
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Automotive Field Applications Engineer

Manuel Rodriguez

Introduction to the System Controller
Firmware on i.MX 8 Application
Processor

October 2019 | Session #AMF-AUT-T3889

COMPANY PUBLIC 1COMPANY PUBLIC 1

• System Controller Unit and I.MX8
Architecture

• System Controller Firmware Overview
and Getting Started

• System Controller Firmware Services
− Power Management Service
− Resource Management Service
− Pad Configuration Service
− Timer Service
− Miscellaneous Service

Agenda

COMPANY PUBLIC 2

System Controller Unit and
I.MX8 Architecture

COMPANY PUBLIC 3

Introduction
• i.MX8 features a module

dedicated to:
−Boot Management
−Power Management
−Clock and Reset Management
− IO Configuration
−Resource Partitioning

COMPANY PUBLIC 4

SCU – Architecture Overview

• System Controller Unit subsystem is
comprised of
− 1x Cortex-M4 processor
− A set of peripherals
 1x TPM, 1x UART, 1x I2C, 8x GPIOs, 4x MUs

− This is the first processor to boot in the design

• Security subsystem is made of
− 1x Cortex-M0 processor running at 133MHz
 Handles security services for other processors

− A set of cryptographic related hardware
accelerators
 RSA, ECC, AES, DES/3DES, SHA-1, SHA-2,

MD5, HMAC, RNG

COMPANY PUBLIC 5

High-level Block Diagram i.MX8QM

• Application domain
• Real time domain
• Memory
• Connectivity peripherals
• System Control Unit

COMPANY PUBLIC 6

Why Do We Need a System Control Unit?
• Each one of these peripherals requires access to

a subset of resources on the chip (clocks,
connectivity, memory).

• The System Control Unit simplifies software
development by providing a high-level abstraction
to key system functionality.

• The SCU takes care of managing these
resources.
− Resource allocation/deallocation
 Imagine two peripherals using the same clock, peripheral one is

shut down and it asks for the clock to be disabled while peripheral
2 is still using it, the SCU takes care of handling this situation and
keeps the clock alive.

− Resource partition
 A system can be configured in such a way that the application

subsystem (e.g. Linux) is oblivious of the existence of the real
time domain (e.g. FreeRTOS). Just like having two different chips
in the same package.

COMPANY PUBLIC 7

i.MX8 High-level Boot Sequence

SCU ROM

System Controller
(SCU) Cortex M4 Cortex A

PW
R

SCU
TCM

DDR

Security Controller
(SECO)

PW
R

Start

Start M4 SW

SCU FW

Initialize SECO

SECO ROM

SECO FW

EXE Loop 

StartInitialize SCU

Load SCU FW

Start M4

Load M4 SW

SECO
TCM

Load Security
Controller FW

Authenticate
SECO FW

Authenticate SCU
FW, DCD

Call SCFW DDR

START SCU FW

Authenticate M4

EXE Loop 

DDR

Start AP

Load u-boot-atf.bin Run U-boot

Start AP SW
(ATF)

Authenticate u-boot-atf.bin

COMPANY PUBLIC 8

System Controller Firmware
Overview and Getting Started

COMPANY PUBLIC 9

Introduction
• The System Controller Firmware (SCFW) runs on the System

Controller Unit and is responsible for managing requests from other
cores in the system.
−Other software components communicate with System Controller Unit (SCU) via an

Application Programming Interface (API) library
−This library makes Remote Procedure Calls (RPC) via an underlying Inter-Processor

Communication (IPC) mechanism

Core SCUIPC RPC

COMPANY PUBLIC 10

System Controller Firmware and Application
• Operating Systems can

configure the device
through an Application
Programming Interface
(API).

• Development is simplified
thanks to the API that
provides control of key
system functionality.

• Each OS features a library
that allows it to interact
with the SCFW.

SCFW

Cortex-A (Linux/QNX/etc)

SCFW
Library

Cortex-M (FreeRTOS/Autosar/etc.)

SCFW
Library

MU

MU

M
U

RPMSG

RPMSG

SECO

Shared
memory

COMPANY PUBLIC 11

System Controller Firmware Porting Kit – Introduction
• The SCFW is distributed through a “Porting Kit”
• This porting kit allows you to build the SCFW and modify the board

dependent parts of it such as:
−Power Management Integrated Circuit (PMIC) information
−CPU/GPU Power supplies
−Board components that need to be powered by the PMIC such as cameras,

deserializers, sensors, etc…

• A Linux host is required to build it
• The porting kit is downloaded as a package on the Yocto BSP
• This is the first step to bring-up a board

COMPANY PUBLIC 12

System Controller Firmware Porting Kit – Introduction
• The README file contains the

instructions to extract the porting
kit
−$ cd packages
−$ chmod a+x imx-scfw-porting-kit-

1.0.bin
−$./imx-scfw-porting-kit-1.0.bin

• You will be prompted to accept
the End-User License
Agreement or EULA

COMPANY PUBLIC 13

System Controller Firmware Porting Kit – Introduction
• The porting kit contains the

documentation and required source
to build the SCFW

• The sc_fw_api documents
contains usage information on the
API and resources/clock/controls
information for each supported SoC

• The libraries for each supported OS
as well as the source to build the
SCFW can be found under the "src"
directory

COMPANY PUBLIC 14

System Controller Firmware Porting Kit – Introduction
• The build directory is where the SCFW

binary will be stored after building.
• The platform directory contains all the

required source to build.
• Under "platform/board/" is where all

board configurations are kept, to create
a new board variant simply copy and
rename the folder of the board that
more closely resembles yours.

COMPANY PUBLIC 15

System Controller Firmware Porting Kit – Introduction
• The board.c file is where the board definition

occurs, for details into all the functions that need
to be modified please refer to the sc_fw_port.pdf.
− PMIC SW and LDO connections are defined in here, this

information is required by the SCU to power up/down CPUs
and GPUs

− "Board resources" can be mapped with different PMIC/power
supplies in here to allow power up/down of them through the
application

− UART configuration for the SCU can be configured in here as
well (optional)

• Device Configuration Data (used to bring up
DDR mostly) can also be contained within the
SCFW

• Both PF100 and PF8100 PMICs are supported
and the source of the drivers is provided under
"platform/drivers/pmic/pfX"

COMPANY PUBLIC 16

System Controller Firmware Porting Kit – Introduction
• The SCFW features a

"Debug Monitor" option that
allows you to perform the
following from the SCU
UART terminal:
−Read and write fuses
−Obtain device information (unique

ID, SECO information and SCFW
information)

−Read and write PMIC registers
−Read resources power modes

COMPANY PUBLIC 17

System Controller Firmware
Services

COMPANY PUBLIC 18

System Controller Services
• The functionality offered by the System Controller Firmware is

divided into “services” or sets of API calls

• The SCFW provides access to the following services:
−Power Management Service
−Resource Management Service
−Pad Configuration Service
−Timer Service
− Interrupt Service
−Miscellaneous Service

COMPANY PUBLIC 19

System Controller Firmware Architecture

Power
Management

Service

Resource
Management

Service

Pad
Configuration

service

Timer
Service

Interrupt
Service

Miscellaneou
s Service

Security
Service

COMPANY PUBLIC 20

Power Management Service

COMPANY PUBLIC 21

Power Management Service
• The SCFW is responsible for centralized management of power

controls both within the device and with external power management
devices

• The power management service is in charge of:
−Power control
−Clock control
−Reset control
−Wake-up event monitoring

COMPANY PUBLIC 22

Power Management Introduction
• The device is subdivided in

subsystems
• Subsystems are groups of resources.
• These subsystems share power

domains and clocks
• Power control in the i.MX8 is

managed in a distributed manner
• SCU interfaces with each of

the subsystems to control the
power state of its resources

• SCU has a dedicated interface
to the Power Management
Integrated Circuit (PMIC)

A53
Subsystem

A72
Subsystem

Audio
Subsystem

GPU
Subsystem

System
Control UnitPMIC

COMPANY PUBLIC 23

Power Management Introduction
• Resources can be in either of four power modes:

Power Mode Voltage Clock Configuration
SC_PM_PW_MODE_OFF OFF All clocks Off
SC_PM_PW_MODE_STBY ON All clocks Off
SC_PM_PW_MODE_LP ON PLLs Off module running from XTAL
SC_PM_PW_MODE_ON ON PLLs On

COMPANY PUBLIC 24

Power Management – API Usage
• The power mode of all resources can be set/get by calling the SCFW API.
• Before accessing a resource it has to be turned on, attempts to access a

powered off resource will result in a bus error.
• To set/get a power mode call the following function:

− sc_pm_set_resource_power_mode (sc_ipc_t ipc, sc_rsrc_t resource, sc_pm_power_mode_t mode)
− sc_pm_get_resource_power_mode (sc_ipc_t ipc, sc_rsrc_t resource, sc_pm_power_mode_t *mode)
− Where:
 ipc – Interprocessor Communication Channel (it can be obtained by calling sc_ipc_open)
 resource – Resource to set/get the power mode to
 mode – Power mode to be configured

COMPANY PUBLIC 25

Clock Control Introduction
• The clock control features supported are:
−Set/Get Clock rate
−Enable/Disable Clock
−Set/Get Clock parent (i.e. source, PLL, XTAL…)

A53
Subsystem

A72
Subsystem

Audio
Subsystem

GPU
Subsystem

System
Control Unit

24MHz
XTAL

PLL PLL PLL

PLL PLL

PLL

PLL PLL

• Each subsystem has it’s own
PLLs and can have up to
three PLLs

• Clocks on all subsystems
are derived from the same
24MHz XTAL source

COMPANY PUBLIC 26

Clock Control – API Usage
• To set/get a clock rate simply call:

− sc_pm_set_clock_rate (sc_ipc_t ipc, sc_rsrc_t resource, sc_pm_clk_t clk, sc_pm_clock_rate_t *rate)
− sc_pm_get_clock_rate (sc_ipc_t ipc, sc_rsrc_t resource, sc_pm_clk_t clk, sc_pm_clock_rate_t *rate)
− Where:
 ipc – Interprocessor Communication Channel (it can be obtained by calling sc_ipc_open)
 resource – Resource to set/get the power mode to
 clk – Clock to be configured (resources can have multiple clocks and this is a way of identifying them)
 rate – Desired clock rate

COMPANY PUBLIC 27

Clock Control – API Usage Example
• As an example the rate of the GPU_0 shader clock will be configured.
• The clock type for the GPU shader is SC_PM_CLK_MISC.
• The set column indicates if the clock can be configured by using SCFW API calls. (The only clock

that is not settable is the SCU one)
• The “Enable” column indicates if the clock needs to be enabled by calling sc_pm_clock_enable

before usage or if it is auto enabled.
• All information required can be found at the SC_FW_API.pdf Chapter 5 Clock List.
• The following snippet configures the GPU_0 shader clock:

− sc_clock_rate_t shader_clk=700000000; // 700 MHz
− sc_pm_set_clock_rate(ipc, SC_R_GPU_0_PID0, SC_PM_CLK_MISC, &shader_clk);

COMPANY PUBLIC 28

Reset Control
• The SCFW is responsible for reset control. The available features

are:
−Power up/down of subsystems
−Manage resets triggered by watchdog timeout events.
−Request subsystem resets from software
−Obtaining previous reset source
−Starting/stopping CPUs

COMPANY PUBLIC 29

Wake-up Event Monitoring
• The SCU is located in an always-on power domain and is responsible for

wakeup event monitoring.
• Wakeup events arrive at the SCU in one of the following ways:
− Dedicated wakeup inputs (e.g. pad with edge detection)
− IRQs from subsystems connected to the respective DSC module

• For wake events that require service from other subsystems, the SCU will
apply clocks and power to the applicable subsystems.

• The wake event monitoring supports the following:
− Registration of clock/power/reset sequence to be followed for wake events
− Deregistration of clock/power/reset sequence for wake events
− Collaborates with SCU power management firmware to ensure registered wake events can be

received

COMPANY PUBLIC 30

Resource Management Service

COMPANY PUBLIC 31

Resource Management – Introduction
• SCFW is responsible for managing ownership and access

permissions to system resources.
• The resource management functions of the SCU are used to divide

up the System on a Chip (SoC) resources.
• The features supported by the SCFW are:
−Management of system resources such as SoC peripherals, memory regions and

pads.
−Allows resources to be partitioned into different ownership groupings that are

associated with different execution environments.
−Allows owners to configure access permissions to resources.
−Provide hardware enforced isolation.

COMPANY PUBLIC 32

Partioning on the i.MX8
• The i.MX8 contains a module called the

eXtended Resource Domain Controller
(xRDC) to enforce hardware portioning
on the system.

• The xRDC is configured through the
SCFW API.

• The resource management in the i.MX8
allows the creation of
domains/clusters/partitions of resources.

• All of these are considered resources:
− SoC Peripherals
− Memory regions
− Pads

• If a peripheral tries to access a resource
outside its domain the transaction is
blocked by the xRDC and a bus error is
generated.

MU
A B

Shared
memory

Application
core

xRDC

Dedicated app peripherals,
memory and pads

Real time
core

xRDC

Dedicated real time
peripherals, memory and
pads

xR
D

C

xR
D

C

COMPANY PUBLIC 33

xRDC Interaction on Bus Transactions
• xRDC MGR (Manager)

− Provides the programming interface for the entire xRDC.
− It dispatches incoming accesses to the different xRDC

blocks implemented in a subsystem
• MDAC (Master Domain Assignment

Controller)
− It adds Domain ID, Stream ID, Secure/Non-Secure

information to out-going transactions of a subsystem
• PAC (Peripheral Access Controller)

− Control access to peripherals of a subsystem
− Each peripheral can have different permissions

• MSC (Memory Slot Controller)
− Used in subsystem when it’s protected as a whole (GPU

for instance)
• MRC (Memory Region Controller)

− It controls accesses to memory regions defined by a
start address and an end address

− It can handle up to 32 regions

COMPANY PUBLIC 34

Resource Management – Introduction
• SCFW divides HW into resource partitions (i.e. logical machines). Max of 32.

• HW that is divided includes resources (IP blocks), memory regions, and pads.

• Partitioning affects both SCFW API permissions as well as HW access
permissions

• Definition mechanism
− Based on an assignment method, not an allocation method
− Owner of resources creates a new resource partition and assigns resources, i.e. users create and

define new “logical machines”
− Similar in concept to virtualization and VMs

COMPANY PUBLIC 35

Resource Management – Introduction
• Initial RM partition state:
− Partition 0: SCFW
− Partition 1: Boot partition
− Partition 2: SECO

− Partitions have a parent/child relationship; determines who can delete, restart, etc.

− Point(s) of additional configuration depends on system needs
 Usually, partitioning for SW that is loaded/booted as part of the boot process is done in the SCFW

itself via board_system_config() in board.c (customer porting layer)
 Partitioning of SW that is launched by OSes (e.g. an M4 used as sensor fusion and loaded/started

by Linux) is done in the OS itself; ATF creates a partition for Linux and assigns all resource TZ
does not need

SCFW
(0)

SECO
(2)

Boot
(1)

COMPANY PUBLIC 36

Resource Management – Typical Use Case
• Initial RM partition state:
−Partition 0: SCFW
−Partition 1: Boot partition

(becomes ATF)
−Partition 2: SECO
−Partition 3: M4
−Partition 4: Linux

SCFW
(0)

SECO
(2)

ATF
(1)

M4
(3)

Linux
(4)

COMPANY PUBLIC 37

Resource Management – Resources/Pads
• Resources and pads always have an owner (partition)
− Owner can assign/move to another partition
− Owner can configure resource/pad attributes
− Owner can power up/down, control clocks, etc. for resources

• Resource Master Attributes
− Security
− Privilege
− SMMU bypass
− Stream ID

• Resource Peripheral Attributes
− Access permissions

Partition 2

SC_R_A53
SC_R_DC_0

SC_R_UART_0
SC_R_UART_1

Partition 4

SC_R_UART_1

COMPANY PUBLIC 38

Resource Management – Memory Regions
• Memory Regions always have an owner (partition)
−Owner can assign/move to another partition
−Owner can create a new memory region within the bounds of an existing owned region
−Owner can split a region
−Owner can configure access permissions

• Limited to 16 total regions!

Partition 2

0x0 – 0x1FFF
0x5000-0x6FFF
0x8000-0xFFFF
0x9000-0xAFFF

Partition 4

0x9000-0xAFFF

COMPANY PUBLIC 39

Resource Management – Example
sc_rm_pt_t pt_m4;

sc_rm_mr_t mr_m4;

/* Create M4 partition*/

/* ipc – Interprocess Communication Channel

pt_m4 – NEW_Partition

secure – Indicates if this partition should be secure, only valid if caller is secure

isolated – Indicates if partition should be HW isolated

restricted – Indicates if partition should be restricted,

i.e. masters in this partition cannot create new partitions

grant – Indicates if partition should always grant access and control to the parent

coherent – Indicates if partition is coherent, set to true only if this partition will

contain both AP clusters and they will be coherent via CCI

*/

sc_rm_partition_alloc(ipc, &pt_m4, SC_FALSE, SC_TRUE, SC_TRUE, SC_FALSE, SC_FALSE);

COMPANY PUBLIC 40

Resource Management – Example
sc_rm_pt_t pt_m4;

sc_rm_mr_t mr_m4;

/* Create M4 partition*/

/* IPC, NEW_Partition, secure_pt, isolated_pt, restricted_pt, grant_pt, coherent_pt*/

sc_rm_partition_alloc(ipc, &pt_m4, SC_FALSE, SC_TRUE, SC_TRUE, SC_FALSE, SC_FALSE);

/* Assign some resources */

sc_rm_assign_resource(ipc, pt_m4, SC_R_M4_0_PID0);

sc_rm_assign_resource(ipc, pt_m4, SC_R_UART_1);

sc_rm_assign_resource(ipc, pt_m4, SC_R_M4_0_MU_1A);

sc_rm_assign_resource(ipc, pt_m4, SC_R_DMA_0_CH14);

sc_rm_assign_resource(ipc, pt_m4, SC_R_DMA_0_CH15);

/* Allocate and assign memory */

sc_rm_memreg_alloc(ipc, &mr_m4, 0xD0000000, 0xDFFFFFFF);

sc_rm_assign_memreg(ipc, pt_m4, mr_m4);

COMPANY PUBLIC 41

Pad Configuration Service

COMPANY PUBLIC 42

Pad Configuration Service – Introduction
• All the functionality needed to configure a pad is supported by the

SCFW:
−Common features:
 Mux selection
 Mode of operation
 Low-power isolation mode
 Pull select

−Technology specific features:
 Drive strength
 Compensation configuration for pad groups with dual voltage capability

COMPANY PUBLIC 43

Pad Configuration Service – Introduction
• There are 3 main types of CMOS I/Os
−1.8V only I/Os
−3.3V only I/Os
−1.8V / 3.3V I/Os (Dual Voltage)  biggest part of QM IOs

• USB High Speed Inter-Chip (HSIC) and Ethernet (ENET) interfaces
have specific integration scheme with dedicated features
−HSIC I/Os are specific to sustain 480Mbps data rate
−ENET I/Os have the capability to support 2.5V operations

COMPANY PUBLIC 44

Pad Configuration Service – I/Os Common Features
• Muxing capability of up to 4 signals
• Mode of operation
− It defines how the I/O will behave, e.g. open drain

• Low power configuration
• Wake-up capability
−Defines whether or not the I/O can be used to wake-up the system
−Defines on which event system should be woken-up (falling edge, rising edge, …)

COMPANY PUBLIC 45

Pad Configuration Service – Modes of Operation
• There are 4 modes of operation
−Normal mode
 While output is enabled, input is disabled and vice-versa

−Open drain
 IO switches between high-Z state and drive low

−Open drain and input
 Same as open drain with input enabled unconditionally

−Output and input
 Same as normal mode with input enabled unconditionally

COMPANY PUBLIC 46

Pad Configuration Service – Low Power Configuration
• This is a mechanism that is used to ensure that no pads are modified

during low-power state and to isolate the input/output signals

• It is a latch that retains the value of the pad while entering low-power
mode

• There are 4 different configurations
− ISO_OFF latch is transparent
 Latch is off

− ISO_EARLY latch is driven by EARLY_ISO signal
 The value in the pad is latched when EARLY_ISO signal is asserted

− ISO_LATE latch is driven by LATE_ISO
 The value in the pad is latched when LATE_ISO signal is asserted

− ISO_ON latch latches the data
 The value in the pad is latched when this configuration is selected

COMPANY PUBLIC 47

Pad Configuration Service – Wake-up Configuration
• Each IO has following wake-up capabilities

− OFF
 IO cannot wake-up the system

− Low detect
 Generate wake-up event when the pad remains in low level for a specific time amount

− High detect
 Generate wake-up event when the pad remains in high level for a specific time amount

− Rising edge detect
 Generate wake-up event on rising edge detection

− Falling edge detect
 Generate wake-up event on falling edge detection

• Wake-up event detection is completely asynchronous
− It is based on delay elements
− The structure allows filtering out glitches

COMPANY PUBLIC 48

Pad Configuration Service – Pull Select
• The pull select available options are the same for all I/O types.

Pull select options
Bus-keeper (only available for 1.8V)
Pull-up
Pull-down
No Pull (Disabled)

COMPANY PUBLIC 49

Pad Configuration Service – Technology Specific Features
• Drive strength options vary within I/O types
• The available options are:

1.8V Drive strength options 3.3V Drive strength options Dual Voltage drive strength
options

Drive strength of 1mA Drive strength of 2mA Low drive strength
Drive strength of 2mA Drive strength of 4mA High drive strength
Drive strength of 4mA Drive strength of 8mA
Drive strength of 6mA Drive strength of 12mA
Drive strength of 8mA
Drive strength of 10mA
Drive strength of 12mA
High-speed drive strength

COMPANY PUBLIC 50

Pad Configuration Service – Technology Specific Features
• The compensation feature is only available on Dual Voltage I/Os

• Dual Voltage I/Os have a different implementation, they require:
−Voltage reference generator – provides voltage references to supply detector and

compensation cell
−Supply detector – detects whether the I/O is being supplied with 1.8V or 3.3V
−Compensation cell – adjusts drive strength of dual voltage I/Os depending on Process

Voltage and Temperature (PVT) conditions

• The SCFW features functions to configure the compensation
functionality on dual voltage I/Os

COMPANY PUBLIC 51

Pad Configuration Service – Example
• Configure the mux alternative, the mode of operation and the low-

power isolation

• Then we configure the technology specific features, Drive Strength
and Pull Select

COMPANY PUBLIC 52

Timer Service

COMPANY PUBLIC 53

Timer Service – Introduction
• The System Controller Firmware supports the following timer

functions via the timer service.
−Watchdog
−RTC

COMPANY PUBLIC 54

Timer Service – Watchdog
• As it is not practical to have physical watchdog timers for all execution environments, the

SCFW uses a physical timer (Low Power Timer) to expose a "virtual" watchdog timer for
all resource partitions.

• The SC manages a set of software watchdog timeout events and refresh requests.
• The watchdog features supported by SC firmware include:

− Update watchdog timeout
− Start/stop watchdog
− Refresh watchdog
− Return watchdog status such as maximum watchdog timeout that can be set, watchdog timeout interval, and

watchdog timeout interval remaining

Note: the SC subsystem includes a physical watchdog timer that is used to insure the
correct operation of the SC firmware. It isn't used to implement the timer service's
watchdog function.

COMPANY PUBLIC 55

Timer Service – RTC
• The RTC API supports
−Setting the time
−Getting the time
−Setting alarms.

Note: Only the SW partition that owns the SC_R_SYSTEM resource is
allowed to set the time. Time is maintained by the Secure Non-Volatile
Storage (SNVS) hardware. All partitions have access to the same time.

COMPANY PUBLIC 56

Watchdog Functions
• sc_err_t sc_timer_set_wdog_timeout (sc_ipc_t ipc, sc_timer_wdog_time_t timeout)

 sets the watchdog timeout in milliseconds.
• sc_err_t sc_timer_set_wdog_pre_timeout (sc_ipc_t ipc, sc_timer_wdog_time_t pre_timeout)

 sets the watchdog pre-timeout in milliseconds.
• sc_err_t sc_timer_start_wdog (sc_ipc_t ipc, bool lock)

 starts the watchdog.
• sc_err_t sc_timer_stop_wdog (sc_ipc_t ipc)

 stops the watchdog if it is not locked.
• sc_err_t sc_timer_ping_wdog (sc_ipc_t ipc)

 pings (services, kicks) the watchdog resetting the time before expiration back to the timeout.
• sc_err_t sc_timer_get_wdog_status (sc_ipc_t ipc, sc_timer_wdog_time_t timeout, sc_timer_wdog_time_t max_timeout,

sc_timer_wdog_time_t remaining_time)
 gets the status of the watchdog.

• sc_err_t sc_timer_pt_get_wdog_status (sc_ipc_t ipc, sc_rm_pt_t pt, bool enb, sc_timer_wdog_time_t *timeout,
sc_timer_wdog_time_t *remaining_time)
 gets the status of the watchdog of a partition.

• sc_err_t sc_timer_set_wdog_action (sc_ipc_t ipc, sc_rm_pt_t pt, sc_timer_wdog_action_t action)
 configures the action to be taken when a watchdog expires.

COMPANY PUBLIC 57

Real-Time Clock (RTC) Functions
• sc_err_t sc_timer_set_rtc_time (sc_ipc_t ipc, uint16_t year, uint8_t mon, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec)

 sets the RTC time.

• sc_err_t sc_timer_get_rtc_time (sc_ipc_t ipc, uint16_t *year, uint8_t mon, uint8_t *day, uint8_t *hour, uint8_t *min, uint8_t *sec)

 gets the RTC time.

• sc_err_t sc_timer_get_rtc_sec1970 (sc_ipc_t ipc, uint32_t *sec)

 gets the RTC time in seconds since 1/1/1970.

• sc_err_t sc_timer_set_rtc_alarm (sc_ipc_t ipc, uint16_t year, uint8_t mon, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec)

 sets the RTC alarm.

• sc_err_t sc_timer_set_rtc_calb (sc_ipc_t ipc, int8_t count)

 sets the RTC calibration value.

COMPANY PUBLIC 58

Interrupt Service

COMPANY PUBLIC 59

Interrupt Service
• Interrupt Service provides the method for SC to inform users about asynchronous notification events.

• IRQ API export to user the following functionalities:

− Enable/Disable Interrupts

− Read Status of pending interrupts

 Note: Reading status of pending interrupts automatically clears any pending state

• sc_err_t sc_irq_enable (sc_ipc_t ipc, sc_rsrc_t resource, sc_irq_group_t group, uint32_t mask, bool enable)
 enables/disables interrupts.

• sc_err_t sc_irq_status (sc_ipc_t ipc, sc_rsrc_t resource, sc_irq_group_t group, uint32_t *status)
 returns the current interrupt status (regardless if masked).

COMPANY PUBLIC 60

Miscellaneous Service

COMPANY PUBLIC 61

Miscellaneous Service – Introduction
• The miscellaneous service is in charge of providing access to all features not

handled by the other services some examples include the following features:
• Subsystems Controls

− Some subsystems have settings that can be configured through the SCFW. For instance, it is
possible to set thresholds for a temperature alarm and get the temperature value of the sensor in
different resources.
 The SCFW provides functions to set/get these controls.

• DMA
− The SCFW provides access to DMA grouping and priority functions.

• Debug Features
− The SCFW provides some debug functionality through its miscellaneous service, some examples include:
 Output a character through the SCU UART port
 SCFW build information (SCFW version)
 Device Unique ID

COMPANY PUBLIC 62

Miscellaneous Service – Controls Examples
• For a complete list of all available controls refer to the Control List in

the sc_fw_api document for your SoC.
• The list showcases all available controls and their respective

resources, the set column indicates if the control can be written/set.

COMPANY PUBLIC 63

Miscellaneous Service – Controls Examples
• To set/get a control call:
−sc_misc_set_control (sc_ipc_t ipc, sc_rsrc_t resource, sc_ctrl_t ctrl, uint32_t val)
−sc_misc_get_control (sc_ipc_t ipc, sc_rsrc_t resource, sc_ctrl_t ctrl, uint32_t *val)
− Where:
 ipc – Interprocessor Communication Channel (it can be obtained by calling sc_ipc_open)
 resource – Resource to set/get the control
 val – Value to set the control to

COMPANY PUBLIC 64

Control Functions
• sc_err_t sc_misc_set_control (sc_ipc_t ipc, sc_rsrc_t resource, sc_ctrl_t ctrl, uint32_t val)

 sets a miscellaneous control value.

• sc_err_t sc_misc_get_control (sc_ipc_t ipc, sc_rsrc_t resource, sc_ctrl_t ctrl, uint32_t *val)

 gets a miscellaneous control value.

DMA Functions
• sc_err_t sc_misc_set_max_dma_group (sc_ipc_t ipc, sc_rm_pt_t pt, sc_misc_dma_group_t max)

 configures the max DMA channel priority group for a partition.

• sc_err_t sc_misc_set_dma_group (sc_ipc_t ipc, sc_rsrc_t resource, sc_misc_dma_group_t group)

 configures the priority group for a DMA channel.

COMPANY PUBLIC 65

Debug Functions
• void sc_misc_debug_out (sc_ipc_t ipc, uint8_t ch)

 used output a debug character from the SCU UART.

• sc_err_t sc_misc_waveform_capture (sc_ipc_t ipc, bool enable)

 starts/stops emulation waveform capture.

• void sc_misc_build_info (sc_ipc_t ipc, uint32_t *build, uint32_t *commit)

 used to return the SCFW build info.

COMPANY PUBLIC 66

Other Functions
• sc_err_t sc_misc_set_ari (sc_ipc_t ipc, sc_rsrc_t resource, sc_rsrc_t resource_mst, uint16_t ari, bool enable)

 configures the ARI match value for PCIe/SATA resources.

• void sc_misc_boot_status (sc_ipc_t ipc, sc_misc_boot_status_t status)

 reports boot status.

• sc_err_t sc_misc_boot_done (sc_ipc_t ipc, sc_rsrc_t cpu)

 tells the SCFW that a CPU is done booting.

• sc_err_t sc_misc_otp_fuse_read (sc_ipc_t ipc, uint32_t word, uint32_t *val)

 reads a given fuse word index.

• sc_err_t sc_misc_otp_fuse_write (sc_ipc_t ipc, uint32_t word, uint32_t val)

 writes a given fuse word index.

• sc_err_t sc_misc_set_temp (sc_ipc_t ipc, sc_rsrc_t resource, sc_misc_temp_t temp, int16_t celsius, int8_t tenths)

 sets a temp sensor alarm.

• sc_err_t sc_misc_get_temp (sc_ipc_t ipc, sc_rsrc_t resource, sc_misc_temp_t temp, int16_t *celsius, int8_t *tenths)

 gets a temp sensor value.

• void sc_misc_get_boot_dev (sc_ipc_t ipc, sc_rsrc_t *dev)

 returns the boot device.

• void sc_misc_get_button_status (sc_ipc_t ipc, bool *status)

 returns the current status of the ON/OFF button.

COMPANY PUBLIC 67

Security Service

COMPANY PUBLIC 68

Security Service – Introduction
• The SC firmware provides access to many security functions including:
− Image Authentication
− Generating, exporting, and loading key blobs
− Fuse programming
− Lifecycle management
− Attestation

• Interactions with the Security Controller (SECO) Firmware are managed
through the SCFW API.

COMPANY PUBLIC 69

Commonly Used Funtions
• sc_err_t sc_seco_forward_lifecycle (sc_ipc_t ipc, uint32_t change)
−This function updates the lifecycle of the device.

• void sc_seco_build_info (sc_ipc_t ipc, uint32_t ∗version, uint32_t ∗commit)
−This function is used to return the SECO FW build info.

• sc_err_t sc_seco_chip_info (sc_ipc_t ipc, uint16_t ∗lc, uint16_t ∗monotonic,
uint32_t ∗uid_l, uint32_t ∗uid_h)
−This function is used to return SECO chip info.

• sc_err_t sc_seco_get_event (sc_ipc_t ipc, uint8_t idx, uint32_t ∗event)
−This function is used to return an event from the SECO error log.

COMPANY PUBLIC 70

Questions

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

	Introduction to the System Controller Firmware on i.MX 8 Application Processor
	Agenda
	System Controller Unit and I.MX8 Architecture
	Introduction
	SCU – Architecture Overview
	High-level Block Diagram i.MX8QM
	Why Do We Need a System Control Unit?
	i.MX8 High-level Boot Sequence
	System Controller Firmware Overview and Getting Started
	Introduction
	System Controller Firmware and Application
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Porting Kit – Introduction
	System Controller Firmware Services
	System Controller Services
	System Controller Firmware Architecture
	Power Management Service
	Power Management Service
	Power Management Introduction
	Power Management Introduction
	Power Management – API Usage
	Clock Control Introduction
	Clock Control – API Usage
	Clock Control – API Usage Example
	Reset Control
	Wake-up Event Monitoring
	Resource Management Service
	Resource Management – Introduction
	Partioning on the i.MX8
	xRDC Interaction on Bus Transactions
	Resource Management – Introduction
	Resource Management – Introduction
	Resource Management – Typical Use Case
	Resource Management – Resources/Pads
	Resource Management – Memory Regions
	Resource Management – Example
	Resource Management – Example
	Pad Configuration Service
	Pad Configuration Service – Introduction
	Pad Configuration Service – Introduction
	Pad Configuration Service – I/Os Common Features
	Pad Configuration Service – Modes of Operation
	Pad Configuration Service – Low Power Configuration
	Pad Configuration Service – Wake-up Configuration
	Pad Configuration Service – Pull Select
	Pad Configuration Service – Technology Specific Features
	Pad Configuration Service – Technology Specific Features
	Pad Configuration Service – Example
	Timer Service
	Timer Service – Introduction
	Timer Service – Watchdog
	Timer Service – RTC
	Watchdog Functions
	Real-Time Clock (RTC) Functions
	Interrupt Service
	Interrupt Service
	Miscellaneous Service
	Miscellaneous Service – Introduction
	Miscellaneous Service – Controls Examples	
	Miscellaneous Service – Controls Examples	
	Control Functions
	Debug Functions
	Other Functions
	Security Service
	Security Service – Introduction
	Commonly Used Funtions
	Questions
	Slide Number 72

