
MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-
MIMX8ULP
Rev. 1 — 20 June 2023 User manual

Document Information
Information Content

Keywords MCUXSDKIMX8ULPGSG, 8ULP, EVK-MIMX8ULP, EVK9-MIMX8ULP

Abstract This document describes the steps to get started with MCUXpresso SDK for EVK-MIMX8ULP and
EVK9-MIMX8ULP.

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

1 Overview

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides comprehensive software source
code to be executed in the i.MX 8ULP M33 core. The MCUXpresso SDK includes a flexible set of peripheral
drivers designed to speed up and simplify development of embedded applications. These drivers can be
used standalone or collaboratively with the A35 cores running another Operating System (such as Linux
OS Kernel). Along with the peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of
example applications covering everything from basic peripheral use case examples to demo applications. The
MCUXpresso SDK also contains RTOS kernels, device stack, and various other middleware to support rapid
development.

For supported toolchain versions, see the MCUXpresso SDK Release Notes for EVK-MIMX8ULP (document
MCUXSDKIMX8ULPRN).

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for MCUXpresso.

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral Drivers
Real Time Kernel

(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support folders

MCUXpresso SDK provides example applications for development and evaluation boards. Board support
packages are found inside the top level <board_name> folder, and each supported board has its own folder
(an MCUXpresso SDK package can support multiple boards). Within each <board_name> folder, there are
various sub-folders for each example they contain. These include (but are not limited to):

• demo_apps: Applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s
peripheral drivers for a single use case. These applications typically only use a single peripheral, but there are
cases where multiple are used.

• rtos_examples: Basic FreeRTOS examples showcasing the use of various RTOS objects (semaphores,
queues, and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers.

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.
• multicore_examples: Simple applications intended to concisely illustrate how to use middleware/multicore

stack.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
2 / 26

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

• mmcau_examples: Simple applications intended to concisely illustrate how to use middleware/mmcau stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the
MCUXpresso SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder
structure, see MCUXpresso SDK API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant
to that specific piece of hardware. Although we use the hello_world example (part of the demo_apps folder),
the same general rules apply to any type of example in the <board_name> folder.

The following figure shows the contents of the hello_world application folder.

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example
to start developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, various source files are referenced.
The MCUXpresso SDK devices folder is the central component to all example applications. It means that the
examples reference the same source files and if one of these files is modified, it could potentially impact the
behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and a few other
files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU
• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table

definitions
MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
3 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

• devices/<device_name>/utilities: Items such as the debug console that are used by many of the
example applications

• devices/<devices_name>/project Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOS files are in the
rtos folder. The core files of each of these projects are shared, so modifying one could have potential impacts
on other projects that depend on that file.

Note: The RPMsg-Lite library is located in the <install_dir>/middleware/multicore/rpmsg-lite
folder. For detailed information about the RPMsg-Lite library, see the RPMsg-Lite User’s Guide, open the
index.html located in the <install_dir>/middleware/multicore/rpmsg_lite/doc folder.

Note: The package does not include Xplorer IDE and DSP Fusion user guide. If you want to run examples
related to DSP Fusion, contact the NXP representative (FAE/SE).

3 Toolchain introduction

The MCUXpresso SDK release for i.MX 8ULP includes the build system to be used with some toolchains. This
chapter lists and explains the supported toolchains.

3.1 Compiler/Debugger

The release supports building and debugging with the toolchains listed in Table 1.

You can choose the appropriate one for development.

• Arm GCC + SEGGER J-Link GDB Server. This is a command-line tool option and it supports both Windows
OS and Linux OS.

• IAR Embedded Workbench for Arm and SEGGER J-Link software. The IAR Embedded Workbench is an IDE
integrated with editor, compiler, debugger, and other components. The SEGGER J-Link software provides the
driver for the J-Link Plus debug probe and supports the device to attach, debug, and download.

Compiler/Debugger Supported host OS Debug probe Tool website

Arm GCC/J-Link GDB Server Windows OS/Linux OS J-Link Plus developer.arm.com/open-source/gnu-
toolchain/gnu-rm
www.segger.com

IAR/J-Link Windows OS J-Link Plus www.iar.com
www.segger.com

Table 1. Toolchain information

Download the corresponding tools for the specific host OS from the website.

Note: To support i.MX 8ULP, the patch for IAR and SEGGER J-Link should be installed. The patch named iar_
segger_support_patch_imx8ulp.zip can be used with the MCUXpresso SDK. See readme.txt in the patch for
additional information about patch installation.

4 Running a Demo Application Using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and debug demo
applications. This section also lists the necessary driver libraries provided in the MCUXpresso SDK. The
hello_world demo application targeted for the MIMX8ULP hardware platform is used as an example, though
these steps can be applied to any board, demo, or example application in the MCUXpresso SDK.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
4 / 26

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://www.segger.com
https://www.iar.com
http://www.segger.com
https://www.nxp.com/webapp/Download?colCode=SDK_MX8ULP_3RDPARTY_Patch&appType=license
https://www.nxp.com/webapp/Download?colCode=SDK_MX8ULP_3RDPARTY_Patch&appType=license

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Note: Run an application using imx-mkimage. Generate and download flash.bin to emmc or flexspi nor flash
when DBD_EN (Deny By Default) is fused.

4.1 Linux OS host

The following sections provide steps to run a demo compiled with Arm GCC on Linux host.

4.1.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso
SDK demo application with the Arm GCC toolchain, as supported by the MCUXpresso SDK.

4.1.1.1 Install GCC Arm embedded toolchain

Download and run the installer from the GNU Arm Embedded Toolchain Downloads page. The GNU Arm
embedded toolchain contains the GCC compiler, libraries, and other tools required for bare-metal software
development. The GCC toolchain should correspond to the latest supported version, as described in the
MCUXpresso SDK Release Notes for EVK-MIMX8ULP (document MCUXSDKIMX8ULPRN).

Note: See Section 9 for setting up Linux host before compiling the application.

4.1.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to
the Arm GCC embedded toolchain installation path. For this example, the path is:

$ export ARMGCC_DIR=<path_to_GNUARM_GCC_installation_dir>

4.1.2 Build an example application

To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar to the following:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc
For this example, the exact path is: <install_dir>/boards/evkmimx8ulp/demo_apps/hello_
world/armgcc

2. Run the build_debug.sh script at the command-line to perform the build. The output is shown as below:
$./build_debug.sh
-- TOOLCHAIN_DIR:
-- BUILD_TYPE: debug
-- TOOLCHAIN_DIR:
-- BUILD_TYPE: debug
-- The ASM compiler identification is GNU
-- Found assembler:
-- Configuring done
-- Generating done
-- Build files have been written to:
Scanning dependencies of target hello_world.elf
 < -- skipping lines -- >
[100%] Linking C executable debug/hello_world.elf
[100%] Built target hello_world.elf

Note: To run the application, see the Section 6.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
5 / 26

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

4.2 Windows OS host

The following sections provide steps to run a demo compiled with Arm GCC on Windows OS host.

4.2.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso
SDK demo application with the Arm GCC toolchain on Windows OS, as supported by the MCUXpresso SDK.

4.2.1.1 Install GCC Arm embedded toolchain

Download and run the installer from the GNU Arm Embedded Toolchain Downloads page. The GNU Arm
embedded toolchain contains the GCC compiler, libraries, and other tools required for bare-metal software
development. The GCC toolchain should correspond to the latest supported version, as described in
MCUXpresso SDK Release Notes for EVK-MIMX8ULP (document MCUXSDKIMX8ULPRN).

Note: See Section 9 for setting up Windows host before compiling the application.

4.2.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to
the Arm GCC embedded toolchain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Arm Embedded Toolchain\9 2020-q2-update

Reference the installation folder of the GNU Arm GCC embedded tools for the exact pathname.

4.2.2 Build an example application

To build an example application, follow these steps.

1. Open the GCC Arm embedded toolchain command window. To launch the window on the Windows
operating system, select Start -> Programs -> GNU Tools ARM Embedded <version> -> GCC
Command Prompt.

Figure 3. Launch GCC command prompt
2. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:
<install_dir>/boards/evkmimx8ulp/demo_apps/hello_world/armgcc

3. Type build_debug.bat at the command-line or double-click the build_debug.bat file in Windows
Explorer to perform the build. The output is as shown in Figure 4.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
6 / 26

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 4. hello_world demo build successful

Note: To run the application, see the Section 6.

5 Running a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the
MCUXpresso SDK using IAR. The hello_world demo application targeted for the MIMX8ULP hardware
platform is used as an example, although these steps can be applied to any example application in the
MCUXpresso SDK.

Note:

• Newer versions of the IAR are compatible with older versions of the project format. However, using an older
version of the IAR to load the SDK project that uses the newer format generates an error. To use the SDK, it is
recommended to upgrade the IAR version to 9.30.1.

• Run an application using imx-mkimage. Generate and download flash.bin to emmc or flexspi nor flash when
DBD_EN (Deny By Default) is fused.

5.1 Build an example application

Perform the following steps to build the hello_world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located
using the following path:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

For using MIMX8ULP-EVK hardware platform as an example, the hello_world workspace is located at:
<install_dir>/boards/evkmimx8ulp/demo_apps/hello_world/iar/hello_world.eww

Other example applications may have additional folders in the respective paths.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world – Debug.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
7 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 5. Demo build target selection
3. To build the demo application, click Make, highlighted in red in Figure 6.

Figure 6. Build the demo application
4. The build completes without errors.

Note: To run the application, see the Section 6.

6 Run an application using imx-mkimage

This section describes the steps to write a bootable SDK image to the eMMC/FlexSPI NOR flash for the i.MX
processor.

Note: Attach core to debug code with J-Link probe.

The following steps describe how to write container image (flash.bin):

1. Connect the DEBUG UART slot on the board to your PC through the USB cable. The Windows OS installs
the USB driver automatically and the Ubuntu OS finds the serial devices as well.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
8 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

2. On Windows OS, open the device manager, find USB serial Port in Ports (COM and LPT). Assume that
the ports are COM9 and COM10. One port is for the debug message from the Cortex-A35 and the other is
for the Cortex-M33. The port number is allocated randomly, so opening both is beneficial for development.
On Ubuntu OS, find the TTY device with name /dev/ttyUSB* to determine your debug port. Similar to
Windows OS, opening both is beneficial for development.

Figure 7. Determining the COM port of target board
3. Generate m33 firmware:

• For RAM target:
$./build_debug.sh

or
$./build_release.sh

• For FLASH target(XIP):
$./build_flash_debug.sh

or
$./build_flash_release.sh

4. Get imx-mkimage, s400 firmware(mx8ulpa2-ahab-container.img), OPTEE(tee.bin),
upower firmware(upower.bin), uboot-spl(u-boot-spl.bin), uboot(u-boot.bin), and TF-
A(bl31.bin) from the Linux release package.
a. Clone the imx-mkimage from NXP public git.

$ git clone https://github.com/nxp-imx/imx-mkimage

b. Check out the correct branch. The branch name is named after Linux release version which is
compatible with the SDK. You can get the version information from corresponding Linux Release Notes
document.
$ cd imx-mkimage
$ git checkout [branch name]

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
9 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

c. Get s400 firmware(mx8ulpa2-ahab-container.img).
$ cp mx8ulpa2-ahab-container.img iMX8ULP/

d. Get upower firmware(upower.bin).
$ cp upower.bin iMX8ULP/

e. Get u-boot-spl.bin and u-boot.bin.
• For EVK-MIMX8ULP:

$ cp u-boot-spl.bin-imx8ulpevk-sd iMX8ULP/u-boot-spl.bin
$ cp u-boot-imx8ulpevk.bin-sd iMX8ULP/u-boot.bin

• For EVK9-MIMX8ULP:
$ cp u-boot-spl.bin-imx8ulp-9x9-lpddr4-evk-sd iMX8ULP/u-boot-spl.bin
$ cp u-boot-imx8ulp-9x9-lpddr4-evk.bin-sd iMX8ULP/u-boot.bin

f. Get bl31.bin.
$ cp bl31-imx8ulp.bin-optee iMX8ULP/bl31.bin

5. Generate container image table with imx-mkimage:

boot type A35 M33 SW5[8:1]

Single Boot make SOC=iMX8ULP flash_singleboot
For RAM target:
make SOC=iMX8ULP flash_singleboot_m33
Note: Does not support pack Flash target into flash.bin when boot
type is single boot type.

1000_xx00 Single Boot-e
MMC

make SOC=iMX8ULP flash_singleboot_flexspi
For RAM target:
make SOC=iMX8ULP flash_singleboot_m33_flexspi
Note: Does not support pack Flash target into flash.bin when boot
type is single boot type.

1010_xx00 Single Boot-Nor

Dual Boot make SOC=iMX8ULP flash_dualboot 1000_0010 A35-eMMC/
M33-Nor

make SOC=iMX8ULP flash_dualboot_
flexspi

1010_0010 A35-Nor/M33-
Nor

Low Power Boot make SOC=iMX8ULP flash_dualboot 1000_00x1 A35-eMMC/
M33-Nor

make SOC=iMX8ULP flash_dualboot_
flexspi

For RAM target:
make SOC=iMX8ULP flash_
dualboot_m33
For Flash target:
make SOC=iMX8ULP flash_
dualboot_m33_xip

1010_00x1 A35-Nor/M33-
Nor

Note:
• For details, see imx-mkimage/iMX8ULP/README.
• Does not support pack Flash target firmware to flash.bin when boot type is single boot type.
• RAM target: debug/release.
• Flash target: flash_debug/flash_release.
• Need generate two flash.bin and download to emmc/flexspi2 nor flash of a35 and flexspi0 nor flash of

m33, one for A35, another one for M33 when boot type is dual boot type or low power boot type.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
10 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

6. Build the application (for example, hello_world), get binary image sdk20-app.bin, copy to imx-
mkimage project folder iMX8ULP/ and rename to m33_image.bin.
cp sdk20-app.bin <imx-mkimage path>/iMX8ULP/m33_image.bin

7. Under imx-mkimage project folder, execute the following command to generate m33 container image.
a. When boot type is dual boot/low power boot type:

For RAM (TCM) target:
make SOC=iMX8ULP flash_dualboot_m33 (write flash.bin to flexspi0 nor flash of m33;

For Flash target:
make SOC=iMX8ULP flash_dualboot_m33_xip (write flash.bin to flexspi0 nor flash of m33);

b. When boot type is single boot type:
for RAM (TCM) target and sw5[8:1] = 1000_xx00 Single Boot-eMMC:
make SOC=iMX8ULP flash_singleboot_m33 (write flash.bin to emmc);

for RAM (TCM) target and sw5[8:1] = 1010_xx00 Single Boot-Nor:
make SOC=iMX8ULP flash_singleboot_m33_flexspi (write flash.bin to flexspi2 nor flash of
a35);

8. Copy the flash.bin image to your tftpboot server.
9. Write flash.bin to flexspi0 nor flash. There are two ways:

a. Write flash.bin to flexspi0 nor flash with uboot.
i. Switch to single boot type (sw[8:1]=1000 0000) and boot the board, assuming your board can

boot to U-Boot.
ii. At the U-Boot console, execute following commands to download image (from network) and flash to

FlexSPI0 NOR flash.
setenv serverip <tftpboot server ip>
dhcp
tftpboot 0xa0000000 flash.bin
setenv erase_unit 1000
setexpr erase_size ${filesize} + ${erase_unit}
setexpr erase_size ${erase_size} / ${erase_unit}
setexpr erase_size ${erase_size} * ${erase_unit}
sf probe 0:0
sf erase ${erase_size}
sf write 0xa0000000 0 ${filesize}

b. Write flash.bin to flexspi0 nor flash with JLink:
J-Link>connect
Device>
TIF>s (Choose target interface as SWD, unless failed to do anything)
Speed>
J-Link>r
J-Link>h
J-Link>loadbin flash.bin 0x4000000

10. Write flash.bin to emmc with uuu (only for the RAM target):
a. Start uuu.

uuu -b emmc workable-flash.bin flash.bin (workable-flash.bin: uboot and m33 image are
 workable)

b. Enter serial download mode.
i. Change SW5[8:1] to 01xx_xxxx Serial Downloader.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
11 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

ii. Enter serial download mode with uboot.
=> fastboot 0

11. Open another terminal application on the PC, such as PuTTY and connect to the debug COM port (to
determine the COM port number, see Section 8). Configure the terminal with these settings:
• 115200
• No parity
• 8 data bits
• 1 stop bit

12. Power off and switch to low-power boot mode (sw5[8:1]=1000 0001), then repower the board.
13. The hello_world application is now executed and a banner is displayed at the terminal. If this is not true,

check your terminal settings and connections.

Figure 8. Hello world demo running on Cortex-M33 core

7 Memory attribution map after doing handshake

The memory attribution map settings after the handshake procedure is successful between Cortex-M33 and
Cortex-A35.

Name Memory block checker/
Memory region

checker (MBC/MRC)

Resulting access level

0x5FFF_FFFFFLEXSPI1 (alias) Non Secure Non Secure

0x5000_0000

Table 2. Memory attribution map for domain 0 in M33 domain

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
12 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Name Memory block checker/
Memory region

checker (MBC/MRC)

Resulting access level

0x4FFF_FFFFFLEXSPI1 Non Secure Non Secure

0x4000_0000

0x380A_BFFFPBridge1 FlexCAN0 (alias) Non Secure Non Secure

0x380A_8000

0x3809_C0FFPBridge1 SAI0 (alias) Non Secure Non Secure

0x3809_C000

0x3809_B02FPBridge1 LPUART1 (alias) Non Secure Non Secure

0x3809_B000

0x3809_8173PBridge1 LPI2C0 (alias) Non Secure Non Secure

0x3809_8000

0x3809_22FFPBridge1 FlexSPI1 (alias) Non Secure Non Secure

0x3809_2000

0x3803_F7FFPBridge0 LPSPI1 (alias) Non Secure Non Secure

0x3803_F000

0x3803_C91FPBridge0 FlexIO0 (alias) Non Secure Non Secure

0x3803_C000

0x3803_92FFPBridge0 FlexSPI0 (alias) Non Secure Non Secure

0x3803_9000

0x280A_BFFFPBridge1 FlexCAN0 Non Secure Non Secure

0x280A_8000

0x2809_C0FFPBridge1 SAI0 Non Secure Non Secure

0x2809_C000

0x2809_B02FPBridge1 LPUART1 Non Secure Non Secure

0x2809_B000

0x2809_8173PBridge1 LPI2C0 Non Secure Non Secure

0x2809_8000

0x2809_22FFPBridge1 FlexSPI1 Non Secure Non Secure

0x2809_2000

0x2803_F7FFPBridge0 LPSPI1 Non Secure Non Secure

0x2803_F000

0x2803_C91FPBridge0 FlexIO0 Non Secure Non Secure

0x2803_C000

0x2803_92FFPBridge0 FlexSPI0 Non Secure Non Secure

0x2803_9000

SSRAM P6 (alias) Non Secure Non Secure 0x3007_FFFF

Table 2. Memory attribution map for domain 0 in M33 domain...continued

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
13 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Name Memory block checker/
Memory region

checker (MBC/MRC)

Resulting access level

0x3006_0000

0x3005_FFFFSSRAM P5 (alias) Non Secure Non Secure

0x3004_0000

0x3003_FFFFSSRAM P4 (alias) Non Secure Non Secure

0x3003_0000

0x3002_FFFFSSRAM P3 (alias) Non Secure Non Secure

0x3002_0000

0x3001_FFFFSSRAM P2 (alias) Non Secure Non Secure

0x3001_0000

0x3000_FFFFSSRAM P1 (alias) Non Secure Non Secure

0x3000_8000

0x3000_7FFFSSRAM P0 (alias) Non Secure Non Secure

0x3000_0000

0x2007_FFFFSSRAM P6 Non Secure Non Secure

0x2006_0000

0x2005_FFFFSSRAM P5 Non Secure Non Secure

0x2004_0000

0x2003_FFFFSSRAM P4 Non Secure Non Secure

0x2003_0000

0x2002_FFFFSSRAM P3 Non Secure Non Secure

0x2002_0000

0x2001_FFFFSSRAM P2 Non Secure Non Secure

0x2001_0000

0x2000_FFFFSSRAM P1 Non Secure Non Secure

0x2000_8000

0x2000_7FFFSSRAM P0 Non Secure Non Secure

0x2000_0000

0x1FFF_FFFFSSRAM P7 (alias) Non Secure Non Secure

0x1FFC_0000

0x1BFF_FFFFFlexSPI0 (alias) Non Secure Non Secure

0x1400_0000

0x0FFF_FFFFSSRAM P7 Non Secure Non Secure

0x0FFC_0000

0x0BFF_FFFFFlexSPI0 Non Secure Non Secure

0x0400_0000

Table 2. Memory attribution map for domain 0 in M33 domain...continued

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
14 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Note:

1. Assign Domain 1 for DMA1, USB0, USB1, ENET, USDHC0, USDHC1, USDHC2, and CAAM Master.
2. The bus attribute for DMA1, USB0, USB1, ENET, USDHC0, USDHC1, and USDHC2 is Non Secure.
3. The bus attribute for CAAM Master is Secure.
4. Security level of MBC/MRC settings of other memory space that are not be shown in the table for Domain 1

are Secure, so master cannot access resources that are controlled by MBC/MRC in other memory spaces
when master is in Non Secure state.

Name MBC/MRC Resulting access level

0x280F_FFFFPBridge1 Non Secure Non Secure

0x2808_0000

0x2001FFFFSecure No Access

0x20018000

0x20017FFF

SSRAM P2

Non Secure Non Secure

0x20010000

Table 3. Memory attribution map for domain 1 in M33 domain

Note:

1. Assign Domain 1 for DMA1, USB0, USB1, ENET, UDSHC0, USDHC1, UDSHC2, and CAAM Master.
2. Security level of MBC/MRC settings of other memory space that are not shown in the table for Domain 1 are

Secure, so the master cannot access resources that are controlled by MBC/MRC in other memory spaces.

Name SAU IDAU MBC/
MRC

Resulting
access level

0x3882_FFFFGPIOC_REGS (alias) Secure Secure Secure Secure

0x3882_0000

0x3881_FFFFGPIOB_REGS (alias) Secure Secure Secure Secure

0x3881_0000

0x3880_FFFFGPIOA_REGS (alias) Secure Secure Secure Secure

0x3880_0000

0x3811_10ABMICFIL (alias) Secure Secure Secure Secure

0x3811_1000

0x3811_00FFSAI3 (alias) Secure Secure Secure Secure

0x3811_0000

0x3810_F0FFSAI2 (alias) Secure Secure Secure Secure

0x3810_F000

0x3810_E7FFLPSPI3 (alias) Secure Secure Secure Secure

0x3810_E000

0x3810_D7FFLPSPI2 (alias) Secure Secure Secure Secure

0x3810_D000

LPUART3 (alias) Secure Secure Secure Secure 0x3810_C02F

Table 4. Memory attribution map for domain 6 in M33 domain

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
15 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Name SAU IDAU MBC/
MRC

Resulting
access level

0x3810_C000

0x3810_B02FLPUART2 (alias) Secure Secure Secure Secure

0x3810_B000

0x3810_AFFFI3C1 (alias) Secure Secure Secure Secure

0x3810_A000

0x3810_9173LPI2C3 (alias) Secure Secure Secure Secure

0x3810_9000

0x3810_8173LPI2C2 (alias) Secure Secure Secure Secure

0x3810_8000

0x3810_70FFMRT (alias) Secure Secure Secure Secure

0x3810_7000

0x3810_6087TPM3 (alias) Secure Secure Secure Secure

0x3810_6000

0x3810_5087TPM2 (alias) Secure Secure Secure Secure

0x3810_5000

0x3810_2047PCC2 (alias) Secure Secure Secure Secure

0x3810_2000

0x3810_100FWDOG2 (alias) Secure Secure Secure Secure

0x3810_1000

0x3810_028FMU1_B (alias) Secure Secure Secure Secure

0x3810_0000

0x380A_BFFFFlexCAN0 (alias) Secure Secure Secure Secure

0x380A_8000

0x380A_2303ADC1 (alias) Secure Secure Secure Secure

0x380A_2000

0x380A_1AEBIOMUXC0 (alias) Secure Secure Secure Secure

0x380A_1000

0x3809_D0FFSAI1 (alias) Secure Secure Secure Secure

0x3809_D000

Table 4. Memory attribution map for domain 6 in M33 domain...continued

Note:

1. SAU is disabled.
2. Cortex-M33 can access all of the secure resources. All of the resources (the security level of these

resources that are controlled by MBC/MRC) are secure when Cortex-M33 is in secure state.
3. Assign domain 6 for Cortex-M33.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
16 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Name MBC/MRC Resulting access level

0x280A_1AEBPBridge1 IOMUXC0 Non
Secure

Non Secure

0x280A_1000

0x2809_8173PBridge1 LPI2C0 Non
Secure

Non Secure

0x2809_8000

0x2809_5087PBridge1 TPM0 Non
Secure

Non Secure

0x2809_5000

0x2809_10BFPBridge1 PCC1 Non
Secure

Non Secure

0x2809_1000

0x2803_92FFPBridge0 FlexSPI0 Non
Secure

Non Secure

0x2803_9000

0x2803_7043PBridge0 SEMA42_0 Non
Secure

Non Secure

0x2803_7000

0x2802_FFFFPBridge0 CGC0 Non
Secure

Non Secure

0x2802_F000

0x2802_B3FFPBridge0 SIM0-S Non
Secure

Non Secure

0x2802_B000

0x2702_028CS400 MU-AP of EdgeLock secure enclave Non
Secure

Non Secure

0x2702_0000

0x2701_0BFCFSB of EdgeLock secure enclave Non
Secure

Non Secure

0x2701_0000

0x1FFF_FFFFNon
Secure

Non Secure

0x1FFF_8000

0x1FFF_7FFF

SSRAM P7

Secure Secure

0x1FFC_0000

0x0BFF_FFFFFlexSPI0 Non
Secure

Non Secure

0x0400_0000

Table 5. Memory attribution map for domain 7 in M33

Note:

1. Security level of MBC/MRC settings of Other memory space that are not shown in the table for Domain 7
are Secure. The master can access resources that are controlled by MBC/MRC in other memory spaces
when the master is in secure state.

2. Assign domain 7 for Cortex-A35.

8 How to determine COM port

This section describes the steps to determine the debug COM port number of your NXP hardware development
platform.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
17 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

1. Linux: The serial port can be determined by running the following command after the USB Serial is
connected to the host:
$ dmesg | grep "ttyUSB"
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is Cortex-A core debug console and the other is for Cortex M33.
2. Windows: To determine the COM port, open Device Manager. Click the Start menu and type Device

Manager in the search bar.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
18 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 9. Device Manager
3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port

names are different for all the NXP boards.
a. USB-UART interface

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
19 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 10. USB-UART interface

9 How to set up Windows/Linux host system

An MCUXpresso SDK build requires that some packages are installed on the host. Depending on the used host
operating system, the following tools should be installed.

Linux:

• cmake
$ sudo apt-get install cmake $ # Check the version >= 3.0.x $ cmake –-version

Windows:

• MinGW
The Minimalist GNU for Windows OS (MinGW) development tools provide a set of tools that are not
dependent on third-party C-Runtime DLLs (such as Cygwin). The build environment used by the SDK does
not utilize the MinGW build tools, but does leverage the base install of both MinGW and MSYS. MSYS
provides a basic shell with a Unix-like interface and tools.
1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any

location.
Note: The installation path should not contain any spaces.

3. Ensure that mingw32-base and msys-base are selected under Basic Setup.

Figure 11. Setup MinGW and MSYS
4. Click Apply Changes in the Installation menu and follow the remaining instructions to complete the

installation.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
20 / 26

http://sourceforge.net/projects/mingw/files/Installer/

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 12. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be

found under Control Panel->System and Security->System->Advanced System Settings in the
Environment Variables section. The path is: <mingw_install_dir>\bin.
Assuming the default installation path, C:\MinGW, an example is as shown in Figure 13. If the path is not
set correctly, the toolchain does not work.
Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis SDK
v2.10.0), remove it to ensure that the new GCC build system works correctly.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
21 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 13. Add Path to systems environment
• CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. While installing, ensure that the option Add CMake to system PATH for all users is selected. You can

select install CMake into the path for all users or just the current user. In this example, it is installed for all
users.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
22 / 26

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Figure 14. Install CMake
3. Follow the remaining instructions of the installer.
4. Reboot your system for the path changes to take effect.

10 Revision history

Table 6 below summarizes the revisions to this document.

Revision number Date Substantive changes

1 20 June 2023 Initial public release

Table 6. Revision history

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
23 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

11 Legal information

11.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

11.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

11.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
24 / 26

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

MCUXSDKIMX8ULPGSG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User manual Rev. 1 — 20 June 2023
25 / 26

NXP Semiconductors MCUXSDKIMX8ULPGSG
Getting Started with MCUXpresso SDK for EVK-MIMX8ULP and EVK9-MIMX8ULP

Contents
1 Overview .. 2
2 MCUXpresso SDK board support folders 2
2.1 Example application structure3
2.2 Locating example application source files 3
3 Toolchain introduction ..4
3.1 Compiler/Debugger ..4
4 Running a Demo Application Using Arm

GCC .. 4
4.1 Linux OS host ..5
4.1.1 Set up toolchain ...5
4.1.1.1 Install GCC Arm embedded toolchain 5
4.1.1.2 Add a new system environment variable for

ARMGCC_DIR ...5
4.1.2 Build an example application5
4.2 Windows OS host ..6
4.2.1 Set up toolchain ...6
4.2.1.1 Install GCC Arm embedded toolchain 6
4.2.1.2 Add a new system environment variable for

ARMGCC_DIR ...6
4.2.2 Build an example application6
5 Running a demo application using IAR 7
5.1 Build an example application7
6 Run an application using imx-mkimage8
7 Memory attribution map after doing

handshake ..12
8 How to determine COM port 17
9 How to set up Windows/Linux host system20
10 Revision history .. 23
11 Legal information ..24

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 20 June 2023
Document identifier: MCUXSDKIMX8ULPGSG

	1 Overview
	2 MCUXpresso SDK board support folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Toolchain introduction
	3.1 Compiler/Debugger

	4 Run a demo using Arm GCC
	4.1 Linux OS host
	4.1.1 Set up toolchain
	4.1.1.1 Install GCC Arm embedded toolchain
	4.1.1.2 Add a new system environment variable for ARMGCC_DIR

	4.1.2 Build an example application

	4.2 Windows OS host
	4.2.1 Set up toolchain
	4.2.1.1 Install GCC Arm embedded toolchain
	4.2.1.2 Add a new system environment variable for ARMGCC_DIR

	4.2.2 Build an example application

	5 Running a demo application using IAR
	5.1 Build an example application

	6 Run an application using imx-mkimage
	7 Memory attribution map after doing handshake
	8 How to determine COM port
	9 How to set up Windows/Linux host system
	10 Revision history
	11 Legal information
	Contents

