
Real–Time Embedded Linux Study on ARM CortexA8

The latest versions of the Linux kernel enhanced with a RealTime patch show fast
response times with latencies below 58μsec, a response some 40times better on
system events than a standard preemptive Linux kernel. RealTime Linux is
suitable for many applications including, communication stacks, IPPBXs, and
industrial automation.
The Linux kernel is designed to deliver first class performance for
personal computers and servers. However, over the last few years,
another market where the Linux kernel has shown its potential is in
RealTime Embedded systems.

The key characteristic of a RealTime Operating System is
determinism, something that implies quick and bounded response to
certain events, and accurate scheduling of periodic tasks. The
standard Linux kernel lacks a framework that demonstrates the
RealTime performance required by hard realtime applications.

The Linux community has shown solid interest in addressing the
lack of RealTime properties in the Linux kernel, and has developed
a number of enhancements making the response time for events in
the Linux kernel suitable for RealTime applications. RealTime
Linux improvements are distributed from kernel.org, the Linux
source code repository.

In benchmarking the Linux kernel, we collected latency data from a
Freescale MX515 development board. The MX515 uses a Cortex
A8 processor from ARM running at 800MHz. The version of the
Linux kernel in our tests was 2.6.31.12, modified with a RealTime
patch. We ported the RealTime patch to work on CortexA8 and
also made a number of changes to support the MX515 architecture.
In order to examine and compare the response times for events, we
used two different kernel configurations; one with the RealTime
features enabled and one with a standard Linux preemption. We
generated a set of hardware timing events and captured the
latencies from the RealTime applications running in the user space.

The results:

The results from our tests are very encouraging, with the RealTime
kernel performing latencies up to 58μsec maximum, whereas the
standard preemptive Linux configuration brings about 2465μsec

worstcase response latency; 40times worse than the latency
measured in the RealTime kernel.

The graph below shows latencies (on a logarithmic scale) for a Real
Time Linux versus a preemptive one. In the RealTime system it is
clear, that the event response latencies are quite consistently within
the region of 12 to 60 µsec.

Copyright (c) Hedera Innovations Ltd, March 2011

The testbench:

Our testbench for measuring latencies used a periodic interrupt
timer (from the MX515 configured as freerunning timer). The
interrupt latency was measured from the point in time when an
interrupt happened to the time when a realtime task was scheduled
to run.

The tests were run for a day on a fullyloaded system collecting
millions of samples. In order to load the system the “Stress” utility
program was used. The Stress utility takes a number of parameters
and loads the CPU, Input/Output, and the virtual memory.

What does the Linux RealTime patch do?

The RealTime patch converts the Linux kernel into a fully pre
emptive OS in the following manner:

o Implements POSIX high resolution timers.
o Reimplementation of locking primitives in the kernel.
o Implements priority inheritance for spinlocks and semaphores.
o Converts interrupt handlers into preemptible kernel threads.
o Converts the old Linux timer API for high resolution kernel

timers support.

Design your RealTime application using POSIX API:

Developing applications with RealTime Linux may include the
following steps:
Partition your system into two different domains; RealTime and non
RealTime. Work out the time constraints of those domains and
calculate the MIPS required. Allow 30% spare processing room, and
adjust the CPU clocks. Develop your Linux device drivers efficiently
using rtmutexes and the Linux kernel preemptible infrastructure.
Measure driver's performance. Design and develop your RealTime
domain applications using POSIX RealTime scheduling policies in
user space. Follow up with your nonrealtime applications. Finally
profile, and benchmark your system.

Conclusions:

The RealTime Linux kernel has become mature and robust over the
last few years. It has been extensively tested on X86 architectures
and is a strong fit to a range of applications where fast and
deterministic response is required. RealTime Linux is gradually
getting into other architectures such as ARM, and PPC. Porting the
RealTime patch to work on the MX515 with CortexA8, and
developing a testbench with tools and utilities was quite a valuable
exercise for us. Our findings show that Linux kernel behaviour
changes dramatically when the RealTime patch is enabled in Linux,
with interrupt response time reduced down to a few microseconds
from 2.5 milliseconds. The Linux high resolution timers also allow
scheduling RealTime tasks in the user space quite accurately. The
use of the standard POSIX APIs to develop applications in user
space accelerates development time and enables portability.
Multiple – core ARM architectures, such as CortexA9, may bring
even better performance as RealTime Linux supports multiple
cores, leading to the ability to group RealTime applications to run
on CPUA, and non RealTime on CPUB, thus increasing both
responsiveness and throughput.
Consultancy services:

Hedera Innovations provides you with OpenSource software
development and hardware design services over a wide range of
application spaces. Our specialist services allow you to differentiate,
increase functionality and reduce cost in your project with cutting
edge OpenSource software components plus a custom embedded
system design service.

Hedera Innovations Ltd
23 Cambridge Science Park
Cambridge
CB4 0EY, UK
Tel.: +44 (0) 1223 437142
Fax: +44 (0) 1223 437143
Email: info@hederainnovations.com
Web: www.hederainnovations.com

Copyright (c) Hedera Innovations Ltd, March 2011

