RENESAS

DATASHEET

ISL79987, ISL79988

4-Channel Differential Input Video Decoder with MIPI-CSI2/BT.656 Output for Around View Applications

FN8907 Rev.1.00 Mar 19, 2019

The ISL79987 and ISL79988 integrate four, high-quality NTSC/PAL/SECAM video decoders that convert analog composite video signals to digital component YCbCr data for automotive applications. Each channel contains a 10-bit ADC that supports single-ended, differential, and pseudo differential composite video inputs. The ISL79987 and ISL79988 use a 4H-comb filter for separating luminance and chrominance to reduce cross noise artifacts, and proprietary clamp and gain controllers. Integrated short-to-battery and short-to-ground detection, advanced image enhancement capabilities such as the programmable Automatic Contrast Adjustment (ACA), and the MIPI-CSI2/ITU-R BT.656 output interface make the ISL79987 and ISL79988 an ideal solution for the demands of automotive around view applications.

Applications

Automotive around view

Related Literature

- For a full list of related documents, visit our website:
 - ISL79987, ISL79988 device pages

Features

Analog Video Decoder

- Software-selectable analog input control allows for combinations of single-ended CVBS and differential CVBS
- Integrated, four-video analog anti-aliasing filters and 10-bit CMOS ADCs with differential and single-ended inputs
- Fully programmable static gain or automatic gain control for the Y-channel
- Programmable white peak control for the Y-channel
- 4-H adaptive comb filter Y/C separation
- · PAL delay line for color phase error correction
- · Digital subcarrier PLL for accurate color decoding
- Digital horizontal PLL for synchronization processing and pixel sampling
- Advanced synchronization processing and sync detection for handling non-standard and weak signals
- Automatic color control and color killer
- Chroma IF compensation
- Programmable output cropping

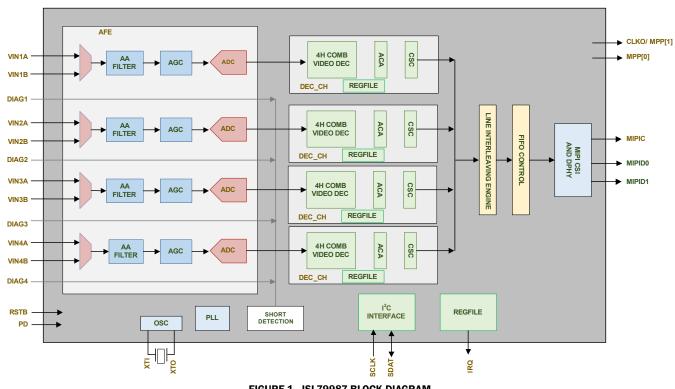


FIGURE 1. ISL79987 BLOCK DIAGRAM

Features (continued)

Video Processing

- · Automatic Contrast Adjustment (ACA)
- · Programmable hue, brightness, saturation, contrast, and sharpness
- · Image enhancement with peaking and CTI

MIPI Output

- MIPI CSI-2 version 1.1 compliant unidirectional output
- · Standard virtual identification channel support
- · Non-standard pseudo virtual channel support
- · One or two data lanes
- YUV422 or RGB565 output format

Digital Output

- · Supports standard ITU-R BT.656 format or time multiplexed output with 27/54/108MHz
- Output voltage 1.8V to 3.3V

Miscellaneous

- · Low power consumption
- · Power save and power-down mode
- · Short-to-battery detection
- · Short-to-ground detection
- · Two wire MPU serial bus interface
- · Supports real time control interface
- · Single 27MHz crystal for all operations
- 1.2V/3.3V power supply
- 48 Ld QFN package
- ISL79987ARZ and ISL79988ARZ are AEC-0100 qualified

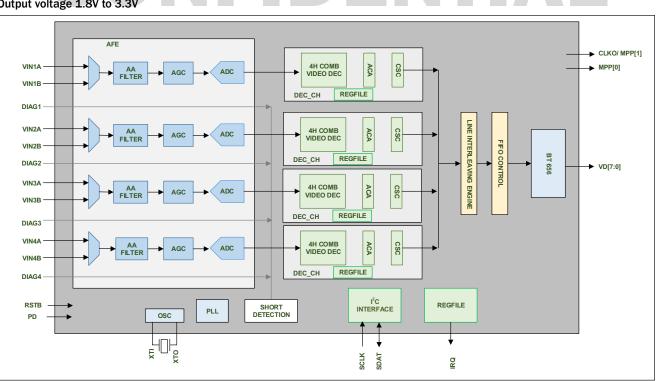


FIGURE 2. ISL79988 BLOCK DIAGRAM

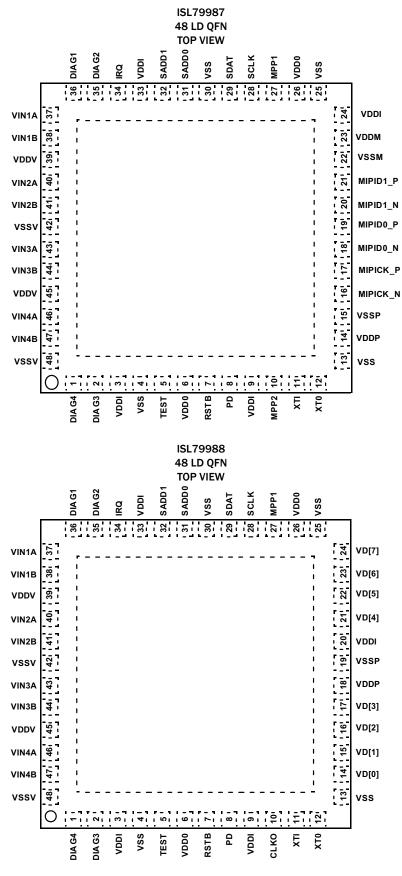
Table of Contents

Ordering Information
Pin Configurations
Pin Descriptions (ISL79987 - MIPI)
Pin Descriptions (ISL79988 - ITU-R BT.656)
Absolute Maximum Ratings
Thermal Information
Recommended Operating Conditions
Electrical Specifications
Serial Host Interface Timing
ISL79987 MIPI Low Power AC Timing
ISL79987 MIPI High Speed AC Timing
ISL79988 Video Data/Sync Timing
Functional Description
Video Input Formats
Analog Front-End
Decimation Filter 16 Automatic Gain Control and Clamping 16
Automatic Gain Control and Clamping 16 Sync Processing 16
Y/C Separation
Color Decoding
Chrominance Processing
Luminance Processing
Short Diagnostics
Video Cropping 18 Test Pattern Generator 18
ISL79988 - BT.656 Line-Interleaved Output
BT.656 Preamble Format
BT.656 Interleaved Data Transmission with Channel ID 19
BT.656 Optional Header
Programmable D-PHY Timing 23 Optional Histogram as Additional Pixel Data 24
PCB Layout Considerations
-
Thermal PAD Considerations 25
Thermal Pad Land Design Input
Thermal Via Design 25 Stencil Recommendation 25
ISL79987, ISL7998788 Register Summary
ISL79987 and ISL79988 Register Detail
Common Registers - Page 0
Decoder Registers - Page 1, 2, 3, and 4 for Four Decoders
ACA Registers – Page 1, 2, 3 and 4
Line Interleave Engine Registers – Page 5 61
Revision History
Package Outline Drawing

Ordering Information

PART NUMBER (<u>Notes 2</u> , <u>3</u>)	PART MARKING	TEMP RANGE (°C)	TAPE AND REEL (Units) (<u>Note 1</u>)	PACKAGE (RoHS COMPLIANT)	PKG. DWG. #
ISL79987ARZ	ISL79987 ARZ	-40 to +105	-	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79987ARZ-T	ISL79987 ARZ	-40 to +105	Зk	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79987IRZ	ISL79987 IRZ	-40 to +85	-	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79987IRZ-T	ISL79987 IRZ	-40 to +85	Зk	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79988ARZ	ISL79988 ARZ	-40 to +105	-	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79988ARZ-T	ISL79988 ARZ	-40 to +105	Зk	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79988IRZ	ISL79988 IRZ	-40 to +85	-	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79988IRZ-T	ISL79988 IRZ	-40 to +85	Зk	48 Ld QFN (7mmx7mm)	L48.7x7W
ISL79987-EVAL	Evaluation Board	1			
ISL79988-EVAL	Evaluation Board				

1. See TB347 for details about reel specifications.


2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

3. For Moisture Sensitivity Level (MSL), see the ISL79987 and ISL79988 device pages. For more information about MSL, see TB363.

TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS

	PART	PART FAMILY ALTERNATIVES				
PARAMETERS	ISL79987	ISL79988	TW9984	TW9966	TW9992	
Number of Inputs	8	8	8	8	8	
Number of Channels/Device	4	4	4	4	1	
Resolution	D1	D1	D1	D1	D1	
Video DAC	No	No	Yes	Yes	No	
Comb Filter	2D	2D	2D	2D	2D	
Interface Type	MIPI1.1	BT.656	BT.656	BT.656, BT601	MIPI1.1	
Analog Output	No	No	CVBS	CVBS	No	
Qualification Level	Automotive	Automotive	Automotive	Automotive	Automotive	
Function	Video Decoder	Video Decoder	Video Decoder	Video Decoder	Video Decoder	

Pin Configurations

FN8907 Rev.1.00 Mar 19, 2019

RENESAS

Pin Descriptions (ISL79987 - MIPI)

PIN#	I/O	PIN NAME	DESCRIPTION
ANALOG VIDI	EO SIGNAL		
37	I	VIN1A	Single-ended analog CVBS Input 1A/Differential CVBS positive Input 1
38	I	VIN1B	Single-ended analog CVBS Input 1B/Differential CVBS negative Input 1
40	I	VIN2A	Single-ended analog CVBS Input 2A/Differential CVBS positive Input 2
41	I	VIN2B	Single-ended analog CVBS Input 2B/Differential CVBS negative Input 2
43	I	VIN3A	Single-ended analog CVBS Input 3A/Differential CVBS positive Input 3
44	I	VIN3B	Single-ended analog CVBS Input 3B/Differential CVBS negative Input 3
46	I	VIN4A	Single-ended analog CVBS Input 4A/Differential CVBS positive Input 4
47	I	VIN4B	Single-ended analog CVBS Input 4B/Differential CVBS negative Input 4
36		DIAG1	Short detection Input 1
35		DIAG2	Short detection Input 2
2		DIAG3	Short detection Input 3
1		DIAG4	Short detection Input 4
MIPI SIGNAL	s		
17	0	MIPICK_P	MIPI clock channel
16	0	MIPICK_N	
19	0	MIPID0_P	MIPI data Channel 0
18	0	MIPID0_N	
21	0	MIPID1_P	MIPI data Channel 1
20	0	MIPID1_N	
CRYSTAL CLO	OCK SIGNALS		
12	0	XTO	Crystal clock output. Open when a single-ended oscillator is connected to XTI.
11	I	ХТІ	Crystal clock input. A 27MHz fundamental (or third overtone) crystal or a single-ended oscillator can be connected.
GENERAL SIG	GNALS	•	
34	0	IRQ	Interrupt request output signal
27	I/0	MPP1	Multi-purpose IO 1
10	I/0	MPP2	Multi-purpose IO 2
8	I	PD	Power-down control pin. (1: Power-down 0: Normal operation). When active, the XTI stops oscillation and all inputs to the analog module are inactive.
7	I	RSTB	Reset input. Low active.
5	I	TEST	Test pin. Connect to ground.
SERIAL IO IN	TERFACE		·
28	I	SCLK	MPU serial interface clock line
29	I/0	SDAT	MPU serial interface data line
31	I	SADD0	Serial IO bus address selection LSB
32	I	SADD1	Serial IO bus address selection LSB+1

Pin Descriptions (ISL79987 - MIPI) (Continued)

PIN#	I/O	PIN NAME	DESCRIPTION
POWER AND	GROUND PINS	5	
3, 9, 24, 33	PWR	VDDI	1.2V digital core power
4, 13, 25, 30	GND	VSS	Ground return for digital core and IO ring
6, 26	PWR	VDDO	3.3 or 1.8V digital I/O power
39, 45	PWR	VDDV	3.3V analog power for video ADC
42, 48	GND	VSSV	Ground return for video ADC
23	PWR	VDDM	1.2V analog power for MIPI
22	GND	VSSM	Ground return for MIPI
14	PWR	VDDP	1.2V analog power for PLL and BG
15	GND	VSSP	Ground for PLL and BG

NOTE: Connect unused input pin to AGND through 0.1µF capacitor.

Pin Descriptions (ISL79988 - ITU-R BT.656)

PIN#	I/0	PINNAME	DESCRIPTION
37	I	VIN1A	Single-ended analog CVBS Input 1A/differential CVBS positive Input 1
38	I	VIN1B	Single-ended analog CVBS Input 1B/differential CVBS negative Input 1
40	I	VIN2A	Single-ended analog CVBS Input 2A/differential CVBS positive Input 2
41	I	VIN2B	Single-ended analog CVBS Input 2B/differential CVBS negative Input 2
43	I	VIN3A	Single-ended analog CVBS Input 3A/differential CVBS positive Input 3
44	I	VIN3B	Single-ended analog CVBS Input 3B/differential CVBS negative Input 3
46	I	VIN4A	Single-ended analog CVBS Input 4A/differential CVBS positive Input 4
47	I	VIN4B	Single-ended analog CVBS Input 4B/differential CVBS negative Input 4
36	I	DIAG1	Short detection Input 1
35	I	DIAG2	Short detection Input 2
2	I	DIAG3	Short detection Input 3
1	I	DIAG4	Short detection Input 4
BT.656 SIGN	ALS	·	
10	0	CLKO	BT.656 clock output
24	0	VD[7]	BT.656 data Bit 7
23	0	VD[6]	BT.656 data Bit 6
22	0	VD[5]	BT.656 data Bit 5
21	0	VD[4]	BT.656 data Bit 4
17	0	VD[3]	BT.656 data Bit 3
16	0	VD[2]	BT.656 data Bit 2
15	0	VD[1]	BT.656 data Bit 1
14	0	VD[0]	BT.656 data Bit 0

Pin Descriptions (ISL79988 - ITU-R BT.656)(Continued)

PIN#	I/O	PINNAME	DESCRIPTION
CRYSTAL CLO	CK SIGNALS		
12	0	XT0	Crystal clock output. Open when a single-ended oscillator is connected to XTI.
11	I	ХТІ	Crystal clock input. A 27MHz fundamental (or third overtone) crystal or a single-ended oscillator can be connected.
GENERAL SIG	NALS		
34	0	IRQ	Interrupt request output signal
27	I/0	MPP1	Multi-purpose IO 1
8	I	PD	Power-down control pin. (1: Power-down 0: Normal operation). When active, the XTI stops oscillation and all inputs to analog module are inactive.
7	I	RSTB	Reset input. Low active.
5	I	TEST	Test pin. Connect to ground.
SERIAL IO INT	TERFACE		
28		SCLK	MPU serial interface clock line
29	I/0	SDAT	MPU serial interface data line
31	I	SADD0	Serial IO bus address selection LSB
32	I	SADD1	Serial IO Bus address selection LSB+1
POWER AND	GROUND PINS	5	
3, 9, 20, 33	PWR	VDDI	1.2V digital core power
4, 13, 25, 30	GND	VSS	Ground return for digital core and IO ring
6, 26	PWR	VDDO	3.3 or 1.8V digital I/O power
39, 45	PWR	VDDV	3.3V analog power for video ADC
42, 48	GND	VSSV	Ground return for video ADC
18	PWR	VDDP	1.2V analog power for PLL and BG
19	GND	VSSP	Ground for PLL and BG

NOTE: Connect unused input pins to AGND through $0.1\mu\text{F}$ capacitor.

Absolute Maximum Ratings

VDDI to VSS
VDDV to VSSV
VDDP to VSSP
VDDM to VSSM
Any Digital Pin to VSS
AFE Analog Pin to VSSV0.5V to +2.3V
MIPI Analog Pin to VSSM
ESD Ratings
Human Body Model (Tested per AEC-Q100-002) 2kV
Machine Model (Tested per AEC-A100-003)
Charged Device Model (Tested per AEC-Q100-011)
Latch-Up (Per JESD-78D; Class 2, Level A; AEC-Q100-004) 100mA

Thermal Information

Thermal Resistance (Typical)	θ JA (°C/W)	θ JC (°C∕W)
48 Ld 7x7 QFN (<u>Notes 4</u> , <u>5</u>)	24	1
Junction Temperature Range	65	5°C to +150°C
Storage Temperature Range	65	5°C to +150°C
Pb-Free Reflow Profile		see <u>TB493</u>

Recommended Operating Conditions

VDDI	+1.1V to +1.3V
VDD0	+1.62V to +3.6V
VDDV	+2.97V to +3.6V
VDDP, VDDM	+1.1V to +1.3V
Ambient Temperature Range (ISL79987/8IRZ)	40°C to +85°C
Ambient Temperature Range (ISL79987/8ARZ)	40°C to +105°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

NOTES:

4. θ_{JA} is measured in free air with the component mounted on a high-effective thermal conductivity test board with "direct attach" features. See <u>TB379</u>.
5. For θ_{JC}, the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications VDDI = VDDM = VDDP = 1.2V, VDD33 = VDDO = VDDV = 3.3V, unless otherwise noted, typical values are at

T_A = +25°C.

PARAMETER	SYMBOL	MIN (<u>Note 6</u>)	ТҮР	MAX (<u>Note 6</u>)	UNIT
DIGITAL INPUTS					
Input High Voltage (at VDDO = 3.3V)	V _{IH}	2.0		3.6	v
Input Low Voltage (at VDDO = 3.3V)	VIL	-0.3		0.8	v
Input High Voltage (at VDDO = 1.8V)	V _{IH}	1.17		1.98	v
Input Low Voltage (at VDDO = 1.8V)	V _{IL}	-0.3		0.63	v
Input Leakage Current (at V _I = 3.3V or OV)	١L			±10	μA
Input Capacitance	C _{IN}		6		pF
DIGITAL OUTPUTS	I		·	· · ·	
Output High Voltage (at VDDO = 3.3V)	V _{OH}	2.4			v
Output Low Voltage (at VDDO = 3.3V)	V _{OL}			0.4	v
Output High Voltage (at VDDO = 1.8V)	V _{OH}	1.35			v
Output Low Voltage (VDDO = 1.8V)	V _{OL}			0.45	v
High Level Output Current (at VDDO = 1.8V)	I _{ОН}	2.4			mA
Low Level Output Current (at VDDO = 1.8V)	I _{OL}	3.5			mA
Tri-State Output Leakage Current (at V ₀ = 3.3V or 0V)	I _{OZ}			±10	μA
Output Capacitance	c _o		6		pF
Analog Pin Input Capacitance	C _A		6		pF
ANALOG INPUT				<u> </u>	
VIN1~4 Input Range (AC coupling)	V _{P-P}	0.5	1.0	2.0	v
Analog Pin Input Capacitance	C _A		6		pF

Electrical Specifications VDDI = VDDM = VDDP = 1.2V, VDD33 = VDDO = VDDV = 3.3V, unless otherwise noted, typical values are at

T_A = +25°C. (Continued)

PARAMETER	SYMBOL	MIN (<u>Note 6</u>)	ТҮР	MAX (<u>Note 6</u>)	UNIT
SUPPLY CURRENT	L	L			1
Analog Video ADC Supply Current (VDDV, 3.3V)	I _{DDV}		46.8		mA
MIPI Supply Current (VDDM, 1.2V)	I _{DDM}		12.3		mA
Clock PLL Supply Current (VDDP, 1.2V)	IDDP		5.1		mA
Digital Internal Supply Current (VDDI, 1.2V)	I _{DDI}		65.5		mA
Digital I/O Supply Current (VDDO, 3.3/1.8V)	I _{DDO}		1.2/4.3		mA
Total Power Dissipation (VDD0 = 1.8/3.3V)	Р		258/270		mW
MIPI OUTPUT LOW POWER					
Output High Voltage	V _{OH_LP}	1.1	1.2	1.3	v
Output Low Voltage	V _{OL_LP}	-50		50	mV
Output Impedance	ZO_LP	110			Ω
Slew Rate at C _{LOAD} = 0 to 70pF (Rising Edge Only)	δV/δtSR	30			mV/ns
Slew Rate at C _{LOAD} = 0 to 70pF (Rising Edge Only) for V400mV < V0 <700mV	δV/δtSR	30			mV/ns
Slew Rate at C _{LOAD} = 0 to 70pF (Rising Edge Only) for VO > 700mV (VO, INST is the Instantaneous Output Voltage, VDP or VDN, in mV)	δV∕δtSR	30 - 0.075 * (V0, INST - 700)			mV/ns
MIPI OUTPUT HIGH SPEED	L	L			I
Static Common-Mode Voltage	V _{CMTX}	150	200	250	mV
$V_{\mbox{CMTX}}$ Mismatch between $V_{\mbox{OD}(0)}$ and $V_{\mbox{OD}}$	DV _{CMTX(1,0)}			5	mV
V _{CMTX} Common Level Variation	DV _{CMTX(LF)}			25	mV _{PEAK}
Differential Voltage	V _{OD}	140	200	270	mV/ns
V_{OD} Mismatch Between $V_{OD(0)}$ and V_{OD}	DV _{OD}			14	mV/ns
Output High Voltage	V _{OHHS}			360	mV/ns
Single-Ended Output Impedance	Z _{OS}	40	50	62.5	Ω
Z _{OS} Mismatch	DZ _{OS}			10	%

NOTE:

6. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

TABLE 2. CRYSTAL REQUIREMENT SPECIFICATION

PARAMETER	SYMBOL	ТҮР	MAX	UNIT
Nominal Frequency (Fundamental)		27		MHz
Deviation			±50	ppm
Load Capacitance	CL	20		pF
Series Resistor	R _S	80		Ω

Serial Host Interface Timing

TEST PARAMETER	SYMBOL	MIN (<u>Note 7</u>)	MAX (<u>Note 7</u>)	UNIT
Bus Free Time between STOP and START	t _{BF}	500		ns
SDAT Set-Up Time	t _{sSDAT}	50		ns
SDAT Hold Time	t _{hSDAT}	0		ns
Set-Up Time for START Condition	t _{sSTA}	260		ns
Set-Up Time for STOP Condition	t _{sSTOP}	260		ns
Hold Time for START Condition	t _{hSTA}	260		ns
Rise Time for SCLK and SDAT	t _{R_SB}		120	ns
Fall Time for SCLK and SDAT	t _{F_SB}		120	ns
SCLK Low Time	tLoW	260		ns
SCLK High Time	tHIGH	500		ns
Capacitive Load for Each Bus Line	C _{BUS}		550	pF
SCLK Clock Frequency	fsclk		1000	kHz

NOTE:

7. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

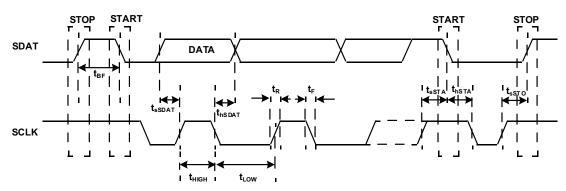


FIGURE 3. SERIAL HOST INTERFACE TIMING DIAGRAM

ISL79987 MIPI Low Power AC Timing

TEST PARAMETER	SYMBOL	MIN (<u>Note 7</u>)	ТҮР	MAX (<u>Note 7</u>)	UNIT	NOTES
Rise/Fall Time 15% to 85% of $V_{\mbox{OH}}$ to $V_{\mbox{OL}}$	t _{RLP} /t _{FLP}			25	ns	C _{LOAD} ≤70pF
Rise/Fall Time 30% to 85% from HS Differential Amplitude Drops Below 70mV to V _{DP} = 880mV	T _{REOT}			35	ns	C_{LOAD} ≤70pF with additional C_{CM} up to 60pF
Pulse Width of LP XOR Clock	t _{LP-PULSE-TX}	40			ns	First/last pulse after/before Stop state
	t _{LP-PULSE-TX}	20			ns	All other pulses
Period of LP XOR Clock	t _{LP-PER-TX}	90			ns	
Transmitted Length (duration) of Any Low Power State	t _{LPX}	50			ns	This is an internal parameter

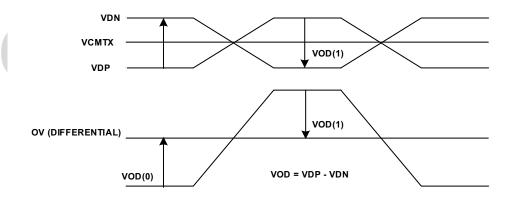
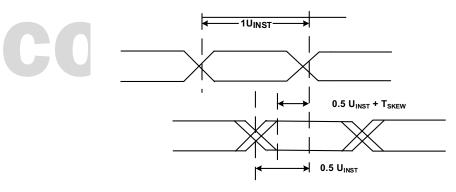



FIGURE 4. ISL79987 MIPI LOW POWER AC TIMING

ISL79987 MIPI High Speed AC Timing

TEST PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	NOTES
Unit Interval Instantaneous	UI _{INST}		4.629/ 2.314/ 1.157		ns	
UI Variation	ΔUI	-10%		10%	UI	Variation within a single burst with UI \geq 1ns
Clock Lane DDR Clock Frequency (= 1/(2*UI INST MIN))	fh _{MAX}		108/ 216/ 432		MHz	f _{XTAL} = 27MHz with 8b line coding
Rise/Fall Time 20% to 80%	t _R ∕t _F			0.3	UI	UI ≥ 1ns
		150			ps	
Data to Clock Skew	T _{SKEW}	-0.15		0.15	UI _{INST}	UI ≥ 1ns

ISL79988 Video Data/Sync Timing

TEST PARAMETER	SYMBOL	MIN (<u>Note 8</u>)	ТҮР	MAX (<u>Note 8</u>)	UNIT
Hold from CLKO to Video Data/Sync (27MHz)	2a	3			ns
Delay from CLKO to Video Data/Sync (27MHz)	2b			7	ns
Hold from CLKO to Video Data/Sync (54MHz)	4a	3			ns
Delay from CLKO to Video Data/Sync (54MHz)	4b			7	ns
Hold from CLKO to Video Data/Sync (108MHz)	6a	3			ns
Delay from CLKO to Video Data/Sync (108MHz)	6b			7	ns

NOTE:

8. CLKO timing is related to CLKO_DEL register value. Figure 6 illustrates an example where the CLKO_DEL is set to 0 hex and CLKO_POL is set to 0.

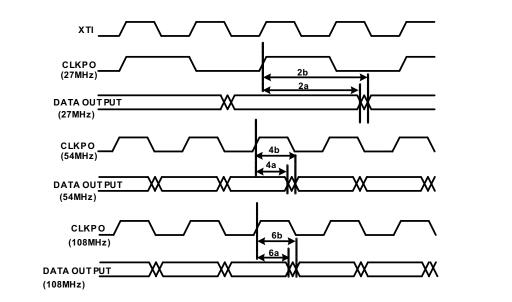


FIGURE 6. ISL79988 VIDEO DATA/SYNC TIMING

Functional Description

Video Input Formats

The ISL79987 and ISL79988 has built-in automatic standard discrimination circuitry. The circuit uses burst-phase, burst-frequency, and frame rate to identify NTSC, PAL, or SECAM color signals. The standards that can be identified are NTSC (M), NTSC (4.43), PAL (B, D, G, H, I), PAL (M), PAL (N), PAL (60), and

SECAM (M). Each standard can be included or excluded in the standard recognition process by software control. The exceptions are the base standard NTSC and PAL, which are always enabled. The identified standard is indicated by the Standard Selection (SDT) register. Automatic standard detection can be overridden by software controlled standard selection.

ISL79987 and ISL79988 support all common video formats shown in Table 3.

TABLE 3.	3. VIDEO INPUT FORMATS SUPPORTED BY THE ISL79987. IS	L79988

FORMAT	LINES	FIELDS	FSC (MHz)	COUNTRY
NTSC-M	525	60	3.579545	U.S., many others
NTSC-Japan (<u>Note 9</u>)	525	60	3.579545	Japan
PAL-B, G, N	625	50	4.433619	Many
PAL-D	625	50	4.433619	China
PAL-H	625	50	4.433619	Belgium
PAL-I	625	50	4.433619	Great Britain, others
PAL-M	525	60	3.575612	Brazil
PAL-CN	625	50	3.582056	Argentina
SECAM	625	50	4.406, 4.25	France, Eastern Europe, Middle East, Russia
PAL-60	525	60	4.433619	China
NTSC (4.43)	525	60	4.433619	Transcoding

NOTE:

9. NTSC-Japan has 0 IRE setup.

Analog Front-End

The ISL79987 and ISL79988 contain four 10-bit Analog to Digital Converters (ADCs) to digitize the analog video inputs. The ADCs can be put into power-down mode by the ADC_PD register (0x36[6] at Pages 1, 2, 3, 4). The ISL79987 and ISL79988 also contain an anti-aliasing filter to prevent out-of-band frequencies in the analog video input signal. As a result, there is no need for external components in front of the analog input pins, except for the AC coupling capacitor and termination resistor.

Figure 7 shows the frequency response of the anti-aliasing filter.

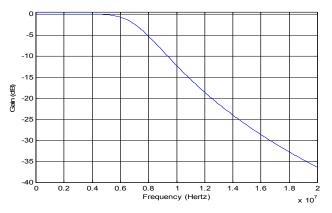


FIGURE 7. FREQUENCY RESPONSE OF THE ANTI-ALIASING FILTER

Decimation Filter

The digitized composite video data is over-sampled to simplify the design of the analog filter. The decimation filter is required to achieve optimum performance and prevent high-frequency components from being aliased back into the video image when down-sampled. Figure 8 shows the characteristic of the decimation filter.

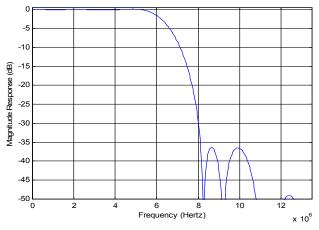


FIGURE 8. FREQUENCY RESPONSE OF THE DECIMATION FILTER

Automatic Gain Control and Clamping

All four analog channels have a built-in clamping circuit that restores the signal's DC level. The video input restores the back porch of the digitized video to a level of 60. This operation is automatic through an internal feedback loop. The Automatic Gain Control (AGC) of the video input adjusts the input gain so that the sync tip is at a desired level. Programmable white peak protection logic is included to prevent saturation in the case of an abnormal signal proportion between the sync and white peak level.

Sync Processing

The ISL79987 and ISL79988 sync processor detects horizontal synchronization and vertical synchronization signals in the composite video signal. The processor contains a digital Phase-Locked Loop (PLL) and decision logic to achieve reliable sync detection in a stable signal and in an unstable signal such as those from a VCR fast forward or rewind.

The vertical sync separator detects the vertical synchronization pattern in the input video signals. In addition, the actual sync determination is controlled by a detection window to provide more reliable synchronization. An option is available to provide faster responses for certain applications. The field status is determined at the vertical synchronization time. The field logic can also be controlled to toggle automatically while tracking the input.

Y/C Separation

The color-decoding block contains the luma/chroma separation for a composite video signal and multi-standard color demodulation. For NTSC and PAL standard signals, the luma/chroma separation can be done either by comb filter or notch/band-pass filter combination. For SECAM standard signals, an adaptive notch/band-pass filter is used. The default selection for NTSC/PAL is a comb filter.

When using the comb filter, the ISL79987 and ISL79988 separate the luma (Y) and chroma (C) of a NTSC/PAL composite video signal using a proprietary 4H adaptive comb filter. The filter uses a four-line buffer. Adaptive logic combines the upper-comb and the lower-comb results based on the signal changes among the previous, current, and next lines. This technique leads to excellent Y/C separation with small cross luma and cross color at both the horizontal and vertical edges.

Due to the fact that a line buffer is used in the comb filter, there is always a two-line processing delay in the output.

<u>Figures 9</u> and <u>10</u> shows the characteristics of the filters when notch/band-pass filter is selected.

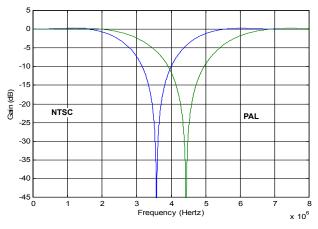


FIGURE 9. CHARACTERISTICS OF LUMINANCE NOTCH FILTER FOR PAL

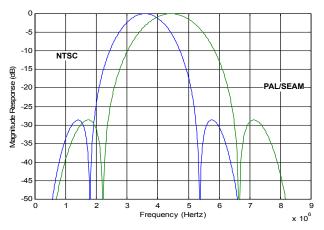


FIGURE 10. CHROMA BAND-PASS FILTER CURVES

Color Decoding

CHROMINANCE DEMODULATION

The color demodulation for NTSC and PAL standards is done by first quadrature mixing the chroma signal to the base band. A low-pass filter is then used to remove the carrier signal and yield chroma components. The low-pass filter characteristic can be selected for optimized transient color performance. For the PAL system, the PAL ID or the burst phase switching is identified to aid in the PAL color demodulation.

For SECAM, the color information is FM modulated onto a different carrier. The demodulation process therefore consists of FM demodulator and de-emphasis filter. During the FM demodulation, the chroma carrier frequency is identified and used to control the SECAM color demodulation.

Note: The subcarrier signal for use in the color demodulator is generated by direct digital synthesis PLL that locks onto the input subcarrier reference (color burst). This arrangement allows any sub-standard of NTSC and PAL to be demodulated easily with single crystal frequency.

Figure 11 shows the frequency response of chrominance low-pass filter curves.

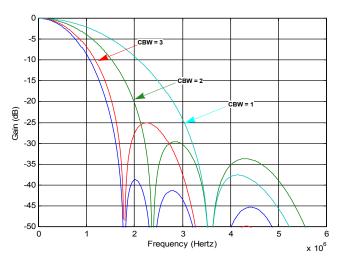


FIGURE 11. CHROMINANCE LOW-PASS FILTER CURVES

AUTOMATIC CHROMA GAIN CONTROL (ACC)

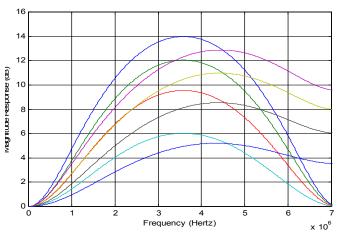
The Automatic Chroma Gain Control (ACC) compensates for reduced amplitudes caused by high-frequency loss in the video signal. In the NTSC/PAL standard, the color reference signal is the burst on the back porch. It is measured to control the chroma output gain. The range of ACC control is -6dB to +24dB.

Chrominance Processing

CHROMINANCE GAIN, OFFSET, AND HUE ADJUSTMENT

When decoding NTSC signals, the ISL79987 and ISL79988 can adjust the hue of the chroma signal. The hue is defined as a phase shift of the subcarrier with respect to the burst. This phase shift of NTSC decoding can be programmed through a control register. For the PAL standard, the PAL delay line is provided to compensate any hue error; therefore, no hue adjustment is available. The color saturation can be adjusted by changing the gain of the Cb and Cr signals for all NTSC, PAL, and SECAM formats. The Cb and Cr gain can be adjusted independently for flexibility.

COLOR TRANSIENT IMPROVEMENT (CTI)


The Color Transient Improvement (CTI) function to further enhances the image quality. The CTI enhances the color edge transient without any overshoot or undershoot.

Luminance Processing

The ISL79987 and ISL79988 adjust brightness by adding a programmable value (in register BRIGHTNESS) to the Y signal. It adjusts the picture contrast by changing the gain (in register CONTRAST) of the Y signal.

The ISL79987 and ISL79988 also provide programmable peaking function to further enhance the video sharpness. The peaking control has a built-in coring function to prevent enhancement of noise. Figure 12 on page 18 shows the characteristic of the peaking filter for four different gain modes and different center frequencies.

Short Diagnostics

SHORT-TO-BATTERY AND SHORT-TO-GROUND

The ISL79987 and ISL79988 provide a Short-to-Battery (STB) and Short-to-Ground (STG) detection capability. The short diagnostics module has four channels, one for each video input. Both STB and STG support 8-step programmable threshold levels (3 bits per threshold). The Short-to-Ground thresholds range from 1/152 to 8/152 of the 3.3V power supply. The Short-to-Battery thresholds range from 20/152, 26/152, 32/152, ..., 62/152 of the 3.3V power supply. STB and STG events can be detected by either polling registers or by using the interrupt pin.

Video Cropping

Cropping allows only a subsection of a video image to be output. The active video region is determined by the HDELAY, HACTIVE, VDELAY, and VACTIVE registers. The VACTIVE signal can be programmed to indicate the number of active lines to be displayed in a video field, and the HACTIVE signal can be programmed to indicate the number of active pixels to be displayed in a video line. The start of the field or frame in the vertical direction is indicated by the leading edge of VSYNC. The start of the line in the horizontal direction is indicated by the leading edge of the HSYNC. The start of the active lines from vertical sync edge is indicated by the VDELAY register. The start of the active pixels from the horizontal edge is indicated by the HDELAY register. The sizes and location of the active video are determined by HDELAY, HACTIVE, VDELAY, and VACTIVE registers. These registers are eight bits wide; the lower eight bits are, respectively, in HDELAY LO, HACTIVE LO, VDELAY LO, and VACTIVE_LO. Their upper two bits share the same register CROP_HI.

The Horizontal Delay register (HDELAY) determines the number of pixels delay between the leading edge of HSYNC and the leading edge of the HACTIVE. Note that this value is referenced to the unscaled pixel number. The Horizontal Active register (HACTIVE) determines the number of active pixels to be output or scaled after the delay from the sync edge is met. This value is also referenced to the unscaled pixel number. Therefore, if the scaling ratio is changed, the active video region used for scaling remains unchanged as set by the HACTIVE register, but the valid pixels output are equal or reduced due to downscaling. For the cropping to work properly, <u>Equation 1</u> should be satisfied.

HDELAY + HACTIVE < Total number of pixels per line (EQ. 1)

For NTSC output at 13.5MHz pixel rate, the total number of pixels is 858. For PAL output at 13.5MHz rate, the total number of pixels is 864. HACTIVE should be set to 720.

The Vertical Delay register (VDELAY) determines the number of lines delay between the leading edge of the VSYNC and the start of the active video lines. It indicates the number of lines to skip at the start of a frame before asserting the VACTIVE signal. This value is referenced to the incoming scan lines before the vertical scaling. The number of scan lines is 525 for the 60Hz systems and 625 for the 50Hz systems. The Vertical Active register (VACTIVE) determines the number of lines to be used in the vertical scaling. Therefore, the number of scan lines output is equal or less than the value set in this register depending on the vertical scaling ratio. For the vertical cropping to work properly, <u>Equation 2</u> should be observed.

VDELAY + VACTIVE < Total number of lines per field (EQ. 2)

Test Pattern Generator

For each input video channel, the chip provides a corresponding test pattern generator that can be used to replace the real input video for testing purposes. Each generator can be programmed to output NTSC or PAL format, and can generate fixed-sync or variable-sync timing to emulate real video source timings with a much wider variation range.

ISL79988 - BT.656 Line-Interleaved Output

The ISL79988 supports up to 4-channel CVBS inputs and merges multi-video streams into a single BT.656 output bus. If streaming two or more channels, a line-interleaved method is employed. The ISL79988 supports one single video stream format and two multi-video stream formats that are clocked at 27MHz, 54MHz, and 108MHz (see Table 4 for details). When outputting multi-video stream on the BT.656 bus, channel IDs are inserted in sync word. Each line starts with an EAV, followed by horizontal blank data, SAV, and active data. The channel ID is embedded into SAV/EAV's least-significant two bits and in horizontal blank data on the least-significant two bits.

TABLE 4.			EODMAT
IADLE 4.	VIDEU	UUIPUI	FURMAI

VIDEO OUTPUT FORMAT	OUTPUT CLOCK FREQUENCY (MHz)
1-CH with 480i	27
2-CH with 480i	54
4-CH WITH 480i	108

Figure 13 on page 19 illustrates that the four independent channels' video data are merged by the line-interleaved method to the BT.656 output.

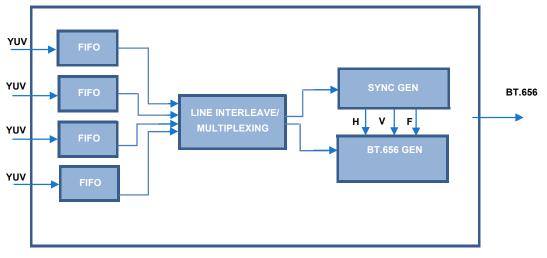


FIGURE 13. ISL79988 - BT.656 LINE-INTERLEAVED OUTPUT

BT.656 Preamble Format

The receiver should detect the EAV and SAV by looking for the 8-bit FFh-00h-00h-XXh preamble sequence. The last status byte of the preamble sequence indicates channel ID, field, VSYNC, and HSYNC information.

PREAMBLE	D7	D6	D5	D4	D3	D2	D1	DO
STATUS WORD	1	F	v	н	0	0	CH ID[1]	CH ID[0]

BT.656 Interleaved Data Transmission with Channel ID

The channel ID is updated in preamble EAV on each line and retains the channel ID information for the horizontal blank data and the preamble SAV. Every output line always starts with an EAV followed by Horizontal Blank, SAV, and active data on the same channel. However, the channel order may not be sequential due to the sync-variation between different channels, which means that it is possible to output two consecutive lines from the same channel before switching to another channel. Figure 14 on page 20 shows an example of an output sequence.

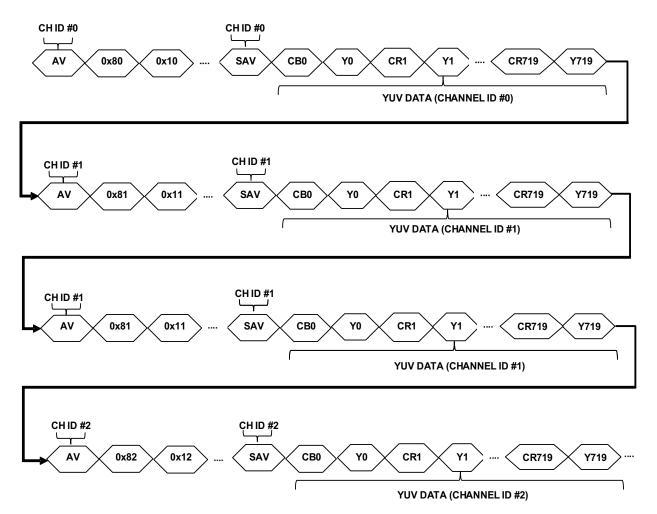


FIGURE 14. BT.656 INTERLEAVED DATA TRANSMISSION WITH CHANNEL ID

BT.656 Optional Header

In addition to the channel ID in EAV, Horizotnal blank, and SAV sequence, there is an optional 8-byte header insert followed by each SAV to provide additional information for that horizontal line. In this case, each horizontal line has 1448 bytes of active data instead of 1440 bytes. This special 8-byte header is defined to avoid conflict with the SAV and EAV byte sequence.

HD1 is sent out first and HD2 follows it. HD8 is the last byte that is sent out. Active video data follows HD8.

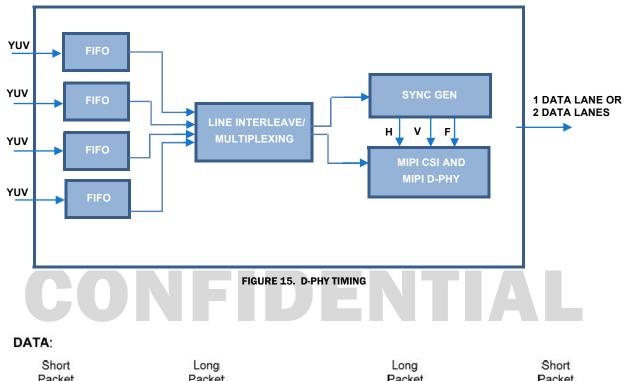
BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT O
HD1	'1'	'0'	'1 '	'0'		Fra	me[3:0]	
HD2	'1'	'O'	'1'	' 0'	ʻ0'	' 0'	ʻ0'	Field
HD3	'1'	' 0'	'1'	'O'		Lin	e[11:8]	
HD4	'1'	ʻ0'	'1'	' 0'		Lii	ne[7:4]	
HD5	'1'	ʻ0'	'1'	'0'		Lir	ne[3:0]	
HD6	'1'	'0'	'1'	'0'	ʻ0'	ʻ0'	Сні	D[1:0]
HD7	'1'	'0'	'1 '	'0'	VDLOSS	HLOCK	SLOCK	VLOCK
HD8	'1'	ʻ0'	'1'	ʻ0'	MONO	DET50	DETSTUS	V_STABLE

- CHID Video channel ID, from 0 to 3
- · Line Line number
- Field Field indicator. 0 is first (top) field. 1 is second (bottom) field
- Frame Frame number
- VDLOSS Same as 0x103[7]
- HLOCK, SLOCK, VLOCK Same as 0x103[6], 0x103[5], 0x103[3]
- MONO Same as 0x103[1]
- DET50 Same as 0x103[0]
- DETSTUS Same as 0x11c[7]
- V_STABLE Video data stable flag when video is detected and all syncs are in lock

ISL79987 - MIPI OUTPUT

The MIPI transmitter consists of a protocol module that is compatible with the MIPI CSI-2 v1.1 interface standard, and a physical layer module that is compatible with the MIPI D-PHY V1.1 standard.

In the protocol module, up to four (one, two, or four) independent NTSC or PAL standard video channels are line-interleaved into a single data stream, which is then de-multiplexed into one or two data lanes following the CSI-2 specification. The digital data, along with the MIPI-specific clock and data digital control signals, are fed to the analog D-PHY module.


In the D-PHY module, the data, clock, and control signals are converted into MIPI-compatible, serialized data ready for output. Depending on the input and output configuration, the chip supports the following five major modes of operation. Different output clock frequencies are generated by an on-chip PLL module, which uses a unique 27MHz crystal input reference clock.

- 1-channel input with 1-data-lane mode: MIPI clock is 108MHz with 216Mbps data rate.
- 2-channel input with 1-data-lane mode: MIPI clock is 216MHz with 432Mbps data rate.
- 2-channel input with 2-data-lanes mode: MIPI clock is 108MHz with 216Mbps data rate.
- 4-channel input with 1-data-lane mode: MIPI clock is 432MHz with 864Mbps data rate.
- 4-channel input with 2-data-lanes mode: MIPI clock is 216MHz with 432Mbps data rate.

VIDEO OUTPUT FORMAT	OUTPUT MIPI CLOCK FREQUENCY (MHz)
1-CH with 480i	108 (1 lane)
2-CH with 480i	216 (1 Lane)
2-CH with 480i	108 (2 Lanes)
4-CH with 480i	432 (1 Lane)
4-CH with 480i	216 (2 Lanes)

Figure 15 on page 22 illustrates that the four independent channels' video data are merged by the line-interleaved method to the BT.656 output.

Programmable D-PHY Timing

The low-power and high-speed data timing, and the clock-to-data timing are programmable based on the input channel-number and data-lane selections.

SHORT AND LONG PACKETS

The ISL79987 supports two types of short packets, Frame-Start (FS, 0x00) and Frame-End (FE, 0x01), which specify the start and end of a picture. There are also two types of long packets: YUV422 8-bit (0x1E) and YUV422 8-bit-user defined (0x30). The 0x30 data type is used to refer to the specific histogram-line data. Note that when the histogram-line option is selected, the 128-bin histogram data of an incoming picture is attached following the last line of the picture. Because the histogram-bin data is considerably different from the regular video format, it is sufficient to use a different data type "30" to designate it to the MIPI receiver. Figure 16 on page 22 shows an example of long and short packets.

CHANNEL DELINEATION

Two options for merging mutli-channel video onto a single MIPI link are:

- CSI-2 Standard mode
- Pseudo Single-Frame mode

These modes are described in the following sections.

CSI-2 Standard Mode

A 2-bit, Virtual-Channel (VC) field is embedded in the long-packet header's Data-ID field and short-packet Data-ID field, Bits 7-6, to specify which channel the upcoming long and short packet belongs to. As defined in CSI-2 standard, each long packet should contain a complete horizontal line data. Each virtual channel has its own FS and FE packets. All the short and long packets from the four channels are interleaved into a single MIPI data stream following the original sync and data timing as close as possible. Therefore, the channel order may not be sequential due to sync-variation between different channels.

Pseudo Single-Frame Mode

In Pseudo Single-Frame mode, the MIPI receiver should treat the received 4-channel data as a pseudo one-channel data. In this case, only one Frame-Start (FS) and one Frame-End (FE) short packets are sent following either:

- · The first channel's vertical sync timing, or
- · A fixed line-accummulator's line-counter setting

The spacing between FE to the next FS is crucial for the receiver to finish its interrupt service routine and is limited to be no more than two lines due to the finite line-FIFO size constraint of the MIPI transmitter. Due to the asynchorous nature of multi-video input, the number of long packets (lines) between FS to FE can vary in the first case, while in the second case, the number of long packets are fixed. Only active data and auxliary data are transmitted in a long packet. Figure 17 and the following bit table show an example of a transmission sequence.

An 8-byte header is embedded immediately following the MIPI 4-byte long Packet Header (PH) for the receiver to identify the channel data. The 8-byte source video header has to be parsed by the receiver's host processor to decide where to store the received data pertaining to the received channel. The special 8-byte header is defined to avoid emulation of "00" or "FF" bytes.

SHD1 is sent out first and HD2 follows it. The first active video data follows the HD8 byte.

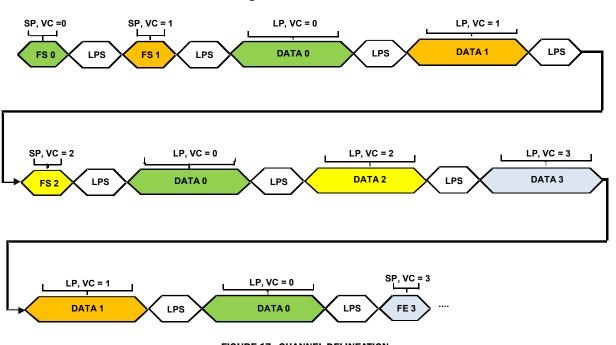


FIGURE 17. CHANNEL DELINEATION

BIT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT O		
HD1	'1'	' 0'	'1'	'O'	Frame[3:0]					
HD2	'1'	'O'	'1'	' 0'	ʻ0'	'0'	ʻ0'	Field		
HD3	'1'	' 0'	'1'	' 0'		Lin	e[11:8]			
HD4	'1'	'0'	'1 '	' 0'	Line[7:4]					
HD5	'1'	'0'	'1 '	' 0'		Li	ne[3:0]			
HD6	'1'	ʻ0'	'1'	' 0'	' 0'	' 0'	CHIE	D [1:0]		
HD7	'1'	ʻ0'	'1'	' 0'	VDLOSS	HLOCK	SLOCK	VLOCK		
HD8	'1'	ʻ0'	'1'	ʻ0'	MONO	DET50	DETSTUS	V_STABLE		

- CHID Video channel ID, from 0 to 3
- Line Line number
- Field Field indicator. 0 is the first (top) field. 1 is the second (bottom) field
- Frame Frame number
- VDLOSS Same as 0x103[7]
- HLOCK, SLOCK, VLOCK Same as 0x103[6], 0x103[5], 0x103[3]
- MONO Same as 0x103[1]
- DET50 Same as 0x103[0]
- DETSTUS Same as 0x11c[7]
- V_STABLE Video data stable flag when video is detected

Optional Histogram as Additional Pixel Data

To enable histogram-line output on either a MIPI or BT.656 output, the following register bits need to be set:

- Reg0x1C0[7] = master (four separate histograms)
- Reg0x1C0[6] = union (4-in-1 histogram)
- Reg0x1E7[0] = hist_on1 = 1 in both master or union mode
- Reg0x2E7[0] = hist_on2 = 1 in master mode only
- Reg0x3E7[0] = hist_on3 = 1 in master mode only
- Reg0x4E7[0] = hist_on4 = 1 in master mode only

Because VActiveNs do not line up in union mode, Channels 2-4 evaluate the histogram following Channel 1's Vactive. The reported histogram is the partial frame of Channels 2-4. In the union mode, there is no need to turn on histogram-line for Channels 2-4, because they are not precisely one-frame's histogram and they are not in use.

There are two modes in sending histogram[18:0] over to the SoC receiver. Both modes stretch 19 bits to 4 bytes.

• MIPI-mode:	{8'h00},
	{8'h00},
	{8'h00},
	{8'h00},
	{8'h00},
	{5'h00, histogram[18:16],
	{histogram[15:8]},
	{histogram[7:0]} }
• CCIR656-mode: {8'h55},	{8'h55},
	{8'h55},
	{4'h5, 1'h0, histogram[18:16]},
	{4'h5, histogram[15:12]},
	{4'h5, histogram[11:8]},
	{4'h5, histogram[7:4]},
	{4'h5, histogram[3:0]} }

The format is cast in the decif_csc module and cannot be changed in the CSI because there is no need to furnish both simultaneously.

The accumulated histogram of each picture is allocated to 128-bins by grouping two levels into one bin.

At the end of a picture, the video-active is extended by one or more lines and the last line contains histogram data.

These 128 bins are transmitted as the first 1024 active pixels according to the above format. The remaining (1440-1024) active pixels are filled with the black pixels "8'h80" and "8'h10".

PCB Layout Considerations

In the Printed Circuit Board (PCB) layout, ground is the most important consideration to achieve a low level of noise. In general, avoid long current loops, especially when mixing analog signals with digital signals. The best way to achieve this is to partition the analog and digital portions very carefully so that the signal and return paths can be localized in their vicinity. Strategic partitioning and placement may make splitting the plane into digital and analog ground unnecessary. This helps prevent the split planes from creating longer loops that are bad for EMC and can spread interference to other sections.

The ground plane should cover most of the PCB area with separated digital and analog ground planes surrounding the chip. These two planes should be at the same electrical potential and connected together under the ISL79987 and ISL79988. Figure 18 shows a ground plane layout example.

To minimize crosstalk, separate the digital signals of the ISL79987 and ISL79988 from the analog circuitry. The digital signals should not cross over the analog power and ground plane. Avoid running parallel digital lines for long distance.

For the QFN package, the exposed die pad (ground bond) can be either floating or soldered to the PCB ground to enhance thermal performance, see Figure 19.

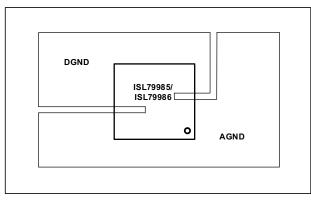


FIGURE 18. GROUND PLANES

FIGURE 19. EXPOSED DIE PAD

Thermal PAD Considerations

Thermal Pad Land Design Input

The size of the thermal land should at least match the exposed die flag size. However, it is necessary to avoid solder bridging between thermal pad and the perimeter pads. Renesas recommends a clearance of 0.15mm between thermal pad and perimeter pads.

Thermal Via Design

To take full advantage of QFN thermal performance, thermal vias are needed to provide a thermal path from top to inner/bottom layers of the motherboard to remove the heat.

- Via size (in diameter): 0.3 ~ 0.33mm
- Via pitch: 1.0 ~ 1.2mm
- # of thermal vias: depends on the application

Stencil Recommendation

Use small multiple openings instead of one large opening.

- 60 ~ 85% solder paste coverage
- · Rounded corners to minimize clogging
- · Positive taper with bottom opening larger than the top

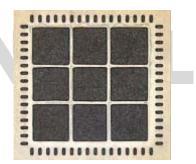


FIGURE 20A. DO NOT RECOMMEND COVERAGE 91%

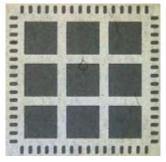


FIGURE 20B. RECOMMENDED COVERAGE 77%

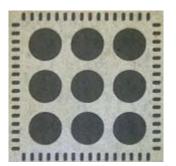


FIGURE 20C. RECOMMENDED COVERAGE 65%

FIGURE 20. STENCIL RECOMMENDED COVERAGE

ISL79987, ISL7998788 Register Summary

The registers are organized in functional groups.

INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)	
FF	-	_	-	_	_		GE	-	00	
00				I	D				87/88	
01				R	EV				00	
02	RSTALL		-	MIPIRST	VDEC4 RST	VDEC3 RST	VDEC2 RST	VDEC1 RST	00	
03	EXTCLK	LOCK_WTX	LOCK_RDX	AINC	OEN	TRI656	LS_DRV STR	HS_DRV STR	00	
04	-	C	(25	C	K1S	-	CLK_DRVST	DNB_REV	00	
05	PD_PEX	MPP2_PEX	MPP1_PEX	IRQ_PEX	SADD0_PEX	SADD1_PEX			00	
06	PDSYSCK								00	
07	СН	_SEL	SEC	сн	PRI	_СН	MOD	E_CH	12	
08	PLL	_NDIV			PLLM_DIV					
09	-	PLL_P1DIV_EN	I		PLL_P1DIV					
0A	-	PLL_P2DIV_EN	I		PLL_	P2DIV			4F	
0B	-	PLL_P3DIV_EN	I		PLL_	P3DIV			41	
0C	MPP1IN	MPP10E	MPP1POL		MPP1SEL					
0D	MPP2IN	MPP20E	MPP2P0L			MPP2SEL			00	
0E	IRQIN	IRQOE	IRQPOL			IRQSEL			00	
10		-		SHDIRQ	CH4IRQ	CH3IRQ	CH2IRQ	CH1IRQ	00	
11			-		CH1 VDLOSS	CH1 DET50	CH1 SLOCK	CH1 HVLOCK	00	
12					CH2 VDLOSS	CH2 DET50	CH2 SLOCK	CH2 HVLOCK	00	
13			-		CH3 VDLOSS	CH3 DET50	CH3 SLOCK	CH3 HVLOCK	00	
14			-		CH4 VDLOSS	CH4 DET50	CH4 SLOCK	CH4 HVLOCK	00	
15	SHT_BAT4	SHT_BAT3	SHT_BAT2	SHT_BAT1	SHT_GND4	SHT_GND3	SHT_GND2	SHT_GND1	00	
16			-	1		CH1I	RQ_EN		00	
17					CH2IRQ_EN					
18							RQ_EN		00	
19			-				RQ_EN		00	
1A				SHTIF	RQ_EN				00	
18					CH1VD LOSS_STS	CH1DET 50_STS	CH1S LOCK_STS	CH1HV LOCK_STS	-	
10					CH2VD LOSS_STS	CH2DET 50_STS	CH2S LOCK_STS	CH2HV LOCK_STS	-	
1D					CH3VD LOSS_STS	CH3DET 50_STS	CH3S LOCK_STS	CH3HV LOCK_STS	-	
1E					CH4VD LOSS_STS	CH4DET 50_STS	CH4S LOCK_STS	CH4HV LOCK_STS	-	
1F	SHT_BAT4_ STS	SHT_BAT3_ STS	SHT_BAT2_ STS	SHT_BAT1_ STS	SHT_GND4_ STS	SHT_GND3_ STS	SHT_GND2_ STS	SHT_GND1_ STS	-	
20		J	-	1	I		CLKO_DLY	J	00	

FN8907 Rev.1.00 Mar 19, 2019

 TABLE 6. DECODER REGISTERS (4 PAGES 1, 2, 3, and 4)

INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)
02	-	FC27	IF	SEL			-		48
03	VDLOSS	HLOCK	SLOCK	FIELD	VLOCK	-	MONO	DET50	-
04	-	CKI	łY			-	1		00
06		-		AGC_EN			-		00
07	VDEL	_AY_HI	VACT	IVE_HI	HDEL	AY_HI	HACT	IVE_HI	02
08				VDELA	AY_LO		1		12
09				VACTI	/E_LO				FO
OA				HDELA	AY_LO				OF
0B				HACTI	VE_LO				D0
00	PBW	DEM	PALSW	SET7	СОМВ	HCOMP	YCOMB	PDLY	CC
0D	-	NTSC656				-			00
10				BRIGH	TNESS				00
11				CONT	RAST				64
12	SCURVE	VSF	(СТІ		SH	ARP		11
13				SAT	r_U				80
14				SAT	r_v				80
15				н	JE				00
17		SHC	OR		-		VSHP		80
18	CT	COR	C	COR	VC	OR	C	44	
10	DETSTS		STDNOW		ATREG		STANDARD		07
1D	ATSTART	PAL60_EN	PALCN_EN	PALM_EN	NTSC44_EN	SECAM_EN	PALB_EN	NTSC_EN	7F
20		CLPE	ND			CLI	PST	1	50
21		NMG	AIN			WPGAIN		AGCGAIN8	22
22				AGCO	GAIN				FO
23				PEAI	(WT				D8
24	CLMPLD				CLMPL				BC
25	SYNCTD				SYNCT				B8
26		MISS	CNT			HS	WIN		44
27				PCL	AMP				38
28	VL	.CKI	VL	СКО	VMODE	DETV	AFLD	VINT	00
29		BSHT	ł			VSHT	I		00
2A	CKIL	LMAX		<u>I</u>	CKIL	LMIN			78
2B	FCOMB		HTL		VTL1		VTL		44
2C	CKLM		YDLY			HF	ilt.		30
2D	-	EVCNT	-	SDET	TBC_EN	BYPASS	SYOUT	-	14
2E	н	PM	A	ССТ	SF	PM	CI	BW	A5
2F	NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST	EO
30	SID_FAIL	PID_FAIL	FSC_FAIL	SLOCK_FAIL	CSBAD	MVCSN	CSTRIPE	CTYPE	-
31	VCR	WKAIR2	WKAIR1	VSTD	NINTL	WSSDET	EDSDET	CCDET	-

INDEX (HEX)	7	6	5	4	3	2	1	ο	reset (Hex)
32		HFF	REF/GVAL/PHEF	RDO/CGAINO/	BAMPO/MINAV	/G/SYTHRD/SYA	MP		-
33	FI	RM	Y	NR	CL	.MD	Р	SP	05
34	IN	DEX			NSEN/SSEN	/PSEN/WKTH			1A
35	CTEST	YCLEN	CCLEN	VCLEN	GTEST	VLPF	CKLY	CKLC	00
36	AALPF_EN	ADCPD	ACLAMP_EN	DCLAMP_EN	CL_MARGIN	TOGGLE_ MODE	CM_CLAI	В0	
37	GAIN	N_SEL		-	PD_BIAS		BIAS_CTRL		06
38	-	I	DCLAMP_ATTEN	I	ACLAPI	M_ATTEN		2C	
39		-	PASSIVE_ CLAMP	RES_REF	PASSIVE _VREF	PRECON	DIFF	SE	00
ЗA	-	SI	HT_THRESH_GN	ID	-	SHT_THRESH_BAT			
3B						SHT_DIAG_PD	SHT_GND_EN	SHT_BAT_EN	04
3C						AN_TEST_EN	AN_TE	ST_SEL	00
3D	DISRSTH	DISRTSV	USE_ DETSTUS	USE_LOCK	USE_VACT_ MOD	Y16	BT7	RGB565	08
3F				INTERNAL_	TEST MODE				-
43		- HDELAY_CTRL							01
44				-			HDELA	Y2[9:8]	00
45				HDELA	Y2[7:0]		1		09

INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)
80	ACA_DBG	HIST_WIN_EN	-	ACA_ BYPASS	LPOFF	MLH COMP	MDLTON	ACA_ON	06
81		-			ACA_0	GAIN			20
82		-			YAVGI	ILIM			AO
83		-			YAVGI	LIM			08
84		-				YMIN	IMAXR		09
85		-			•	BLKLVL			10
87		-				WHTLVL			00
88	-				MOFSLIM				38
89		-				MOFSSLOPE			10
8A					MOFSU	PGAIN			10
8B		-			MOFSD	NGAIN			14
8C						MDLTCUT			0A
8D		-				MDLTSLOPE			1F
8E		-			YLHAV	GDIFF			1A
8F		-				LMAXGRAD			00
90		-				HMAXGRAD			OC
91		-				LGRADUP			00
92		-				LGRADDN			08
93		-				HGRADUP			04
94		-				HGRADDN			OC
95		-				LPF	COEFF		04
96			PDF	_INDEX	1		ACA_MASK	READ_EN	00
97				HAVST	_HIST				00
98				-				HAVSIZE _HIST_HI	01
99				HAVSIZE	_HIST_LO				68
9A				VAVST	_HIST				00
9B				-				VAVSIZE _HIST_HI	01
90				VAVSIZE_	HIST_LO				20
AO				YAVG	RAW				-
A1				YAVG	_LIM				-
A2				LOW	_AVG				-
A3				HIGH	_AVG				-
A4				Y_N	IAX				-
A5				Y_N	MIN				-
A6				MOF	FSET				-
A7				LGF	RAD				-

FN8907 Rev.1.00

Mar 19, 2019

			TABLE 7. ACA F	REGISTERS (4 PA	GES 1, 2, 3, and	d 4) (Continue	d)				
INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)		
A8				HGR	AD				-		
A9				LL_SL	.OPE				-		
AA				LH_SL	OPE				-		
AB				HL_SL	OPE				-		
AC				HH_SI	_OPE				-		
AD				X_L0	w				-		
AE				X_ME	EAN				-		
AF				Х_НІ	GH				-		
B0				Y_LC	ow.				-		
B1				Y_ME	EAN				-		
B2		Y_HIGH									
B3				-			DIS_I	LINE_EN	02		
B4		- DIS_LINE _SP_HI									
B5				DIS_LIEN	_SP_L0				00		
CO	MASTER	MASTER ACA_HF_WIN_EN F_WIN_EN EN									
C1											
C2				TL_VERTE>	(X0[7:0]		-		00		
C3		- TL_VERTEX_Y0[8:8]									
C4				TL_VERTE					00		
C5				-			TR_VERT	EX_X1[9:8]	02		
C6				TR_VERTE	X_X1[7:0]				CF		
C7				-				TR_VERTEX_ Y1[8:8]	00		
C8				TR_VERTE	X_Y1[7:0]				00		
C9				-			BL_VERT	EX_X2[9:8]	00		
CA				BL_VERTEX	X_X2[7:0]		<u> </u>		00		
СВ				-				BL_VERTEX_ Y2[8:8]	00		
СС				BL_VERTE	X_Y2[7:0]				EF		
CD				-			BR_VER1	EX_X3[9:8]	02		
CE				BR_VERTE	X_X3[7:0]				CF		
CF				-				BR_VERTEX_ Y3[8:8]	00		
D0				BR_VERTE	X_Y3[7:0]			·	EF		
D1				-			LM_VER1	EX_X4[9:8]	00		
D2				LM_VERTE	X_X4[7:0]				00		
D3				-				LM_VERTEX_ Y4[8:8]	00		
D4				LM_VERTE	X_Y4[7:0]			1	77		

R	ΞN	ES	Δ

			TABLE 7. ACA F	REGISTERS (4 PA	GES 1, 2, 3, ar	nd 4) (Continued	I)		
INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)
D5				-			TM _VER	TEX_X5[9:8]	00
D6				TM_VERT	EX_X5[7:0]				00
D7				-				TM_VERTEX_ Y5[8:8]	00
D8				TM_VERT	EX_Y5[7:0]				00
D9				-			BM_VER	TEX_X6[9:8]	01
DA				BM_VERTE	EX_X6[7:0]				67
DB				-				BM_VERTEX_Y 6[8:8]	00
DC				BM_VERTE	EX_Y6[7:0]				EF
DD				-			RM_VER	TEX_X7[9:8]	02
DE				RM_VERTE	EX_X7[7:0]				CF
DF	G			ŀD				RM_VERTEX_Y 7[8:8]	00
EO				RM_VERTE	EX_Y7[7:0]				77
E1				HISTORAN	1_DAT[7:0]				-
E2				HISTORAM	_DAT[15:8]				-
E3			-			HIS	STORAM_DAT[1	.8:16]	-
E4				F_WIN_C	OLOR_Y				19
E5				F_WIN_C	OLOR_CB				BD
E6				F_WIN_C	OLOR_CR				50
E7								TRAN_ HISTO_EN	00

TABLE 8. LINE INTERLEAVE ENGINE REGISTERS (PAGE 5)

INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)	
00	PD_MIPI	TMLS_MIPI	TMHS_MIPI		-		LANE_NO		82	
01	LNINC1	SWAP_CRC	FRAME_MOD E		F	PIC_WIDTH[12:8]		85	
02		1	1	PIC_W	IDTH[7:0]				AO	
03	SWAP_YC	HS_DPHY_ TEST	-	RST_FIFO	TOP_ONLY	OP_ONLY -				
04	V	C4	vo	3	V	C2	E4			
05	-	ON_CTRL	SDPROG	RGB565	-	SAV_NORMAL	656_BYTE	-	40	
06	FE_FS_ADJ	FIX_LNOUT	8BHDR	VSTABLE	SAMEVC	TYPE30	-	NON_STD_VID	01	
07		1	Г	RD_	START	<u> </u>			2B	
08			-		PF_VB_START	-	DATA2CLK	PF_FLD	00	
09		-		8010		-	1FD_TOP	1FD_BOT	00	
0A				INT	_CTR				00	
0B	GEN_B	AR_PAT	-			NCNT			00	
0C										

INDEX (HEX)	7	6	5	4	3	2	1	0	RESET (HEX)	
0D	INT_PAT1	INT_PAT2	INT_PAT3	INT_PAT4	GEN_C	COLOR	FORCE_FRM	ADD_VBLK	00	
0E				VB_C	COUNT		1		6C	
OF	GEN_FLDPOL	GEN_NOVID	ULPS_FSYNC	-	HSCK_ ALWAYS_ON	GEN_PAL	ESC_TEST	ESC_GO	00	
10		1	1	WORD_CO	DUNT[15:8]	1	-		05	
11				WORD_C	OUNT[7:0]				AO	
12		LPX	_CNT			HS_P	REPARE		76	
13				HS_	ZERO				17	
14				HS_	TRAIL				0E	
15				CLK_T	0_DATA				36	
16			_	CLK_	POST				12	
17				MAR					F6	
18		FORCE_ULPS	ESC_EXIT	LPDT_MODE	RST_MODE	-	ESC_MODE		00	
19				WAIT_I	FRAMES				03	
1A				EOT_F	PERIOD				0A	
1B		CLK_PI	REPARE			CLM	(_PRE		61	
10		LP11	_CNT			CLK	_TRAIL		7A	
1D		CLK_ZERO								
1E		SHORT_PKT_DLY CLK_SOT_CNT							8C	
1F		1	1	ULPS_L	211_CNT					
20	PRBS_ER_ RSTB	ATG_RESYNC	-	TESTSET0	ATG_INV8	PRBS_SEL	HSTEST_SEL	ATEST_EN	00	
21				ESC_	DELAY		1		00	
22	PRBS_ERR_ DET				-				-	
23						CLK_TRAIL	_SHORT_PKT		0A	
24			-			INP	UT_PIC_HEIGHT[10:8]	-	
25				IN_PIC_H	EIGHT[7:0]				-	
26				HS_TRA	AIL_SPKT				07	
28			-			FIF	0_THRESHOLD[1	L0:8]	01	
29				FIFO_TH	RESHOLD				0E	
2A		RANDO	/I_SYNC4			RANDO	M_SYNC3		00	
2B		RANDO	I_SYNC2			RANDO	M_SYNC1		00	
20			-				FE_BOTTOM[10:8	8]	01	
2D				FE_BOT	TOM[7:0]				04	
2E			-				FE_TOP[10:8]		01	
2F				FE_TC	DP[7:0]				05	
30		FE_BOTTOM[7:0] FE_TOP[10:8] - FE_TOP[7:0] CTRL_BIT_DATA1								
31		B Image: Second sec						00		
32				CTRL_I	BIT_CLK				00	

TABLE 8. LINE INTERLEAVE ENGINE REGISTERS (PAGE 5) (Continued)

INDEX (HEX)	7	6	5	4	3	2	1	ο	RESET (HEX)	
33					PLL_ITUNE					
34	PLL_RON	PLL_LOWF	PLL_RST_OFF	PLL_RSTB	PLL_DPHY_ RSTB	PWD_BG	PLL_PWD	-	06	
35			-			PWD_DATA		PWD_CLK	07	
36			- CK_POL PLL_TEST_EN							
38		TOTAL_PFLINE[15:8]								
39				TOTAL_P	FLINE[7:0]				C 0	
3A		-			H	ILINE_CNT[12:8]		06	
3B				HLIN	E_CNT				B3	
3C			-				HIST_LINE[10:8	3]	00	
3D				HIST	LINE				F1	
	C		VF	D						

TABLE 8. LINE INTERLEAVE ENGINE REGISTERS (PAGE 5) (Continued)

ISL79987 and ISL79988 Register Detail

BIT	FUNCTION	R/W	DESCRIPTION	RESET
Cor	nmon Registers	Pag	e 0	
REG	0XFF – PAGE REGIS	TER		
7-4	RESERVED	R/W	Reserved	0
	PAGE		Select the register page to be accessed 0 - Page 0 Common Register 1 - Page 1 Decoder 1 Register 2 - Page 2 Decoder 2 Register 3 - Page 3 Decoder 3 Register 4 - Page 4 Decoder 4 Register 5 - Page 5 MIPI Register F - Select Page 1/2/3/4 for register Write access. Not valid in read time.	
REG	i 0X00 – PRODUCT ID) COD	E REGISTER (ID)	
	ID	R	Product ID code	87/88
REG	0X01 – PRODUCT R	EVISI	ON CODE REGISTER (ID)	
7-0	REV	R	Revision number	00
REG	0X02 – SOFTWARE	RESE	I CONTROL REGISTER	
7	RSTALL	R/W	Self cleared soft reset.	0
6-5	RESERVED	R/W	Reserved	0
4	MIPIRST	R/W	A '1' written into this bit resets the MIPI control logic to its default state, but all register contents remain unchanged. Write 0 to exit the reset state.	0
3	VDEC4RST	R/W	A '1' written into this bit resets the Video Decoder 4 control logic to its default state, but all register contents remain unchanged. Write 0 to exit the reset state.	0
2	VDEC3RST	R/W	A '1' written into this bit resets the Video Decoder 3 control logic to its default state, but all register contents remain unchanged. Write 0 to exit the reset state.	0
1	VDEC2RST	R/W	A '1' written into this bit resets the Video Decoder 2 control logic to its default state, but all register contents remain unchanged. Write 0 to exit the reset state.	0
0	VDEC1RST	R/W	A '1' written into this bit resets the Video Decoder 1 control logic to its default state, but all register contents remain unchanged. Write 0 to exit the reset state.	0
REG	0X03 – IO BUFFER (CONT	ROL	
7	EXTCLK	R/W	Test mode only replacing mux_clk and lps_clk with external clock source from SADD0.	0
6	LOCK_WTX	R/W	Serial interface multi-byte write lock function 1 = Disable (no lock, each byte takes effect after written) 0 = Enable	0
5	LOCK_RDX	R/W	Serial interface multi-byte read lock function 1 = Disable 0 = Enable	0
4	AINC	R/W	Serial interface auto-indexing control 1 = Non-auto 0 = Auto-increment	0
3	OEN	R/W	Tri-State all digital signal outputs 0 = Release overall tri-state, output enable depends on each signal pin's tri-state control 1 = Tri-State	1
2	TRI656	R/W	Tri-State the VD bus and VDCLK	1
1	LS_DRVSTR	R/W	Digital output buffer driver strength selection for low-speed buffers 0 = 4mA 1 = 8mA	0
0	HS_DRVSTR	R/W	Digital output buffer driver strength selection for high-speed buffers 0 = 4mA 1 = 8mA	0

ISL79987 and ISL79988 Register Detail (Continued)

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	G 0X04 – IO BUFFE	R CONT	ROL 1	
7	RESERVED	R/W	Reserved	0
6-5	CK2S	R/W	Clock multpixer control on CLKO pad 0 = Line interleaving clock 1 = AFE clock output 2 = CLK27/2 clock 3 = CLK27/4 clock	0
4-3	CK1S	R/W	Clock polarity control on CLKO pad CK1S[0] – 0 = Clock selected by CK2S 1 = Inverted version CK1S[1] - Reserved	0
2	RESERVED	R/W	Reserved	0
1	CLK_DRVST	R/W	Digital output buffer driver strength selection for clock output pad (BT.656) 0 = 4mA 1 = 8mA	0
0	DNB_REV	R/W	Test mode output data reversal of MSB and LSB during clock high and low periods.	0
REG	G 0X05 - IO PAD P	ULL ENA	BLE CONTROL	_
7	PD_PEX	R/W	PD pin pull enable control. 0 = Enable 1 = Disable	0
6	MPP2_PEX	R/W	CLKO_MPP2 pin pull enable control. 0 = Enable 1 = Disable	0
5	MPP1_PEX	R/W	MPP1 pin pull enable control. 0 = Enable 1 = Disable	0
4	IRQ_PEX	R/W	IRQ pin pull enable control. 0 = Enable 1 = Disable	0
3	SADDO_PEX	R/W	SADD0 pin pull enable control. 0 = Enable 1 = Disable	0
2	SADD1_PEX	R/W	SADD1 pin pull enable control. 0 = Enable 1 = Disable	0
1-0	RESERVED	R/W	Reserved	0
REG	G 0X06 – IO BUFFE	R CONT	ROL 1	
7	PDSYSCK	R/W	Power-down (or stop) the 27MHZ clock to all modules except I ² C.	0
6-0	RESERVED	R/W	Reserved	0

ISL79987 and ISL79988 Register Detail (Continued)

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	a 0X07 – VIDEO INF	PUT CHA	NNEL CONTROL	
7-6	CH_SEL	R/W	Selects which channel outputs are selected on to the SYNC outputs 0 = Channel 1 1 = Channel 2 2 = Channel 3 3 = Channel 4	0
5-4	SEC_CH	R/W	Selection of the video channel as a second channel for two-channel configuration 0 = Video Channel 1 1 = Video Channel 2 2 = Video Channel 3 3 = Video Channel 4	1
3-2	PRI_CH	R/W	Selection of the video channel as a primary channel for one/two-channel configuration 0 = Video Channel 1 1 = Video Channel 2 2 = Video Channel 3 3 = Video Channel 4	0
1-0	MODE_CH	R/W	Video input channel mode 0 = 1 Channel Mode 1 = 2 Channel Mode 2 = 4 Channel Mode 3 = Reserved	2
REG	0X08 – CLOCK CO	NTROL	1	
7-6	PLL_NDIV	R/W	Input clock divider. Always has to be zero for this part.	0
5-0	PLL_MDIV	R/W	VCO clock frequency feedback divider. Divided by value (PLL_MDIV+1)	1F
REG	a 0X09 – CLOCK CO	NTROL	2	
7	RESERVED	R/W	Reserved	0
6	PLL_P1DIV_EN	R/W	Output divider P1 enable 0 = Disabled (no clock output) 1 = Enabled	1
5-0	PLL_P1DIV	R/W	PLL P1 output divider value. Control the MUX clock/line interleave clock. 0 = Divide by 1 1 = Divide by 2 2 = Divide by 4 3 to 63 = Divide (2*(PLL_P1DIV+1))	03
REG	OXOA – CLOCK CO	NTROL	3	
7	RESERVED	R/W	Reserved	0
6	PLL_P2DIV_EN	R/W	Output divider P2 enable 0 = Disabled (no clock output) 1 = Enabled	1
5-0	PLL_P2DIV	R/W	PLL P2 output divider value. Controls the video clock for future use (can be reserved for ISL79987) 0 = Divide by 1 1 = Divide by 2 2 = Divide by 4 3 to 63 = Divide (2*(PLL_P2DIV+1))	OF

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OXOB – CLOCK CO	NTROL	4	
7	RESERVED	R/W	Reserved	0
6	PLL_P3DIV_EN	R/W	Output divider P3 enable 0 = Disabled (no clock output) 1 = Enabled	1
5-0	PLL_P3DIV	R/W	PLL P3 output divider value. Controls the MIPI TX Clock. 0 = Divide by 1 1 = Divide by 2 2 = Divide by 4 3-63 = Divide (2*(PLL_P3DIV+1))	01
REG	OXOC - MPP1 SYN		IROL	
7	MPP1IN	R	MPP1 input data	0
6	MPP10E		MPP1 output enable 0 = Disable 1 = Output Enable	0
5	MPP1POL	R/W	MPP1 output polarity 0 = Normal 1 = Inverted	0
4-0	MPP1SEL		Selects one of the below signals to MPP1. The channel is defined by CH_SEL. 0x00 = 0 0x01 = 1 0x02 = CHX_HSYNC 0x03 = CHX_HACT 0x04 = CHX_HLOCK 0x05 = CHX_CIMP_UP 0x07 = CHX_PKSYNC 0x08 = CHX_VSYNC 0x08 = CHX_VSYNC 0x09 = CHX_VSYNC 0x00 = CHX_VSYNC 0x0C = CHX_UBRST 0x0C = CHX_UDR 0x0F = CHX_VLOCK 0x10 = CHX_VDLOSS 0x11 = CHX_SLOCK 0x12 = CHX_MONO 0x13 = CHX_RTCOUT 0x15 = CHX_RTCOUT 0x16 = CHX_VDET 0x17 = CHX_CGATE 0x18 = CHX_DQSYNC 0x19 = CHX_VDEN 0x19 = CHX_VDEN 0x19 = CHX_VDEN 0x10 = CHX_VDET 0x17 = CHX_CGATE 0x18 = CHX_DQSYNC 0x14 = CHX_ACT_VIDEO	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	A OXOD – MPP2 SY	NC CON	TROL (DURING MIPI MODE ONLY)	
7	MPP2IN	R	MPP2 input data	0
6	MPP20E	R/W	MPP2 output enable 0 = Disable 1 = Output Enable	0
5	MPP2POL	R/W	MPP2 output polarity 0 = Normal 1 = Inverted	0
4-0	MPP2SEL	R/W	Selects one of the below signals to MPP2. The channel is defined by CH_SEL. 0x00 = CLKOUT 0x01 = 1 0x02 = CHX_HSYNC 0x03 = CHX_HACT 0x04 = CHX_HLOCK 0x05 = CHX_ASYNCW 0x06 = CHX_CLMP_UP 0x07 = CHX_PKSYNC 0x08 = CHX_SAV 0x09 = CHX_VSYNC 0x0A = CHX_VSYNC 0x0A = CHX_VBURST 0x0C = CHX_VBURST 0x0C = CHX_UOCK 0x0F = CHX_VLOCK 0x0F = CHX_VLOCK 0x12 = CHX_VLOCK 0x13 = CHX_DET50 0x14 = CHX_RTCOUT 0x15 = CHX_DET50 0x14 = CHX_COUT 0x15 = CHX_VDET 0x17 = CHX_CONT 0x19 = CHX_VDET 0x10 = CHX_VDET 0x10 = CHX_VDET 0x11 = CHX_CONT 0x12 = CHX_VDET 0x12 = CHX_VDET 0x13 = CHX_VDET 0x14 = CHX_CONT 0x15 = CHX_VDET 0x17 = CHX_CONT 0x14 = CHX_CONT 0x15 = CHX_VDET 0x17 = CHX_CONT 0x16 = CHX_VDET 0x17 = CHX_CONT 0x18 = CHX_OSN 0x14 = CHX_ACT_VIDE0	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OXOE – IRQ SYNC	CONTR	OL	·
7	IRQIN	R	IRQ input data	0
6	IRQOE	R/W	IRQ output enable 0 = Disable 1 = Output Enable	0
5	IRQPOL	R/W	IRQ output polarity 0 = Normal 1 = Inverted	0
4-0	IRQSEL	R/W	Selects one of the below signals to IRQ. The channel is defined by CH_SEL. 0x00 = IRQOUT 0x01 = 1 0x02 = CHx_HSYNC 0x03 = CHX_HACT 0x04 = CHX_HLOCK 0x05 = CHX_ASYNCW 0x06 = CHX_CLMP_UP 0x07 = CHX_PKSYNC 0x08 = CHX_VSYNC 0x09 = CHX_VSYNC 0x00 = CHX_VSYNC 0x00 = CHX_VBURST 0x0C = CHX_CLMP_DN 0x0D = CHX_VLOCK 0x0F = CHX_VLOCK 0x10 = CHX_VLOCK 0x11 = CHX_SLOCK 0x12 = CHX_MONO 0x13 = CHX_DET50 0x14 = CHX_RTCOUT 0x15 = CHX_DET 0x16 = CHX_VDET 0x17 = CHX_CGATE 0x18 = CHX_DQSYNC 0x19 = CHX_ACT_VIDEO	0
REG	OX10 - DEVICE IN	ITERRU	PT STATUS REGISTER	
7-5	RESERVED	R	Reserved	0
4	SHDIRQ	R	Indicates that short diagnostic interrupt is asserted.	0
3	CH4IRQ	R	Indicates that Channel 4 video interrupt is asserted.	0
2	CH3IRQ	R	Indicates that Channel 3 video interrupt is asserted.	0
1	CH2IRQ	R	Indicates that Channel 2 video interrupt is asserted.	0
0	CH1IRQ	R	Indicates that Channel 1 video interrupt is asserted.	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OX11 – CHANNEL	1 IRQ R	EGISTER	
7-4	RESERVED	R/W	Reserved	0
3	CH1VDLOSS	R/W	VDLOSS status change interrupt. Write '1' to clear the active status.	0
2	CH1DET50	R/W	DET50 detection status change interrupt. Write '1' to clear the active status.	0
1	CH1SLOCK	R/W	SLOCK status change interrupt. Write '1' to clear the active status.	0
0	CH1HVLOCK	R/W	HLOCK/VLOCK status change interrupt. Write '1' to clear the active status.	0
REG	OX12 – CHANNEL	. 2 IRQ R	EGISTER	
7-4	RESERVED	R/W	Reserved	0
3	CH2VDLOSS		VDLOSS status change interrupt. Write '1' to clear the active status.	0
2	CH2DET50	R/W	DET50 detection status change interrupt. Write '1' to clear the active status.	0
1	CH2SLOCK	R/W	SLOCK status change interrupt. Write '1' to clear the active status.	0
0	CH2HVLOCK	R/W	HLOCK/VLOCK status change interrupt. Write '1' to clear the active status.	0
REG) 0X13 – CHANNEL	. 3 IRQ R	EGISTER	1
7-4	RESERVED	R/W	Reserved	0
3	CH3VDLOSS	R/W	VDLOSS status change interrupt. Write '1' to clear the active status.	0
2	CH3DET50	R/W	DET50 detection status change interrupt. Write '1' to clear the active status.	0
1	CH3SLOCK	R/W	SLOCK status change interrupt. Write '1' to clear the active status.	0
0	CH3HVLOCK	R/W	HLOCK/VLOCK status change interrupt. Write '1' to clear the active status.	0
REG	OX14 – CHANNEL	. 4 IRQ R	EGISTER	1
7-4	RESERVED	R/W	Reserved	0
3	CH4VDLOSS	R/W	VDLOSS status change interrupt. Write '1' to clear the active status.	0
2	CH4DET50	R/W	DET50 detection status change interrupt. Write '1' to clear the active status.	0
1	CH4SLOCK	R/W	SLOCK status change interrupt. Write '1' to clear the active status.	0
0	CH4HVLOCK	R/W	HLOCK/VLOCK status change interrupt. Write '1' to clear the active status.	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X15 - SHORT DIA	GNOS	TIC IRQ REGISTER	
7	SHT_BAT4	R/W	Short-to-battery interrupt (DIAG4). Write '1' to clear the active status.	0
6	SHT_BAT3	R/W	Short-to-battery interrupt (DIAG3). Write '1' to clear the active status.	0
5	SHT_BAT2	R/W	Short-to- battery interrupt (DIAG2). Write '1' to clear the active status.	0
4	SHT_BAT1	R/W	Short-to-battery interrupt (DIAG1). Write '1' to clear the active status.	0
3	SHT_GND4	R/W	Short-to-ground interrupt (DIAG4). Write '1' to clear the active status.	0
2	SHT_GND3	R/W	Short-to- ground interrupt (DIAG3). Write '1' to clear the active status.	0
1	SHT_GND2	R/W	Short-to-ground interrupt (DIAG2). Write '1' to clear the active status.	0
0	SHT_GND1	R/W	Short-to-ground interrupt (DIAG1). Write '1' to clear the active status.	0
REG	0X16 – CHANNEL 1	IRQ E	ENABLE	
7-4	RESERVED	R/W	Reserved	0
3-0	CH1IRQ_EN	R/W	CH1 IRQ enable register. A '0' for any bit disables the interrupt for that specific bit.	0
REG	0X17 – CHANNEL 2	IRQ E	ENABLE	
7-4	RESERVED	R/W	Reserved	0
3-0	CH2IRQ_EN	R/W	CH2 IRQ enable REGISTER. A '0' for any bit disables the interrupt for that specific bit.	0
REG) 0X18 – CHANNEL 3	IRQ E	ENABLE	
7-4	RESERVED	R/W	Reserved	0
3-0	CH3IRQ_EN	R/W	CH3 IRQ enable REGISTER. A '0' for any bit disables the interrupt for that specific bit.	0
REG	0X19 – CHANNEL 4	IRQ E	ENABLE	
7-4	RESERVED	R/W	Reserved	0
3-0	CH4IRQ_EN	R/W	CH4 IRQ enable REGISTER. A '0' for any bit disables the interrupt for that specific bit.	0
REG	0X1A - SHORT DIA	GNOS	TIC IRQ ENABLE	
7-0	SHTIRQ_EN	R/W	IRQ enable for Short Diagnostic. A '0' for any bit disables the interrupt for that specific bit.	00
REG	0X1B – CHANNEL 1	STAT	US REGISTER	-+
7-4	RESERVED	R	Reserved	-
3	CH1VDLOSS_STS	R	VDLOSS status	-
2	CH1DET50_STS	R	DET50 detection status	-
1	CH1SLOCK_STS	R	SLOCK status	-
0	CH1HVLOCK_STS	R	HLOCK/VLOCK status	-

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OX1C – CHANNEL	2 STAT	US REGISTER	
7-4	RESERVED	R	Reserved	-
3	CH2VDLOSS_STS	R	VDLOSS status	-
2	CH2DET50_STS	R	DET50 detection status	-
1	CH2SLOCK_STS	R	SLOCK status	-
0	CH2HVLOCK_STS	R	HLOCK/VLOCK status	-
7-4	RESERVED	R	Reserved	-
REG	0X1D – CHANNEL	3 STAT	US REGISTER	
7-4	RESERVED	R	Reserved	-
3	CH3VDLOSS_STS	R	VDLOSS status	-
2	CH3DET50_STS	R	DET50 detection status	-
1	CH3SLOCK_STS	R	SLOCK status	-
0	CH3HVLOCK_STS	R	HLOCK/VLOCK status	-
REG	OX1E - CHANNEL	4 STAT	JS REGISTER	
7-4	RESERVED	R	Reserved	-
3	CH4VDLOSS_STS	R	VDLOSS status	-
2	CH4DET50_STS	R	DET50 detection status	-
1	CH4SLOCK_STS	R	SLOCK status	-
0	CH4HVLOCK_STS	R	HLOCK/VLOCK status	-
REG	0X1F- SHORT DIA	GNOST	IC STATUS REGISTER	
7	SHT_BAT4_STS	R	Short-to-battery status (DIAG4).	-
6	SHT_BAT3_STS	R	Short-to-battery status (DIAG3).	-
5	SHT_BAT2_STS	R	Short-to- battery status (DIAG2).	-
4	SHT_BAT1_STS	R	Short-to-battery status (DIAG1).	-
3	SHT_GND4_STS	R	Short-to-ground status (DIAG4).	-
2	SHT_GND3_STS	R	Short-to-ground status (DIAG3).	-
1	SHT_GND2_STS	R	Short-to-ground status (DIAG2).	-
0	SHT_GND1_STS	R	Short-to-ground status (DIAG1).	-
REG	0X20 – CLOCK DE	LAY RE	GISTER	
7-3	RESERVED	R/W	Reserved	0
2-0	CLKO_DLY	R/W	CLKO delay selection. 1nS per step	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
Dee	coder Registers ·	Pag	e 1, 2, 3, and 4 for Four Decoders	
REG	0X02 – INPUT FORM	IAT (I	NFORM)	
7	RESERVED	R/W	Reserved	0
6	FC27	R/W	0 = Square pixel mode. Must use 24.54MHz for 60Hz field rate source or 29.5MHz for 50Hz field rate source 1 = Input crystal clock frequency is 27MHz	1
5-4	IFSEL	R/W	0 = Composite video decoding Others = N/A	0
3-0	RESERVED	R/W	Reserved	8
REG	0X03 – DECODER S	TATUS	S REGISTER I (STATUS1)	
7 6	VDLOSS HLOCK	R R	0 = Video detected 1 = Video not present. (Sync is not detected in number of line periods specified by MISSCNT register) 0 = Horizontal sync PLL is not locked	-
_			1 = Horizontal sync PLL is locked to the incoming video source	
5	SLOCK	R	0 = Subcarrier PLL is not locked 1 = Subcarrier PLL is locked to the incoming video source	-
4	FIELD	R	0 = Even field is being decoded 1 = Odd field is being decoded	-
3	VLOCK	R	0 = Vertical logic is not locked 1 = Vertical logic is locked to the incoming video source	-
2	RESERVED	R	Reserved	-
1	MONO	R	0 = Color burst signal detected 1 = No color burst signal detected	-
0	DET50	R	0 = 60Hz source detected 1 = 50Hz source detected The actual output vertical scanning frequency depends on the current standard invoked.	-
REG	0X04 – HSYNC DEL	AY CO	NTROL	
7	RESERVED	R/W	Reserved	-
6-5	СКНҮ	R/W	Color killer time constant 0 = Fastest 3 = Slowest	0
4-0	RESERVED	R/W	Reserved	-
REG	0X06 – ANALOG CO	NTRO	L REGISTER (ACNTL)	
7-5	RESERVED	R/W	Reserved	-
4	AGC_EN	R/W	0 = AGC loop function enabled 1 = AGC loop function disabled. Gain is set by AGCGAIN.	0
3-0	RESERVED	R/W	Reserved	-
REG	0X07 – CROPPING	REGIS	TER, HIGH (CROP_HI)	
7-6	VDELAY_HI	R/W	Bit[9:8] of the 10-bit Vertical Delay register.	0
5-4	VACTIVE_HI	R/W	Bit[9:8] of the 10-bit VACTIVE register. See the reg0x1C[3] description on page 46 for its shadow register.	0
3-2	HDELAY_HI	R/W	Bit[9:8] of the 10-bit Horizontal Delay register.	0
1-0	HACTIVE_HI	R/W	Bit[9:8] of the 10-bit HACTIVE register.	2

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X08 – VERTICAL D	DELAY	REGISTER, LOW (VDELAY_LO)	
7-0	VDELAY_LO	R/W	Bit[7:0] of the 10-bit Vertical Delay register. It defines the number of lines between the leading edge of VSYNC and the start of the active video. The two MSBs are in the CROP_HI register.	12
REG	0X09 - VERTICAL A	CTIVE	REGISTER, LOW (VACTIVE_LO)	
7-0	VACTIVE_LO	R/W	Bit[7:0] of the 10-bit Vertical Active register. It defines the number of active video lines per frame output. The two MSBs are in the CROP_HI register. The VACTIVE register has a shadow register for use with a 50Hz source when Atreg of Reg0x11C is not set. This register can be accessed through the same index address by first changing the format standard to any 50Hz standard.	FO
REG	0X0A – HORIZONTA	AL DEL	AY REGISTER, LOW (HDELAY_LO)	
7-0	HDELAY_LO	R/W	Bit[7:0] of the 10-bit Horizontal Delay register. It defines the number of pixels between the leading edge of the HSYNC and the start of the image cropping for active video. The two MSBs are in the CROP_HI register. The HDELAY_LO register has two shadow registers for use with PAL and SECAM sources respectively. This register can be accessed using the same index address by first changing the decoding format to the corresponding standard.	OF
REG	OXOB - HORIZONT	AL ACT	TIVE REGISTER, LOW (HACTIVE_LO)	
7-0	HACTIVE_LO	R/W	Bit[7:0] of the 10-bit Horizontal Active register. It defines the number of active pixels per line output. The two MSBs are in the CROP_HI register.	D0
REG	OXOC - CONTROL R	EGIST	ER I (CNTRL1)	
7	PBW	R/W	Combined with VTL[3], there are four different chroma bandwidths that can be selected. 0 = Normal Chroma BPF BW 1 = Wide Chroma BPF BW	1
6	DEM	R/W	Color killer sensitivity 0 = High 1 = Low	1
5	PALSW	R/W	0 = PAL switch sensitivity normal 1 = PAL switch sensitivity low	0
4	SET7	R/W	0 = The black level is the same as the blank level 1 = The black level is 7.5 IRE above the blank level	0
3	СОМВ	R/W	0 = Notch filter 1 = Adaptive comb filter on for NTSC/PAL	1
2	НСОМР	R/W	0 = Operation mode 0 1 = Operation mode 1 (recommended)	1
1	YCOMP	R/W	Controls the comb operation when there is no color burst. 0 = Comb 1 = No comb	0
0	PDLY	R/W	PAL delay line 0 = Enable 1 = Disable	0
REG	i OXOD – CSC CONTR	ROL		
7	RESERVED	R/W	Reserved	-
6	NTSC656	R/W	 1 = Number of even field video output line is "the number of odd field video output line - 1." This bit is required for ITU-R BT.656 output for 525 line system standard. 0 = Number of even field video output line is same as the number of odd field video output line. 	0
5-0	RESERVED	R/W	Reserved	-
REG	0X10 - BRIGHTNES	S CON	NTROL REGISTER (BRIGHT)	
7-0	BRIGHTNESS	R/W	Controls the brightness. These bits have a value of -128 to 127 in 2's complement form. A positive value increases brightness. A value of 0 has no effect on the data.	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X11 - CONTRAS	T CONTR	ROL REGISTER (CONTRAST)	
7-0	CONTRAST	R/W	Controls the contrast. These bits have value of 0 to 3.98 (FFh). A value of 100 (64h) yields a gain of 100%. The gain ranges from 0 to 255%.	64
REG	0X12 – SHARPNI	ESS CON	TROL REGISTER I (SHARPNESS)	
7	SCURVE	R/W	Controls the center frequency of the peaking filter. The corresponding gain adjustment is HFLT. 0 = Low $1 = Center$	0
6	VSF	R/W	For internal use only	0
5-4	СТІ	R/W	Color transient improvement level control. There are four enhancement levels. 0 is the lowest and 3 is the highest.	1
3-0	SHARP	R/W	Controls the amount of sharpness enhancement on the luminance signals. There are 16 levels of control. '0' has no effect on the output image and '15' has the strongest effect.	1
REG	0X13 – CHROMA	(U) GAIN	N REGISTER (SAT_U)	
7-0	SAT_U	R/W	Controls the digital gain adjustment to the U (or Cb) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%.	80
REG	0X14 – CHROMA	(V) GAIN	N REGISTER (SAT_V)	
7-0	SAT_V	R/W	Controls the digital gain adjustment to the V (or Cr) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%.	80
REG	0X15 – HUE CON	TROL RE	GISTER (HUE)	
7-0	HUE	R/W	Controls the color hue. The value is in 2's complement form with 0 as the center value. A positive value results in red hue and a negative value gives green hue.	00
REG	0X17 – VERTICAL	. PEAKIN	IG CONTROL I	
7-4	SHCOR	R/W	Provides coring function for the sharpness control.	8
3	RESERVED	R/W	Reserved	-
2-0	VSHP	R/W	Vertical peaking gain control	0
REG	0X18 – CORING (CONTRO	L REGISTER (CORING)	
7-6	CTCOR	R/W	Controls the coring function for the CTI. It has an internal step size of 2.	1
5-4	CCOR	R/W	Controls the low level coring function for the Cb/Cr output.	0
3-2	VCOR	R/W	Controls the coring function of the vertical peaking logic. It has an internal step size of 2.	1
1-0	CIF	R/W	Controls the IF compensation level. 0 = None 1 = 1.5dB 2 = 3dB 3 = 6dB	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OX1C – STANDARD	SELE	CTION (SDT)	
7	DETSTS	R	0 = Idle 1 = Detection in progress	-
6-4	STDNOW	R	Current standard invoked 0 = NTSC (M) 1 = PAL (B, D, G, H, I) 2 = SECAM 3 = NTSC4.43 4 = PAL (M) 5 = PAL (CN) 6 = PAL 60 7 = N/A	-
3	ATREG	R/W	1 = Disable the shadow registers 0 = Enable VACTIVE and HDELAY shadow registers value depending on standard	0
2-0	STANDARD		Standard selection 0 = NTSC(M) 1 = PAL (B, D, G, H, I) 2 = SECAM 3 = NTSC4.43 4 = PAL (M) 5 = PAL (CN) 6 = PAL 60 7 = Auto detection	7
REG	0X1D – STANDARD	RECO	GNITION (SDTR)	
7	ATSTART	R/W	Writing ${f 1}$ to this self-resetting bit manually initiates the auto format detection process.	0
6	PAL60_EN	R/W	1 = Enable recognition of PAL60 0 = Disable recognition	1
5	PALCN_EN	R/W	1 = Enable recognition of PAL (CN) 0 = Disable recognition	1
4	PALM_EN	R/W	1 = Enable recognition of PAL (M) 0 = Disable recognition	1
3	NTSC44_EN	R/W	1 = Enable recognition of NTSC 4.43 0 = Disable recognition	1
2	SECAM_EN	R/W	1 = Enable recognition of SECAM 0 = Disable recognition	1
1	PALB_EN	R/W	1 = Enable recognition of PAL (B, D, G, H, I) 0 = Disable recognition	1
0	NTSC_EN	R/W	1 = Enable recognition of NTSC (M) 0 = Disable recognition	1
REC	0X20 – CLAMPING (GAIN	(CLMPG)	
7-4	CLPEND	R/W	Sets the end time of the clamping pulse in the increment of eight system clocks. The clamping time is determined by this setting together with CLPST.	5
3-0	CLPST	R/W	Sets the start time of the clamping pulse in the increment of eight system clocks. It is referenced to the PCLAMP position.	0
REG	0X21 - INDIVIDUAL	AGC	GAIN (IAGC)	
7-4	NMGAIN	R/W	Controls the normal AGC loop maximum correction value.	2
3-1	WPGAIN	R/W	Peak AGC loop gain control.	1
0	AGCGAIN8	R/W	The MSB of the 9-bit register that controls the AGC gain when the AGC loop is disabled.	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X22 – AGC GAIN	N (AGCG/	AIN)	
7-0	AGCGAIN	R/W	The lower eight bits of the 9-bit register that controls the AGC gain when the AGC loop is disabled.	FO
REG	0X23 – WHITE PE	EAK THR	ESHOLD (PEAKWT)	
7-0	PEAKWT	R/W	Controls the white peak detection threshold.	D8
REG	0X24– CLAMP LE	EVEL (CL	MPL)	
7	CLMPLD	R/W	0 = Clamping level is set by CLMPL 1 = Clamping level preset at 60d	1
6-0	CLMPL	R/W	Determines the clamping level of the Y-channel	3C
REG	0X25- SYNC AM	PLITUDE	(SYNCT)	
7	SYNCTD	R/W	0 = Reference sync amplitude is set by SYNCT 1 = Reference sync amplitude is preset to 38h	1
6-0	SYNCT	R/W	Determines the standard sync pulse amplitude for AGC reference.	38
REG	0X26 – SYNC MIS	SS COUN	IT REGISTER (MISSCNT)	
7-4	MISSCNT	R/W	Sets the threshold for horizontal sync miss count threshold.	4
3-0	HSWIN	R/W	Sets the size for the horizontal sync detection window.	4
REG	0X27 – CLAMP P	OSITION	REGISTER (PCLAMP)	
7-0	PCLAMP	R/W	Sets the clamping position from the PLL sync edge.	38
REG	i 0X28 – VERTICAI		OL I	
7-6	VLCKI	R/W	Vertical lock in time 0 = Fastest 3 = Slowest	0
5-4	VLCKO	R/W	Vertical lock out time. 0 = Fastest 3 = Slowest	0
3	VMODE	R/W	Vertical detection window 0 = Vertical count down mode 1 = Search mode	0
2	DETV	R/W	0 = Normal VSYNC logic 1 = Recommended for special application only	0
1	AFLD	R/W	Auto field generation control 0 = Off 1 = On	0
0	VINT	R/W	Vertical integration time control. 0 = Short 1 = Normal	0
REG	0X29 – VERTICAI	L CONTR	OL II	
7-5	BSHT	R/W	Burst PLL center frequency control	0
4-0	VSHT	R/W	VSYNC output delay control in the increment of half line length	0
REG	0X2A – COLOR K	ILLER LE	EVEL CONTROL	
7-6	CKILMAX	R/W	Controls the amount of color killer hysteresis. The hysteresis amount is proportional to the value.	1
5-0	CKILMIN	R/W	Controls the color killer threshold. Larger values give lower killer levels.	38

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X2B – COMB FILTE	R CO	NTROL	
7	FCOMB	R/W	0 = Adaptive comb 1 = Non-adaptive comb	0
6-4	HTL	R/W	Adaptive comb filter control (factory use only)	4
3	VTL1	R/W	Comb filter bandwidth control	0
2-0	VTL	R/W	Adaptive comb filter threshold control (factory use only)	4
REG	0X2C – LUMA DELA	Y ANE) HFILTER CONTROL	
7	CKLM	R/W	Color killer mode. 0 = Normal 1 = Fast (for special application)	0
6-4	YDLY	R/W	Luma delay fine adjustment. The 2's complement number provides -4 to +3 unit delay control.	3
3-0	HFLT	R/W	Peaking control 2. The peaking curve is controlled by the SCURVE bit.	0
REG	0X2D – MISCELLAN	EOUS	CONTROL REGISTER I (MISC1)	
7	RESERVED	R/W	Reserved	-
6	EVCNT	R/W	0 = Normal operation 1 = Even field counter in special mode	0
5	RESERVED	R/W	Reserved	-
4	SDET	R/W	ID detection sensitivity. '1' is recommended.	1
3	TBC_EN	R/W	0 = TBC off 1 = Internal TBC enabled (test purpose only)	0
2	BYPASS	R/W	Controls the standard detection and should be set to '1' in normal use	1
1	SYOUT	R/W	0 = HSYNC is always generated 1 = HSYNC is disabled when video loss is detected	0
0	RESERVED	R/W	Reserved	-
REG	i 0X2E – MISCELLAN	EOUS	CONTROL REGISTER II (MISC2)	
7-6	НРМ	R/W	Horizontal PLL acquisition time 0 = Slow 1 = Medium 2 = Auto 3 = Fast	2
5-4	ACCT	R/W	ACC time constant 0 = No ACC 1 = Slow 2 = Medium 3 = Fast	2
3-2	SPM	R/W	Burst PLL control 0 = Slowest 1 = Slow 2 = Fast 3 = Fastest	1
1-0	CBW	R/W	Chroma low pass filter bandwidth control 0 = Low 1 = Medium 2 = High 3 = NA	1

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X2F - MISCELLAN	NEOUS	CONTROL III (MISC3)	
7	NKILL	R/W	0 = Disable 1 = Enable noisy signal color killer function in NTSC mode	1
6	PKILL	R/W	0 = Disable 1 = Enable automatic noisy color killer function in PAL mode	1
5	SKILL	R/W	0 = Disable 1 = Enable automatic noisy color killer function in SECAM mode	1
4	CBAL	R/W	1 = Special output mode 0 = Normal output	0
3	FCS	R/W	0 = Disable 1 = Force decoder output value determined by CCS	0
2	LCS	R/W	0 = Disable 1 = Enable per-determined output value indicated by CCS when video loss is detected	0
1	ccs CC	R/W	When FCS is set high or video loss condition is detected when LCS is set high, one of two display colors can be selected. 0 = Black 1 = Blue color	0
0	BST	R/W	0 = Disable 1 = Enable blue stretch	0
REG	0X30 – MACROVIS	ION DE	ETECTION (MVSN)	
7	SID_FAIL	R	SECAM ID detection failed	-
6	PID_FAIL	R	PAL ID detection failed	-
5	FSC_FAIL	R	FSC frequency detection failed	-
4	SLOCK_FAIL	R	Subcarrier lock detection failed	-
3	CSBAD	R	Macrovision color stripe detection may be unreliable	-
2	MVCSN	R	0 = Not detected 1 = Macrovision AGC pulse detected	-
1	CSTRIPE	R	0 = Not detected 1 = Macrovision color stripe protection burst detected	-
0	СТҮРЕ	R	This bit is valid only when color stripe protection is detected, that is, Cstripe = 1 0 = Type 3 color stripe protection 1 = Type 2 color stripe protection	-
REG	0X31 – CHIP STATU	JS II (C	STATUS2)	
7	VCR	R	VCR signal indicator	-
6	WKAIR2	R	Weak signal indicator 2	-
5	WKAIR1	R	Weak signal indicator 1	-
4	VSTD	R	Standard line per field indicator	-
3	NINTL	R	Non interlaced signal indicator	-
2	WSSDET	R	0 = Not detected 1 = WSS data detected	-
1	EDSDET	R	0 = Not detected 1 = EDS data detected	-
0	CCDET	R	0 = Not detected 1 = CC data detected	-

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X32 – H MONITO	R (HFR	EF)	
7-0	HFREF, etc.	R	Horizontal line frequency indicator HREF[9:2]/GVAL[8:1/PHERRDO/CGAINO/BAMPO/MINAVG/SYTHRD/SYAMP	-
REG	i 0X33 – CLAMP M	ODE (CL	MD)	
7-6	FRM	R/W	Free-run mode 0 = Auto mode 1 = Auto mode 2 = 60Hz 3 = 50Hz	0
5-4	YNR	R/W	Y HF Noise Reduction 0 = None 1 = Smallest 2 = Small 3 = Medium	0
3-2			Clamping mode control 0 = Sync top 1 = Auto 2 = Pedestal 3 = NA	1
1-0	PSP	R/W	Slice level 0 = Low 1 = Medium 2 = High 3 = NA	1
REG	i 0X34 – ID DETECT	ION CO	NTROL (NSEN/SSEN/PSEN/WKTH)	
7-6	INDEX	R/W	Indicates which of the four lower 6-bit registers is currently being controlled. The write sequence is a two-step process unless the same register is written. A write of {INDEX,000000} selects one of the four registers to be written. A subsequent write actually writes into the register.	0
5-0	NSEN/ SSEN/ PSEN/ WKTH	R/W	IDX = 0 controls the NTSC ID detection sensitivity (NSEN). IDX = 1 controls the SECAM ID detection sensitivity (SSEN). IDX = 2 controls the PAL ID detection sensitivity (PSEN). IDX = 3 controls the weak signal detection sensitivity (WKTH).	1A/ 20/ 1C/ 11
REG	i 0X35 – CLAMP CC	ONTROL	(CLCNTL)	
7	CTEST	R/W	Clamping control for debug use	0
6	YCLEN	R/W	0 = Enable Y-channel clamp 1 = Disable	0
5-4	RESERVED	R/W	Reserved	0
3	GTEST	R/W	0 = Normal operation 1 = Test mode	0
2	VLPF	R/W	Sync filter bandwidth control	0
1	CKLY	R/W	Clamping current control 1	0
0	CKLC	R/W	Clamping current control 2	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X36 – DIFFERENT	IAL CL	AMPING CONTROL 1	·
7	AALPF_EN	R/W	0 = Disable Y-channel anti-aliasing filter (RGB mode) 1 = Enable Y-channel anti-aliasing filter (decoder mode)	1
6	ADC_PD	R/W	0 = ADC normal operation 1 = ADC power-down	0
5	ACLAMP_EN	R/W	Enables differential clamp for normal operation. Disable for test.	1
4	DCLAMP_EN	R/W	Enables single-ended clamp for normal operation. Disable for test.	1
3	CL_MARGIN	R/W	Adjusts the timing spacing between the two non-overlapping clocks that operate in the toggle-mode. 0 = 3 to 27MHz clock periods 1 = 6 to 27MHz clock periods	0
2	TOGGLE_MODE	R/W	Enables the toggle-mode, which eliminates systematic offsets between the two output phases of the common-mode restore amp by swapping them from line to line. 0 = Disable toggle mode 1 = Enable	0
1-0	CM_CLAMP_MODE	R/W	Selects between four modes of operation for the common-mode restore. The table needed is derived from the Verilog module. 0 = Clamp counter 1= Blanking period 2= Burst period 3= Back-porch counter	0
REG	0X37 – DIFFERENT	IAL CL	AMPING CONTROL 2	
7-6	GAIN_SEL	R/W	Analog front-end pre-amplifier gain control 0 = 1x 1 = 2x 2 = 4x 3 = 4x	0
5-4	RESERVED	R/W	Reserved	0
3	BIAS_PD	R/W	Bias PD 0 = Bias normal operation 1 = Bias power-down	0
2-0	BIAS_CTRL	R/W	Shared ADC bias control for all four channels. Always set to 3h	6
REG	0X38 - DIFFERENT	IAL CL	AMPING CONTROL 3	
7	RESERVED	R/W	Reserved	0
6-4	DCLAMP_ATTEN	R/W	Attenuates digital clamp current. Register shared by all four channels. 1x current is: $0 = 15\mu A$ 1 = 7.5 μA 2 = 5 μA 3 = 3.75 μA $4 = 3\mu A$ 5 = 2.5 μA 6 = 2.1 μA 7 = 1.9 μA	2
3-2	ACLAMP_ATTEN	R/W	Reduces the strength of the common-mode restore clamp $0 = 5\mu A$ $1 = 6.7\mu A$ $2 = 10\mu A$ $3 = 20\mu A$	3
1-0	RESERVED	R/W	Reserved	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X39 – DIFFERENT	IAL CL	AMPING CONTROL 4	
7-6	RESERVED	R/W	Reserved	0
5	PASSIVE_CLAMP	R/W	Selects between current mode (active amplifier) and voltage mode (passive resistor network) for the common-mode restore function. 0 = Passive resistor network for the common-mode restore function 1 = Active amplifier for common-mode restore	0
4	RES_REF	R/W	Selects alternate common-mode reference. Normal operation mode is 0.	0
3	PASSIVE_VREF	R/W	Enables the use of un-buffered ADC V reference. 0 = Buffered 1 = Unbuffered	0
2	PRECON	R/W	Enables common-mode input preconditioning. Forces unused (unselected) inputs to half supply. 0 = Disable 1 = Enable	0
1	DIFF GG	R/W	Differential Mode on AFE 0 = Single-ended 1 = Differential	0
0	SE	R/W	Input channel selection when it is in single-ended. 0 = AINO (+ve) SE_COM (-ve) 1 = AIN1 (+ve) SE_COM (-ve)	0
REG	a 0X3A – SHORT DEI	ECTIO	N CONTROL	
7	RESERVED	R/W	Reserved	0
6-4	SHT_THRESH_GND	R/W	Selects threshold for short-to-ground detection for DIAG0, DIAG1, and DIAG2	0
3	RESERVED	R/W	Reserved	0
2-0	SHT_THRESH_BAT	R/W	Selects threshold for short-to-battery detection for DIAG0, DIAG1, and DIAG2	0
REG	OX3B - SHORT DET	ECTIO	N CONTROL 1	
7-3	RESERVED	R/W	Reserved	0
2	SHT_DIAG_PD	R/W	Power-down diagnostic circuit 0 = Normal operation 1 = Power-down	1
1	SHT_GND_EN	R/W	Enables short-to-ground detection for DIAGx 0 = Disable 1 = Enable	0
0	SH_BAT_EN	R/W	Enables short-to-battery detection for DIAGx (battery or high-side supply) 0 = Disable 1 = Enable	0
REG	0X3C – AFE TEST M	IUX CO	NTROL	
7-3	RESERVED	R/W	Reserved	0
2	AN_TEST_EN	R/W	Enables the analog test multiplexers 0 = Disable multiplexers 1 = Enable multiplexers	0
1-0	AN_TEST_SEL	R/W	Selects analog signals from the AFE for the test multiplexers 0 = input multiplexers output 1 = PREAMP/PGA/AAF output 2 = VREFP, VREFN 3 = VCMREF, VCOM_ADC	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X3D – DATA CON	/ERSIC	DN	
7	DISRSTH	R/W	Decifer FIFO reset per line	0
6	DISRSTV	R/W	Decifer FIFO reset per field	0
5	USE_DETSTUS	R/W	Use the "DETSTUS" flag to evaluate the v_stable flag that turns off MIPI when video is unstable	0
4	USE_LOCK	R/W	Use both "VLOCK" and "HLOCK" flags to evaluate the v_stable flag that turns off MIPI when video is unlocked	0
3	USE_VACT_MOD	R/W	1 = Deactivate "vact601" when the "field" bit is repeated in the following field, an error condition, which is used to turn off MIPI transmission to maintain a complete odd-even pair output for the MIPI-receiver.	1
2	Y16	R/W	Y pedestal level selection of YUV to RGB conversion. 0 = No offset adjustment 1 = Decimal 16 level becomes black level	0
1	вт7	R/W	Conversion matrix selection of YUV to RGB conversion. 0 = Matrix for SDTV standard 1 = Matrix for HDTV standard	0
0	RGB565	R/W	Output data format 0 = YUV422 1 = RGB565	0
REG	0X3F INTERNAL T	EST	·	
7-0	INTERNAL TEST MODE	R/W	For internal test only.	-
REG	0X43 HORIZONTA	L DEL	AY CONTROL REGISTER	
7-1	RESERVED	R/W	Reserved	0
0	HDELAY_CTRL	R/W	Enables separate HDELAY control. When set to "0", the HDELAY2 has no effect. When set to "1", the HDELAY2 assumes the function described in the HDELAY register (reg0x07[3:2] # reg0x0A) while the HDELAY is used by the interface circuit between decoder and MIPI controller.	1
REG	0X44 HORIZONT	L DEL	AY II REGISTER, HIGH	
7-2	RESERVED	R/W	Reserved	0
1-0	HDELAY2_HI	R/W	Higher two bits of HDELAY2[9:0] register	0
REG	0X45 HORIZONTA	L DEL	AY II REGISTER, LOW	
7-0	HDELAY2_LO	R/W	Lower eight bits of HDELAY2[9:0] register	09

BIT	FUNCTION	R/W	DESCRIPTION	RESET
AC	A Registers – Pa	ge 1,	2, 3 and 4	
REG	a 0X80 – ACA CONTR	OL		
7	ACA_DBG	R/W	ACA debug function 0 = Disable	0
6	HIST_WIN_EN	R/W	Histogram measure window enable 0 = Disable	0
5	RESERVED	R/W	Reserved	0
4	ACA_BYPASS	R/W	ACA function bypass 0 = Disable 1 = Enable	0
3	LPOFF	R/W	Low pass filter disable 0 = Enable 1 = Disable	0
2	MLHCOMP	R/W	Low/High offset compensation enable 0 = Disable	1
1	MDLTON	R/W	Y Delta compensation enable 0 = Disable 1 = Enable	1
0	ACA_ON	R/W	ACA function enable 0 = Disable 1 = Enable	0
REG	0X81 – ACA GAIN C	ONTR	OL	
7-6	RESERVED	R/W	Reserved	0
5-0	ACA_GAIN	R/W	ACA gain control 00 = ACA off 20 = Maximum	20
REG	0X82 – Y AVERAGE	HIGH	LIMIT CONTROL	
7-6	RESERVED	R/W	Reserved	0
5-0	YAVGHLIM	R/W	Y average high limit control For internal test only, use default setting.	20
REG	0X83 – Y AVERAGE	LOW	LIMIT CONTROL	
7-6	RESERVED	R/W	Reserved	0
5-0	YAVGLLIM	R/W	Y average low limit control For internal test only, use default setting.	08
REG	0X84 – Y DETECTIO	N THR	ESHOLD	
7-4	RESERVED	R/W	Reserved	0
3-0	YMINMAXR	R/W	Y min/max detection threshold control For internal test only, use default setting.	9
REG	0X85 – BLACK LEV	EL		
7-5	RESERVED	R/W	Reserved	0
4-0	BLKLVL	R/W	Y black level control 00 = Minimal 10 = Maximum	10
REG	0X86 – CENTER LE	VEL		
7-4	RESERVED	R/W	Reserved	0
3-0	YCENTER	R/W	Y center level control	6
REG	0X87 – WHITE LEVI	EL		
7-5	RESERVED	R/W	Reserved	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REC	0X88 – MEAN OFFS	ET LIN	ЛІТ	
7	RESERVED	R/W	Reserved	0
6-0	MOFSLIM	R/W	Y mean offset limit control (40 = Maximum) For internal test only, use default setting.	38
REG	0X89 – MEAN OFFS	ET SL	OPE	1
7-5	RESERVED	R/W	Reserved	0
4-0	MOFSSLOPE	R/W	Y mean offset slope control (10 = Maximum) For internal test only, use default setting.	10
REG	0X8A – MEAN OFFS	ET UP	-GAIN	1
7-6	RESERVED	R/W	Reserved	
5-0	MOFSUPGAIN	R/W	Y mean offset up-gain (20 = Maximum) For internal test only, use default setting.	10
REG	0X8B – MEAN OFFS	ET DO	WN-GAIN	1
7-6	RESERVED	R/W	Reserved	0
5-0	MOFSDNGAIN	R/W	Y mean offset down-gain (20 = Maximum) For internal test only, use default setting.	14
REG	0X8C – DELTA CUTO	FF TH	IRESHOLD	I
7-5	RESERVED	R/W	Reserved	0
4-0	MDLTCUT	R/W	Y delta cutoff threshold level control For internal test only, use default setting.	0A
REG	0X8D – DELTA SLOP	PE		1
7-5	RESERVED	R/W	Reserved	0
4-0	MDLTSLOPE	R/W	Y delta slope control For internal test only, use default setting.	1F
REG	0X8E – LOW/HIGH	AVER	AGE THRESHOLD	
7-6	RESERVED	R/W	Reserved	0
5-0	YLHAVGDIFF	R/W	Y low/high average difference threshold control For internal test only, use default setting.	1A
REG	0X8F – LOW MAX LI	EVEL	CONTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	LMAXGRAD	R/W	Low max level control (10 = Maximum) For internal test only, use default setting.	00
REC	0X90 – HIGH MAX L	EVEL	CONTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	HMAXGRAD	R/W	High max level control (10 = Maximum) For internal test only, use default setting.	00
REG	0X91 – LOW UP-GAI	N CO	NTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	LGRADUP	R/W	Low up-gain control (10 = Maximum) For internal test only, use default setting.	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X92 – LOW DOW	'N-GAIN	CONTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	LGRADDN	R/W	Low down-gain control (10 = Maximum) For internal test only, use default setting.	08
REG	0X93 – HIGH UP-0	AIN CO	NTROL	1
7-5	RESERVED	R/W	Reserved	0
4-0	HGRADUP	R/W	High up gain control (10 = Maximum) For internal test only, use default setting.	04
REG	a 0X94 – HIGH DOW	VN-GAIN	CONTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	HGRADDN		High down gain control (10 = Maximum) For internal test only, use default setting.	OC
REG	0X95 – LOW PASS	S FILTER	COEFFICIENT	I
7-4	RESERVED	R/W	Reserved	0
3-0	LPFCOEF	R/W	Low pass filter coefficient control	4
REG	0X96 – PDF INDE	x		L
7-2	PDF_INDEX	R/W	For internal test only, use default setting.	00
1	ACA_MASK	R/W	For internal test only, use default setting.	0
0	READ_EN	R/W	For internal test only, use default setting.	0
REG	0X97 – HISTOGRA		DOW H START	
7-0	HAVST_HIST	R/W	Histogram measure window horizontal start from H active	00
REG	0X98 – HISTOGRA		DOW H SIZE	
7-1	RESERVED	R/W	Reserved	00
0	HAVSIZE_HIST_HI	R/W	MSB of histogram measure window horizontal size, totals nine bits	1
REG	0X99 – HISTOGRA		DOW H SIZE	
7-0	HAVSIZE_HIST_LO	R/W	LSB of histogram measure window horizontal size, totals nine bits	68
REG	0X9A – HISTOGRA	AM WINI	DOW V START	
7-0	VAVST_HIST	R/W	Histogram measure window vertical start from V active	00
REG	0X9B – HISTOGRA	AM WINI	DOW V SIZE	•
7-1	RESERVED	R/W	Reserved	00
0	VAVSIZE_HIST_HI	R/W	MSB of histogram measure window vertical size, totals nine bits	1
REG	i 0X9C – HISTOGRA	AM WINI	DOW V SIZE	
7-0	VAVSIZE_HIST_LO	R/W	LSB of histogram measure window vertical size, totals nine bits	20
REG	0XA0 – Y AVERAG	È		
7-0	YAVG_RAW	R	Reserved for internal test only.	-
REG	0XA1 – Y AVERAG	E LIMIT		
7-0	YAVG_LIM	R	Reserved for internal test only.	-
REG	0XA2 - LOW AVER	RAGE		
70	LOW_AVG	R	Reserved for internal test only.	_

DIT	FUNCTION	D /44	DECODIDION	DECET
BIT	FUNCTION	R/W	DESCRIPTION	RESET
	i OXA3 – LOW AVERA	GE		
	HIGH_AVG	R	Reserved for internal test only.	-
REG	i 0XA4 – Y MAX	r		
7-0	Y_MAX	R	Reserved for internal test only.	-
REG	i OXA5 – Y MIN			
7-0	Y_MIN	R	Reserved for internal test only.	-
REG	i OXA6 – MOFFSET			
7-0	MOFFSET	R	Reserved for internal test only.	-
REG	0XA7 – LOW GAIN			
7-0	LGRAD	R	Reserved for internal test only.	-
REG	0XA8 - HIGH GAIN			
7-0	HGRAD	R	Reserved for internal test only.	-
REG	0XA9 - LL SLOPE			
7-0	LL_SLPOE	R	Reserved for internal test only.	-
REG	OXAA – LH SLOPE			
7-0	LH_SLOPE	R	Reserved for internal test only.	-
REG	OXAB - HL SLOPE			
7-0	HL_SLOPE	R	Reserved for internal test only.	-
REG	OXAC - HH SLOPE			
7-0	HH_SLPOE	R	Reserved for internal test only.	-
REG	OXAD - X LOW			
7-0	X_LOW	R	Reserved for internal test only.	-
REG	OXAE – X MEAN	I		
7-0	X_MEAN	R	Reserved for internal test only.	-
REG	i OXAF – X HIGH			
7-0	X_HIGH	R	Reserved for internal test only.	-
	i OXBO – Y LOW			
	Y_LOW	R	Reserved for internal test only.	-
	0XB1 – Y MEAN	L		<u> </u>
	Y_MEAN	R	Reserved for internal test only.	-
	i 0XB2 – Y HIGH			
	Y_HIGH	R	Reserved for internal test only.	-
	i OXB3 – ACA CONTR			
		R/W	Reserved	00
	RESERVED DIS_LINE_EN	,	Reserved for internal test only.	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0XB4 – ACA CONTR	OL		
7-1	RESERVED	R/W	Reserved	00
0	DIS_LINE_SP_HI	R/W	Reserved for internal test only.	0
REG	0XB5 – ACA CONTR	OL		
7-0	DIS_LINE_SP_LO	R/W	Reserved for internal test only.	00
REG	OXCO – ACA FLEXIB	LE W	INDOW HISTOGRAM CONTROL	
7	MASTER	R/W	0 = SLAVE (4x1 Histogram Management) 1 = MASTER (If 4x1 Histogram is turned on, the first channel ACA has to set master, others have to set slave).	1
6	ACA_H_4x1_EN	R/W	0 = Disable Histogram 4x1 mode 1 = Enable Histogram 4x1 mode	0
5-2	RESERVED	R/W	Reserved	0
1	F_WIN_EN	R/W	0 = Disable flexible window on the display 1 = Enable flexible window on the display	0
0	F_WIN_HIST_EN	R/W	0 = Disable flexible window histogram 1 = Enable flexible window histogram	0
REC	6 0XC1 – X[9:8] OF TO	P-LE	FT VERTEX IN ACA FLEXIBLE WINDOW	
7-2	RESERVED	R/W	Reserved	00
1-0	TL_VERTEX_X0[9:8]	R/W	X-coordinate of top-left VERTEX[9:8] in ACA flexible window	0
REG	0XC2 – X[7:0] OF TO	P-LEF	T VERTEX IN ACA FLEXIBLE WINDOW	
7-0	TL_VERTEX_X0[7:0]	R/W	X-coordinate of top-left VERTEX[7:0] in ACA flexible window	00
REG	à 0XC3 – Y[8:8] OF TO	P-LEF	T VERTEX IN ACA FLEXIBLE WINDOW	
7-1	RESERVED	R/W	Reserved	00
0	TL_VERTEX_Y0[8:8]	R/W	Y-coordinate of top-left VERTEX[8:8] in ACA flexible window	0
REC	0XC4 – Y[7:0] OF TO	P-LEF	T VERTEX IN ACA FLEXIBLE WINDOW	
7-0	TL_VERTEX_Y0[7:0]	R/W	Y-coordinate of top-left VERTEX[7:0] in ACA flexible window	00
REG	i 0XC5 – X[9:8] OF TO	P-RIG	HT VERTEX IN ACA FLEXIBLE WINDOW	
7-2	RESERVED	R/W	Reserved	00
1-0	TR_VERTEX_X1[9:8]	R/W	X-coordinate of top-right VERTEX[9:8] in ACA flexible window	2
REG	0XC6 – X[7:0] OF TO	P-RIC	AHT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	TR_VERTEX_X1[7:0]	R/W	X-coordinate of top-right VERTEX[7:0] in ACA flexible window	CF
REG	0XC7 – Y[8:8] OF TO	P-RIG	HT VERTEX IN ACA FLEXIBLE WINDOW	
7-1	RESERVED	R/W	Reserved	00
0	TR_VERTEX_Y1[8:8]	R/W	Y-coordinate of top-right VERTEX[8:8] in ACA flexible window	0
REC	0XC8 - Y[7:0] OF TO	P-RIG	HT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	TR_VERTEX_Y1[7:0]	R/W	Y-coordinate of top-right VERTEX[7:0] in ACA flexible window	00
REG	0XC9 – X[9:8] OF BC	OTTON	I-LEFT VERTEX IN ACA FLEXIBLE WINDOW	
7-2	RESERVED	R/W	Reserved	00
1-0	BL_VERTEX_X2[9:8]	R/W	X-coordinate of bottom-left VERTEX[9:8] in ACA flexible window	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0XCA – X[7:0] OF BC	DTTON	I-LEFT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	BL_VERTEX_X2[7:0]	R/W	X-coordinate of bottom-left VERTEX[7:0] in ACA flexible window	00
REG	0XCB – Y[8:8] OF BC	TTON	I-LEFT VERTEX IN ACA FLEXIBLE WINDOW	-
7-1	RESERVED	R/W	Reserved	00
0	BL_VERTEX_Y2[8:8]	R/W	Y-coordinate of bottom-left VERTEX[8:8] in ACA flexible window	0
REG	0XCC – Y[7:0] OF BC	DTTON	I-LEFT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	BL_VERTEX_Y2[7:0]	R/W	Y-coordinate of bottom-left VERTEX[7:0] in ACA flexible window	EF
REG	0XCD – X[9:8] OF BO	OTTON	A-RIGHT VERTEX IN ACA FLEXIBLE WINDOW	
7-2	RESERVED	R/W	Reserved	00
1-0	BR_VERTEX_X3[9:8]	R/W	X-coordinate of bottom-right VERTEX[9:8] in ACA flexible window	2
REG	0XCE - X[7:0] OF BC	OTTON	1-RIGHT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	BR_VERTEX_X3[7:0]	R/W	X-coordinate of bottom-right VERTEX[7:0] in ACA flexible window	CF
REG	0XCF - Y[8:8] OF BO	TTON	I-RIGHT VERTEX IN ACA FLEXIBLE WINDOW	
7-1	RESERVED	R/W	Reserved	00
0	BR_VERTEX_Y3[8:8]	R/W	Y-coordinate of bottom-right VERTEX[8:8] in ACA flexible window	0
REG	0XD0 – Y[7:0] OF BC	TTON	I-RIGHT VERTEX IN ACA FLEXIBLE WINDOW	
7-0	BR_VERTEX_Y3[7:0]	R/W	Y-coordinate of bottom-right VERTEX[7:0] in ACA flexible window	EF
REG	0XD1 – X[9:8] OF LE	FT-M	IDDLE VERTEX IN ACA FLEXIBLE WINDOW	
7-2	RESERVED	R/W	Reserved	00
1-0	LM_VERTEX_X4[9:8]	R/W	X-coordinate of left-middle VERTEX[9:8] in ACA flexible window	0
REG	0XD2 – X[7:0] OF LE	FT-M	IDDLE VERTEX IN ACA FLEXIBLE WINDOW	
7-0	LM_VERTEX_X4[7:0]	R/W	X-coordinate of left-middle VERTEX[7:0] in ACA flexible window	00
REG	0XD3 – Y[8:8] OF LE	FT-M	IDDLE VERTEX IN ACA FLEXIBLE WINDOW	J
7-1	RESERVED	R/W	Reserved	00
0	LM_VERTEX_Y4[8:8]	R/W	Y-coordinate of left-middle VERTEX[8:8] in ACA flexible window	0
REG	0XD4 – Y[7:0] OF LE	FT-MI	DDLE VERTEX IN ACA FLEXIBLE WINDOW	J
7-0	LM_VERTEX_Y4[7:0]	R/W	Y-coordinate of left-middle VERTEX[7:0] in ACA flexible window	77
REG	0XD5 – X[9:8] OF TO	P-MII	DDLE VERTEX IN ACA FLEXIBLE WINDOW	<u> </u>
7-2	RESERVED	R/W	Reserved	00
1-0	TM_VERTEX_X5[9:8]	R/W	X-coordinate of top-middle VERTEX[9:8] in ACA flexible window	1
REG	0XD6 – X[7:0] OF TO	P-MI	DDLE VERTEX IN ACA FLEXIBLE WINDOW	
7-0	TM_VERTEX_X5[7:0]	R/W	X-coordinate of top-middle VERTEX[7:0] in ACA flexible window	67
REG	0XD7 – Y[8:8] OF TO	P-MII	DDLE VERTEX IN ACA FLEXIBLE WINDOW	
7-1	RESERVED	R/W	Reserved	00
0	TM_VERTEX_Y5[8:8]	R/W	Y-coordinate of top-middle VERTEX[8:8] in ACA flexible window	0
REG	0XD8 – Y[7:0] OF TO	P-MI	DDLE VERTEX IN ACA FLEXIBLE WINDOW	J
7-0	TM_VERTEX_Y5[7:0]	R/W	Y-coordinate of top-middle VERTEX[7:0] in ACA flexible window	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	a 0XD9 – X[9:8] OF BC	,	/- /-MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	L
	RESERVED		Reserved	00
	BM_VERTEX_X6[9:8]	,	X-coordinate of bottom-middle VERTEX[9:8] in ACA flexible window	1
REG	0XDA – X[7:0] OF BC	OTTON	I-MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	
	BM_VERTEX_X6[7:0]	r	X-coordinate of bottom-middle VERTEX[7:0] in ACA flexible window	67
		,	I-MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	l
	RESERVED	R/W	Reserved	00
	BM_VERTEX_Y6[8:8]	,	Y-coordinate of bottom-middle VERTEX[8:8] in ACA flexible window	0
REG	0XDC – Y[7:0] OF BC	OTTON	I-MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	
	BM_VERTEX_Y6[7:0]	r	Y-coordinate of bottom-middle VERTEX[7:0] in ACA flexible window	EF
		· ·	MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	L
	RESERVED		Reserved	00
	RM VERTEX X7[9:8]		X-coordinate of right-middle VERTEX[9:8] in ACA flexible window	2
		,	MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	
	RM_VERTEX_X7[7:0]	r	X-coordinate of right-middle VERTEX[7:0] in ACA flexible window	CF
		,	AIDDLE VERTEX IN ACA FLEXIBLE WINDOW	
	RESERVED	R/W	Reserved	00
	TM_VERTEX_Y7[8:8]	,	Y-coordinate of right-middle VERTEX[8:8] in ACA flexible window	0
		,	MIDDLE VERTEX IN ACA FLEXIBLE WINDOW	<u> </u>
	RM_VERTEX_Y7[7:0]	r	Y-coordinate of right-middle VERTEX[7:0] in ACA flexible window	77
	OXE1 - HISTOGRAM	,		
	HISTOGRAMDAT[7:0]	R	Histogram data [7:0]	_
	i OXE2 - HISTOGRAM			_
	HISTOGRAMDAT[15:8]	R	Histogram data [15:8]	
	a OXE3 - HISTOGRAM			-
		1	Reserved	
	RESERVED	R R	Histogram data [18:16]	-
	HISTOGRAMDAT[18:16]			-
	F WIN COLOR Y	1		
	F_WIN_COLOR_F	R R	Flexible Window Y Color Flexible Window Y Color	-
	• OXE5 - FLEXIBLE W			
	F_WIN_COLOR_CB	R	Flexible Window CB Color	
	• OXE6 - FLEXIBLE W			-
		1		
	F_WIN_COLOR_CR	R	Flexible Window CR Color	-
	OXE7 - TRANSFER H	1		
	RESERVED	R/W	Reserved	00
0	TRAN_HISTO_EN	R/W	0 = Disable 1 = Transfer histogram to host in CCIR656 or MIPI	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
Lin	e Interleave En	gine Ro	egisters Page 5	
REG	à 0X00 – LINE INTE	RLEAVE	ENGINE CONTROL	
7	PD_MIPI	R/W	0 = Power-on line interleave engine 1 = Power-off line interleave engine	1
6	TMLS_MIPI	R/W	0 = Disable test 1 = Enable low-speed test mode	0
5	TMHS_MIPI	R/W	0 = Disable test 1 = Enable high-speed test mode	0
4-3	RESERVED	R/W	Reserved	0
2-0	LANE_NO	R/W	MIPI-data-lane numbers, supports up to two lanes. 001 = one lane 010 = two lanes	2
REG	0X01 - LI-ENGINI	E LINE C	ONTROL	L.
7	LNINC1	R/W	0 = Enable line-increment of 2 1 = Enable line-increment of 1	1
6	SWAP_CRC	R/W	1 = Swap MSB-Byte and LSB-Byte of CRC[15:0] output order.	0
5	FRAME_MODE	R/W	1 = One pair of FS/FE per frame which includes a set of top and bottom fields 0 = One pair of FS/FE per field, or two pairs of FS/FE per frame	0
4-0	PIC_WIDTH [12:8]	R/W	Picture width[12:8] upper bits	05
REG	0X02 – LI-ENGIN	E PICTUR	RE WIDTH	L.
7-0	PIC_WIDTH [7:0]	R/W	Picture width[7:0] lower bits	AO
REG	0X03 – LI-ENGIN	E SYNC (CONTROL	
7	SWAP_YC	R/W	1 = Swap pattern generator's YC output order	0
6	HS_DPHY_TEST	R/W	0 = Disable test 1 = Enable high speed MIPI test mode with clock and data lane timing	0
5	RESERVED	R/W	Reserved	0
4	RST_FIFO	R/W	1 = Enable line buffer reset logic	1
3	TOP_ONLY	R/W	1 = Start operation at the beginning of input video's top field to align interlaced video	1
2-0	RESERVED	R/W	Reserved	0
REC	0X04 – LI-ENGIN	E VIRTU/	AL-CHANNEL ASSIGNMENT	
7-6	VC4	R/W	Virtual Channel 4 assignment	3
5-4	VC3	R/W	Virtual Channel 3 assignment	2
3-2	VC2	R/W	Virtual Channel 2 assignment	1
1-0	VC1	R/W	Virtual Channel 1 assignment	0

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X05 – LI-ENGINE T	YPE C	CONTROL	
7	RESERVED	R/W	Reserved	0
6	ON_CTRL	R/W	0 = Turn-on and turn-off MIPI at either top or bottom field boundary; used for testing. 1 = Turn-on and turn-off MIPI only at top-field boundary after preset number of wait frames set in Reg0x519. This allows receivers, which do not decode the field-bit from line-number or frame-number, to display interlaced video properly.	1
5	SDPROG	R/W	1 = 720x480 or 720x576 Standard Definition Progressive mode operation. For internal test only.	0
4	RGB565	R/W	1= Enable RGB565 color mode with its specific MIPI data-type.	0
3	RESERVED	R/W	Reserved	0
2	SAV_NORMAL	R/W	1 = Use parity[3:0] for SAV/EAV[3:0] 0 = Use channel_number[3:0] for SAV/EAV[3:0] (BT.656 Only)	0
1	656_BYTE		(ISL79988 only) 0 = Feed CCIR656 line-interleaved output to output pads 1 = Feed CCIR656 byte-interleaved output to output pads	0
0	RESERVED	R/W	Reserved	0
REG	0X06 – LI-ENGINE F	IFO C	ONTROL	
7	FE_FS_ADJ	R/W	0 = Enable a preset (2-line - T_FIF0_DEP) FE-to-FS spacing for the Pseudo Single-Frame mode 1 = Enable an adjustable FE-to-FS spacing mechanism for the Pseudo Single-Frame mode, with 0x50b[4:0] = NCNT and 0x50C[7:0] = PCNT for a programmable (NCNT-line + (PCNT*8) -pixel - T_FIF0_DEP) spacing. T_FIF0_DEP is the variable run time active FIF0 depletion time, measured in 27MHz input-line-time, before FE is asserted. T_FIF0_DEP assumes the following operational ranges depending on the setting of 0x007[1:0] = MODE_CH T_FIF0_DEP = 0 when MODE_CH = 2'b00 (one-channel)	0
		5 414	T_FIFO_DEP = (0 to $1/2$ -line) when MODE_CH = 2'b01 (two-channel) T_FIFO_DEP = (0 to $1/4$ -line) when MODE_CH = 2'b10 (four-channel)	
6	FIX_LNOUT	R/W	 1 = Use fixed-line-output-per-pseudo-frame for Pseudo Single-Frame mode 0 = Use channel-1 VActive to control pseudo-frame size for Pseudo Single-Frame mode 	1
5	8BHDR	R/W	1 = Add the 8-byte header in the MIPI output(1448 bytes in the long-packet payload) 0 = No 8-byte header in the MIPI output (1440 bytes in the long-packet payload) This bit only affects the non-standard-mode when $0x506[0] = 1$. For standard-mode $0x506[0] = 0$, the 8-byte header is always included in each line output.	1
4	VSTABLE	R/W	0 = Ignore the 'VSTABLE" flag from decoders, always do normal output transmission. 1 = Use the "VSTABLE" flag from decoders to perform normal output transmission or stop the output transmission.	0
3	SAME_VC	R/W	0 = Disable SAME_VC mode, normal operation 1 = Enable SAME_VC mode to drive special MIPI receivers in test	0
2	TYPE_30	R/W	1 = Apply data-type-30 (user defined) to the histogram line MIPI output.	0
1	RESERVED	R/W	Reserved	0
0	PSEUDO_S_FRM	R/W	1= Add a special 8-byte header at line-start for non-standard SOC receivers that do not decode virtual-channel (VC) in the CSI packet headers (Pseudo Single-Frame mode).	1
REG	a 0X07 – MIPI READ-S	START	CONTROL	
7-0	RD_START	R/W	Special Read Start Count fixed at 17h for 1-ch-1-lane, 24h for 2-ch-2-lane, and 2Bh for other modes.	2B

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	a 0X08 – PSEUDO FR	RAME	FIELD CONTROL	
7-4	RESERVED	R/W	Reserved	0
3	PF_VB_START	R/W	 1 = Start pseudo-frame's interleaved BT.656 output from the vertical-blanking area 0 = Start pseudo-frame's interleaved BT.656 output from the vertical-active area (default) 	1
2	RESERVED	R/W	Reserved	0
1	DATA2CLK	R/W	1 = Copy the data-lane esc-mode control pattern to the clock lane for a special Tektronix scope conformance test measurement; this is not a MIPI standard.	1
0	PF_FLD	R/W	1 = BT.656 output in pseudo-frame mode contains both F = 0 and F = 1 as in a interlaced video, to make it essentially a Pseudo-Field mode. 0 = BT.656 output in pseudo-frame mode contains both F = 0 as in a progressive video.	0
REG	0X09 - ONE FIELD	MODE	CONTROL	
7-5	RESERVED	R/W	Reserved	0
4	8010	R/W	1 = Fill "8010" in horizontal-blanking data 0 = Fill with channel-number in the lower nibble	0
3-2	RESERVED	R/W	Reserved	0
1	1FLD_TOP	R/W	1 = Output the top-field-only in the one-field mode	0
0	1FLD_BOT	R/W	1 = Output the bottom-field-only in the one-field mode	0
REG	i OXOA – MIPI INTER	NAL H	ARDWARE TEST COUNTER (INTERNAL TEST ONLY, FOR BOTH MIPI AND BT	.656)
7-0	INT_CTR	R/W	Special hardware counter to control spacing between long packets in interleaving, (INT_CTR*8) is the number of pixels per MIPI-line transmission, which includes the following four sections: (LP_to_HS protocol + HS_Active_Line + HS_to_LP protocol + Horizontal_blanking) Increasing the counter from the default setting equalizes the horizontal_blanking between consecutive MIPI-lines, but a very sensitive adverse effect on overflowing line buffers and breaking output pictures may happen. (62h is a safe value that meets MIPI protocol and hardware's FIFO-size constraint in various interleaving operations for all channel selections and MIPI-data-lane-selections.) Note this register controls the spacing between interleaved lines, and it affects both MIPI and BT.656 output.	62
REG	GOXOB – GENERATO	R BAR	PATTERN	
7-6	GEN_BAR_PATTERN	R/W	Test pattern generator black and white bar pattern control. 0 = (bbbbwb) 1 = (bbbwwb) 2 = (bbwbwb) 3 = (bbwwwb)	0
5	RESERVED	R/W	Reserved	0
4-0	NCNT		Number of line count for FE-to-FS spacing when FE-FS-ADJ (0x506[7]) mode is set. Note that increasing this setting beyond three overflows the four line buffers and breaks the four pictures. This register is reserved as HARDWARE-TEST only.	02
REG	OXOC – MIPI PCNT	FOR P	SEUDO SINGLE-FRAME MODE	
7-0	PCNT	R/W	Number of pixel-count for FE-to-FS spacing when FE-FS-ADJ (0x506[7]) mode is set The setting multiplied by eight is the number of pixels that are added to the FE-to-FS spacing. For example, to add a quarter line of spacing, set this as 36h for the 4-ch case. To add a half-line spacing, set this as 6Bh for the 2-ch case.	00

BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	a OXOD – LI-ENGINE T	EST P	ATTERN-GENERATOR CONTROL	
7	INT_PAT1	R/W	0 = Use the first decoder for the first channel input. 1 = Use the first test pattern generator as specified by MODE_CH[1:0] for the first channel input.	0
6	INT_PAT2	R/W	0 = Use the second decoder output for the second channel input. 1 = Use the second test pattern generator as specified by MODE_CH[1:0] for the second channel input.	0
5	INT_PAT3	R/W	0 = Use the third decoder output for the third channel input. 1 = Use the third test pattern generator as specified by MODE_CH[1:0] for the third channel input.	0
4	INT_PAT4	R/W	0 = Use the forth decoder output for the forth channel input. 1 = Use the forth test pattern generator as specified by MODE_CH[1:0] for the forth channel input.	0
3-2	GEN_COLOR	R/W	Test pattern generator top-screen color selection. 00(yellow), 01(blue), 10(green), 11(pink)	0
1	FORCE_FRM	R/W	1 = Force interlaced input with F = 0 and F = 1 in SAV/EAV to have only F = 0 for progressive input. This is used only in pseudo-frame mode with BT.656 output. The field bit affects both the SAV/EAV and the 8-byte header's F-bit	0
0	ADD_VBLK	R/W	1 = Add one blank line to the end of each channel, so that some decoders can use the V = 1 in SAV/EAV timing as a reference to generate their VSYNC properly. 0 = BT.656 line-interleaved output contains only V = 0 in SAV/EAV, and decoders need to generate their own VSYNC after a fixed number of lines have been captured. This control bit is only needed for normal-mode BT.656 output, which does not contain a frame-end signal and its blanking period has no H Active signal.	0
REG	a OXOE – PSEUDO FRA		VERTICAL BLANKING COUNT FOR PSEUDO SINGLE-FRAME	
7-0	VB_CNT	R/W	Number of cycle count for FE-to-FS spacing when FIX_LNOUT (0x506[6]) mode is set The setting multiplied by 128 is the number of pixels that are set to the FE-to-FS spacing. For example, to add two lines of spacing for the 4-channel case, set 1728x2x4/128 = 108 = 0x6C.	6C
REG	0X0F – LI-ENGINE C	ONTR	ROL	
7	GEN_FLDPOL	R/W	0 = Normal field polarity 1 = Invert generators' field polarity	0
6	GEN_NOVID	R/W	0 = Disable TEST, normal operation 1 = Enable NO-VIDEO-ID option for pattern generators	0
5	ULPS_FSYNC	R/W	1 = Enable MIPI Ultra Low Power State (ULPS) operation at frame-sync time	0
4	RESERVED	R/W	Reserved	0
3	HSCK_ALWAYS_ON	R/W	0 = Normal operation with low-speed and high-speed transitions 1 = Enable high-speed MIPI clock all the time without following the DPHY specification	0
2	GEN_PAL	R/W	0 = Enable NTSC mode operation 1 = Enable PAL mode operation	0
1	ESC_TEST	R/W	1 = Enable Tektronix's specific escape-mode test pattern with a preceding long flat LP11 idle state to initialize its scope capture and timing/voltage measurement, this is not a MIPI standard.	0
0	ESC_GO	R/W	1 = Enable Tektronix's repeated escape-mode test pattern to be repeated during this register's set period to ease the data capture of its scope. This is not a MIPI standard.	0
REG	0X10 - WORD-COU	NT CO	NTROL (MIPI ONLY)	
7-0	WORD_COUNT [15:8]	R/W	Fixed word-count field in the MIPI long-packet header	05
			·	
REG	i 0X11 – WORD-COUN	NT CO	NTROL (MIPI ONLY)	

BIT	FUNCTION	R/W	DESCRIPTION	RESET
			G CONTROL (MIPI ONLY)	
		1	DPHY's T-LPX period control counter	7
	HS_PREPARE	-	DPHY's T-HS_PREPARE period control counter	6
	_	,	G CONTROL (BOTH MIPI AND BT.656)	0
				47
	HS_ZERO	,	DPHY's T-HS_ZERO period control counter	17
		1	G CONTROL (MIPI ONLY)	
	HS_TRAIL		DPHY's T-HS_TRAIL period control counter	OE
REG	i 0X15 – MIPI DPHY 1	FIMIN	G CONTROL (MIPI ONLY)	
7-0	CLK_TO_DATA	R/W	DPHY's CLK-to-DATA period control counter	36
REG	0X16 - MIPI DPHY	ΓΙΜΙΝ	G CONTROL (MIPI ONLY)	
7-0	CLK_POST	R/W	DPHY's T-CLK_POST period control counter	12
REG	i 0X17 – MIPI DPHY 1	rimin(G CONTROL (MIPI ONLY)	
7-0	MARK_WAIT	R/W	ULPS mode exit wait time / 512, 0x37(27MHz), 0x70(54MHz), 0xf6(108MHz)	70
REG	i 0X18 – MIPI D-PHY	PARA	METERS (MIPI ONLY)	
7	RESERVED	R/W	Reserved	0
6	FORCE_ULPS	R/W	1 = Force D-PHY to enter ULPS mode	0
5	ESC_EXIT	R/W	1 = Force ESC-mode to exit ULPS mode, TRIGGER mode, or LPDT mode	0
4	LPDT_MODE	R/W	1 = Include MIPI-LPDT mode to D-PHY output	0
3	RST_MODE	R/W	1 = Include MIPI-RESET mode to D-PHY output	0
2	RESERVED	R/W	Reserved	0
1	ESC_MODE	R/W	1 = Include MIPI-ESCAPE mode to D-PHY output	0
0	RESERVED	R/W	Reserved	0
REG	0X19 - SOT_PERIO	D IN D	-PHY (MIPI ONLY)	
7-0	WAIT_FRAMES	R/W	Number of frames to wait before MIPI starts; works only with Reg0x505[6] = 1.	03
REG	0X1A – EOT_PERIO	D IN D	-PHY	
7-0	EOT_PERIOD	R/W	End_of_Transmission period in "UI" unit for D-PHY	0A
			METERS (MIPI ONLY)	
	CLK_PREPARE	1	CLK_PREPARE [38ns, 95ns]	6
	CLK_PRE		CLK_PRE, 8*UI	1
	_		G CONTROL (MIPI ONLY)	
	LP_11	1	SOT LP11 state wait time	7
	CLK_TRAIL	'	CLK_TRAIL 60ns	A
	_		G CONTROL (MIPI ONLY)	
	CLK_ZERO	1	CLK_ZERO, >240ns	0F
	_		G CONTROL (MIPI ONLY)	UF
				•
	SHORT_PKT_DLY		SHORT-PACKET-DELAY is used to control short-packets' HS_ZERO timing period.	8
3-0	CLK_SOT_CNT	R/W	CLK_SOT wait time	C

		1		
BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	OX1F - MIPI DPHY 1	IMIN	G CONTROL (MIPI ONLY)	
7-0	ULPS_LP11_CNT	R/W	ULPS LP11 wait time	06
REG	0X20 – TEST PATTER	RN GE	NERATOR (MIPI ONLY)	
7	PRBS_ERR_RSTB	R/W	1 = Reset PRBS error in TEST mode	0
6	ATG_RESYNC	R/W	Generate a HS_RESYNC pulse when value change from 0 to 1. 0 = No effect 1 = Generate a pulse	0
5	RESERVED	R/W	Reserved	0
4	TESTSET0	R/W	Control the TXCKSETO when MIPIAFE_TEST_EN is '1'	0
3	ATG_INV_8B	R/W	1 = Select inverted 8-bit HS pattern for testing	0
2	ATG_PRBS_SEL	R/W	1 = Select PRBS-9 HS test pattern	0
1	HS_TEST_SEL	R/W	0 = Select low-power test 1 = Select high-speed HS test	0
0	ATEST_EN	R/W	1 = Start to do automatic test	0
REG	0X21 - ESCAPE_MO	DE TI	MING CONTROL (MIPI ONLY)	
7-0	ESC_DELAY	R/W	Data-lane delay from clock-lane in escape-mode	00
REG	0X22 – AUTOMATIC	TEST	ERROR DETECTION	
7	PRBS_ERR_DET	R	1 = Error detected during PRBS test	-
6-0	RESERVED	R	Reserved	-
REG	i 0X23 – MIPI TIMING	i (MIP	I ONLY)	4
7-4	RESERVED	R	Reserved	-
3-0	CLK_TRAIL_SHORT_PKT	R	CLK_TRAIL_SHORT_PACKET period control	А
REG	0X24 – PICTURE_H	EIGHT	HIGH BITS	4
7-3	RESERVED	R	Reserved	-
2-0	IN_PIC_HEIGHT[10:8]	R	Captured PICTURE-HEIGHT[10:8] per field or frame	-
REG	0X25 – PICTURE_H	EIGHT	LOW BYTE	- 1
7-0	In_PIC_HEIGHT[7:0]	R	Captured PICTURE-HEIGHT[7:0] per field or frame	-
REG	i 0X26 – MIPI SHORT	-PAC	KET HS_TRAIL CONTROL (MIPI ONLY)	
7-0	HS_TRAIL_SPKT	R/W	MIPI short-packet HS_trail period control count	07
REG	0X28 – FIFO THRES	HOLD	COUNT	
7-3	RESERVED	R/W	Reserved	00
2-0	FIFO_THRESHOLD[10:8]	R/W	Line Buffers' FIFO_THRESHOLD control, upper bits	1
REG	0X29 – FIFO THRES	HOLD	COUNT	
7-0	FIFO THRESHOLD[7:0]	R/W	Line Buffers' FIFO_THRESHOLD control, lower bits	OE
		,	NERATORS' RANDOM SYNC CONTROL	
7-4	RANDOM_SYNC4	R/W	Random-sync generator selection control	0
3-0	RANDOM_SYNC3	R/W	Random-sync generator selection control	0
	_	,	INERATORS' RANDOM SYNC CONTROL	v
		1		0
7-4	RANDOM_SYNC2	R/W	Random-sync generator selection control	0
3-0	RANDOM_SYNC1	R/W	Random-sync generator selection control	0

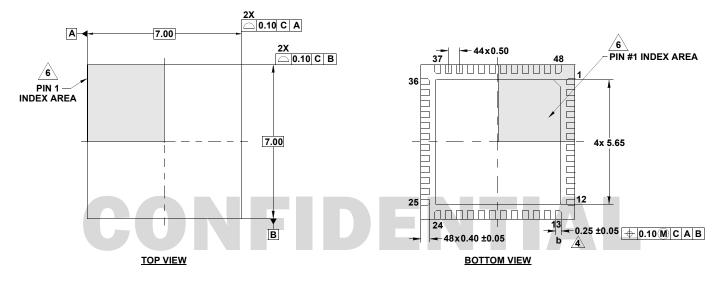
BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	i 0X2C – PSEUDO SIN	IGLE-	FRAME MODE FIELD-END CONTROL	
7-3	RESERVED	R/W	Reserved	00
2-0	FE_BOTTOM[10:8]	R/W	Bottom-field's end line number upper bits Note that this register affects both MIPI and BT.656 outputs. This bit takes effect when 0x506[6] = 0 and 0x506[0] = 1 are set.	0
REG	0X2D – PSEUDO SIN	IGLE-	FRAME MODE FIELD-END CONTROL	
7-0	FE_BOTTOM[7:0]	R/W	Bottom-field's end line number lower bits Note that this register affects both MIPI and BT.656 outputs This bit takes effect when 0x506[6] = 0 and 0x506[0] = 1 are set	F1
REG	0X2E – PSEUDO SIN	IGLE-	FRAME MODE FIELD-END CONTROL	- I
7-3	RESERVED	R/W	Reserved	00
2-0	FE_TOP[10:8]	R/W	Top-field's end line number upper bits Note that this register affects both MIPI and BT.656 outputs. This bit takes effect when 0x506[6] = 0 and 0x506[0] = 1 are set.	0
REG	0X2F – PSEUDO SIN	IGLE-I	FRAME MODE FIELD-END CONTROL	
7-0	FE_TOP[7:0]	R/W	Top-field's end line number lower bits Note that this register affects both MIPI and BT.656 outputs. This bit takes effect when $0x506[6] = 0$ and $0x506[0] = 1$ are set.	F1
REG	0X30 – MIPI ANALO	G CTF	RL DATA	1
7-0	CTRL_BIT_DATA1	R/W	Control Data 1	00
REG	0X31 – MIPI ANALO	G CTF	RL DATA	
7-0	CTRL_BIT_DATA2	R/W	Control Data 2	00
REG	0X32 – MIPI ANALO	G CTF	RL CLOCK	
7-0	CTRL_BIT_CLK	R/W	Control clock	00
REG	0X33 – PLL ANALOG	G STA	TUS	- #
7-5	RESERVED	R/W	Reserved	0
4-0	ITUNE	R/W	Tune PLL loop bandwidth	00
REG	0X34 – PLL ANALO	G CTR	L MISC	
7	PLL_RON	R/W	For low frequency operations	0
6	PLL_LOWF	R/W	For low frequency operations	0
5	PLL_RST_OFF	R/W	Disable PLL Reset	0
4	PLL_RSTB	R/W	PLL Reset 0 = Enable (Reset) 1 = Normal operation	0
3	PLL_DPHY _RSTB	R/W	DPHY Reset 0 = Enable (Reset) 1 = Normal operation	0
2	PWD_BG	R/W	Power-down Band Gap 0 = Normal operation 1 = Power-down	1
1	PLL_PWD	R/W	Power-down PLL 0 = Normal operation 1 = Power-down	1
0	RESERVED	R/W	Reserved	0

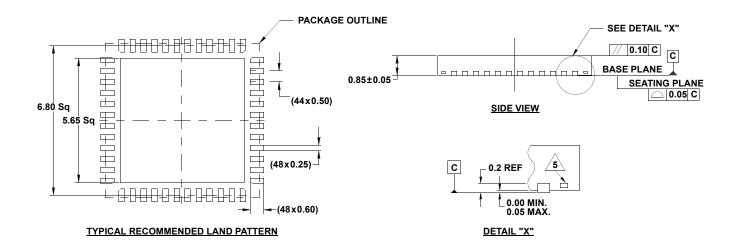
BIT	FUNCTION	R/W	DESCRIPTION	RESET
REG	0X35 – MIPI ANAL	OG RE	GISTERS	
7-4	RESERVED	R/W	Reserved	0
3-1	PWD_DATA	R/W	Enable power-down of data lanes	3
0	PWD_CLK	R/W	Enable power-down of the clock lane	1
REG	3 0X36 – PLL ANALO)G REG	ISTER	
7-2	RESERVED	R/W	Reserved	00
1	CK_POL	R/W	Clock polarity	0
0	PLL_TEST_EN	R/W	Enable PLL test	0
REG	a 0X38 – TOTAL PSE	UDO-FI	RAME LINE-COUNT CONTROL	
7-0	TOTAL_PF_LINE[15:8]	R/W	Total_pseudo_frame_line_number[15:8], used in the FIX_LNOUT (0x506[6]) mode	03
REG	0X39 – TOTAL PSE	UDO-FI	RAME LINE-COUNT CONTROL	
7-0	TOTAL_PF_LINE[7:0]	R/W	Total_pseudo_frame_line_number[7:0], used in the FIX_LNOUT(0x506[6]) mode. Default value is 0x3C0 for NTSC and 0x480 for PAL in the 4-channel case.	CO
REG	OX3A – HORIZONT	AL LIN	E-COUNT CONTROL	
7-5	RESERVED	R/W	Reserved	0
4-0	HLINE_CNT[10:8]	R/W	H_line_cnt[12:8]; needs to be set differently if the horizontal total-line-width, including blanking and active pixels, is different from the NTSC or PAL format.	06
REG	OX3B - HORIZONT	AL LIN	E-COUNT CONTROL	
7-0	HLINE_CNT[7:0]	R/W	Hline_cnt[7:0]; needs to be set differently if the horizontal total-line-width, including blanking and active pixels, is different from the NTSC or PAL format.	B3
REG	0X3C – HISTOGRA		-COUNT CONTROL	
7-3	RESERVED	R/W	Reserved	00
2-0	HIST_LINE[10:8]	R/W	hist_line_number[10:8]; used in the histogram output mode for the last line in a picture.	0
REG	à 0X3D – HISTOGRA	M LINE	-COUNT CONTROL	
7-0	HIST_LINE[7:0]	R/W	hist_line_number[7:0], used in the histogram output mode for the last line in a picture. Default value is 0x0F1 for NTSC and 0x121 for PAL.	F1

Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.

Please visit our website to ensure that you have the latest revision.

DATE	REVISION	CHANGE
Mar 19, 2019	FN8907.1	Updated links throughout the document. Updated ordering information table by adding tape and reel parts to table and updating notes. In the Register Summary section updated Reg 0X37[2-0] from AAFLPF to BIAS_CTRL and Reg 0X38 DCLAMP_ATTEN from Bit 5-4 to Bit 6-4. In the Register Description section updated Reg0x37[2-0] and Reg0x38 information. Removed About Intersil section. Updated disclaimer.
Dec 12, 2016	FN8907.0	Initial release


CONFIDENTIAL



Package Outline Drawing

L48.7x7W

48 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 8/12

NOTES:

- 1. Dimensions are in millimeters. Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.
- 3. Unless otherwise specified, tolerance : Decimal ± 0.05
- **4** Dimension applies to the metallized terminal and is measured between 0.20mm and 0.25mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.

For the most recent package outline drawing, see <u>L48.7x7W</u>.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/