
1 Introduction
This section presents general information about the i.MX
6Dual/Quad Video Processing Unit (VPU).

1.1 Overview
The i.MX 6Dual/Quad Video Processing Unit (VPU) is a high
performance multi-standard video decoder and encoder engine
that performs multiple standard decoding and encoding
operations. The VPU codec is fully compliant with H.264 BP/
MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC,
Divx(Xvid), MPEG-1/2, VP8, AVS and MJPEG decoding and
H.264, MPEG-4, H.263 and MJPG encoding. The VPU
supports up to full HD 1920x1080 60i or 30p decoding and
1920x1088 encoding. It can encode or decode multiple video
clips with multiple standards simultaneously. A block diagram
of the i.MX 6Dual/Quad VPU is shown in figure below.

The VPU connects with the system through the 32-bit
AMBA3 APB bus for system control and the 64-bit AMBA3
AXI for data throughput. The VPU also takes advantage of on-
chip memories to achieve high performance.

Most video hardware blocks in the VPU are optimally
designed for shared usage between different video standards,
which provides ultra low power and low gate count with

Freescale Semiconductor Document Number:
i.mx_6dual_quad_vpu_application_programming_int

erface_linux_reference_manual
Application Rev. X, 05/2012

i.MX 6Dual/6Quad VPU Application
Programming Interface Linux
Reference Manual

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

1.1 Overview..1

1.2 Main Features...2

1.3 Programmability...4

2 Host Interface..5

2.1 Host Interface Overview................................5

2.2 API-Based VPU Control................................7

3 i.MX 6Dual/Quad VPU Driver API
Reference...7

3.1 API Features...7

3.2 Type Definitions..8

3.3 API Definitions..41

4 VPU Control...67

4.1 VPU Initialization..67

4.2 Encoder Control...70

4.3 Decoder Control...74

4.4 Example Applications..................................82

powerful performance. As shown in figure below, the VPU has a 16-bit DSP core, the BIT processor, which controls the
internal video codec operations.

For simple and efficient control of the VPU by the host processor, the VPU provides a set of registers called the host
interface registers. Most commands and responses between the host processor and the VPU are transmitted through the host
interface registers. Stream data and some output picture data are directly accessed by the host processor and the VPU. For a
more comprehensive way of controlling the VPU, a set of API functions are provided that includes all of the required
operations from the host processor side.

Figure 1. i.MX 6Dual/Quad VPU Block Diagram

1.2 Main Features
The VPU is fully compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC, Divx (Xvid) and
MPEG-1/2, VP8, AVS and MJPEG. Image sizes up to ull HD 1920x1080 60i or 30p decoding and 1920x1088 encoding. The
VPU supports various error resilience tools and also supports multiple decoding and full duplex multi-party-call
simultaneously. The VPU provides programmability, flexibility and ease of upgrade in decoding and encoding or host
interface because all of the controls in the decoding and encoding process and host interface are implemented as firmware in
the programmable BIT processor.

The detailed features of the VPU are as follows:

• Encoding
• H.264

Introduction

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

2 Freescale Semiconductor, Inc.

• 1/4-pel accuracy motion estimation with programmable search range up to [+/-128, +/-64]
• Search range is reconfigurable by SW
• 16x16, 16x8, 8x16 and 8x8 block sizes
• Configurable block sizes
• Only one reference frame for motion estimation
• Intra-prediction
• Luma I4x4 Mode : 9 modes
• Luma I16x16 Mode : 3 modes (Vertical, Horizon, DC)
• Chroma Mode : 3 modes (Vertical, Horizon, DC)
• Minimum encoding image size is 96 pixels in horizontal and 16 pixels in vertical
• The encoder supports the following error resilience tools: video packet (fixed number of bits, and fixed

number of macroblocks), CIR (Cyclic Intra Refresh), and multi-slice structure.
• The encoder rate control is configurable for low-delay and long-delay, and configurable from macroblock-

level rate control to frame-level rate control.
• MPEG-4

• AC/DC prediction
• 1/2-pel accuracy motion estimation with search range up to [+/-128, +/-64]
• Search range is reconfigurable by SW

• H.263
• H.263 Baseline profile + Annex J, K (RS=0 and ASO=0), and T

• 48x32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)
• Decoding

• H.264
• Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP
• CABAC/CAVLC
• Supports MVC Stereo High profile
• Variable block size-16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4
• Error detection, concealment and error resilience tools

• VC1
• All VC-1 profile features-SMPTE Proposed SMPTE Standard for Television: VC-1 Compressed Video

Bitstream format and Decoding Process
• Simple/Main/Advanced Profile

• MPEG-4
• Simple/Advanced Simple profile except GMC
• H.263 Baseline profile + Annex I, J, K (except RS/ASO), and T
• Divx version 3.x to 6.x
• Xvid

• MPEG-2
• Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile
• I,P and B frame
• Field coded picture (interlaced) and fame coded picture

• AVS
• Supports Jizhun profile level 6.2 (exclude 422 case)

• RV 8/9/10
• Fully compatible with RV-8/9/10 except re-sampling feature
• Minimum decoding size is 32x32 pixels

• VP8
• Fully compatible with VP8 decoder specification
• Supporting both simple and normal in-loop deblocking

• 64x64 pixel minimum decoding size
• JPEG tools

• MJPEG Baseline Process Encoder and Decoder
• Baseline ISO/IEC 10918-1 JPEG compliance
• Support 1 or 3 color components
• 3 component in a scan (interleaved only)

Introduction

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 3

• 8 bit samples for each component
• Support 4:2:0, 4:2:2, 2:2:4, 4:4:4 and 4:0:0 color format (max. six 8x8 blocks in one MCU)
• Minimum encoding size is 16x16 pixels.

• Value added features
• De-ringing
• Pre/Post rotator/mirror
• Built-in de-blocking filter for MPEG-2/MPEG-4 and Divx

• Programmability
• 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware
• General purpose registers and interrupt for communication to and from a host processor

• Optimal external memory accesses
• Configurable frame buffer formats (linear or tiled) for longer burst-length
• 2D cache for motion estimation and compensation to reduce external memory accesses
• Secondary AXI port for on-chip memory to enhance performance

• Performance
• All video decoder standards up to 1920x1088 @ 30 fps at 266 MHz
• H264 encoder standards up to 1920x1088 @ 30 fps at 266 MHz, MPEG4 encoder up to 720p@30fps at 266MHz
• MJPG decoder on 4:4:4 supports 120M pixel per second @ 266MHz
• MJPG encoder on 4:4:4 supports 160M pixel per second @ 266MHz

• Interrupt
• Interrupt from and to external host processor or interrupt controller

1.3 Programmability
The VPU has an internal DSP called the BIT processor which controls the internal hardware blocks for video decoder
operations. The operation of the BIT processor is determined by the dedicated microcode called the BIT firmware. The VPU
has a complete set of BIT firmware codes as well as a complete set of VPU control functions, called the VPU API. Therefore,
application developers do not need to manage codec-specific issues on host processor.

1.3.1 Frame-Based Processing
The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level independency of VPU
operations to the host processor. While frame operations are running, there is no need for communication between the host
processor and the VPU. Therefore, the VPU does not burden the host processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is ready for the next
picture processing operation or until it receives an interrupt from VPU informing the host processor of completion of the
picture processing.

1.3.2 Program Memory Management
The VPU has its own program memory to load BIT firmware for supporting application-specific operations. In order to use
this internal memory efficiently, the BIT firmware has a dynamic re-loading scheme, which enables the VPU to have a small
amount of program memory.

For example, if a MPEG-2 decoder operation is running on the VPU, then the VPU program memory is filled by the
MPEG-2 decoder firmware in the VPU. If a H.264 decoder operation is newly issued, then the BIT processor automatically
loads the H.264 decoder firmware from the SDRAM to program memory.

Introduction

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

4 Freescale Semiconductor, Inc.

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is approximately 30
times per second in a single instance decoder case. Since the amount of BIT firmware for one decoder standard is smaller
than 16 Kytes, this is not a large burden for the VPU operations in performance and memory bandwidth.

1.3.3 Multi-Instances
The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In order to support this
multi-instance operation, the BIT processor uses an internal context parameter set for each decoder instance. When creating a
new instance and starting a picture processing operation, a set of context parameters is created and updated automatically
within the VPU. This internal context management scheme allows different decoder tasks running on the host processor to
control VPU operations independently with their own instance numbers.

When creating a new instance, an application task receives a new handle specifying an instance if a new handle is available
on the VPU. All the subsequent operations for the given application task are handled separately by the VPU using this task-
specific handle. When writing a VPU driver, this handle can be regard as a device-ID or a port-ID of the VPU for each task.
Since the VPU can only perform one picture processing task at a time, the application task should check if the VPU is ready
before starting a new picture operation. An application can easily terminate a single task on the VPU by calling a function for
closing a certain instance.

2 Host Interface
This section presents a general description of the host interfaces provided for a host processor to control the i.MX 6Dual/
Quad VPU.

2.1 Host Interface Overview
This section presents an overview of the host interfaces.

2.1.1 Communication Models
The VPU requires a dedicated path for exchanging data and/or messages between the host processor and the VPU. The VPU
uses shared memory for exchanging data between the host processor and the VPU. This shared memory is accessible through
the ABMA host bus. Bitstream data and frame data are exchanged using this shared memory space.

Independent of data exchange path, a dedicated path for messages between the host processor and the VPU is provided using
a set of VPU registers called the host interface registers. All commands and responses between the host processor and the
VPU are exchanged through these registers as shown in figure below.

Host Interface

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 5

Figure 2. Data and Message Exchange Between Host and VPU

All of the bitstream and picture data is accessed directly by the host processor and the VPU. The related information about
the data transfer as well as command and responses is exchanged through the host interface. The host interface of the VPU
uses a set of registers accessible from the host processor. Some of these host registers are used for exchanging actual
command and responses and other registers are used to give information about the internal status of VPU to host processor.
Firmware running on the BIT processor is well-optimized for a given set of commands and responses.

2.1.2 Data Handling
All of the pixel data or stream data transactions are performed by the host processor or the VPU through the shared memory
space in the SDRAM. In order to assure safe transactions between the host processor and the VPU, all the required
information is stored in the host interface registers. Generally, these transactions are one-directional transactions-the host or
VPU writes the data and the other reads the data on a single data buffer. Therefore, transactions are easily and safely
controlled using a pair of read and write pointers.

As well as the common data buffers in shared memory, the BIT processor requires a certain amount of memory for
processing, called the working buffer. The working buffer can only be accessed by the VPU. In addition, the frame buffers
used in picture decoding are managed by the VPU exclusively, which ensures safe decoding in the VPU.

For proper streaming, the available free space in the decoder stream buffer can be accessed using the buffer read pointer,
write pointer and buffer size. A set of APIs is provided for this purpose that can be called by the application at anytime.

2.1.3 Host Interface Registers
A set of commands is provided for controlling codec operations on a frame-by-frame basis as well as the corresponding
responses. The host interface registers can be partitioned into three categories as follows:

• BIT processor control registers-Update or show BIT processor status to the host processors. Most of these registers are
used for initializing the BIT processor during boot-up.

Host Interface

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

6 Freescale Semiconductor, Inc.

• BIT processor global registers-Store all the global variables which are reserved even while an active instance is
changed. All the buffer addresses and some global options are safely stored in these registers.

• BIT processor command I/O registers-Overwritten or updated whenever a new command is transmitted from the host
processor. All the commands with input arguments and all the corresponding responses with return values are handled
using these registers.

In addition, command I/O registers are used in a pre-defined way for each command to control the VPU.

2.2 API-Based VPU Control
Host applications generally control the VPU through a set of pre-defined APIs by sending a command and corresponding
arguments to the VPU. After receiving an interrupt from the VPU, signalling the completion of the requested operation, the
host application acquires the results as shown in figure below.

Each API definition includes the requested command as well as the input and output data structure. The given command from
the API function is always written on a dedicated I/O register, but the input and output data structure is transmitted through a
set of command I/O registers that contain the input arguments and output results. Therefore, application developers do not
need to know the details of the host register definitions and usage.

Figure 3. Software Control Model of VPU from Host Application

3 i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 7

3.1 API Features
A set of API functions is provided to efficiently control the VPU. The VPU API covers all functions of the i.MX 6Dual/Quad
VPU. This API-based approach speeds up the development process of application software. Important features of the API for
the i.MX 6Dual/Quad VPU are summarized in the following sections.

3.1.1 Simple Software Control
The i.MX 6Dual/Quad VPU API provides a simple way to control the i.MX 6Dual/Quad VPU and avoid errors in application
software. The host application does not need to know the details of the i.MX 6Dual/Quad VPU internal operations. For
example, in order to initialize the VPU, an application simply calls an API for initialization, vpu_Init(), and no additional
information is required for calling this API. The vpu_Init() API performs all the required steps for initializing the i.MX
6Dual/Quad VPU. When issuing a picture decoder operation, the application simply changes some variables included in the
well-defined input data structure.

3.1.2 Handling Multi-Instances
The i.MX 6Dual/Quad VPU supports multiple instances for decoding and encoding at the same time, which can be used in
multiple decoding and encoding and multi-party call applications. To support multi-instance operations, the i.MX 6Dual/
Quad VPU API provides a full set of functions for handling the instances with ease. When opening a new instance, an
application receives a handle specifying the new instance, if a new handle is available at that time. The operations for a given
instance are separately controlled using the corresponding handle. An application can easily terminate a single task on the
VPU by calling a function for closing a certain instance.

3.1.3 Frame-Based Codec Processing
The i.MX 6Dual/Quad VPU completes decoding and encoding operation on a frame-by-frame basis, which enables low level
independency of VPU operations on the host processor. While frame processing operation are running, there is no need for
communication between the host processor and the VPU. Therefore, the VPU does not burden the host processor during
decoding and encoding operations.

3.2 Type Definitions
This section describes the types and structures used in the VPU API.

3.2.1 Type Definitions (common data types)
This section describes the common data types used in the VPU API functions.

3.2.1.1 Uint8

typedef unsigned char Uint8;

Description

8-bit unsigned integer type used for declaring pixel data

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

8 Freescale Semiconductor, Inc.

3.2.1.2 Uint16

typedef unsigned short Uint16;

Description

16-bit unsigned integer type

3.2.1.3 Uint32

typedef unsigned int Uint32;

Description

32-bit unsigned integer type used for declaring unsigned variables with wide ranges such as the size of a buffer

3.2.1.4 PhysicalAddress

typedef Uint32 PhysicalAddress;

Description

Represents physical addresses that are recognizable by the VPU. In general, the VPU hardware does not know about the
virtual address space that is set and handled by the host processor. The virtual addresses are translated into physical addresses
by the Memory Management Unit (MMU). Data buffer addresses, such as input bitstream buffer or frame buffer, are given to
VPU as an address in the physical address space.

3.2.1.5 CodStd

typedef enum {

 STD_MPEG4 = 0,

 STD_H263 = 1,

 STD_AVC = 2,

 STD_VC1 = 3,

 STD_MPEG2 = 4,

 STD_DIV3 = 5,

 STD_RV = 6,

 STD_MJPG = 7,
 STD_AVS = 8,

 STD_VP8 = 9,

} CodStd;

Description

Enumeration for declaring code standard type variables. The following video standards are supported by the VPU:

• MPEG4 SP/ASP
• H.263 Profile 3
• AVC (H.264) BP/MP/HP
• VC-1 SP/MP/AP

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 9

• MPEG-2, MPEG-1
• Divx3
• RealVideo 8/9/10
• AVS
• On2 VP8

NOTE
The MPEG-1 decoder operation is handled as a special case of the MPEG-2 decoder. The
RealVideo 8/9/10 decoder is only available for licensed customers.

3.2.1.6 RetCode

typedef enum {

 RETCODE_SUCCESS = 0,

 RETCODE_FAILURE = -1,

 RETCODE_INVALID_HANDLE = -2,

 RETCODE_INVALID_PARAM = -3,

 RETCODE_INVALID_COMMAND = -4,

 RETCODE_ROTATOR_OUTPUT_NOT_SET = -5,

 RETCODE_ROTATOR_STRIDE_NOT_SET = -11,

 RETCODE_FRAME_NOT_COMPLETE = -6,

 RETCODE_INVALID_FRAME_BUFFER = -7,

 RETCODE_INSUFFICIENT_FRAME_BUFFERS = -8,

 RETCODE_INVALID_STRIDE = -9,

 RETCODE_WRONG_CALL_SEQUENCE = -10,

 RETCODE_CALLED_BEFORE = -12,

 RETCODE_NOT_INITIALIZED = -13,

 RETCODE_DEBLOCKING_OUTPUT_NOT_SET = -14,

 RETCODE_NOT_SUPPORTED = -15,

 RETCODE_REPORT_BUF_NOT_SET = -16,
 RETCODE_FAILURE_TIMEOUT = -17,

 RETCODE_MEMORY_ACCESS_VIOLATION = -18

} RetCode;

Description

Enumeration for declaring the return codes from API function calls. The meaning of each return code is the same for all API
functions, but the reason of non-successful return might be different. Details of the reasons for the return code are described
in API Definitions. Table 1 shows the basic meaning of each return code.

Table 1. Return Codes

Code Description

RETCODE_SUCCESS Operation successful

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

10 Freescale Semiconductor, Inc.

Table 1. Return Codes (continued)

Code Description

RETCODE_FAILURE Operation not successfully; this value is returned when an un-
recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE Given handle for current API function call is invalid, for example, not
initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM Given argument parameters (for example, input data structure) is invalid
(not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND Given command is invalid, for example, undefined or not allowed in the
given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET Rotator stride is not provided even though rotation is enabled

RETCODE_FRAME_NOT_COMPLETE Frame decoding operation is not completed, so the given API function
call is not allowed

RETCODE_INVALID_FRAME_BUFFER Certain frame buffer pointers are invalid (not initialized yet or not valid)

RETCODE_INSUFFICIENT_FRAME_BUFFERS Given numbers of frame buffers are not enough for the operations of the
given handle. This return code is only received when calling the
DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE Given stride is invalid (for example, 0, not a multiple of 8 or smaller than
the picture size). This return code is only allowed in API functions which
set stride

RETCODE_WRONG_CALL_SEQUENCE Current API function call is invalid considering the allowed sequences
between API functions (for example, missing one crucial function call
before this function call)

RETCODE_CALLED_BEFORE Multiple calls of current API function for a given instance are invalid

RETCODE_NOT_INITIALIZED VPU is not initialized yet. Before calling any API functions, the
initialization API function, vpu_Init(), should be called

RETCODE_DEBLOCKING_OUTPUT_NOT_SET Not used in the i.MX 6Dual/Quad

RETCODE_NOT_SUPPORTED One feature is not supported

RETCODE_REPORT_BUF_NOT_SET Data report buffer address is not set with a valid value if report of MB,
MV, frame status, slice information or user data is enabled

RETCODE_FAILURE_TIMEOUT The hardware may be busy with other operation and unavailable for
current API calling or something is wrong with VPU based. For detailed
meaning of this return value, please refer to each API description

RETCODE_MEMORY_ACCESS_VIOLATION Memory access violation error

3.2.1.7 CodecCommand

typedef enum {

 ENABLE_ROTATION,

 DISABLE_ROTATION,

 ENABLE_MIRRORING,

 DISABLE_MIRRORING,

 ENABLE_DERING,

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 11

 DISABLE_DERING,

 SET_MIRROR_DIRECTION,

 SET_ROTATION_ANGLE,

 SET_ROTATOR_OUTPUT,

 SET_ROTATOR_STRIDE,

 ENC_GET_SPS_RBSP,

 ENC_GET_PPS_RBSP,

 DEC_SET_SPS_RBSP,

 DEC_SET_PPS_RBSP,

 ENC_PUT_MP4_HEADER,

 ENC_PUT_AVC_HEADER,

 ENC_SET_SEARCHRAM_PARAM,

 ENC_GET_VOS_HEADER,

 ENC_GET_VO_HEADER,

 ENC_GET_VOL_HEADER,

 DEC_SET_DEBLOCK_OUTPUT,

 ENC_SET_INTRA_MB_REFRESH_NUMBER,

 ENC_ENABLE_HEC,

 ENC_DISABLE_HEC,

 ENC_SET_SLICE_INFO,

 ENC_SET_GOP_NUMBER,

 ENC_SET_INTRA_QP,

 ENC_SET_BITRATE,

 ENC_SET_FRAME_RATE,

 ENC_SET_REPORT_MBINFO,

 ENC_SET_REPORT_MVINFO,

 ENC_SET_REPORT_SLICEINFO,

 DEC_SET_REPORT_BUFSTAT,

 DEC_SET_REPORT_MBINFO,

 DEC_SET_REPORT_MVINFO,

 DEC_SET_REPORT_USERDATA,

 SET_DBK_OFFSET,
 SET_WRITE_MEM_PROTECT,

 ENC_SET_SUB_FRAME_SYNC,

 ENC_ENABLE_SUB_FRAME_SYNC,

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

12 Freescale Semiconductor, Inc.

 ENC_DISABLE_SUB_FRAME_SYNC,
} CodecCommand;

Description

Special enumeration type for configuration commands from the host processor to the VPU. Most of these commands are
called occasionally (not periodically) for changing the VPU operation configuration. Details of these commands are
presented in vpu_EncGiveCommand().

Following commands aren't used on i.MX 6Dual/Quad platform:

 SET_WRITE_MEM_PROTECT

 ENC_SET_SUB_FRAME_SYNC

 ENC_ENABLE_SUB_FRAME_SYNC

 ENC_DISABLE_SUB_FRAME_SYNC

3.2.1.8 GDI_TILED_MAP_TYPE

typedef enum {

 LINEAR_FRAME_MAP = 0,

 TILED_FRAME_MB_RASTER_MAP = 1,

 TILED_FIELD_MB_RASTER_MAP = 2,

 TILED_MAP_TYPE_MAX

} GDI_TILED_MAP_TYPE;

Description

Enumeration type for the GDI type

3.2.1.9 MirrorDirection

typedef enum {

 MIRDIR_NONE,

 MIRDIR_VER,

 MIRDIR_HOR,

 MIRDIR_HOR_VER

} MirrorDirection;

Description

Enumeration type for representing the mirroring direction

3.2.1.10 Mp4HeaderType

typedef enum {

 VOL_HEADER,

 VOS_HEADER,

 VIS_HEADER

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 13

} Mp4HeaderType;

Description

Special enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual object header and
video object layer header

3.2.1.11 AvcHeaderType

typedef enum {

 SPS_RBSP,

 PPS_RBS

} AvcHeaderType;

Description

Special enumeration type for AVC parameter sets such as sequence parameter set and picture parameter set

3.2.1.12 EncHandle

typedef EncInst * EncHandle;

Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can be referred to by
the corresponding handle. EncInst is a type managed internally by the API and the application does not need to use it.

3.2.1.13 DecHandle

typedef DecInst * DecHandle;

Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can be referred to by the
corresponding handle. DecInst is a type managed internally by API and the application does not need to use it.

3.2.2 Data and Structure Definitions
This section describes the data and structure definitions used in the VPU API functions.

3.2.2.1 FrameBuffer

typedef struct {
 Uint32 strideY;

 Uint32 strideC;
 int myIndex;

 PhysicalAddress bufY;

 PhysicalAddress bufCb;

 PhysicalAddress bufCr;

 PhysicalAddress bufMvCol;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

14 Freescale Semiconductor, Inc.

} FrameBuffer;

Description

Data structure for representing frame buffer pointers for each color component

strideY Y stride value of the given frame buffers.

strideC C stride value of the given frame buffers.

myIndex A frame buffer index to identify each frame buffer that will be processed by VPU. The index of each buffer should
be unique and less than 32.

bufCb Address for Cb component in the physical address space

bufCr Address for Cr component in the physical address space

bufMvCol Address for co-located motion vector buffers in the physical address space

The host application must allocate contiguous physical memory from the SDRAM space for the components using this data
structure. All four addresses must be 4-byte aligned. One pixel value of a component occupies one byte and the frame data is
in YCbCr 4:2:0 format for H.264, H.264 and MPEG-4 codecs. The sizes of the Cb and Cr buffers are 1/4 the size of the Y
buffer size for H.264, H.263 and MPEG-4 codecs. For MJPEG, the frame data format can be YCbCr 4:2:0, 4:2:2 horizontal,
4:2:2 vertical, 4:4:4 and 4:0:0 and the sizes of the Cb and Cr buffers vary. The co-located motion vector is only required for
B-frame decoding in MPEG-2, AVC MP/HP, MPEG-4 ASP, VC-1 MP/AP, RealVideo 8/9/10, and so on.

3.2.2.2 DecMaxFrmInfo

typedef struct {
 int maxMbX;

 int maxMbY;

 int maxMbNum;

} DecMaxFrmInfo;

Description

Data structure for representing maximum frame buffer info for decoder.

maxMbX Maximum supported macro blocks of horizontal direction.

maxMbY Maximum supported macro blocks of vertical direction.

maxMbNum Maximum supporte macro blocks of one picture.

This structure is provided to the host application to specify maximum framebuffer info. In normal case without resolution
change picture decoder support, maxMbX value is picture width/16, maxMbY is picture height/16, maxMbNum is width *
height / 256. But if user knows there is resolution change from smaller to bigger, user must give the info per user needs, and
allocate corresponding maximum frame buffer.

3.2.2.3 Rect

typedef struct {

 Uint32 left;

 Uint32 top;

 Uint32 right;

 Uint32 bottom;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 15

} Rect;

Description

Data structure for representing a rectangular window in a frame

left Horizontal pixel offset of top-left corner of rectangle from top-left corner of a frame

top Vertical pixel offset of top-left corner of rectangle from top-left corner of a frame

right Horizontal pixel offset of bottom-right corner of rectangle from, top-left corner of a frame

bottom Vertical pixel offset of bottom-right corner of rectangle from top-left corner of a frame

This structure is provided to the host application to specify a display window for the H.264 cropping option. Each value is
offset from the start point of a frame; therefore, all values are positive.

3.2.2.4 EncHeaderParam

typedef struct {

 PhysicalAddress buf;

 int size;

 int headerType;
 int userProfileLevelEnable;
 int userProfileLevelIndication;

} EncHeaderParam;

Description

Structure used for adding a header syntax layer to the encoded bit stream. The parameter headerType is the input parameter
to the VPU and the other two parameters are returned from the VPU after completing the requested operation. If the encoder
ringbuffer reset option is enabled, the parameters buf and size are also input parameters. In this case, the host application
must allocate the physical buffer to save the encoded header syntax to the VPU.

headerType Encode header code. In MPEG-4,

3'b000 - VOL header; 3'b001 - VOS header; 3'b010 - VO header

In H.264,

3'b000 - SPS rbsp; 3'b001 - PPS rbsp

In H.263, ENC_HEADER command is ignored.

userProfileLevelEnable It decides whether to set profile_and_level_indication in VOS header as MPEG-4 predefined values.
If UserProfileLevelEnable is 0, profile_and_level_indication is encoded with one of these values:

8'b0000 0001 : L1 <= 176x144@15Hz

8'b0000 0010 : L2 <= 352x288@15Hz

8'b0000 0011 : L3 <= 352x288@30Hz

8'b0000 0100 : L4a <=640x480@30Hz

8'b0000 0101 : L5 <=720x576@25Hz

8'b0000 0110 : L6 <= otherwise

If UserProfileLevelEnable is 1, a host can set user profile and level with UserProfileLevelIndication.

UserProfileLevelIndication User-defined profile and level value for profile_and_level_indication in VOS.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

16 Freescale Semiconductor, Inc.

3.2.2.5 EncParamSet

typedef struct {

 Uint8 *paraSet;
 Uint8 *pParaSet;

 int size;

} EncParamSet;

Description

Structure used when the host processor requires SPS or PPS data from an encoder instance. The resulting SPS or PPS data is
used in an application as a type of out-of-band information.

paraSet The address of the SPS or PPS data..

pParaSet The address of the MJPG encoder header data. It is only for MJPG.

size The size of the data.

3.2.2.6 EncMp4Param

typedef struct {

 int mp4_dataPartitionEnable;

 int mp4_reversibleVlcEnable;

 int mp4_intraDcVlcThr;

 int mp4_hecEnable;

 int mp4_verid;

} EncMp4Param;

Description

Data structure for configuring MPEG4-specific parameters in encoder applications

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_intraDcVlcThr Value of intra_dc_vlc_thr in MPEG-4 part 2 standard, valid range is 0-7

mp4_hecEnable 0 = disable, 1 = enable

mp4_verid Value of MPEG-4 part 2 standard version ID, version 1 and 2 are allowed

3.2.2.7 EncH263Param

typedef struct {
 int h263_annexIEnable;

 int h263_annexJEnable;

 int h263_annexKEnable;

 int h263_annexTEnable;

} EncH263Param;

Description

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 17

Data structure for configuring H.263-specific parameters in encoder applications

h263_annexIEnable 0 = disable, 1 = enable . Not use for i.MX 6Dual/Quad.

h263_annexJEnable 0 = disable, 1 = enable

h263_annexKEnable 0 = disable, 1 = enable

h263_annexTEnable 0 = disable, 1 = enable

3.2.2.8 EncAvcParam

typedef struct {

 int avc_constrainedIntraPredFlag;

 int avc_disableDeblk;

 int avc_deblkFilterOffsetAlpha;

 int avc_deblkFilterOffsetBeta;

 int avc_chromaQpOffset;

 int avc_audEnable;

 int avc_fmoEnable;

 int avc_fmoSliceNum;

 int avc_fmoType;

 int avc_fmoSliceSaveBufSize;
 int avc_frameCroppingFlag;

 int avc_frameCropLeft;

 int avc_frameCropRight;

 int avc_frameCropTop;

 int avc_frameCropBottom;

} EncAvcParam;

Description

Data structure for configuring AVC-specific parameters in encoder applications

avc_constrainedIntraPredFlag 0 = disable, 1 = enable

avc_disableDeblk 0 = enable, 1 = disable, 2 = disable deblocking filter at slice boundaries

avc_deblkFilterOffsetAlpha deblk_filter_offset_alpha (-6 to 6)

avc_deblkFilterOffsetBeta deblk_filter_offset_beta (-6 to 6)

avc_chromaQpOffset chroma_qp_offset (-12 to 12)

avc_audEnable 0 = disable, 1 = enable and the encoder generates AUD RBSP at the start of every picture

avc_fmoEnable Not used in the i.MX 6Dual/Quad since FMO encoding is not supported

avc_fmoSliceNum Not used in the i.MX 6Dual/Quad since FMO encoding is not supported

avc_fmoType Not used in the i.MX 6Dual/Quad since FMO encoding is not supported

avc_fmoSliceSaveBufSize Not used in the i.MX 6Dual/Quad since FMO encoding is not supported

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

18 Freescale Semiconductor, Inc.

avc_frameCroppingFlag 0 = disable, 1 = enable, If this is 1, the encoder will generate frame_cropping_flag syntax at the SPS
header.

avc_frameCropLeft The sample number of left cropping region in a line.

avc_frameCropRight The sample number of right cropping region in a line.

avc_frameCropTop The sample number of top cropping region in a picture column.

avc_frameCropBottom The sample number of bottom cropping region in a picture column.

3.2.2.9 EncMjpgParam

typedef struct {

 int mjpg_sourceFormat;

 int mjpg_restartInterval;

 int mjpg_thumbNailEnable;

 int mjpg_thumbNailWidth;

 int mjpg_thumbNailHeight;

 Uint8 * mjpg_hufTable;

 Unit8 * mjpg_qMatTable;
 Uint8 huffVal[4][162];

 Uint8 huffBits[4][256];

 Uint8 qMatTab[4][64];

 Uint8 cInfoTab[4][6];

} EncMjpgParam;

Description

Data structure for configuring MJPEG-specific parameters in encoder applications

mjpg_sourceFormat Chroma format. The format means chrominance size of source image and can be a value between 0 and
4: 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

mjpg_restartInterval Value for representing interval of restart marker in MB unit.

mjpg_thumbNailEnable 0 = disable, 1 = enable and the encoder enables thumbnail encoding

mjpg_thumbNailWidth Variable representing the width (in pixels) of the thumbnail to be encoded. This variable can have a
value between 0 and the source image width. This value must be larger than a specific value and must be a multiple of the
value shown in table below.

Table 2. mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

Format Value

4:2:0 16

4:2:2 16

2:2:4 8

4:4:4 8

4:0:0 8

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 19

mjpg_thumbNailHeight Variable representing the width (in pixels) of the thumbnail to be encoded. This variable can have a
value between 0 and the source image width. This value must be larger than a specific value and must be a multiple of the
value shown in table above.

mjpg_hufTable Variable representing a pointer to an address in the Huffman table. The Huffman table coefficients are saved
in pre-defined format as shown in table below.

Table 3. Huffman Table Format

Offset Address 0 1 2 3 Description

0x000 Y_DCBits[3] Y_DCBits[2] Y_DCBits[1] Y_DCBits[0] Luminance DC
BitLength… … … … …

0x00C Y_DCBits[15] Y_DCBits[14] Y_DCBits[13] Y_DCBits[12]

0x010 Y_DCValue[3] Y_DCValue[2] Y_DCValue[1] Y_DCValue[0] Luminance DC
HuffValue… … … … …

0x018 Y_DCValue[11] Y_DCValue[10] Y_DCValue[9] Y_DCValue[8]

0x01C 0 0 0 0

0x020 Y_ACBits[3] Y_ACBits[2] Y_ACBits[1] Y_ACBits[0] Luminance AC
BitLength… … … … …

0x02C Y_ACBits[15] Y_ACBits[14] Y_ACBits[13] Y_ACBits[12]

0x030 Y_ACValue[3] Y_ACValue[2] Y_ACValue[1] Y_ACValue[0] Luminance AC
HuffValue… … … … …

0x0D0 0 0 Y_ACValue[161] Y_ACValue[160]

0x0D4 0 0 0 0

0x0D8 C_DCBits[3] C_DCBits[2] C_DCBits[1] C_DCBits[0] Chrominance DC
BitLength… … … … …

0x0E4 C_DCBits[15] C_DCBits[14] C_DCBits[13] C_DCBits[12]

0x0E8 C_DCValue[3] C_DCValue[2] C_DCValue[1] C_DCValue[0] Chrominance DC
HuffValue… … … … …

0x0F0 C_DCValue[11] C_DCValue[10] C_DCValue[9] C_DCValue[8]

0x0F4 0 0 0 0

0x0F8 C_ACBits[3] C_ACBits[2] C_ACBits[1] C_ACBits[0] Chrominance AC
BitLength… … … … …

0x104 C_ACBits[15] C_ACBits[14] C_ACBits[13] C_ACBits[12]

0x108 C_ACValue[3] C_ACValue[2] C_ACValue[1] C_ACValue[0] Chrominance AC
HuffValue… … … … …

0x1A8 0 0 C_ACValue[161] C_ACValue[160]

mjpg_qMatTable Variable representing a pointer to an address in the Q-Matrix. The Q-Matrix coefficients are saved in pre-
defined formats shown in table below.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

20 Freescale Semiconductor, Inc.

Table 4. Q Matrix Format

Offset Address 0 1 2 3 Description

0x000 Y_QMat[3] Y_QMat[2] Y_QMat[1] Y_QMat[0] Luminance Q
Matrix… … … … …

0x03C Y_QMat[63] Y_QMat[62] Y_QMat[61] Y_QMat[60]

0x040 C_BQMat[3] C_BQMat[2] C_BQMat[1] C_BQMat[0] Chrominance Q
Matrix for Cb… … … … …

0x07C C_BQMat[63] C_BQMat[62] C_BQMat[61] C_BQMat[60]

0x080 C_RQMat[3] C_RQMat[2] C_RQMat[1] C_RQMat[0] Chrominance Q
Matrix for Cr… … … … …

0x0BC C_RQMat[63] C_RQMat[62] C_RQMat[61] C_RQMat[60]

3.2.2.10 EncSliceMode

typedef struct {

 int sliceMode;

 int sliceSizeMode;

 int sliceSize;

} EncSliceMode;

Description

Structure used for declaring encoder slice mode and its options. This structure value is ignored for a MJPEG encoder.

sliceMode 0 = One slice per picture, 1 = Multiple slices per picture. In normal MPEG-4 mode, the resync-marker and packet
header are inserted between slice boundaries. In short video header with Annex K = 0, the GOB header is inserted at every
GOB layer start. In short video header with Annex K = 1, multiple slices are generated. In AVC mode, multiple slice layer
RBSP is generated.

sliceSizeMode Size of a generated slice when sliceMode = 1, 0 means sliceSize is define by amount of bits, and 1 means
sliceSize is defined by MB(macro block) in a slice. This parameter is ignored when sliceMode = 0 or in short video header
mode with Annex K = 0.

sliceSize Size of a slice in bits or MB specified by sliceSizeMode. This parameter is ignored when sliceMode = 0 or in short
video header mode with Annex K = 0.

3.2.2.11 EncOpenParam

typedef struct {

 PhysicalAddress bitstreamBuffer;

 Uint32 bitstreamBufferSize;

 CodStd bitstreamFormat;

 int picWidth;

 int picHeight;

 Uint32 frameRateInfo;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 21

 int bitRate;
 int initialDelay;

 int vbvBufferSize;

 int gopSize;

 EncSliceMode slicemode;

 int intraRefresh;

 int sliceReport;

 int mbReport;

 int mbQpReport;

 int rcIntraQp;

 int chromaInterleave;

 int dynamicAllocEnable;

 int ringBufferEnable;

 union {

 EncMp4Param mp4Param;

 EncH263Param h263Param;

 EncAvcParam avcParam;

 EncMjpgParam mjpgParam;

 } EncStdParam;

 int userQpMin;

 int userQpMax;
 int userQpMinEnable;

 int userQpMaxEnable;

 int userGamma;

 int RcIntervalMode;

 int MbInterval;
 int avcIntra16x16OnlyModeEnable;
 int MESearchRange;

 int MEUseZeroPmv;

 int IntraCostWeight;

} EncOpenParam;

Description

Data structure for parameters when an encoder instance is opened

bitstreamBuffer Start address of bit stream buffer into which encoder places the bit streams. This address must be 4 byte-
aligned.

bitstreamBufferSize Size in bytes of a buffer pointed to by bitstreamBuffer. This value must be a multiple of 1024. The
maximum size is 16383x1024 bytes.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

22 Freescale Semiconductor, Inc.

bitstreamFormat Standard type of bitstream in encoder operation: STD_MPEG4, STD_H263, STD_AVC, STD_VP8,
STD_AVS or STD_MJPG

picWidth Width of a picture to be encoded in pixels

picHeight Height of a picture to be encoded in pixels

frameRateInfo The 16 least significant bits, [15:0], is a numerator and 16 most significant bits, [31:16], is a denominator for
calculating the frame rate. The numerator is clock ticks per second, and the denominator is clock ticks between frames minus
1. The frame rate can be defined by (numerator/(denominator + 1)), which equals (frameRateInfo & 0xffff) /((frameRateInfo
>> 16) + 1). For example, a frameRateInfo value of 30 represents 30 frames/sec, and the value 0x3e87530 represents 29.97
frames/sec.

bitRate Target bit rate in kbps. If 0, there is no rate control and pictures are encoded with a quantization parameter equal to
quantParam in EncParam.

initialDelay Time delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer from zero level. This value is
ignored if rate control is disabled. The value 0 means the encoder does not check for reference decoder buffer delay
constraints.

vbvBufferSize vbv_buffer_size in bits. This value is ignored if rate control is disabled or initialDelay is 0. The value 0 means
the encoder does not check for reference decoder buffer size constraints.

gopSize GOP size. 0 = only first picture is I, 1 = all I pictures, 2 = IPIP, 3 = IPPIPP, and so on. The maximum value is
32,767, but in practice, a smaller value should be chosen by the application for proper error concealment. This value is
ignored for STD_MJPG.

slicemode Parameter for slice mode

intraRefresh 0 = Intra MB refresh is not used. Otherwise = At least N MB's in every P-frame are encoded as intra MB's. This
value is ignored in for STD_MJPG.

sliceReport Not used in the i.MX 6Dual/Quad

mbReport Not used in the i.MX 6Dual/Quad

mbQpReport Not used in the i.MX 6Dual/Quad

rcIntraQp Quantization parameter for I frame. When this value is -1, the quantization parameter for I frames is automatically
determined by the VPU. In MPEG4/H.263 mode, the range is 1-31; in H.264 mode, the range is from 0-51. This is ignored
for STD_MJPG.

dynamicAllocEnable Not used in the i.MX 6Dual/Quad.

ringBufferEnable 0 = disable, 1 = enable This flag enables the streaming mode for the current encoder instance. Two
streaming modes, packet-based streaming with ring-buffer (buffer-reset mode) and frame-based streaming with line buffer
(buffer-flush mode), can be configured using this flag. When this field is set, packet-based streaming with ring-buffer is used.
When this field is not set, frame-based streaming with line-buffer is used.

mp4Param Parameters for MPEG-4 part 2 Visual

h263Param Parameters for ITU-T H.263

avcParam Parameters for AVC

mjpgParam Parameters for MJPEG

userQpMin Sets the Minimum quantized step parameter for encoding process. -1 = disables this setting and the VPU uses the
default minimum quantize step(Qp(H.264 12, MPEG-4/H.263 2). In MPEG-4/H.263 mode, the value of userQpMix shall be
in the range of 1 to 31 and less than userQpMax. In H.264 mode, the value of userQpMix shall be in the range of 0 to 51 and
less than userQpMax.

userQpMax Sets the maximum quantized step parameter for the encoding process. -1 = disables this setting and the VPU uses
the default maximum quantized step. In MPEG-4/H.263 mode, the value of userQpMax shall be in the range of 1 to 31. In H.
264 mode, the value of userQpMax shall be in the range of 0 to 51. userQpMin and userQpMax must be set simultaneously.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 23

userQpMinEnable userQpMinEable equal to 1 indicates that macroblock QP, generated in rate control, is cropped to be
bigger than or equal to userQpMin.

userQpMaxEnable userQpMaxEable equal to 1 indicates that macroblock QP, generated in rate control, is cropped to be
smaller than or equal to userQpMax.

userGamma Smoothing factor in the estimation. A value for gamma is factorx32768, where the value for factor must be
between 0 and 1. If the smoothing factor is close to 0, Qp changes slowly. If the smoothing factor is close to 1, Qp changes
quickly. The default Gamma value is 0.75x32768.

RcIntervalMode Encoder rate control mode setting. The host sets the bitrate control mode according to the required case. The
default value is 1. 0 = normal mode rate control 1 = FRAME_LEVEL rate control 2 = SLICE_LEVEL rate control 3 = USER
DEFINED MB LEVEL rate control

MbInterval User defined Mbyte interval value. The default value is 2 macroblock rows. For example, if the resolution is
720x470, then the two macroblock row is 2x(720/16) = 90. This value is used only when the RcIntervalMode is 3.

avcIntra16x16OnlyModeEnable Avc Intra 16x16 only mode. 0 = disable, 1 = enable

MESearchRange The search range mode for Motion Estimation.

0 : Horizontal(-128 ~ 127), Vertical(-64 ~ 63)

1 : Horizontal(-64 ~ 63), Vertical(-32 ~ 31)

2 : Horizontal(-32 ~ 31), Vertical(-16 ~ 15)

3 : Horizontal(-16 ~ 15), Vertical(-16 ~ 15)

MEUseZeroPmv The PMV option for Motion Estimation. If this field is 1, encoding quality could be worse than when it was
zero.

0 : Motion Estimation engine uses PMV that was derived from neighbor MV

1 : Motion Estimation engine uses Zero PMV

IntraCostWeight The intra cost weight factor for Intra/Inter type decision. By default, it could be zero. If this register have
some value W, and the cost of best intra mode that was decided by Refine-Intra-Mode-Decision is ICOST, the Final Intra
Cost FIC will be like this, FIC = ICOST + W. So, if this field is not zero, the Final Intra Cost have additional weight. Then
the Intra/Inter mode decision logic tend to make more Inter-Macroblock.

3.2.2.12 EncReportBufSize

typedef struct {

 int sliceInfoBufSize;

 int mbInfoBufSize;

 int mvInfoBufSize;

} EncReportBufSize;

Description

Data structure to get the data report buffer size to start encoding from the encoder. Then the application allocates the memory
according to the size information from the data report.

sliceInfoBufSize Buffer size for slice information

mbInfoBufSize Buffer size for MB information

mvInfoBufSize Buffer size for motion vector information

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

24 Freescale Semiconductor, Inc.

3.2.2.13 EncInitialInfo

typedef struct {

 int minFrameBufferCount;

 EncReportBufSize reportBufSize;

} EncInitialInfo;

Description

Data structure for parameters of vpu_EncGetInitialInfo() which are needed to get the initial information for encoder

minFrameBufferCount Minimum required buffer count in host applications. This returned value is used to allocate frame
buffers in vpu_EncRegisterFrameBuffer()

reportBufSize Data report requested buffer size information

3.2.2.14 EncParam

typedef struct {

 FrameBuffer * sourceFrame;
 int encTopOffset;

 int encLeftOffset;

 int forceIPicture;

 int skipPicture;

 int quantParam;

 PhysicalAddress picStreamBufferAddr;

 int picStreamBufferSize;
 int enableAutoSkip;
} EncParam;

Description

Data structure for configuring one frame encoding

encTopOffset The top offset for cropping from source image to be encoded

encLeftOffset The left offset for cropping from source image to be encoded

sourceFrame Frame buffer containing source image to be encoded

forceIPicture If this value is 0, the picture type is determined by the VPU according to the various parameters such as
encoded frame number and GOP size. If this value is 1, the frame is encoded as an I-picture regardless of the frame number
or GOP size, and I-picture period calculation is reset to the initial state. For MPEG-4 and H.263, I-picture is sufficient for
decoder refresh. For H.264 mode, the picture is encoded as an Instantaneous Decoding Refresh (IDR) picture. This value is
ignored if skipPicture = 1.

skipPicture If this value is 0, the encoder encodes the picture as normal. If this value is 1, the encoder ignores sourceFrame
and generates a skipped picture. In this case, the reconstructed image is a duplication of the previous picture. The skipped
picture is encoded as P-type regardless of GOP size.

quantParam This value is used for all quantization parameters in case of VBR (no rate control). The range of value is 1-31 for
MPEG-4 and 0-51 for H.264. When rate control is enabled, this field is ignored.

picStreamBufferAddr Start address of a picture stream buffer under line-buffer mode and dynamic buffer allocation. This
variable represents the start of a picture stream for encoded output. In buffer-reset mode, an application might use multiple
picture stream buffers for the best performance. Using this variable, an application re-registers the start position of the picture

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 25

stream while issuing a picture encoding operation. This start address of this buffer must be 4-byte aligned, and its size is
specified by picStreamBufferSize. In packet-based streaming with ring-buffer, this variable is ignored. This variable is only
meaningful when both line-buffer mode and dynamic buffer allocation are enabled.

picStreamBufferSize Byte size of a picture stream chunk. This variable represents byte size of a picture stream buffer and is
crucial in line-buffer mode because encoder output can be corrupted if this size is smaller than any picture encoded output.
Therefore, this value should be big enough for storing multiple picture streams with average size. In packet-based streaming
with ring-buffer, this variable is ignored. This variable specifies the picture stream buffer size for encoded output in line-
buffer mode.

enableAutoSkip The value 0 disables automatic skip and 1 enables automatic skip in encoder operation. Automatic skip
means encoder can skip frame encoding when generated Bitstream so far is too big considering target bitrate. This parameter
will be ignored if rate control is not used (bitRate = 0).

3.2.2.15 EncReportInfo

typedef struct {

 int enable;

 int type;

 int size;

 Uint8 *addr;

} EncReportInfo;

Description

Structure used for reporting encoder information

enable Data report enabled or disabled; type, size and addr are valid when this flag is 1

type Type of mvInfo or sliceInfo

size Data report size

addr Saved report information address

3.2.2.16 EncOutputInfo

typedef struct {

 PhysicalAddress bitstreamBuffer;

 Uint32 bitstreamSize;

 int bitstreamWrapAround;
 int skipEncoded;

 int picType;

 int numOfSlices;

 Uint32 *pSliceInfo; /* not used in the i.MX 6Dual/Quad */

 Uint32 *pMBInfo; /* not used in the i.MX 6Dual/Quad */

 Uint32 *pMBQpInfo; /* not used in the i.MX 6Dual/Quad */

 EncReportInfo mbInfo;

 EncReportInfo mvInfo;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

26 Freescale Semiconductor, Inc.

 EncReportInfo sliceInfo;

} EncOutputInfo;

Description

Data structure for reporting the results of picture encoding operations

bitstreamBuffer Physical address of the starting point of a newly encoded picture stream. If dynamic buffer allocation is
enabled in line-buffer mode, this value is identical to the picture stream buffer address specified by the host application.

bitstreamSize Byte size of the encoded bitstream

bitstreamWrapAround Flag for bitstream buffer wrap-around. When this flag is set, the bitstream buffer wrapped around and
a larger buffer size is required.

skipEncoded 0 - Current Frame was encoded as non-skipped frame; 1 - Current Frame was encoded as skipped frame.

picType Picture type of the current decoded picture. This value has different meaning for different codecs: For VC1 SP/MP:
0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture For VC1 AP interlacing, picType contains
two picture type information fields: bit[2:0] and bit[5:3] and the respective value has same meaning as SP/MP case: 0 = I
picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture. For example, 0 = 000_000: both first and second
field are I picture, 1 = 000_001: first field is I picture and second field is P picture In other codec cases, 0 = I picture, 1 = P
picture, 2 = B picture

numOfSlices Number of slices included in the newly encoded picture. When sliceReport in EncOpenParam is 0, this value is
invalid

pSliceInfo Not used in the i.MX 6Dual/Quad

pMBInfo Not used in the i.MX 6Dual/Quad

pMBQpInfo Not used in the i.MX 6Dual/Quad

mbInfo MB information in the encoded picture. If the application does not give the ENC_SET_REPORT_MBINFO
command to enable it before starting one frame encoding, this information is invalid.

mvInfo Motion vector information in the encoded picture. If the application does not give the
ENC_SET_REPORT_MVINFO command to enable it before starting one frame encoding, this information is invalid.

sliceInfo Slice information in the encoded picture. If the application does not give the ENC_SET_REPORT_SLICEINFO
command to enable it before starting one frame encoding, this information is invalid.

3.2.2.17 SearchRamParam

typedef struct {

 PhysicalAddress searchRamAddr;

 int SearchRamSize;

} SearchRamParam;

Description

This isn't used in the i.MX 6Dual/Quad.

3.2.2.18 DecParamSet

typedef struct {

 Uint32 * paraSet;

 int sizeInByte;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 27

} DecParamSet;

Description

Structure used when the host processor requires to send SPS data or PPS data. The SPS data or PPS data is used in real
applications as a type of out-of-band information.

3.2.3 DecOpenParam
typedef struct {

 CodStd bitstreamFormat;

 PhysicalAddress bitstreamBuffer;

 int bitstreamBufferSize;

 int qpReport;

 int mp4DeblkEnable;

 int reorderEnable;

 int chromaInterleave;

 int filePlayEnable;

 int picWidth;

 int picHeight;
 int avcExtension;

 int dynamicAllocEnable;

 int streamStartByteOffset;

 int mjpg_thumbNailDecEnable;

 PhysicalAddress psSaveBuffer;

 int psSaveBufferSize;

 int mp4Class;
 int mapType;

 int tiled2LinearEnable;

 int bitstreamMode;

 int jpgLineBufferMode;
} DecOpenParam;

Description

Data structure used to open a new decoder instance

bitstreamFormat Standard type of bitstream in decoder operation. One of codec standards defined in CodStd.

bitstreamBuffer Start physical address of bit stream buffer from which the decoder retrieves the next bitstream. This address
must be 4 byte-aligned.

bitstreamBufferSize Size in bytes of a buffer pointed by bitstreamBuffer This value must be a multiple of 1024. The
maximum size is 16383x1024 bytes.

qpReport Not used in the i.MX 6Dual/Quad.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

28 Freescale Semiconductor, Inc.

mp4DeblkEnable 0 = disable, 1 = enable and in MPEG4 and H.263 (post-processing) modes, the decoder applies MPEG-4
deblocking filtered output to the host application

reorderEnable 1 = enables display buffer reordering when decoding H.264 streams. In H.264 mode, the output decoded
picture is re-ordered if pic_order_cnt_type is 0 or 1 and the decoder must delay the output display for re-ordering. However,
some applications (such as video telephony) do not require such display delay. The host may set this flag to 0 to disable
output display buffer reordering. Then the BIT processor does not re-order the output buffer when pic_order_cnt_type is 0 or
1. If pic_order_cnt_type is 2 or in MPEG4 or H.263 modes, this flag is ignored because output display buffer reordering is
not allowed.

chromaInterleave 0 = CbCr not interleaved, 1 = CbCr interleaved

filePlayEnable Not used in the i.MX 6Dual/Quad.

picWidth Horizontal picture size read from the file format header used for codecs for which the picture size is not available in
the bitstream, for example Divx3.11.

picHeight Vertical picture size read from the file format header used for codecs for which the picture size is not available in
the bitstream, for example Divx3.11.

avcExtension 0 = No extension of AVC, 1 = MVC extension of AVC

dynamicBuffAllocEnable Not used in the i.MX 6Dual/Quad.

streamStartByteOffset Start byte offset of the stream buffer. Since the VPU has an internal limitation that the stream buffer
start address must be 4-byte aligned, the host application may be required to copy the stream data to an 4-byte aligned buffer.
This offset allows this overhead to be saved. This offset should be between 0 and 7.

mjpg_thumbNailDecEnable 0 = disable, 1 = enable and the MJPEG decoder decodes a thumbnail image. This variable is only
valid in STD_MJPG mode.

psSaveBuffer Start address of the PS (SPS/PPS) save buffer which the decoder saves PS (SPS/PPS) RBSP. This address must
be 4 byte-aligned. This variable is only valid for H.264 decoder mode.

psSaveBufferSize Size in bytes of a buffer pointed to by psSaveBuffer. This value must be a multiple of 1024. The maximum
size is 65565x1024 bytes. This variable is only valid when decoding H.264 streams.

mp4Class MPEG4 class when codec is MPEG4 type 0 = MPEG-4; 1 = DivX 5.0 or higher; 2 = Xvid; 5 = DivX 4.0

mapType A Map type for GDI inferface. 0 - Linear frame map; 1 - Frame tiled map; 2 - Filed tiled map

tiled2LinearEnable It is a tiled to linear map enable mode. The map type can be changed from tiled to linear in the post
processing unit for display.

bitstreamMode When read pointer reaches write pointer in the middle of decoding one picture. 0: VPU sends an interrupt to
HOST and waits for more bitstream to decode. (interrupt mode); 1: VPU returns to the status right before the PIC_RUN
command. (rollback mode)

jpgLineBufferMode 0 - LineBuffer mode; 1 - Streaming mode.

3.2.3.1 DecReportBufSize

typedef struct {

 int frameBufStatBufSize;

 int mbInfoBufSize;

 int mvInfoBufSize;

} DecReportBufSize;

Description

Not used in the i.MX 6Dual/Quad.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 29

3.2.3.2 DecInitialInfo

typedef struct {

 int picWidth;

 int picHeight;

 Uint32 frameRateInfo;
 Rect frameRateRes;

 int frameRateDiv;

 Rect picCropRect;

 int mp4_dataPartitionEnable;

 int mp4_reversibleVlcEnable;

 int mp4_shortVideoHeader;

 int h263_annexJEnable;

 int minFrameBufferCount;

 int frameBufDelay;

 int nextDecodedIdxNum;

 int normalSliceSize;

 int worstSliceSize;

 int mjpg_thumbNailEnable;

 int mjpg_sourceFormat;

 int streamInfoObtained;

 int profile;

 int level;

 int interlace;

 int constraint_set_flag[4];

 int direct8x8Flag;

 int vc1_psf;

 int aspectRateInfo;
 Uint32 errorcode;;

 DecReportBufSize reportBufSize;

 int bitRate;

 Vp8ScaleInfo vp8ScaleInfo;

 int mjpg_ecsPtr;

} DecInitialInfo;

Description

Data structure to get information necessary to start decoding

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

30 Freescale Semiconductor, Inc.

picWidth Horizontal picture size in pixels. This width value is used when allocating decoder frame buffers. In some cases,
this returned value, the display picture width declared on the stream header, should be modified before allocating the frame
buffers. When the picture width is not a multiple of 16, the picture width for buffer allocation should be re-calculated from
the declared display width as: picBufWidth = ((picWidth + 15)/16) x 16, where picBufWidth is the horizontal picture buffer
width. When picWidth is a multiple of 16, picWidth = picBufWidth.

picHeight Vertical picture size in pixels. This height value is used when allocating decoder frame buffers. In some cases, this
returned value, the display picture height declared on the stream header, should be modified before allocating the frame
buffers. When the picture height is not a multiple of 16, the picture height for buffer allocation should be re-calculated from
the declared display height as: picBufHeight = ((picHeight + 15)/16) x 16, where picBufHeight is the vertical picture buffer
height. When picHeight is a multiple of 16, picHeight = picBufHeight.

frameRateInfo Not used in the i.MX 6Dual/Quad.

frameRateRes The numerator part of frame rate fraction. Refer to DecOutputInfo.frameRateRes.

frameRateDiv The denominator part of frame rate fraction.Refer to DecOutputInfo.frameRateDiv.

picCropEnable Indicates if picCropRect is valid. If picCropEnable = 0,the picCropRect should be ignored. picCropEnable =
1, there is cropping rectangle information picCropRect.

picCropRect Picture cropping rectangle information. If picCropEnable = 0, this field is invalid. This structure specifies the
cropping rectangle information only for a H.264 decoder. The size and position of the cropping window in a full frame buffer
is presented in this structure. This structure is only valid for H.264 decoder mode.

mp4_dataPartitionEnable 0 = disable, 1 = enable

mp4_reversibleVlcEnable 0 = disable, 1 = enable

mp4_shortVideoHeader 0 = disable, 1 = enable

H263_annexJEnable 0 = disable, 1 = enable

minFrameBufferCount Minimum number of frame buffers required for decoding. The application must allocate at least this
number of frame buffers and register those number of buffers to the VPU using vpu_DecRegisterFrameBuffer() before
decoding pictures.

frameBufDelay Maximum display frame buffer delay for buffering decoded picture reorder. The VPU may delay decoded
picture displays for display reordering H.264 mode, when pic_order_cnt_type is 0 or 1 and for B-frame handling in VC-1
decoder. (By default, some H.264 encoder set pic_order_cnt_type to 0 or 1, but in BP applications, this setting is not actually
used in practice.)

nextDecodedIdxNum Maximum number of indexes which are returned after decoding one frame. the VPU may return 1 for
MPEG-4, H.264, Divx and MPEG-2 cases. For VC-1 decoding only, this variable may have a value between 1 and 3.

normalSliceSize Recommended size of buffer to save slice in normal case. Value is determined by a quarter of the memory
size of one raw YUV image in Kbytes.

worstSliceSize Recommended size of buffer used to save slice in worst case. Value is determined by half of the memory size
for one raw YUV image in Kbytes.

mjpg_thumbNailEnable 0 = disable, 1 = enable and the stream which is decoded as thumbnail

mjpg_sourceFormat The chroma format of encoded image of the stream. The format defines the chrominance size of the
source image and can be a value between 0 and 4. 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

streamInfoObtained Set to zero so the stream information cannot be obtained in the current firmware. It is true always on
i.MX 6Dual/Quad.

profile Profile information in the stream. And this value is used as bellows.

H.264 : profile_idc,

Vc1 : 0~2 (SMTPE reserved), 3(advanced profile),

MP2 : 3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10: Spatially Scalable, 3'b001: High

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 31

MP4 : If VOS header is existed, 8'b00000000: Simple Profile, 8'b00001000: Advanced coding efficiency; 8'b00001111:
Advanced Simple Profile;

If there is only VOL header, 8'b00000001: Simple Profile, 8'b00001100: Advance coding efficiency, 8'b00010001: Advanced
Simple Profile.

Real Video : 8 (version 8), 9 (version 9), 10 (version 10)

level Level information in the stream. And this value is used as bellows.

H.264 : level_idc,

Vc1 : level,

MP2 : 4'b1010: Low, 4'b1000: Main, 4'b0110: High 1440, 4'b0100: High

MP4 : If VOS header is existed(high bit is 1, 8'b10000000), 4'b0000 or 4'b1000: L0, 4'b0001: L1, 4'b0010: L2, 4'b0011:
L3...; If There is VOS header, level cannot be gotten.

Real Video : N/A (real video does not have level info).

interlace Interlace information in the stream.

0 = only progressive frames in the stream, 1 = may have interlaced frame in stream.

constraint_set_flag Syntax element in H.264, used to make level in H.264. Ignored in other standards.

direct8x8Flag H.264 SPS syntax element and used in B picture.

vc1_psf PSF information in VC1 stream information.

aspectRateInfo Aspect rate information in stream information. If the value is 0, then aspect ratio information is not present.

[H.264] - if aspectRateInfo [31:16] is 0, aspectRateInfo [7:0] means aspect_ratio_idc. Otherwise, AspectRatio means
Extended_SAR.

sar_width = aspectRateInfo [31:16],

sar_height = aspectRateInfo [15:0]

[VC-1]- Aspect Width = aspectRateInfo [31:16],

Aspect Height = aspectRateInfo [15:0]

[MP4] - This value is index of Table 6-12 in ISO/IEC 14496-2

[MP2] - This value is index of Table 6-3 in ISO/IEC 13818-2. It is determined by half of the memory size for one raw YUV
image in KB unit.

reportBufSize Data report requested buffer size information.

bitRate The bitrate value written in bitstream syntax. Available only when it is not -1.

vp8ScaleInfo This is VP8 upsampling information. Refer to the Vp8ScaleInfo.

mjpg_ecsPtr The consumed mjpg size for using software GetInitialInfo for MJPG decoder.

3.2.3.3 ExtBufCfg

typedef struct {

 PhysicalAddress bufferBase;

 int bufferSize;

} bufferSize;

Description

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

32 Freescale Semiconductor, Inc.

Data structure used when the host application wants to give external memory configuration to VPU.

bufferBase The start address of external memory.

bufferSize The size of the buffer pointed by bufferBase in byte.

3.2.3.4 DecBufInfo

typedef struct {

 ExtBufCfg avcSliceBufInfo;

 ExtBufCfg vp8MbDataBufInfo;

 DecMaxFrmInfo maxDecFrmInfo;

} DecBufInfo;

Description

Data structure used when the host application want to transfer additional buffer information except frame buffer.

avcSliceBufInfo The start address and the size of slice save buffer which decoder can save slice RBSP. This variable is only
valid for H.264 decoder.

vp8MbDataBufInfo The start address and the size of macroblock prediction data save buffer, in which

. the VP8 decoder can save inflated macroblock information for a frame. This buffer is temporal scratch memory that sustains
while decoding a picture. The start

address must be 8-byte aligned.

maxDecFrmInfo Maximum supported info of frame buffer. Not used in the i.MX 6Dual/Quad.

3.2.3.5 DecParam

typedef struct {

 int prescanEnable;

 int prescanMode;

 int dispReorderBuf;

 int iframeSearchEnable;

 int skipframeMode;

 int skipframeNum;

 int chunkSize;

 int picStartByteOffset;

 PhysicalAddress picStreamBufferAddr;
}DecParam;

Description

Data structure for picture decoding options

prescanEnable Not used in the i.MX 6Dual/Quad.

prescanMode Not used in the i.MX 6Dual/Quad.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 33

iframeSearchEnable 0 = disable, 1 = enable and the decoder performs skipping frame decoding until decoder meets an I
(IDR) frame. If there is no I frame in the stream, the decoder waits for a I (IDR) frame. If skipframeNum is n, the decoder
seeks the (n + 1)th I (IDR) frame. When decoder meets an EOS (End Of Sequence) code during I-Search, the decoder returns
-1 (0xFFFF). If this option is enabled, skipframeMode options are ignored.

skipframeMode Skip frame function enable and operation mode: 0 = skip frame disable 1 = skip frame enabled (skip frames
but I (IDR) frame) 2 = skip frame enabled (skip any frames) If this option enabled, the decoder skip decoding as many as
skipframeNum frames. After the decoder skips frames, the decoder returns decoded index -2 (0xFFFE) when decoder does
not have any frames displayed. When decoder meets EOS (End Of Sequence) code during frame skip, the decoder returns -1
(= 0xFFFF).

skipframeNum Number of skip frames. If the iframeSearchEnable option is enabled, this number is the number of skipping I
(IDR) frame. If the iframeSearchEnable option is disabled and the skipframeMode option is enabled, this number is the
number of skipping frames. When this number is 0, the skipframeMode option is disabled.

chunkSize Not used in the i.MX 6Dual/Quad.

picStartByteOffset Not used in the i.MX 6Dual/Quad.

picStreamBufferAddr Not used in the i.MX 6Dual/Quad.

phyJpgChunkBase The physical memory address of input bitstream buffer for Jpg.

virtJpgChunkBase The point of virtual memory address of input bitstream buffer for Jpg.

3.2.3.6 DecReportInfo

typedef struct {

 int enable;

 int size;

 union {

 int mvNumPerMb;

 int userDataNum;

 };

 union {

 int reserved;

 int userDataBufFull;

 };

 Uint8 *addr;

} DecReportInfo;

Description

Not used in the i.MX 6Dual/Quad.

3.2.3.7 Vp8ScaleInfo

typedef struct {

 unsigned hScaleFactor : 2;

 unsigned vScaleFactor : 2;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

34 Freescale Semiconductor, Inc.

 unsigned picWidth : 14;
 unsigned picHeight : 14;

} Vp8ScaleInfo;

Description

This is data structure of picture upscaling information for post-processing out of decoding loop.

This structure is valid only for VP8 decoding case and can never be used by VPU itself. If host has an upsampling device,
this information is useful for them. When the host allocates a frame buffer, application needs upscaled resolution derived by
this information to allocate enough (maximum) memory for variable resolution picture decoding.

hScaleFactor Upscaling factor for horizontal expansion. The value could be 0 to 3, and meaning of each value is described in
below.

0: 1 Upsampling Ratio; 1: 5/4 Upsampling Ratio, 2: 5/3 Upsampling Ratio, 3: 2/1 Upsampling Ratio

vScaleFactor Upscaling factor for vertical expansion. The value could be 0 to 3, and meaning of each value is described in
below.

picWidth Picture width in units of sample.

picHeight Picture height in units of sample.

3.2.3.8 Vp8PicInfo

typedef struct {

 unsigned showFrame : 1;

 unsigned versionNumber : 3;

 unsigned refIdxLast : 8;
 unsigned refIdxAltr : 8;

 unsigned refIdxGold : 8;

} Vp8PicInfo;

Description

Data structure for VP8 specific header information and reference frame indices. Only VP8 decoder returns this structure after
decoding a frame.

showFrame This flag is the frame header syntax, meaning whether the current decoded frame is displayable or not. It is 0
when current frame is not for display, and 1 when current frame is for display.

versionNumber The VP8 profile version number information in the frame header. The version number enables or disables
certain features in bitstream. It can be defined with one of the four different profiles, 0 to 3 and each of them indicates
different decoding complexity.

refIdxLast The frame buffer index for the Last reference frame. This field is valid only for next inter frame decoding.

refIdxAltr The frame buffer index for the altref(Alternative Reference) reference frame. This field is valid only for next inter
frame decoding.

refIdxGold The frame buffer index for the Golden reference frame. This field is valid only for next inter frame decoding.

3.2.3.9 AvcFpaSei

typedef struct {

 unsigned exist;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 35

 unsigned frame_packing_arrangement_id;

 unsigned quincunx_sampling_flag;

 unsigned spatial_flipping_flag;
 unsigned frame0_flipped_flag;

 unsigned field_views_flag;

 unsigned current_frame_is_frame0_flag;

 unsigned frame0_self_contained_flag;
 unsigned frame1_self_contained_flag;

 unsigned frame_packing_arrangement_ext_flag;

 unsigned frame_packing_arrangement_type;

 unsigned content_interpretation_type;
 unsigned frame0_grid_position_x;

 unsigned frame0_grid_position_y;

 unsigned frame1_grid_position_x;

 unsigned frame1_grid_position_y;
 unsigned frame_packing_arrangement_repetition_period;
} AvcFpaSei;

Description

This is a data structure for AVC FPA(frame packing arrangement) SEI.

exist 0 : AVC FPA SEI does not exist; 1 : AVC FPA SEI exists.

frame_packing_arrangement_id 0 ~ 2^32-1 : An identifying number that may be used to identify the usage of the frame
packing arrangement SEI message.

frame_packing_arrangement_cancel_flag It indicates whether the frame packing arrangement SEI message cancels the
persistence of any previous frame packing arrangement SEI message in output order.

quincunx_sampling_flag It indicates whether each color component plane of each constituent frame is quincunx sampled.

spatial_flipping_flag It indicates that one of the two constituent frames is spatially flipped.

frame0_flipped_flag It indicates which one of the two constituent frames is flipped.

field_views_flag 1 indicates that all pictures in the current coded video sequence are coded as complementary field pairs.

current_frame_is_frame0_flag It indicates the current decoded frame and the next decoded frame in output order.

frame0_self_contained_flag It indicates whether inter prediction operations within the decoding process for the samples of
constituent frame 0 of the coded video sequence refer to samples of any constituent frame 1.

frame1_self_contained_flag It indicates whether inter prediction operations within the decoding process for the samples of
constituent frame 1 of the coded video sequence refer to samples of any constituent frame 0.

frame_packing_arrangement_extension_flag 0 indicates that no additional data follows within the frame packing arrangement
SEI message.

frame_packing_arrangement_type The type of packing arrangement of the frames as specified in Table D-8, ISO/IEC
14496-10D.2.25.

content_interpretation_type It indicates the intended interpretation of the constituent frames.

frame0_grid_position_x It specifies the horizontal location of the upper left sample of constituent frame 0 to the right of the
spatial reference point.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

36 Freescale Semiconductor, Inc.

frame0_grid_position_y It specifies the vertical location of the upper left sample of constituent frame 0 below the spatial
reference point.

frame1_grid_position_x It specifies the horizontal location of the upper left sample of constituent frame 1 to the right of the
spatial reference point.

frame1_grid_position_y It specifies the vertical location of the upper left sample of constituent frame 1 below the spatial
reference point.

frame_packing_arrangement_repetition_period It indicates persistence of the frame packing arrangement SEI message.

3.2.3.10 MvcPicInfo

typedef struct {

 int viewIdxDisplay;

 int viewIdxDecoded;

} MvcPicInfo;

Description

This is a data structure for MVC specific picture information. Only MVC decoder returns this structure after decoding a
frame.

viewIdxDisplay The view index order of display frame buffer coresponding to indexFrameDisplay of DecOutputInfo
structure.

viewIdxDecoded The view index order of decoded frame buffer coresponding to indexFrameDecoded of DecOutputInfo
structure.

3.2.3.11 DecOutputInfo

typedef struct {

 int indexFrameDisplay;

 int indexFrameDecoded;

 int NumDecFrameBuf;

 int picType;
 int numOfErrMBs;

 Uint32 *qpInfo;

 int hScaleFlag;

 int vScaleFlag;

 int indexFrameRangemap;

 int prescanresult;

 int notSufficientPsBuffer;

 int notSufficientSliceBuffer;

 int decodingSuccess;

 int interlacedFrame;

 int mp4PackedPBframe;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 37

 int h264Npf;

 int pictureStructure;

 int topFieldFirst;

 int repeatFirstField;

 union {

 int progressiveFrame;

 int vc1_repeatFrame;

 };

 int fieldSequence;

 int decPicHeight;

 int decPicWidth;

 Rect decPicCrop;
 int aspectRateInfo;

 Uint32 frameRateRes;

 Uint32 frameRateDiv;

 Vp8ScaleInfo vp8ScaleInfo;

 Vp8PicInfo vp8PicInfo;
 MvcPicInfo mvcPicInfo;
 AvcFpaSei avcFpaSei

 int consumedByte;
 DecReportInfo mbInfo;

 DecReportInfo mvInfo;

 DecReportInfo frameBufStat;

 DecReportInfo userData;

} DecOutputInfo;

Description

Data structure to get information resulting from decoding a frame.

indexFrameDisplay Frame buffer index of a picture to be displayed among frame buffers which were registered using
vpu_DecRegisterFrameBuffer(). Frame data to be displayed is stored into the frame buffer specified by this index. When a
delay in display does not exist, this index always is the same as indexFrameDecoded. But if not, (for example, display
reordering in AVC or B-frames in VC-1), this index is not the same value with indexFrameDecoded. If the decoder cannot
provide a display output at the beginning of sequence decoding with different display order, this index always has -2
(0xFFFE) or -3 (0xFFFD) depending on the decoder skip option. And at the end of sequence decoding, if there is no more
output for display, this value has -1 (0xFFFF). By checking this index, the host application can easily know whether sequence
decoding has finished or not.

indexFrameDecoded Frame buffer index of decoded picture among frame buffers which were registered using
vpu_DecRegisterFrameBuffer(). A decoded frame during current picture decoding operation is stored into the frame buffer
specified by this index. If decoder meets EOS or skip, the decoder return -1 (0xFFFF) to represent that no decoded output is
generated. Because of delays in display, the return value of -1 does not mean end of decoding. In order to check the end of
decoding, the host application should refer to indexFrameDisplay.

picType Picture type of the decoded picture 0 = I picture, 1 = P picture, 2 = B picture

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

38 Freescale Semiconductor, Inc.

For H.264, Bit[0] indicates IDR frame. 0 = current frame is IDR. 1 = non-IDR frame. If 0, the Bit[2:1] should be ingored. If 1
of bit[0], bit[2:1] represents the slice types of current picture. 0 = I-slice, 1 = P-slice, 2 = B-slice.The actual value is the value
of the ORed value of all slices of current picture.

numOfErrMBs Number of erroneous macroblocks while decoding a picture

qpInfo Not used in the i.MX 6Dual/Quad

hScaleFlag Flag for reduced resolution output in horizontal direction. For VC1 decoding, the resulting picture width from the
decoder may be half the decoded picture width. In this case, this flag is set, and the host application should scale up the
picture by two times in the horizontal direction to get proper display output.

vScaleFlag Flag for reduced resolution output in vertical direction. For VC1 decoding, the resulting picture height from the
decoder may be half the decoded picture height. In this case, this flag is set, and the host application should scale up this
picture by two times in the vertical direction to get proper display output.

indexFrameRangemap Not used in the i.MX 6Dual/Quad

prescanResult Not used in the i.MX 6Dual/Quad.

notSufficientPsBuffer Flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode the current picture. The
VPU does not get the last part of the current picture stream because of buffer overflow. The host must close the current
instance because the picture streams cannot be decoded properly because of loss of SPS/PPS data.

notSufficientSliceBuffer Flag that represents whether slice save buffer is sufficient to decode the current picture. The VPU
does not get the last part of the current picture stream, and macroblock errors are issues because of buffer overflow. The host
can continue decoding the remaining pictures of the current input stream without closing the current instance, even though
several pictures can be error-corrupted.

decodingSuccess 0 = incomplete finish of decoding process, 1 = complete finish of decode process. This variable means that
the decoding process is finished completely. If stream has errors in the picture header syntax or the first slice header syntax of
H.264 stream, The VPU does not initiate the MB decoding routine and returns immediately. In this case, the VPU returns 0
which means incomplete finish of decoding process.

interlacedFrame 0 = progressive frame which consists of one frame picture 1 = interlaced frame which consists of two field
picture (top field and bottom field); This variable indicates that the frame is the interlaced frame. If this value is set, the host
application may use a de-interlacing filter to enhance image quality.

mp4PackedPBframe 0 = normal frame chunk data, 1 = packed PB frame chunk data. This variable indicates that the frame
chunk data is a packed PB frame chunk. If this value is set, the host application must re-use this chunk in the next decoding
command. This variable is only valid for MPEG-4 file-play mode.

h264Npf Flag indicate that a top or bottom field is absent when NPF is occurred in display picture.

PictureStructure Picture structure in picture coding ext in MP2, interlaced in Video Object Layer in MP4, MBAFF (MB
Adaptive frame/field mode) flag in H.264, FCM in picture header in VC1.

topFieldFirst 0 = Bottom field first, 1 = Top field first. Ignored if interlacedFrame is 0.

repeatFirstField Repeat first field for repeat counter

progressiveFrame Progressive_frame in picture coding extention in MP2.

vc1_repeatFrame 0 = not repeat frame, 1 = repeat frame

fieldSequence Field sequence in picture extension of MP2

decPicHeight Picture height of current decoded frame

decPicWidth Picture width of current decoded frame. For MJPEG decoding, the decPicHeight and decPicWidth are the size
of the decoded rotator frame saved in the rotation frame buffer that is registered by the SET_ROTATOR_OUTPUT
command. The VPU supports the changed resolution decoding. The VPU only supports the changed resolution not larger
than the original size. For example, the changed sequence of VGA > QVGA > VGA is supported

decPicCrop Picture crop information of current decoded frame. Only effective with the H.264 decoder.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 39

aspectRateInfo H.264 - It is aspect_ratio_idc[7:0] when [31:8] is 0. Otherwise it is ssar_width in [31:16] and sar_height in
[15:0]; VC-1 - ASPECT_RATIO h:v are reported in [15:8] : [7:0] as described in the spec; MPEG4 - This value is index of
Table 6-12 in ISO/IEC 14496-2; MPEG2 - This value is index of Table 6-3 in ISO/IEC 13818-2.

frameRateRes This is the numerator part of frame rate fraction. In case of AVC decoding, this is the value of time_scale in
the H.264 VUI syntax.

frameRateDiv This is the denominator part of frame rate fraction. In case of AVC decoding, this is the value of
num_units_in_tick in the H.264 VUI syntax. User can get the frame rate with this paramter. For AVC decoder, frame rate =
frameRateRes / (frameRateDiv*2), otherwise, frame rate = frameRateRes / frameRateDiv.

vp8ScaleInfo This is VP8 upsampling information. Refer to the Vp8ScaleInfo.

vp8PicInfo This is VP8 frame header information. Refer to the Vp8PicInfo.

mvcPicInfo This is MVC related picture information. Refer to MvcPicInfo.

avcFpaSei This is AVC frame packing arrangement SEI information. Refer to AvcFpaSei.

mjpg_consumedByte Consumed byte in the MJPG decoder, it's only valid for MJPG decoder.

mbInfo Not used in the i.MX 6Dual/Quad.

mvInfo Not used in the i.MX 6Dual/Quad.

frameBufStat Not used in the i.MX 6Dual/Quad.

userData Motion vector in the decoded picture. If the application does not give the DEC_SET_REPORT_USERDATA
command to enable the report before starting one frame decoder, this information is invalid.

3.2.3.12 vpu_versioninfo

typedef struct {

 int fw_major; /* firmware major version */

 int fw_minor; /* firmware minor version */

 int fw_release; /* firmware release version */

 int lib_major; /* library major version */

 int lib_minor; /* library minor version */

 int lib_release; /* library release version */

} vpu_versioninfo;

Description

Data structure to get the VPU firmware and library version

fw_major, fw_minor, fw_release Firmware version, naming convention is similar to Linux kernel

lib_major, lib_minor, lib_release VPU library version, naming convention is similar to Linux kernel

3.2.3.13 VPUMemAlloc

typedef struct {

 int size;

 unsigned long phy_addr;

 unsigned long cpu_addr;

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

40 Freescale Semiconductor, Inc.

 unsigned long virt_uaddr;

} vpu_mem_desc;

Description

Data structure used when the host application allocates physically contiguous memory for the
VPU
size Requested memory size
phy_addr Physical base address of the buffer allocated by driver if allocated successfully
cpu_addr Kernel virtual address corresponding to phy_addr, the programmer of the user-
space
application does not need to care about this
virt_uaddr User-space virtual address corresponding to phy_addr, which the host
application can
access

3.2.3.14 iram_t

typedef struct iram_t {

 unsigned long start;

 unsigned long end;

} iram_t;

Description

start Start address of internal memory for VPU use

end End address of internal memory for VPU use

3.3 API Definitions
This section provides a description of the i.MX 6Dual/Quad VPU API definitions.

3.3.1 API Definitions Overview
This section provides an overview of the VPU API definitions. The basic API architecture is presented as well as the
operation flow of both decoder and encoder based VPU API functions.

3.3.1.1 Basic Architecture
The i.MX 6Dual/Quad VPU API has the following three basic categories:

• Control API-API functions for general control of the VPU such as initialization
• Decoder API-API functions for VPU decoding operations
• Encoder API-API functions for VPU encoding operations

The i.MX 6Dual/Quad VPU API functions are based on a frame-by-frame picture processing scheme. To run a picture
decoder or encoder, the application calls a API function and after completion the processing, the application can check the
results of the picture processing.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 41

To support multi-instance decoding and encoding, the i.MX 6Dual/Quad VPU API functions use a handle for specify a
certain instance. The handle for each instance is provided when the application creates a new decoder or encoder instance. If
the application wants to give a command to a specific instance, the corresponding handle is used in every API function call
for that instance.

3.3.1.2 Decoder Operation Flow
To decode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU
2. Open a decoder instance using vpu_DecOpen()
3. To provide the proper amount of bitstream, get the bitstream buffer address using vpu_DecGetBitstreamBuffer()
4. After transferring the decoder input stream, inform the amount of bits transferred into the bitstream buffer using

vpu_DecUpdateBitstreamBuffer()
5. Before starting a picture decoder operation, get the crucial parameters for decoder operations such as picture size,

frame rate, required frame buffer size using vpu_DecGetInitialInfo()
6. Using the returned frame buffer requirement, allocate the proper size of the frame buffers and convey this data to the

i.MX 6Dual/Quad VPU using vpu_DecRegisterFrameBuffer()
7. Start a picture decoder operation picture-by-picture using vpu_DecStartOneFrame()
8. Wait for the completion of the picture decoder operation interrupt event
9. Check the results of the decoder operation using vpu_DecGetOutputInfo()

10. After displaying nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag()
11. If there is more bitstream to decode, go to Step 7, otherwise e go to the next step
12. Terminate the sequence operation by closing the instance using vpu_DecClose()
13. Call vpu_UnInit() to release the system resources

The decoder operation flow is shown in figure below.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

42 Freescale Semiconductor, Inc.

Figure 4. Decoder Operation Flow

3.3.1.3 Encoder Operation Flow
To encode a bitstream, the application completes the following steps:

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 43

1. Call vpu_Init() to initialize the VPU
2. Open a encoder instance using vpu_EncOpen()
3. Before starting a picture encoder operation, get crucial parameters for encoder operations such as required frame buffer

size using vpu_EncGetInitialInfo()
4. Using the returned frame buffer requirement, allocate size of frame buffers and convey this information to the VPU

using vpu_EncRegisterFrameBuffer()
5. Generate high-level header syntaxes using vpu_EncGiveCommand()
6. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame()
7. Wait the completion of picture encoder operation interrupt event
8. After encoding a frame is complete, check the results of encoder operation using vpu_EncGetOutputInfo()
9. If there are more frames to encode, go to Step 4, otherwise go to the next step

10. Terminate the sequence operation by closing the instance using vpu_EncClose()
11. Call vpu_UnInit() to release the system resources

The encoder operation flow is shown in figure below.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

44 Freescale Semiconductor, Inc.

Figure 5. Encoder Operation Flow

3.3.2 Control API
The following sections describe the control API functions.

3.3.2.1 vpu_Init()
Prototype

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 45

RetCode vpu_Init();

Parameter

None

Return Value

RETCODE_SUCCESS VPU initialized successfully

RETCODE_FAILURE VPU initialization unsuccessful

Description

This function initializes the VPU hardware and proper data structures/resources. The application must call this function
before using the VPU. If the VPU hardware is initialized after boot at first usage, the VPU library does not need to initialize
the hardware again, for example, there is no need to load the firmware again. This is transparent to the application.

3.3.2.2 vpu_UnInit()
Prototype

void vpu_UnInit();

Parameter

None

Description

This function deinitializes the VPU hardware and releases the resources that are allocated in the vpu_Init() function. The
application must call this function before exiting.

3.3.2.3 vpu_IsBusy()
Prototype

RetCode vpu_IsBusy();

Parameter

None

Return Value

0 VPU hardware is idle

1 VPU hardware is busy processing a frame

Description

This function tells the application if decoder or encoder frame processing is completed or not at any time.

3.3.2.4 jpu_IsBusy()
Prototype

RetCode jpu_IsBusy();

Parameter

None

Return Value

0 JPU hardware is idle

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

46 Freescale Semiconductor, Inc.

1 JPU hardware is busy processing a frame

Description

This function tells the application if decoder or encoder frame processing is completed or not at any time of MJPG format.

3.3.2.5 vpu_WaitForInt()
Prototype

int vpu_WaitForInt(int timeout_in_ms);

Parameter

timeout_in_ms [input] wait time in milliseconds

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

The application waits for the decoder or encoder to completed the interrupt. This function returns immediately if the interrupt
has been received, otherwise, it returns after timeout_in_ms.

3.3.2.6 vpu_GetVersionInfo()
Prototype

RetCode vpu_GetVersionInfo(vpu_versioninfo * verinfo);

Parameter

verinfo [output] The pointer to vpu_versionInfo data

Return Value

RETCODE_SUCCESS Version information acquired successfully

RETCODE_FAILURE Current firmware does not contain any version information

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application should initialize VPU by
calling vpu_Init() before calling this function.

Description

This function provides the version information running on the system to the application.

3.3.2.7 IOGetPhyMem()
Prototype

int IOGetPhyMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs to input buff > size, then buff >
phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 47

RETCODE_FAILURE Operation failed

Description

This function allocates physically contiguous memory. When the application calls this function, the driver allocates
physically contiguous memory.

3.3.2.8 IOFreePhyMem()
Prototype

int IOFreePhyMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs to input buff > size, then buff >
phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function frees the physical memory allocated by IOGetPhyMem back to the system.

3.3.2.9 IOGetVirtMem()
Prototype

int IOGetVirtMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs to input buff > size, then buff >
phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function gets the virtual address of the given physical address. If the allocated physical continuous memory needs to be
accessed in user space, this function is used to map physical memory.

3.3.2.10 IOFreeVirtMem()
Prototype

int IOFreeVirtMem(vpu_mem_desc * buff);

Parameter

buff [input] Pointer to memory information stored in allocated memory. The user needs to input buff > size, then buff >
phy_addr is outputted after return success.

Return Value

RETCODE_SUCCESS Operation successful

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

48 Freescale Semiconductor, Inc.

RETCODE_FAILURE Operation failed

Description

This function is used to un-map physical memory to user space.

3.3.2.11 IOGetIramBase()
Prototype

int IOGetIramBase(iram_t * iram);

Parameter

iram [input] Pointer to memory information that stores the internal memory

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function isn't used in the i.MX 6Dual/Quad.

3.3.2.12 vpu_SWReset()
Prototype

RetCode vpu_SWReset(DecHandle handle, int index);

Parameter

handle [input] An encoder/decoder handle obtained from vpu_EncOpen()/vpu_DecOpen()

index [input] The index of instance will be reset

Return Value

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation failed

Description

This function resets the instance specified by the handle or index. Host application can use this function with two methods:

1) Calling with handle parameter. If handle is given, the index parameter will be ignored automatically.

2) Calling with index parameter. This method is for special case in which the application exists without instance closed and
the resouces need to be released and the host knows the index of instance exactly.

In normal case, it's encouraged to reset VPU with a specified handle. You should know what you are doing exactly if
resetting VPU with an index parameter not a handle.

3.3.3 Encoder API
The following sections describe the encoder API functions.

3.3.3.1 vpu_EncOpen()
Prototype

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 49

RetCode vpu_EncOpen(EncHandle * pHandle, EncOpenParam * pop);

Parameter

pHandle [output] Pointer to EncHandle type variable which specifies instance for an application. If no instance is available, a
null handle is returned.

pop [input] Pointer to a EncOpenParam type structure which describes the parameters for the new encoder instance.

Return Value

RETCODE_SUCCESS New encoder instance opened successfully

RETCODE_FAILURE New encoder instance not opened successfully. If there is no free instance available, this value is
returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pop, is invalid-it has a null pointer or contains improper values
for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application must initialize VPU by
calling vpu_Init() before calling this function.

Description

To start a new encoder operation, the application must open a new instance for this encoder operation. By calling this
function, the application gets a handle specifying a new encoder instance. Because the i.MX 6Dual/Quad VPU supports
multiple instances of codec operations, the application needs this kind of handle for the all running codec instances. Once the
application received a handle, the application uses this handle to represent the target instances for all subsequent encoder-
related operations.

3.3.3.2 vpu_EncClose()
Prototype

RetCode vpu_EncClose(EncHandle handle);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

Return Value

RETCODE_SUCCESS Encoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_FRAME_NOT_COMPLETE Frame decoding or encoding operation is not completed yet, so the API function
call cannot be performed at this time. A frame encoding or decoding operation should be completed by calling
vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though the result of the current frame operation is not
necessary, the application should call vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo() to proceed with this function
call.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

This function is called by the application to close an instance when the application completes the encoding operations and
wants to release this instance for other processing. After completion of this function call, the instance referred to by handle is
free. Once the application closes an instance, the application cannot call any further encoder-specific function with this
handle before re-opening a new instance with the same handle.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

50 Freescale Semiconductor, Inc.

3.3.3.3 vpu_EncGetInitialInfo()
Prototype

RetCode vpu_EncGetInitialInfo(EncHandle handle, EncInitialInfo * info);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

info [output] Pointer to a EncInitialInfo type structure which describes the parameters required before starting encoder
operations

Return Value

RETCODE_SUCCESS Receiving the initial parameters completed successfully

RETCODE_FAILURE There is an error getting the configuration information for the encoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_INVALID_PARAM The given argument parameter, info, is invalid-it has a null pointer or contains improper
values for some member variables.

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API function for a given
instance are not allowed. The encoder initial information has already been received, so this function call is meaningless and
not allowed.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

Before starting the encoder operation, the application must allocate the frame buffers according to the information obtained
from this function. This function returns the required parameters for vpu_EncRegisterFrameBuffer(), which is followed by
this function call.

3.3.3.4 vpu_EncGetBitstreamBuffer()
Prototype

RetCode vpu_EncGetBitstreamBuffer(EncHandle handle,

 PhysicalAddress * prdPrt,

 PhysicalAddress * pwrPtr, Uint32 * size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

prdPrt [output] Stream buffer read pointer for the current encoder instance

pwrPtr [output] Stream buffer write pointer for the current encoder instance

size [output] Variable specifying the available space in the bitstream buffer for the current encoder instance

Return Value

RETCODE_SUCCESS Required information for encoder stream buffer received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 51

RETCODE_INVALID_PARAM Given argument parameters, prdPrt, pwrPtr or size, is invalid-it has a null pointer or
contains improper values for some member variables.

Description

After encoding a frame, the application must get the bitstream from the encoder using the stream location and the maximum
size. The application gets the information by calling this function.

3.3.3.5 vpu_EncUpdateBitstreamBuffer()
Prototype

RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

size [input] Variable specifying the amount of bits retrieved from the bitstream buffer for the current encoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, size, is invalid-it is larger than the value obtained from
vpu_EncGetBitstreamBuffer()

Description

The application must let the encoder know how much bitstream has been transferred from the address obtained from
vpu_EncGetBitstreamBuffer(). By giving the size as an argument, the API automatically handles pointer wrap-around and
updates the read pointer.

3.3.3.6 vpu_EncRegisterFrameBuffer()
Prototype

RetCode vpu_EncRegisterFrameBuffer(EncHandle handle,

 FrameBuffer * bufArray, int num, int frameBufStride, int sourceBufStride,
 PhysicalAddress subSampBaseA,PhysicalAddress subSampBaseB, ExtBufCfg *scratchBuf);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

bufArray [input] Pointer to the first element of an array of FrameBuffer data structure

num [input] Number of frame buffers

frameBufStride [input] Stride value of the given frame buffers for encoder

sourceBufStride [input] Stride value of the source frame buffer for encoder

subSampBaseA [input] A buffer address for saving subsampled image.

subSampBaseB [input] A buffer address for saving subsampled image.

scratchBuf [input] A buffer address for saving scratch for data partition enabled MPEG4 stream.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

52 Freescale Semiconductor, Inc.

The distance between a pixel in a row and the corresponding pixel in the next row is called stride. The value of stride must be
a multiple of 8. The address of the first pixel in the second row does not necessarily coincide with the value next to the last
pixel in the first row. In other words, stride can have values greater than the picture width in pixels.

The application should not set a stride value smaller than the picture width. For the Y component, the application must
allocate at least a space of size (frame height x stride), and for Cb or Cr components, (frame height/2 x stride/2).

For MJPEG encoding, the address of the frame buffer is not necessary. Only the frameBufStride and frameBufStride values
are necessary.

Return Value

RETCODE_SUCCESS Registering the frame buffers completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences between API functions. In this case, the application
may have called this function before successfully calling vpu_EncGetInitialInfo(). This function should be called after
successfully calling vpu_EncGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER

Argument bufArray is invalid, it is not initialized or not valid

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the encoder operations of the given handle. num should be greater
than or equal to the value of minFrameBufferCount obtained from vpu_EncGetInitialInfo().

RETCODE_INVALID_STRIDE Given argument stride is invalid-it is 0 or is not a multiple of 8

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API function for a given
instance are not allowed. The encoder initial information has already been received, so this function call is meaningless and
not allowed.

Description

This function registers frame buffers requested by vpu_EncGetInitialInfo(). The frame buffers pointed to by bufArray are
managed internally within the VPU. These include reference frames, reconstructed frames, and so on. The application must
not change the contents of the array of frame buffers during the life time of the instance, and num must not be less than
minFrameBufferCount obtained by vpu_EncGetInitialInfo().

3.3.3.7 vpu_EncStartOneFrame()
Prototype

RetCode vpu_EncStartOneFrame(EncHandle handle, EncParam * param);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

param [input] Pointer to a EncParam type structure which describes the picture encoding parameters for the current encoder
instance

Return Value

RETCODE_SUCCESS Encoding a new frame started successfully. This return value does not mean that encoding a frame
completed successfully.

RETCODE_FAILURE There is an error in starting one frame encoding operation

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 53

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences between API functions. In this case, the application
may have called this function before successfully calling vpu_EncRegisterFrameBuffer(). This function should be called
after successfully calling vpu_EncRegisterFrameBuffer().

RETCODE_INVALID_PARAM The given argument parameter, param, is invalid-it has a null pointer or contains improper
values for some member variables.

RETCODE_INVALID_FRAME_BUFFER

sourceFrame in the input structure EncParam is invalid- sourceFrame is not valid even though picture-skip is disabled

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

This function starts encoding one frame. Returning from this function does not mean the completion of encoding one frame,
only that encoding of one frame successfully initiated. This function should be followed by vpu_EncGetOutputInfo() with
the same encoder handle. Before vpu_EncGetOutputInfo() is called, the application can not call other API function except
for vpu_IsBusy(), vpu_EncGetBitstreamBuffer(), or vpu_EncUpdateBitstreamBuffer().

3.3.3.8 vpu_EncGetOutputInfo()
Prototype

RetCode vpu_EncGetOutputInfo(EncHandle handle, EncOutputInfo * info)

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

info [output] Pointer to an EncOutputInfo type structure which describes picture encoding results for the current encoder
instance

Return Value

RETCODE_SUCCESS Output information of current frame encoding received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequences between API functions. In this case, the application
may have called this function before successfully calling vpu_EncStartOneFrame(). This function should be called after
successfully calling vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM The given argument parameter, info, is invalid-it has a null pointer or contains improper
values for some member variables.

Description

This function gives the information about the encoding output such as the picture type, the address and size of the generated
bitstream, the number of generated slices, the end addresses of the slices, and the macroblock bit position information. The
host application should call this function after frame encoding is complete and before starting further processing.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

54 Freescale Semiconductor, Inc.

3.3.3.9 vpu_EncGiveCommand()
Prototype

RetCode vpu_EncGiveCommand(EncHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

cmd [input] Variable specifying the command of CodecComand type

param [intput/output] Pointer to a command-specific data structure which describes picture I/O parameters for the current
encoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not allowed in the current instance

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if handle is of an instance
which has been closed.

RETCODE_FRAME_NOT_COMPLETE

Frame encoding operation is not complete, so the given API function call cannot be performed this time. A frame encoding or
decoding operation should be completed by calling vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though
the result of the current frame operation is not necessary, the application should call vpu_EncGetOutputInfo() or
vpu_DecGetOutputInfo() to proceed this function call.

Description

This function is provided to give the application a certain level of freedom for reconfiguring the encoder operation after
creating an encoder instance. The options which can be changed dynamically while encoding a video sequence as well as
some command-specific return codes are shown in table below.

Table 5. Encoder Commands

Command Description

ENABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

ENABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION handle is a pointer to MirrorDirection. *param should be one of the following:

• MIRDIR_NONE-No mirroring
• MIRDIR_VER-Vertical mirroring
• MIRDIR_HOR-Horizontal mirroring
• MIRDIR_HOR_VER-Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given
mirroring direction is invalid

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 55

Table 5. Encoder Commands (continued)

Command Description

SET_ROTATION_ANGLE param a pointer to an integer which represents rotation angle in degrees. Rotation angle
should be 0, 90, 180, or 270. Return values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given rotation
angle is invalid

NOTE: Rotation angle can not be changed after sequence initialization, because it might
cause problems in handling frame buffers.

ENC_GET_SPS_RBSP param is a pointer to an EncParamSet type structure. The first variable, paraSet, is a physical
address where the generated stream is located, and size is the size of the stream in bytes.
Return values are as follows:

RETCODE_SUCCESS SPS successfully generated and available at the received buffer
pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an AVC (H.264)
encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid-it has a null pointer or
contains improper values for some member variables.

ENC_GET_PPS_RBSP param is a pointer to an EncParamSet type structure. Return values are as follows:

RETCODE_SUCCESS PPS successfully generated and available at the received buffer
pointer

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an AVC (H.264)
encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid-it has a null pointer or
contains improper values for some member variables.

ENC_PUT_MP4_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
to the generated stream location, and size is the size of the generated stream in bytes.
headerType is a type of header that the application wants to generate and has values such as
VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an MPEG-4
encoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid-it has a null pointer or
contains improper values for some member variables.

ENC_PUT_AVC_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address pointing
the generated stream location and size is the size of generated stream in bytes. headerType
is a type of header that the application wants to generate and has values such as SPS_RBSP
or PPS_RBSP. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an AVC (H.264)
encoder instance.

RETCODE_INVALID_PARAM Given argument, param or headerType, is invalid-it has a null
pointer or contains improper values for some member variables

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

56 Freescale Semiconductor, Inc.

Table 5. Encoder Commands (continued)

Command Description

ENC_SET_SEARCHRAM_
PARAM

The command isn't used in the i.MX 6Dual/Quad.

ENC_SET_INTRA_MB_
REFRESH_NUMBER

param is a pointer to an integer which represents the intra refresh number. The intra refresh
number should be between 0 and the macroblock number of the encoded picture. Return
values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

ENC_ENABLE_HEC param is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an MPEG-4
encoder instance

ENC_DISABLE_HEC param is ignored. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an MPEG-4
encoder instance

ENC_SET_SLICE_INFO param is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice
structure, sliceSizeMode represents the mode of calculating one slicesize, and sliceSize is the
size of one slice. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is invalid-it
has a null pointer or contains improper values for some member variables

ENC_SET_GOP_NUMBER param is a pointer to an integer which represents the GOP number. Return values are as
follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is invalid-it
has a null pointer or contains improper values for some member variables

ENC_SET_INTRA_QP param is a pointer to an integer which represents constant I frame QP. Constant I frame QP
should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return
values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an encoder
instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is invalid-it
has a null pointer or contains improper values for some member variables

ENC_SET_BITRATE param is a pointer to an integer which represents the bitrate. The bitrate should be between 0
and 32767. Return values are as follows:

RETCODE_SUCCESS Requested header syntax successfully inserted

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an encoder
instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is invalid-it
has a null pointer or contains improper values for some member variables

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 57

Table 5. Encoder Commands (continued)

Command Description

ENC_SET_FRAME_RATE param is a pointer to an integer which represents the frame rate value. The frame rate should
be greater than 0. Return values are as follows:

RETCODE_SUCCESS Requested header syntax inserted successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, the current instance might not be an encoder
instance.

RETCODE_INVALID_PARAM Given argument parameter, param or headerType, is invalid-it
has a null pointer or contains improper values for some member variables

ENC_SET_REPORT_
MBINFO

Not used in the i.MX 6Dual/Quad.

ENC_SET_REPORT_
MVINFO

Not used in the i.MX 6Dual/Quad.

ENC_SET_REPORT_
SLICEINFO

param is a pointer to an EncReportInfo. addr cannot be a null pointer when the enable flag is
1, so the user needs to allocate memory according to mvInfoBufSize returned by
vpu_EncGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid-it has a null
pointer or addr in EncReportInfo is a null pointer when enable is 1

3.3.4 Decoder API
The following sections describe the decoder API functions.

3.3.4.1 vpu_DecOpen()
Prototype

RetCode vpu_DecOpen(DecHandle * pHandle, DecOpenParam * pop);

Parameter

pHandle [output] Pointer to a DecHandle type variable which specifies each instance for an application

pop [input] Pointer to a DecOpenParam type structure which describes the required parameters for creating a new decoder
instance

Return value

RETCODE_SUCCESS New decoder instance created successfully

RETCODE_FAILURE New decoder instance not opened successfully. If there is no free instance available, this value is
returned in the function call.

RETCODE_INVALID_PARAM Given argument parameter, pop, is invalid-it has a null pointer or contains improper values
for some member variables.

RETCODE_NOT_INITIALIZED VPU not initialized before calling this function. The application must initialize the VPU by
calling vpu_Init() before calling this function.

Description

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

58 Freescale Semiconductor, Inc.

To decode, the application must open the decoder. By calling this function, the application receives a handle by which the
application can refer to a decoder instance. Because the VPU is a multiple instance codec, the application requires this kind
of handle. Once the application receives a handle, the application must pass the handle to all subsequent decoder-related
functions.

3.3.4.2 vpu_DecClose()
Prototype

RetCode vpu_DecClose(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Current decoder instance closed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the VPU. In normal
operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this value,
the VPU internal function may be corrupted.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

When the application is finished decoding a sequence and wants to release this instance for other processing, the application
should close the instance. After completion of this function call, the instance referred to by handle is free. Once the
application closes an instance, the application cannot call any further decoder-specific function with this handle before re-
opening a new decoder instance with the same handle.

3.3.4.3 vpu_DecGetInitialInfo()
Prototype

RetCode vpu_DecGetInitialInfo(DecHandle handle, DecInitialInfo * info);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

info [output] Pointer to a DecInitialInfo data structure

Return Value

RETCODE_SUCCESS Required information of the stream data to be decoded received successfully

RETCODE_FAILURE: There is an error in getting the configuration information for the decoder

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, info, is invalid-it has a null pointer or contains improper values
for some member variables.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the VPU. In normal
operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this value,
the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 59

Current API function call is invalid considering the allowed sequence between API functions. In this case, the application
might call this function before successfully putting the bitstream into the buffer data by calling
vpu_DecUpdateBitstreamBuffer(). In order to perform this functions call, the bitstream data including the sequence level
header should be transferred into the bitstream buffer before calling vpu_DecGetInitialInfo().

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API function for a given
instance are not allowed. The decoder initial information has been already received, so this function call is meaningless and
not allowed.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

The application must pass the address of a DecInitialInfo structure where the decoder stores the information such as picture
size, number of necessary frame buffers, and so on. For details, see the definition of the DecInitialInfo data structure in
DecInitialInfo. This function should be called after creating a decoder instance and before starting frame decoding. The
application must provide sufficient amount of bitstream to the decoder by calling vpu_DecUpdateBitstreamBuffer() so
bitstream buffer does not empty before this function returns.

If the application cannot ensure to feed enough data for the stream, the application can use the forced escape option using
vpu_DecSetEscSeqInit().

3.3.4.4 vpu_DecSetEscSeqInit()
Prototype

RetCode vpu_DecSetEscSeqInit(DecHandle handle, int escape);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

escape [input] Flag to enable or disable forced escape from SEQ_INIT

Return Value

RETCODE_SUCCESS Force escape flag successfully provided to the BIT processor

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

Description

This is a special function to provide a way of escaping the VPU hanging during DEQ_SEQ_INIT. When this flag is set to 1
and the stream buffer becomes empty, the VPU automatically terminates the DEC_SEQ_INIT operation. If the target
application ensures that a high layer header syntax is periodically sent through the channel, the application does not need this
option. However, if the target application cannot ensure that a high layer header syntax is periodically sent through the
channel (such as file-play mode), this function is useful to avoid the VPU hanging because of crucial errors in the header
syntax.

NOTE
This flag is applied to all decoder instances together; therefore, it is recommended to
reset this flag to 0 after successfully finishing the sequence initialization.

3.3.4.5 vpu_DecGetBitstreamBuffer()
Prototype

RetCode vpu_DecGetBitstreamBuffer(DecHandle handle,

 PhysicalAddress * paRdPtr,

 PhysicalAddress * paWrPtr, Uint32 * size);

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

60 Freescale Semiconductor, Inc.

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

paRdPtr [output] Stream buffer read pointer for the current decoder instance

paWrPtr [output] Stream buffer write pointer for the current decoder instance

size [output] Variable specifying the available space in the bitstream buffer for the current decoder instance

Return Value

RETCODE_SUCCESS Required information for the decoder stream buffer received successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM Given argument parameter, paRdPtr, paWrPtr or size, is invalid-it has a null pointer or
given values for some member variables have improper values.

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the application must know
where bitstream can be placed and the maximum size. The application receives this information from this function. For the
VPU, using the data from this function is more efficient than providing an arbitrary bitstream buffer to the decoder.

NOTE
The given size is the total sum of the free space in the ring buffer. So when the
application downloads a bitstream of this given size, Wrptr can reach the end of the
stream buffer. In this case, the application should wrap-around Wrptr to the beginning of
the stream buffer and download the remaining bits. If not, the decoder operation can fail.

3.3.4.6 vpu_DecUpdateBitstreamBuffer()
Prototype

RetCode vpu_DecUpdateBitstreamBuffer(DecHandle handle, Uint32 size);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

size [input] Variable specifying the amount of bits transferred into the bitstream buffer for the current decoder instance

Return Value

RETCODE_SUCCESS Putting new stream data completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_INVALID_PARAM The given argument parameter, size, is invalid-it is larger than the value obtained from
vpu_DecGetBitstreamBuffer() or larger than the available space in the bitstream buffer.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the VPU. In normal
operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this value,
the VPU internal function may be corrupted.

Description

The application must let the decoder know how much bitstream has been transferred to the address obtained from
vpu_DecGetBitstreamBuffer(). By giving the size as argument, the API automatically handles pointer wrap-around and
write pointer update.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 61

3.3.4.7 vpu_DecRegisterFrameBuffer()
Prototype

RetCode vpu_DecRegisterFrameBuffer(DecHandle handle,

 FrameBuffer * bufArray, int num, int stride,

 DecBufInfo * pBufInfo);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

bufArray [input] Pointer to the first element of an array of FrameBuffer for the current decoder instance

num [input] Number of frame buffers

stride [input] Stride value of the given frame buffers

pBufInfo [input] Pointer to a DecBufInfo type structure which describes the additional work buffers. sliceSaveBuffer is only
declared by this structure

Return Value

RETCODE_SUCCESS Registering the frame buffer information completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT VPU is busy with another task or there is something wrong with the VPU. In normal
operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the application receives this value,
the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence between API functions. In this case, the application
might have called this function before successfully calling vpu_DecGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER

bufArray is invalid-it is not initialized or is not valid anymore

RETCODE_INSUFFICIENT_FRAME_BUFFERS

Given number of frame buffers, num, is not enough for the decoder operations of the given handle. num should be greater
than or equal to the value requested by vpu_DecGetInitialInfo().

RETCODE_INVALID_STRIDE The given argument stride is invalid-it is smaller than the decoded picture width, or is not a
multiple of 8.

RETCODE_CALLED_BEFORE Function call is invalid because multiple calls of the current API function for a given
instance are not allowed. The decoder initial information has been already received, so this function call is meaningless and
not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetInitialInfo(). The frame buffers
pointed to by bufArray are managed internally within the VPU. These include reference frames, reconstructed frame, and so
on. The application must not change the contents of the array of frame buffers during the life time of the instance, and num
must not be less than minFrameBufferCount obtained from vpu_DecGetInitialInfo().

3.3.4.8 vpu_DecStartOneFrame()
Prototype

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

62 Freescale Semiconductor, Inc.

RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam * param);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

param [input] Pointer to a DecParam type structure which describes the decoder options

Return value

RETCODE_SUCCESS Decoding a new frame started successfully. This return value does not mean that decoding a frame
completed successfully.

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence between API functions. The application might have
called this function before successfully calling vpu_DecRegisterFrameBuffer(). This function should be called after
successfully calling vpu_DecRegisterFrameBuffer().

RETCODE_DEBLOCKING_OUTPUT_NOT_SET

Deblocking filter option is activated but required deblocking output information is not available. If deblocking filter is
enabled for MPEG-4, the application should register the frame buffer information of deblocking filtered output using
vpu_DecGiveCommand().

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

This function starts decoding one frame. Returning from this function does not mean the completion of decoding one frame,
only that encoding of one frame successfully initiated. If this event is signaled, then vpu_DecGetOutputInfo() is called to
get the decoded output information. Every call of this function should be matched with vpu_DecGetOutputInfo() with the
same handle. Before vpu_DecGetOutputInfo() is called, the application cannot call another API function except for
vpu_IsBusy(), vpu_DecGetBitstreamBuffer(), or vpu_DecUpdateBitstreamBuffer().

When the application uses pre-scan mode, there is only a very small chance that the decoder may hang. For the VC-1 SP/MP
decoder, pre-scan mode is not supported.

3.3.4.9 vpu_DecGetOutputInfo()
Prototype

RetCode vpu_DecGetOutputInfo(DecHandle handle, DecOutputInfo * info);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

info [output] Pointer to a DecOutputInfo type structure which describes the picture decoding results for the current decoder
instance

Return Value

RETCODE_SUCCESS Receiving the output information of current frame completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed. Also, this
value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence between API functions. vpu_DecStartOneFrame()
with the same handle might not have been called before calling this function

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 63

RETCODE_INVALID_PARAM Given argument parameter, pInfo, is invalid-it has a null pointer or contains improper
values for some member variables.

Description

The application received the output information of the decoder by calling this function after the
VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer information containing the
reconstructed image. The host application calls this function after the frame decoding is finished and before starting further
processing.

NOTE
If pre-scan mode is enabled, the application should check prescanResult. If the value of
prescanResult = 0, the other output information is meaningless.
vpu_DecStartOneFrame() and vpu_DecGetOutputInfo() must be matched.

3.3.4.10 vpu_DecBitBufferFlush()
Prototype

RetCode vpu_DecBitBufferFlush(DecHandle handle);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed. Also, this
value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence between API functions.
vpu_DecRegisterFrameBuffer() with the same handle might not have been called before calling this function.

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this function. If the
bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each instance are set to the bitstream buffer
start address.

3.3.4.11 vpu_DecClrDispFlag()
Prototype

RetCode vpu_DecClrDispFlag(DecHandle handle, int index);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

index [input] Frame buffer index to be cleared

Return Value

RETCODE_SUCCESS Receiving the output information of the current frame completed successfully

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed. Also, this
value is returned when vpu_DecStartOneFrame() is matched with vpu_DecGetOutputInfo() with different handles.

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

64 Freescale Semiconductor, Inc.

RETCODE_WRONG_CALL_SEQUENCE

Current API function call is invalid considering the allowed sequence between API functions.
vpu_DecRegisterFrameBuffer() with the same handle might not have been called before calling this function.

RETCODE_INVALID_PARAM Given argument parameter, index, is invalid-it has improper values.

Description

The application clears the display flag of each frame buffer by calling this function after creating a decoder instance. If the
display flag of the frame buffer is cleared, the frame buffer can be used in the decoding process. Therefore, the application
controls displaying a buffer by clearing the display flag which is set by the VPU at every display index output process. This
API is not needed for the STD_MJPG codec.

3.3.4.12 vpu_DecGiveCommand()
Prototype

RetCode vpu_DecGiveCommand(DecHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] Decoder handle obtained from vpu_DecOpen()

cmd [input] Variable specifying the given command of CodecComand type

param [input/output] Pointer to a command-specific data structure which describes picture I/O parameters for the current
decoder instance

Return Value

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not allowed in the current instance

RETCODE_INVALID_HANDLE Given handle for current API function call, handle, is invalid. This return code might be
caused if handle has not been obtained by vpu_DecOpen() or if handle is of an instance which has been closed.

RETCODE_FAILURE_TIMEOUT Hardware is already busy with other operation and unavailable for current API calling.

Description

This function is provided to give applications a certain level of freedom for reconfiguring decoder operations after creating a
decoder instance. The options which can be changed dynamically while decoding a video sequence are shown in table below.

Table 6. Decoder Commands

Command Description

ENABLE_ROTATION Enables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_ROTATION Disables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

ENABLE_MIRRORING Enables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_MIRRORING Disables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 65

Table 6. Decoder Commands (continued)

Command Description

SET_MIRROR_DIRECTION Sets the mirror direction of the post-rotator. param is a pointer to MirrorDirection. *param
should be one of the following:

• MIRDIR_NONE-No mirroring
• MIRDIR_VER-Vertical mirroring
• MIRDIR_HOR-Horizontal mirroring
• MIRDIR_HOR_VER-Both directions

Return values are as follows:

RETCODE_SUCCESS Given mirroring direction is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given mirroring
direction is invalid

SET_ROTATION_ANGLE Sets the counter-clockwise angle for post-rotation. param a pointer to an integer which
represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return
values are as follows:

RETCODE_SUCCESS Given rotation angle is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given rotation
angle is invalid

SET_ROTATOR_OUTPUT Sets the rotator output buffer address. param a pointer to a structure representing the physical
addresses of the YCbCr components of the output frame. For storing the rotated output for a
display, at least one more frame buffer should be allocated. When multiple display buffers are
required, the application changes the buffer pointer of the rotated output at every frame by
issuing this command. Return values are as follows:

RETCODE_SUCCESS Given frame buffer pointer is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given frame
buffer pointer is invalid

SET_ROTATOR_STRIDE Sets the stride size of the frame buffer containing rotated output. param is the stride value of
the rotated output. Return values are as follows:

RETCODE_SUCCESS Given stride value is valid

RETCODE_INVALID_PARAM Given argument parameter, param, is invalid so given stride
value is invalid. The stride value must be greater than 0 and a multiple of 8.

DEC_SET_SPS_RBSP Applies the SPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a SPS RBSP to a decoder completed successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, the current instance might not be an AVC (H.264)
decoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid-it has a null pointer or
contains improper values for some member variables.

Table continues on the next page...

i.MX 6Dual/Quad VPU Driver API Reference

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

66 Freescale Semiconductor, Inc.

Table 6. Decoder Commands (continued)

Command Description

DEC_SET_PPS_RBSP Applies the PPS stream to the decoder received from a certain out-of-band reception scheme.
The stream should be in RBSP format and big endian. param is a pointer to a DecParamSet
structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the size of the
stream in bytes. Return values are as follows:

RETCODE_SUCCESS Transferring a PPS RBSP to decoder completed successfully

RETCODE_INVALID_COMMAND Given argument, cmd, is invalid-it is undefined or not
allowed in the current instance. In this case, current instance might not be an AVC (H.264)
decoder instance.

RETCODE_INVALID_PARAM Given argument, param, is invalid-it has a null pointer or
contains improper values for some member variables.

ENABLE_DERING Enables the VPU internal dering operation. Returns RETCODE_SUCCESS.

DISABLE_DERING Disables the VPU internal dering function. Returns RETCODE_SUCCESS.

DEC_SET_REPORT_
BUFSTAT

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid-it has a null pointer
or addr in EncReportInfo is a null pointer when enable is 1

DEC_SET_REPORT_
MBINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid-it has a null pointer
or addr in EncReportInfo is a null pointer when enable is 1

DEC_SET_REPORT_
MVINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag is 1,
so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid-it has a null pointer
or addr in EncReportInfo is a null pointer when enable is 1

DEC_SET_REPORT_
USERDATA

param is a pointer to an DecReportInfo. addr cannot be a null pointer and size cannot be zero
when the enable flag is 1, so the user needs to allocate memory. The user can call malloc() to
allocate the buffer since continuous physical memory is not needed. Return values are as
follows:

RETCODE_INVALID_PARAM Given argument parameter, param is invalid-it has a null pointer
or addr in EncReportInfo is a null pointer when enable is 1

4 VPU Control
This section describes the VPU control scheme based on the API functions and includes some practical programming issues.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 67

4.1 VPU Initialization
When the host processor enables the VPU for the first time, the following initialization process should be performed. These
operations are completed by calling a single API function, vpu_Init().

• Disable the BIT processor by setting BIT_CODE_RUN (BASE + 0x000) = 0
• Write the BIT processor microcode to the SDRAM accessible by the VPU during run-time
• Download the first N Kbytes of microcode to the BIT processor code memory
• Set the BIT processor buffer pointers, working buffer, parameter buffer and code buffer
• Set the stream buffer control options and the frame buffer endian mode
• Enable interrupt and reset registers
• Enable the BIT processor by setting BIT_CODE_RUN register = 1
• Wait until vpu_IsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in the following
sections.

4.1.1 Version Check of BIT Processor Microcode
The application can check the version information of the BIT processor microcode during runtime. The version number of
microcode is a 32-bit value. The 16 most significant bits are the internal product number, and the 16 least significant bits are
the version number specified by the following rule:

• Bits 15:12 = Major revision
• Bits 11:8 = Minor revision
• Bits 7:0 = Revision patches

This version number can have a value from 0.0.0 to 15.15.255. A dedicated command, vpu_GetVersionInfo(), is used for
this version check and is supported after initialization.

4.1.2 BIT Processor Enable and Disable
The BIT processor has a dedicated register that activates or deactivates the BIT processor during run-time, BIT_CODE_RUN
(BASE + 0x000). During initialization, the BIT processor program memory is updated and some configuration registers for
controlling VPU operations are also set. During this process, the BIT processor should be disabled. After finishing the
initialization process, the host processor enables the BIT processor. Then the BIT processor starts its own internal
initialization process and is ready for operation.

4.1.3 BIT Processor Data Buffer Management
The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated memory space
includes memory space for the BIT processor microcode, internal work buffer, parameter buffers, and so on. The size of each
sub-buffer as follows:

#define CODE_BUF_SIZE (132*1024) // byte size of Code buffer

#define WORK_BUF_SIZE (256*1024) // byte size of Work Buffer

#define PARA_BUF_SIZE (8*1024) // byte size of Parameter Buffer

In the VPU API, the initialization function only receives the start address of this internal buffer as an argument. Therefore,
the total sum of the VPU processing buffer space starting from the start address should be dedicated memory space for the
VPU and no other process should access this memory space while the VPU is enabled. It is highly recommended for the host

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

68 Freescale Semiconductor, Inc.

processor to reserve the specified size of the dedicated buffer for the BIT processor and call vpu_Init() with the start address
of the reserved memory. The start addresses of internal buffer partitions, code buffer, work buffer and parameter buffer, are
calculated inside of the vpu_Init() function and the calculated start addresses are set in the host interface.

In addition to the above sub-buffers, the VPU requires buffers for saving SPS/PPS and SLICE RBSP when decoding a H.264
stream. In general, 5 Kbytes is sufficient for the SPS/PPS save buffer and a quarter of the raw YUV image size is sufficient
for the SLICE save buffer. If the VPU requires more buffer space to decode a H.264 stream, the VPU reports a buffer
overflow.

4.1.4 BIT Processor Microcode Management
The BIT processor has its own program memory inside of the VPU, but the content of this program memory is dynamically
updated according to the required codec standard. The advantage of this dynamic microcode reloading is the reduction of
program memory size. This advantage is meaningful because the BIT processor generally requires many sets of microcode to
support several codec standards in duplex mode. Generally speaking, it seldom happens that the codec standard is changed in
the middle of a codec application. So dynamic reloading for changing the codec is not a burden in cycle consumption. In the
worst case, the dynamic code reloading happens once per picture processing, but considering the amount of maximum
reloaded code, it is not a large burden to the VPU cycle consumption.

Since the dynamic reloading is completed by the VPU itself, the host processor only needs to copy the given microcode to the
reserved code buffer before initializing the VPU. Of course, the first loading of the microcode to the BIT processor program
memory should be completed separately by the host processor.

4.1.5 Stream Buffer Management
The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data. There are two
different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer scheme is used for host applications to
reserve a fixed size of memory space and use it during codec operations. On the other hand, the line buffer scheme is used for
host application to allocate a stream buffer dynamically and use it frame-by-frame.

The host processor also can choose the endian option of the stream buffer and can enable or disable the buffer full/empty
check option. All these options for stream buffer data management are stored in a dedicated host interface register,
BIT_BITSTREAM_CTRL, and are referenced by the BIT processor during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may require a different
streaming option for each decoder instance. For example, while playing a local video file, the application might need to
decode a digital video broadcast. In this case, the different types of streaming mode can be helpful for the application design
and the different streaming option is applied to each decoder instance independently.

4.1.5.1 Ring-Buffer Scheme (Packet Mode)
The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In packet-based
streaming based on a ring-buffer, the read and write pointers automatically wrap around at the boundaries. When the
application downloads a new chunk of the bitstream, the application should check the available space in the bitstream buffer.
Even though the available space can easily be calculated from the read pointer, write pointer and buffer size, the VPU API
provides a dedicated function for providing the buffer read pointer, buffer write pointer and the available space in the stream
buffer, vpu_DecGetBitStreamBuffer(). Based on the returned value from this API function, the application downloads a
new chunk of bitstream data whose size should be smaller than the available buffer space. The amount of bits transferred into
the stream buffer should be notified to the VPU using vpu_DecUpdateBitStreamBuffer().

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 69

4.1.6 Interrupt Signaling Management
To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion of a requested
operation as well as stream buffer empty/full. For some commands with a quick return, interrupt signaling is not helpful so
interrupt signaling is not provided.

The VPU provides interrupt signaling for the following commands:

• BIT_RUN_COMPLETE-BIT processor initialization complete after setting BIT_CODE_RUN
• DEC_SEQ_INIT-Decoder sequence initialization complete
• DEC_SEQ_END-Decoder sequence termination complete
• DEC_PIC_RUN-Decoder picture processing complete
• DEC_SET_FRAME_BUF-Decoder frame buffer registration complete
• DEC_PARA_SET-External header syntax transfer to decoder complete
• DEC_BUF_FLUSH-Flushing decoder stream buffer complete

DEC_SEQ_INIT and DEC_PIC_RUN can cause the VPU to stall when the input bitstream is not large enough. So enabling
the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary cycle consumptions in the host application.
Each interrupt is easily enabled or disabled by writing 0 or 1 to the corresponding bit field of interrupt enable register. When
an interrupt is signaled, the application checks the source of the interrupt by checking the value of interrupt reason register.
When interrupt signaling is not easily applicable, these interrupt can be replaced by a polling scheme by reading the BIT
processor busy-flag.

NOTE
Only the DEC_PIC_RUN interrupt is used by applications. The other interrupts are used
internally by the API or not supported.

4.2 Encoder Control

4.2.1 Creating an Encoder Instance
After initialization of the VPU, an application creates an encode instance and acquires a handle for specifying that encoder
instance as the first step to run an encoder operation. This is accomplished using a single API function called
vpu_EncOpen().

When creating a new encoder instance, the application specifies the internal features of the encoder instance through the
EncOpenParam structure. This structure includes the following information about the new encoder instance:

• Bitstream buffer address and size-Physical address of the bitstream buffer start and its size
• Codec standard-Video codec standard such as H.263, MPEG-4, H.264 or MJPEG
• Picture size-Picture width and height
• Target frame rate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and vbvBufferSize-

VBV mode parameters are optional even when rate control is enabled
• Gop size-Frequency of periodic intra (or IDR) pictures in the encoded stream output
• Slice enable/disable, slice size mode and slice size-Slice mode enable or disable as well as the slice size and size mode

(number of bits or number of Mbytes in each slice)
• Output report such as sliceReport, mbReport and qpReport, and so on. qpReport option is only supported in H.263/

MPEG-4 encoders-Informative output data such as slice boundary, MB boundary in encoded bitstream
• Miscellaneous options such as enableAutoSkip and intraRefresh-Enable auto-skipping of pictures when the output bit

count is large enough as well as enable intra-refresh for error robustness and the number of intra MB in a non-intra
picture

• Ring buffer mode enable, allows streaming mode setting for each encoder instance independently-Application decides
whether a ring-buffer based streaming scheme is used or not. When this option is disabled, a frame-based streaming
scheme is used with a line-buffer scheme

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

70 Freescale Semiconductor, Inc.

• Intra quantization step-Intra Qstep value is configurable by specifying this value greater than 0. Even if rate control is
enabled, the VPU encoder uses this fixed quantization step for all I-frames. This intra quantization step is re-
configurable after creating an instance dynamically.

• Video standard specific parameters-Specify standard-specific parameters for each video codec standard such as error
resilience tools in MPEG-4, Annexes in H.263, deblocking and FMO parameters in H.264, source chroma format and
thumbnail parameters and table coefficients in MJPEG and so on.

Using these options, the application receives a well optimized output for the requirements of the target application. Some
output information options such as sliceReport, mbReport, qpReport, and so on, help application developers satisfy the
constraints for target applications.

For example, for a fixed packet size, an application might need to insert one slice to a certain amount of bits. If the slice size
is given by the number of bits, it does not ensure that the output slice size is smaller than the given size because of the
variable length characteristics of the encoding process. Therefore, the application divides the slice into two packets which
causes an inefficiency in the packetization. To achieve an easy packetization, the application sets the slice size to
(packet_size - N) with a certain margin of N, which allows the output slice size to be less than the packet size. Then the
application easily adds a slice into a packet by referring to the slice boundary information provided by the VPU as encoder
output.

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0, 4:2:0, 4:2:2
horizontal/vertical and 4:4:4 formats are supported in the i.MX 6Dual/Quad MJPEG encoder. The i.MX 6Dual/Quad VPU
also supports encoding using a user defined Huffman Table and Q matrix. To encode using a user defined Huffman Table
and Q matrix, the host must save the coefficients in a pre-defined format and set the pointer to the area.

After creating an encoder instance with these parameters, the application cannot change these parameters. If the application
wants to change any of these basic parameters, it should close this instance and re-create another encoder instance with new
initial parameters. However, the application may need to change some of these initial parameters depending on the target
application environment. Using the dynamic configuration command, the VPU API enables the application to configure part
of these initial parameters dynamically. For details, refer to vpu_EncGiveCommand().

The API function, vpu_EncOpen(), does not require any operations on the VPU side but declares all of the internal
parameters used in later stages as well as the bitstream buffer information.

4.2.2 Configuring VPU for Encoder Instance

4.2.2.1 Sequence Initialization
After registering all of the required information for the new encoder instance, the host application configures the VPU to
support the new encoder instance. This procedure is completed by setting the encoder related information in the VPU host
interface registers and giving a command, ENC_SEQ_INIT, to the VPU for initiating the internal configuration operation in
the VPU.

This process is mainly completed by an API function, vpu_EncGetInitialInfo(), and this function return a crucial output
parameter for encoder operations, the minimum number of frame buffers. Normally, this process does not require much time,
and it should be done only once at the beginning of each encoder instance. Therefore, it is not recommended to use an
interrupt signal for this function, but interrupt signaling is allowed after completion of this operation by enabling the
corresponding bit on interrupt enable register.

4.2.2.2 Registering Frame Buffers during configuration process
The configuration process is completed by registering the frame buffers to the VPU for picture encoding operations. In this
final stage of configuration, the parameter returned from vpu_EncGetInitialInfo(), the minimum number of frame buffers,
has an important meaning. This parameter means that the application should reserve at least the same number of frame

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 71

buffers to the VPU for proper encoding operation. For MJPEG, the frame buffer is not necessary, because MJPEG does not
need motion compensation. Therefore, only the frame buffer stride is transferred to the VPU in this stage. The stride value is
used as the stride of the source image frame buffer.

4.2.2.3 Generating High-Level Header Syntaxes
Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPS in AVC) is not supported.

When the encoder instance has been opened by calling vpu_EncGetInitialInfo(), the application generates the high-level
header syntaxes such as VOS/VO/VOL headers in MPEG-4 and SPS/PPS in AVC from the VPU using
vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for negotiation in the transport protocol layer
of the application.

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream buffer. The
recommended way for generating the header syntaxes is to use the ENC_PUT_AVC/MP4 _HEADER command by the
stream buffer. If the application uses this set of commands, the resulting header syntaxes are stored into the bitstream buffer
according to the given endian setting.

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the base address of the
bitstream buffer. If the application does not read out each header syntax one-by-one, they are overwritten by the following
header syntaxes. If the application wants to read out a set of header syntaxes (such as VOS/VO/VOL or SPS/PPS), then the
application should disable DecBufReset and enable the DecBufFlush bit. After completing the generation of the last header
syntax, the application can read out a cascaded set of header syntaxes together.

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to generate header
syntaxes in the middle of encoding. It can be accomplished using ENC_GET_XXX_HEADER for MPEG-4, and
ENC_GET_XXX_RBSP for AVC. Regardless of the streaming mode, this command generates header syntaxes successfully,
but the endian setting is always big endian. So for little endian systems, an endian conversion should be performed.

4.2.3 Running Picture Encoder on VPU

4.2.3.1 YUV Input Loading
Before running a picture encoder operation, the host application should provide a 4:2:0 or 4:2:2 vertical formatted input YUV
image with a pre-defined size for H.263, MPEG-4 and H.264. The host should provide 4:2:0, 4:2:2 vertical/horizontal, 4:4:4
or 4:0:0 formatted input YUV for MJPEG. If the input image is coming from an external video input device, such as a CMOS
sensor, the VPU idles while waiting for completion of the receiving input picture. To avoid this idling, use a dual buffering
scheme for the input image so that the encoder does not spend any cycles idling before starting operation.

4.2.3.2 Initiating Picture Encoding
When activating picture encoding operations, the application provides the following information to the VPU:

• Source frame address-Base address of each component of input YUV picture
• Quantization step-for the current picture which is ignored when rate control is enabled
• Forced frame skip and forced I-picture options-Forced frame skip is skipping the current frame encoding

unconditionally and force I-picture is encoding current frame as I-frame unconditionally
• Source format-The VPU supports 4:2:2 vertical format source image. The source image is converted to 4:2:0 format

automatically

After providing this information to the VPU, the host processor initiates a picture encoding operation by sending a
ENC_PIC_RUN command to the VPU.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

72 Freescale Semiconductor, Inc.

These processes can be performed by calling a single API function, vpu_EncStartOneFrame() with the EncParam structure.
This API function initiates a picture encoding operation. Return from this API does not mean that picture encoding is
completed, only that the encoding operation began successfully.

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate control option is
disabled. This additional feature is provided to support application-specific VBR encoder operations.

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic frame skipping in
the VPU rate control is used for limiting the output amount of the bitstream under the given target bit-rate. Also, the forced
frame skip can be used by the application when encoding a picture is problematic under certain external situations, for
example, if the channel condition is temporarily unacceptable and transmitting the encoded stream is impossible. Then the
application can suspend the encoder operation for a while using this forced frame skip option.

The forced I-frame option is used when the remote receiver side reports an error during decoder operation. Even though a
certain error concealment or error robustness scheme might be implemented on the decoder side, the best way to recover
from a decoder error is to send an I-frame. Using this forced I-frame option, the application can achieve error-recovery of the
remote receiver side very effectively.

4.2.3.3 Completion of Picture Encoding
Picture encoder operation takes a certain amount of time and the application can be completing other tasks while waiting for
the completion of picture encoding operation, such as packetization of the encoded stream for transmission. The application
can use two different type of schemes for detecting completion of the picture encoding operation: polling a status register or
interrupt signaling. When the application is using a polling scheme, the application checks the BusyFlag register of the BIT
processor. Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt signal for the
ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register. Therefore, the application can use this
dedicated interrupt signal from the VPU to determine the completion of the picture encoder operation.

4.2.3.4 Encoder Stream Handling
When the encoder stream buffer is large enough to store any size of picture stream, the encoder does not need to retrieve any
bitstream data during the picture encoder operation. After the encoder operation is complete, the host application reads the
encoded bitstream according to the requirements of packetization.

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder buffer-full occurs and
until this buffer-full situation is resolved, the encoder task running on the VPU is stalled. Therefore, while the picture is
encoding, the application should continue reading out the encoded bitstream from stream buffer to avoid this stalling.

When using a ring-buffer scheme with a limited size of encoder stream buffer, stream reading during encoder operation is
recommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer(),
the application can easily handle the read pointer while accessing the encoder bitstream buffer. If the ring-buffer option is
disabled with a stream buffer large enough to store one encoded picture data, the host can wait to read the encoded bitstream
at the end of each picture encoding. In this case, the application can safely complete other tasks while the picture encoding is
running on the VPU. The vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer() functions have no
meaning when the application uses the frame-based streaming option.

4.2.3.5 Acquiring Encoder Results
When picture encoding is complete, the host application retrieves the encoded output such as the encoded picture type,
number of slices, and so on. According to the input parameter settings of the picture encoding, the slice boundary and MB
boundary information can also be acquired from the VPU. For H.263/MPEG-4 decoding, the MB Qstep information can be
acquired from the VPU. This encoder output information is generally placed on the parameter buffer with pre-defined
formats (for the predefined formats of the output information, refer to the i.MX 6Dual/Quad Applications Processor
Reference Manual). Therefore, the application can read out this information directly from the parameter buffer using the base
address of each data structure.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 73

The VPU API provides a function for retrieving the output results of the picture encoder, VPU_EncGetOutputInfo(), which
has a output data structure that includes the following information:

• Start address of encoded picture and its size
• Number of slices in the encoded picture
• Slice boundary information in the encoded bitstream
• MB boundary information in the encoded bitstream
• Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal information of encoded
picture depending on the codec standard.

The slice information is useful for packet-based applications which have limitations of the slice start in the video packet. The
slice information is also useful for implementing slice re-ordering on the application side such as Arbitrary Slice Ordering
(ASO) in the H.264 standard.

The VPU API includes a constraint on using the encoder initiation function and the encoder result acquisition. When using
the VPU API, the application should always use these two functions as a pair. This means that without calling the result
acquisition function, vpu_EncGetOutputInfo(), the next picture encoding operation is not initiated by calling
vpu_EncStartOneFrame(). Most VPU commands are not allowed unless the application calls VPU_EncGetOutputInfo()
after completion of the picture encoding operation. This constraint is used to protect the encoded results from being
overwritten from another thread by mistake in a multi-instance environment. Therefore, the application should regard the
vpu_EncGetOutputInfo() function as a releasing command of the VPU from the current picture encoding operation.

4.2.4 Terminating an Encoder Instance
When the application finishes with the encoder operation and terminates an encoder instance, the application releases the
handle of this instance to inform the VPU that this instance is terminated by giving the SEQ_END command to the VPU.
This can be accomplished by calling vpu_EncClose() function.

4.2.5 Dynamic Configuration Commands (picture encoding
operations)

While running sequential picture encoding operations, the application may need to give special commands to the VPU such
as rotating the input pictures before encoding, inserting a high layer header syntaxes, and so on. The VPU API provides a set
of commands to support the following special requests from the host application:

• Rotate and mirror source frame before encoding
• Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264 for external use
• Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264
• Change encoder parameters such as bitrate, frame rate, GOP number, slice mode and so on dynamically between

picture encoding operations

4.3 Decoder Control

4.3.1 Creating a Decoder Instance
After initialization of the VPU, the next step to run a decoder operation is to create a decoder instance and acquire a handle
for specifying that decoder instance. This is accomplished using a single API function, vpu_DecOpen().

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

74 Freescale Semiconductor, Inc.

When creating a new decoder instance, the application specifies the internal features of this decoder instance through the
DecOpenParam structure. This structure includes the following information about the new decoder instance:

• Bitstream buffer address and size-Physical address of bitstream buffer start address and its size
• Codec standard-Video codec standard such as H.263, MPEG-4, H.264 or VC-1
• MPEG-4 deblocking filter enable-Enable or disable MPEG-4 deblocking filter option
• ReorderEnable-Enable or disable H.264 display reordering option, this option is ignored for other decoder standards. It

should usually be set to 1.
• SPS/PPS RBSP save buffer address and size-Physical address and size of buffer for SPS and PPS
• Enable thumbnail decoding of MJPEG-Enable thumbnail decoding. If the host enables thumbnail decoding, the

decoded output is s thumbnail

For decoding, most information is acquired from the input stream, so there are few required parameters for creating a decoder
instance. The VPU API function, VPU_DecOpen(), does not require any operations on the VPU side but declares all the
internal parameters to be used in later stage as well as the bitstream buffer information.

4.3.1.1 AVC Display Reordering
The AVC-specific display reordering option should be used carefully, because it drastically varies the behavior of the AVC
decoder. In principle, this option should always be enabled because the flag for this option is embedded in the header syntax.
According to the options in the header, the required frame buffer size is automatically determined by the VPU.

When creating a decoder instance for H.264, the application should decide if display reordering is used. In principle, this bit
field should be set to 1, because the display reordering option is enabled or disabled automatically according to the values of
the corresponding header fields. But in practice, there are too many streams which do not actually use display reordering but
display reordering option is enabled.

Display reordering generally requires many more decoder buffers, a much longer delay, and some complex constraints in
decoder operations. When display reordering is not used even though the display reordering option is enabled on the baseline
profile stream, the application can force the VPU decoder to ignore this option and a flag is provided for this case.

When this option is disabled, the minimum number of frame buffers is reference frame number + 2. Whenever one frame
decoding is complete, a display (or decoded) output is provided from the VPU, so the decoder operation is the same as a
normal decoder operation.

But when this option is enabled, the minimum number of frame buffers is MAX(reference frame number, 16) + 2 for the
worst case. After decoding one frame, the VPU cannot provide a display output because display order can be different from
the decoding order. In the worst case, the first display output is provided from the VPU after decoding 17 frames. Because of
this characteristic of display reordering, the VPU AVC decoder always decodes display delay + 1 frames during the first call
of the picture decoding when display reordering is enabled in the stream.

In practice, there are many streams which do not use display reordering, but the flag in the header is enabled. In this case, the
host application must allocate unnecessarily more frame buffers and apply large delays. Considering this practical cases, this
option for forced-disable of display reordering is provided in the VPU API.

4.3.2 Configuring VPU for Decoder Instance

4.3.2.1 Feeding Bitstream into Stream Buffer
For the decoder, sequence initialization performs parsing of high level header syntaxes such as VOS/VO/VOL in MPEG-4
and SPS/PPS in H.264 for reading out decoder configurations. To start sequence initialization, the application fills the
decoder stream buffers with enough bitstream data. In some applications, the host applications can not guarantee that those
kinds of header syntaxes are placed at the beginning of the bitstream. In this case, until the VPU successfully receives all of
the required information from the input stream, the application should keep feeding the input data stream to the decoder
bitstream buffer.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 75

To feed the input bitstream, the host application should know the available space in the bitstream buffer. This is determined
using the read pointer, write pointer and stream buffer size because the stream buffer operates as a ring-buffer. Getting the
available space in the stream buffer, the application can directly download the decoder input stream to the bitstream buffer.
After completing the stream download, the application informs the amount of downloaded stream data by updating the stream
write pointer.

The VPU API provides an API function to get the stream read pointer, write pointer and available space,
vpu_DecGetBitstreamBuffer(). Updating the write pointer is accomplished using the API function,
vpu_DecUpdateBitstreamBuffer().

4.3.2.2 Sequence Initialization when configuring VPU for Decoder
Instance

After creating a new instance and feeding the input bitstream to the stream buffer, the application gives the DEC_SEQ_INIT
command to the VPU to get the decoder configuration information from the bitstream. After parsing the header syntaxes, the
decoder returns the following crucial information about the decoder configuration:

• Picture size-Picture width and height
• Frame rate-Decoder frame rate
• Picture cropping rectangle information-Information about H.264 decoder picture cropping rectangle which is the offset

of top-left point and bottom-right point from the origin of frame buffer
• Minimum number of frame buffers
• MPEG-4 option information-Enable or disable MPEG-4 error resilience options such as data partitioned or Reversible

VLC as well as short video header mode
• Frame buffer delay for display reordering-The number of frame delays for supporting display reordering in H.264

decoder
• Annex-J (Deblocking) option indication-This flag indicates whether the deblocking option of the H.263 decoder is

enabled or disabled. When the external post-deblocking filter is used for H.263, this flag is used to avoid repetition of
the H.263 in-loop deblocking filter and external post-deblocking filter

• Number of returned next decoded index after decoding one frame-The number of returned indexes which are used in
next decoding after decoding one frame

• Estimated slice save buffer sizes-The size of the slice save buffer. The VPU reports two different sizes: recommended
and worst-case

• MJPEG thumbnail enable information-This flag indicates whether thumbnail image of MJPEG exists or not. When
thumbnail does not exist in the stream, the VPU returns failure if the host application enables the thumbnail decoding
option

• MJPEG image YUV format-Image YUV format. The host must allocate frame buffer by this value

The picture size acquired from the bitstream might not be a multiple of 16x16. However, to perform the decoder operation
properly, frame buffer size should be a multiple of 16x16. Therefore, the returned size is modified to be a multiple of 16x16
after a ceiling operation. Using the picture size and the minimum number of frame buffers, the application reserves frame
buffers and provides them to the VPU before starting the picture decoding operation.

The frame buffer delay is an H.264-specific parameter for supporting display reordering. If the application supports display
reordering and reordering requires five additional frame buffers, for example, then the first display output comes out from
decoder after decoding the 6th frame. Theoretically, the maximum delay for display reordering is a 16-frames.

The VPU API provides a function to handle the DEC_SEQ_INIT operations, vpu_DecGetInitialInfo(). Completion of this
function is signaled by a dedicated interrupt or by polling the BusyFlag.

An important issue in SEQ_INIT operation is error-handling because any errors in the high layer header syntaxes cause
serious problems in decoding operations. Generally, many marker bits are added to the header syntaxes to assist error
detection. When header syntaxes included in the stream have crucial errors, or when header syntaxes are not received for a
long time, the VPU can be stuck on this task and no other instances can run on the VPU. Therefore, the VPU API provides a
special function which is used in this situation, called vpu_SetSeqInitEsc(). When this function is called and the stream
buffer is empty, the VPU automatically terminates the SEQ_INIT operation. Then the host application decides whether to

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

76 Freescale Semiconductor, Inc.

close this instance or retry SEQ_INIT after running a different codec instance. After escaping from this situation, it is highly
recommend to reset the internal ESCAPE flag by calling the vpu_SetSeqInitEsc() function again. This flag affects all the
decoder instances performing a DEC_SEQ_INIT operation.

4.3.2.3 Registering Frame Buffers
This configuring process is completed by registering the frame buffers to the VPU for picture decoding operations. In this
final stage of configuration, the parameter returned from vpu_DecGetInitialInfo(), the minimum number of frame buffer,
has an important meaning. This parameter means that the application should reserve at least the same number of frame
buffers to the VPU for proper decoding operation.

The size of the frame buffers is calculated from the picture width and height. When both the picture width and height are a
multiple of 16, the picture size is the size as the frame buffers. If both the picture width and height are not a multiple of 16,
the application should apply a ceiling operation to the picture width or picture height to get the smallest multiple of 16 larger
than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is also registered in this step. The recommended
buffer size is given by calling vpu_DecGetInitialInfo().

4.3.3 Running Picture Decoder On VPU

4.3.3.1 Initiating Picture Decoding
When activating a picture decoding operation, the application provides the following information to the VPU:

• I-Frame Search Enable-Enable or disable I-(IDR for H.264) frame search option
• Frame Skip Mode-Enable or disable skipping bitstream for the next frame decoding
• DispOrderBuf-Enable or disable the next display output without decoding

After providing these parameters to the VPU, the application starts the picture decoding operation by sending a
DEC_PIC_RUN command.

The pre-scan option is a special option for scanning the bitstream buffer to check if a full picture stream exists in the stream
buffer. This option allows the application to determine whether the bitstream empty and decoder stalls or not before running
the actual decoder operation. When this option is enabled and there is not a full picture stream in the decoder buffer, the
DEC_PIC_RUN command does not initiate the picture decoding operation and returns immediately. Then the application
decides whether to retry the picture decoding after feeding more bitstream data or to handle other tasks for a while.

The pre-scan mode is also given as an option for general usage of the pre-scan operation. When this flag is set to 0 and there
is at least one full picture stream in the stream buffer, the decoder operation is automatically initiated. On the contrary, when
this flag is set to 1, the DEC_PIC_RUN command returns immediately with a return code representing whether a full picture
stream exists or not. In this case, no picture decoding is initiated. To run picture decoding in this case, the application resets
this flag to 0 and re-sends the DEC_PIC_RUN command.

When display reordering in H.264 is enabled, the first decoded output is only available after decoding many frames. To avoid
this, a constraint is added to the H.264 decoder that requires the decoder to fill all the reordering display buffers at the first
time of picture decoding. That means, if the frame buffer delay received from the stream header is five, the H.264 decoder
should decode six frames at once at the first DEC_PIC_RUN operation. Then, the picture decoding always provides a picture
output to be displayed. In this scenario, the pre-scan might cause problems, because it is designed for the case of one picture
decoding. So when display reordering is enabled, it is recommend that the first DEC_PIC_RUN be performed with pre-scan
disabled.

To support display reordering in H.264 mode, a special parameter is used to flush the stored decoder output from the display
reorder buffer without picture decoding. This option is designed for flushing out the decoded picture not yet displayed at the
end of the decoding video sequence. When the display reordering option is enabled and the reordering frame buffer stores
five decoded pictures, the first display output is available after the 6th frame decoding. Therefore, at the end of the stream

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 77

decoding, there are five decoded pictures which are not displayed yet even though there is no more available bitstream data to
decode. In this case, the application may ignore these five non-displayed pictures or display them by setting the
dispReorderBuf parameter to 1 and sending the DEC_PIC_RUN command until the VPU returns the decoded picture index
of -1.

The VPU API provides an API for handling all these complex operations, vpu_DecStartOneFrame(), which initiates the
picture decoding operation and returns as soon as picture decoding has started on the VPU. Completion of picture decoding is
checked using a different method.

4.3.3.2 Frame Skipping Option
When a decoder error is detected, the application might want to hide the corrupted decoder output. Even though error
concealment is applied to that decoder output, some applications would like to the freeze display instead of showing the
corrupted picture. This output-hiding operation should continue until the decoder meets the next I (or IDR) frame.
Considering AV synchronization, skipping one frame can be a good way to hide a sequence of pictures without affecting the
audio decoding operation.

The frame skipping option is supported for the picture decoding command. As well as skip enable or disable, the skipping
option of detecting an I (or IDR in H.264)-frame can be chosen by the application. So when an error is detected during
picture decoding and the application would like to hide the error-defected pictures, the application can achieve this using the
picture skipping option with I-frame detection enabled. By setting skipframeMode of DecParam to 1, the application easily
performs skipping of non-intra (or non-IDR) frames. While the application enables one frame skipping by setting
skipframeNum of DecParam to 1, pre-scan is automatically enabled and therefore, the frame skip result is translated to a pre-
scan result. While doing one frame skip, the application can detect the results of the frame skipping by checking
prescanresult of DecOutputInfo.

This frame skip feature can be used by the application when the system performance is temporarily degraded and video
decoding is significantly delayed. In this case, it is recommended for the application to use the I-(IDR in H.264 case) frame
detect option. Using this option, the application can only decode I-(or IDR) frame properly without displaying error-defected
frame output.

Multi-frame skipping is also supported by setting skipframeNum of DecParam greater than 1. But multi-frame skipping is not
recommended in normal usage because it may cause problems with AV synchronization.

In the random access case, the I-frame search option can be useful when the keyframe information in the file container is
incorrect.

4.3.3.3 I-Frame Search for Random Access and Trick Mode
When a media player application is designed, trick modes and random access may be desirable features. To achieve these
operations the application, decoder should support a feature for searching the I-frame in the middle of the decoder bitstream.

The I-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number of I-frames skipped
is also set by setting skipframeNum of DecParam. (The same skipframeNum of DecParam is used for specifying the skipped
frame number in frame skipping and I-search; however, the meaning of this value is somewhat different.) If skipframeNum =
N, all the intermediate frames before the (N+1)th next I-frame are skipped. This multiple I-frame skipping might be used for
high speed playback such as fast forward. By increasing the number N, the application can increase the speed of the fast
forward. This kind of fast forward operation depends on the frequency of the I-(IDR) frames in the decoder input bitstream.
Therefore, this type of trick mode can be applicable to applications specifying the maximum interval between I-frames.

Random access is generally supported with a form of slide-bar in a graphic user interface of a player. For supporting this
random access, an I-(or IDR in H.264) frame search operation is needed because decoding intermediate inter-frames causes
visual artifacts on displayed pictures. As well as I-frame search functionality, random access also requires a buffer-reset
scheme that does not cause unexpected artifacts in the decoded output. The steps of random access for the video decoder are
as follows:

1. Freeze the display and reset the decoder bit-stream buffer
2. Read the bitstream from the new file read pointer and transfer it into the decoder

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

78 Freescale Semiconductor, Inc.

3. Enable I-Search and run the picture decoding operation
4. If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion
5. If decoding completion is detected, read the decoder results and resume display

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBufferFlush(). Starting the decoder
operation with I-frame search can also be accomplished by calling vpu_DecStartOneFrame() with iframeSearchEnable of
DecParam set to 1. The number of skipped frames specified by skipframeNum of DecParam is given by 1 in random access
operation. When an interrupt of decoder completion or non-busy state of the BIT processor is detected, the I-frame is
searched and decoded.

When the application uses the I-frame search option, the decoder should skip many bits in the decoder stream buffer.
Therefore, the pre-scan option can be meaningless when used simultaneously with the I-search. In the VPU firmware;
therefore, the pre-scan option is automatically disabled and settings for the pre-scan option are ignored. The application
should handle stream buffer filling until the end of the I-search operation. Larger stream units are recommended in this case;
otherwise, too many stream buffer empty interrupts might occur from the VPU side.

4.3.3.4 Decoder Stream Handling
When the decoder stream buffer includes a full picture stream, the host application does not need to worry about streaming in
the middle of the decoder operation. Using the pre-scan option, the application can determine the status of the bitstream
buffer in advance. If there is no full picture in the stream buffer, the application might feed more stream data to the stream
buffer and start the picture decoding operation.

The VPU API provides an API function to get the stream read pointer, write pointer and available space in one function call,
vpu_DecGetBitstreamBuffer(). The application can get the information about the available space in the stream buffer using
this API and transfer an amount of stream data to the stream buffer which is less than or equal to the available size. When
transferring the stream data, the application should take care of the end of the stream buffer to avoid unexpected data
corruption. When transferring stream data to the stream buffer and the write pointer reaches the end of the stream buffer, the
application should wrap the write pointer around to the beginning of the stream buffer and then continue downloading to
avoid data corruption.

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer(). The write pointer wrap-around and
updating of the write pointer is done by this API function by providing the downloaded stream size. Before updating the
write pointer, the host application must finish transferring the stream data to the stream buffer. If not, a mismatch in access
time may cause problems in the decoder operation.

4.3.3.5 Completion of Picture Decoding
Picture decoder operations take a certain amount of time, and the application can complete other tasks while calling
vpu_WaitForInt() to wait for the completion of the picture decoding operation, such as display processing of the previously
decoded output. The application can use two different schemes for detecting the completion of the picture decoding
operation: polling a status register or waiting for an interrupt signal. When the application uses the polling scheme, the
application checks the BusyFlag Register of the BIT processor. Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt signal for the
DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So the application can easily determine the
completion of the picture decoder operation from this dedicated interrupt signal from the VPU.

4.3.3.6 Acquiring Decoder Results
When picture decoding is complete, the host application retrieves the decoded output, such as the display frame index,
decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan result, and so on. The VPU API
provides a function for retrieving the output results of the picture decoder, vpu_DecGetOutputInfo().

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 79

The VPU API includes a constraint on using the decoder initiation function and decoder result acquisition. When using the
VPU API, the application should always use these two functions as a pair. This means that without calling the result
acquisition function, vpu_DecGetOutputInfo(), the next picture decoding operation is not initiated by calling
vpu_DecStartOneFrame(). This constraint is used to protect the decoded results from being overwritten from other thread
by mistake in multi-instance environment. Therefore, the application should regard vpu_DecGetOutputInfo() function as a
releasing command of the VPU from the current picture decoding operation.

4.3.3.6.1 Reading Display Output
The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the display output picture
is stored. It always equals the frame buffer index to be displayed and it can be different from the decoded picture index when
display ordering control is enabled, such as display reordering of H.264, B-frame in VC-1, and so on.

At the beginning of sequence decoding, even after decoding several frames, there is no display output from decoder because
of the order of display. For H.264 reordering, in worst case, the first display output can come out after the 17th frame
decoding. Therefore, at times there is no proper display buffer index. In this case, the VPU decoder returns a negative frame
buffer index for indexFrameDisplay of -3 or -2 depending on the frame skip option. Only at the end of sequence decoding is
this value equal to -1 and the application can terminate the current decoder instance without any loss in picture display.

Table below shows the display output status based on the indexFrameDisplay values.

Table 7. indexFrameDisplay Values

indexFrameDisplay
Value

Display Output Status

Non-negative value Output index value points to the frame buffer index of the display output

-1 Signals the end of sequence decoding, there is no more display output when the stream end is
signaled to the VPU

-2 There is temporarily no display output because of the frame-skip option

-3 There is temporarily no display output even without any action by the host application. Usually, this
value occurs when an IDR picture is received for H.264 display-reordering mode

4.3.3.6.2 Reading Decoded Output
The decoded frame index, indexFrameDecoded, is an optional output to the host application. This index is used to represent
the frame buffer number where the decoded picture is stored. Usually, the host application does not need to worry about this
index. The display index, indexFrameDisplay, is sufficient to handle the output of the VPU decoder.

When there are not enough frame buffers to be written with decoded image data, this value is equal to -1 (0xFFFF). In this
situation, the application re-calls vpu_DecStartOneFrame() after clearing the display flag by calling
vpu_DecClrDispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the end of sequence
decoding, the host application needs to flush out the decoded frames for display. During this flushing operation, no actual
decoding operations are performed. Under this situation, this value is equal to -1 (0xFFFF) to represent that there is no
decoded frame this time. This negative decoded index is also used when picture decoding is skipped because of skip option
or picture header error.

4.3.3.6.3 Reading Pre-Scan Result
The pre-scan result flag represents whether a full picture stream is included in the bitstream buffer before picture decoding.
When this flag is equal to 0, the decoding operation is not performed because there is no full picture stream in the stream
buffer. If application enables pre-scan and sets pre-scan mode to 0 (decoding a picture when full picture stream exists), the
application should check this output parameter first to determine whether a decoding operation is performed or not.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

80 Freescale Semiconductor, Inc.

When pre-scan result is 0 and the stream buffer is full and the current stream buffer is too small to store a full picture stream.
To avoid dead-lock, the host application should disable the pre-scan option and re-run the picture decoding operation.

4.3.3.6.4 Display Cropping in H.264
The display cropping option in H.264 forces the host application to display part of the frame buffers. The information about
the cropping window is provided by SPS. In SPS, four offset values of cropping rectangles are presented, and these four
offset values are given by the picCropRect structure to the host application. Using these four offset values, the host
application can easily detect the position of the target output window. When display cropping is off, the cropping window
size is 0.

4.3.3.6.5 Next Decoded Frame Index
The next decoded frame index, indexNextFrameDecoded[3], is an optional output to the host application. This indexes are
used to represent the frame buffer index which is used in the next VPU_DecStartOneFrame() call. The application might
not stop calling VPU_DecStartOneFrame() to protect display corruption, if some of these indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the end of sequence
decoding, the host application needs to flush out the decoded frames for display. During this flushing operation, no actual
decoding operations are performed. Under this situation, this value might be ignored.

4.3.3.6.6 Reading Lack of Additional Work Buffer
The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one frame. If the VPU
reports lack of PS save buffer, the VPU can not properly decode the remaining input stream; therefore, it is best to close
current instance in this situation. If the VPU reports lack of slice save buffer, the VPU can choose to either close and reopen
the current instance or continue picture decoding regardless of display corruption until the next I-frame.

4.3.3.7 Management of Displaying Buffers Decoded
The VPU has flags to indicate if the frame buffer is displayed or not internally. The flag is set after the VPU returns the
display frame index automatically and the VPU never uses the buffer for which the display flag is set. Before starting the
decoding process, the VPU checks if there is a frame buffer available and returns immediately if there is no frame buffer to
be written with decoded image with a current decoded index of -1. The host application clears the flag after completion of
displaying the frame buffers by calling vpu_DecClrDispFlag().

4.3.4 Escape from Decoder Hang
Even when pre-scan is used, it is still possible for an application to experience decoder hanging because of a stream error or
lack of available stream at the end of sequence decoding. In the middle of picture decoding, decoder hanging is signaled to
the application through the decoder buffer empty interrupt if this interrupt is enabled, and the application can avoid decoder
hanging by putting more bitstream data to stream buffer.

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging by means of
garbage insertion or sending an end-of-stream command to the VPU decoder. this is accomplished by calling
vpu_DecUpdateStreamBuffer() with size of 0. As soon as the VPU detects this setting, the VPU terminates the current
picture decoding with error concealment if applicable.

4.3.5 Terminating a Decoder Instance

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 81

4.3.5.1 Stream End and Last Picture in Stream Buffer
After the host application meets the end of stream and sends all of the stream data in the stream buffer, the host application
must determine when the last picture output is coming out. If there is no display delay, this task is simple. But if display delay
exists (reordering of the decoded pictures for display), this task might be difficult for the host application.

In the VPU API, a flag that indicates the end-of-stream is used. After sending the last byte of the stream data to bitstream
buffer, the host application sets this flag and calls the vpu_DecStartOneFrame() function. After the last display output
picture has come out, the decoded picture index is changed to -1. When the host application receives this index, host
application detects the end of the sequence processing.

When the display delay exists (display reordering option in H.264, B-frames in other codecs), the host application gets the
buffered decoder output frame even after finishing actual decoding operation. In this case, the host application calls the
VPU_DecStartOneFrame() as usual. Until the delayed display output frames are completely flushed out, the VPU decoder
provides the frame index of the newly displayed output to the host application. And if there is no more available output, the
VPU decoder returns a frame index of -1.

4.3.5.2 Closing Current Instance
When the application finishes the last picture decoding operation and terminates a decoder instance, the application releases
the handle of this instance and inform the VPU that this instance is terminated by giving the SEQ_END command to the
VPU. This can be accomplished by calling the vpu_DecClose() function.

4.3.6 Dynamic Configuration Commands
While running sequential picture decoding operations, application may need to give a special command to the VPU. The
VPU API provides a set of commands to support the following special requests from the host application:

• Rotate and mirror output frame before decoding
• Apply SPS and PPS from the external out-of-band protocol
• Specify the frame buffer address for the MPEG-4 deblocking filtered output

4.4 Example Applications
This section discusses the example applications provided for the i.MX 6Dual/Quad VPU API.

4.4.1 VPU Library
The VPU library and header file source code is located under rpm/BUILD/imx-lib*/vpu after selecting and unpacking the
imx-lib package with the Linux Image Target Builder (LTIB). The detailed source code structure of the VPU library and
kernel space is presented in the Video Processing Unit (VPU) Driver chapter of the i.MX 6Dual/Quad EVK Linux Reference
Manual.

The user may optionally configure the following following environment variables:

• VPU_FW_PATH-Directory where the vpu_fw_imx6q.binfile is located. If this variable is not exported by the user, the
vpu_fw_imx6q.bin file must be located in the /lib/firmware/vpu directory.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

82 Freescale Semiconductor, Inc.

4.4.2 VPU Example Application
The VPU example application is located under rpm/BUILD/imx-test*/test/mxc_vpu_test after selecting an unpacking the
imx-test package with LTIB. This application gives an example of how to use the VPU API to control the VPU hardware to
implement a decoder or an encoder. The following test cased are included in this test application:

• Decode streams to save to a YUV file or to display on a LCD
• Encode streams from a YUV file or from camera captured data
• Loopback-encode camera captured YUV data then decode it to a YUV and display on a LCD simultaneously
• Network-encode camera captured YUV data and send it to another side to decode by UDP

NOTE
Only packet-based streaming mode with ring-buffer is included in this example
application

Refer to the readme file for details about the usage of the application example. Decode Stream to Display on LCD, and
Encode Stream from Camera Captured Data, describe the example applications usage for decoding streams to display on a
LCD and encoding streams from camera captured data. These two examples are described in detail to illustrate how proper
frame buffer management between the VPU and V4L interface improves performance and avoids memory copy, especially
memory for decoded YUV or captured YUV data.

4.4.2.1 Decode Stream to Display on LCD
The application should complete the following steps to decode streams to display on a LCD:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function only needs
to be called once.

2. Open a decoder instance using vpu_DecOpen(). Call IOGetPhyMem() before opening the instance to input
oparam.bitstreamBuffer. Call IOGetVirtMem() to get the corresponding virtual address of the bitstream buffer, then
fill the bitstream at this address in user space. Call IOGetPhyMem() for both the physical PS save buffer and physical
slice save memory for H.264.

3. Call vpu_DecGetBitstreamBuffer() to get the bitstream buffer address to provide the proper amount of bitstream.
4. After transferring the decoder input stream, declare the amount of bits transferred into the bitstream buffer using

vpu_DecUpdateBitstreamBuffer().
5. Get crucial parameters for decoder operations such as picture size, frame rate, required frame buffer size, and so on

using vpu_DecGetInitialInfo(). Set escape to 1 by calling vpu_DecSetEscSeqInit(handle, 1) before this function is
called. Set escape to 0 by calling vpu_DecSetEscSeqInit(handle, 0) after vpu_DecGetInitialInfo() is called.

6. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper size of the frame
buffers and notify the VPU using vpu_DecRegisterFrameBuffer(). The requested frame buffer in PATH_V4L2 case
to display the stream on the LCD is as follows:

• Add two more buffers than minFrameBufferCount to the frame buffer count: vpu_DecClrDispFlag() is used to
control if the frame buffer can be used for decoder again. One framebuffer dequeue from IPU is delayed for
performance improvement and one framebuffer is delayed for display flag clear. Performance is better when
more buffers are used if IPU performance is bottleneck.

• Call v4l_display_open() to open the v4l device and request v4l buffers for image display. If VPU rotation or
dering is enabled, larger frame buffers are needed. Two extra buffers are added in this example application.
Register the first minFrameBufferCount + 2 buffers as bufY, bufCb, bufCr for the VPU decoder, and memory
transfer is not needed for performance improvement. Call IOGetPhyMem() for bufMvCol part for VPU decoder
usage.

• Inform the VPU to register minFrameBufferCount + 2 buffers by calling vpu_DecRegisterFrameBuffer().
7. Start picture decoder operation picture-by-picture using vpu_DecStartOneFrame().

• If rotation is enabled, the SET_ROTATION_ANGLE, SET_ROTATOR_STRIDE and ENABLE_ROTATION
commands need to be given before starting decoding by calling vpu_DecGiveCommand(). The rotator stride is
the picture height if the rotation angle is 90° or 270°; otherwise, the stride is the picture width.

• If dering is enabled, the ENABLE_DERING command needs to be given before starting decoding.
• If mirror is enabled, the SET_MIRROR_DIRECTION and ENABLE_MIRRORING commands need to be

given.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 83

• Since there are two extra buffers used for rotation or dering, the SET_ROTATOR_OUTPUT commands need to
be set before each picture decoder.

• Start the picture decoder operation by calling vpu_DecStartOneFrame().
8. Wait for the completion of the picture decoder operation interrupt event by calling vpu_WaitforInt(). vpu_IsBusy() is

used to check if the VPU is busy. If the VPU is not busy, go to the next step. Otherwise, wait again and more bitstream
can be filled to the bitstreamBuffer while waiting.

9. Check the results of the decoder operation using vpu_DecGetOutputInfo(). Go to different case as defined by
outputinfo. For example, -1 in outinfo.indexFrameDisplay indicates that the decoder completed. Values of -2 or -3 in
outinfo.indexFrameDisplay indicates that no picture needs to be displayed. A positive value in
outinfo.indexFrameDisplay indicates the displayed buffer index, and v4l_put_data() can be called to display the image
on the LCD.

In the v4l_put_data() function, IOCTL VIDIOC_QBUF is set to queue the buffer to the v4l module for display. Also,
IOCTL VIDIOC_DQBUF is used to get one buffer that image has been displayed and can be used again for the
decoder. Here, one frame buffer dequeue from the IPU is delayed, then the VPU and IPU operate in an asynchronous
method for performance improvement.

10. After displaying the nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag(). This function does not
need to be called for the STD_MJPG codec. One frame buffer is delayed for display flag clear, that means, previous
dequeued framebuffer index was cleared by the VIDIOC_DQBUF IOCTL.

11. If there is more bitstream to decode, go to step 7, otherwise go to the next step
12. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing the instance
although the last output information may be not useful.

13. Free all memory that was allocate by calling IOFreePhyMem() and IOFreeVirtMem(). v4l_display_close() needs to
be called to free all v4l related resource, including v4l buffers.

14. Call vpu_UnInit() to release the system resources before exit. If there are multi-instances supported in this application,
this function only needs to be called once.

4.4.2.2 Encode Stream from Camera Captured Data
The application should complete the following steps to encode streams from camera captured data:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function only needs
to be called once.

2. Open a encoder instance using vpu_EncOpen(). Call IOGetPhyMem() to input encop.bitstreamBuffer for the physical
continuous bitstream buffer before opening the instance. Call IOGetVirtMem() to get the corresponding virtual
address of the bitstream buffer, then fill the bitstream to this address in user space. If rotation is enabled and the
rotation angle is 90° or 270°, the picture width and height must be swapped.

3. If rotation is enabled, give commands ENABLE_ROTATION and SET_ROTATION_ANGLE. If mirror is enabled,
give commands ENABLE_MIRRORING and SET_MIRROR_DIRECTION.

4. Get crucial parameters for encoder operations such as required frame buffer size, and so on using
vpu_EncGetInitialInfo().

5. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper size of the frame
buffers and notify the VPU using vpu_EncRegisterFrameBuffer(). The requested frame buffer for the source frame in
PATH_V4L2 to encode camera captured data is as follows:

• Allocate the minFrameBufferCount frame buffers by calling IOGetPhyMem() and register them to the VPU for
encoder using vpu_EncRegisterFrameBuffer().

• Another frame buffer is needed for the source frame buffer. Call v4l_capture_setup() to open the v4l device for
camera and request v4l buffers. In this example, three v4l buffers are allocated. Call v4l_start_capturing() to
start camera capture. Pass the dequeued v4l buffer address by calling v4l_get_capture_data() as encoder source
frame in each picture encoder, then no need to memory transfer for performance improvement.

6. Generate the high-level header syntaxes using vpu_EncGiveCommand().
7. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame(). Pass dequeued v4l buffer address

by calling v4l_get_capture_data() as the encoder source frame before each picture encoder is started.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

84 Freescale Semiconductor, Inc.

8. Wait for the completion of picture decoder operation interrupt event calling vpu_WaitforInt(). Use vpu_IsBusy() to
check if the VPU is busy. If the VPU is not busy, go to the next step; otherwise, wait again.

9. After encoding a frame is complete, check the results of encoder operation using vpu_EncGetOutputInfo(). After the
output information is received, call v4l_put_capture_data() to the VIDIOC_QBUF v4l buffer for the next capture
usage.

10. If there are more frames to encode, go to Step 7; otherwise, go to the next step.
11. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing the instance
although the last output information may be not useful.

12. Free all allocated memory and v4l resource using IOFreePhyMem() and IOFreeVirtMem(). Call
v4l_stop_capturing() to stop capture.

13. Call vpu_UnInit() to release the system resources. If there are multi-instances supported in this application, this
function only needs to be called once.

4.4.3 Other Issues
Some important issues are as follows:

• Performance is better both on the VPU and IPU when chromainterleave mode is enabled.
• To avoid the VPU hanging if there is not enough stream data, enable prescan in networking mode to first scan the

stream buffer. This flag can be disabled if the bitstream buffer is large in real video playback and the application can
guarantee the bitstream buffer is enough.

• Since IPU rotation performance is better than the VPU, use IPU rotation and not VPU rotation.

VPU Control

i.MX 6Dual/6Quad VPU Application Programming Interface Linux Reference Manual, Rev. X, 05/2012

Freescale Semiconductor, Inc. 85

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number:
i.mx_6dual_quad_vpu_application_programming_interface_linux_reference_manual
Rev. X, 05/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Overview
	Main Features
	Programmability
	Frame-Based Processing
	Program Memory Management
	Multi-Instances

	Host Interface
	Host Interface Overview
	Communication Models
	Data Handling
	Host Interface Registers

	API-Based VPU Control

	i.MX 6Dual/Quad VPU Driver API Reference
	API Features
	Simple Software Control
	Handling Multi-Instances
	Frame-Based Codec Processing

	Type Definitions
	Type Definitions (common data types)
	Uint8
	Uint16
	Uint32
	PhysicalAddress
	CodStd
	RetCode
	CodecCommand
	GDI_TILED_MAP_TYPE
	MirrorDirection
	Mp4HeaderType
	AvcHeaderType
	EncHandle
	DecHandle

	Data and Structure Definitions
	FrameBuffer
	DecMaxFrmInfo
	Rect
	EncHeaderParam
	EncParamSet
	EncMp4Param
	EncH263Param
	EncAvcParam
	EncMjpgParam
	EncSliceMode
	EncOpenParam
	EncReportBufSize
	EncInitialInfo
	EncParam
	EncReportInfo
	EncOutputInfo
	SearchRamParam
	DecParamSet

	DecOpenParam
	DecReportBufSize
	DecInitialInfo
	ExtBufCfg
	DecBufInfo
	DecParam
	DecReportInfo
	Vp8ScaleInfo
	Vp8PicInfo
	AvcFpaSei
	MvcPicInfo
	DecOutputInfo
	vpu_versioninfo
	VPUMemAlloc
	iram_t

	API Definitions
	API Definitions Overview
	Basic Architecture
	Decoder Operation Flow
	Encoder Operation Flow

	Control API
	vpu_Init()
	vpu_UnInit()
	vpu_IsBusy()
	jpu_IsBusy()
	vpu_WaitForInt()
	vpu_GetVersionInfo()
	IOGetPhyMem()
	IOFreePhyMem()
	IOGetVirtMem()
	IOFreeVirtMem()
	IOGetIramBase()
	vpu_SWReset()

	Encoder API
	vpu_EncOpen()
	vpu_EncClose()
	vpu_EncGetInitialInfo()
	vpu_EncGetBitstreamBuffer()
	vpu_EncUpdateBitstreamBuffer()
	vpu_EncRegisterFrameBuffer()
	vpu_EncStartOneFrame()
	vpu_EncGetOutputInfo()
	vpu_EncGiveCommand()

	Decoder API
	vpu_DecOpen()
	vpu_DecClose()
	vpu_DecGetInitialInfo()
	vpu_DecSetEscSeqInit()
	vpu_DecGetBitstreamBuffer()
	vpu_DecUpdateBitstreamBuffer()
	vpu_DecRegisterFrameBuffer()
	vpu_DecStartOneFrame()
	vpu_DecGetOutputInfo()
	vpu_DecBitBufferFlush()
	vpu_DecClrDispFlag()
	vpu_DecGiveCommand()

	VPU Control
	VPU Initialization
	Version Check of BIT Processor Microcode
	BIT Processor Enable and Disable
	BIT Processor Data Buffer Management
	BIT Processor Microcode Management
	Stream Buffer Management
	Ring-Buffer Scheme (Packet Mode)

	Interrupt Signaling Management

	Encoder Control
	Creating an Encoder Instance
	Configuring VPU for Encoder Instance
	Sequence Initialization
	Registering Frame Buffers during configuration process
	Generating High-Level Header Syntaxes

	Running Picture Encoder on VPU
	YUV Input Loading
	Initiating Picture Encoding
	Completion of Picture Encoding
	Encoder Stream Handling
	Acquiring Encoder Results

	Terminating an Encoder Instance
	Dynamic Configuration Commands (picture encoding operations)

	Decoder Control
	Creating a Decoder Instance
	AVC Display Reordering

	Configuring VPU for Decoder Instance
	Feeding Bitstream into Stream Buffer
	Sequence Initialization when configuring VPU for Decoder Instance
	Registering Frame Buffers

	Running Picture Decoder On VPU
	Initiating Picture Decoding
	Frame Skipping Option
	I-Frame Search for Random Access and Trick Mode
	Decoder Stream Handling
	Completion of Picture Decoding
	Acquiring Decoder Results
	Reading Display Output
	Reading Decoded Output
	Reading Pre-Scan Result
	Display Cropping in H.264
	Next Decoded Frame Index
	Reading Lack of Additional Work Buffer

	Management of Displaying Buffers Decoded

	Escape from Decoder Hang
	Terminating a Decoder Instance
	Stream End and Last Picture in Stream Buffer
	Closing Current Instance

	Dynamic Configuration Commands

	Example Applications
	VPU Library
	VPU Example Application
	Decode Stream to Display on LCD
	Encode Stream from Camera Captured Data

	Other Issues

