 LRADCEnableTouchDetectInterrupt . 13-8
13.7.16 LRADCSetAnalogPowerUp. 13-8
13.7.17 LRADCClearTouchDetect . 13-8
13.7.18 LRADCEnableTouchDetectXDrive . 13-8
13.7.19 LRADCEnableTouchDetectYDrive . 13-9

Chapter 14
NAND Redundant Boot

14.1 NAND Redundant Boot Summary . 14-1
14.2 Supported Functionality . 14-1
14.3 Hardware Operation . 14-2
14.3.1 Conflicts with Other Peripherals and Catalog Items . 14-2
14.4 Software Operation . 14-2
14.5 Unit Test . 14-4
14.5.1 Testing Update Functionality . 14-4
14.5.2 Testing Restore Functionality . 14-4

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor viii

Chapter 15
Power Management Unit Driver

15.1 PMU Summary . 15-1
15.2 Supported Functionality . 15-1
15.3 Hardware Operation . 15-2
15.3.1 Conflicts with Other Peripherals and Catalog Items . 15-2
15.4 Software Operation . 15-2
15.4.1 Communicating with the PMU . 15-2
15.4.2 Compile-Time Configuration Options . 15-2
15.4.3 Registry Settings . 15-2
15.4.4 Power Management . 15-3
15.5 Unit Test . 15-3
15.6 PMU Driver API Reference . 15-3
15.6.1 PmuInitBatteryMonitor. 15-3
15.6.2 PmuGetBatteryVoltage . 15-3
15.6.3 PmuSetCharger . 15-3
15.6.4 PmuStopCharger . 15-4
15.6.5 PmuGetBatteryChargingStatus . 15-4
15.6.6 PmuSetVddd . 15-4
15.6.7 PmuGetVddd . 15-4
15.6.8 PmuGetVdddBrownont . 15-4
15.6.9 PmuSetFets . 15-5
15.6.10 PmuPowerGetSupplyMode . 15-5

Chapter 16
Secure Digital Host Controller (SDHC) Driver

16.1 SDHC Driver Summary . 16-1
16.2 Supported Functionality . 16-1
16.3 Hardware Operation . 16-2
16.3.1 Conflicts with Other Peripherals and Catalog Options. 16-2
16.4 Software Operation . 16-2
16.4.1 Required Catalog Items . 16-2
16.4.2 SDHC Registry Settings . 16-3
16.4.3 DMA Support . 16-3
16.4.4 Power Management . 16-3
16.5 Unit Test . 16-3
16.5.1 Unit Test Hardware. 16-4
16.5.2 Unit Test Software . 16-4
16.5.3 Building the Unit Tests . 16-4
16.5.4 Running the Unit Tests . 16-4
16.5.5 System Testing . 16-6
16.6 Secure Digital Card Driver API Reference. 16-6

Chapter 17

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

ix Freescale Semiconductor

Serial Driver

17.1 Serial Driver Summary . 17-1
17.2 Supported Functionality . 17-1
17.3 Hardware Operation . 17-2
17.3.1 Conflicts with Other Peripherals and Catalog Items . 17-2
17.4 Software Operation . 17-2
17.4.1 Registry Settings . 17-2
17.4.2 Power Management . 17-3
17.5 Unit Test . 17-3
17.5.1 Unit Test Hardware. 17-3
17.5.2 Unit Test Software . 17-4
17.5.3 Building the Unit Tests . 17-4
17.5.4 Running the Unit Tests . 17-4
17.6 Serial Driver API Reference . 17-5
17.6.1 Serial PDD Functions . 17-5
17.6.2 Serial Driver Structures . 17-6

Chapter 18
Switch Driver

18.1 Switch Driver Summary . 18-1
18.2 Supported Functionality . 18-1
18.3 Hardware Operation . 18-2
18.3.1 Conflicts with Other SoC Peripherals. 18-2
18.3.2 Conflicts with i.MX28 EVK Peripherals . 18-2
18.4 Software Operation . 18-2
18.4.1 Switch Driver Registry Settings . 18-2
18.5 Unit Test . 18-3
18.5.1 Unit Test Hardware. 18-4
18.5.2 Unit Test Software . 18-4
18.5.3 Basic Feature Unit Test. 18-4
18.5.4 Advanced Feature Unit Test . 18-4
18.6 Switch API Reference. 18-14
18.7 Appendix. 18-14
18.7.1 SwitchSetting Usage . 18-14

Chapter 19
Touch Panel Driver

19.1 Touch Panel Driver Summary . 19-1
19.2 Supported Functionality . 19-1
19.3 Hardware Operations . 19-1
19.4 .Software Operations . 19-2
19.4.1 Touch Driver Registry Settings . 19-2
19.5 Unit Tests . 19-3

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor x

19.5.1 Unit Test Hardware. 19-3
19.5.2 Unit Test Software . 19-3
19.5.3 Running the Touch Panel Tests . 19-3
19.6 Touch Panel API Reference . 19-4

Chapter 20
Universal Serial Bus (USB) On The Go (OTG) Driver

20.1 USB OTG Driver Summary . 20-1
20.1.1 OTG Peripheral Driver Summary. 20-1
20.1.2 OTG Host Driver Summary . 20-2
20.1.3 OTG (Pin-Detection) Driver Summary . 20-3
20.2 USB Host1 Driver Summary . 20-3
20.3 Supported Functionality . 20-4
20.4 Hardware Operation . 20-4
20.4.1 Conflicts with Other Peripherals and Catalog Items . 20-4
20.5 Software Operation . 20-5
20.5.1 USB Host Controller Driver . 20-5
20.5.2 USB Peripheral Driver . 20-13
20.5.3 USB OTG Driver (Pin-Detection Driver). 20-17
20.5.4 USB OTG Catalog Settings . 20-19
20.5.5 USB OTG Registry Settings . 20-19
20.5.6 Power Management . 20-21
20.5.7 Peripheral Class Drivers . 20-24
20.5.8 Host Class Drivers . 20-29
20.6 Known Issues . 20-30
20.7 Basic Elements for Driver Development . 20-30
20.7.1 BSP Environment Variables . 20-30
20.7.2 Dependencies of Drivers. 20-31
20.8 USB Application Tools. 20-31
20.8.1 Application for USB Peripheral Class Driver Switch . 20-31
20.8.2 Application for Multispec PHDC Demo . 20-32
20.8.3 Application for CDC Demo . 20-32

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

xi Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor xii

About This Book
This reference manual describes the requirements, implementation details, and testing for each module
included in the Freescale software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience
This document is intended for device driver developers, application developers, and software test
engineers who plan to use the product. This document is also intended for people who want to know more
about Freescale’s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading
The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
the back of the front cover of this document. These manuals can be downloaded directly from the Web site,
or printed versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the
Platform Builder application.

• Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions
This document uses the following notational conventions:

• Courier indicates directory or file names and code examples.
• Bold indicates the menu options or buttons the user can select. Cascaded menu options are

delimited with the > symbol.
• Italic indicates a reference to another document.

Definitions, Acronyms, and Abbreviations
Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

API Application programming interface

BSP Board support package

CSP Chip support package

CSPI Configurable serial peripheral interface

D3DM Direct 3D Mobile

DHCP Dynamic host configuration protocol

DPTC Dynamic power and temperature control

DVFC Dynamic voltage and frequency control

DVFS Dynamic voltage and frequency scaling

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

xiii Freescale Semiconductor

EBOOT Ethernet bootloader

EVB Platform evaluation board

FAL Flash abstraction layer

FIR Fast infrared

FMD Flash media driver

GDI Graphics display interface

GPT General purpose timer

I2C Inter-integrated circuit

IDE Integrated development environment

IST Interrupt service thread

IPU Image processing unit

KITL Kernel independent transport layer

LVDS Low-voltage differential signaling

MAC Media access control

MMC Multimedia cards

OAL OEM adaptation layer

OEM Original equipment manufacturer

OS Operating system

OTG On-the-go

PMIC Power management IC

PQOAL Production quality OEM adaptation layer

PWM Pulse-width modulator

SD Secure digital cards

SDC Synchronous display controller

SDHC Secure digital host controller

SDIO Secure digital I/O and combo cards

SDRAM Synchronous dynamic random access memory

SDK Software development kit

SIM Subscriber identification module

SOC System on a chip

UART Universal asynchronous receiver transmitter

USB Universal serial bus

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor xiv

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

xv Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded CE 6.0
operating system. This BSP supports the following Freescale platform(s):

• i.MX28 EVK Development System

This kit supports the Microsoft Windows Embedded CE 6.0 operating system, and requires the use of the
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded operating system designs. To view feature information, refer to the BSP Release
Notes.

NOTE
Use this guide with the Microsoft Windows Platform Builder Help (or the
identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from within the Platform
Builder application.

• To view the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-us/library/bb159115.aspx

1.1 Getting Started
For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, refer to the appropriate User Guide.

1.2 Windows Embedded CE 6.0 Architecture
The Windows Embedded CE 6.0 architecture is a variation of the Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management or DirectDraw) are described in several locations in the Help. Begin at
the following location in Help:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

http://msdn2.microsoft.com/en-us/library/bb159115.aspx

Introduction

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

1-2 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Audio Driver
The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut or WaveIn functionality, see the Platform Builder Help at the following location:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

2.1 Audio Driver Summary
Table 2-1 provides the source code location, library dependencies, and other BSP information.

NOTE
The selection and use of the Windows Media Player and the various
software codecs is beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help at the following location: Windows Embedded CE Features
> Audio

Table 2-1. Audio Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2\SGTL5000

Driver DLL wavedev2_sgtl5000.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX28-EVK:ARMV4I > Device Drivers > Audio > SGTL5000 Audio
Driver

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=
BSP_AUDIO_SGTL5000=1
BSP_I2CBUS1=1

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-2 Freescale Semiconductor

2.2 Supported Functionality
The audio driver enables the system to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Double-buffered DMA operations to transfer audio data between memory and the hardware FIFO
3. Two power management modes: full on and full off
4. Full duplex playback and record
5. Minimizes power consumption at all times by using clock gating and by disabling all audio-related

hardware components that are not actively being used
6. 8–96 KHz for both recording and playback
7. Mono and stereo 16-bit sample
8. Headphone detection

2.3 Hardware Operation
This section describes about the audio hardware operation.

2.3.1 Audio Hardware Design
This section describes the connection between the SoC audio peripherals and the external audio codec, the
access interface of audio codec, and the audio input or output device connections.

2.3.1.1 i.MX28 EVK Audio Hardware Design

i.MX28 SoC uses 2 SAIF ports (Serial Audio Interface) for both audio playback and recording. The
external stereo codec SGTL5000 is connected to SAIF0 and SAIF1 ports. External stereo codec SGTL5000
is configured to I2S mode, and SAIF0 is transmission port and SAIF1 is receiving port.

The i.MX28 uses the I2C bus interface to access SGTL5000 control registers. The stereo codec SGTL5000
on i.MX28 EVK supports output to Headphone, input from Line In.

For operation and programming, refer to the chapters in the i.MX28 Reference Manual for the SAIF, DMA,
and IOMUX components, and refer to the SGTL5000 Datasheet for Stereo Audio Codec SGTL5000.

2.3.2 Audio Playback
By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):

• The audio driver is configured to use SAIF0 and SAIF1 for I2S mode and a sampling rate of 44.1
KHz
— Each audio data word is 16 bits long
— SAIF0 is transmitter for playback
— SAIF0 is configured to operate in master mode, and outputs MCLK/LRCLK/BITCLK

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-3

• The stereo codec is also configured for I2S mode using a 44.1 KHz sample rate in slave mode, and
get MCLK/LRCLK/BITCLK from SAIF0.

• The DMA channel supports 16-bit data transfers between the application memory buffers and the
SAIF0 FIFO.

• Finally, the SAIF0 transmitter is enabled, which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:
• The SAIF0 issues a new DMA request when the transmitter FIFO level reaches the empty

watermark level. The DMA controller then refills FIFO using data from the DMA buffers, until the
DMA buffer is empty.

• An interrupt is generated when a DMA buffer is empty and this interrupt is handled by the audio
driver. The audio driver refills the DMA buffer and returns it to the DMA controller for processing.

• Due to the double-buffering scheme, the DMA controller simply uses the other DMA buffer to
continue refilling the SAIF0 transmitter FIFO while the previous DMA buffer is being refilled.

2.3.3 Audio Recording
The following hardware configuration steps are performed just prior to each recording operation (based
upon the default audio driver configuration):

• SAIF1 is configured to receiver in slave mode to support recording. SAIF1 gets
MCLK/LRCLK/BITCLK from SAIF0

• The DMA channel is fully configured to support 16-bit data transfers between the application
memory buffers and the SAIF1 FIFO.

• The SAIF1 receiver is enabled and ready to receive data from the stereo codec.

The hardware repeatedly performs the following functions while audio recording is being performed:
• The SAIF1 issues a new DMA request whenever the receive FIFO level reaches the full watermark

level. The DMA controller then transfers the data from the receiver FIFO to an input DMA buffer
until the DMA buffer is full.

• The DMA controller generates an interrupt that is handled by the audio driver. The audio driver is
responsible for copying the data from the full input DMA buffer into application-supplied buffers
and then returning the empty input DMA buffer back to the DMA controller. Any data which
cannot be transferred to an application-supplied buffer (for example, due to insufficient space) is
simply discarded.

• Since a double-buffering scheme is being used, the DMA controller simply uses the other DMA
buffer to continue recording the data from the SAIF1 receiver FIFO while the previous DMA
buffer is being copied to application-supplied buffers.

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-4 Freescale Semiconductor

2.3.4 Required SoC Peripherals
Table 2-2 shows the SoC hardware components required by the audio driver.

2.3.5 Conflicts with SoC Peripherals
No conflicts.

2.3.6 Conflicts with Board Peripherals
The following section explains about the conflicts of the audio driver with board peripherals:

2.3.6.1 i.MX28 EVK Peripherals Conflicts

No conflicts.

2.3.7 Known Issues
The following section explains about the known issues in the audio driver:

2.3.7.1 i.MX28 Known Issues

If both the SGTL5000 stereo audio driver and the S/PDIF driver occurs, then the default audio device
might be S/PDIF. The default audio device may be chosen by the AudioRouting application.

2.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts

2.4.1 Audio Playback
The software operation of the audio driver for playback is similar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DMA buffer empty
interrupts. This is done by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

Table 2-2. Required SoC Peripherals

Component Use

SAIF0 Playback

SAIF1 Record

APBX DMA Manages the DMA channels that are used for playback and recording

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-5

2.4.2 Audio Recording
The operation of the audio driver for recording is similar to the hardware configuration. Once the hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. This is
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough space for all of the new data, discard any extra data. The
application is signaled using a callback function when the application-supplied buffer is full.

2.4.3 Audio Driver Compile-Time Configuration Options
The audio driver can be configured for a wide variety of operating modes depending on the hardware and
software requirements.

NOTE
Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-6 Freescale Semiconductor

2.4.3.1 i.MX28 Audio Driver Configuration Options

Table 2-3 gives the compile-time configuration options of the i.MX28 stereo audio driver.

2.4.4 DMA Support
The audio driver uses the DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.

To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

• The DMA data buffers where the application data is kept
• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either the internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM).

Table 2-3. i.MX28 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting Name Description

INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2. Default is 2.

OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2. Default is
2.

BITSPERSAMPLE The number of data bits per audio sample. This must match with the HWSAMPLE typedef and the
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

HWSAMPLE A typedef that defines the size of each audio data word. This must match the BITSPERSAMPLE and
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAX and
AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this range is clipped to the max/min
value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is 32767 and
-32768.

ENABLE_MIDI If set to 1, MIDI code is included in the driver (~4 Kbytes).

USE_OS_MIXER If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-7

Table 2-4 describes the issues and considerations for the type of memory to use for the DMA data buffers.

2.4.4.1 i.MX28 Audio DMA Buffer Use

The i.MX28 audio driver supports both playback and recording.Playback function always uses internal
memory as DMA buffer, while recording function allocates DMA buffer from external memory.

Table 2-5 describes how to configure the build so that the audio driver allocates its DMA data buffers from
either the internal or external memory. The DMA buffer descriptors can also be allocated either from
internal or external memory.

2.4.5 Power Management
The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the BSP, the audio module can be disabled, and its clocks are turned off whenever there are
no active audio I/O operations. The clock gating and the disabling of related audio hardware components
is handled automatically within the audio module and requires no additional configuration or code
changes.

The audio driver operates correctly when resuming after the power down mode.

Table 2-4. DMA Memory Allocation Issues and Considerations

Memory
Region Memory Usage Issues and Considerations

Internal • Allows the external memory to be placed in a low power mode while the DMA data buffers are being processed to
reduce system power consumption (as long as nothing else on the system requires access to external memory)

 • Less power is required to access the internal RAM
 • The total size of the internal memory region is limited
 • The limited amount of internal memory may have to be shared by multiple device drivers
 • The entire internal memory region must be manually managed with predefined addressed ranges being reserved for

each specific use

External • The total size of the external memory is typically much greater than the size of the internal memory. This provides much
greater flexibility in selecting the size of the DMA data buffers.

 • There is typically no need to worry about the possible impact and memory requirements of any other device driver.
 • Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls
 • The external memory cannot be placed into a low power mode while the DMA is active

Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation

Memory
Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region. Set
BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-8 Freescale Semiconductor

2.4.5.1 PowerUp

This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function is intended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal wait for an event to be signalled functions. This functionality is currently handled
by IOCTL_POWER_SET and the function is just a stub.

2.4.5.2 PowerDown

This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. So, first thing this function must do is to signal all of the possible wait
events that the normal audio driver thread may currently be waiting on. If this function does not signal all
waiting events, the PowerDown thread may be blocked waiting for a critical section that is currently being
held by the normal audio driver thread. This deadlocks the entire system and prevent it from properly
entering the low power state.

When all waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once this is done, the audio driver remains in a low power state until the PowerUp
function is called by the Power Manager. This functionality is currently handled by IOCTL_POWER_SET
and the function is just a stub.

2.4.5.3 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

This registry entry is required for proper power management functionality.

2.4.6 Audio Driver Registry Settings
At least one registry key must be properly defined so that the Device Manager loads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-9

2.4.6.1 i.MX28 Audio Driver Registry Settings

The following registry keys are required for the Device Manager to properly load the i.MX28 audio device
driver during the device normal boot process. These registry settings should not be modified. If the settings
are missing or incorrectly defined, then the audio driver may not be loaded and all audio functions are
disabled.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]
 "Prefix"="WAV"
 "Dll"="wavedev2_sgtl5000.dll"
 "Index"=dword:1
 "Order"=dword:4
 "Priority256"=dword:95
 "IClass"=multi_sz:"{A32942B7-920C-486b-B0E6-92A702A99B35}",
 "{37168569-61C4-45fd-BD54-9442C7DBA46F}"

; Override wave API load order to follow audio driver
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN]
 "Order"=dword:5
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN_ACM]
 "Order"=dword:5

2.5 Unit Test
The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

2.5.1 Unit Test Hardware
Table 2-6 identifies the hardware needed to run the unit tests.

2.5.2 Unit Test Software
Table 2-7 lists the software required to run the unit tests.

Table 2-6. Hardware Requirements

Requirement Description

Stereo headphones or
earphones

This is required to confirm that audio playback is working. The headphones or earphones should have
a 3.5 mm jack

Mono microphoneLineIn
cable

—used to connect LineIn port in board and PC

Table 2-7. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-10 Freescale Semiconductor

2.5.3 Building the Audio Driver CETK Tests
The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file is included with the CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

2.5.4 Running the Audio Driver CETK Tests
The command line for running the audio driver test is:
tux –o –d wavetest

Alternatively, use the CETK interface in the Platform Builder. If the full-duplex operation is not supported,
the command line is:
tux -o -d wavetest -c “-e”

For detailed information about the audio driver tests, see the Platform Builder Help at the following
location:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Audio Tests >
Waveform Audio Driver Test

2.6 System Level Audio Driver Tests
In addition to running the audio driver tests in the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

2.6.1 Checking for a Boot-Time Musical Tune
The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

2.6.2 Confirming Touchpanel Taps and Keypad Key Presses
The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

wavetest.dll Test.dll file

Table 2-7. Software Requirements (continued)

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-11

2.6.3 Playing Back Sample Audio and Video Files Using the Media Player
The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement is to include the software codecs in the
OS image that may be needed to decode the media file. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to a specific point. Volume and muting controls
are also provided.

2.6.4 Using the SDK Sample Audio Applications for Testing
The Windows Embedded CE 6.0 SDK that is included as part of the Platform Builder includes two
audio-related sample applications. The wavrec sample application can be used to test the audio recording
function while the wavplay sample application provides a command line-based method of playing back
various media files. For additional information about these sample applications, see the Platform Builder
Help at the following location:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Samples

2.7 Audio Driver API Reference
For detailed reference information for the audio driver, see the Platform Builder Help at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

2.8 Audio Driver Troubleshooting Guide
This section describes the techniques to identify and fix the most common problems involving the audio
driver.

2.8.1 Checking Build-Time Configuration Options
Compile-time or link-time errors are probably occur due to incorrect or invalid configuration settings
defined in hwctxt.h or hwctxt.cpp. See Section”i.MX28 Audio Driver Configuration Options for
information about the device driver build configuration options. Follow the build procedure documented
in the Release Notes to compile and link the audio driver. Confirm that the required Platform Builder
catalog items are included in the OS design. See Table 2-1 for a list of the required and recommended audio
driver-related catalog items.

2.8.2 Media Player Application Not Found
Make sure that the Media Player catalog item is included in the OS design. The Media Player application
is not included in the final system image if the catalog item is not selected. For more information on this
topic, see the Platform Builder Help at the following location:

Audio Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

2-12 Freescale Semiconductor

Windows Embedded CE Features > Applications and Services > Windows Media Player for
Windows Embedded CE

2.8.3 Media Player Fails to Load and Play an Audio File
This problem is typically caused by failing to include the appropriate software codec that is required to
handle the audio file format.

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Backlight Driver
The backlight driver uses the hardware provided by the display module on the device, to control the
backlight on the Liquid Crystal Display (LCD) panel. The backlight driver interfaces with the Windows
CE Power Manager to provide timed control over the display backlight. A timeout interval controls the
length of time that the backlight stays on. The backlight driver is power-manageable, and it meets the
requirements of a power-manageable device by implementing the required power management I/O
Controls (IOCTLs). The backlight driver uses its own defined timer to set the backlight power states.

3.1 Backlight Driver Summary
Table 3-1 provides a summary of source code location, library dependencies and other BSP information.

3.2 Supported Functionality
The backlight driver enables the 3-Stack System to provide the following support:

1. Conforms to the Device Manager streams interface
2. Supports 0–10 level adjustment
3. Supports power management mode: full on or full off

3.3 Hardware Operation
This section explains about the hardware operation

Table 3-1. Backlight Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_9\BACKLIGHT

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale i.MX28 EVK PDK1_9: ARMV4I > Device Drivers > Backlight >
Backlight PWM

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables BSP_BACKLIGHT=1

Backlight Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

3-2 Freescale Semiconductor

3.3.1 i.MX28-EVK Hardware Operation
The hardware consists of a PWM implemented by channel 2 of PWM controller.This PWM is dedicated
to drive the backlight of LCD.It can be configured by adjusting the duty cycle in channel 2 of PWM
controller.

3.4 Software Operation
The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. The following are
the possible choices available for the user:

• IOCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities
• IOCTL_POWER_QUERY, where the new power state is returned
• IOCTL_POWER_SET, interface to the hardware that controls the backlight through the PDD layer
• IOCTL_POWER_GET, where the current power state is returned

3.4.1 Backlight Driver Registry Settings
This section explains about the backlight driver registry settings.

3.4.1.1 i.MX28-EVK Backlight Driver Registry Setting
The following registry keys are required to properly load backlight driver:
[HKEY_CURRENT_USER\ControlPanel\Backlight]
 "BattBacklightLevel"=dword:7F ; Backlight level settings. 0x1E = Full On
 "ACBacklightLevel"=dword:7F ; Backlight level settings. 0x1E = Full On
 "UseExt"=dword:0 ; Disable timeout when on external power
 "UseBattery"=dword:0 ; Disable timeout when on battery
 "AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog
 "BatteryTimeout"=dword:1E ; 30 Seconds
 "ACTimeout"=dword:3C ; 1 Minutes

3.4.2 Power Management
The backlight driver consumes power primarily through the operation of the LCD panel backlight. To
facilitate the management of this module, the backlight driver implements the IOCTL code
IOCTL_POWER_SET.

Backlight Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-3

3.4.2.1 PowerUp

This function is not implemented for the backlight driver.

3.4.2.2 PowerDown

This function is not implemented for the backlight driver.

3.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

• D0—Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
• D4—Backlight intensity is set to 0 which is the lowest level of backlight

3.5 Unit Test
The backlight driver is tested by the application test. The following section explains about the hardware
and software requirements for unit tests.

3.5.1 Unit Test Hardware
This section explains about the hardware required to run the backlight application test.

3.5.1.1 i.MX28-EVK Unit Test Hardware

Table 3-2 lists the required hardware to run the backlight application test.

3.5.2 Unit Test Software
Table 3-3 lists the required software to run the backlight application test.

Table 3-2. Hardware Requirements

Requirement Description

SEIKO 43WVF1G-0 WVGA Panel Display panel required for display of graphics data

Table 3-3. Software Requirements

Requirement Description

backlight.dll The backlight driver to implement the backlight functions

Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

Backlight Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

3-4 Freescale Semiconductor

3.5.3 Running the Backlight Application Test

Table 3-4 lists the backlight application test.

3.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions. For
more information, see Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Embedded Drivers > Streams Interface Drivers

Table 3-4. Backlight Application Test

Test Case Entry Criteria/Procedure/Expected Result

Backlight Level Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Click on the Advanced… button
4. Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

Expected Result: N/A

Backlight Timeout Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Modify the backlight timeout setting for both battery and external power, and then click OK to apply

the changes
4. Observe the time it takes for the backlight to go out, make sure it correspond with the new settings

entered in step 3

Expected Result: N/A

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Battery Driver
The battery driver module provides information about the battery level to the OS, and decides whether to
execute the charging or discharging operation. It also reports battery capability and power supply state to
the OS periodically by measuring the battery voltage. When charging, current-limit and voltage-limit is
maintained to protect the charger and battery.

4.1 Battery Driver Summary
Table 4-1 provides a summary of source code location, library dependencies and other BSP information.

4.2 Supported Functionality
The battery driver enables the system to provide the following support:

1. Conforms to the battery driver interface
2. Supports two power management modes, full on and full off
3. Detects power source changes and reports current power source
4. Supports charging of Lion battery
5. Auto stop charging if the die temperature is too high

Table 4-1. Battery Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BATTDRVR

Import Library N/A

Driver DLL battery.dll

Catalog Item Third Party > BSP > Freescale i.MX28 EVK PDK1_9:ARMV4I > Device Drivers >Battery

SYSGEN Dependency SYSGEN_BATTERY

BSP Environment Variables BSP_NOBATTERY=

Battery Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

4-2 Freescale Semiconductor

4.3 Hardware Operation
The battery driver is implemented with the power module of i.MX28. The power module contains on-chip
analog to control charging function (including voltage monitor and current limiter). The LRADC channel
7 is used to get the level of voltage in the battery. This level is then used in determining the capacity level
of the battery.

4.3.1 Conflicts with Other SoC Peripherals
No conflicts.

4.4 Software Operation
After initialization, the BatteryPDDGetStatus() function is called periodically to get the status of the
battery. This function fills the structure SYSTEM_POWER_STATUS_EX2 and returns it to the system.
The Power Properties window is updated based on the values in this structure.

4.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load battery driver:

; These registry entries load the battery driver. The IClass value must match
; the BATTERY_DRIVER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver. Note that we are using
; DEVFLAGS_NAKEDENTRIES with this driver. This tells the device manager
; to instantiate the device with the prefix named in the registry but to look
; for DLL entry points without the prefix. For example, it will look for Init
; instead of BAT_Init. This allows the prefix to be changed in the registry (if
; desired) without editing the driver code.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery]
 "Prefix"="BAT"
 "Dll"="battdrvr.dll"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "Order"=dword:3
 "MaxBatteryVoltage"=dword:1068 ; 4200mV
 "BatteryVoltageHighLevel"=dword:E74 ; 3700mV
 "BatteryVoltageLowLevel"=dword:C80 ; 3200mV
 "PollInterval"=dword:1F4 ; battery polling interval, in milliseonds(0.5 seconds)
 "IClass"="{DD176277-CD34-4980-91EE-67DBEF3D8913}"

[HKEY_LOCAL_MACHINE\System\Events]
 "SYSTEM/BatteryAPIsReady"="Battery Interface APIs"

4.4.2 Power Management
There is no additional power management implementation for battery driver.

Battery Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-3

4.5 Unit Test
The battery driver can be tested by switching on the system and monitoring the power properties window.
When charging, the charge capacity of the battery can be seen increasing until it is charged to 100%.

NOTE
It is not allowed to plug in or remove out the battery after booting up the
device.

4.5.1 Unit Test Hardware
The i.MX28-EVK board is required. For real battery mode, switch S1 to the up side and connect a real lion
battery to J85 or J86; For fake battery mode, switch S1 to the down side.

4.6 Battery API Reference
The API for the battery driver conforms to the stream interface and exposes the standard functions. For
more information, refer to the Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Battery Drivers

Battery Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

4-4 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Boot from Secure Digital/MultiMedia Card (SD/MMC)
Booting support from SD/MMC includes the following components:

• Boot Image
• Storage for OS binary image (NK)

Boot Image is stored in the SD/MMC card using a special tool, and NK is stored in the FAT partition. After
the booting procedure, the user can select to boot the system from the SD/MMC card.

5.1 Boot from SD/MMC Summary
Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

5.2 Supported Functionality
The Boot support from SD/MMC includes:

1. Supports boot from low or high capacity SD/MMC card
2. Supports storing OS images to SD/MMC flash
3. Supports loading OS image from SD/MMC flash to RAM
4. Supports file system on bootable SD/MMC card

Table 5-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\BOOTLOADER
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

Boot from Secure Digital/MultiMedia Card (SD/MMC)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

5-2 Freescale Semiconductor

5.3 Hardware Operation
This section explains about the hardware operation of the controller linked with SD/MMC.

5.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

5.4 Software Operation
On startup while booting from SD/MMC, the Boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. The Boot ROM executes the boot image and boot up the
EBOOT, and then passes control to bootloader which in turn brings up the OS.

In the EBOOT, users can select the booting mode to SDMMC Storage. Then the EBOOT reads the NK
from the FAT partition of the SD/MMC card, and boots up the system.

5.5 Card Flashing Tool
Flashing tool cfimager.exe is used to write the boot image to the SD/MMC. The tool is located in the
directory <%_WINCEROOT%>\SUPPORT_PDK1_9\TOOLS\COMMON\CFIMAGER. Users can follow the instructions in
the readme.txt file in that folder to write the boot image and boot up the system.

5.5.1 Write Image (EBOOT) to SD Card
Plug SD into Card Reader on PC, and run the following command. The *.sb files to flash are copied to
<%_WINCEROOT%>\SUPPORT_PDK1_9\TOOLS\iMX28-EVK\SDIMAGE. The user can add that path before the
filename.
cfimager -f eboot.sb -d <card reader drive, no colon>

After successful operation, users can copy nk.bin from release directory to <card reader drive>:\.

If users want to boot OS image (NK) without the bootloader (EBOOT), change the command to

cfimager -f nk.sb -d <card reader drive, no colon>

5.5.2 System Boot
Plug the flashed card into the board, ensure boot switch is set to the defined value and that the appropriate
fuses are blown, then power on the board.

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral
features and SOC configuration shared by the system. The CSPDDK executes as a device driver DLL and
exports functions for the following SCC components:

• CLOCK
• GPIO
• IOMUX
• DMA (APBH DMA and APBX DMA)

6.1 CSPDDK Driver Summary
Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

6.2 Supported Functionality
The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:
— IOMUX (DDK_IOMUX)
— GPIO (DDK_GPIO)
— DMA (DDK_APBHDMA and DDK_APBXDMA)
— CLK (DDK_CLK)

Table 6-1. CSPDDK Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK

Driver DLL cspddk.dll

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPDDK=

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-2 Freescale Semiconductor

2. Exposes exported functions that can be invoked without incurring a system call (for example, not
a stream driver)

6.3 Hardware Operation
Refer to the hardware specification document for detailed operation and programming information.

6.3.1 Conflicts with Other Peripherals and Catalog Items
This section explains about the CSPDDK conflicts with other peripherals and catalog items.

6.3.1.1 Conflicts with SoC Peripherals

The following section explains about the CSPDDK conflicts with SoC peripherals.

6.3.1.1.1 iMX28 Peripheral Conflicts

Refer to the i.MX28 hardware specification document for possible conflicts.

6.3.1.2 Conflicts with Hardware Peripherals

No conflicts.

6.4 Software Operation
This section explains about the CSPDDK software operation.

6.4.1 Communicating with the CSPDDK
Similar to the CEDDK DLL, the CSPDDK DLL does not require any special initialization. All of the
initialization required by the CSPDDK is performed when the DLL is loaded into the respective process
space. Drivers required to utilize the CSPDDK simply need to link to the CSPDDK export library and
invoke the exported functions.

6.4.2 Compile-Time Configuration Options
No options.

6.4.3 Registry Settings
There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

6.4.4 Power Management
The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-3

Power Manager driver IOCTLs or the PowerUp or PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transits.

6.5 Unit Test
Due to the heavy use of the CSPDDK routines by other drivers on the system, currently there is no
additional test case.

6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
The DDK_CLK interface allows device drivers to configure and query system clock settings.

6.5.1.1 DDK_CLK Enumerations

Table 6-2 lists all the programming elements in the DDK_CLK enumerations.

6.5.1.2 DDK_CLK Functions

The following functions are used to set DDK_CLK.

6.5.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.

BOOL DDKClockSetGatingMode(
DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
mode [in] Requested clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.

Table 6-2. DDK_CLK Enumerations

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits within the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-4 Freescale Semiconductor

BOOL DDKClockGetGatingMode(
DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
pMode [out] Current clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.

BOOL DDKClockGetFreq(
DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters
sig [in] Clock signal
freq [out] Current frequency in Hz
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.4 DDKClockSetFreq

This function sets the clock frequency in Hz for the specified clock signal.

BOOL DDKClockSetFreq(
DDK_CLOCK_SIGNAL sig,
UINT32 freq)

Parameters
sig [in] Clock signal.
freq [in] Requested frequency in Hz.
Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.1.2.5 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOOL DDKClockConfigBaud(
DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,
UINT32 postDiv)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-5

Parameters
sig [in] Clock signal to configure
src [in] Selects the input clock source
preDiv [in] Specifies the value programmed into the baud clock predivider
postDiv [in] Specifies the value programmed into the baud clock postdivider
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.6 DDKClockSetpointRequest

This function requests the DVFC driver to transition to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
request has been granted.

BOOL DDKClockSetpointRequest(
DDK_DVFC_SETPOINT setpoint,
BOOL bBlock)

Parameters
setpoint [in] Specifies the setpoint to be requested
bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return

immediately after the request has been submitted
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.7 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.

BOOL DDKClockSetpointRelease(
DDK_DVFC_SETPOINT setpoint)

Parameters
setpoint [in] Specifies the setpoint to be released
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.1.2.8 DDKClockGetSharedConfig

This function obtains a reference to the global shared clock configuration data structure. This is intended
to be used by the DVFC driver.

PDDK_CLK_CONFIG DDKClockGetSharedConfig(VOID)

Parameters None
Return Values Returns a pointer to the clock configuration data structure.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-6 Freescale Semiconductor

6.5.1.2.9 DDKClockLock

This function requests a lock of the global shared clock configuration data structure.

VOID DDKClockLock(VOID)

Parameters None
Return Values None

6.5.1.2.10 DDKClockUnLock

This function releases a lock of the global shared clock configuration data structure.

VOID DDKClockUnLock(VOID)

Parameters None
Return Values None

6.5.1.3 DDK_CLK Examples

The following are the example code for the DDK_CLK.

Example 6-1 shows the sample code for CSPDDK clock gating.

Example 6-1. CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_DISABLED);

Example 6-2 shows the sample code for CSPDDK clock rate query.

Example 6-2. CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-7

6.5.2.1 DDK_GPIO Enumerations

Table 6-3 lists all the programming elements in the DDK_GPIO enumerations.

6.5.2.2 DDK_GPIO Functions

The following section explains about the DDK_GPIO functions.

6.5.2.2.1 DDKGpioConfig

This function configures the gpio_pin as input/output, sets the drive strength, voltage, and as interrupt
selection (if applicable).

BOOL DDKGpioConfig(DDK_IOMUX_PIN gpio_pin,
 DDK_GPIO_CFG gpio_cfg,
 DDK_IOMUX_PAD_DRIVE drive,
 DDK_IOMUX_PAD_VOLTAGE voltage,
 BOOL bPull_Enable)

Parameters
gpio_pin [in] functional pin name
gpio_cfg [in] structure to configure the pin as input/output, interrupt selection.
drive [in] set the gpio_pin drivestrength.
voltage [in] set the gpio_pin voltage.
bPull_Enable [in] enable/disable the pullup for the gpio_pin.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.2 DDKGpioEnableDataPin

This function sets the value in the register bit to drive on the gpio_pin.

BOOL DDKGpioEnableDataPin(DDK_IOMUX_PIN pin,UINT32 data)

Parameters
pin [in] functional pin name
data [in] data to be written to the pin.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.3 DDKGpioWriteDataPin

This function sets the value in the register bit to drive on the gpio_pin.

Table 6-3. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_BANK Specifies the GPIO module instance

DDK_GPIO_CFG Specifies the configuration of the GPIO pins

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-8 Freescale Semiconductor

BOOL DDKGpioWriteDataPin(DDK_IOMUX_PIN pin,UINT32 data)

Parameters
pin [in] functional pin name
data [in] data to be written to the pin.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.4 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.

BOOL DDKGpioReadDataPin(DDK_IOMUX_PIN pin, UINT32 *pData)

Parameters
pin [in] GPIO pin [0-31].
pData [out] points to buffer for data read. Data is shifted to LSB.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.2.2.5 DDKGpioReadIntr

This function reads register for the interrupt status.

BOOL DDKGpioReadIntr(DDK_IOMUX_PIN pin, UINT32 *pData)

Parameters
pin [in] functional pin name
pData [out] pointer to the data read.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

6.5.3.1 DDK_IOMUX Enumerations

Table 6-4 lists all the programming elements in the DDK_IOMUX enumerations.
Table 6-4. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Specifies the functional pin name used to configure the IOMUX.

DDK_IOMUX_PIN_MUXMODE Specifies the mux mode for a signal

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-9

6.5.3.2 DDK_IOMUX Functions

This sections explains about the DDK_IOMUX functions.

6.5.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX mux for the specified IOMUX pin.

BOOL DDKIomuxSetPinMux(DDK_IOMUX_PIN pin, DDK_IOMUX_PIN_MUXMODE muxmode)

Parameters
pin [in] functional pin name used to configure IOMUX HW_PINCTRL_MUXSEL
muxmode [in] MUX_MODE configuration.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX mux configuration for the specified IOMUX pin.

BOOL DDKIomuxGetPinMux(DDK_IOMUX_PIN pin, DDK_IOMUX_PIN_MUXMODE *pMuxmode)

Parameters
pin [in] functional pin name used to select the IOMUX output or input path that is

returned.
pMuxmode [out] MUX_MODE configuration.
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxSetPadConfig(DDK_IOMUX_PIN pin,
 DDK_IOMUX_PAD_DRIVE drive,
 DDK_IOMUX_PAD_PULL pull,
 DDK_IOMUX_PAD_VOLTAGE voltage)

Parameters
pad [in] functional pad name used to select the pad that is configured.

DDK_IOMUX_PAD_DRIVE Specifies the drive strength for a pad; if no DRIVE bit for a PAD, the
DDK_IOMUX_PAD_DRIVE_NULL should be set.

DDK_IOMUX_PAD_PULL Specifies the pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_PAD_VOLTAGE Specifies the driver voltage for a pad, either 1.8 V or 3.3 V

Table 6-4. DDK_IOMUX Enumerations (continued)

Programming Element Description

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-10 Freescale Semiconductor

drive [in] drive strength configuration.
pull [in] pull-up, pull-down, or keeper configuration.
voltage [in] drive voltage configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.3.2.4 DDKIomuxEnablePullup

This function enables the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxEnablePullup(DDK_IOMUX_PIN pin, BOOL bEnable)

Parameters
pin [in] functional pin name used to select the IOMUX output or input path that is

returned.
bEnable [in] enable or disable pullup
Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.3.2.5 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKIomuxGetPadConfig(DDK_IOMUX_PIN pin,
 DDK_IOMUX_PAD_DRIVE *pDrive,
 DDK_IOMUX_PAD_PULL *pPull,
 DDK_IOMUX_PAD_VOLTAGE *pVoltage)
Parameters
pin [in] functional pin name used to select the IOMUX output or input path that is

returned
pDrive [out] drive strength configuration
pPull [out] pull-up, pull-down, or keeper configuration
pVoltage [out] drive voltage configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference
The DDK_DMA interface allows device drivers to allocate, configure, and control shared DMA resources.

6.5.4.1 DDK_DMA Functions

This section explains about the DDK_DMA functions.

6.5.4.1.1 DDKApbhStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-11

BOOL DDKApbhStartDma(UINT8 Channel,PVOID memAddrPA, UINT8 semaphore)

Parameters
Channel [in] channel number
memAddrPA [in] pointer of memory’s physical address
semaphore [in] DMA semaphore
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.2 DDKApbhStopDma

This function stops the DMA channel.

BOOL DDKApbhStopDma(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.3 DDKApbhDmaInitChan

This function initializes the requested DMA channel.

BOOL DDKApbhDmaInitChan(UINT8 Channel,BOOL bEnableIrq)

Parameters
Channel [in] channel number
bEnableIrq [in] enable or disable the irq
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.4 DDKApbhDmaChanCLKGATE

This function clears the interrupt for respective channel.

BOOL DDKApbhDmaChanCLKGATE(UINT8 Channel,BOOL bClockGate)

Parameters
Channel [in] channel number
bClockGate [in] gate or un-gate the channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.5 DDKApbhDmaClearCommandCmpltIrq

This function clears the interrupt for respective channel.

BOOL DDKApbhDmaClearCommandCmpltIrq(UINT8 Channel)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-12 Freescale Semiconductor

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.6 DDKApbhDmaEnableCommandCmpltIrq

This function enables the interrupt for respective channel.

BOOL DDKApbhDmaEnableCommandCmpltIrq(UINT8 Channel,BOOL bEnable)

Parameters
Channel [in] channel number
bEnableIrq [in] enable or disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.7 DDKApbhDmaResetChan

This function resets the AHB to APBH bridge channel based on the argument channel.

BOOL DDKApbhDmaResetChan(UINT8 Channel,BOOL bReset)

Parameters
Channel [in] channel number
bReset [in] reset or un-reset the channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.8 DDKApbhDmaFreezeChan

This function freezes the AHB to APBH bridge channel based on the argument channel.

BOOL DDKApbhDmaFreezeChan(UINT8 Channel,BOOL bFreeze)

Parameters
Channel [in] channel number
bFreeze [in] freeze or un-freeze the channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.9 DDKApbhDmaGetPhore

This function gets the phore of respective channel.

UINT32 DDKApbhDmaGetPhore(UINT32 Channel)
Parameters
Channel [in] channel number

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-13

Return Values Returns the virtual channel index if successful, otherwise returns NULL.

6.5.4.1.10 DDKApbxStartDma

This function loads the NEXTCOMMAND address and increments the semaphore to start the DMA
operation for first command.

BOOL DDKApbxStartDma(UINT8 Channel,PVOID memAddrPA, UINT8 semaphore)

Parameters
Channel [in] channel number
memAddrPA [in] pointer of memory’s physical address
semaphore [in] DMA semaphore
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.11 DDKApbxGetNextCMDAR

This function gets the NEXTCOMMAND address.

UINT32 DDKApbxGetNextCMDAR(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.12 DDKApbxStopDma

This function stops the DMA channel.

BOOL DDKApbxStopDma(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.13 DDKApbxDmaInitChan

This function initializes the requested DMA channel.

BOOL DDKApbxDmaInitChan(UINT8 Channel,BOOL bEnableIrq)

Parameters
Channel [in] channel number
bEnableIrq [in] enable/disable the irq
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-14 Freescale Semiconductor

6.5.4.1.14 DDKApbxDmaGetActiveIrq

This function gets the active irq status of DMA channel.

BOOL DDKApbxDmaGetActiveIrq(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.15 DDKApbxDmaClearCommandCmpltIrq

This function clears the interrupt for respective channel.

BOOL DDKApbxDmaClearCommandCmpltIrq(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.16 DDKApbxDmaClearErrorIrq

This function clears the error interrupt for respective channel.

BOOL DDKApbxDmaClearErrorIrq(UINT8 Channel)

Parameters
Channel [in] channel number
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.17 DDKApbxDmaEnableCommandCmpltIrq

This function enables the interrupt for respective channel.

BOOL DDKApbxDmaEnableCommandCmpltIrq(UINT8 Channel,BOOL bEnable)

Parameters
Channel [in] channel number
bEnableIrq [in] enable/disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.18 DDKApbxDmaEnableErrorIrq

This function enables the interrupt for respective channel.

BOOL DDKApbxDmaEnableErrorIrq(UINT8 Channel,BOOL bEnable)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-15

Parameters
Channel [in] channel number
bEnableIrq [in] enable or disable the interrupt for respective channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.19 DDKApbxDmaResetChan

This function resets the AHB to APBX bridge channel based on the argument channel.

BOOL DDKApbxDmaResetChan(UINT8 Channel,BOOL bReset)

Parameters
Channel [in] channel number
bReset [in] reset or un-reset the channel
Return Values Returns TRUE if successful, otherwise returns FALSE

6.5.4.1.20 DDKApbxDmaFreezeChan

This function freezes the AHB to APBX bridge channel based on the argument channel.

BOOL DDKApbxDmaFreezeChan(UINT8 Channel,BOOL bFreeze)

Parameters
Channel [in] channel number
bFreeze [in] freeze or un-freeze the channel
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

6-16 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Configurable Serial Peripheral Interface (CSPI) Driver
The CSPI module provides master functionality of a standard CSPI bus.

NOTE
In this chapter, CSPI and SPI have the same meaning. For some SOCs
platform, using CSPI, and for others, using SPI.

7.1 CSPI Driver Summary
Table 7-1 provides a summary of source code location, library dependencies, and other BSP information.

7.2 Supported Functionality
The CSPI driver supports the following features:

1. Supports the CSPI master mode of operation
2. Supports CSPI configurable bus feature
3. Supports configurable access method of polling method
4. Supports stream interface
5. Supports two power management modes: full on and full off

7.2.1 Conflicts with Other Peripherals and Catalog Items
This section explains about the conflicts that the CSPI driver have with other peripherals and catalog items.

Table 7-1. CSPI Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\SPI

Platform Driver Path ..\PLATFORM\<Target Platform>\DRIVERS\SPI

Import Library spisdk.lib

Driver DLL spi.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SPI Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_SSP2_SPI = 1

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

7-2 Freescale Semiconductor

7.2.1.1 Conflicts with SoC Peripherals

No conflicts.

7.2.2 Conflicts with EVK Peripherals
No conflicts.

7.3 Software Operation
This section explains about the software operation for the CSPI module.

7.3.1 Registry Settings
The following registry keys are required to load the CSPI module.
;; SPI Bus Driver
;;
IF BSP_SSP2_SPI
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SPI2]
 "Prefix"="SPI"
 "Dll"="spi.dll"
 "Index"=dword:2
ENDIF ;BSP_SSP2_SPI

7.3.2 Communicating with the CSPI
The CSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The following are the basic steps:

7.3.3 Creating a Handle to the CSPI
Call the CreateFile function to open a connection to the CSPI device. A CSPI port must be specified in
this call. The format is SPIX:, with X being the number indicating the CSPI port. This number should not
exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the CSPI:
1. Insert a colon after the CSPI port for the first parameter, lpFileName

For example, specify SPI1: as the CSPI port
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CSPI port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-3

Example 7-1 is a sample code to open a CSPI port.

Example 7-1. Code to open CSPT port

 // Open the serial port.
 hSPI = CreateFile (L”SPI1:”, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

7.3.4 Data Transfer Operations
The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of data transfer in the CSPI driver is the CSPI_XCH_PKT, which
contains a buffer for reading and writing data, and a CSPI_BUSCONFIG datum that specifies the desired
bus configuration and XCH method which is used during the SPI transmission. The following steps
explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CSPI port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:
1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_BUSCONFIG datum to specify the bus parameters as SSPCTRL0, SSPCMD,
SSPARG, BITCOUNT, bREAD, and specify the method parameters for use/not use DMA,
use/not use POLLING, send/not send command.

b) Set the pBuf field to the user buffer which sends and receives data.
c) Set the xchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit XCH, the xchCnt

= words, for the 17-32 bit XCH, the xchCnt = dwords.
2. Set the hDevice parameter to the previously acquired CSPI port handle.
3. Set the dwIoControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.
4. Set the lpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set nInBufferSize to the

size of that packet object.
5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

Example 7-2 demonstrates how to perform a XCH transfer.

Example 7-2. Code for XCH transfer

CSPI_BUSCONFIG_T buscnfg =
{

0x9000004, //configuration for SSP control register 0
 0, //command 0
 0, //command 1
 FALSE, //no DMA
 TRUE, //polling mode

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

7-4 Freescale Semiconductor

 32, //32 bits data
 FALSE, //write data
 0, //no command is sent
};

DWORD Data[11];

CSPI_XCH_PKT_T xchPkt =
{
 &buscnfg,

Data,
 1, // XCH to target SPI device 1 times
 NULL,
 0
};

// Transfer data via CSPI
DeviceIoControl(hCSPI, // file handle to the driver

 CSPI_IOCTL_EXCHANGE, // I/O control code
 (PBYTE) &xchPkt, // in buffer
 sizeof(xchPkt), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl call above, a SDK wrap function may be used to simplify the code.
The following is the sample code:

CSPIExchange(hCSPI, &xchPkt);

7.3.5 Closing the Handle to the CSPI
Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CSPI port.

7.3.6 Power Management
The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call. In all of the BSP use cases, the CSPI controller acts as a master
device. As a result, the CSPI clock can be turned off, whenever the module is not processing CSPI packets.

As described in the Data Transfer Operations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI module is
consuming power to the time during which the CSPI is actively performing data transfers.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-5

7.3.6.1 PowerUp

This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSPI
transfer operations are processed. There are no additional power management steps needed for the CSPI.

7.3.6.2 PowerDown

This function is not implemented for the CSPI driver.

7.3.6.3 IOCTL_POWER_SET

This function is implemented for the CSPI driver. When D4 power mode is set, the driver switches its
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recovers its origin operating mode.

7.4 Unit Test
The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

7.4.1 Building the Unit Tests
To build the CSPI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the SPI Test directory: \WINCE600\SUPPORT\TEST\SPITEST

3. Enter set WINCEREL=1 on the command prompt and press return.
This copies the EXE to the flat release directory.

4. Input build -c to build SPI test.

After the build completes, the SPIAPP.EXE file is located in the $(_FLATRELEASEDIR) directory.

To run the application within VS2005 use the following steps:
1. Go to the Target menu option and select Run Programs option. This gives a list of applications

that can be run on the OS.
2. Select SPIAPP.EXE from this list.
3. Click Run to run this application.

7.5 CSPI Driver API Reference
This section explains about the CSPI driver API reference.

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

7-6 Freescale Semiconductor

7.5.1 CSPI Driver IOCTLs
This section consists of descriptions for the CSPI I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the CSPI device. Only relevant parameters for the IOCTL
have a description provided.

7.5.1.1 CSPI_IOCTL_EXCHANGE

This DeviceIoControl request performs the transfer of data to a target device. An CSPI_XCH_PKT object
is required, which contains CSPI bus configuration parameters and data buffers. All of the required
information should be stored in the CSPI_XCH_PKT passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an CSPI_XCH_PKT structure containing a pointer to bus configuration

parameters and data buffers
nInBufferSize Size in bytes of the CSPI_XCH_PKT

7.5.2 CSPI Driver SDK Wrapper
This section explains about the CSPI driver SDK wrapper.

7.5.2.1 CSPIOpenHandle

This function retrieves the CSPI device handle.
HANDLE CSPIOpenHandle(

LPCWSTR lpDevName
);

Parameters
lpDevName The CSPI device name for retrieving handle from CreateFile()
Return Values Returns Handle for CSPI driver; returns INVALID_HANDLE_VALUE if failure

7.5.2.2 CSPICloseHandle

This function closes a handle of the CSPI stream driver.
BOOL CSPICloseHandle(

HANDLE hDev
);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.2.3 CSPIExchange

This function performs XCH operations.
BOOL CSPITransfer(

HANDLE hDev,
PCSPI_XCH_PKT_T pCspiXchPkt

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-7

);
Parameters
hDev The CSPI device handle retrieved from CreateFile()
pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

7.5.3 CSPI Driver Structures
This section explains about the CSPI driver structures.

7.5.3.1 CSPI_BUSCONFIG_T

This structure contains the bus configuration information needed during CSPI performs XCH.
// CSPI bus configuration
typedef struct
{

SSP_CTRL0 SspCtrl0;
 SSP_CMD0 SspCmd;
 SSP_CMD1 SspArg;
 BOOL usedma;
 BOOL usepolling;
 UINT8 bitcount;
 BOOL bRead;
 BOOL bCmd;
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T;

Table 7-2 shows the CSPI_BUSCONFIG_T structure members.

7.5.3.2 CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.
// CSPI exchange packet

Table 7-2. CSPI_BUSCONFIG_T Structure Members

Member Description

SspCtrl0 Configuration for SSP control register 0

SspCmd Command 0 for SSP

SspArg Command 1for SSP

usedma If TRUE, uses DMA mode, not support DMA now

usepolling If TRUE, uses polling mode, only support polling mode now

bitcount Define bits used in a single XCH, range 1-32.

bRead If TRUE, read data from CSPI

bCmd If TRUE, send command 0 and command 1 to CSPI controller

usedma If TRUE, uses DMA mode

usepolling If TRUE, uses polling mode

Configurable Serial Peripheral Interface (CSPI) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

7-8 Freescale Semiconductor

typedef struct
{
 PCSPI_BUSCONFIG_T pBusCnfg;
 LPVOID pBuf;
 UINT32 xchCnt;
 LPWSTR xchEvent;
 UINT32 xchEventLength;
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T;

Table 7-3 shows the CSPI_XCH_PKT_T structure members.
Table 7-3. CSPI_XCH_PKT_T Structure Members

Member Description

pBusCnfg A pointer to CSPI bus configuration object

pBuf A pointer to data buffer

xchCnt Amount of XCH operation to SPI device

xchEvent Asynchronous access using the internal exchange queue

xchEventLength Event name length including tailing Zero

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Display Driver for LCDIF and PXP
The Windows Embedded CE 6.0 BSP display driver is based on the Microsoft DirectDraw Graphics
Primitive Engine (DDGPE) classes, and supports the Microsoft DirectDraw interface. This driver
combines the functionality of a standard LCD display with DirectDraw support. The display driver
interfaces with the LCD Interface (LCDIF) and Pixel Pipeline (PXP).

The display driver supports the following display type:
• SEIKO 43WVF1G-0 WVGA Panel

8.1 Display Driver Summary
Table 8-1 identifies the source code location, library dependencies and other BSP information for the
display driver.

8.2 Supported Functionality
The display driver enables the EVK board to provide the following software and hardware support:

1. RGB565 user interface
2. DirectDraw Hardware Abstraction Layer (DDHAL)

Table 8-1. Display Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\LCDIF
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\PXP

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\LCDIF
..\PLATFORM\COMMON\SRC\SOC\<Target SoC>\PXP

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DISPLAY
..\PLATFORM\<Target Platform>\SRC\DRIVERS\PXP

Driver DLL ddraw_mx28.dll

Import Library ddgpe.lib, gpe.lib

Catalog Items Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Display >
43WVF1G(WVGA)

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_NODISPLAY=

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

8-2 Freescale Semiconductor

3. One overlay surface
4. Video overlays containing image data in any of the following FOURCC pixel formats: RGB565,

YV12
5. Hardware-accelerated color space conversion in video overlays
6. Hardware-accelerated image resizing in video overlays
7. Overlay surface color key feature
8. Alpha blending with an overlay surface
9. Two power management modes: full on and full off (resume and suspend)
10. Screen rotation
11. Cropping of an overlay surface
12. Supports SEIKO 43WVF1G-0 WVGA Panel

NOTE
The following limitations apply to the display driver overlay support.

13. RGB image resize is not supported
14. Cropping is not supported while performing alpha blending operation
15. The width and height of the overlay surface must conform to an 8-pixel alignment restriction
16. The minimum width (or height if screen is rotated) of an overlay surface is 8 pixels
17. The minimum height (or width if screen is rotated) of an overlay surface is 8 pixels
18. When using the cropping feature, the x and y coordinate position must conform to 8-pixel

alignment restriction

8.3 Hardware Operation
For operation and programming information, refer to the chapter on the Pixel Pipeline and LCD Interface
in the Reference Manual.

8.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

8.4 Software Operation
This section explains about the software operation of the display driver.

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-3

8.4.1 Software Driver Components
Figure 8-1 shows the block diagram explaining the relationship between the software components in the
display driver architecture.

Figure 8-1. Software Driver Components Block Diagram

A list of the main elements of the display driver architecture is as follows:
• Display Driver—The high level DDGPE-based display driver. Contains implementations for

DirectDraw APIs.
• LCD Interface—Set of functions provide access to LCDIF module for display control setting.
• Pixel Pipeline Driver—A stream interface driver that performs the following processing tasks:

color space conversion, resizing, rotation, and combining.

8.4.1.1 Display Driver

The display driver is the top level interface between the display driver and the Windows CE OS or a calling
application. This top level software component is composed of the DDLCDIF class, which is derived from
the public DDGPE class and inherits the underlying GPE driver functionality. Graphics Device Interface
(GDI) and DirectDraw APIs are implemented at this level.

8.4.1.2 LCD Interface

The LCDIF software component consists of a collection of functions that provide access to the LCDIF
module registers. These functions are called from the display driver to implement the display control. The
major tasks that this component performs include the following:

• Setting bus master and DMA operation modes for LCD.
• Configuring LCD data bus depending on the packet size.
• Programming timing and parameters to support a wide variety of displays.

8.4.1.3 Pixel Pipeline

The PXP driver provides a general resource that is capable of performing a set of processing tasks on a
surface:

• Resizing
• Combining of video and graphics data

WinCE OS Software Layer

Display Driver (DDGPE class)

LCD Interface Pixel Pipeline

ddraw_mx2x.dll

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

8-4 Freescale Semiconductor

• Rotation
• Vertical and horizontal flipping
• Color Space Conversion (CSC)
• Cropping

The PXP driver is the primary means for performing resizing, rotation, CSC, cropping and combining on
an overlay surface.

8.4.2 Communicating with the Display
Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

8.4.2.1 Using the GDI

The GDI provides basic controls for the display of text and graphics. For more information, see the Help
in the following location:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface (GDI)

8.4.2.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information about the DirectDraw API,
see the DirectDraw Help or the MSDN documentation library in the following location:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the PXP hardware:
• Page flipping with one backbuffer.
• Overlay surfaces using RGB or YV12 pixel format.
• Overlaying using a color key for the overlay surface for RGB colors.
• Stretching of overlay surfaces.

The PXP hardware module is used within the display driver to accelerate the following operations:
• Color space conversion of YUV overlay data to RGB. This conversion may be required in order to

combine the overlay data with RGB graphics plane data before being displayed.
• Resizing of the overlay surface.
• Rotation of the overlay surface (used when the screen orientation is rotated).

8.4.2.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as a part of the display driver.

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-5

For a detailed description of standard display driver escape codes, refer to the CE Help in the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Development Concepts > Display Driver Escape Codes

8.4.3 Configuring the Display
The display configuration is based on the GUID registry key, which is described in Section 8.4.3.3,
“Display Registry Settings.” The GUID registry key indicates the display panel that is being used. The
only one supported display panel is the SEIKO 43WVF1G-0 WVGA Panel.

8.4.3.1 Rotation Support

The DirectDraw display driver supports screen rotation.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw, a DirectDraw display driver with rotation support may yield
more failures in the GDI or DIRECTDRAW CETK test suite. It is
recommended to run these CETK tests under 0 rotation degree. See the
Windows CE Help, stating that GDI screen rotation cannot be used with
DirectDraw.

8.4.3.2 Display Driver Blit Acceleration

On-chip Data Co-Processor (DCP) may be accessed through the display driver to accelerate a very limited
subset of the GDI graphical blit operations. The subsequent sections provide details on the features offered
by the DCP, and how to configure the BSP to enable acceleration through DCP.

8.4.3.2.1 DCP Graphics Acceleration

DCP graphics acceleration may be enabled by setting the platform environment variable
BSP_DISPLAY_DCP=1. This may be achieved by navigating to the project properties, and adding the
environment variable in the Configuration Properties->Environment window.

8.4.3.2.2 Supported Acceleration Features

1. Solid color fills.
2. ROP operation BLACKNESS.
3. ROP operation WHITENESS.
4. ROP operation SRCCOPY.

8.4.3.2.3 Hardware Restrictions

• DCP cannot support any rotation and resize case.
• DCP cannot support any alpha operation.

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

8-6 Freescale Semiconductor

• DCP can only support 16BPP and 32BPP.
• While pixel format is 16BPP, DCP can only support destination surface whose width is a multiple

of 2 in Solid color fills, BLACKNESS and WHITENESS ROP operation case.
• Source surface stride must be equal to source rectangle width for the ROP operation SRCCOPY

case DCP supports.
• While using DCP for ROP operation SRCCOPY acceleration, source surface pixel format must be

equal to destination surface pixel format.

8.4.3.2.4 Acceleration performance

Compared to software operation, performance benefit can only be gained while using DCP to process big
block blit operations. In general, while block size is larger than 51200 bytes in Solid color fills,
BLACKNESS and WHITENESS operation, DCP has better performance than software. For SRCCOPY
case, the threshold could be 115200 bytes.

8.4.3.3 Display Registry Settings

A set of registry keys is included in the OS image, depending on the display panel catalog item included
in the OS design.

8.4.3.3.1 i.MX28 Registry Settings

If the SEIKO 43WVF1G-0 WVGA panel is selected, the following registry keys are included:
[HKEY_LOCAL_MACHINE\System\GDI\Drivers]
"GUID"="{83A0FF68-78BB-4DF5-8DEB-077961EE75BC}";
"Bpp"=dword:10 ; RGB565
"VideoMemSize"=dword:600000 ; 6MB
"Alignment"=dword:8 ;

The Alignment registry key indicates boundary restrictions and size restrictions of the source and
destination rectangles used to display overlay surfaces according to PXP module hardware limitations.
Both types of restrictions are expressed in terms of pixels (not bytes) and can apply to the source and
destination rectangles.

For i.MX28, the Alignment registry key can be set to 0x8 or 0x10.

8.4.4 Power Management
The display driver implements the power management I/O Control (IOCTL) codes, such as
IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY, IOCTL_POWER_GET and
IOCTL_POWER_SET.

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-7

8.4.4.1 PowerUp

This function is implemented in the PXP driver. It enables clock gating with the PXP module and resets
the PXP module to its default state. If an PXP operation is previously terminated by calling the
PowerDown() API, the PowerUp() function restores the PXP module registers and restarts the PXP operation.

8.4.4.2 PowerDown

This function is implemented in the PXP driver. If the PowerDown() function is called while PXP operations
are going on, it stores current PXP module registers setting temporarily. Then it disables clock gating with
the PXP module and holds the PXP module in its reset (lower power) state.

8.4.4.3 IOCTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0—The LCDIF module is enabled. The display panel is enabled. Clock gating is enabled for
clocks to the LCDIF.

• D4—The LCDIF module is disabled. The display panel is disabled. Clock gating is disabled for
clocks to the LCDIF.

8.5 Unit Test
The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the GDI
Test and the DirectDraw Test. Additionally, the video playback is verified using the Windows Media
Player application.

The GDI Test is designed to test a graphics device interface. This test verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test also examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

Windows Media Player may be used to play back WMV video files and visually verify correct operation
of video overlays, accelerated color space conversion, and accelerated image resizing.

8.5.1 Unit Test Hardware
The SEIKO 43WVF1G-0 WVGA panel is needed to run the GDI and DirectDraw tests. The panel displays
the graphics data.

8.5.2 Unit Test Software
This section explains about the software required for different tests.

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

8-8 Freescale Semiconductor

8.5.2.1 GDI Tests

Table 8-2 lists the software required to run the GDI tests.

8.5.2.2 DirectDraw Tests

Table 8-3 lists the software required to run the DirectDraw tests.

8.5.2.3 Windows Media Player Tests

Table 8-4 lists the software required to perform WMV playback with Windows Media Player.

8.5.3 Building the Unit Tests
The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure that the latest CETK suite is
installed. No steps are required to build these tests. For information about the tests, see the Help at the
following location:

Windows Embedded CE Test Kit > Running the CETK

Table 8-2. GDI Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Gdiapi.dll Main test.dll file

Ddi_test.dll Graphics Primitive Engine (GPE)–based display driver that the GDI API uses to verify the success of each test
case. If Ddi_test.dll is unavailable, run the test with manual verification

Table 8-3. DirectDraw Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

DDrawTK.dll Test.dll file

Table 8-4. Windows Media Player Software Requirements

Requirement Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files Sample windows media files

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-9

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe is included in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

8.5.4 Running the Unit Tests
This section explains how to run different types of tests.

8.5.4.1 Running the GDI Tests

The command for running the GDI tests is:
tux –o –d gdiapi.dll -c “/NoResize”

For information about the GDI tests and command line options, see the Platform Builder Help topic:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests >
Graphics Device Interface Test

8.5.4.2 Running the DirectDraw Tests

The command for running the DirectDraw tests is:
tux –o –d ddrawtk

NOTE
The display driver fails the following DirectDraw CETK test cases: 1240,
1340. The failure occurs because the hardware can not support RGB image
resize, and the failing tests perform RGB pixel format overlay surfaces
resize that violate this restriction.

8.5.4.3 Running the Windows Media Player tests

The command for starting playback of a WMV test video clip in Windows Media Player is:
ceplayer [wmv test file]

For example, ceplayer motocross_208x160_30fps.wmv

If audio support is not included in the current BSP, the message Audio hardware is missing or disabled
appears when the WMV file is being loaded. Click OK to continue to WMV playback.

To confirm the correct operation of this test, observe the application and verify whether the video clip have
a clear image, normal coloring, and correct image sizing.

8.6 Display Driver API Reference
For information about the display driver APIs, see CE Help. No additional custom API information is
required for the features currently supported in the display driver.

For reference information on basic display driver functions, methods, and structures, see the CE Help at
the following location:

Display Driver for LCDIF and PXP

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

8-10 Freescale Semiconductor

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Reference

For reference information on DirectDraw functions, callbacks, and structures, see the CE Help at the
following location:

Windows Embedded CE Features > Graphics > DirectDraw

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

9.1 DVFC Driver Summary
Table 9-1 provides a summary of source code location, library dependencies, and other BSP information.

9.2 Supported Functionality
The DVFC driver enables the hardware platform to provide the following software and hardware support:

1. Executes as a device driver and provides synchronized support of the DVFS power management
feature.

2. Exposes stream interface for initialization and power management.
3. Supports D0 and D4 driver power states and support control of frequency or voltage setpoint based

on Power Manager device power states.
4. Supports peripheral setpoint requests initiated by CSPDDK clock management code.

Table 9-1. DVFC Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2PDK1_9\DVFC

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfc.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > DVFC driver

SYSGEN Dependency N/A

BSP Environment Variables BSP_DVFC = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

9-2 Freescale Semiconductor

9.2.1 i.MX28 Supported Functionality
1. Supports DVFS for CPU, AHB and DDR frequency change.
2. Supports reactive CPU load tracking to control setpoint based on system performance

requirements. Current release uses software load tracking algorithm.
3. Provides voltage control using PMU.

9.3 Hardware Operation
This section describes about the DVFC hardware operation.

9.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

9.3.2 i.MX28 EVK Configuration
The DVFC driver is dependent on the PMU interface to adjust voltage.

9.4 Software Operation
This section describes about the registry settings.

9.4.1 i.MX28 Registry Settings
The following registry keys are required to load the i.MX28 DVFC module.
;---
; DVFC Driver
;
IF BSP_DVFC
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC]
 "Prefix" = "DVF"
 "Index" = dword:1
 "Dll"="dvfc.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
ENDIF ;BSP_DVFC

9.4.2 Loading and Initialization
The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DVFC driver. The initialization sequence includes a call to
platform-specific code (BSPDvfcInit) to allow the OEM to configure and tune the DVFC driver operation.

9.4.3 Operation
The DVFC driver is the central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-3

requests from DDK_CLK (by driver calling DDKClockSetGatingMode) and Power Manager (by
IOCTL_POWER_SET). A shared global data structure (DDK_CLK_CONFIG) is used to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DVFC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

9.4.3.1 i.MX28 Voltage or Frequency Setpoints

The i.MX28 DVFC driver supports mutually exclusive voltage and frequency setpoints for the CPU power
domains. Table 9-2 provides the voltage/frequency characteristics for these setpoints.

The setpoint attributes are controlled by the definitions in the platform-specific DVFS header file (found
in \PLATFORM\<Target Platform>\SRC\INC\dvfs.h). The DVFC driver uses these definitions to populate a
global setpoint array (g_SetPointConfig) that is referenced during setpoint transitions.

9.4.3.2 i.MX28 Setpoint Mapping

N/A

9.4.4 DDK Interface
The DVFC driver allows other drivers or applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. See the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest, Section 6.5.1.2.6, “DDKClockSetpointRequest.”
• DDKClockSetpointRelease, Section 6.5.1.2.7, “DDKClockSetpointRelease.”

9.4.5 Power Management
The DVFC is an integral part of the power management supported by the BSP. However, as the DVFC
runs as a driver on the system, it also supports the Power Manager device driver interface. This allows the
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

9.4.5.1 PowerUp

This stream interface function is not implemented for the DVFC driver.

Table 9-2. i.MX28 DVFC Setpoints

Setpoint Name CPU/AHB/DDR Frequency [MHz] VDDD Voltage

DDK_DVFC_SETPOINT_HIGH 454/151/200 1.575 V

DDK_DVFC_SETPOINT_MEDIUM 297/148/200 1.150 V

DDK_DVFC_SETPOINT_LOW 261/130/166 1.100 V

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

9-4 Freescale Semiconductor

9.4.5.2 PowerDown

This stream interface function is not implemented for the DVFC driver.

9.4.5.3 IOCTL_POWER_CAPABILITIES

The DVFC driver advertises that D0–D4 device power states are supported.

9.4.5.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter D0–D4 device power state.

9.4.5.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0, D1, D2 or D4).

9.5 Unit Test
This section explains about the unit testing.

9.5.1 i.MX28 Unit Testing
A stress test application for the DVFC driver is provided for unit testing. This stress test uses the Power
Manager interface (SetDevicePower) to randomly request setpoints for the CPU and peripheral DVFS
domains. Follow these steps to run this unit test.

1. Open <Target Platform>-Mobility workspace and add the DVFC driver catalog item. Build OS
image.

NOTE
Note that modifications to the default workspace may cause additional
drivers to be included and may prevent the system from transitioning
through all possible DVFS setpoints.

2. Build DVFC stress test located in \SUPPORT\TEST\APP\PWRMGMT. The resulting application
pwrmgmt.exe is generated in the flat release directory.

3. Boot the OS image and launch application code such as media player that can perform continuous
playback. WMA audio playback is a good use case since audio playback can be performed across
all supported setpoints.

4. Launch the stress test application. From the CE shell, the stress test can be launched with the
following command line:

s \release\pwrmgmt.exe

Board modifications are required to observe voltage setpoints and are not covered in this document. Debug
messages to indicate setpoint transitions can be enabled using the DVFC_VERBOSE macro found in
\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC\dvfc.c

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Ethernet MAC Controller (ENET) Driver
The Ethernet MAC driver is used for connectivity with an IEEE 802.3 Ethernet using the on-chip Ethernet
MAC Controller. The driver provides support to communicate with the Ethernet at 10/100 Mbps, using a
MII or RMII compatible interface and an external transceiver . The Ethernet MAC driver is NDIS 4.0
compliant miniport driver.

10.1 Ethernet MAC Driver Summary
Table 10-1 provides a summary of source code location, library dependencies and other BSP information.

10.2 Supported Functionality
The ENET driver enables the hardware platform to provide the following software and hardware support:

1. Compliant with the NDIS 4.0 miniport driver
2. 10/100 Mbps network
3. MII PHY or RMII PHY
4. IEEE 1588 function demo

Table 10-1. ENET Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\ENET

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ENET

Driver DLL enet.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>:ARMV4I > Device Drivers > ENET

SYSGEN Dependency SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables BSP_ENET1= 1
BSP_ENET2= 1

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

10-2 Freescale Semiconductor

10.3 Hardware Operations
The Ethernet MAC Controller connects with the external transceivers using standard Media Independent
Interface (MII) connection. All the registers in the external transceivers can be accessed by the MII
compatible management frames. The interrupt signal from the external transceiver is connected to the
processor through the Peripheral Bus Controller (PBC). Refer to the Peripheral Bus Controller document
for detailed operation and programming information. The attached transceiver for the Ethernet MAC
Controller can detect the speed of the ethernet network automatically by the auto-negotiation process. The
software accesses the status register of attached transceiver to determine the speed of the ethernet network
(10 Mbps or 100 Mbps).

The Ethernet MAC Controller connects with the external transceiver using standard RMII (Reduced
Media Independent Interface) connection. All the registers in the external transceiver (LAN8720) can be
accessed by the RMII compatible management frames. The attached transceiver for the Fast Ethernet
Controller can detect the speed of the ethernet network automatically by the auto-negotiation process. The
software accesses the status register of attached transceiver to determine the speed of the ethernet network
(10 Mbps or 100 Mbps).

The programmable 10/100 Ethernet MAC with IEEE 1588 support integrates a standard IEEE 802.3
Ethernet MAC with a time stamping module to support Ethernet applications requiring precise timing
references for incoming and outgoing frames to implement a distributed time synchronization protocol-
such as the IEEE 1588.

10.3.1 Conflicts with Other Peripherals and Catalog Items
This section lists the conflicts with other peripherals and catalog items.

10.3.1.1 Conflicts with SoC Peripherals

No conflicts.

10.3.1.2 Conflicts with i.MX28 EVK Peripherals

No conflicts.

10.4 Software Operations
The Ethernet MAC driver follows the Microsoft-recommended architecture for NDIS miniport drivers.
The details can be found in the Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Development Concepts > Miniports, Intermediate Drivers, and Protocol Drivers.

10.4.1 ENET Driver Registry Settings
The following register keys are required to properly load the Ethernet MAC driver and to configure the
TCP/IP for Ethernet interface. To enable dynamic IP address assignment using DHCP, the variable
EnableDHCP should be set to 1.

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-3

IF BSP_ENET1
[HKEY_LOCAL_MACHINE\Comm\1ENET]
 "DisplayName"="ENET Ethernet Driver"
 "Group"="NDIS"
 "ImagePath"="enet.dll"
 "Index"=dword:0

[HKEY_LOCAL_MACHINE\Comm\1ENET\Linkage]
 "Route"=multi_sz:"ENET1"

[HKEY_LOCAL_MACHINE\Comm\ENET1]
 "DisplayName"="ENET Ethernet Driver"
 "Group"="NDIS"
 "ImagePath"="enet.dll"

[HKEY_LOCAL_MACHINE\Comm\ENET1\Parms]
 "BusNumber"=dword:0
 "BusType"=dword:0
 ; DuplexMode: 0:AutoDetect; 1:HalfDuplex; 2:FullDuplex.
 "DuplexMode"=dword:0
 ; The Ethernet Physical Address. For example,
 ; Ethernet Address 00:24:20:10:bf:03 is MACAddress1=0024,
 ; MACAddress2=2010,and MACAddress3=bf03.
 "MACAddress1"=dword:1213
 "MACAddress2"=dword:1728
 "MACAddress3"=dword:3120

[HKEY_LOCAL_MACHINE\Comm\ENET1\Parms\TcpIp]
 ; This should be MULTI_SZ
 "DefaultGateway"=""
 ; This should be SZ... If null it means use LAN, else WAN and Interface.
 "LLInterface"=""
 ; Use zero for broadcast address? (or 255.255.255.255)
 "UseZeroBroadcast"=dword:0
 ; Thus should be MULTI_SZ, the IP address list
 "IpAddress"="0.0.0.0"
 ; This should be MULTI_SZ, the subnet masks for the above IP addresses
 "Subnetmask"="0.0.0.0"
 "EnableDHCP"=dword:1

[HKEY_LOCAL_MACHINE\Comm\TcpIp\Parms]

 ;Set to True to keep the device from entering idle mode if there's network adapter
 ;;"NoIdleIfAdapter"=dword:1
 ;Set to True to keep the device from entering idle mode while communicating/loop back
 "NoIdleIfConnected"=dword:1

[HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage]
 ; This should be MULTI_SZ
 ; This is the list of llip drivers to load
 "Bind"=multi_sz:"ENET1"
ENDIF ; BSP_ENET1
IF BSP_ENET2
[HKEY_LOCAL_MACHINE\Comm\2ENET]
 "DisplayName"="ENET Ethernet Driver"
 "Group"="NDIS"

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

10-4 Freescale Semiconductor

 "ImagePath"="enet.dll"
 "Index"=dword:1

[HKEY_LOCAL_MACHINE\Comm\2ENET\Linkage]
 "Route"=multi_sz:"ENET2"

[HKEY_LOCAL_MACHINE\Comm\ENET2]
 "DisplayName"="ENET Ethernet Driver"
 "Group"="NDIS"
 "ImagePath"="enet.dll"

[HKEY_LOCAL_MACHINE\Comm\ENET2\Parms]
 "BusNumber"=dword:0
 "BusType"=dword:0
 ; DuplexMode: 0:AutoDetect; 1:HalfDuplex; 2:FullDuplex.
 "DuplexMode"=dword:0
 ; The Ethernet Physical Address. For example,
 ; Ethernet Address 00:24:20:10:bf:03 is MACAddress1=0024,
 ; MACAddress2=2010,and MACAddress3=bf03.
 "MACAddress1"=dword:1213
 "MACAddress2"=dword:1728
 "MACAddress3"=dword:4567

[HKEY_LOCAL_MACHINE\Comm\ENET2\Parms\TcpIp]
 ; This should be MULTI_SZ
 "DefaultGateway"=""
 ; This should be SZ... If null it means use LAN, else WAN and Interface.
 "LLInterface"=""
 ; Use zero for broadcast address? (or 255.255.255.255)
 "UseZeroBroadcast"=dword:0
 ; Thus should be MULTI_SZ, the IP address list
 "IpAddress"="0.0.0.0"
 ; This should be MULTI_SZ, the subnet masks for the above IP addresses
 "Subnetmask"="0.0.0.0"
 "EnableDHCP"=dword:1

[HKEY_LOCAL_MACHINE\Comm\TcpIp\Parms]
 ;Set to True to keep the device from entering idle mode if there's network adapter
 ;;"NoIdleIfAdapter"=dword:1
 ;Set to True to keep the device from entering idle mode while communicating/loop back
 "NoIdleIfConnected"=dword:1

[HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage]
 ; This should be MULTI_SZ
 ; This is the list of llip drivers to load
 "Bind"=multi_sz:"ENET2"

ENDIF ; BSP_ENET2

10.4.2 IEEE 1588 Features
This section explains the IEEE 1588 interrelated OIDS functions.

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-5

10.4.2.1 OID_GET_XMIT_TIMER

This function is the timestamp of the transmited packet with specific PTP sequence ID and returns the
timestamp(second and nonsecond) .

10.4.2.2 OID_GET_RCV_TIMER

This function is the timestamp of the received packet with specific PTP sequence ID and returns the
timestamp(sencond and nonsecond) .

10.4.2.3 OID_UPDATE_NEW_TIMER

This function updates the new PTP timer (second and nonsecond) for 1588 demo.

10.4.2.4 IEEE1588 Software Features

Ethernet IEEE1588 demo application support the following PTPV2 frame message:
• Sync Message
• Follow-Up Message
• Delay-Request Message
• Delay-Response Message

Figure 10-1 shows the IEEE 1588 Timer Sync flow chart.

Figure 10-1. IEEE 1588 Timer Sync Flow Chart

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

10-6 Freescale Semiconductor

10.5 Unit Tests
The Ethernet MAC driver is tested using the following:

• Network utilities/operations
— Ping to and from the tested device
— FTP transfers (file put and get) with tested device as FTP server
— Internet browsing with Pocket Internet Explorer on the tested device

• Winsock CETK test cases
— Winsock 2.0 Test (v4/v6)
— Winsock Performance Test with tested device as client.

10.5.1 Unit Test Hardware
Table 10-2 lists the required hardware to run the unit tests.

10.5.2 Unit Test Software
Table 10-3 lists the required software to run the unit tests.

Table 10-2. Hardware Requirements

Requirement Description

HW Platform System —

PC/machine Counterpart for network operation

An Ethernet or a cross Ethernet cable To and from an Ethernet

Table 10-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Ws2bvt.dll Test .dll file for Winsock 2.0 Test (v4/v6)

Perflog.dll Module that contains functions that monitor and log performance for Winsock Performance Test

Perf_winsock2.dll Test .dll file for Winsock Performance Test

Perf_winsockd2.exe Test .exe file (server program) for Winsock Performance Test

Ndt.dll Protocol driver for One-card network card miniport driver test

Ndt_1c.dll Test .dll for One-card network card miniport driver test

Ndt_2c.dll Test .dll for Two-card network card miniport driver test

Ndp.dll MS_NDP protocol driver for NDIS performance test

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-7

10.5.3 Building the Unit Tests
This section explains how to build various unit tests.

10.5.3.1 Network Utilities Related Tests
• To include the ping utilities, the SYSGEN_NETUTILS = 1 needs to be set. Under Catalog > Core

OS > CEBASE > Communication Services and Networking > Networking General > Network
Utilities, IpConfig, Ping, and Route should be included in the OS design.

• To include FTP, SYSGEN_FTPD = 1 needs to be set. Catalog > Core OS > CEBASE >
Communication Services and Networking > Servers > FTP Server should be included in the
OS design.

• The following registry entry needs to be added to reg to allow get and put of files using the
anonymous FTP login:

[HKEY_LOCAL_MACHINE\COMM\FTPD]
"AllowAnonymousUpload" = dword:1

10.5.3.2 Winsock 2.0 Test (v4/v6)

The Winsock 2.0 Test (v4/v6) comes pre-built as part of the CETK. No steps are required to build these
tests. The Ws2bvt.dll file can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

10.5.3.3 IEEE1588 Demo Applications

To build the IEEE1588 tests, build an OS image for the desired configuration using these steps:
1. Within the Platform Builder, choose Build OS > Open Release Directory.

A DOS prompt is displayed.
2. Change to the 1588 Tests directory: \WINCE600\SUPPORT\TEST\1588
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the file to the flat release directory.
4. Input build -c to build the 1588 test.

After the build completes, the Master.exe and Slave.exe file is located in the $(_FLATRELEASEDIR)
directory.

Perf_ndis.dll Test .dll file NDIS performance test

master.exe IEEE1588 master application demo exe file.

slave.exe IEEE1588 slave application demo exe file.

Table 10-3. Software Requirements (continued)

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

10-8 Freescale Semiconductor

10.5.3.4 Winsock Performance Test

The Winsock Performance Test comes pre-built as part of the CETK. No steps are required to build these
tests. The Perf_winsock2.dll and Perf_winsockd2.exe files can be found alongside the other required
CETK files in the following location:

Perf_winsock2.dll in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Perf_winsockd2.exe in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\desktop

10.5.3.5 One-Card Network Card Miniport Driver Test

The One-card network card miniport driver test comes pre-built as part of the CETK. No steps are required
to build these tests. The ndt.dll and ndt_1c.dll files can be found alongside the other required CETK files
in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

10.5.3.6 Two-Card Network Card Miniport Driver Test

The Two-card network card miniport driver test comes pre-built as part of the CETK. No steps are required
to build these tests. The ndt.dll and ndt_2c.dll files can be found alongside the other required CETK files
in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

10.5.3.7 NDIS Performance Test

The NDIS performance test comes pre-built as part of the CETK. No steps are required to build these tests.
The ndp.dll and perf_ndis.dll files can be found alongside the other required CETK files in the
following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

10.5.4 Running the Unit Tests
This section explains how to run various network related unit tests.

Network Utilities Related Tests

10.5.4.1 Ping Tests

The ping tests can be run as usual from the tested device as well as from the PC side.

10.5.4.2 Browsing

The network browsing tests can be done after setting the following on the device front panel:

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-9

DNS servers in the TCP/IP properties of Fast Ethernet network interface (Control Panel Network and
Dial-up Connections) Proxy server, if used in the test network on the Pocket Internet explorer.

10.5.4.3 FTP Tests

For running FTP tests, the FTP service needs to be started on the tested device using the following
command on the DOS prompt:
services start FTP0:

10.5.4.4 Winsock 2.0 Test (v4/v6)

The test can be executed by using
tux –o –d Ws2bvt.dl

in the command line on the tested device. For detailed information on the Winsock 2.0 Test (v4/v6) tests,
see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests > Tests
Winsock 2.0 Test(v4/v6).

10.5.4.5 Winsock Performance Test

Start the server on the PC by typing
Perf_winsockd2 - install

at the command line. Then client side test executes on the second device by using
tux –o –d Perf_winsock2.dll –c “-s 10.193.101.41”

in the command line on the tested target device, where 10.193.101.41 denotes PC IP address and needs to
be replaced appropriately. For detailed information on the Winsock Performance tests, see the Platform
Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
Wisock Performance Test.

NOTE
Cases 1007 and 1008 fail. This is a known MSFT CETK issue.

10.5.4.6 One-Card Network Card Miniport Driver Test

This test can be done by including ndt.dll and ndt_1c.dll in the image, and starting the test by entering
tux –o –d ndt_1c.dll –c “-t ENET1”

tux –o –d ndt_1c.dll –c “-t ENET2”

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests >
One-card Network Card Miniport Driver Test.

Ethernet MAC Controller (ENET) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

10-10 Freescale Semiconductor

10.5.4.7 Two-Card Network Card Miniport Driver Test

This test can be done by including ndt.dll and ndt_2c.dll in the image, and starting the test by entering
tux -o -d ndt_2c -c "-t ENET1 -s ENET2"

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests >
Two-card Network Card Miniport Driver Test.

10.5.4.8 NDIS Performance Test

This test can be done by including ndp.dll and perf_ndis.dll in the image, and starting the test by
entering
tux –o –d perf_ndis.dll –c “ENET1”

tux –o –d perf_ndis.dll –c “ENET2”

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
NDIS Performance Test.

10.5.4.9 IEEE1588 Demo Test

On the master demo board, run the master.exe and on the slave board, run slave.exe.

10.6 Ethernet ENET Driver API Reference
The Fast Ethernet driver conforms to NDIS 4.0 specification by Microsoft for the miniport network
drivers. For reference information on basic NDIS driver functions, methods, and structures, refer to the CE
Help:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Reference.

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C master. The I2C
module is designed to be compatible with the standard Phillips I2C bus protocol.

11.1 I2C Driver Summary
Table 11-1 provides a summary of source code location, library dependencies and other BSP information.

11.2 Supported Functionality
The I2C driver supports the following features:

1. I2C communication protocol
2. I2C master mode of operation
3. Stream interface

11.3 Hardware Operation
The i.MX28 I2C block has its own dedicated DMA channel in the APBX controller. DMA is used
exclusively to transfer data to and from the bus as PIO mode is not fully supported in hardware.

Table 11-1. I2C Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\iMX28_FSL_V2_PDK1_9\I2C

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\I2C

Platform Driver Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2csdk.dll i2c.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > I2CBus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS1=1 or BSP_I2CBUS2=1

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-2 Freescale Semiconductor

11.3.1 Conflicts with Other Peripherals and Catalog Items
The following section explains about the conflicts that the I2C driver have with other peripherals and
catalog items:

11.3.1.1 Conflicts with SoC Peripherals

No conflicts.

11.3.1.2 Conflicts with Board Peripherals

No conflicts.

11.4 Software Operation
Only master mode is implemented in the driver; slave functions are stubbed out. As mentioned above, PIO
mode is not fully supported in hardware so only DMA mode is implemented in the driver. The driver
allocates its own DMA buffers for the data transfer. The calling application is expected to setup the data
buffer with the slave address (7-bit or 10-bit) as part of the data to be sent in the format required by the
slave device.

The I2C APIs should be used to perform any operation on or using the I2C module. Any array of packets
to be transferred to or from the I2C bus finish to completion without preemption by another request to
transfer data.

11.4.1 Registry Settings
This section explains about the registry settings for the I2C driver.

The following is the registry key to load the I2C.

11.4.1.1 i.MX28 Registry Settings

The following is the registry key to load the I2C.
IF BSP_I2CBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C1]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:1
 "Order"=dword:3
ENDIF ; BSP_I2CBUS1
IF BSP_I2CBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C2]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:2
 "Order"=dword:3
ENDIF ; BSP_I2CBUS1

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-3

11.4.2 Communicating with the I2C
The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. The following are the basic steps. The I2C driver is provided to hide all the IOCTL calls
from the calling application.

11.4.3 Creating a Handle
Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. If an I2C port does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the I2C:
1. Insert a colon after the I2C port for the first parameter, lpFileName. For example, specify I2C1:.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an I2C port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

Example 11-1shows how to open an I2C port.

Example 11-1. Code to Open I2C Port

 // Open the I2C port.
 hI2C = CreateFile (, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port. When an application opens an I2C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

11.4.4 Configuring the I2C
Configuring the I2C port for communications involves two main operations:

• Setting the master mode
• Setting the I2C clock rate

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-4 Freescale Semiconductor

Example 11-2 shows the code to configure an I2C port:

Example 11-2. Code to Configure I2C Port

HANDLE hI2C = I2COpenHandle(_T("I2C1:"));

if (hI2C == INVALID_HANDLE_VALUE)
{

ERRORMSG(1, (L"Unable to open handle to I2C block\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetMasterMode(hI2C))
{

ERRORMSG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSet(hI2C, EEPROM_CLOCK_RATE))
{

ERRORMSG(1, (L"Unable to set \r\n"));
retVal = -1;
goto exit;

}

11.4.5 Data Transfer Operations
The I2C driver provides one command, transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a read or a write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is required to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened, and it should already
be configured in the correct mode with the correct frequency.

To perform an I2C transfer:
1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a write, or
I2C_RW_READ to specify that the I2C operation is a read.

b) If byRW is set to I2C_RW_WRITE, create a buffer of bytes and fill it with the data to write to
the slave device. Set the pbyBuf field to point to this buffer. If byRW is set to I2C_RW_READ,
create a buffer of bytes to hold the data which is read from the slave device.

c) Set the wLen field to the size, in bytes, of the read or write buffer. This indicates the number of
bytes to write or read.

d) Set the lpiResult field to point to an integer that holds the return value from the write operation.
2. Call the I2CTransfer SDK API to start the I2C transfer.

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-5

3. After calling the I2CTransfer function, check the lpiResult field if the function returned FALSE, to
narrow down the type of error that occurred.

11.4.6 Closing the Handle
Call the CloseHandle function to close the handle to the I2C after the transfer task is complete.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

11.5 Unit Test
The following section explains about the hardware and software requirements for unit tests.

11.5.1 Unit Test Hardware
 The unit tests are not supported for this release.

11.5.2 Unit Test Software
The unit tests are not supported for this release.

11.5.3 Building the Unit Tests
The unit tests are not supported for this release.

11.5.4 Running the Unit Tests
The unit tests are not supported for this release.

11.6 Hardware Limitations
The following is the hardware limitations:

PIO mode is not supported by the hardware; DMA mode is always used. Slave mode is not implemented.

11.7 I2C Driver API Reference
This section explains about the reference to I2C driver API.

11.7.1 I2C Driver IOCTLS
This section contains descriptions of the I2C I/O control codes (IOCTLs). These IOCTLs are used in calls
to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL have
a description provided.

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-6 Freescale Semiconductor

11.7.1.1 I2C_IOCTL_GET_CLOCK_RATE
This DeviceIoControl request retrieves the clock rate
Parameters
lpOutBuffer Pointer to the divisor indexclock rate.
nOutBufferSize Size in bytes of the divisor indexclock rate

11.7.1.2 I2C_IOCTL_GET_SELF_ADDR

This DeviceIoControl request retrieves the address of the I2C device. This macro is only meaningful if it
is currently in Slave mode.
Parameters
lpOutBuffer Pointer to the current I2C device address, valid range is [0x00–0x7F]
nOutBufferSize Size in bytes of the I2C device address

11.7.1.3 I2C_IOCTL_IS_MASTER

This DeviceIoControl request determines whether the I2C is currently in Master mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Master mode inquiry:

TRUE if currently in Master mode; FALSE if currently in Slave mode
nOutBufferSize Size in bytes of the return value, should be one byte

11.7.1.4 I2C_IOCTL_IS_SLAVE

This DeviceIoControl request determines whether the I2C is currently in Slave mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Slave mode inquiry:

TRUE if currently in Slave mode; FALSE if currently in Master mode
nOutBufferSize Size in bytes of the return value, should be one byte

11.7.1.5 I2C_IOCTL_RESET

This DeviceIoControl request performs a hardware reset. The I2C driver maintains all of the current
information of the device, including all of the initialized addresses.

11.7.1.6 I2C_IOCTL_SET_CLOCK_RATE

This DeviceIoControl request initializes the I2C device with the given clock rate.
Parameters
lpInBuffer Pointer to the clock rate divisor index.
nInBufferSize Size in bytes of the clock rate divisor index

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-7

11.7.1.7 I2C_IOCTL_SET_MASTER_MODE

This DeviceIoControl request sets the I2C device to Master mode.

11.7.1.8 I2C_IOCTL_SET_SELF_ADDR

This DeviceIoControl request initializes the I2C device with the given address.
Parameters
lpInBuffer Pointer to the expected I2C device address, valid range is [0x00–0x7F]
nInBufferSize Size in bytes of the I2C device address
Remarks The device expects to respond when any master on the I2C bus wishes to proceed

with any transfer. This IOCTL has no effect if the I2C device is in Master mode.

11.7.1.9 I2C_IOCTL_SET_SLAVE_MODE

This DeviceIoControl request sets the I2C device to Slave mode.

11.7.1.10 I2C_IOCTL_TRANSFER

This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array

of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK

11.7.1.11 I2C_IOCTL_ENABLE_SLAVE

This DeviceIoControl request starts the I2C device to work in slave mode.

11.7.1.12 I2C_IOCTL_DISABLE_SLAVE

This DeviceIoControl request stops the I2C device to work in slave mode.

11.7.2 I2C Driver SDK Encapsulation
This section explains about the functions that are involved in I2C driver SDK encapsulation.

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-8 Freescale Semiconductor

11.7.2.1 I2COpenHandle

This function retrieves the I2C device handle.
HANDLE I2COpenHandle(

LPCWSTR lpDevName);
Parameters
lpDevName The I2C device name for retrieving handle from CreateFile()
Return Values Returns the handle for I2C driver, returns INVALID_HANDLE_VALUE if failure

11.7.2.2 I2CCloseHandle

This function closes a handle of the I2C stream driver.
BOOL I2CCloseHandle(

HANDLE hDev);

Parameters
hDev The I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

11.7.2.3 I2CSetSlaveMode

This function sets the I2C device in slave mode. This function is for back compatibility. Use
I2CEnableSlave instead.

BOOL I2CSetSlaveMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

11.7.2.4 I2CSetMasterMode

This function sets the I2C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOOL I2CSetMasterMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.5 I2CIsMaster

This function determines whether the I2C is currently in Master mode. This function is for back
compatibility.

BOOL I2CIsMaster(
HANDLE hDev,
PBOOL pbIsMaster);

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-9

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsMaster TRUE if the I2C device is in master mode
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.6 I2CIsSlave

This function determines whether the I2C is currently in Slave mode.
BOOL I2CIsSlave(

HANDLE hDev,
PBOOL pbIsSlave);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsSlave TRUE if the I2C device is in Slave mode
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

11.7.2.7 I2CGetClockRate

This function retrieves the clock rate.
BOOL I2CGetClockRate(

HANDLE hDev,
PWORD pwClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
pwClkRate Pointer of WORD variable that retrieves Return ValuesReturns TRUE or

FALSE, if the result is TRUE, the operation is successful

11.7.2.8 I2CSetClockRate

This function initializes the I2C device with the given clock rate.
BOOL I2CSetClockRate(

HANDLE hDev,
WORD wClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
wClkRate Return ValuesReturns TRUE or FALSE, if the result is TRUE, the operation is

successful

11.7.2.9 I2CSetSelfAddr

This function initializes the I2C device with the given address. The device is expected to respond when
any master within the I2C bus wish to proceed with any transfer.

BOOL I2CSetSelfAddr(
HANDLE hDev,

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-10 Freescale Semiconductor

BYTE bySelfAddr);
Parameters
hDev I2C device handle retrieved from CreateFile()
bySelfAddr Expected I2C device address. The valid range of address is [0x00–0x7F]
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.10 I2CGetSelfAddr

This function retrieves the address of the I2C device.
BOOL I2CGetSelfAddr(

HANDLE hDev,
PBYTE pbySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbySelfAddr Pointer to BYTE variable that retrieves I2C device address
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.11 I2CTransfer

This function performs one or more I2C read or write operations. pI2CTransferBlock contains a pointer
to the first of an array of I2C packets to be processed by the I2C. All the required information for the I2C
operations should be contained in the array elements of pI2CPackets.

BOOL I2CTransfer(
HANDLE hDev,
PI2C_TRANSFER_BLOCK pI2CTransferBlock);

Parameters
hDev I2C device handle retrieved from CreateFile()
pI2CTransferBlock
pI2CPackets [in] Pointer to an array of packets to be transferred sequentially
iNumPackets [in] Number of packets pointed to by pI2CPackets (the number of packets to be

transferred)
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.12 I2CReset

This function performs a hardware reset. The I2C driver maintains all the current information of the device,
which includes all the initialized addresses.

BOOL I2CReset(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-11

11.7.2.13 I2CEnableSlave

This function enables a I2C slave access from the bus.
BOOL I2CEnableSlave(

HANDLE hDev);
Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.2.14 I2CDisableSlave

This function disables I2C slave access from the bus. Note that after the I2C slave interface disabled, I2C
slave module can be turned off.

BOOL I2CDisableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

11.7.3 I2C Driver Structures
This section explains about the I2C driver structures.

11.7.3.1 I2C_PACKET

This structure contains the information needed to write or read data using an I2C port.
typedef struct {

BYTE byRW;
PBYTE pbyBuf;
WORD wLen;
LPINT lpiResult;

} I2C_PACKET, *PI2C_PACKET;

Parameters
byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ

for reading and I2C_RW_WRITE for writing.
pbyBuf Pointer to a buffer of bytes. For a read operation, this is the buffer into which data

is read. For a write operation, this buffer contains the data to write to the target
device.

wLen If the operation is a read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation

Inter-Integrated Circuit (I2C) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

11-12 Freescale Semiconductor

11.7.3.2 I2C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an I2C port.
typedef struct {

I2C_PACKET *pI2CPackets;
INT32 iNumPackets;

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;

Parameters
pI2CPackets Pointer to an array of I2C_PACKET objects
iNumPackets Number of I2C_PACKET objects pointed to by pI2CPackets

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Keypad Driver
The keypad driver converts input from the sensor into keyboard events that the driver enters into the
Graphics, Windowing, and Events Subsystem (GWES).

12.1 Keypad Driver Summary
Table 12-1 provides a summary of source code location, library dependencies and other BSP information.

12.2 Supported Functionality
The Keypad driver enables the hardware platform to provide the following software and hardware support:

1. Conforms to the Microsoft Layout Manager Interface
2. Two power management modes, full on and full off

12.3 Hardware Operation
Refer to the chapter on the Low-Resolution ADC (LRADC) in the hardware specification document for
detailed operation and programming information.

Table 12-1. Keypad Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_9\KEYBDVS

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\KEYPAD

Driver DLL keypad.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX28 EVK: PDK1_9:ARMV4I > Device Drivers >
KEYPAD> KEYPAD

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOKEYPAD=

Keypad Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

12-2 Freescale Semiconductor

12.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

12.3.2 Keypad
The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

12.3.2.1 i.MX28 EVK Keypad Mapping

The 8-key keypad is located on the accessory card and the mapping is shown in Table 12-2.

12.4 Software Operation
The i.MX28 Keypad driver do not follow the Microsoft recommended architecture for keyboard drivers.
Use a standard stream driver for keypad scan.

12.4.1 Keypad Scan Codes and Virtual Keys
Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware specific, are converted to intermediate PS/2 keyboard
scan code values and then converted into virtual keys, which are hardware independent numbers that
identify the key. If a key is pressed from the keyboard, the generated scan code is directly converted into
virtual keys.

Table 12-2. Keypad Mapping

Label Key

KEY1 ESCAPE

KEY2 WIN

KEY3 MENU

LEFT LEFT

UP UP

DOWN DOWN

RIGHT RIGHT

SELECT ENTER

Keypad Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-3

12.4.1.1 i.MX28 Scan Code Mapping table

Table 12-3 shows the scan code mapping.

12.4.2 Power Management
The following power management functions are used by the keypad driver.

12.4.2.1 BSPKppPowerOn

This function is used to power up the keypad. This function configures the necessary settings in the
registers to bring up the keypad.

12.4.2.2 BSPKppPowerOff

This function powers down the keypad.

12.4.2.3 IOCTL_POWER_CAPABILITIES

This function is not implemented for the keypad driver.

12.4.2.4 IOCTL_POWER_SET

This function is not implemented for the keypad driver.

12.4.2.5 IOCTL_POWER_GET

This function is not implemented for the keypad driver.

12.4.3 Keypad Registry Settings
The following registry keys are required to load the keypad device layout and input language.

Table 12-3. Scan Code Mapping

Key Keypad Scan Code Virtual Key

KEY1 0x0 VK_ESCAPE

RIGHT 0x13c VK_RIGHT

KEY2 0x2aa VK_RWIN

LEFT 0x3a0 VK_LEFT

UP 0x62b VK_UP

DOWN 0x890 VK_DOWN

KEY3 0x770 VK_MENU

SELECT 0xb00 VK_ENTER

Keypad Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

12-4 Freescale Semiconductor

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KEYPADS]
 "Prefix"="KPD"
 "Dll"="keypad.dll"
 "Index"=dword:1
 "Order"=dword:6

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KeyPadS]
 "RepeatLantency"=dword:3e8
 "RepeatRate"=dword:a
 "ScanPeriod"=dword:14
 "Debounce"=dword:2
 "ValidKeys"=dword:b
 "LRADC_KeyPAD"=dword:0
 "LRADC_Reference"=dword:6
 "LRADC_SCHEDULER"=dword:0
 "Hysteresis"=dword:80
 "ReleaseVolatge"=dword:00000e4a

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\KeyPadS\Key2]
 "KeyName"="HotKey0"
 "AppName"="explorer.exe"
 "Parameter"=""
 "Voltage"=dword:00000550
 "Flag"=dword:00000001
 "VirtualKey"=dword:0000ffff

12.5 Unit Test
As keypad has only 8 keys. It is not a full-key keypad and it cannot pass the Keyboard Test included in the
Windows CE Test Kit (CETK). A specific manual test to verify the 8-key functionality is described in
following sections.

12.5.1 Unit Test Hardware
• i.MX28 EVK board

12.5.2 Unit Test Software
The manual keypad test requires Microsoft WordPad which can be built into the image.

12.5.3 Building the Unit Tests
No additional steps are required to build the keypad tests.

12.5.4 Running the Unit Tests
The procedure of keyboard tests is as follows:

1. Input Enter to run the Internet Explorer application
2. Input Menu

Keypad Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-5

3. Input Up Down Left and Right
4. Input Windows Key
5. Open the help document by click the question mark on Internet Explorer application
6. Input the ESC to quit from help document
7. Input Return to quit the Explorer application

NOTE
Befoe running this test, ensure that the WordPad items are included in the
project (SYSGEN_PWORD).

Keypad Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

12-6 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-1

Chapter 13
LR Analog-Digital Converter (LRADC) Driver
The Low-Resolution Analog-Digital Converter is a multipurpose module used to measure the voltage
applied to dedicated input pins. Some of the input pins can be used to interface a resistive touchscreen,
while other pins can be used for general purpose inputs . The LRADC controller is not used directly by the
software.

13.1 LRADC Driver Summary
The LRADC driver can be used to measure the voltage of the General Purpose LRADC pins and to
interface with a touchscreen interface,and battery interface. Thus, only one driver interface is used by the
touchscreen driver. The LRADC driver interacts with the TSC to drive the LRADC. Table 13-1 provides
a summary of source code location, library dependencies and other BSP information.

Table 13-1. LRADC Driver Summary

13.2 Supported Functionality
The LRADC driver enables the i.MX28 EVK System to provide the following software support:

1. Configures the Touchscreen setting
2. Retrieves of the Touchscreen samples
3. Configures the general conversion setting
4. Retrieves the general purpose samples

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path N/A

 SOC Specific Path ..PLATFORM\COMMON\SRC\SOC\<Target SOC>\LRADC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\LRADC

Driver DLL lradc.dll

SDK Library lradcsdk_$(_SOCDIR).lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > LRADC >
LRADC

SYSGEN Dependency N/A

BSP Environment Variables BSP_LRADC=1

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

13-2 Freescale Semiconductor

13.3 Hardware Operation
Refer to the Low-Resolution ADC and Touch-Screen Interface chatpers in the i.MX28 Applications
Processor Reference Manual for hardware operation details.

13.3.1 Conflicts with Other Peripherals and Catalog Items
As the LRADC inputs are not multiplexed with other functions, the LRADC module does not have conflict
with other peripherals.

13.4 Software Operation
The LRADC device driver framework for Windows CE is a stream interface driver .A description of the
stream interface driver may be found in the Windows CE Platform Builder documentation at Developing
a Device Driver -> Windows CE Drivers ->Stream Interface Drivers.. The LRADC Stream Interface
driver controls the LRADC hardware . The LRADC SDK lib provide APIs for WindowsCE drivers and
applications. We access the LRADC only need use the LRADC SDK LIB.

13.4.1 ADC Registry Settings
The ADC Registry settings are as follows:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\LRADC]
 "Dll" = "lradc.dll"
 "Prefix" = "LDC"
 "Index" = dword:1
 "Order" = dword:2

13.4.2 Interfacing with the LRADC Driver
This section describes how to interface the LRADC driver.

13.4.2.1 Stream Interface

The LRADC driver is a stream interface driver, so it is accessed through the file system APIs.

13.4.2.2 Using the SDK

The LRADC driver includes a wrapper library that simplifies its use. This library is the ADC SDK and is
described in Section 13.7, “LRADC SDK API Reference.”

13.4.2.3 DMA Support

The LRADC driver currently does not support DMA.

13.5 Power Management
This section explains the power management functions.

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-3

13.5.1 LDC_PowerUp
This function is not implemented for the LRADC driver.

13.5.2 LDC_PowerDown
This function is not implemented for the LRADC driver.

13.5.3 IOCTL_POWER_CAPABILITES
The power management capabilities are advertised with the power manager through this IOCTL. The
LRADC module supports only two power states: D0 and D4.

13.5.4 IOCTL_POWER_SET
This function is implemented for the LRADC driver. If the clocks are disabled during the suspend (for
example if the touchscreen is not a wake-up source), then the clocks are re-enabled at this time in the D0
state. If the touchscreen is not a wake-up source, then the clocks are disabled at this time in the D4 state.

13.5.5 IOCTL_POWER_GET
This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

13.6 Unit Test
Due to the heavy use of the LRADC routines by other drivers on the system, there are no additional test
cases.

13.7 LRADC SDK API Reference
This section explains the LRADC SDK functions.

13.7.1 LRADCOpenHandle
This function creates a handle to the LRADC stream driver.

HANDLE LRADCOpenHandle(
LPCWSTR lpDevName

);

Parameters
LpDevName [in] Name of the device,for example TEXT("LDC1:")
Return Values Handle to LRADC driver which is set in this method

NULL indicates failure

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

13-4 Freescale Semiconductor

13.7.2 LRADCCloseHandle
This function is used to close a handle to the LRADC stream driver.

void LRADCCloseHandle(
HANDLE hLRADC

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values None

13.7.3 LRADCConfigureChannel
This function configures a channel with the given settings.

BOOL LRADCConfigureChannel(
HANDLE hLRADC,
LRADC_CHANNEL eChannel,
BOOL bEnableDivideByTwo,
BOOL bEnableAccum,
UINT8 u8NumSamples

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
bEnableDivideByTwo [in] TRUE to caused the A/D converter to use its analog divide by two circuit
bEnableAccum [in] TRUE to add successive samples to the 18bit accumulator
u8NumSamples [in] Number of samples that must be converted, between 1 and 16
Return Values TRUE on success and FALSE indicates a failure

13.7.4 LRADCEnableInterrupt
The function enable the Interrupt of the LRADC Channel.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
LRADC_CHANNEL eChannel,
BOOL bValue,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
bValue [in] TRUE to enable ,FALSE to Disable
Return Values TRUE on success and FALSE indicates a failure

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-5

13.7.5 LRADCClearInterruptFlag
The function Clears the interrupt flag of a specified LRADC channel.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
LRADC_CHANNEL eChannel,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
Return Values TRUE on success and FALSE indicates a failure

13.7.6 LRADCSetDelayTrigger
The function Sets the ADC conversion sample time of the LRADC Channel.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
LRADC_DELAYTRIGGER DelayTrigger,
UINT32 TriggerLradcs,
UINT32 DelayTriggers,
UINT32 LoopCount,
UINT32 DelayCount,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
DelayTrigger [in] Identifier of LRADC delay Triggers
TriggerLradcs [in] The delay controller to trigger the corresponding LRADC channel
DelayTriggers [in] The delay controller to trigger the corresponding delay channel
LoopCount [in] The number of times this delay counter
DelayCount [in] Delaycount of the delay channel
Return Values TRUE on success and FALSE indicates a failure

13.7.7 LRADCCLearDelayChannel
The function clears the ADC conversion sample time of the LRADC Channel.

BOOL LRADCCLearDelayChannel(
HANDLE hLRADC,
LRADC_CHANNEL eChannel,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to clear
Return Values TRUE on success and FALSE indicates a failure

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

13-6 Freescale Semiconductor

13.7.8 LRADCSetDelayTriggerKick
The function set the delay trigger kick of the LRADC Channel.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
LRADC_DELAYTRIGGER DelayTrigger,
BOOL bValue,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
DelayTrigger [in] Identifier of LRADC delay Triggers
bValue [in] TRUE to enable ,FALSE for Disable
Return Values TRUE on success and FALSE indicates a failure

13.7.9 LRADCGetAccumValue
The function gets the conversion value of a specified LRADC channel.

UINT16 LRADCGetAccumValue(
HANDLE hLRADC,
LRADC_CHANNEL Channel,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
Return Values Accumulator value of the channel

13.7.10 LRADCEnableBatteryMeasurement
The function enables the Interrupt of the LRADC Channel.

BOOL LRADCEnableBatteryMeasurement(
HANDLE hLRADC,
LRADC_DELAYTRIGGER eTrigger,
UINT32 TriggerLradcs,
LRADC_BATTERYMODE eBatteryMode,

);

Parameters
hLRADC [in] Handle to configure retrieved from LRADCOpenHandle
eTrigger [in] Identifier of LRADC delay Triggers
riggerLradcs [in] Specifies the smapling interval for the Battery value updation
eBatteryMode [in] Specifies the Battery mode setup
Return Values Return 0 If the operation is successful otherwise returns error value failure

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-7

13.7.11 LRADCEnableDieMeasurement
The function enables the LRADC channel for die temperature measurement.

BOOL LRADCEnableDieMeasurement(
HANDLE hLRADC,
);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

Return Values Return die temperature.

13.7.12 LRADCClearAccum
The function Clears the Accum Value of the specified LRADC channel.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
LRADC_CHANNEL Channel,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
eChannel [in] Identifier of the channel to configure
Return Values TRUE on success and FALSE indicates a failure

13.7.13 LRADCEnableTouchDetect
The function sets or clears the TOUCH_DETECT_ENABLE in HW_LRADC_CTRL0 Register.

BOOL LRADCEnableTouchDetect(
HANDLE hLRADC,
BOOL bValue,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE for set ,FALSE for clear
Return Values TRUE on success and FALSE indicates a failure

13.7.14 LRADCGetTouchDetect
The function reads the TOUCH_DETECT_RAW bit of HW_LRADC_STATUS register.

BOOL LRADCGetTouchDetect(
HANDLE hLRADC,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

13-8 Freescale Semiconductor

Return Values TRUE on success and FALSE indicates a failure

13.7.15 LRADCEnableTouchDetectInterrupt
The function sets or clears the TOUCH_DETECT_IRQ_EN in HW_LRADC_CTRL1 Register.

BOOL LRADCEnableTouchDetectInterrupt(
HANDLE hLRADC,
BOOL bValue,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable ,FALSE for Disable
Return Values TRUE on success and FALSE indicates a failure

13.7.16 LRADCSetAnalogPowerUp
The function sets or clears the ADC analog power up.

BOOL LRADCEnableInterrupt(
HANDLE hLRADC,
BOOL bValue,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable ,FALSE for Clear
Return Values TRUE on success and FALSE indicates a failure

13.7.17 LRADCClearTouchDetect
The function clears the touch detect status.

BOOL LRADCClearTouchDetect(
HANDLE hLRADC,

);

Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
Return Values TRUE on success and FALSE indicates a failure

13.7.18 LRADCEnableTouchDetectXDrive
The function enables or disables the X Channels in HW_LRADC_CTRL0 Register.

BOOL LRADCEnableTouchDetectXDrive(
HANDLE hLRADC,
BOOL bValue,

);
Parameters

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-9

hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable ,FALSE for Disable
Return Values TRUE on success and FALSE indicates a failure

13.7.19 LRADCEnableTouchDetectYDrive
The function enables or disables the Y Channels in HW_LRADC_CTRL0 Register.

BOOL LRADCEnableTouchDetectYDrive(
HANDLE hLRADC,
BOOL bValue,

);
Parameters
hLRADC [in] The LRADC device handle retrieved from LRADCOpenHandle
bValue [in] TRUE to enable ,FALSE for Disable
Return Values TRUE on success and FALSE indicates a failure

LR Analog-Digital Converter (LRADC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

13-10 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-1

Chapter 14
NAND Redundant Boot
Redundant boot supported from NAND includes the following components:

• Boot Image checking tool
• Boot Image updating tool

The Boot Image checking tool is used for checking the boot streams integrity every time when system
boots up. The Boot Image updating tool is used for updating image. If the update fails, then the checking
tool can easily restore the image when the system boots up the next time. These tools cannot run
simultaneously to prevent boot stream corruption.

14.1 NAND Redundant Boot Summary
Table 14-1 provides a summary of source code location, library dependencies and other BSP information.

14.2 Supported Functionality
The NAND Redundant Boot enables the system to provide the following software and hardware support:

1. Supports updating image from certain location on the device.
2. Supports restoring backup image when the update fails.
3. Supports updating backup image when user confirms the updated image works well.

Table 14-1. NAND Redundant Boot Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\NANDBOOTBURNER
..\PLATFORM\<Target Platform>\SRC\APP\UpdateSB

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

NAND Redundant Boot

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

14-2 Freescale Semiconductor

14.3 Hardware Operation
This section explains about the hardware operations.

14.3.1 Conflicts with Other Peripherals and Catalog Items
No conflict.

14.4 Software Operation
Figure 14-1 shows the Boot Image updating tool’s work flow.

Figure 14-1. Image Updating Work Flow

Run ImageUpdate.exe

Input the new image(*.sb)
 location and click ‘OK’

Checking tool will alert you to continue
updating if the system is booted from
updated image, or alert you to restore the
old image if system fails to boot from
updated image. User could choose to
continue.

Continue and reboot
Shows ‘update successfully’.

App will create a sign file on device,
System reboots after updating

User confirm to continue?

N

End

Y

NAND Redundant Boot

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-3

Figure 14-2 shows the Boot Image checking tool’s work flow.

Figure 14-2. Image Checking Work Flow

System boots up

Checking tool checks from
 which stream this os boots
up

Alert user to update/restore

which the OS booted.
the other boot stream from

Checking tool reads out two
boot streams.

Are the boot streams
identical?

Y

N

Booted from first stream,
and update sign exists?

Y

clear update sign,
and alert user
‘update successfully’

End

N

user choose Y or N?
N

Y

update/restore the boot
image, then reboot.

NAND Redundant Boot

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

14-4 Freescale Semiconductor

14.5 Unit Test
The following section describes the testing update and restore functionality:

14.5.1 Testing Update Functionality
Perform the following steps to test the update functionality:

1. Run ImageUpdate.exe
2. Select the new image(*.sb)
3. Click OK.The image is updated and system reboots after update.
4. Ensure that this startup is from new image.
5. A continue update message appears asking the user to confirm the update.
6. Click YES to continue. The Image is updated and the system reboots.
7. After this startup, a update successfully message appears.

14.5.2 Testing Restore Functionality
Use the following steps to test the restore functionality:

1. Run ImageUpdate.exe
2. Select the new image(*.sb)
3. Click OK. The image is updated and the system reboots.
4. Ensure that this startup is from new image.
5. A message is displayed asking the user to continue updating.
6. Click NO.
7. Power OFF the device and power ON.
8. After this startup, a message is displayed asking the user to recover.
9. Click YES to continue. The image is recovered and the system reboots.
10. Ensure that this startup is from the old image.

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Power Management Unit Driver

15.1 PMU Summary
This chapter describes the API provided by Freescale, which allows complete access to the functionality
of the PMU. This document is intended for device driver and application developers who need to
understand and gain access to the functionality provided by the PMU.

Table 15-1 provides a summary of source code location, library dependencies, and other BSP information.

15.2 Supported Functionality
The PMU device driver framework for Windows CE is a stream interface driver and a SDK DLL. A
description of the stream interface driver can be found in the Windows CE Platform Builder
documentation at Developing a Device Driver > Windows CE Drivers > Stream Interface Drivers.

The Stream Interface driver provides an IOCTL interface for SDK DLLs. The SDK DLLs provide APIs
for Windows CE drivers and applications.

The API covers the PMU functionality of the following areas:
1. Battery
2. Battery Charger
3. Regulators

Table 15-1. PMU Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\PMU

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\PMU

Driver DLL pmupdk.dll

SDK Library pmusdk.dll

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOPMU=

Power Management Unit Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

15-2 Freescale Semiconductor

15.3 Hardware Operation
Refer to the hardware specification document for detailed operation and programming information.

15.3.1 Conflicts with Other Peripherals and Catalog Items
This section explains the PMU conflicts with other peripherals and catalog items.

15.3.1.1 Conflicts with Other On-Chip Peripherals

This section lists the conflicts with other On-Chip peripherals.

15.3.1.1.1 iMX28 Peripheral Conflicts

No conflicts.

15.3.1.1.2 Conflicts with Hardware Peripherals

No conflicts.

15.4 Software Operation
This section explains the software operation.

15.4.1 Communicating with the PMU
Similar to the CEDDK DLL, the PMU DLL does not require any special initialization. All the initialization
required by the PMU is performed when the DLL is loaded into the respective process space. Drivers that
should utilize the PMU simply need to link to the PMUSDK export library and invoke the exported
functions.

15.4.2 Compile-Time Configuration Options
No options.

15.4.3 Registry Settings
There are no registry settings that have to be modified to use the PMU driver.

;--
; PMU PDK Driver
;
IF BSP_NOPMU !
; @XIPREGION IF PACKAGE_OEMDRIVERS
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PMI]
 "Prefix"="PMI"
 "Dll"="pmupdk.dll"
 "Index"=dword:1
 "Order"=dword:3
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

Power Management Unit Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-3

; @XIPREGION ENDIF PACKAGE_OEMDRIVERS
ENDIF BSP_NOPMU!

15.4.4 Power Management
The PMU does not implement the Power Manager driver IOCTLs or the PowerUp or PowerDown stream
interface. However, the PMU dirver uses the power button to set the system into (or out of) the suspend
mode

15.5 Unit Test
No software is necessary for this test.

15.6 PMU Driver API Reference
The PMU interface allows device drivers to configure and control linear regulators, battery monitor and
charger.

15.6.1 PmuInitBatteryMonitor
This function initializes the battery monitor for the battery module.

BOOL PmuInitBatteryMonitor(void)

Parameters
None.
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.2 PmuGetBatteryVoltage
This function returns the current Battery voltage.

BOOL PmuGetBatteryVoltage(UINT32 *pBattVol)

Parameters
pBattVol [Out] battery voltage.
Return Values Returns TRUE if successful otherwise returns FALSE.

15.6.3 PmuSetCharger
This function is used to set the charger.

BOOL PmuSetCharger(DWORD current)

Parameters
current [in] The current value of charger

Power Management Unit Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

15-4 Freescale Semiconductor

Return Values Returns TRUE if successful otherwise returns FALSE

15.6.4 PmuStopCharger
This function is used to stop the charger.

VOID PmuStopCharger()

Parameters None
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.5 PmuGetBatteryChargingStatus
This routine returns the Battery charging status.

BOOL PmuGetBatteryChargingStatus(BOOL *bChargStas)

Parameters
bChargStas [Out] Changing states
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.6 PmuSetVddd
This function sets the VDDD value and VDDD brownout level .

BOOL PmuSetVddd(UINT32 NewTargetmV, UINT32 NewBrownoutmV)

Parameters
NewTargetmV [in] Vddd voltage in millivolts.
NewBrownoutmV [in] Vddd brownout in millivolts.
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.7 PmuGetVddd
This function gets Vddd value.

BOOL PmuGetVddd(UINT32 *VdddmV)

Parameters
vdddmV [Out] Vddd voltage in millivolts.
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.8 PmuGetVdddBrownont
This function returns the present values of the VDDD brownout in millivolts.

Power Management Unit Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-5

BOOL PmuGetVdddBrownont(UINT32 *VdddBo)

Parameters
vdddBo [Out] Vddd Brownout voltage in millivolts.
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.9 PmuSetFets
This function sets the Fets mode.

BOOL PmuSetFets(PMU_POWER_FETSSET bFetsMode)

Parameters
bFetsMode [in] Fets mode.
Return Values Returns TRUE if successful otherwise returns FALSE

15.6.10 PmuPowerGetSupplyMode
This routine checks if the supply mode is 5V/Battery.

BOOL PmuPowerGetSupplyMode(PMU_POWER_SUPPLY_MODE *PowerMode)

Parameters
bPowerMode [Out] Supply mode 5V/Battery
Return Values Returns TRUE if successful otherwise returns FALSE

Power Management Unit Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

15-6 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-1

Chapter 16
Secure Digital Host Controller (SDHC) Driver
The SDHC module supports MMC, SD cards, and Secure Digital I/O. The SDHC driver provides the
interface between the Microsoft SD Bus driver and the SSP hardware.

16.1 SDHC Driver Summary
Table 16-1 provides a summary of source code location, library dependencies and other BSP information.

16.2 Supported Functionality

The SDHC driver enables the EVK System to provide the following software and hardware support:
1. Supports the Synchronous Serial Ports(SSP) Controller
2. Designed and implemented as close as possible to Standard Host Controller Driver in CE 6.0 R2
3. Compliant with the SDBUS2 driver provided in CE 6.0 R2
4. Supports Fast Path
5. Supports DMA mode of data transfers
6. Supports SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to

spec v2.0). High capacity MMC cards are not supported because SDBUS2 in CE 6.0 R2 does not
support these cards

Table 16-1. eSDHC Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\SDHC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SDHC

Driver DLL sdhc.dll

SDK Library sdhc_<Target SOC>.lib, sdcardlib.lib, sdhclib.lib, sdbus.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > SD Controller >
SSP1 SDHC
Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > SD Controller >
SSP2 SDHC

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables N/A

Secure Digital Host Controller (SDHC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

16-2 Freescale Semiconductor

7. One host supports only one card to be connected to it
8. DLL supports multiple instances of the SSP controller
9. Supports the configuration of the block sizes from 1 – 4096 bytes in single and multi-block modes
10. Supports insertion and removal of card, even when system is suspended; when the system resumes,

the card (if present) is remounted
11. Supports the write protect switch on SD cards
12. Supports MMC cards in 1-bit mode and SD/SDIO cards in 4-bit modes due to limitation in

SDBUS2 in CE 6.0 R2.

16.3 Hardware Operation
Refer to the i.MX28 Multimedia Applications Processor Reference Manual for detailed operation and
programming information on SSP.

16.3.1 Conflicts with Other Peripherals and Catalog Options
This section explains SDHC driver conflicts with other peripherals and catalog options.

16.3.1.1 Conflicts with SoC Peripherals

SSP2 conflicts with Nand Flash Controller (NFC).

16.3.1.2 Conflicts with Other EVK Peripherals

No conflicts.

16.4 Software Operation
The SDHC driver follows the Microsoft recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible. The details of this architecture and its operation
can be found in the Platform Builder Help under the heading Secure Digital Card Driver Development
Concepts, or in the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa925967.aspx

16.4.1 Required Catalog Items
The required catalog items are as follows:

16.4.1.1 SD and MMC Support

Catalog > Device Drivers > SDIO > SD Memory

Additionally, as the eSDHC driver supports high capacity cards, it is necessary to define IMGSDBUS2
variable in the workspace. By default, both the SYSGEN_SD_MEMORY and IMGSDBUS2 are set in the
BSP workspace.

http://msdn2.microsoft.com/en-us/library/aa925967.aspx

Secure Digital Host Controller (SDHC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-3

16.4.2 SDHC Registry Settings
This section explains the SDHC registry settings.

16.4.2.1 i.MX28 SDHC Registry Settings

The following registry keys are required to load the SDHC driver:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC1]

"Order"=dword:19
"Dll"="sdhc.dll"
"Prefix"="SHC"
"Index"=dword:1

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC2]
"Order"=dword:19
"Dll"="sdhc.dll"
"Prefix"="SHC"
"Index"=dword:2

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
"Name"="MMC Card"
"Folder"="MMCMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
"Name"="SD Memory Card"
"Folder"="SDMemory"

16.4.3 DMA Support
DMA mode is supported by the SDHC driver. The driver uses the APBH DMA, which has a special SSP1
and SSP2 DMA channel.

16.4.4 Power Management
The SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend/resume functionality.

16.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

• File System Driver Test
• Storage Device Block Driver Read/Write Test
• Storage Device Block Driver API Test
• Storage Device Block Driver Performance Test
• Partition Driver Test

Secure Digital Host Controller (SDHC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

16-4 Freescale Semiconductor

16.5.1 Unit Test Hardware
Table 16-2 lists the required hardware to run the unit tests.

16.5.2 Unit Test Software
Table 16-3 lists the required software to run the unit tests.

16.5.3 Building the Unit Tests
All the above mentioned tests come prebuilt as part of the CETK. No steps are required to build these tests.
These test files can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

16.5.4 Running the Unit Tests
The following tests and test procedures are available. Refer to the relevant sub sections under CETK Tests
in the Platform Builder Help for detailed information on the below tests. Alternatively, online
documentation can be referred at the following link:
http://msdn2.microsoft.com/en-us/library/aa934353.aspx

Table 16-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme III SDHC 4GB)
ATP (SDHC 4GB)
A-DATA Turbo (SDHC 4GB)
Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

Table 16-3. Software Requirements

Requirement Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

fsdtst.dll File System Driver Test.dll file

rwtest.dll Storage Device Block Driver Read/Write Test.dll file

disktest.dll Storage Device Block Driver API Test.dll file

disktest_perf.dll Storage Device Block Driver Performance Test

msparttest.dll Partition Driver Test.dll file

http://msdn2.microsoft.com/en-us/library/aa934353.aspx

Secure Digital Host Controller (SDHC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 16-5

16.5.4.1 File System Driver Test

The following command is used to run the tests on an SD card:
tux –o –d fsdtst –c “-p SDMemory –z”

For MMC cards, use the following command:
tux –o –d fsdtst –c “-p MMC –z”

NOTE
This tests all inserted cards and the cards are to be formatted before running
the test. For higher capacity cards, the test takes a longer time to complete,
so it is recommended that the system power management (from control
panel) be configured. This prevents the system from entering the suspend
state during test execution.

16.5.4.2 Storage Device Block Driver Read/Write Tests

The following command line is used to run the tests:
tux –o –d rwtest –c “-z”

NOTE
This command tests only one card at a time.

16.5.4.3 Storage Device Block Driver API Tests

The following command line is used to run the tests:
tux –o –d disktest –c “-z”

NOTE
This command tests only one card at a time.

16.5.4.4 Storage Device Block Driver Performance Tests

The following command line is used to run the tests:
tux –o –d disktest_perf –c “-z -disk DSK1:”

NOTE
This command tests only one card at a time.

16.5.4.5 Partition Driver Test

The following command line is used to run the tests:
tux –o –d msparttest –c “-z”

Secure Digital Host Controller (SDHC) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

16-6 Freescale Semiconductor

NOTE
The cards should be of size 256 Mbytes and higher. For higher capacity
cards, the test takes longer time to complete, so it is recommended that the
system power management (from control panel) be configured. This
prevents the system from entering the suspend state during test execution.

16.5.5 System Testing
The following system tests are performed to verify the operation of the SD and MMC memory cards:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted memory cards.

• Establish ActiveSync connection over USB and transfer files to/from the memory cards.
• Write media files to memory storage. Use Windows Media Player to playback media files from

memory storage.

16.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver can be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following link: http://msdn2.microsoft.com/en-us/library/aa912994.aspx

http://msdn2.microsoft.com/en-us/library/aa912994.aspx
http://msdn2.microsoft.com/en-us/library/aa912994.aspx

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Serial Driver
The serial driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

17.1 Serial Driver Summary
The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs except UART1 which is used
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer is implemented as the platform-dependent driver (PDD). This PDD is linked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole serial port driver.
Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

17.2 Supported Functionality
The serial port driver enables the hardware system to provide the following support:

1. Conforms to RS232 protocol standard
2. Supports RTS/CTS hardware flow control function
3. Supports parity check and optional stop bit
4. Supports power management mode full on/full off

Table 17-1. Serial Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_9\SERIALAPP

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll

SDK Library N\A

Catalog Item Third Party -> BSP -> Freescale <Target Platform>: ARMV4I -> Device Drivers > Serial ->
UART2
Third Party -> BSP -> Freescale <Target Platform>: ARMV4I -> Device Drivers -> Serial ->
UART5

SYSGEN Dependency N/A

BSP Environment Variables BSP_SERIAL_UART2 =1
BSP_SERIAL_UART5 =1

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

17-2 Freescale Semiconductor

5. Supports DMA transfer
6. Supports baud rate up to 3.25 Mbps

17.3 Hardware Operation
Refer to the Multimedia Applications Processor Reference Manual for detailed operation and
programming information on UART.

17.3.1 Conflicts with Other Peripherals and Catalog Items
The following section explains serial driver conflicts with other peripherals and catalog items.

17.3.1.1 Conflicts with SoC Peripherals

All UART pins can be configured for alternate functionality (I2C, CAN, ENET...) using the i.MX28
IOMUX. The configuration is specified by the BSP serial driver. Changing this configuration can result in
a conflict and prevent proper operation of the UART.

17.3.1.2 Conflicts with Board Peripherals

No conflicts.

17.4 Software Operation
The serial driver follows the Microsoft recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows CE Drivers > Serial Drivers > Serial Driver Development
Concepts.

17.4.1 Registry Settings
This section explains the registry settings used to load the serial driver.

17.4.1.1 i.MX28 Registry Settings

The following registry keys are required to load the serial driver:
IF BSP_SERIAL_UART2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:8006A000
 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:2
 "Order"=dword:3
 "useDMA"=dword:1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem]

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-3

 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="i.MX28 COM2 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ; BSP_SERIAL_UART2
IF BSP_SERIAL_UART5
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM5]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:80070000
 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:5
 "Order"=dword:3
 "useDMA"=dword:1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM5\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="i.MX28 COM5 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ; BSP_SERIAL_UART5

17.4.2 Power Management
The serial driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

17.5 Unit Test
The serial driver is tested using the Serial Port Driver Test and Serial Communications Test included as
part of the CETK. The Serial Port Test assesses if the driver supports configurable device parameters such
as baud rate and data bits. The test also assesses additional functionality such as COM port events, escape
functions, and time-outs.

17.5.1 Unit Test Hardware
The following hardware is used for the unit test:

• i.MX28 EVK board

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

17-4 Freescale Semiconductor

17.5.2 Unit Test Software
Table 17-2 lists the required software to run the unit tests.

17.5.3 Building the Unit Tests
The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

17.5.4 Running the Unit Tests
The Serial Port Driver Test executes the tux –o –d serdrvbvt command line on default execution.

For detailed information on the Serial Port Tests, see

Debugging and Testing > Tools for Debugging and Testing > Windows CE Test Kit > CETK Tests >
Serial Port Driver Test > Serial Port Driver Test Cases in the Platform Builder Help.

The Serial Port Tests are designed to test that the serial port driver works properly and the API behaves
correctly, and it should be pass all the test cases.

Table 17-3 describes the Serial Port driver test cases.

Table 17-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

SerDrvBvt.dll Test.dll file for Serial Port Driver Test

Table 17-3. Serial Port Driver Test Cases

Test Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This test fails if it
cannot send data on the port with a particular configuration.

1002 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support the
SetCommEvent or GetCommEvent functions.

1003 Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and waits for the
EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the WaitCommEvent function
behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support the
SetCommBreak or ClearCommBreak functions.

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-5

17.6 Serial Driver API Reference
The detailed reference information for the serial driver may be found in the Platform Builder Help at the
following location:

Developing a Device Driver > Windows CE Drivers > Serial Port Drivers > Serial Port Driver
Reference

17.6.1 Serial PDD Functions
Table 17-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.

1006 Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This test fails if
the WaitCommEvent function behaves improperly.

1007 Makes the WaitCommEvent function return a value when the handle for the current COM port is closed. This test fails if
the WaitCommEvent function behaves improperly.

1008 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data is received.
This test fails if the COM timeouts do not function correctly.

1009 Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call fails with
DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings when DCB settings
that are not valid are passed to the driver.

Table 17-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

Table 17-3. Serial Port Driver Test Cases (continued)

Test Case Description

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

17-6 Freescale Semiconductor

17.6.2 Serial Driver Structures
This section explains the serial driver structures.

17.6.2.1 UART_INFO

This structure contains information about the UART Module.
typedef struct {
 volatile PCSP_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;
 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Table 17-4. Serial PDD Functions (continued)

PDD Function Pointer Serial Driver Function

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-7

 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;
 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

Parameters
pUartReg Pointer to UART Hardware registers
sUSR1 This value contains the UART status register
sUSR2 This value contains the UART status register
bDSR This boolean value keeps the DSR state
UartType This value contains the type of UART like DCE or DTE
UlDiscard This is used to discard the echo characters in IrDa Mode
UseIrDA This boolean value determines the driver is in IR mode or not
HwAddr This value contains the hardware address of the UART Module
EventCallback This is a callback to the Model Device Driver
pMDDContext This contains the context of the UART, which is the first parameter to the callback

function
dcb This value contains the copy of Device Control Block
CommTimeouts This contains the copy of CommTimeouts structure used to get and set the

time-out parameters for a communication device
pBaudTable Pointer to baud rate table
DroppedBytes This value contains the number of bytes dropped
FlushDone Handle to the flush done event
CTSFlowOff This boolean value is used to store the CTS flow control state
DSRFlowOff This boolean value is used to Store the DSR flow control state
AddTXIntr This boolean value is used to fake a Tx interrupt
Status This value contains the comm status
CommErrors This value contains Win32 comm error status
ModemStatus This value shows the Win32 Modem status
TransmitCritSec This value is used as Critical Section for UART registers
RegCritSec This value is used as Critical Section for UART
ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

17.6.2.2 SER_INFO

This is a private structure contains the information about the serial.
typedef struct __SER_INFO {

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

17-8 Freescale Semiconductor

 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;
 DWORD dwIOLen;
 PCSP_UART_REG pBaseAddress;
 UINT8 cOpenCount;
 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;
 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Parameters
uart_info This structure contains information about UART
fIRMode This boolean value determines the module is FIR or serial
dwDevIndex This static value contains the device index value which is read from

registry
dwIOBase This static value contains the I/O Base address of UART module which

is read from registry
dwIOLen This static value contains the I/O length of UART Module which is read

from registry
pBaseAddress Pointer to the start address of the UART registers mapped
cOpenCount Contains count of the concurrent open
CommProp Pointer to CommProp structure
pHWObj Pointer to PDDs HWObj structure
useDMA This boolean flag indicates if SDMA is to be used for transfers through

this UART
SerialDmaReqTx SDMA request line for Tx
SerialDmaReqRx SDMA request line for Rx
SerialPhysTxDMABufferAddr Physical address of Tx SDMA address
SerialPhysRxDMABufferAddr Physical address of Rx SDMA address

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 17-9

pSerialVirtTxDMABufferAddr Virtual address of Tx SDMA address
pSerialVirtRxDMABufferAddr Virtual address of Rx SDMA address.
SerialDmaChanRx SDMA virtual channel indices for Rx
SerialDmaChanTx SDMA virtual channel indices for Tx
currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in

the Rx SDMA buffer descriptor chains
currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in

the Tx SDMA buffer descriptor chains
dmaRxStartIdx Keeps the start index of byte to be delivered to MDD for Read
availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer
awaitingTxDMACompBmp Indicates if an SDMA request is in progress on Tx SDMA buffer

descriptor
dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor
rxDMABufSize Receive DMA buffer size
txDMABufSize Transfer DMA buffer size

Serial Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

17-10 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-1

Chapter 18
Switch Driver
The switch driver module provides connectivity with an 3 port Programmable Ethernet switch engine,
which is compatible with 10/100 Mbps MAC-NET core. The driver is Network Driver Interface
Specification (NDIS) 4.0 compliant miniport driver. This port provides interface to configure switch
function such as VLAN, mirror, snooping, and so on.

18.1 Switch Driver Summary
Table 18-1 provides a summary of source code location, library dependencies, and other BSP information.

18.2 Supported Functionality
The switch driver enables the system to provide the following support:

1. Compliant with the NDIS 4.0 miniport driver
2. 10/100 Mbps network
3. MII PHY or RMII PHY
4. Filters and forward traffic at wire-speed on all ports
5. Implements hardware switching look-up mechanism providing a learning capacity of upto 2K

MAC addresses.

Table 18-1. Switch Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Driver Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\SWITCH

Import Library N/A

Driver DLL enetswi.dll

Catalog Item Third Party > BSP > Freescale i.MX28 EVKPDK1_9:ARMV4I > Device Drivers >ENET Driver >
ENET Switch Driver

SYSGEN Dependency SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables BSP_ENETSWI=1

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-2 Freescale Semiconductor

6. Supports configurable VLAN switching when MAC address lookup should be omitted.
7. Programmable Multicast destination port mask to restrict frame duplication for individual

multicast addresses.
8. Multicast and Broadcast resolution with VLAN domain filtering providing a strict separation of

upto 32 VLANs.
9. IP Snooping with programmable protocol and port number registers.
10. Event and status signals, which can be used to monitor port activity, severe error conditions, or any

user specific event.
11. Support for 1588 precise time stamping applications

18.3 Hardware Operation
The switch driver module provides connectivity with an 3 port Programmable Ethernet switch engine,
which is compatible with 10/100 Mbps MAC-NET core. It provides registers to configure switch
functions. Refer to switch chapter in i.MX28 Reference Manual for detailed hardware operation and
programming information.

18.3.1 Conflicts with Other SoC Peripherals
No conflicts.

18.3.2 Conflicts with i.MX28 EVK Peripherals
Conflict with ENET1 and ENET2.

18.4 Software Operation
The basic driver is compliant with NDIS 4.0 miniport driver architecture. Refer to the Platform Builder
Help for more details at:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Development Concepts > Miniports, Intermediate Drivers, and Protocol Drivers.

It also provide the interface and an application for switch function configuration. After initialization, the
module provides basic 3 port switch basic function. For advanced features, use the application to set or
clear the corresponding switch register to enable them such as input/output VLAN, port mirror, IP
snooping, port snooping, and so on.

18.4.1 Switch Driver Registry Settings
The following registry keys are required to load switch driver:

IF BSP_ENETSWI
[HKEY_LOCAL_MACHINE\Comm\ENETSWI]
 "DisplayName"="ENET Switch Driver"
 "Group"="NDIS"
 "ImagePath"="enetswi.dll"

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-3

 "Index"=dword:0

[HKEY_LOCAL_MACHINE\Comm\ENETSWI\Linkage]
 "Route"=multi_sz:"ENETSWI1"

[HKEY_LOCAL_MACHINE\Comm\ENETSWI1]
 "DisplayName"="ENET Switch Driver"
 "Group"="NDIS"
 "ImagePath"="enetswi.dll"

[HKEY_LOCAL_MACHINE\Comm\ENETSWI1\Parms]
 "BusNumber"=dword:0
 "BusType"=dword:0
 ; DuplexMode: 0:AutoDetect; 1:HalfDuplex; 2:FullDuplex.
 "DuplexMode"=dword:0
 ; The Ethernet Physical Address. For example,
 ; Ethernet Address 00:24:20:10:bf:03 is MACAddress1=0024,
 ; MACAddress2=2010,and MACAddress3=bf03.
 "MACAddress1"=dword:1213
 "MACAddress2"=dword:1728
 "MACAddress3"=dword:3120

[HKEY_LOCAL_MACHINE\Comm\ENETSWI1\Parms\TcpIp]
 ; This should be MULTI_SZ
 "DefaultGateway"=""
 ; This should be SZ... If null it means use LAN, else WAN and Interface.
 "LLInterface"=""
 ; Use zero for broadcast address? (or 255.255.255.255)
 "UseZeroBroadcast"=dword:0
 ; Thus should be MULTI_SZ, the IP address list
 "IpAddress"="0.0.0.0"
 ; This should be MULTI_SZ, the subnet masks for the above IP addresses
 "Subnetmask"="0.0.0.0"
 "EnableDHCP"=dword:1

[HKEY_LOCAL_MACHINE\Comm\TcpIp\Parms]

 ;Set to True to keep the device from entering idle mode if there's network adapter
 ;;"NoIdleIfAdapter"=dword:1
 ;Set to True to keep the device from entering idle mode while communicating/loop back
 "NoIdleIfConnected"=dword:1

[HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage]
 ; This should be MULTI_SZ
 ; This is the list of llip drivers to load
 "Bind"=multi_sz:"ENETSWI1"
ENDIF ; BSP_ENETSWI

18.5 Unit Test
The switch unit test mainly focuses on the switch feature, seperated into basic and advanced feature.
Capture the frame in the network to verify the switch feature.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-4 Freescale Semiconductor

18.5.1 Unit Test Hardware
The i.MX28 EVK board requires 3 PCs, two for connection test, and one for frame sniffer.

NOTE

Sniffer PC's registry has to be modified for VLAN tag analysis, if Broadcom NetXtreme 57xx Gbit
Controller NIC is used.

Execute the following steps to run the Unit Test Hardware:
1. Run the Registry Editor (regedt32).
2. Search for TxCoalescingTicks and ensure that it is the only instance.
3. Right click the instance number (for example, 0008) and add a new string value.
4. Enter PreserveVLANInfoInRxPacket and enter the value as 1.
5. Restart computer.

18.5.2 Unit Test Software
WireShark (Ethereal).

SwitchSetting.exe (for WinCE) tool for switch feature configuration. Refer to Section 18.7.1,
“SwitchSetting Usage,” for more information.

18.5.3 Basic Feature Unit Test
Switch module provides basic frame forward function. Connect 2 PCs to ENET port1 and ENET port2,
set the IP address for both the PCs and the test board, so that they could connect with each other. Connect
one port to the public network, test board and the other PC can access the public network.

18.5.4 Advanced Feature Unit Test
This section explains the advanced feature unit tests.

18.5.4.1 Port Enable/Disable

Port Enable Bits. Two bits per port. The transmit and receive direction for each port can be enabled
independently. When the transmit direction is enabled, a frame can be forwarded to the port. When
disabled, all frames that are forwarded to the port are discarded. When the receive direction is enabled, the
port is selected and a frame is accepted if it indicates data availability. If the receive direction is disabled,
the input is ignored and it is never selected for frame reception.

1. Connect two PCs to ENET port1 and ENET port2.
2. Set IP address for each PC such as 192.168.1.1 for PC1 and 192.168.1.2 for PC2.
3. Ensure that port1 and port2 are enabled.
4. Test the connection by pinging PC2 from PC1.
5. Disable port1 or port2, PC1 cannot connect with PC2.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-5

6. Test other ports in the same way.

18.5.4.2 Verifying the VLAN Domain

Provide the VLAN verify bit and discard bit for each port. If the VLAN verify bit is set, frames carry
VLAN tag through the port and they are checked. The VLAN resolution table (VLAN domain resolution
entry) is searched for matching VLAN id. Frame can be forwarded only when both input and output ports
are members of VLAN domain. When the discard bit is set, a frame is received with a VLAN ID that is
unknown, or has no VLAN tag. The frame is discarded and is not forwarded.

1. Send frame from PC1, which carries the VLAN tag, a ping packet for instance. Run Wireshark on
sniffer PC to confirm that.

2. Connect two PCs to ENET port1 and ENET port2.
3. Set the IP address for each PC, such as 192.168.1.1 for PC1 and 192.168.1.2 for PC2.
4. Enable port1 and port2 VLAN verify.
5. PC1 sends ping frame which carries VLAN tag to PC2. The VLAN resolution table (VLAN

domain resolution entry) is searched for matching VLAN id. Frame is forwarded to ports within
the VLAN domain and is discarded if the destination port is not a member of the VLAN domain.
If port1 and port2 are members of the corresponding VLAN domain, PC1 could connect with PC2.

6. PC1 sends ping frame without VLAN tag to PC2, untagged frame would be forward.
7. Enable port1 and port2 discard bit, untagged frame would be discarded, and PC1 can not connect

with PC2.
8. Test other ports in the same way.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-6 Freescale Semiconductor

Figure 18-1 shows the VLAN domain verification screen.

Figure 18-1. Verify VLAN Domain

18.5.4.3 Default Broadcast Resolution
1 bit per port. For broadcast/flooding resolution.

Execute the following steps to set the default broadcast resolution:
1. Connect one PC to ENET port1 and connect the sniffer PC to ENET port2.
2. Set the IP address for each PC, such as 192.168.1.1 for PC1 and 192.168.1.2 for sniffer PC.
3. Set port2 broadcast mask bit to 1.
4. Send ARP frame from PC1, the frame can be captured by sniffer PC.
5. Set port2 broadcast mask bit to 0.
6. Send ARP frame from PC1, the frame cannot be captured by sniffer PC.
7. Test other ports in the same way.

18.5.4.4 Default multicast resolution
1 bit per port. For broadcast/flooding resolution, instead of default broadcast resolution when the received
frame carries a multicast address.

Execute the following steps to set the default multicast resolution:
1. Connect the sniffer PC to ENET port2 and connect ENET port1 to a public network.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-7

2. Ensure that all multicast mask bit is set to 1.
3. Capture the multicast frame using the Sniffer PC such as STP frame that are forwarded by the

switch.
4. Set the ENET port1 multicast mask bit to 0, sniffer PC cannot capture multicast frame.
5. Test ENET port2 in the same way.

Figure 18-2 shows the multicast resolution screen.
Figure 18-2 shows the multicast resolution screen.

Figure 18-2. Multicast Resolution

18.5.4.5 Defining the port in Blocking State and Enable or Disable Learning
When blocking is enabled for a port, only Bridge Protocol data units are accepted on that input. Other
frames are discarded.When learning is disabled for a port, only Bridge Protocol Data Unit frames are
learned. Other frames are ignored for learning.

1. Connect the sniffer PC to ENET port2 and connect ENET port1 to a public network.
2. Confirm that all block enable bits are set to 0.
3. Sniffer PC captures all kinds of frames.
4. Set the ENET port1 block enable bit to 1.
5. The Sniffer PC can capture only BPDU frames (such as STP frame).
6. If learning bit set to 1, then the switch learns only from the BPDU frame.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-8 Freescale Semiconductor

Figure 18-3 shows the Input Blocking and Learning screen.

Figure 18-3. Input Blocking and Learning

18.5.4.6 Bridge Management Port Configuration
Port bit means the number of port that should act as a management port. Relevant to all functions that
forward frames to the management port (i.e. BPDU processing, snooping).

NOTE
Management port must be set 0 in the switch configuration (Port 0 to DMA0
is the management port).

.If the Enable bit is set, then all BPDU frames are forwarded only to the management port. If cleared, the
BPDU frames are forwarded as any other frame or discarded if the discard bit is set.

1. Connect the sniffer PC to ENET port2 and connect the ENET port1 to a public network.
2. Port bit must be set 0 in switch configuration.
3. If the discard bit is set, the BPDU frame is discarded and the sniffer PC cannot capture them.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-9

18.5.4.7 Port Mirroring Configuration
Define mirror port and filtering conditions. Portx bit means the number of ports that should act as the
mirror port and receive all mirrored frames. Mirror_enable to enable the mirror feature. Other bit to enable
the corresponding filtering conditions.

1. Connect one PC to ENET port1 and connect the sniffer PC to ENET port2.
2. Set the IP address for each endpoint, such as 192.168.1.2 for sniffer PC, 192.168.1.1 for PC1 and

192.168.1.3 for DUT ENETSWI1.
3. Set portx bit and mirror_enable bit to 1 to set port1 as mirror port and enable mirror function.
4. If ing_map_enable bit is set, an ingress port bit is set in the ingress map (Port mirroring ingress port

definitions) is mirrored.
5. If eg_map_enable bit is set, an output port bit is set in the egress map (Port mirroring egress port

definitions) are mirrored.
6. If ing_sa_match bit is set, frames transmitted on an ingress port with source address matching with

the value in register MIRROR_ISRC (Ingress source MAC address for mirroring) are mirrored.
7. If ing_da_match bit is set, frames transmitted on an ingress port with destination address matching

with the value in the register MIRROR_IDST (Ingress destination MAC address for mirroring) are
mirrored.

8. If eg_sa_match bit is set, frames transmitted on an egress port with source address matching with
the value in the register MIRROR_ESRC (Egress source MAC address for mirroring) are mirrored.

9. If eg_da_match bit is set, frames transmitted on an egress port with destination address matching
with the value in register MIRROR_EDST (Egress destination MAC address for mirroring) are
mirrored.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-10 Freescale Semiconductor

Figure 18-4 shows the mirror configuration screen.

Figure 18-4. Mirror Configuration

18.5.4.8 Port Mirroring Egress Port Definitions
1 Bit per Port. If it is enabled, frames assigned to the port(s) are mirrored to the mirror port. Refer to
Section 18.5.4.7, “Port Mirroring Configuration,” for more information.

18.5.4.9 Port mirroring ingress port definitions
Port mirroring ingress port definitions. 1 Bit per Port. If it is enabled, the frames from the port(s) are
mirrored to the mirror port. Refer to Section 18.5.4.7, “Port Mirroring Configuration,” for more
information.

18.5.4.10 Ingress Source MAC Address For Mirroring
Two registers, MIRROR_ISRC_0 and MIRROR_ISRC_1 are available. MIRROR_ISRC_0 contains first
4 bytes of MAC address. First byte of MAC address is 7:0, .. , 4th byte is 31:24. MIRROR_ISRC_1
contains last 2 bytes of MAC address. 5th byte in 7:0 and 6th byte in 15:8. Refer to Section 18.5.4.7, “Port
Mirroring Configuration,” for more information.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-11

18.5.4.11 Ingress Destination MAC Address for Mirroring
Two registers, MIRROR_IDST_0 and MIRROR_IDST_1 are available. Refer to Section 18.5.4.10,
“Ingress Source MAC Address For Mirroring,” and Section 18.5.4.7, “Port Mirroring Configuration,” for
more information.

18.5.4.12 Egress source MAC address for mirroring
Two registers, MIRROR_ESRC_0 and MIRROR_ESRC_1 are available. Refer to Section 18.5.4.10,
“Ingress Source MAC Address For Mirroring,” and Section 18.5.4.7, “Port Mirroring Configuration,” for
more information.

18.5.4.13 Egress destination MAC address for mirroring
Two registers, MIRROR_EDST_0 and MIRROR_EDST_1 are available. Refer to Section 18.5.4.10,
“Ingress Source MAC Address For Mirroring,” and Section 18.5.4.7, “Port Mirroring Configuration,” for
more information.

18.5.4.14 Count Value for Mirroring
Every Nth frame is forwarded to the mirror port if it is enabled. A value of 0 or 1 means every frame. Valid
values are 0..255.

NOTE
If the egress filtering port map is active, then each forwarded frame is
considered. Otherwise, frames are counted only if the mirroring decision
indicates that the frame should be mirrored.

If the value is set to a valid value N (0–255), every Nth frame is forward to the mirror port. A value 0 and
1 means every frame.

18.5.4.15 Port snooping (8 Entries)
Eight independent entries are available.When the Enable bit is set, the entry contains a valid data and the
function is active. If a match with the TCP/UDP destination port value occurs, the frame is processed as
defined by the mode setting.

1. Set Enable bit to enable the function.
2. Define the forwarding mode as follows:

— 00 - forward frames to designated management port
— 01 - copy to management port and forward normally
— 10 - discard frame. Management port defined in MGMT_CONFIG (Bridge management port

configuration).
3. If compare_dest bit is set, TCP or UDP destination port numbers in the frame are compared with

the value set in the Destination_port bit register.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-12 Freescale Semiconductor

4. If the compare_source bit is set, TCP or UDP source port number in the frame is compared with
the value set in register (Destination_port bit).

5. Destination_port is the bit mentioned above. It contains 16-bit port number to compare within TCP
or UDP header of a frame. Figure 18-5 shows the port snooping.

Figure 18-5. Port Snooping

18.5.4.16 IP snooping (8 Entries)
8 independent entries are available.When the Enable bit is set, the entry contains a valid data and the
function is active. If a match with the protocol value occurs, then the frame is processed as defined by the
mode setting.

1. Set the Enable bit to enable the function.
2. Define forwarding mode when an IP frame is received and the protocol field matches the protocol

value (protocol bit) as follows:
— 00 forward frames to designated management port
— 01 copy to management port and forward normally
— 10 discard frame. Management port defined in MGMT_CONFIG (Bridge management port

configuration).
3. If the Protocol bit is the bit mentioned above. It contains an 8-bit protocol value to match with the

incoming frame's IP header protocol field.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-13

Figure 18-5 shows the IP snooping.

Figure 18-6. IP Snooping

18.5.4.17 VLAN Priority Resolution Map (P0–P2)
It implements a 3-bit to 3-bit VLAN priority mapping capability. The current frame's 3-bit VLAN priority
field is used as an index and the corresponding priority is taken from the respective position of the register
giving the final classification for the frame.

18.5.4.18 IPV4 and IPV6 Priority Resolution Table
Address bit is used to specify the address of the entry. If IPv4 select bit is set, then the IPv4 table is
accessed. If cleared, then the IPV6 table is accessed. Priority port n means the priority information to write
into the addressed table entry. These 2 bits represent the output priority selected when the frame is received
on port n. 00=priority 0 (forwarded to output queue 0), 01=priority 1 (output queue 1), 10=priority 2
(output queue 2), 1=priority 3 (output queue 3). When reading from the register, the bits show the value
from the addressed table entry (address from last write operation).

18.5.4.19 Priority Resolution Configuration (P0–P2)
Enable VLAN priority resolution for the received frames on port n. If set, the VLAN tag field of a frame
is inspected and priority is resolved based on the setting in the VLAN_PRIORITYn for the port on which
the frame is received.Enable IP priority resolution for frame received on port n. If set, the IP DiffServ/COS
field is used and priority is resolved based on the IP_PRIORITYn setting for the port. Enable MAC based

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-14 Freescale Semiconductor

priority resolution for the frame received on port n. If set, then the priority information available in the
MAC address table is used.The default priority of a frame received on port n, if none of the priority
resolutions could define a priority of the frame.

18.5.4.20 VLAN Domain Resolution Entry (32 Entries)
VLAN domain resolution entry is from 0–31. Bits 2..0: One bit per port that is member of the VLAN
identified with the 12-bit VLAN ID of the entry. Bits 14..3: 12-bit VLAN identifier. Refer to the
Section 18.5.4.2, “Verifying the VLAN Domain,” for verifying the VLAN domain resolution.

18.6 Switch API Reference
The basic switch driver is compliant with the NDIS 4.0 miniport network drivers specification by
Microsoft. Refer to the CE help for information on basic NDIS driver functions, methods and structures at:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Reference.

18.7 Appendix

18.7.1 SwitchSetting Usage
Usage:

Query value: switchsetting <-REGISTER_NAME> <-query> <-BIT_NAME>

Set value: switchsetting <-REGISTER_NAME> <-set> <-BIT_NAME> <VALUE>

Port Enable/Disable:

switchsetting -PORTENA -query

switchsetting -PORTENA -set -ENA_TRANSMIT_0 0 -ENA_TRANSMIT_1 0 -ENA_TRANSMIT_2 0
-ENA_RECEIVE_0 0 -ENA_RECEIVE_1 0 -ENA_RECEIVE_2 0

Verify VLAN Domain:

switchsetting -VLANVERIFY -query

switchsetting -VLANVERIFY -set -VLAN_VERIFY_0 0 -VLAN_VERIFY_1 0 -VLAN_VERIFY_2 0
-DISCARD_P0 0 -DISCARD_P1 0 -DISCARD_P2 0

VLAN Domain Resolution Entry:
switchsetting -VLANRESTABLE -query -ENTRY 0

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-15

switchsetting -VLANRESTABLE -set -ENTRY 0 -PORT_0 0 -PORT_1 0 -PORT_2 0 -VLAN_ID 0

NOTE
Valid entry values are 0–31.

Default Broadcast Resolution:
switchsetting -BCASTDEFAULTMASK -query

switchsetting -BCASTDEFAULTMASK -set -BCAST_DEFAULT_MASK_0 0
-BCAST_DEFAULT_MASK_1 0 -BCAST_DEFAULT_MASK_2 0

Default Multicast Resolution:
switchsetting -MCASTDEFAULTMASK -query

switchsetting -MCASTDEFAULTMASK -set -MCAST_DEFAULT_MASK_0 0
-MCAST_DEFAULT_MASK_1 0 -MCAST_DEFAULT_MASK_2 0

Define Port in Blocking State and Enable or Disable Learning:
switchsetting -INPUTLEARNBLOCK -query

switchsetting -INPUTLEARNBLOCK -set -BLOCKING_ENA_P0 0 -BLOCKING_ENA_P1 0
-BLOCKING_ENA_P2 0 -LEARNING_DIS_P0 0 -LEARNING_DIS_P1 0 -LEARNING_DIS_P2 0

Bridge Management Port Configuration:
switchsetting -MGMTCONFIG -query

switchsetting -MGMTCONFIG -set -PORT 0 -MESSAGE_TRANSMITTED 0 -ENABLE 0 -DISCARD
0 -PRIORITY 0 -PORTMASK 0

Port Mirroring Control:
switchsetting -MIRRORCONTROL -query

switchsetting -MIRRORCONTROL -set -PORTx 0 -MIRROR_ENABLE 0 -ING_MAP_ENABLE 0
-EG_MAP_ENABLE 0 -ING_SA_MATCH 0 -ING_DA_MATCH 0 -EG_SA_MATCH 0
-EG_DA_MATCH 0

Port Mirroring Configuration:
switchsetting -MIRRORCONFIG -query

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-16 Freescale Semiconductor

switchsetting -MIRRORCONFIG -set -ING_MAP 0 -EG_MAP 0 -ISRC_0 0 -ISRC_1 0 -IDST_0 0
-IDST_1 0 -ESRC_0 0 -ESRC_1 0 -EDST_0 0 -EDST_1 0 -CNT 0

NOTE
MIRRORCONFIG command sets all the mirror configurations.

The following arguments are registers names:
— Register ING_MAP bits 0–2 are mapped to port 0–2,
— if ING_MAP is set to 1, then port0 is mirrored.
— If set to 2, port1 is mirrored.
— If set to 3, both port0 and port1 are mirrored and so on. EG_MAP is the same.

Port Snooping:
switchsetting -PORTSNOOP -query -ENTRY 0

switchsetting -PORTSNOOP -set -ENTRY 0 -ENABLE 0 -MODE 0 -COMPARE_DEST 0
-COMPARE_SOURCE 0 -DESTINATION_PORT 0

NOTE
Valid entry values are 0–7.

IP Snooping:
switchsetting -IPSNOOP -query -ENTRY 0

switchsetting -IPSNOOP -set -ENTRY 0 -ENABLE 0 -MODE 0 -PROTOCOL 0

NOTE
Valid entry values are 0–7.

VLAN Priority Resolution Map:
switchsetting -VLANPRIORITY -query -PORT 0

switchsetting -VLANPRIORITY -set -PORT 0 -P0 0 -P1 0 -P2 0 -P3 0 -P4 0 -P5 0 -P6 0 -P7 0

NOTE
Valid port values are 0–2.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-17

IPV4 and IPV6 Priority Resolution Table:
switchsetting -IPPRIORITY -query

switchsetting -IPPRIORITY -set -ADDRESS 0 -IPV4_SELECT 0 -PRIORITY_PORT0 0
-PRIORITY_PORT1 0 -PRIORITY_PORT2 0 -READ 0

Priority Resolution Configuration:
switchsetting -PRIORITYCFG -query -PORT 0

switchsetting -PRIORITYCFG -set -PORT 0 -VLAN_EN 0 -IP_EN 0 -MAC_EN 0
-DEFAULT_PRIORITY 0

NOTE
Valid port values are 0–2.

Switch Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

18-18 Freescale Semiconductor

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-1

Chapter 19
Touch Panel Driver
The touch screen interface provides all the circuitry required for a 4-wire resistive touch screen. The touch
screen X plate is connected to TSX1 and TSX2 and the Y plate is connected to TSY1 and TSY2. A local
supply ADREF serves as reference.

19.1 Touch Panel Driver Summary
Table 19-1 provides a summary of source code location, library dependencies, and other BSP information.

19.2 Supported Functionality
The touch panel should conform to the standards as explained in the documentation below:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers

19.3 Hardware Operations
The hardware consists of low resolution analog-to-digital converters and touch screen interface. The touch
screen controller configures the LRADC driver required to measurement the X and Y values of the
touchscreen.

Table 19-1. Touch Panel Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_9\TOUCHVS

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX28 EVK PDK1_9:ARMV4I > Device Drivers > TOUCH >
Touchscreen

SYSGEN Dependency SYSGEN_TOUCH = 1

BSP Environment Variables
BSP_LRADC = 1

Touch Panel Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

19-2 Freescale Semiconductor

19.4 .Software Operations
The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. The touch screen events are then sent to the Graphics, Windowing, and Events Subsystem
(GWES). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly, it has to submit points while the user’s finger or stylus is
touching the touch screen. When the user’s finger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user’s finger or stylus tip is removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The following steps detail the basic algorithm that are used to sample and calibrate the screen with the
touch screen driver:

1. Call the TouchPanelEnable function to start the screen sampling.
2. Call the TouchPanelGetDeviceCaps function to request the number of sampling points.

For every calibration point, perform the following steps:
1. Call TouchPanelGetDeviceCaps function to get a calibration coordinate. A crosshair appears on the

screen, touching the cross hair starts the calibration
2. Call the TouchPanelReadCalibrationPoint function to get the calibration data.
3. Call the TouchPanelSetCalibration function to calculate the calibration coefficients.

19.4.1 Touch Driver Registry Settings
IF BSP_NOTOUCH !
IF BSP_LRADC_TOUCH
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "DriverName"="touch.dll"
 "MaxCalError"=dword:7
IF BSP_PRECAL
 "CalibrationData"="539,520 280,259 280,778 793,781 794,259"

 ; Welcome.exe: Disable tutorial and calibration pages because we already
 ; have the necessary calibration data.
 ; Touch calibration (0x02), Stylus (0x04), Popup menu (0x08),
 ; Timezone (0x10), Complete (0x20)
[HKEY_LOCAL_MACHINE\Software\Microsoft\Welcome]
 "Disable"=dword:FFFFFFFF
ENDIF ; BSP_PRECAL

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]
 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

; For launching the TouchPanel calibration application on boot.
[HKEY_LOCAL_MACHINE\init]
"Launch80"="touchc.exe"
"Depend80"=hex:14,00,1e,00 ; Wait for standard initialization
 ; modules to load first (GWES.dll and
 ; Device.exe).

Touch Panel Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-3

ENDIF ; BSP_LRADC_TOUCH
ENDIF ; BSP_NOTOUCH !

19.5 Unit Tests
This section explains the unit tests.

19.5.1 Unit Test Hardware
Table 19-2 lists the hardware required to run the unit tests.

19.5.2 Unit Test Software
Table 19-3 lists the software required to run the unit tests.

.

NOTE
The touch driver works after the CETK Touch Panel Test. This is a known
MSFT CETK issue. In the MSFT online help it is mentioned that when the
test is complete, the OS does not regain control of the touch panel. The touch
panel should be reset to restore normal operation. Refer to CETK Tests and
Test Tools > CETK Tests > Touch Panel Tests

Cases 8011, 9001–9003 fail. The touch panel shows several lines when a
circle or a arc is drawn. This is also a known MSFT CETK issue. All these
points are captured.

Case 8011 cannot draw in the right part of screen after a 90° rotation.
ethca.exe works after rotation and the CETK works when the case runs
again.

19.5.3 Running the Touch Panel Tests
The touch panel test cases can be run by entering the following:

Table 19-2. Hardware Requirements

Requirement Description

 LCD panel Display panel required for displaying graphics data.

Table 19-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

Touchtest.dll The Test.dll File

Touch.dll Touch Panel Driver

Touch Panel Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

19-4 Freescale Semiconductor

tux -o -n -d touchtest.dll -x <Test case id>

The test case IDs are described in the documentation at:

Windows Embedded CE Test Kit > CETK Tests and Test Tools >CETK Tests > Touch Panel Tests >
Touch Panel Test

19.6 Touch Panel API Reference

The complete API reference is available in the documentation at:
Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers > Touch
Screen Driver Reference

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Universal Serial Bus (USB) On The Go (OTG) Driver
A USB OTG driver provides High Speed USB 2.0 host and peripheral support for the USB OTG port of
the i.MX chip. The OTG driver automatically performs a host or peripheral functionality at any given time,
depending on the type of USB cable plugged in. There are 3 components to achieve this functionality: USB
host driver, USB peripheral driver, and USB OTG driver. The OTG driver maintains a state machine to
decide whether a host driver or peripheral driver to be in charge. The OTG driver is also called as Pin
Detection Driver, as the OTG functionality logic depends on the kind of USB cable plugged in.

Many class drivers are supported in WinCE. The host driver can be configured to work with mass storage,
HID, printer, and RNDIS peripherals. The peripheral driver can be configured to provide mass storage,
serial, or RNDIS functionality. The peripheral class supports are mutually exclusive, so that only one
configuration can be selected as active configuration. The host functionality support do not have such
limitation, and hence can recognize what kind of peripheral is plugged in and pick the right class driver to
provide functionality.

Besides full OTG functionality, pure host driver and pure client driver options are also provided. These
2 options configure the BSP to work in a host-only or peripheral-only mode. In this case, pin detection
driver is not active and no mode change happens between the host and the peripheral.

20.1 USB OTG Driver Summary
This section explains about the OTG port peripheral driver, host driver, and OTG driver.

20.1.1 OTG Peripheral Driver Summary
Table 20-1 lists the attributes of the OTG peripheral driver.

Table 20-1. OTG Peripheral Driver Summary

Driver Attribute Definition

Target Platform iMX28-EVK-PDK1_9

Target SOC MX28_FSL_V2_PDK1_9

Common SOC COMMON_FSL_V2

CSP Driver Path ..\SOC\<Target SOC>\USBD
..\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>_PDK1_9.lib
usb_usbfn_os_<Target SOC>_PDK1_9.lib
usb_ufnmddbase_<Common Soc>_PDK1_9.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-2 Freescale Semiconductor

USB peripheral class drivers are required to provide corresponding functionality. These class drivers are
implemented as WinCE public driver. These class drivers (described in Section 20.5.7, “Peripheral Class
Drivers”) can be selected through drag and drop from catalog items.

20.1.2 OTG Host Driver Summary
Table 20-2 lists the attributes of the host driver.

USB host class drivers are required to provide corresponding functionality. As peripheral class drivers, the
host class drivers are also implemented as WinCE public driver. Refer to Section 20.5.8, “Host Class
Drivers,” for more information.

Import Library NA

Driver DLL usbfn.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB High
Speed OTG Device > High Speed OTG Port Pure Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment
Variable

BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1

Table 20-2. OTG Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX28-EVK-PDK1_9

Target SOC (TGTSOC) MX28_FSL_V2_PDK1_9

Common SOC COMMON_FSL_V2_PDK1_9

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library NA

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed OTG Device
To support only host mode, choose .. > High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

Table 20-1. OTG Peripheral Driver Summary (continued)

Driver Attribute Definition

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-3

20.1.3 OTG (Pin-Detection) Driver Summary
Table 20-3 lists the attributes of the OTG driver.

20.2 USB Host1 Driver Summary
Table 20-4 lists the attributes of the host driver.

Table 20-3. OTG Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX28-EVK-PDK1_9

Target SOC (TGTSOC) MX28_FSL_V2_PDK1_9

Common SOC COMMON_FSL_V2_PDK1_9

CSP Driver Path ..\SOC\<Common Soc>\MS\USBOTG\MDD

CSP Static Library usbotgcm_<Common SOC>.lib

Platform Driver Path PLATFORM\<Target Platform>\SRC\DRIVERS\USBOTG

Import Library NA

Driver DLL fsl_usbotg.dll

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed OTG Device > High Speed OTG Port Full OTG Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USBOTG=1

Table 20-4. Host1 Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX28-EVK-PDK1_9

Target SOC (TGTSOC) MX28_FSL_V2_PDK1_9

Common SOC COMMON_FSL_V2_PDK1_9

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSH1

Import Library NA

Driver DLL hcd_hsh1.dll

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-4 Freescale Semiconductor

USB host class drivers are required to provide corresponding functionality. As peripheral class drivers, the
host class drivers are also implemented as WinCE public driver. Refer to Section 20.5.8, “Host Class
Drivers,” for more information.

20.3 Supported Functionality
The OTG driver provides the following software and hardware support:

1. The High Speed OTG or Host driver supports USB specification 2.0.
2. When a cable is not connected or a mini-B cable is connected (in either of these cases, the ID pin

is pull up), OTG driver selects the peripheral driver to be in charge. On attaching a mini-A cable
(in this case, the ID pin is pull down), OTG driver selects the host driver to be in charge.

3. The peripheral driver can support mass storage, RNDIS, serial, and basic personal healthcare
classes. Only one class support is active.

4. The host driver can support mass storage, HID, and Printer classes.
5. When nothing is attached to the OTG port, the driver configures the USB module to be in a low

power state.
6. When the system is suspended with no attachment to the OTG or Host port, it does not create a

wake condition upon attachment of the port to a host or attachment of a device with mini-A plug.
7. When the system is suspended while the OTG or Host port is connected to a host or to a device

with a mini-A plug, the system remains suspended when the OTG port connection is unplugged.
8. When the system resumes after suspend, any attached devices are enumerated and their class

drivers are loaded appropriately.

20.4 Hardware Operation
An EHCI compliant High-Speed OTG Controller and an USB 2.0 UTMI PHY are integrated on i.MX233
Chip. It provide a full on-chip USB OTG solution.

20.4.1 Conflicts with Other Peripherals and Catalog Items
This section explains USB OTG conflicts with other peripherals and catalog items.

20.4.1.1 Conflicts with SoC Peripherals

No conflicts.

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed OTG Device
To support only host mode, choose .. > High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSH1=1

Table 20-4. Host1 Host Driver Summary (continued)

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-5

20.4.1.2 Conflicts with Board Peripherals

No conflicts.

20.5 Software Operation
This section explains about the software operation of the drivers.

20.5.1 USB Host Controller Driver
This driver enables the USB host functionality for the OTG port and H1 port. It is a part of the standard
Windows USB software architecture.

Figure 20-1 shows the Windows USB driver architecture.

Figure 20-1. Windows USB Driver Architecture

The details about the Windows CE USB driver architecture and usage is available in the Platform Builder
Help documentation in the following location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers

and

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Controller Driver Development Concepts

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-6 Freescale Semiconductor

When the OTG driver is included, the OTG host driver is activated when an USB Mini-A plug is connected
to the Mini USB OTG socket. When pure host mode is selected, the host driver is always in control with
respect to the relevant USB controller. When an USB peripheral device is connected, the host driver
enumerates it and activates the appropriate class driver.

The BSP supports the following USB class drivers:
• Mass Storage—Card Reader with SD or CF cards, USB HDD drive, thumb drive (disk-on-key).

Some card reader firmware is not supported by the Microsoft standard Mass Storage class driver.
• HID—USB Keyboard and mouse
• RNDIS—Network Device Interface communication class

Hubs are also supported to extend the USB topology.

Refer to the Section 20.5.8, “Host Class Drivers,” for more detailed description on the host class driver.

20.5.1.1 User Interface

As described above, users can access the USB host driver through class drivers. The details on the host
client drivers are available in the Windows CE 6.0 Platform Builder Help documentation at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers.

The new class driver code is developed using the documentation. Refer to the host client driver interface
functions (for example, IssueBulkTransfer) as documented in the Help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers > Host Client Driver Reference.

20.5.1.2 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool during driver initialization. Unless physical
addresses are specified in API accesses at the class-driver interface, the driver copies data between the user
or class-provided data buffers and the DMA buffer from the driver’s physical memory pool.

Host driver checks the registry key PhysicalPageSize for memory pool size. If it is not available or if the
registry settings is less than 128 K, then the driver uses the default minimal buffer size, 128K, and apply
it to the memory using the HalAllocateCommonBuffer.

20.5.1.3 Configured Power

USB host driver monitors the configured power for all devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured current limit.

This power limit is implemented through the platform-specific function BSPUsbhCheckConfigPower() as
described in Section 20.5.1.7.1, “BSPUsbhCheckConfigPower,” and located in:

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-7

This function is modified based on the platform hardware capabilities. Currently the current limit is set to
500 mA.

20.5.1.4 Registry Settings

This section explains the registry settings.

20.5.1.4.1 OTG Registry Settings

Refer to the Section 20.5.5, “USB OTG Registry Settings,” for information about OTG registry settings.

20.5.1.4.2 HSH1 Registry Settings

The generated HSH1 registry settings are located in Table 20-5 lists the default values for the host driver
settings.

20.5.1.5 PHY level USB Test

The USB 2.0 specification defines PHY-level test modes for all the USB host ports (refer to the USB 2.0
specifications chapter in the USB Reference Manual). Temporarily this feature is not enabled in the driver.

20.5.1.6 Unit Test

Different peripherals such as thumb disk, keyboard, and hub are used to test the host driver functionality.
Manual tests include connecting the peripheral, confirming the connection during plug in, during unplug
and during subsequent plug in of device, data transfer verification (for mass storage peripherals) and other
expected functionality such as keyboard, mouse, and so on.

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for bulk, interrupt, and

Table 20-5. HSH1 Registry Default Values

Value Type Content Description

Dll sz hcd_hsh1.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine or correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword NA This value represents the number of bytes allocated for the physical memory
pool of the host driver, and defaults to 128 kB. From this buffer, 75% is
allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer(). The BSP
donot provide this setting and the driver uses the default 128 kB size.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-8 Freescale Semiconductor

isochronous transfers, the CETK Host test kit is performed. This requires a CEPC configured with Netchip
2280 USB function and loopback driver.

20.5.1.6.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is available in the Platform Builder
Windows CE product documentation in the following location:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

20.5.1.6.2 Building the Test Image

The following steps are used to build the test image:
1. Checkout the RTM to test or install the MSI provided
2. Add the following components from the catalog:

— Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB High Speed
OTG Device > High Speed Port Pure Host Function.

— Core OS > Windows CE devices > Core OS Services > USB HOST Support; and all the
subcomponents of this catalog item (SubComponents such as USB Storage Class Driver.)

— Core OS > Windows CE devices > File Systems And Data store > Storage Manager; (Sub
Components: FAT File System, Partition Driver, Storage Manager control panel applet)

— Device Drivers > USB Function > USB Function Clients > Serial.

20.5.1.6.3 Abstract

This test suite can be used to test USB host controller drivers that provides the same interface as Window
CE USB host controller driver does. Refer to Section 20.5.1.1, “User Interface,” for more information.
Also, it can be used to verify if a certain USB host controller (a stand alone card or an onboard logic) can
operate with Windows CE.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-9

Figure 20-2 shows the test setup and scenario.

Figure 20-2. Test Setup

This test suite acts as a client driver above the USB bus driver (usbd.dll). It is loaded when test device is
connected to the host through the USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the CEPC acts as a
generic USB data loopback device. USB test suite (the test client driver on the host side) can then stream
data or issue device requests to or from this data loopback device. This way, the USB host controller and
its corresponding host controller drivers are used.

NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can be
used to test both USB2.0 and USB1.1 host controllers (EHCI, OHCI, or UHCI) and corresponding drivers.

Netchip2280 controller has 6 end points besides endpoint 0. The data loopback driver (net2280lpback.dll)
configures these endpoints as 3 pairs: one bulk IN or OUT pair, one Interrupt IN or OUT pair, and one
Isochronous IN or OUT pair. The data loopback tests are done by sending data from host side to device
side through OUT pipe, and receive it back through IN pipe, and then verifies the data.

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-10 Freescale Semiconductor

20.5.1.6.4 Unit Test Hardware

The following are the unit test hardware requirements:
• Test platform
• Host Controller Card (if not onboard logic)
• CEPC
• Netchip2280 Card
• USB cable

20.5.1.6.5 Unit Test Software

The following are the host side requirements:
• Tux.exe
• Ddlx.dll
• Usbtest.dll
• Tooltalk.dll
• Kato.dll
• USB component (usbd.dll, EHCI, OHCI or UHCI host controller driver(s)) must be included in the

run time image.

The following are the device side requirements:
• Lufldrv.exe
• Net2280lpbk.dll
• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image.

20.5.1.6.6 Running the Test

The test procedure is as follows:
1. Download runtime image to CEPC with Netchip2280 card on it.
2. After system boot up, run command s lufldrv, tester should verify if net2280lpbk.dll is loaded
3. Download runtime image to test platform with USB host controller in it
4. After system boot up, ensure that there is no connection between host side and device through USB

cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”, where “YYYY” is the test
case(s) to be run

5. The test indicates that there should be no connection between host and device side. Then after 7
seconds, the test needs to connect 2 sides with USB cable.

6. The test main body starts to run
7. If there are other tests to be run, do not disconnect the USB cable. Type the next test command, and

the tests starts directly. If the USB connection was disconnected before the next test, the test needs
to connect again.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-11

20.5.1.6.7 Test Cases

Table 20-6 shows the test cases available in the test suite.

By default, the data loopback device configures the endpoints with often-used packet sizes that are
DWORD aligned, and neither too big nor too small. Passing all the listed tests above under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device dynamically. They are:
• Test case 3001 — Using some very small packet sizes in NetChip2280 device full speed

configuration
• Test case 3002 — Using some very small packet sizes in NetChip2280 device high speed

configuration
• Test case 3003 — Using some irregular packet sizes (like non DWORD-aligned size) in

NetChip2280 device full speed configuration
• Test case 3004 — Using some irregular packet sizes (such as non DWORD-aligned size) in

NetChip2280 device high speed configuration

Table 20-6. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315,
1501-1515

Data loopback tests:
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)
5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:
1) Normal loopback tests (tests with ID start with 10, like 10)
2) loopback tests using physical memory (tests with ID start with 11, 11xx)
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)
5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using asynchronous
transfer method, test cases like xx0x using synchronous method

There are a total of 5 × 5 × 2 = 50 test cases

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host controller driver can
handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this category.

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer() and
CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EP0 transfer (Vendor Transfer)

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-12 Freescale Semiconductor

• Test case 3005 (High Speed only) — Using some very large packet sizes (such as 2 × 1024 for
Isochronous endpoints) in NetChip2280 device full speed configuration.

NOTE
Ideally, Netchip2280 cannot handle transfers using such large packet size as
its onboard FIFO buffer is small.

What testers need to do is to run one of the test case above like running those normal tests, then after 15–20
seconds, automatically unload and load the usbtest.dll again through the Platform Builder. It means that
the packets sizes on Netchip2280 side have already been changed. Then those normal tests can run. Use
test case 3011 (for full speed config) and 3012 (for high speed) to restore the default packet sizes.

Another category test that is important for USB 2.0 host controllers and drivers is called the golden bridge
tests, which means USB 2.0 host controller is connected with a full speed (USB 1.1) device. This is the
only scenario that an USB 2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of running the s
lufldrv to load loopback driver, it runs the s lufldrv –f. This forces the Netchip2280 to be configured as
a full speed device.

Also testers can do some manual tests. The following are some examples:
• Plug in real USB devices, suspend system, and then resume; USB devices should still be there
• Plug in real USB devices, suspend system, unplug it, plug it in another device, then resume; system

should enumerate that new device properly
• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),

then resume; tests may fail, but system should not crash
• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;

tests should fail, but system should not crash

20.5.1.7 Platform-Specific API

This section explains about the platform-specific APIs.

20.5.1.7.1 BSPUsbhCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters
UCHAR bPort [in] Unused. Each USB controller has only one port
DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being

evaluated for attachment support on this port
DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously

attached devices on this port
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

Return FALSE if device can not be attached

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-13

20.5.1.7.2 BSPUsbSetWakeUp

This function does what is necessary to enable or disable wakeup on the USB port. This function does not
actually enable wake-up when a device is currently attached to the port.

Parameters
BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

20.5.1.7.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.
Parameters None
Return Value Return TRUE when a wake-up condition was detected

Return FALSE when no wake-up condition was present

20.5.1.7.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for i.MX System uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters
BOOL fSuspend [in] TRUE: system or controller is going to suspend mode. FALSE: resuming

20.5.2 USB Peripheral Driver
This driver enables the USB peripheral functionality for the i.MX device. When this driver is active and
the i.MX System is connected to a USB host system (for example, high speed or full speed port of PC), it
is enumerated according to the current active configuration settings, and the appropriate class driver is
loaded on the PC.

System can be configured as one of the following USB functions by setting the appropriate environment
variable during build (drag or drop from the catalog).

• Serial class - Serial ActiveSync
• Mass storage class - expose local storage (ATA hard disk, RAMDISK or other store) as USB drive
• RNDIS class - Remote Network Driver Interface Specification
• PHD class - basic Personal Healthcare Device Class support

When multiple class supports are selected, only one class acts as the active peripheral support. The default
priority is: Serial Class > Mass Storage Class > RNDIS class > PHD class. Besides, we also provide tools
to change current active class, refer to the Section 20.8.1, “Application for USB Peripheral Class Driver
Switch.” for more information.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-14 Freescale Semiconductor

Refer to the Section 20.5.7, “Peripheral Class Drivers.” for detailed description on peripheral class driver.

20.5.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. Refer to the Help
documentation at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers.

User can access the USB client driver through function drivers such as Mass Storage or RNDIS. Refer to
the following location in the Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Client Drivers.

To get information on the new function driver code, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Controller Drivers
> USB Function Controller Driver Reference.

20.5.2.2 Client Driver Configuration

Refer to the Section 20.5.4, “USB OTG Catalog Settings,” for information about the client driver
configuration.

20.5.2.3 Registry Settings

Refer to the Section 20.5.5, “USB OTG Registry Settings,” for information about the registry settings.

20.5.2.4 PHY Test Mode

The USB 2.0 specification defines PHY-level test modes for USB device ports (refer to the USB 2.0
specifications chapter in the USB Reference Manual). This mechanism allows host to configure a device
into test mode by commanding the device with a specific SET_FEATURE request. Once test mode is
entered, the device cannot come out of the test mode. Do not enable this feature in BSP now.

20.5.2.5 Unit Test

There is no CETK test case for USB peripheral drivers. The USB Peripheral driver is tested manually for
USB Serial function or USB Mass storage or RNDIS respectively. The test verifies basic USB peripheral
functionality, including attach, detach, and data transfer. Separate images can be built and downloaded for
each of the 3 peripheral function tests. Refer to the Section 20.5.1.6.2, “Building the Test Image,” for
building the image. The peripheral class driver switch tool is also used to do these tests, refer to the
Section 20.8.1, “Application for USB Peripheral Class Driver Switch,” for more information.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-15

20.5.2.5.1 Unit Test Hardware

Table 20-7 lists the required hardware to run the unit tests.

20.5.2.5.2 Unit Test Software

Table 20-8 shows the software requirements for the USB Function controller driver test.

Table 20-7. Hardware Requirements

Requirement Description

Host system A PC with proper driver and software installed

USB cable having Mini or Micro USB OTG plug A at
one end and Mini or Micro USB OTG plug B on the
other side

For connecting the PC and peripheral

ATA, NAND, Thumb disk, SD Card or MMC card
mounted on CE system

Required as a storage device when the board is configured as
mass storage class

Table 20-8. Software Requirements

Requirement Description

ActiveSync 4.1 and above Host side software that is required to be available for testing the Serial class functionality

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-16 Freescale Semiconductor

20.5.2.5.3 Running the USB Function Controller Driver Tests

Table 20-9 lists USB Function controller driver tests:

Table 20-9. USB Function Controller Driver Tests

Test Cases Entry Criteria, Procedure and Expected Results

Board configured as USB
Serial class and connected
to a host system after the
board boots up
completely

Entry Criteria:
Make sure there is no cable connected and the board is turned on and wait until the board boots-up completely
Procedure:
1. Connect the mini or micro USB OTG plug B to the mini or micro USB OTG socket
2. Observe that the ActiveSync on the host side gets connected and is synchronized
3. Copy files from Host system to the Mobile Device. Files are copied
4. Copy files from the Mobile Device to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class driver
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host and the System

Board configured as USB
Mass storage client, with
DSKx mounted, and
connected to PC after the
board boots up
completely

Entry Criteria:
Make sure there is no cable connected and the board is turned on and wait until the board boots-up completely
Procedure:
1. Connect the mini or micro USB OTG plug B to the USB OTG socket
2. Observe that a new disk in My Computer having as Removable Disk appearing in it
3. Copy files from Host system to the new disk drive. Files are copied
4. Copy files from the new disk drive to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class driver
Expected Result:
Files copied into mass storage client device match those copied out (when compared on Windows XP PC using
file compare utility). Note that files are not visible from within the System until the system has been reset. The
file system should not be used inside the System when it is being accessed through USB as a mass storage client.

Board configured as USB
RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:
Make sure there is no cable connected and the board is turned ON and wait until the board boots-up completely.
Enusre that the NIC’s local area connection is not having any IP address
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new Local area connection in the Network and Dial up connections appears on the Windows
XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS
4. On the System, a new Local area connection can be found in the Network and dial up connections. Configure
the local area connection by giving IP address, Subnetmask, Default gateway, DNS
5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:
Browsing the Internet should be possible

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-17

20.5.2.6 Platform-Specific API

This section explains about the platform-specific functions.

20.5.2.6.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX, from USB controller to the
appropriate device pins for the transceiver. This function is implemented for the Pure Client situation.
Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

20.5.2.6.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504 or ISP1301 transceiver. It is possible to modify
this routine to conditionally soft-disable USB connection.
Parameters
CSP_USB_REGS *pRegs [in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

20.5.3 USB OTG Driver (Pin-Detection Driver)
This driver is responsible for detecting the type of USB connector plugged into the USB OTG socket of
the i.MX System. It loads the USB host driver or USB peripheral driver and let it in charge.

20.5.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or peripheral
drivers, which provide the appropriate programming API.

20.5.3.2 OTG Driver Configuration

See the Section 20.5.4, “USB OTG Catalog Settings” for information on the OTG driver configuration.

20.5.3.3 Registry Settings

See the Section 20.5.5, “USB OTG Registry Settings” for information on the registry settings.

20.5.3.4 Unit Test

There is no CETK test case for USB OTG driver. It is tested using the mini or micro USB OTG plug A
and mini or micro USB OTG plug B. The test is done by manually plugging in different cables to the OTG
socket on the System and verifies if the appropriate driver is activated.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-18 Freescale Semiconductor

20.5.3.4.1 Unit Test Hardware

Table 20-10 lists the required hardware to run the unit tests.

20.5.3.4.2 Running the OTG Test

Table 20-11 lists OTG tests.

20.5.3.5 Platform-Specific API

NA.

Table 20-10. Hardware Requirements

Requirement Description

 Full OTG configuration selected in BSP Make sure the OTG driver is running

PC (with appropriate driver and software installed)
Peripherals such as thumb disk, USB keyboard, and hub

To test if control reaches the Host controller driver

mini or micro A to A receptacle cable
mini or micro B to A cable

For connecting system with PC and peripherals. System acts as
peripheral and host accordingly

Table 20-11. OTG Tests

Test Cases Entry Criteria, Procedure and Expected Results

Idle case when the cable
is not plugged in

Entry Criteria:
Ensure there is no cable connected and the board is turned ON, wait until the board boots-up completely
Procedure:
When the board is powered and completely booted-up, the board should be idle.
Expected Result:
Device boots up and is stable

Switch to peripheral Entry Criteria:
Ensure there is no mini USB OTG plug connected and the board is turned ON and wait until the board boots-up
completely
Procedure:
When the board is powered and completely booted-up, connect the system to PC with the mini or micro B to A
cable. Verify if PC recognizes it correctly.
Expected Result:
PC recognize the board (as peripheral) correctly (Activesync is active, or removable disk is visible, or network
adaptor is recognized).

Switch to host Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Disconnect the system with PC and connect a mini or micro A to A receptacle to the OTG socket.
2. Connect the USB peripheral device (such as a thumb disk) to the A receptacle.
3. The connected peripheral gets enumerated and starts functioning. For example, if an USB thumb disk is
connected, a new disk is accessible on the CE system.
Expected Result:
Peripheral should start functioning on the CE system.

Switch between host and
peripheral

Repeat the last 2 steps
Expected Result:
System always functions OK as both host and peripheral.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-19

20.5.4 USB OTG Catalog Settings
The driver is selected into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG.. There are 3 catalog items in Freescale i.MX233 EVK: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG related to USBOTG functionality:

(a) High Speed OTG Port Full OTG Function

(b) High Speed OTG Port Pure Client Function

(c) High Speed OTG Port Pure Host Function

The selection of (a) implicitly selects (b) and (c), without selecting (a), (b) and (c) separately. So there are
3 possible configurations available for BSP users:

(1) All 3 catalogs are explicitly or implicitly selected, corresponding to both host and peripheral support
plus OTG pin detection.

(2) Only High Speed OTG Port Pure Client Function is selected, corresponding to peripheral-only
support.

(3) Only High Speed OTG Port Pure Host Function is selected, corresponding to host-only support.

20.5.5 USB OTG Registry Settings
3 possible configurations available in Section 20.5.4, “USB OTG Catalog Settings,” forms 3
corresponding registry structure.

20.5.5.1 Registry Structure
• With configuration 1, for full OTG configuration, the generated registry has the following

structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\USBFN]
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UsbOtg\Hcd]

• With configuration 2, for full peripheral-only configuration, the generated registry has the
following structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

• With configuration 3, for full host-only configuration, the generated registry has the following
structure:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The contents in BuiltIn\USBOtg\UsbFN are similar to those in BuiltIn\UFN and the contents in
BuiltIn\UsbOtg\Hcd are similar to those in BuiltIn\HCD_HSOTG. Most of the settings are common
between the both. The differences are as follows:

In configuration 1, only UsbOtg key is located under BuiltIn key, which means the OTG driver is
automatically loaded by the OS. In this case, the OTG driver decides to load the peripheral driver and the
host driver.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-20 Freescale Semiconductor

In configuration 2 and 3, UFN or HCD_HSOTG is put directly under BuiltIn key. So the peripheral driver
or host driver is loaded automatically by the OS.

20.5.5.2 Registry Key Settings

This section explains about the registry key settings.

20.5.5.2.1 OTG Driver Settings

Table 20-12 lists the USB OTG transceiver registry settings.

20.5.5.2.2 Peripheral Driver Settings

Table 20-13 lists the USB OTG client registry settings.

20.5.5.2.3 Host Driver Settings

Table 20-14 lists the default values for the host driver settings.

Table 20-12. USB OTG Transceiver Registry Settings

Value Type Content Description

Dll sz fsl_usbotg.dll Driver dynamic link library

IsrDll sz giisr.dll ISR Chain Handler

DynamicClientLoad dword 3 The value is set to 0x3, indicating both host driver and peripheral driver are
loaded dynamically by the OTG driver.

Table 20-13. USB OTG Client Registry Settings

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

Priority256 dword 64 The reference peripheral driver IST priority

OTGGroup sz 1 This unique string (for example, 00 to 99) is used to combine or correlate instances of the host,
function, and transceiver driver within one USB OTG instance

Table 20-14. OTG Host Default Values

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 0 obsolete setting, must be set as 0

OTGGroup sz 01 This unique string (for example, 00 to 99) is used to combine or correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-21

20.5.6 Power Management
The USB OTG driver enters the low power mode in the following cases:

• No bus activity for a specified period of time
• System enters the suspend state

Similar procedures are followed to let the USB module to enter or exit low power mode in either of the 2
cases. The following section explains about the description on the general power management procedures.

20.5.6.1 Power Down Procedure

To set the USB module to low power mode, both PHY and controller should be set to low power mode
respectively.

20.5.6.1.1 Set PHY to Low Power Mode

The following function is called to set the PHY to low power mode:
BSPUsbPhyEnterLowPowerMode(pUsbRegs, TRUE)

This function is defined in
..\platform\<Target Platform>\src\drivers\usbcommon\usbutils.c

The following procedure is used for setting the PHY to low power mode.
• enable the wakeup interrupt source which can be activated without USB clock
• close power to all PHY sub module

20.5.6.1.2 Close USB Controller Clock

The following function is called to close the USB controller clock:
BSPUSBClockSwitch(FALSE)

This function is defined in
..\platform\<Target Platform>\src\drivers\usbcommon\usbclock.c

It gates the IC clock to USB Controller module.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword NA This value represents the number of bytes allocated for the physical memory
pool of the OTG host driver, and defaults to 128 Kbyte. From this buffer, 75%
is allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer().
The BSP does not provide this setting and the driver uses the default 128 Kbyte
size.

Table 20-14. OTG Host Default Values (continued)

Value Type Content Description

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-22 Freescale Semiconductor

20.5.6.2 Power Up Procedure

The USB module is powered up by reversing the procedures that are used to exit the low power mode.

20.5.6.2.1 Open USB Controller Clock

The following function is called to open the USB controller clock:
BSPUSBClockSwitch(TRUE)

It ungates the IC clock to the USB Controller module.

20.5.6.2.2 Put PHY Out of Low Power Mode

The following function is called to retrieve the PHY from low power mode:
BSPUsbPhyEnterLowPowerMode(pUsbRegs, FALSE)

The following procedures are implemented to set the PHY out of low power mode.
• disable the wakeup interrupt source which can be activated without the USB clock.
• open power to all PHY sub module

20.5.6.3 Processing Methodology

This section explains how to integrate the power down and power up procedure into the USB OTG driver.
As the USB OTG driver includes the OTG driver, the host driver and the peripheral driver, the processing
methodology for all 3 drivers is discussed in this section.

20.5.6.3.1 Host Driver Methodology

1) Auto low power

The host driver IST waits for the USB IRQ for a specified interval of time. The interval is defined as a
macro USB_IDLE_TIMEOUT, which is set to 3000 ms in the BSP. If there are no USB IRQ during this
period, there is nothing to be connected, so the driver follows the procedure as described in
Section 20.5.6.1, “Power Down Procedure,” to set the USB module to low power mode.

When the module is in low power mode, the driver is sensitive to the USB interrupt. Once such an interrupt
is caught, the driver follows the procedure described in Section 20.5.6.2, “Power Up Procedure,” to set the
USB module out of low power mode and function normally.

The implementation is found in

CHW::UsbInterruptThread, which is located in
SOC\<Common SOC>\ms\USBH\EHCI\chw.cpp

2) Low power mode with system suspend

When the system enters the suspend mode, the USB module enters the low power mode. The power down
procedures described in Section 20.5.6.1, “Power Down Procedure,” are also implemented in host driver

CHW::PowerMgmtCallback, which is located in
SOC\<Common SOC>\ms\USBH\EHCI\chw.cpp

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-23

This function is called by the OS automatically during system suspend.

When the system exits suspend mode, the USB module also exits the low power mode. The power up
procedures described in Section 20.5.6.2, “Power Up Procedure,” are also implemented in
CHW::PowerMgmtCallback

This function is called by the OS automatically during system resume.

20.5.6.3.2 Peripheral Driver Methodology

1) Auto low power

The peripheral driver IST waits for the USB IRQ for a specified interval of time. The interval is defined
as a macro IDLE_TIMEOUT, which is set to 3000 ms in the BSP. If there are no USB IRQ during this
period, there is nothing to be connected, so the driver follows the procedure as described in
Section 20.5.6.1, “Power Down Procedure,” to set the USB module to low power mode.

When the module is in low power mode, the driver is sensitive to USB interrupt. Once such an interrupt is
occurs, the driver follows the procedure described in Section 20.5.6.2, “Power Up Procedure,” to set the
USB module out of low power mode and function normally.

The implementation can be found in

InterruptHandle, which is located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

2) Low power mode with system suspend

When the system enters suspend mode, the USB module also enters the low power mode. The power down
procedures described in Section 20.5.6.1, “Power Down Procedure,” are implemented in peripheral driver
in

UfnPdd_PowerDown

Which is located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

This function is called by the OS automatically during system suspend.

When the system exits suspend mode, the USB module also exits low power mode. The power up
procedures described in Section 20.5.6.2, “Power Up Procedure,” are implemented in

UfnPdd_PowerUp

Which is also located in
SOC\<Common SOC>\ms\USBD\COMMON\pdd.c

20.5.6.3.3 OTG Driver Methodology

At any time after system is boot up, either host driver or peripheral driver is in charge of the USB module.
When the USB module needs to enter or exit low power mode, all the tasks are done by the in-charge
driver. So there is no need for the OTG Driver to provide redundant processing.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-24 Freescale Semiconductor

20.5.6.4 USB Wakeup

For some system design, it is preferred that an USB action by peripheral (such as plug, unplug and so on.)
wakes up the whole system for the host driver after the system goes into the suspend mode. It is not
implemented in i.MX233.

20.5.7 Peripheral Class Drivers
The function drivers can be configured using the Windows CE 6.0 Platform Builder catalog and are located
at:

Device Drivers > USB Function > USB Function Clients

Besides that, basic Personal Health Care Class (PHCC) support and Communication Device Class (CDC)
Abstract Control Mode (ACM) support are included in the BSP, the catalog is

Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB
Functional Class Driver > Personal HealthCare Class Support

or

Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB
Functional Class Driver > Communication Device Class Support

The default function driver is launched, when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=- ; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

or
 "DefaultClientDriver"="Personal_HealthCare_Class"

or
 "DefaultClientDriver"="CDC"

20.5.7.1 Mass Storage Function

Table 20-15 lists the mass storage functions.
Table 20-15. Mass Storage Function

Driver Attribute Definition

CSP Driver Path ..\SOC\<Common SOC>\ms\USBFN\CLASS

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-25

The Mass Storage function exposes a local data store as a USB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLIC\Common\OAK\Files\common.reg
"DeviceName"=- ;
; "DeviceName"="ATA HARD DISK"
; "DeviceName"="SDMEMORY CARD"
; "DeviceName"="MMC CARD"
; "DeviceName"="USB HARD DISK"
; "DeviceName"="NAND FLASH"

Any item from this list can be specified to act as the mass storage medium. Do not comment the
corresponding line and rebuild the BSP to make that item active.

If none of the items are specified explicitly, a precoded priority is used to determine what active drive acts
as a mass storage medium. The priority is described as the following:

ATA HARD DISK > SDMEMORY CARD (MMC CARD) > USB HARD DISK > NAND FLASH

The platform.reg can also override other USBMSFN related default settings. This allows customizing the
following values which must be properly configured for a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

20.5.7.2 Serial Function

The primary use of serial function is ActiveSync. Table 20-16 lists the serial functions.

CSP Static Library NA

Platform Driver Path NA

Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB

Driver DLL usbmsfn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Table 20-16. Serial Function

Driver Attribute Definition

CSP Driver Path NA

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library NA

Table 20-15. Mass Storage Function (continued)

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-26 Freescale Semiconductor

NOTE
ActiveSync is tested using the connection to PC with the ActiveSync
version 4.1 or above. Refer www.microsoft.com to download the latest
ActiveSync software for the PC. In some cases, DEBUGCHK may be
triggered during attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to override the
defaults. This allows customizing the following values that must be properly configured for a commercial
device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

20.5.7.3 RNDIS Function

The RNDIS function allows communication over the USB to supply it to the ethernet NDIS interface of
protocol stack. Table 20-17 lists the RNDIS functions.

Platform Driver Path NA

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

Table 20-17. RNDIS Function

Driver Attribute Definition

CSP Driver Path NA

CSP Static Library NA

Platform Driver Path NA

PUBLIC Driver Path PUBLIC*\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Table 20-16. Serial Function (continued)

www.microsoft.com

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-27

RNDIS function is tested using the Freescale RNDIS class driver located at:
Support\RNDIS\ce6_rndis.inf
%WINDIR%\System32\drivers\usb8023x.sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to override the
defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

20.5.7.4 PHDC Function

PHDC collects the personal health related data such as glucose meters and temperature measurements
from portable devices, and then transmit the data to the center agent. For example, PC or health care center
host. Table 20-18 lists the PHDC functions.

Catalog Item Device Drivers > USB Function > USB Function Clients > RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

Table 20-18. PHDC Function

Driver Attribute Definition

CSP Driver Path ..\SOC\<Common SOC>\UFNCLASS\CLASS\PHDC

PUBLIC driver path NA

CSP Static Library NA

Platform Driver Path NA

Export Library NA

Import Library NA

Driver DLL usbphdfn.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB Functional Class Driver > Personal HealthCare Class Support

SYSGEN Dependency NA

BSP Variable BSP_USBFN_PHD_SUPPORT

Table 20-17. RNDIS Function (continued)

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-28 Freescale Semiconductor

As it is a non Microsoft provided class driver, the PHDC class driver currently support basic reliable
personal health data transfer in the continua alliance framework. A peripheral side API is developed to
transfer the multiple personal health measurement, including weight, glucose, blood pressure and
temperature to a PC installed with proper PHDC host driver and application. Refer to the Section 20.8.2,
“Application for Multispec PHDC Demo,” for more details.

20.5.7.5 CDC Function

The Communications Device Class is a device level definition and is used by the host to properly identify
a communication device that can present several different types of interfaces. Only the Abstract Control
Mode, which is used for modem devices that are controlled through a serial command set is implemented.

Table 20-19 lists the CDC functions.

The following registry should be added into platform.reg.
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\CDC]
 "Dll"="usbfncdc.dll"
 "DeviceName"="COM7:"
 "Prefix"="COM"
 "Index"=dword:7
 "FriendlyName"="CDClass"
 "DeviceArrayIndex"=dword:1
 "RxBufferSize"=dword:4000
 "idVendor"=dword:2504
 "Manufacturer"="Freescale"
 "idProduct"=dword:0300
 "Product"="Communication Device"
 "SerialNumber"="8022709035731"
 "Tsp"="Unimodem.dll"
 "bcdDevice"=dword:0002

Table 20-19. CDC Function

Driver Attribute Definition

CSP Driver Path ..\SOC\<Common SOC>\ms\USBFN\CLASS\CDC

PUBLIC driver path NA

CSP Static Library NA

Platform Driver Path NA

Export Library NA

Import Library NA

Driver DLL usbfncdc.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB
Devices > USB Functional Class Driver > Communication Device Class Support

SYSGEN Dependency NA

BSP Variable BSP_USBFN_CDC_SUPPORT

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-29

The idVendor and the idProduct are specific for working with FSL CDC Host. A demo application uses
USB as virtual com port through CDC class driver. Refer to the Section 20.8.3, “Application for CDC
Demo,” for more details.

20.5.8 Host Class Drivers
All host ports support the same class drivers, and this configuration is common to all host ports. Class
drivers must also be configured for the USB host ports. Class driver configuration is common to all host
ports; there is no port-specific configuration for any class driver.

Table 20-20 shows the standard Microsoft-supplied drivers, and these drivers can be dragged and dropped
from the catalog.

20.5.8.1 HID Mouse

For mouse support, the cursor requires to test or use the mouse.

Table 20-21 shows the HID mouse class drivers.

20.5.8.2 HID Keyboard

The System keyboard key mapping conflicts with the HID keyboard. So, when the USB keyboard is
included, remove the System keyboard and include the appropriate stub keyboard and keyboard.dll file.

Table 20-20. Class Drivers

Class Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB Host Support > USB
Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. > USB Printer Class Driver
(and refer to the additional configuration in Section 20.7.2, “Dependencies of Drivers”)

Keyboard SYSGEN_USB_HID
_KEYBOARD

.. > Keyboard HID Device
(and refer to the additional configuration in Section 20.7.2, “Dependencies of Drivers”)

Mouse SYSGEN_USB_HID
_MOUSE

.. > Mouse HID Device
(and refer to the additional configuration in Section 20.7.2, “Dependencies of Drivers”)

RNDIS SYSGEN_ETH_USB_HOST .. > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE .. > USB (mass) Storage Class Driver

Table 20-21. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS > Shell and User Interface > User Interface > Customizable UI > Mouse

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-30 Freescale Semiconductor

Table 20-22 lists the HID keyboard driver that has to be removed.

Table 20-23 lists the stub keyboard driver that has to be included.

Include appropriate keyboard.dll. For example, define SYSGEN_KBD_US and add the following lines in
the platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

20.6 Known Issues
N.A.

20.7 Basic Elements for Driver Development
This section provides details of the basic elements for driver development in the Platform System.

20.7.1 BSP Environment Variables
Table 20-24 summarizes the System environment variables.

Table 20-22. HID Keyboard Driver for Removal

Remove Item Remove Catalog Item

 Keyboard Third Party > Freescale <Target Platform>: ARMV4I > Device Drivers > Input Devices > Keyboard US or Keypad

Table 20-23. ID Keyboard Driver for Inclusion

Catalog Item Configuration Flag Catalog Item

NOP Stub
Keyboard

BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard or Mouse > NOP (Stub)
Keyboard or Mouse English

Table 20-24. System Environment Variables Summary

Name Definition

BSP_USBOTG Set to enable Full OTG functionality (enable host-client switching) on the
High Speed OTG port

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-31

20.7.2 Dependencies of Drivers
Table 20-25 summarizes the Microsoft-defined environment variables used in the BSP.

20.8 USB Application Tools
This section describes about the application tools that are used for the USB.

20.8.1 Application for USB Peripheral Class Driver Switch
Only one USB peripheral drivers can be active out of many. When multiple class drivers are included in
the image, it is convenient for switching. It is convenient for both the end users and test engineers. The
following executable programs are added in ..\platform\<Target Platform>\files:

switchUsb2Msc.exe, switchUsb2Rndis.exe, switchUsb2Serial.exe, switchUsb2Phdc.exe.

These executable programs are selectively integrated into nk.bin during the generation of OS image.
During WinCE start up, the programs can be found in \WINDOWS directory. On execution of these programs
activate the mass storage, RNDIS, Serial, or PHDC peripheral drivers respectively.

Table 20-25. USB Driver

Name Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_PCL Set to support PCL printing

SYSGEN_PRINTING Set to support printer

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards
(keyboard stub and associated.dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-32 Freescale Semiconductor

20.8.2 Application for Multispec PHDC Demo
A peripheral side GUI is required to use the PHDC class driver. The application is used to select any data
from the available personal health measurements and send the selected data to PC. The
PHDC_Peripheral_App.exe is located in the directory ..\platform\<Target Platform>\files.

During WinCE start up, the file can be found in \WINDOWS directory.

On the host side, Continua Alliance CESL Reference Software is necessary to setup PHDC
communication channel. Contact www.continuaalliance.org for more details.

When PC side is ready, run the PHDC_Peripheral_App.exe. It displays a GUI with the following button
controls

• Select Device Spec Button — Used to select between the four different personal health data
category.

• Send Measurement Button — Used to send current measurement data category to host.
• Disconnect Button — Used to test PHDC protocol level disconnect.

20.8.3 Application for CDC Demo

A peripheral side application uses USB as a virtual COM port to communicate with Host side (PC). This
application replicates what it received from virtual COM port on the UART and sends them back to the
Host.

www.continuaalliance.org
www.continuaalliance.org

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-33

Follow the steps below to setup CDC Host driver and configure HyperTerminal application:

1. Turn on the board and ensure that the USB client driver is CDC and then connect with PC. The
Found New Hardware window appears as shown in Figure 20-3.

Figure 20-3. Found New Hardware Window

2. Select Install from a list or specific location (Advanced) option and click Next. The Search and
installation options window appears as shown in Figure 20-4.

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-34 Freescale Semiconductor

Figure 20-4. Search and Installation Option Window

Point the search path to the inf directory and click Next. The inf file is available in WINCE600\SUP-
PORT\APP\USB_CDC_APP\INF. The driver for the device is installed. To verify the installation, open the
device manager. TheFSL Virtual COM Port device entries must be visible as shown in Figure 20-5.

Figure 20-5. Virtual COM Port Device Entries

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-35

3. Open the HyperTerminal application as shown in Figure 20-6.

Figure 20-6. Hyper Terminal Application

4. Enter the name of the connection and click OK. as shown in Figure 20-7.

Figure 20-7. Connection Name

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-36 Freescale Semiconductor

5. Select the COM port identical to the one that shows up on the device manager as shown in
Figure 20-8.

Figure 20-8. COM Port Selection

6. Configure the virtual COM port baud rate and other properties as shown in Figure 20-9.

Figure 20-9. COM Port Properties

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-37

7. Configure the HyperTerminal. Click on the OK button to submit changes as shown in
Figure 20-10.

Figure 20-10. HyperTerminal Configuration

Universal Serial Bus (USB) On The Go (OTG) Driver

i.MX28 Windows Embedded CE 6.0 BSP Reference Manual

20-38 Freescale Semiconductor

8. The HyperTerminal is configured. The values entered are replicated from the virtual COM port.
Therefore, it appears as duplicate as shown in Figure 20-11.

Figure 20-11. Duplicate Values

	Windows Embedded CE 6.0
	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations
	Table i. Acronyms and Abbreviated Terms

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded CE 6.0 Architecture

	Chapter 2 Audio Driver
	2.1 Audio Driver Summary
	Table 2-1. Audio Driver Summary

	2.2 Supported Functionality
	2.3 Hardware Operation
	2.3.1 Audio Hardware Design
	2.3.1.1 i.MX28 EVK Audio Hardware Design

	2.3.2 Audio Playback
	2.3.3 Audio Recording
	2.3.4 Required SoC Peripherals
	Table 2-2. Required SoC Peripherals

	2.3.5 Conflicts with SoC Peripherals
	2.3.6 Conflicts with Board Peripherals
	2.3.6.1 i.MX28 EVK Peripherals Conflicts

	2.3.7 Known Issues
	2.3.7.1 i.MX28 Known Issues

	2.4 Software Operation
	2.4.1 Audio Playback
	2.4.2 Audio Recording
	2.4.3 Audio Driver Compile-Time Configuration Options
	2.4.3.1 i.MX28 Audio Driver Configuration Options
	Table 2-3. i.MX28 Audio Driver Configuration Options (oemsettings.h)

	2.4.4 DMA Support
	Table 2-4. DMA Memory Allocation Issues and Considerations
	2.4.4.1 i.MX28 Audio DMA Buffer Use
	Table 2-5. Configuration Options for Internal or External Memory DMA Data Buffer Allocation

	2.4.5 Power Management
	2.4.5.1 PowerUp
	2.4.5.2 PowerDown
	2.4.5.3 IOCTL_POWER_SET

	2.4.6 Audio Driver Registry Settings
	2.4.6.1 i.MX28 Audio Driver Registry Settings

	2.5 Unit Test
	2.5.1 Unit Test Hardware
	Table 2-6. Hardware Requirements

	2.5.2 Unit Test Software
	Table 2-7. Software Requirements

	2.5.3 Building the Audio Driver CETK Tests
	2.5.4 Running the Audio Driver CETK Tests

	2.6 System Level Audio Driver Tests
	2.6.1 Checking for a Boot-Time Musical Tune
	2.6.2 Confirming Touchpanel Taps and Keypad Key Presses
	2.6.3 Playing Back Sample Audio and Video Files Using the Media Player
	2.6.4 Using the SDK Sample Audio Applications for Testing

	2.7 Audio Driver API Reference
	2.8 Audio Driver Troubleshooting Guide
	2.8.1 Checking Build-Time Configuration Options
	2.8.2 Media Player Application Not Found
	2.8.3 Media Player Fails to Load and Play an Audio File

	Chapter 3 Backlight Driver
	3.1 Backlight Driver Summary
	Table 3-1. Backlight Driver Summary

	3.2 Supported Functionality
	3.3 Hardware Operation
	3.3.1 i.MX28-EVK Hardware Operation

	3.4 Software Operation
	3.4.1 Backlight Driver Registry Settings
	3.4.1.1 i.MX28-EVK Backlight Driver Registry Setting

	3.4.2 Power Management
	3.4.2.1 PowerUp
	3.4.2.2 PowerDown
	3.4.2.3 IOCTL_POWER_SET

	3.5 Unit Test
	3.5.1 Unit Test Hardware
	3.5.1.1 i.MX28-EVK Unit Test Hardware
	Table 3-2. Hardware Requirements

	3.5.2 Unit Test Software
	Table 3-3. Software Requirements

	3.5.3 Running the Backlight Application Test
	Table 3-4. Backlight Application Test

	3.6 Backlight API Reference

	Chapter 4 Battery Driver
	4.1 Battery Driver Summary
	Table 4-1. Battery Driver Summary

	4.2 Supported Functionality
	4.3 Hardware Operation
	4.3.1 Conflicts with Other SoC Peripherals

	4.4 Software Operation
	4.4.1 Battery Driver Registry Settings
	4.4.2 Power Management

	4.5 Unit Test
	4.5.1 Unit Test Hardware

	4.6 Battery API Reference

	Chapter 5 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	5.1 Boot from SD/MMC Summary
	Table 5-1. Boot from SD/MMC Summary

	5.2 Supported Functionality
	5.3 Hardware Operation
	5.3.1 Conflicts with Other Peripherals and Catalog Items

	5.4 Software Operation
	5.5 Card Flashing Tool
	5.5.1 Write Image (EBOOT) to SD Card
	5.5.2 System Boot

	Chapter 6 Chip Support Package Driver Development Kit (CSPDDK)
	6.1 CSPDDK Driver Summary
	Table 6-1. CSPDDK Driver Summary

	6.2 Supported Functionality
	6.3 Hardware Operation
	6.3.1 Conflicts with Other Peripherals and Catalog Items
	6.3.1.1 Conflicts with SoC Peripherals
	6.3.1.1.1 iMX28 Peripheral Conflicts

	6.3.1.2 Conflicts with Hardware Peripherals

	6.4 Software Operation
	6.4.1 Communicating with the CSPDDK
	6.4.2 Compile-Time Configuration Options
	6.4.3 Registry Settings
	6.4.4 Power Management

	6.5 Unit Test
	6.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
	6.5.1.1 DDK_CLK Enumerations
	Table 6-2. DDK_CLK Enumerations

	6.5.1.2 DDK_CLK Functions
	6.5.1.2.1 DDKClockSetGatingMode
	6.5.1.2.2 DDKClockGetGatingMode
	6.5.1.2.3 DDKClockGetFreq
	6.5.1.2.4 DDKClockSetFreq
	6.5.1.2.5 DDKClockConfigBaud
	6.5.1.2.6 DDKClockSetpointRequest
	6.5.1.2.7 DDKClockSetpointRelease
	6.5.1.2.8 DDKClockGetSharedConfig
	6.5.1.2.9 DDKClockLock
	6.5.1.2.10 DDKClockUnLock

	6.5.1.3 DDK_CLK Examples

	6.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
	6.5.2.1 DDK_GPIO Enumerations
	Table 6-3. DDK_GPIO Enumerations

	6.5.2.2 DDK_GPIO Functions
	6.5.2.2.1 DDKGpioConfig
	6.5.2.2.2 DDKGpioEnableDataPin
	6.5.2.2.3 DDKGpioWriteDataPin
	6.5.2.2.4 DDKGpioReadDataPin
	6.5.2.2.5 DDKGpioReadIntr

	6.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
	6.5.3.1 DDK_IOMUX Enumerations
	Table 6-4. DDK_IOMUX Enumerations

	6.5.3.2 DDK_IOMUX Functions
	6.5.3.2.1 DDKIomuxSetPinMux
	6.5.3.2.2 DDKIomuxGetPinMux
	6.5.3.2.3 DDKIomuxSetPadConfig
	6.5.3.2.4 DDKIomuxEnablePullup
	6.5.3.2.5 DDKIomuxGetPadConfig

	6.5.4 CSPDDK DLL DMA (DDK_DMA) Reference
	6.5.4.1 DDK_DMA Functions
	6.5.4.1.1 DDKApbhStartDma
	6.5.4.1.2 DDKApbhStopDma
	6.5.4.1.3 DDKApbhDmaInitChan
	6.5.4.1.4 DDKApbhDmaChanCLKGATE
	6.5.4.1.5 DDKApbhDmaClearCommandCmpltIrq
	6.5.4.1.6 DDKApbhDmaEnableCommandCmpltIrq
	6.5.4.1.7 DDKApbhDmaResetChan
	6.5.4.1.8 DDKApbhDmaFreezeChan
	6.5.4.1.9 DDKApbhDmaGetPhore
	6.5.4.1.10 DDKApbxStartDma
	6.5.4.1.11 DDKApbxGetNextCMDAR
	6.5.4.1.12 DDKApbxStopDma
	6.5.4.1.13 DDKApbxDmaInitChan
	6.5.4.1.14 DDKApbxDmaGetActiveIrq
	6.5.4.1.15 DDKApbxDmaClearCommandCmpltIrq
	6.5.4.1.16 DDKApbxDmaClearErrorIrq
	6.5.4.1.17 DDKApbxDmaEnableCommandCmpltIrq
	6.5.4.1.18 DDKApbxDmaEnableErrorIrq
	6.5.4.1.19 DDKApbxDmaResetChan
	6.5.4.1.20 DDKApbxDmaFreezeChan

	Chapter 7 Configurable Serial Peripheral Interface (CSPI) Driver
	7.1 CSPI Driver Summary
	Table 7-1. CSPI Driver Summary

	7.2 Supported Functionality
	7.2.1 Conflicts with Other Peripherals and Catalog Items
	7.2.1.1 Conflicts with SoC Peripherals

	7.2.2 Conflicts with EVK Peripherals

	7.3 Software Operation
	7.3.1 Registry Settings
	7.3.2 Communicating with the CSPI
	7.3.3 Creating a Handle to the CSPI
	7.3.4 Data Transfer Operations
	7.3.5 Closing the Handle to the CSPI
	7.3.6 Power Management
	7.3.6.1 PowerUp
	7.3.6.2 PowerDown
	7.3.6.3 IOCTL_POWER_SET

	7.4 Unit Test
	7.4.1 Building the Unit Tests

	7.5 CSPI Driver API Reference
	7.5.1 CSPI Driver IOCTLs
	7.5.1.1 CSPI_IOCTL_EXCHANGE

	7.5.2 CSPI Driver SDK Wrapper
	7.5.2.1 CSPIOpenHandle
	7.5.2.2 CSPICloseHandle
	7.5.2.3 CSPIExchange

	7.5.3 CSPI Driver Structures
	7.5.3.1 CSPI_BUSCONFIG_T
	Table 7-2. CSPI_BUSCONFIG_T Structure Members

	7.5.3.2 CSPI_XCH_PKT_T
	Table 7-3. CSPI_XCH_PKT_T Structure Members

	Chapter 8 Display Driver for LCDIF and PXP
	8.1 Display Driver Summary
	Table 8-1. Display Driver Summary

	8.2 Supported Functionality
	8.3 Hardware Operation
	8.3.1 Conflicts with Other Peripherals and Catalog Items

	8.4 Software Operation
	8.4.1 Software Driver Components
	Figure 8-1. Software Driver Components Block Diagram
	8.4.1.1 Display Driver
	8.4.1.2 LCD Interface
	8.4.1.3 Pixel Pipeline

	8.4.2 Communicating with the Display
	8.4.2.1 Using the GDI
	8.4.2.2 Using DirectDraw
	8.4.2.3 Using Display Driver Escape Codes

	8.4.3 Configuring the Display
	8.4.3.1 Rotation Support
	8.4.3.2 Display Driver Blit Acceleration
	8.4.3.2.1 DCP Graphics Acceleration
	8.4.3.2.2 Supported Acceleration Features
	8.4.3.2.3 Hardware Restrictions
	8.4.3.2.4 Acceleration performance

	8.4.3.3 Display Registry Settings
	8.4.3.3.1 i.MX28 Registry Settings

	8.4.4 Power Management
	8.4.4.1 PowerUp
	8.4.4.2 PowerDown
	8.4.4.3 IOCTL_POWER_SET

	8.5 Unit Test
	8.5.1 Unit Test Hardware
	8.5.2 Unit Test Software
	8.5.2.1 GDI Tests
	Table 8-2. GDI Software Requirements

	8.5.2.2 DirectDraw Tests
	Table 8-3. DirectDraw Software Requirements

	8.5.2.3 Windows Media Player Tests
	Table 8-4. Windows Media Player Software Requirements

	8.5.3 Building the Unit Tests
	8.5.4 Running the Unit Tests
	8.5.4.1 Running the GDI Tests
	8.5.4.2 Running the DirectDraw Tests
	8.5.4.3 Running the Windows Media Player tests

	8.6 Display Driver API Reference

	Chapter 9 Dynamic Voltage and Frequency Control (DVFC) Driver
	9.1 DVFC Driver Summary
	Table 9-1. DVFC Driver Summary

	9.2 Supported Functionality
	9.2.1 i.MX28 Supported Functionality

	9.3 Hardware Operation
	9.3.1 Conflicts with Other Peripherals and Catalog Items
	9.3.2 i.MX28 EVK Configuration

	9.4 Software Operation
	9.4.1 i.MX28 Registry Settings
	9.4.2 Loading and Initialization
	9.4.3 Operation
	9.4.3.1 i.MX28 Voltage or Frequency Setpoints
	Table 9-2. i.MX28 DVFC Setpoints

	9.4.3.2 i.MX28 Setpoint Mapping

	9.4.4 DDK Interface
	9.4.5 Power Management
	9.4.5.1 PowerUp
	9.4.5.2 PowerDown
	9.4.5.3 IOCTL_POWER_CAPABILITIES
	9.4.5.4 IOCTL_POWER_SET
	9.4.5.5 IOCTL_POWER_GET

	9.5 Unit Test
	9.5.1 i.MX28 Unit Testing

	Chapter 10 Ethernet MAC Controller (ENET) Driver
	10.1 Ethernet MAC Driver Summary
	Table 10-1. ENET Driver Summary

	10.2 Supported Functionality
	10.3 Hardware Operations
	10.3.1 Conflicts with Other Peripherals and Catalog Items
	10.3.1.1 Conflicts with SoC Peripherals
	10.3.1.2 Conflicts with i.MX28 EVK Peripherals

	10.4 Software Operations
	10.4.1 ENET Driver Registry Settings
	10.4.2 IEEE 1588 Features
	10.4.2.1 OID_GET_XMIT_TIMER
	10.4.2.2 OID_GET_RCV_TIMER
	10.4.2.3 OID_UPDATE_NEW_TIMER
	10.4.2.4 IEEE1588 Software Features
	Figure 10-1. IEEE 1588 Timer Sync Flow Chart

	10.5 Unit Tests
	10.5.1 Unit Test Hardware
	Table 10-2. Hardware Requirements

	10.5.2 Unit Test Software
	Table 10-3. Software Requirements

	10.5.3 Building the Unit Tests
	10.5.3.1 Network Utilities Related Tests
	10.5.3.2 Winsock 2.0 Test (v4/v6)
	10.5.3.3 IEEE1588 Demo Applications
	10.5.3.4 Winsock Performance Test
	10.5.3.5 One-Card Network Card Miniport Driver Test
	10.5.3.6 Two-Card Network Card Miniport Driver Test
	10.5.3.7 NDIS Performance Test

	10.5.4 Running the Unit Tests
	10.5.4.1 Ping Tests
	10.5.4.2 Browsing
	10.5.4.3 FTP Tests
	10.5.4.4 Winsock 2.0 Test (v4/v6)
	10.5.4.5 Winsock Performance Test
	10.5.4.6 One-Card Network Card Miniport Driver Test
	10.5.4.7 Two-Card Network Card Miniport Driver Test
	10.5.4.8 NDIS Performance Test
	10.5.4.9 IEEE1588 Demo Test

	10.6 Ethernet ENET Driver API Reference

	Chapter 11 Inter-Integrated Circuit (I2C) Driver
	11.1 I2C Driver Summary
	Table 11-1. I2C Driver Summary

	11.2 Supported Functionality
	11.3 Hardware Operation
	11.3.1 Conflicts with Other Peripherals and Catalog Items
	11.3.1.1 Conflicts with SoC Peripherals
	11.3.1.2 Conflicts with Board Peripherals

	11.4 Software Operation
	11.4.1 Registry Settings
	11.4.1.1 i.MX28 Registry Settings

	11.4.2 Communicating with the I2C
	11.4.3 Creating a Handle
	11.4.4 Configuring the I2C
	11.4.5 Data Transfer Operations
	11.4.6 Closing the Handle

	11.5 Unit Test
	11.5.1 Unit Test Hardware
	11.5.2 Unit Test Software
	11.5.3 Building the Unit Tests
	11.5.4 Running the Unit Tests

	11.6 Hardware Limitations
	11.7 I2C Driver API Reference
	11.7.1 I2C Driver IOCTLS
	11.7.1.1 I2C_IOCTL_GET_CLOCK_RATE
	11.7.1.2 I2C_IOCTL_GET_SELF_ADDR
	11.7.1.3 I2C_IOCTL_IS_MASTER
	11.7.1.4 I2C_IOCTL_IS_SLAVE
	11.7.1.5 I2C_IOCTL_RESET
	11.7.1.6 I2C_IOCTL_SET_CLOCK_RATE
	11.7.1.7 I2C_IOCTL_SET_MASTER_MODE
	11.7.1.8 I2C_IOCTL_SET_SELF_ADDR
	11.7.1.9 I2C_IOCTL_SET_SLAVE_MODE
	11.7.1.10 I2C_IOCTL_TRANSFER
	11.7.1.11 I2C_IOCTL_ENABLE_SLAVE
	11.7.1.12 I2C_IOCTL_DISABLE_SLAVE

	11.7.2 I2C Driver SDK Encapsulation
	11.7.2.1 I2COpenHandle
	11.7.2.2 I2CCloseHandle
	11.7.2.3 I2CSetSlaveMode
	11.7.2.4 I2CSetMasterMode
	11.7.2.5 I2CIsMaster
	11.7.2.6 I2CIsSlave
	11.7.2.7 I2CGetClockRate
	11.7.2.8 I2CSetClockRate
	11.7.2.9 I2CSetSelfAddr
	11.7.2.10 I2CGetSelfAddr
	11.7.2.11 I2CTransfer
	11.7.2.12 I2CReset
	11.7.2.13 I2CEnableSlave
	11.7.2.14 I2CDisableSlave

	11.7.3 I2C Driver Structures
	11.7.3.1 I2C_PACKET
	11.7.3.2 I2C_TRANSFER_BLOCK

	Chapter 12 Keypad Driver
	12.1 Keypad Driver Summary
	Table 12-1. Keypad Driver Summary

	12.2 Supported Functionality
	12.3 Hardware Operation
	12.3.1 Conflicts with Other Peripherals and Catalog Items
	12.3.2 Keypad
	12.3.2.1 i.MX28 EVK Keypad Mapping
	Table 12-2. Keypad Mapping

	12.4 Software Operation
	12.4.1 Keypad Scan Codes and Virtual Keys
	12.4.1.1 i.MX28 Scan Code Mapping table
	Table 12-3. Scan Code Mapping

	12.4.2 Power Management
	12.4.2.1 BSPKppPowerOn
	12.4.2.2 BSPKppPowerOff
	12.4.2.3 IOCTL_POWER_CAPABILITIES
	12.4.2.4 IOCTL_POWER_SET
	12.4.2.5 IOCTL_POWER_GET

	12.4.3 Keypad Registry Settings

	12.5 Unit Test
	12.5.1 Unit Test Hardware
	12.5.2 Unit Test Software
	12.5.3 Building the Unit Tests
	12.5.4 Running the Unit Tests

	Chapter 13 LR Analog-Digital Converter (LRADC) Driver
	13.1 LRADC Driver Summary
	Table 13-1. LRADC Driver Summary

	13.2 Supported Functionality
	13.3 Hardware Operation
	13.3.1 Conflicts with Other Peripherals and Catalog Items

	13.4 Software Operation
	13.4.1 ADC Registry Settings
	13.4.2 Interfacing with the LRADC Driver
	13.4.2.1 Stream Interface
	13.4.2.2 Using the SDK
	13.4.2.3 DMA Support

	13.5 Power Management
	13.5.1 LDC_PowerUp
	13.5.2 LDC_PowerDown
	13.5.3 IOCTL_POWER_CAPABILITES
	13.5.4 IOCTL_POWER_SET
	13.5.5 IOCTL_POWER_GET

	13.6 Unit Test
	13.7 LRADC SDK API Reference
	13.7.1 LRADCOpenHandle
	13.7.2 LRADCCloseHandle
	13.7.3 LRADCConfigureChannel
	13.7.4 LRADCEnableInterrupt
	13.7.5 LRADCClearInterruptFlag
	13.7.6 LRADCSetDelayTrigger
	13.7.7 LRADCCLearDelayChannel
	13.7.8 LRADCSetDelayTriggerKick
	13.7.9 LRADCGetAccumValue
	13.7.10 LRADCEnableBatteryMeasurement
	13.7.11 LRADCEnableDieMeasurement
	13.7.12 LRADCClearAccum
	13.7.13 LRADCEnableTouchDetect
	13.7.14 LRADCGetTouchDetect
	13.7.15 LRADCEnableTouchDetectInterrupt
	13.7.16 LRADCSetAnalogPowerUp
	13.7.17 LRADCClearTouchDetect
	13.7.18 LRADCEnableTouchDetectXDrive
	13.7.19 LRADCEnableTouchDetectYDrive

	Chapter 14 NAND Redundant Boot
	14.1 NAND Redundant Boot Summary
	Table 14-1. NAND Redundant Boot Summary

	14.2 Supported Functionality
	14.3 Hardware Operation
	14.3.1 Conflicts with Other Peripherals and Catalog Items

	14.4 Software Operation
	Figure 14-1. Image Updating Work Flow
	Figure 14-2. Image Checking Work Flow

	14.5 Unit Test
	14.5.1 Testing Update Functionality
	14.5.2 Testing Restore Functionality

	Chapter 15 Power Management Unit Driver
	15.1 PMU Summary
	Table 15-1. PMU Driver Summary

	15.2 Supported Functionality
	15.3 Hardware Operation
	15.3.1 Conflicts with Other Peripherals and Catalog Items
	15.3.1.1 Conflicts with Other On-Chip Peripherals
	15.3.1.1.1 iMX28 Peripheral Conflicts
	15.3.1.1.2 Conflicts with Hardware Peripherals

	15.4 Software Operation
	15.4.1 Communicating with the PMU
	15.4.2 Compile-Time Configuration Options
	15.4.3 Registry Settings
	15.4.4 Power Management

	15.5 Unit Test
	15.6 PMU Driver API Reference
	15.6.1 PmuInitBatteryMonitor
	15.6.2 PmuGetBatteryVoltage
	15.6.3 PmuSetCharger
	15.6.4 PmuStopCharger
	15.6.5 PmuGetBatteryChargingStatus
	15.6.6 PmuSetVddd
	15.6.7 PmuGetVddd
	15.6.8 PmuGetVdddBrownont
	15.6.9 PmuSetFets
	15.6.10 PmuPowerGetSupplyMode

	Chapter 16 Secure Digital Host Controller (SDHC) Driver
	16.1 SDHC Driver Summary
	Table 16-1. eSDHC Driver Summary

	16.2 Supported Functionality
	16.3 Hardware Operation
	16.3.1 Conflicts with Other Peripherals and Catalog Options
	16.3.1.1 Conflicts with SoC Peripherals
	16.3.1.2 Conflicts with Other EVK Peripherals

	16.4 Software Operation
	16.4.1 Required Catalog Items
	16.4.1.1 SD and MMC Support

	16.4.2 SDHC Registry Settings
	16.4.2.1 i.MX28 SDHC Registry Settings

	16.4.3 DMA Support
	16.4.4 Power Management

	16.5 Unit Test
	16.5.1 Unit Test Hardware
	Table 16-2. Hardware Requirements

	16.5.2 Unit Test Software
	Table 16-3. Software Requirements

	16.5.3 Building the Unit Tests
	16.5.4 Running the Unit Tests
	16.5.4.1 File System Driver Test
	16.5.4.2 Storage Device Block Driver Read/Write Tests
	16.5.4.3 Storage Device Block Driver API Tests
	16.5.4.4 Storage Device Block Driver Performance Tests
	16.5.4.5 Partition Driver Test

	16.5.5 System Testing

	16.6 Secure Digital Card Driver API Reference

	Chapter 17 Serial Driver
	17.1 Serial Driver Summary
	Table 17-1. Serial Driver Summary

	17.2 Supported Functionality
	17.3 Hardware Operation
	17.3.1 Conflicts with Other Peripherals and Catalog Items
	17.3.1.1 Conflicts with SoC Peripherals
	17.3.1.2 Conflicts with Board Peripherals

	17.4 Software Operation
	17.4.1 Registry Settings
	17.4.1.1 i.MX28 Registry Settings

	17.4.2 Power Management

	17.5 Unit Test
	17.5.1 Unit Test Hardware
	17.5.2 Unit Test Software
	Table 17-2. Software Requirements

	17.5.3 Building the Unit Tests
	17.5.4 Running the Unit Tests
	Table 17-3. Serial Port Driver Test Cases

	17.6 Serial Driver API Reference
	17.6.1 Serial PDD Functions
	Table 17-4. Serial PDD Functions

	17.6.2 Serial Driver Structures
	17.6.2.1 UART_INFO
	17.6.2.2 SER_INFO

	Chapter 18 Switch Driver
	18.1 Switch Driver Summary
	Table 18-1. Switch Driver Summary

	18.2 Supported Functionality
	18.3 Hardware Operation
	18.3.1 Conflicts with Other SoC Peripherals
	18.3.2 Conflicts with i.MX28 EVK Peripherals

	18.4 Software Operation
	18.4.1 Switch Driver Registry Settings

	18.5 Unit Test
	18.5.1 Unit Test Hardware
	18.5.2 Unit Test Software
	18.5.3 Basic Feature Unit Test
	18.5.4 Advanced Feature Unit Test
	18.5.4.1 Port Enable/Disable
	18.5.4.2 Verifying the VLAN Domain
	Figure 18-1. Verify VLAN Domain

	18.5.4.3 Default Broadcast Resolution
	18.5.4.4 Default multicast resolution
	Figure 18-2. Multicast Resolution

	18.5.4.5 Defining the port in Blocking State and Enable or Disable Learning
	Figure 18-3. Input Blocking and Learning

	18.5.4.6 Bridge Management Port Configuration
	18.5.4.7 Port Mirroring Configuration
	Figure 18-4. Mirror Configuration

	18.5.4.8 Port Mirroring Egress Port Definitions
	18.5.4.9 Port mirroring ingress port definitions
	18.5.4.10 Ingress Source MAC Address For Mirroring
	18.5.4.11 Ingress Destination MAC Address for Mirroring
	18.5.4.12 Egress source MAC address for mirroring
	18.5.4.13 Egress destination MAC address for mirroring
	18.5.4.14 Count Value for Mirroring
	18.5.4.15 Port snooping (8 Entries)
	Figure 18-5. Port Snooping

	18.5.4.16 IP snooping (8 Entries)
	Figure 18-6. IP Snooping

	18.5.4.17 VLAN Priority Resolution Map (P0-P2)
	18.5.4.18 IPV4 and IPV6 Priority Resolution Table
	18.5.4.19 Priority Resolution Configuration (P0-P2)
	18.5.4.20 VLAN Domain Resolution Entry (32 Entries)

	18.6 Switch API Reference
	18.7 Appendix
	18.7.1 SwitchSetting Usage

	Chapter 19 Touch Panel Driver
	19.1 Touch Panel Driver Summary
	Table 19-1. Touch Panel Driver Summary

	19.2 Supported Functionality
	19.3 Hardware Operations
	19.4 .Software Operations
	19.4.1 Touch Driver Registry Settings

	19.5 Unit Tests
	19.5.1 Unit Test Hardware
	Table 19-2. Hardware Requirements

	19.5.2 Unit Test Software
	Table 19-3. Software Requirements

	19.5.3 Running the Touch Panel Tests

	19.6 Touch Panel API Reference

	Chapter 20 Universal Serial Bus (USB) On The Go (OTG) Driver
	20.1 USB OTG Driver Summary
	20.1.1 OTG Peripheral Driver Summary
	Table 20-1. OTG Peripheral Driver Summary

	20.1.2 OTG Host Driver Summary
	Table 20-2. OTG Host Driver Summary

	20.1.3 OTG (Pin-Detection) Driver Summary
	Table 20-3. OTG Driver Summary

	20.2 USB Host1 Driver Summary
	Table 20-4. Host1 Host Driver Summary

	20.3 Supported Functionality
	20.4 Hardware Operation
	20.4.1 Conflicts with Other Peripherals and Catalog Items
	20.4.1.1 Conflicts with SoC Peripherals
	20.4.1.2 Conflicts with Board Peripherals

	20.5 Software Operation
	20.5.1 USB Host Controller Driver
	Figure 20-1. Windows USB Driver Architecture
	20.5.1.1 User Interface
	20.5.1.2 Memory Configuration
	20.5.1.3 Configured Power
	20.5.1.4 Registry Settings
	20.5.1.4.1 OTG Registry Settings
	20.5.1.4.2 HSH1 Registry Settings
	Table 20-5. HSH1 Registry Default Values

	20.5.1.5 PHY level USB Test
	20.5.1.6 Unit Test
	20.5.1.6.1 USB Host Controller Driver Test
	20.5.1.6.2 Building the Test Image
	20.5.1.6.3 Abstract
	Figure 20-2. Test Setup

	20.5.1.6.4 Unit Test Hardware
	20.5.1.6.5 Unit Test Software
	20.5.1.6.6 Running the Test
	20.5.1.6.7 Test Cases
	Table 20-6. USB Host Controller Driver Test Cases

	20.5.1.7 Platform-Specific API
	20.5.1.7.1 BSPUsbhCheckConfigPower
	20.5.1.7.2 BSPUsbSetWakeUp
	20.5.1.7.3 BSPUsbCheckWakeUp
	20.5.1.7.4 SetPHYPowerMgmt

	20.5.2 USB Peripheral Driver
	20.5.2.1 User Interface
	20.5.2.2 Client Driver Configuration
	20.5.2.3 Registry Settings
	20.5.2.4 PHY Test Mode
	20.5.2.5 Unit Test
	20.5.2.5.1 Unit Test Hardware
	Table 20-7. Hardware Requirements

	20.5.2.5.2 Unit Test Software
	Table 20-8. Software Requirements

	20.5.2.5.3 Running the USB Function Controller Driver Tests
	Table 20-9. USB Function Controller Driver Tests

	20.5.2.6 Platform-Specific API
	20.5.2.6.1 InitializeMux
	20.5.2.6.2 HardwarePullupDP

	20.5.3 USB OTG Driver (Pin-Detection Driver)
	20.5.3.1 User Interface
	20.5.3.2 OTG Driver Configuration
	20.5.3.3 Registry Settings
	20.5.3.4 Unit Test
	20.5.3.4.1 Unit Test Hardware
	Table 20-10. Hardware Requirements

	20.5.3.4.2 Running the OTG Test
	Table 20-11. OTG Tests

	20.5.3.5 Platform-Specific API

	20.5.4 USB OTG Catalog Settings
	20.5.5 USB OTG Registry Settings
	20.5.5.1 Registry Structure
	20.5.5.2 Registry Key Settings
	20.5.5.2.1 OTG Driver Settings
	Table 20-12. USB OTG Transceiver Registry Settings

	20.5.5.2.2 Peripheral Driver Settings
	Table 20-13. USB OTG Client Registry Settings

	20.5.5.2.3 Host Driver Settings
	Table 20-14. OTG Host Default Values

	20.5.6 Power Management
	20.5.6.1 Power Down Procedure
	20.5.6.1.1 Set PHY to Low Power Mode
	20.5.6.1.2 Close USB Controller Clock

	20.5.6.2 Power Up Procedure
	20.5.6.2.1 Open USB Controller Clock
	20.5.6.2.2 Put PHY Out of Low Power Mode

	20.5.6.3 Processing Methodology
	20.5.6.3.1 Host Driver Methodology
	20.5.6.3.2 Peripheral Driver Methodology
	20.5.6.3.3 OTG Driver Methodology

	20.5.6.4 USB Wakeup

	20.5.7 Peripheral Class Drivers
	20.5.7.1 Mass Storage Function
	Table 20-15. Mass Storage Function

	20.5.7.2 Serial Function
	Table 20-16. Serial Function

	20.5.7.3 RNDIS Function
	Table 20-17. RNDIS Function

	20.5.7.4 PHDC Function
	Table 20-18. PHDC Function

	20.5.7.5 CDC Function
	Table 20-19. CDC Function

	20.5.8 Host Class Drivers
	Table 20-20. Class Drivers
	20.5.8.1 HID Mouse
	Table 20-21. HID Mouse Class Driver

	20.5.8.2 HID Keyboard
	Table 20-22. HID Keyboard Driver for Removal
	Table 20-23. ID Keyboard Driver for Inclusion

	20.6 Known Issues
	20.7 Basic Elements for Driver Development
	20.7.1 BSP Environment Variables
	Table 20-24. System Environment Variables Summary

	20.7.2 Dependencies of Drivers
	Table 20-25. USB Driver

	20.8 USB Application Tools
	20.8.1 Application for USB Peripheral Class Driver Switch
	20.8.2 Application for Multispec PHDC Demo
	20.8.3 Application for CDC Demo
	Figure 20-3. Found New Hardware Window
	Figure 20-4. Search and Installation Option Window
	Figure 20-5. Virtual COM Port Device Entries
	Figure 20-6. Hyper Terminal Application
	Figure 20-7. Connection Name
	Figure 20-8. COM Port Selection
	Figure 20-9. COM Port Properties
	Figure 20-10. HyperTerminal Configuration
	Figure 20-11. Duplicate Values

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

