
IMXLUG
i.MX Linux User's Guide
Rev. LF5.15.71_2.2.0 —
16 December 2022

User guide

Document information
Information Content

Keywords i.MX, Linux, LF5.15.71_2.2.0

Abstract This document describes how to build and install the i.MX Linux OS BSP,
where BSP stands for Board Support Package, on the i.MX platform. It also
covers special i.MX features and how to use them.

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

1 Overview

This document describes how to build and install the i.MX Linux OS BSP, where BSP
stands for Board Support Package, on the i.MX platform. It also covers special i.MX
features and how to use them.

The document also provides the steps to run the i.MX platform, including board DIP
switch settings, and instructions on configuring and using the U-Boot bootloader.

The later chapters describe how to use some i.MX special features when running the
Linux OS kernel.

Features covered in this guide may be specific to particular boards or SoCs. For the
capabilities of a particular board or SoC, see the i.MX Linux Release Notes (IMXLXRN).

1.1 Audience
This document is intended for software, hardware, and system engineers who are
planning to use the product, and for anyone who wants to know more about the product.

1.2 Conventions
This document uses the following conventions:

• Courier New font: This font is used to identify commands, explicit command
parameters, code examples, expressions, data types, and directives.

1.3 Supported hardware SoCs and boards
These are the systems covered in this guide:

• i.MX 6Quad SABRE-SD board and platform
• i.MX 6DualLite SABRE-SD platform
• i.MX 6SoloX SABRE-SD platform
• i.MX 7Dual SABRE-SD platform
• i.MX 6QuadPlus SABRE-SD platform
• i.MX 6UltraLite EVK platform
• i.MX 6ULL EVK platform
• i.MX 6ULZ EVK platform
• i.MX 7ULP EVK platform
• i.MX 8QuadMax MEK board
• i.MX 8QuadXPlus MEK platform
• i.MX 8DualXLite EVK Platform
• i.MX 8M Quad EVK platform
• i.MX 8M Mini EVK Board
• i.MX 8M Nano EVK Board
• i.MX 8M Plus EVK board
• i.MX 8DualX MEK Board
• i.MX 8ULP EVK Board
• i.MX 93 EVK board

Some abbreviations are used in places in this document.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
2 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• SABRE-SD refers to the i.MX 6Quad SABRE-SD, i.MX 6DualLite SABRE-SD, i.MX
6QuadPlus SABRE-SD, and i.MX 7Dual SABRE-SD boards.

• SoloX or SX refers to the i.MX 6SoloX SABRE-SD boards.
• 6UL refers to the i.MX 6UltraLite board.
• 6ULL refers to the i.MX 6ULL board.
• 6ULZ refers to the i.MX 6ULZ board.
• 7ULP refers to the i.MX 7Ultra Low Power platform.
• 8QXP refers to the 8QuadXPlus platform.
• 8QM refers to the 8QuadMax platform.
• 8MQ refers to the 8M Quad platform.
• 8MM refers to the 8M Mini platform.
• 8MN refers to the 8M Nano platform.
• 8MP refers to the 8M Plus platform.
• 8DXL refers to the 8DualXLite platform.
• 8DX refers to the 8DualX platform.
• 8ULP refers to the i.MX 8Ultra Low Power platform.
• i.MX 93 refers to the i.MX 93 EVK board.

1.4 References
i.MX has multiple families supported in software. The following are the listed families and
SoCs per family. The i.MX Linux Release Notes describes which SoC is supported in the
current release. Some previously released SoCs might be buildable in the current release
but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax, 8ULP
• i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano
• i.MX 8X Family: 8QuadXPlus, 8DualXLite, 8DualX
• i.MX 9 Family: i.MX 93

This release includes the following references and additional information.

• i.MX Linux Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux User's Guide (IMXLUG) - Provides the information on installing U-Boot and

Linux OS and using i.MX-specific features.
• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Describes the board support

package for NXP development systems using Yocto Project to set up host, install tool
chain, and build source code to create images.

• i.MX Machine Learning User's Guide (IMXMLUG) - Provides the machine learning
information.

• i.MX Linux Reference Manual (IMXLXRM) - Provides the information on Linux drivers
for i.MX.

• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.
• i.MX Porting Guide (IMXXBSPPG) - Provides the instructions on porting the BSP to a

new board.
• i.MX VPU Application Programming Interface Linux Reference Manual (IMXVPUAPI) -

Provides the reference information on the VPU API on i.MX 6 VPU.
• Harpoon User's Guide (IMXHPUG) - Presents the Harpoon release for i.MX 8M device

family.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
3 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax
(IMXDCHPE) - Provides the i.MX Digital Cockpit hardware solution for i.MX 8QuadMax.

• i.MX DSP User's Guide (IMXDSPUG) - Provides the information on the DSP for i.MX 8.
• i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG) - Provides the information

on the ISP Independent Sensor Interface API for the i.MX 8M Plus.

The quick start guides contain basic information on the board and setting it up. They are
on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)
• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide

(IMX8QUADXPLUSQSG)
• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide

(IMX8QUADMAXQSG)
• i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series
• i.MX SABRE information is at nxp.com/imxSABRE
• i.MX 6UltraLite information is at nxp.com/iMX6UL
• i.MX 6ULL information is at nxp.com/iMX6ULL
• i.MX 7Dual information is at nxp.com/iMX7D
• i.MX 7ULP information is at nxp.com/imx7ulp
• i.MX 8 information is at nxp.com/imx8
• i.MX 6ULZ information is at nxp.com/imx6ulz

2 Introduction

The i.MX Linux BSP is a collection of binary files, source code, and support files that can
be used to create a U-Boot bootloader, a Linux kernel image, and a root file system for
i.MX development systems. The Yocto Project is the framework of choice to build the
images described in this document, although other methods can be used.

All the information on how to set up the Linux OS host, how to run and configure a Yocto
Project, generate an image, and generate a rootfs, are covered in the i.MX Yocto Project
User's Guide (IMXLXYOCTOUG).

When Linux OS is running, this guide provides information on how to use some special
features that i.MX SoCs provide. The release notes provide the features that are
supported on a particular board.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
4 / 129

https://www.nxp.com/docs/en/user-guide/SABRESDP_IMX6_QSG.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG&location=null
https://www.nxp.com/webapp/Download?colCode=IMX6ULTRALITEQSG
https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/document/guide/i-mx-8m-nano-evk-board-getting-started-guide:GS-8MNANOLPD4-EVK
https://www.nxp.com/webapp/Download?colCode=IMX8QUADXPLUSQSG
https://www.nxp.com/webapp/Download?colCode=IMX8QUADXPLUSQSG
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

3 Basic Terminal Setup

The i.MX boards can communicate with a host server (Windows OS or Linux OS) using
a serial cable. Common serial communication programs such as HyperTerminal, Tera
Term, or PuTTY can be used. The example below describes the serial terminal setup
using HyperTerminal on a host running Windows OS.

The i.MX 6Quad/QuadPlus/DualLite SABRE-AI boards connect to the host server using a
serial cable.

The other i.MX boards connect the host driver using the micro-B USB connector.

1. Connect the target and the PC running Windows OS using a cable mentioned above.
2. Open HyperTerminal on the PC running Windows OS and select the settings as

shown in the following figure.

Figure 1. Teraterm settings for terminal setup

The i.MX 8 board connects the host driver using the micro USB connector. The USB to
serial driver can be found under www.ftdichip.com/Drivers/VCP.htm. The FT4232 USB
to serial converter provides four serial ports. The i.MX 8 board uses the first port for the
Arm Cortex-A cores console and the second port for SCU's console. Users need to select
the first port (COM) in the terminal setup. The i.MX 8DXL board uses the third and fourth
ports respectively for Arm Cortex-A cores console and SCU console.

4 Booting Linux OS

Before booting the Linux OS kernel on an i.MX board, copy the images (U-Boot, Linux
kernel, device tree, and rootfs) to a boot device and set the boot switches to boot that
device. There are various ways to boot the Linux OS for different boards, boot devices,
and results desired. This section describes how to prepare a boot device, where files
need to be in the memory map, how to set switches for booting, and how to boot Linux
OS from U-Boot.

4.1 Software overview
This section describes the software needed for the board to be able to boot and run Linux
OS.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
5 / 129

http://www.ftdichip.com/Drivers/VCP.htm

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

To boot a Linux image on i.MX 6 and i.MX 7, the following elements are needed:

• Bootloader (U-Boot)
• Linux kernel image (zImage)
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image
• Arm Cortex-M4 image for i.MX 7ULP

To boot a Linux image on i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL, multiple
elements are needed:

• Bootloader (imx-boot built by imx-mkimage, which is a tool that combines firmware
and U-Boot to create a bootloader for i.MX 8), which includes U-Boot, Arm Trusted
Firmware, DCD file, System controller firmware, and the SECO firmware since i.MX
8QuadMax/i.MX 8QuadXPlus B0 and i.MX 8DXL A1.

• (Optional) Arm Cortex-M4 image
• Linux kernel image (Image built by linux-imx)
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image

On i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus, multiple elements
are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted
Firmware, DDR firmware

• HDMI firmware (only supported by i.MX 8M Quad)
• Linux kernel image
• A device tree file (.dtb) for the board being used.
• A root file system (rootfs) for the particular Linux image

On i.MX 8ULP, four elements are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted
Firmware, OP-TEE, uPower Firmware, Sentinel Firmware, and Arm Cortex-M33 image

• Linux kernel image
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image

On i.MX 93, multiple elements are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted
Firmware, OP-TEE, Sentinel Firmware, DDR PHY Firmware

• Linux kernel image
• (Optional) Arm Cortex-M33 image
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image

The system can be configured for a specific graphical backend. For i.MX 8, the graphical
backend is XWayland. For i.MX 7ULP, the default backend is XWayland.

4.1.1 Bootloader

U-Boot is the tool recommended as the bootloader for i.MX 6 and i.MX 7. i.MX 8 and
i.MX 9 require a bootloader that includes U-Boot as well as other components described
below. U-Boot must be loaded onto a device to be able to boot from it. U-Boot images are
board-specific and can be configured to support booting from different sources.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
6 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The pre-built or Yocto project default bootloader names start with the name of the
bootloader followed by the name of the platform and board and followed by the name of
the device that this image is configured to boot from: u-boot-[platform][board]_
[machine_configuration].bin. If no boot device is specified, it boots from SD/
MMC.

The manufacturing tool can be used to load U-Boot onto all devices with i.MX 6 and i.MX
7. U-Boot can be loaded directly onto an SD card using the Linux dd command. U-Boot
can be used to load a U-Boot image onto some other devices.

On i.MX 8, the U-Boot cannot boot the device by itself. The i.MX 8 pre-built images
or Yocto Project default bootloader is imx-boot for the SD card, which is created
by the imx-mkimage. The imx-boot binary includes the U-Boot, Arm trusted
firmware, DCD file (8QuadMax/8QuadXPlus/8DXL), system controller firmware
(8QuadMax/8QuadXPlus/8DXL), SPL (8M SoC), DDR firmware (8M), HDMI firmware
(8M Quad), and SECO firmware (8QuadMax/8QuadXPlus/8DXL).

On i.MX 8M SoC, the second program loader (SPL) is enabled in U-Boot. SPL is
implemented as the first-level bootloader running on TCML (For i.MX 8M Nano and i.MX
8M Plus, the first-level bootloader runs in OCRAM). It is used to initialize DDR and load
U-Boot, U-Boot DTB, Arm trusted firmware, and TEE OS (optional) from the boot device
into the memory. After SPL completes loading the images, it jumps to the Arm trusted
firmware BL31 directly. The BL31 starts the optional BL32 (TEE OS) and BL33 (U-Boot)
for continue booting kernel.

In imx-boot, the SPL is packed with DDR Firmware together, so that ROM can load
them into Arm Cortex-M4 TCML or OCRAM (only for i.MX 8M Nano and i.MX 8M Plus).
The U-Boot, U-Boot DTB, Arm Trusted firmware, and TEE OS (optional) are packed into
a FIT image, which is finally built into imx-boot.

4.1.2 Linux kernel image and device tree

This i.MX BSP contains a pre-built kernel image based on the 5.15.71 version of the
Linux kernel and the device tree files associated with each platform.

The same kernel image is used for all the i.MX 6 and i.MX 7 with name zImage.
Device trees are tree data structures, which describe the hardware configuration
allowing a common kernel to be booted with different pin settings for different boards or
configurations. Device tree files use the .dtb extension. The configuration for a device
tree can be found in the Linux source code under arch/arm/boot/dts in the *.dts
files.

The i.MX Linux delivery package contains pre-built device tree files for the i.MX boards
in various configurations. Filenames for the prebuilt images are named Image-
[platform]-[board]-[configuration].dtb. For example, the device tree file of
the i.MX 8QuadMax MEK board is Image-imx8qm-mek.dtb.

For i.MX 6 and i.MX 7, the *ldo.dtb device trees are used for LDO-enabled feature
support. By default, the LDO bypass is enabled. If your board has the CPU set to 1.2
GHz, you should use the *ldo.dtb device tree instead of the default, because LDO
bypass mode is not supported on the CPU at 1.2 GHz. The device tree *hdcp.dtb is
used to enable the HDCP feature because of a pin conflict, which requires this to be
configured at build time.

On i.MX 8, i.MX 8M, i.MX 8ULP, and i.MX93, the kernel is 64 bit and device trees are
located in the arch/arm64/boot/dts/freescale folder and use the dts extension.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
7 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The kernel is built using linux-imx software provided in the release package and the
filename starting with Image.

4.1.3 Root file system

The root file system package (or rootfs) provides busybox, common libraries, and other
fundamental elements.

The i.MX BSP package contains several root file systems. They are named with the
following convention: [image name]-[backend]-[platform][board].[ext4|
wic]. The ext4 extension indicates a standard file system. It can be mounted as NFS, or
its contents can be stored on a boot media such as an SD/MMC card.

The graphical backend to be used is also defined by the rootfs.

4.2 Universal update utility

The Universal Update Utility (UUU) runs on a Windows or Linux OS host and is used to
download images to different devices on an i.MX board.

4.2.1 Downloading UUU

Download UUU version 1.4.243 or later from https://github.com/NXPmicro/mfgtools/rel
eases.

4.2.2 Using UUU

To use the UUU for i.MX 6, i.MX 7, i.MX 8, and i.MX 9, follow the instructions below:

1. Connect a USB cable from a computer to the USB OTG/TYPE C (or Micro-B,
depending on board) port on the board for download link.

2. Connect a USB cable from the OTG-to-UART port to the computer for console
output.

3. Open a Terminal emulator program. See Section "Section 3" in this document.
4. Set the boot pin to serial download mode mode. See Section "Section 4.5.11" in this

document.

To use the UUU for i.MX 8ULP EVK, follow the instructions below:

• To burn single-boot image and rootfs to eMMC, run the following command:

uuu -b emmc_all imx-boot-imx8ulpevk-sd.bin-
flash_singleboot_m33 <rootfs.wic.zst>

• To burn single-boot image to FlexSPI2 NOR flash, run the following command:

uuu -b qspi imx-boot-imx8ulpevk-fspi.bin-
flash_singleboot_m33_flexspi

• To burn dual-boot image and rootfs to eMMC and FlexSPI0 NOR flash, perform the
following steps:
1. Prepare imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33, imx-

boot-imx8ulpevk-sd.bin-flash_dualboot, imx-boot-imx8ulpevk-
sd.bin-flash_dualboot_m33, and <rootfs.wic>.

2. Update the UUU script file uuu_8ulp_dual.auto with the file path and name of
the images above.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
8 / 129

https://github.com/NXPmicro/mfgtools/releases
https://github.com/NXPmicro/mfgtools/releases

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

3. Run uuu mfgtools/scripts/samples/uuu_8ulp_dual.auto.

For detailed usage of UUU, see github.com/NXPmicro/mfgtools/wiki.

For example, the following command writes rootfs.wic into eMMC.

uuu -b emmc_all <bootloader> <rootfs.wic>

The following command decompresses zst file and writes into eMMC:

uuu -b emmc_all <bootloader> <rootfs.wic.zst/*>

The following command executes downloading and bootloader (SPL and U-Boot) by
USB:

uuu -b spl <bootloader>

The following command burns into eMMC (If only one board is supported in such a
release package and the board supports eMMC chip):

uuu <release package>.zip

Note:

For i.MX 8QuadXPlus B0, UUU flashes the eMMC image to boot partition with 32 KB
offset. It may not be compatible with all eMMC devices. It is recommended to enable
eMMC fastboot mode and use the UUU kernel version script to flash the eMMC image to
boot partition with 0 offset.

4.3 Preparing an SD/MMC card to boot
This section describes the steps to prepare an SD/MMC card to boot up an i.MX board
using a Linux host machine. These instructions apply to SD and MMC cards although for
brevity, and usually only the SD card is listed.

For a Linux image to be able to run, four separate pieces are needed:

• Linux OS kernel image (zImage/Image)
• Device tree file (*.dtb)
• Bootloader image
• Root file system (for example, EXT4)

The Yocto Project build creates an SD card image that can be flashed directly. This is the
simplest way to load everything needed onto the card with one command.

A .wic image contains all four images properly configured for an SD card. The release
contains a pre-built .wic image that is built specifically for the one board configuration. It
runs the Wayland graphical backend. It does not run on other boards unless U-Boot, the
device tree, and rootfs are changed.

When more flexibility is desired, the individual components can be loaded separately, and
those instructions are included here as well. An SD card can be loaded with the individual
components one-by-one or the .wic image can be loaded and the individual parts can
be overwritten with the specific components.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
9 / 129

https://github.com/NXPmicro/mfgtools/wiki

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning
and re-loading the rootfs can increase that to the size of the card. The rootfs can also be
changed to specify the graphical backend that is used.

The device tree file (.dtb) contains board and configuration-specific changes to the
kernel. Change the device tree file to change the kernel for a different i.MX board or
configuration.

By default, the release uses the following layout for the images on the SD card. The
kernel image and DTB move to use the FAT partition without a fixed raw address on the
SD card. The users have to change the U-Boot boot environment if the fixed raw address
is required.

Start address
(sectors)

Size (sectors) Format Description

0x400 bytes (2) 0x9FFC00 bytes
(20478)

RAW i.MX 6 and i.MX 7 U-Boot and
reserved area

0x8400 (66) 0x9F7C00 (20414) RAW i.MX 8M Quad and i.MX 8M Mini
imx-boot reserved area

0x8000 (64) 0x9F800 (20416) RAW i.MX 8QuadMax/8QuadXPlus/
8M Nano/8M Plus/8DXL/
8DualX/8ULP, i.MX 93

0xa00000 bytes
(20480)

500 MB (1024000) FAT Kernel Image and DTBs

0x25800000 bytes
(1228800)

Remaining space Ext3/Ext4 Rootfs

Table 1. Image layout

4.3.1 Preparing the card

An SD/MMC card reader, such as a USB card reader, is required. It is used to transfer
the bootloader and kernel images to initialize the partition table and copy the root file
system. To simplify the instructions, it is assumed that a 4 GB SD/MMC card is used.

Any Linux distribution can be used for the following procedure.

The Linux kernel running on the Linux host assigns a device node to the SD/MMC card
reader. The kernel might decide the device node name or udev rules might be used. In
the following instructions, it is assumed that udev is not used.

To identify the device node assigned to the SD/MMC card, carry out the following
command:

$ cat /proc/partitions
major minor #blocks name
 8 0 78125000 sda
 8 1 75095811 sda1
 8 2 1 sda2
 8 5 3028221 sda5
 8 32 488386584 sdc
 8 33 488386552 sdc1
 8 16 3921920 sdb
 8 18 3905535 sdb1

In this example, the device node assigned is /dev/sdb (a block is 1024 Bytes).

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
10 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Note: Make sure that the device node is correct for the SD/MMC card. Otherwise, it may
damage your operating system or data on your computer.

4.3.2 Copying the full SD card image

The SD card image (with the extension .wic) contains U-Boot, the Linux image and
device trees, and the rootfs for a 4 GB SD card. The image can be installed on the SD
card with one command if flexibility is not required.

Carry out the following command to copy the SD card image to the SD/MMC card.
Change sdx below to match the one used by the SD card.

$ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync

The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the
additional space is not accessible.

4.3.3 Partitioning the SD/MMC card

The full SD card image already contains partitions. This section describes how to set up
the partitions manually. This needs to be done to individually load the bootloader, kernel,
and rootfs.

There are various ways to partition an SD card. Essentially, the bootloader image needs
to be at the beginning of the card, followed by the Linux image and the device tree file.
These can either be in separate partitions or not. The root file system needs to be in
a partition that starts after the Linux section. Make sure that each section has enough
space. The example below creates two partitions.

On most Linux host operating systems, the SD card is mounted automatically upon
insertion. Therefore, before running fdisk, make sure that the SD card is unmounted if it
was previously mounted (through sudo umount /dev/sdx).

Start by running fdisk with root permissions. Use the instructions above to determine the
card ID. We are using sdx here as an example.

$ sudo fdisk /dev/sdx

Type the following parameters (each followed by <ENTER>):

p [lists the current partitions]
d [to delete existing partitions. Repeat this until no
 unnecessary partitions
 are reported by the 'p' command to start fresh.]
n [create a new partition]
p [create a primary partition - use for both
 partitions]
1 [the first partition]
20480 [starting at offset sector]
1024000 [ending position of the first partition to be used
 for the boot images]
p [to check the partitions]
n
p
2
1228800 [starting at offset sector, which leaves enough space
 for the kernel,

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
11 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 the bootloader and its configuration data]
<enter> [using the default value will create a partition that
 extends to
 the last sector of the media]
p [to check the partitions]
w [this writes the partition table to the media and
 fdisk exits]

4.3.4 Copying a bootloader image

This section describes how to load only the bootloader image when the full SD card
image is not used. Execute the following command to copy the U-Boot image to the SD/
MMC card.

$ sudo dd if=<U-Boot image> of=/dev/sdx bs=1k seek=<offset>
 conv=fsync

Where offset is:

• 1 - for i.MX 6 or i.MX 7
• 33 - for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, and i.MX 8M Quad, and i.MX 8M

Mini
• 32 - for i.MX 8QuadXPlus B0, i.MX 8QuadMax B0, i.MX 8DualX, i.MX 8DXL, i.MX 8M

Nano, i.MX 8M Plus, i.MX 8ULP, and i.MX 9

The first 16 KB of the SD/MMC card, which includes the partition table, is reserved.

4.3.5 Copying the kernel image and DTB file

This section describes how to load the kernel image and DTB when the full SD card
image is not used. The pre-built SD card image uses the VFAT partition for storing kernel
image and DTB, which requires a VFAT partition that is mounted as a Linux drive and the
files are copied into it. This is the preferred method.

Another method that can be used is for users to put the kernel image and DTB to the
fixed raw address of the SD card by using the dd command. The later method needs to
modify the U-Boot default environment variables for loading the kernel image and DTB.

Default: VFAT partition

1. Format partition 1 on the card as VFAT with this command:

$ sudo mkfs.vfat /dev/sdx1

2. Mount the formatted partition with this command:

$ mkdir mountpoint
$ sudo mount /dev/sdx1 mountpoint

3. Copy the zImage and *.dtb files to the mountpoint by using cp. The device tree
names should match the one used by the variable specified by U-Boot. Unmount the
partition with this command:

$ sudo umount mountpoint

Alternative: Pre-defined raw address

The following command can be used to copy the kernel image to the SD/MMC card:

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
12 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

For i.MX 6 and i.MX7, use this command:

$ sudo dd if=zImage_imx_v7_defconfig of=/dev/sdx bs=512
 seek=2048 conv=fsync

For i.MX 8, use this command:

sudo dd if=Image-imx8qmsabreauto.bin of=/dev/sdx bs=512
 seek=2048 conv=fsync

Each of them copies the kernel to the media at offset 1 MB (bs x seek = 512 x 2048 =
1 MB). The file zImage_imx_v7_defconfig refers to the zImage file created when
using the imx_v7_defconfig configuration file, which supports both i.MX 6 and i.MX 7
SoCs.

The i.MX DTB image can be copied by using the copy command and copying the file to
the 2nd partition or the following commands copy an i.MX DTB image to the SD/MMC
card by using dd command.

Choose a command for your board:

$ sudo dd if=zImage-imx6qp-sabreauto.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6qp-sabresd.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabreauto.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabresd.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6sl-evk.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx7d-sdb.dtb of=/dev/sdx bs=512 seek=20480
 conv=fsync

For i.MX 6 and i.MX 7, the following command can be used to copy the kernel image to
the boards, such as the i.MX 6UltraLite EVK board and i.MX 6ULL EVK board:

$ sudo dd if=zImage-imx6ul-14x14-evk.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6ull-14x14-evk.dtb of=/dev/sdx bs=512
 seek=20480 conv=fsync

For i.MX 6 and i.MX 7, this copies the board-specific .dtb file to the media at offset 10
MB (bs x seek = 512 x 20480 = 10 MB).

4.3.6 Copying the root file system (rootfs)

This section describes how to load the rootfs image when the full SD card image is not
used.

Copy the target file system to a partition that only contains the rootfs. This example uses
partition 2 for the rootfs. First format the partition. The file system format ext3 or ext4
is a good option for the removable media due to the built-in journaling. Replace sdx with
the partition in use in your configuration.

$ sudo mkfs.ext3 /dev/sdx2
Or

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
13 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

$ sudo mkfs.ext4 /dev/sdx2

Copy the target file system to the partition:

$ mkdir /home/user/mountpoint
$ sudo mount /dev/sdx2 /home/user/mountpoint

Extract a rootfs package to a directory: for example, extract imx-image-multimedia-
imx7ulpevk.tar.zst to /home/user/rootfs:

$ cd /home/user/rootfs
$ tar -jxvf imx-image-multimedia-imx7ulpevk.tar.zst

The rootfs directory needs to be created manually.

Assume that the root file system files are located in /home/user/rootfs as in the
previous step:

$ cd /home/user/rootfs
$ sudo cp -a * /home/user/mountpoint
$ sudo umount /home/user/mountpoint
$ sync

The file system content is now on the media.

Note: Copying the file system takes several minutes depending on the size of your
rootfs.

4.4 Downloading images

Images can be downloaded to a device using a U-Boot image that is already loaded
on the boot device or by using the Manufacturing Tool UUU. Use a terminal program to
communicate with the i.MX boards.

4.4.1 Downloading images using U-Boot

The following sections describe how to download images using the U-Boot bootloader.

The commands described below are generally useful when using U-Boot. Additional
commands and information can be found by typing help at the U-Boot prompt.

The U-Boot print command can be used to check environment variable values.

The setenv command can be used to set environment variable values.

4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the
Arm Cortex-M4 processor and QuadSPI memory that can be used to flash an image to it.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI.
It is recommended to use the MFGTool script uuu LF5.15.71_2.2.0_images_
MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
14 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX
SABRE-SD to flash the Arm Cortex-M4 image from the SD card. To execute the script,
perform the following steps:

1. Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name
the file to m4_qspi.bin.

2. Boot from the SD card.
3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2

PortB CS0 on the i.MX 6SoloX SABRE-SD board or QuadSPI1 PortA CS0 offset 1
MB on the i.MX 7Dual SABRE-SD board.

U-Boot > run update_m4_from_sd

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the
following steps:

1. Boot from the SD card.
2. TFTP the Arm Cortex-M4 image.

U-Boot > tftp ${loadaddr} m4_qspi.bin

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD
board.

U-Boot > sf probe 1:0

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board
and i.MX 7ULP EVK board.

U-Boot > sf probe 0:0

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is
${filesize}, around 64 Kbytes. This example assumes that it is 128 Kbytes.

U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset,
because the first 1 MB is used by the U-Boot image in QuadSPI.

U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}

Note:

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only
when the U-Boot image is built by the target mx7dsabresd_qspi1_defconfig booted
by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from
the SD card and runs it on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it
will not boot.

4.4.1.2 Downloading an image to MMC/SD

This section describes how to download U-Boot to an MMC/SD card that is not the one
used to boot from.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
15 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Insert an MMC/SD card into the SD card slot. This is slot SD3 on i.MX 6 SABRE, SD2
on i.MX 6UltraLite EVK and i.MX 6ULL EVK, SD1 on i.MX 7Dual SABRE-SD and i.MX
7ULP EVK (MicroSD), and SD1 on i.MX 8QuadMax MEK, 8QuadXPlus MEK, and i.MX
8M Quad EVK.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI.
It is recommended to use the MfgTool script uuu LF5.15.71_2.2.0_images_
MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

For i.MX 7ULP, to burn the Arm Cortext-M4 image to QuadSPI, perform the following
steps:

1. Copy the Arm Cortext-M4 image to the SD card vfat partition, insert the SD card,
and then boot to the U-Boot console.

2. Probe the Quad SPI in U-Boot, and erase an enough big size QuardSPI flash space
for this Arm Cortext-M4 image.

U-Boot > sf probe
U-Boot > sf erase 0x0 0x30000;

3. Read the Arm Cortext-M4 image (in the first vfat partition on the SD card) to
memory address, the Arm Cortext-M4 image name is sdk20-app.img here.

U-Boot > fatload mmc 0:1 0x62000000 sdk20-app.img;

4. Write the Arm Cortext-M4 image to the QuardSPI.

U-Boot > sf write 0x62000000 0x0 0x30000

To flash the original U-Boot, see Section Section 4.3.

The U-Boot bootloader is able to download images from a TFTP server into RAM and to
write from RAM to an SD card. For this operation, the Ethernet interface is used and U-
Boot environment variables are initialized for network communications.

The boot media contains U-Boot, which is executed upon power-on. Press any key
before the value of the U-Boot environment variable, bootdelay, decreases and before
it times out. The default setting is 3 seconds to display the U-Boot prompt.

1. To clean up the environment variables stored on MMC/SD to their defaults, execute
the following command in the U-Boot console:

U-Boot > env default -f -a U-Boot > saveenv U-Boot > reset

2. Configure the U-Boot environment for network communications. The following is an
example. The lines preceded by the "#" character are comments and have no effect.

U-Boot > setenv serverip <your TFTPserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on
 the TFTP server>
U-Boot > setenv fdtfile <your dtb image name on the TFTP
 server>

The user can set a fake MAC address through ethaddr environment if the MAC
address is not fused.

U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
16 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

3. Copy zImage/Image to the TFTP server. Then download it to RAM:

U-Boot > dhcp

4. Query the information about the MMC/SD card.

U-Boot > mmc devU-Boot > mmcinfo

5. Check the usage of the mmc command. The blk# is equal to <the offset of
read/write>/<block length of the card>. The cnt is equal to <the size
of read/write>/<block length of the card>.

U-Boot > help mmc
mmc - MMC sub system
Usage:
mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device
 [partition]
mmc list - lists available devices

6. Program the kernel zImage/Image located in RAM at ${loadaddr} into the SD
card. For example, the command to write the image with the size 0x800000 from
${loadaddr} to the offset of 0x100000 of the microSD card. See the following
examples for the definition of the MMC parameters.

blk# = (microSD Offset)/(SD block length) = 0x100000/0x200 =
 0x800

cnt = (image Size)/(SD block length) = 0x800000/0x200 =
 0x4000

This example assumes that the kernel image is equal to 0x800000. If the kernel
image exceeds 0x800000, increase the image length. After issuing the TFTP
command, filesize of the U-Boot environment variable is set with the number of
bytes transferred. This can be checked to determine the correct size needed for the
calculation. Use the U-Boot command printenv to see the value.

U-Boot > mmc dev 2 0
U-Boot > tftpboot ${loadaddr} ${bootfile}
Suppose the kernel zImage is less than 8M.
U-Boot > mmc write ${loadaddr} 0x800 0x4000

7. Program the dtb file located in RAM at ${fdt_addr} into the microSD.

U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. On i.MX 6 SABRE boards, you can boot the system from rootfs on SD card, using
the HannStar LVDS as display. The kernel MMC module now uses a fixed mmcblk
index for the uSDHC slot. The SD3 slot uses mmcblk2 on i.MX 6 SABRE boards, the
SD1 slot uses mmcblk0 on the i.MX 7Dual SABRE-SD board, and the SD2 slot uses
mmcblk1 on the i.MX 6UltraLite board and i.MX 6ULL EVK board. The SD1 slot uses
mmcblk1 on i.MX 8 MEK boards and i.MX 8M boards.

9. Boot the board.

U-Boot > setenv bootcmd_mmc 'run bootargs_base mmcargs;mmc
 dev;mmc

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
17 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

read ${loadaddr} 0x800 0x4000;mmc read ${fdt_addr} 0x5000
 0x800;bootz ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_mmc'
U-Boot > saveenv

4.4.1.3 Using eMMC

There is an eMMC chip on i.MX SABRE boards, i.MX 8 MEK and EVK boards, i.MX
8M EVK boards, and i.MX 8ULP EVK boards. It is accessed through SDHC4 on i.MX 6
SABRE boards, SDHC3 on i.MX 7Dual SABRE-SD board, SDHC1 on i.MX 8 MEK/EVK
boards and i.MX 8M EVK boards, and SDHC0 on i.MX 8ULP EVK board. The i.MX 7ULP
EVK board also supports to rework eMMC on the MicroSD port. The following steps
describe how to use this memory device.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI.
It is recommended to use the MfgTool script uuu LF5.15.71_2.2.0_images_
MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

1. Execute the following command on the U-Boot console to clean up the environments
stored on eMMC:

U-Boot > env default -f -a
U-Boot > save
U-Boot > reset

2. Configure the boot pin. Power on the board and set the U-Boot environment variables
as required. For example,

U-Boot > setenv serverip <your tftpserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on
 the tftp server>
U-Boot > setenv fdtfile <your dtb image name on the tftp
 server>
The user can set fake MAC address via ethaddr enviroment
 if the MAC address is not fused
U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

3. Copy zImage to the TFTP server. Then download it to RAM:

U-Boot > dhcp

4. Query the information about the eMMC chip.

U-Boot > mmc dev
U-Boot > mmcinfo

5. Check the usage of the mmc command. blk# is equal to <the offset of read/
write>/<block length of the card>. cnt is equal to <the size of
read/write>/<block length of the card>.

mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device
 [partition]
mmc list - lists available devices

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
18 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

6. Program the kernel zImage/Image into eMMC. For example, the command below
writes the image with the size 0x800000 from ${loadaddr} to the offset 0x100000
of the eMMC chip. Here, the following equations are used: 0x800 =0x100000/0x200,
0x4000=0x800000/0x200. The block size of this card is 0x200. This example
assumes that the kernel image is less than 0x800000 bytes. If the kernel image
exceeds 0x800000, enlarge the image length.

Select mmc dev 2 (USDHC4) on the i.MX 6 SABRESD board:
U-Boot > mmc dev 2 0
Select mmc dev 1 (USDHC3) on the i.MX 7Dual SABRESD
 board:
U-Boot > mmc dev 1 0
Select mmc dev 1 (USDHC2) on the i.MX 6UltraLite EVK
 board:
U-Boot > mmc dev 1 0
Select mmc dev 0 (USDHC1) on the i.MX 7ULP EVK board:
U-Boot > mmc dev 0 0
Select mmc dev 0 (eMMC0) on the i.MX 8QuadMax MEK, i.MX
 8QuadXPlus MEK, i.MX 8M Quad, 8DualX, and 8DXL boards:
U-Boot > mmc dev 0 0
select mmc dev 2 (USDHC3) on the i.MX 8M Mini EVK, i.MX
 8M Nano EVK, and i.MX 8M Plus EVK:
U-Boot > mmc dev 2 0
select mmc dev 0 （USDHC0） on the i.MX 8ULP EVK
U-boot > mmc dev 0
Suppose kernel zImage is less than 8 MB:
U-Boot > tftpboot ${loadaddr} ${bootfile}
U-Boot > mmc write ${loadaddr} 0x800 0x4000

7. Program the dtb file located in RAM at ${fdt_addr} into the eMMC chip.

U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. Boot up the system through the rootfs in eMMC, using the HannStar LVDS as display.
The kernel MMC module now uses the fixed mmcblk indexes for the USDHC slots.
The eMMC/SD4 slot on the i.MX 6 SABRE boards is mmcblk3. The eMMC5.0 on
the i.MX 8QuadMax MEK board, i.MX 8QuadXPlus MEK board, and i.MX 8M Quad
EVK board are mmcblk0. The eMMC5.0/SD3 slot on the i.MX 7Dual SABRE board is
mmcblk2. eMMC is not populated on the i.MX 7Dual SABRE board.

U-Boot > setenv mmcboot 'run bootargs_base mmcargs; mmc dev
 2;
mmc read ${loadaddr} 0x800 0x4000; mmc read ${fdt_addr}
 0x5000 0x800;bootz ${loadaddr} - ${fdt_addr} '
U-Boot > setenv bootcmd 'run mmcboot'
U-Boot > saveenv

9. Boot up the system through the rootfs in eMMC, using the CLAA WVGA panel as
display:
• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk3p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-
WVGA,if=RGB565 ip=dhcp'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
19 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

root=/dev/mmcblk2p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-
WVGA,if=RGB565 ip=dhcp'

10. Boot up the system through rootfs in eMMC, using HDMI as display:
• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs
 ${bootargs} root=/dev/mmcblk3p2 rootwait
 rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs
 ${bootargs} root=/dev/mmcblk2p2 rootwait
 rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Plus, the following display kernel
parameters are supported:
a. Pick a particular video mode for legacy FB emulation since system startup.

video=HDMI-A-{n}: {video_mode}

n can be 1 to the maximum number of HDMI connectors in the system.
video_mode should be the one that the monitor on the connector supports.
For example, video=HDMI-A-1:1920x1080@60. By default, if there is no
parameter in the command line, the system uses the video mode that the
monitor recommends.

b. Enable or disable legacy FB emulation.

drm_kms_helper.fbdev_emulation=0 or 1

0 to disable, 1 to enable. By default, if there is no parameter in the command
line, the emulation is enabled.

c. Set legacy FB emulation framebuffer’s bits per pixel (bpp) parameter.

imxdrm.legacyfb_depth=16 or 24 or 32

By default, if there is no parameter in the command line, bpp is 16.

To program the rootfs to MMC/SD, see Section 4.4.2 or Section 4.3.

4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot

Flashing directly to SPI-NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards. To
flash U-Boot on SPI-NOR, perform the following steps:

1. Boot from an SD card.
2. Set Jumper J3 to position: 2-3.
3. Fetch the U-Boot image with built-in SPI-NOR support. This example uses u-

boot.imx.

U-Boot > tftpboot ${loadaddr} u-boot.imx

4. Flash the U-Boot image in SPI-NOR.

U-Boot > sf probe
U-Boot > sf erase 0 0x80000

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
20 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

U-Boot > sf write ${loadaddr} 0x400 0x7FC00

5. Set boot switches to boot from SPI-NOR on SABRE-AI.
• S2-1 1
• S2-2 1
• S2-3 0
• S2-4 0
• S1-[1:10] X

6. Reboot the target board.

4.4.1.4.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the
Arm Cortex-M4 processor and QuadSPI memory that can be used to flash an image to it.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI.
It is recommended to use the MFGTool script uuu LF5.15.71_2.2.0_images_
MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX
SABRE-SD to flash the Arm Cortex-M4 image from the SD card. To execute the script,
perform the following steps:

1. Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name
the file to m4_qspi.bin.

2. Boot from the SD card.
3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2

PortB CS0 on the i.MX 6SoloX SABRE-SD board or QuadSPI1 PortA CS0 offset 1
MB on the i.MX 7Dual SABRE-SD board.

U-Boot > run update_m4_from_sd

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the
following steps:

1. Boot from the SD card.
2. TFTP the Arm Cortex-M4 image.

U-Boot > tftp ${loadaddr} m4_qspi.bin

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD
board.

U-Boot > sf probe 1:0

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board
and i.MX 7ULP EVK board.

U-Boot > sf probe 0:0

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is
${filesize}, around 64 Kbytes. This example assumes that it is 128 Kbytes.

U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
21 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset,
because the first 1 MB is used by the U-Boot image in QuadSPI.

U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}

Note:

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only
when the U-Boot image is built by the target mx7dsabresd_qspi1_defconfig booted
by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from
the SD card and runs it on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it
will not boot.

4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot

Flashing directly to Parallel NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards.
To flash U-Boot on Parallel NOR, perform the following steps:

1. Check the jumper J3, should not between pins 2 and 3.
2. Update the SD U-Boot with EIM NOR version. For details on commands, see

Section 4.3.4. Then boot from the SD card.
3. TFTP the U-Boot image.

tftpboot ${loadaddr} u-boot.imx

4. Flash the U-Boot image.

cp.b ${loadaddr} 0x08001000 ${filesize}

5. Change boot switches and reboot.

S2 all 0 S1-6 1 others 0

6. By default, rootfs is mounted on NFS.

4.4.2 Using an i.MX board as the host server to create a rootfs

Linux OS provides multiple methods to program images to the storage device. This
section describes how to use the i.MX platform as a Linux host server to create the rootfs
on an MMC/SD card or the SATA device. The following example is for an SD card. The
device file node name needs to be changed for a SATA device.

1. Boot from NFS or other storage. Determine your SD card device ID. It could be
mmcblk* or sd*. (The index is determined by the USDHC controller index.) Check
the partition information with the command:

$ cat /proc/partitions

2. To create a partition on the MMC/SD card, use the fdisk command (requires root
privileges) in the Linux console:

root@ ~$ sudo fdisk /dev/$SD

Replace $SD above with the name of your device.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
22 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

3. If this is a new SD card, you may get the following message:

The device contains neither a valid DOS partition table, nor
 Sun, SGI or OSF disk label
Building a new DOS disklabel. Changes will remain in memory
 only,
until you decide to write them. After that the previous
 content
won't be recoverable.
The number of cylinders for this disk is set to 124368.
There is nothing wrong with that, but this is larger than
 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of
 LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

The usual prompt and commands to partition the card are as follows. Text in boldface
indicates what the user types.

Command (m for help): p
Disk /dev/sdd: 3965 MB, 3965190144 bytes
4 heads, 32 sectors/track, 60504 cylinders, total 7744512
 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00080bff
 Device Boot Start End Blocks Id
 System

4. As described in Section 4.6, the rootfs partition should be located after the kernel
image. The first 0x800000 bytes can be reserved for MBR, bootloader, and
kernel sections. From the log shown above, the Units of the current MMC/SD
card is 32768 bytes. The beginning cylinder of the first partition can be set to
"0x300000/32768 = 96." The last cylinder can be set according to the rootfs size.
Create a new partition by typing the letters in bold:

Command (m for help): n
 e extended
 p primary partition (1-4)
Select (default p): p
Partition number (1-4): 1
First cylinder (1-124368, default 1): 96
Last cylinder or +size or +sizeM or +sizeK (96-124368,
 default 124368): Using default value 124368
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read $SD partition table

5. Check the partitions (see above) to determine the name of the partition.
$PARTITION is used here to indicate the partition to be formatted. Format the MMC/
SD partitions as ext3 or ext4 type. For example, to use ext3:

root@ ~$ mkfs.ext3 /dev/$PARTITION
mke2fs 1.42 (29-Nov-2011)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
23 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

248992 inodes, 994184 blocks
49709 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1019215872
31 block groups
32768 blocks per group, 32768 fragments per group
8032 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information:
 done
This filesystem will be automatically checked every 20 mounts
 or
180 days, whichever comes first. Use tune2fs -c or -i to
 override.

6. Copy the rootfs contents to the MMC/SD card. The name may vary from the one
used below. Check the directory for the rootfs desired. (Copy the *.ext2 to NFS
rootfs).

mkdir /mnt/tmpmnt
mount -t ext3 -o loop /imx-image-multimedia.ext3 /mnt/tmpmnt
cd /mnt
mkdir mmcblk0p1
mount -t ext3 /dev/$PARTITION /mnt/mmcblk0p1
cp -af /mnt/tmpmnt/* /mnt/mmcblk0p1/
umount /mnt/mmcblk0p1
umount /mnt/tmpmnt

7. Type sync to write the contents to MMC/SD.
8. Type poweroff to power down the system. Follow the instructions in Section 4.7 to

boot the image from the MMC/SD card.

Note: By default, v2013.04 and later versions of U-Boot support loading the kernel
image and DTB file from the SD/MMC vfat partition by using the fatload command. To
use this feature, perform the following steps:

1. Format the first partition (for example 50 MB) of the SD/MMC card with vfat
filesystem.

2. Copy zImage and the DTB file into the VFAT partition after you mount the VFAT
partition into your host computer.

3. Make sure that the zImage and DTB filename are synchronized with the filename
pointed to by the U-Boot environment variables: fdtfile and image. Use the print
command under U-Boot to display these two environment variables. For example:

print fdtfile image

4. U-Boot loads the kernel image and the DTB file from your VFAT partition
automatically when you boot from the SD/MMC card.

The following is an example to format the first partition to a 50 MB vfat filesystem and
format the second partition to an ext4 filesystem:

~$ fdisk /dev/sdb
Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
24 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30318591, default 2048): 4096
Last sector, +sectors or +size{K,M,G} (4096-30318591, default
 30318591): +50M
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592
 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux
Command (m for help): n
Partition type:
 p primary (1 primary, 0 extended, 3 free)
 e extended
Select (default p): p
Partition number (1-4, default 2): 2
First sector (2048-30318591, default 2048): 106496
Last sector, +sectors or +size{K,M,G} (106496-30318591, default
 30318591):
Using default value 30318591
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592
 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux
/dev/sdb2 106496 30318591 15106048 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
~$ mkfs.vfat /dev/mmcblk0p1
~$ mkfs.ext4 /dev/mmcblk0p2

4.5 How to boot the i.MX boards
When U-Boot is loaded onto one of the devices that support booting, the DIP switches
can be used to boot from that device. The boot modes of the i.MX boards are controlled
by the boot configuration DIP switches on the board. For help with locating the boot
configuration switches, see the quick start guide for the specific board as listed under
References above.

The following sections list basic boot setup configurations. The tables below represent
the DIP switch settings for the switch blocks on the specified boards. An X means that
particular switch setting does not affect this action.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
25 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

4.5.1 Booting from an SD card in slot SD1

The following table shows the DIP switch settings for booting from the SD card slot
labeled SD1 on the i.MX 7Dual SABRE-SD boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

Table 2. Booting from SD1 on i.MX 7Dual SABRE-SD

The following table shows the DIP switch settings for booting from the SD card slot
labeled SD1 on the i.MX 7ULP EVK boards.

Switch D1 D2 D3 D4

SW1 ON OFF OFF ON

Table 3. Booting from SD1 on i.MX 7ULP EVK

The following table shows the bootcfg pin settings for booting from the SD card slot
labeled SD1 on the i.MX 8QuadMax MEK boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON ON OFF OFF - -

Table 4. Booting from SD1 on i.MX 8QuadMax MEK

The following table shows the bootcfg pin settings for booting from the SD card slot
labeled SD1 on the i.MX 8QuadXPlus MEK boards.

Note: This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards.

Switch D1 D2 D3 D4

SW2 ON ON OFF OFF

Table 5. Booting from SD1 on i.MX 8QuadXPlus MEK

4.5.2 Booting from an SD card in slot SD2

The SD card slot that is labeled SD2 indicates that this slot is connected to the uSDHC
pin SD2 on the processor. Most boards label this slot as SD2. This slot is referred to as
SD2 in this document.

The following table shows the DIP switch settings for booting from the SD card slot
labeled SD2 and J500 on the i.MX 6 SABRE-SD boards. The SD2 card slot is located
beside the LVDS1 connection on the back of the board.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON OFF OFF OFF OFF OFF ON OFF

Table 6. Booting from SD2 (J500) on i.MX 6 SABRE-SD

The i.MX 6UltraLite EVK board or i.MX 6ULL EVK board has one TF card slot on the
CPU board. This slot uses the USDHC2 controller. The following table shows the DIP
switch settings for booting from the TF slot.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
26 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4

SW601 OFF OFF ON OFF

SW602 ON OFF - -

Table 7. Booting from TF on i.MX 6UltraLite EVK and i.MX 6ULL EVK

The i.MX 8M Quad EVK board has one TF card slot. This slot uses the USDHC2
controller. The following table shows the DIP switch settings for booting from the TF slot.

Switch D1 D2 D3 D4

SW801 ON ON OFF OFF

SW802 ON OFF - -

Table 8. Booting from TF on i.MX 8M Quad EVK

The i.MX 8M Mini EVK board has one TF card slot. This slot uses the USDHC2
controller. The following table shows the DIP switch settings for booting from the TF slot.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF ON ON OFF

SW1102 OFF OFF ON ON OFF ON OFF OFF

Table 9. Booting from TF on i.MX 8M Mini EVK

The i.MX 8M Nano EVK board has one TF card slot. This slot uses the USDHC2
controller. The following table shows the DIP switch settings for booting from the TF slot.

Switch D1 D2 D3 D4

SW1101 ON ON OFF OFF

Table 10. Booting from TF on i.MX 8M Nano EVK

The i.MX 8M Plus EVK board has one TF card slot. This slot uses the USDHC2
controller. The following table shows the DIP switch settings for booting from the TF slot.

Switch D1 D2 D3 D4

SW4 OFF OFF ON ON

Table 11. Booting from TF on i.MX 8M Plus EVK

The following table shows the DIP switch settings for booting from the USDHC2 slot.

Switch D1 D2 D3 D4

SW1301 OFF ON OFF OFF

Table 12. Booting from USDHC2 on i.MX 93 11x11 EVK

4.5.3 Booting from an SD card in slot SD3

The SD card slot that is labeled SD3 indicates that this slot is connected to the uSDHC
pin SD3 on the processor. Most boards label this slot as SD3. This slot is referred to as
SD3 in this document.

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on
i.MX 6 SABRE-AI boards.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
27 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF ON X X X X X

S2 X OFF ON OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

Table 13. Booting from an SD card in slot SD3 on i.MX 6 SABRE-AI

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on
i.MX 6SoloX SABRE-AI boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

S4 OFF ON OFF X OFF OFF ON OFF

S3 X OFF OFF OFF ON ON OFF OFF

S1 OFF OFF ON OFF - - - -

Table 14. Booting from an MMC card in Slot SD3 on i.MX 6SoloX SABRE-AI

The following table shows the DIP switch settings for booting from SD3, also labeled as
J507. The SD3 slot is located between the HDMI and UART ports.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF ON OFF OFF OFF OFF ON OFF

Table 15. Booting from an SD card in slot SD3 on i.MX 6 SABRE-SD

4.5.4 Booting from an SD card in slot SD4

The following table describes the dip switch settings for booting from an SD card in slot
SD4.

The SD4 slot is on the center of the edge of the SoloX board.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON OFF OFF OFF OFF OFF OFF

Table 16. Booting from an SD card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON ON OFF OFF OFF OFF OFF

Table 17. Booting from an MMC card in slot SD4 on i.MX 6SoloX SABRE-SD

4.5.5 Booting from eMMC

eMMC 4.4 is a chip permanently attached to the board that uses the SD4 pin connections
from the i.MX 6 processor. For more information on switch settings, see table "MMC/
eMMC Boot Fusemap" in the IC reference manual.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
28 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The following table shows the boot switch settings to boot from eMMC4.4 (SDIN5C2-8G)
on i.MX 6 SABRE-SD boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON ON OFF ON OFF ON ON OFF

Table 18. Booting from eMMC on i.MX 6 SABRE-SD

i.MX 7Dual is different from i.MX 6. The eMMC uses the SD3 pin connections from the
i.MX 7Dual processor.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF ON OFF ON OFF OFF OFF OFF

SW3 ON OFF - - - - - -

Table 19. Booting from eMMC on i.MX 7Dual SABRE-SD

The following table shows the boot switch settings to boot from eMMC4.4 on the i.MX
7ULP EVK boards.

Switch D1 D2 D3 D4

SW1 ON OFF OFF OFF

Table 20. Booting from eMMC on i.MX 7ULP EVK

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX
8QuadMax MEK boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON OFF OFF - -

Table 21. Booting from eMMC on i.MX 8QuadMax MEK

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX
8QuadXPlus MEK boards.

Note: This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards,
except that 8DXL EVK uses SW1.

Switch D1 D2 D3 D4

SW2 OFF ON OFF OFF

Table 22. Booting from eMMC on i.MX 8QuadXPlus MEK

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8M
Quad EVK boards.

Switch D1 D2 D3 D4

SW801 OFF OFF ON OFF

Table 23. Booting from eMMC on i.MX 8M Quad EVK

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M
Mini EVK boards.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
29 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON ON ON OFF OFF ON OFF

SW1102 OFF OFF OFF OFF ON OFF ON OFF

Table 24. Booting from eMMC on i.MX 8M Mini EVK

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M
Nano EVK boards.

Switch D1 D2 D3 D4

SW1101 OFF ON OFF OFF

Table 25. Booting from eMMC on i.MX 8M Nano EVK

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M
Plus EVK boards.

Switch D1 D2 D3 D4

SW4 OFF OFF OFF ON

Table 26. Booting from eMMC on i.MX 8M Plus EVK

The following table lists the boot switch settings to boot from eMMC5.1 on the i.MX 8ULP
EVK.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF OFF OFF OFF OFF OFF OFF ON

Table 27. Singleboot booting from eMMC on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF ON OFF OFF OFF OFF OFF ON

Table 28. Dualboot booting from eMMC for A35 on i.MX 8ULP EVK

Switch D1 D2 D3 D4

SW1301 OFF OFF OFF OFF

Table 29. Booting from eMMC for i.MX 93 11x11 EVK

4.5.6 Booting from SATA

The following switch settings enable booting from SATA.

SATA booting is supported only by the i.MX 6Quad/6QuadPlus SABRE boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF OFF OFF OFF OFF ON OFF OFF

Table 30. Booting from SATA on i.MX 6 SABRE-SD

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
30 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

4.5.7 Booting from NAND

The following table shows the DIP switch settings needed to boot from NAND on i.MX 6
SABRE-AI boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 OFF OFF OFF ON OFF OFF OFF OFF OFF OFF

S2 OFF OFF OFF ON - - - - - -

S3 OFF OFF ON OFF - - - - - -

Table 31. Booting from NAND on i.MX 6 SABRE-AI

The following table shows the DIP switch settings needed to boot from NAND for i.MX
7Dual SABRE-SD boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S2 OFF ON ON X X X X OFF - -

S3 ON OFF X X X X X X - -

Table 32. Booting from NAND on i.MX 7Dual SABRE-SD

The following table shows the DIP switch settings needed to boot from NAND for i.MX
8M Mini DDR4 EVK boards.

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

SW1101 OFF ON OFF OFF OFF OFF OFF ON - -

SW1102 OFF OFF OFF ON ON ON ON OFF - -

Table 33. Booting from NAND on i.MX 8M Mini DDR4 EVK

4.5.8 Booting from SPI-NOR

Enable booting from SPI NOR on i.MX 6 SABRE-AI boards by placing a jumper on J3
between pins 2 and 3.

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X X X X X X X X

S2 ON ON OFF OFF OFF OFF OFF OFF OFF OFF

S3 OFF OFF ON OFF - - - - - -

Table 34. Booting from SPI-NOR on i.MX 6 SABRE-AI

4.5.9 Booting from EIM (Parallel) NOR

The following table shows the DIP switch settings to boot from NOR.

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF OFF ON X X X X

S2 X OFF OFF OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

Table 35. Booting from EIM NOR on i.MX 6 SABRE-AI

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
31 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Note:

SPI and EIM NOR have pin conflicts on i.MX 6 SABRE-AI boards. Neither can be used
for the same configuration. The default U-Boot configuration is set to SPI NOR.

4.5.10 Booting from QuadSPI or FlexSPI

The following tables list the DIP switch settings for booting from QuadSPI.

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF OFF OFF OFF OFF OFF OFF

SW12 OFF OFF OFF ON ON OFF OFF OFF

Table 36. Booting from QuadSPI on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW4 OFF OFF OFF OFF ON OFF OFF OFF

SW3 OFF OFF OFF OFF OFF OFF OFF OFF

SW1 OFF OFF ON OFF - - - -

Table 37. Booting from QuadSPI on i.MX 6SoloX SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 ON OFF OFF OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

Table 38. Booting from QuadSPI on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4

SW601 OFF OFF OFF OFF

SW602 ON OFF - -

Table 39. Booting from QuadSPI on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON ON OFF - -

Table 40. Booting from FlexSPI on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4

SW2 OFF ON ON OFF

Table 41. Booting from FlexSPI on i.MX 8QuadXPlus MEK

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
32 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF OFF OFF OFF

SW1102 OFF ON OFF OFF OFF OFF OFF ON

Table 42. Booting from FlexSPI on i.MX 8M Mini LPDDR4 EVK

Switch D1 D2 D3 D4

SW601 OFF OFF OFF OFF

SW602 ON OFF - -

Table 43. Booting from QuadSPI on i.MX Nano EVK

Switch D1 D2 D3 D4

SW4 OFF ON ON OFF

Table 44. Booting from QuadSPI on i.MX 8M Plus EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF OFF OFF OFF OFF ON OFF ON

Table 45. Singleboot booting from FlexSPI NOR on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF ON OFF OFF OFF ON OFF ON

Table 46. Dualboot booting from FlexSPI for A35 on i.MX 8ULP EVK

4.5.11 Serial download mode for the Manufacturing Tool

No dedicated boot DIP switches are reserved for serial download mode on i.MX 6
SABRE-SD. There are various ways to enter serial download mode. One way is to set
the boot mode to boot from SD slot SD3 (set SW6 DIP switches 2 and 7 to on, and the
rest are off). Do not insert the SD card into slot SD3, and power on the board. After
the message "HID Compliant device" is displayed, the board enters serial download
mode. Then insert the SD card into SD slot SD3. Another way to do this is to configure
an invalid boot switch setting, such as setting all the DIP switches of SW6 to off.

The following table shows the boot switch settings for i.MX 6 SABRE-AI boards, which
are used to enter serial download mode for the Manufacturing Tool. If the boot image in
the boot media is not validated, the system also enters the serial download mode.

Switch D1 D2 D3 D4

S3 OFF ON OFF OFF

Table 47. Setup for the Manufacturing Tool on i.MX 6 SABRE-AI

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
33 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4

S3 OFF ON - -

Table 48. Setup for the Manufacturing Tool on i.MX 7Dual SABRE-SD

Switch D1 D2

SW602 OFF ON

Table 49. Setup for Manufacturing Tool on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4

SW1 OFF ON - -

Table 50. Setup for Manufacturing Tool on i.MX 7ULP EVK

Switch D1 D2

SW802 OFF ON

Table 51. Setup for Manufacturing Tool on i.MX 8M Quad EVK

Switch D1 D2 D3 D4

SW4 OFF OFF OFF ON

Table 52. Setup for Manufacturing Tool on i.MX 8M Plus EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 ON OFF X X X X X X

SW1102 X X X X X X X X

Table 53. Setup for Manufacturing Tool on i.MX 8M Mini EVK

Switch D1 D2 D3 D4

SW1101 ON OFF OFF OFF

Table 54. Setup for Manufacturing Tool on i.MX 8M Nano EVK

Switch D1 D2 D3 D4 D5 D6

SW2 OFF OFF ON OFF OFF OFF

Table 55. Setup for Manufacturing Tool on i.MX 8QuadMax MEK

Note:

The following settings are same for the i.MX 8DualX MEK and i.MX 8DXL EVK boards
(8DXL EVK uses SW1).

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
34 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Switch D1 D2 D3 D4

SW2 ON OFF OFF OFF

Table 56. Setup for Manufacturing Tool on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF OFF OFF OFF ON OFF

Table 57. Setup for Manufacturing Tool on i.MX 8ULP EVK

Switch D1 D2 D3 D4

SW1301 ON ON OFF OFF

Table 58. Setup for Manufacturing Tool on i.MX 93 11x11 EVK

Note:

If the SD card with bootable image is plugged in SD2 (baseboard), ROM will not fall back
into the serial download mode.

4.5.12 How to build U-Boot and Kernel in standalone environment

To build U-Boot and Kernel in a standalone environment, perform the following steps.

First, generate an SDK, which includes the tools, toolchain, and small rootfs to compile
against to put on the host machine.

• Generate an SDK from the Yocto Project build environment with the following
command. To set up the Yocto Project build environment, follow the steps in the
i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set
Target-Machine to the machine you are building for. The populate_sdk generates
a script file that sets up a standalone environment without Yocto Project. This SDK
should be updated for each release to pick up the latest headers, toolchain, and tools
from the current release.

DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-
minimal -c populate_sdk

Note:
If the building process is interrupted, modify conf/local.conf to comment out the
line: PACKAGE_CLASSES = "package_deb", and then execute the populate_sdk
command again.

• From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/
sdk to the host machine to build on and execute the script to install the SDK. The
default location is in /opt, but it can be placed anywhere on the host machine.

On the host machine, the following are the steps to build U-Boot and Kernel.

Toolchain Configuration:

• For i.MX 6 and i.MX 7 builds on the host machine, set the environment with the
following command before building.

source /opt/fsl-imx-fb/5.15-kirkstone/environment-setup-
cortexa9hf-neon-poky-linux-gnueab

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
35 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

export ARCH=arm

• For i.MX 8 and i.MX 9 builds on the host machine, set the environment with the
following command before building.

source /opt/fsl-imx-xwayland/5.15-kirkstone/environment-setup-
aarch64-poky-linux
 export ARCH=arm64

U-Boot:

Download source by cloning with:

git clone https://github.com/nxp-imx/uboot-imx -b lf_v2021.04
cd uboot-imx

• To build an i.MX 6 or i.MX 7 U-Boot in the standalone environment, find the
configuration for the target boot. In the following example, i.MX 6ULL is the target.

make clean
make mx6ull_14x14_evk_defconfig
make

• To build an i.MX 8 U-Boot in the standalone environment, find the configuration for
the target boot. In the following example, i.MX 8QuadMax MEK board is the target
and it runs on the Arm Cortex-A53 core by default. SPL image (u-boot-spl.bin) is also
generated with the default defconfig. It is needed when booting with OP-TEE image.

make distclean
make imx8qm_mek_defconfig
make

For i.MX 8QuadXPlus MEK and i.MX 8DualX board:

make distclean
make imx8qxp_mek_defconfig
make

For i.MX 8DXL EVK board:

make distclean
make imx8dxl_evk_defconfig
make

• For i.MX 8M Quad EVK:

make distclean
make imx8mq_evk_defconfig
make

• For i.MX 8M LPDDR4 EVK:

make distclean
make imx8mm_evk_defconfig
make

• For i.MX 8M DDR4 EVK:

make distclean
make imx8mm_ddr4_evk_defconfig
make

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
36 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• For i.MX 8M Plus LPDDR4 EVK board:

make distclean
make imx8mp_evk_defconfig
make

• For i.MX 8ULP EVK board:

make distclean
make imx8ulp_evk_defconfig
make

• For i.MX 93 11x11 EVK board:

make distclean
make imx93_11x11_evk_defconfig
make

Kernel:

Download source by cloning with:

git clone https://github.com/nxp-imx/linux-imx -b lf-5.15.y
cd linux-imx

• To build the kernel in the standalone environment for i.MX 6 and i.MX 7, execute the
following commands:

make imx_v7_defconfig
make

• To build the kernel in the standalone environment for i.MX 8 and i.MX 9, execute the
following commands:

make imx_v8_defconfig
make

Note:

Users need to modify configurations for fused parts. For example, the i.MX 6UltraLite has
four parts, G0, G1, G2, and G3.

The fused modules are as follows:

• G0: TSC, ADC2, FLEXCAN1, FLEXCAN2, FREQ_MON, TEMP_MON,
VOLT_MONLCDIF, CSI, ENET2, CAAM, USB_OTG2, SAI23, BEE, UART5678,
PWM5678, ECSPI34, I2C34, GPT2, and EPIT2.

• G1: TSC, ADC2, FLEXCAN2, FREQ_MON, TEMP_MON, VOLT_MON, LCDIF, CSI,
ENET2, and BEE.

• G2: FREQ_MON, TEMP_MON, VOLT_MON, and BEE.
• G3: No fused module.

U-Boot configuration changes:

G0:

/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */
#define CONFIG_USB_MAX_CONTROLLER_COUNT 1

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
37 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

G1:

/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */

G2:

/* #define CONFIG_CMD_BEE */

G3: No change.

4.5.13 How to build imx-boot image by using imx-mkimage

For i.MX 8QuadMax, to build imx-boot image by using imx-mkimage, perform the
following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QM/.
2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QM/.
3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/

iMX8QM/.
4. Copy the SECO firmware container image (mx8qmb0-ahab-container.img) to

imx-mkimage/iMX8QM/.
5. Run make SOC=iMX8QM flash to generate flash.bin.
6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QM/ and copy u-boot/

spl/u-boot-spl.bin to imx-mkimage/iMX8QM/. Run make SOC=iMX8QM
flash_spl to generate flash.bin.

For i.MX 8QuadXPlus, to build imx-boot image by using imx-mkimage, perform the
following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QX/.
2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QX/.
3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/

iMX8QX/.
4. Copy the SECO firmware container images (mx8qxpb0-ahab-container.img

and mx8qxpc0-ahab-container.img) to imx-mkimage/iMX8QM/.
5. Run make SOC=iMX8QX flash to generate flash.bin for i.MX 8QuadXPlus

B0, and run make SOC=iMX8QX REV=C0 flash to generate flash.bin for i.MX
8QuadXPlus C0.

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QX/ and copy u-boot/
spl/u-boot-spl.bin to imx-mkimage/iMX8QX/. Run make SOC=iMX8QX
flash_spl to generate flash.bin.

For i.MX 8DXL, to build imx-boot image by using imx-mkimage, perform the
following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8DXL/.
2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8DXL/.
3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/

iMX8DXL/.
4. Copy the image of SECO firmware container (mx8dxla1-ahab-container.img

and mx8dxlb0-ahab-container.img) to imx-mkimage/iMX8DXL/.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
38 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

5. Run make SOC=iMX8DXL flash to generate flash.bin for i.MX 8DXL A1, and
run make SOC=iMX8DXL REV=B0 flash to generate flash.bin for i.MX 8DXL
B0.

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8DXL/ and copy u-boot/
spl/u-boot-spl.bin to imx-mkimage/ iMX8DXL/. Run make SOC=iMX8DXL
flash_spl to generate flash.bin.

7. If skipping loading V2X firmware, add V2X=NO to make command, like make
SOC=iMX8DXL V2X=NO flash.

The following is a matrix table for targets of i.MX 8QuadMax and i.MX 8QuadXPlus.

- OP-TEE U-Boot SPL Cortex-M4

flash_spl Yes Yes Yes No

flash No Yes No No

flash_linux_
m4

Yes Yes Yes Yes

flash_
regression_
linux_m4

No Yes No Yes

Table 59. Matrix table for targets of i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX
8DXL

For i.MX 8ULP EVK, to build imx-boot image by using imx-mkimage, perform the
following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from u-
boot/spl/u-boot-spl.bin to imx-mkimage/iMX8ULP/.

2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/
iMX8ULP/.

3. Copy the image of Sentinel firmware container mx8ulpa0-ahab-container.img
to imx-mkimage/iMX8ULP/.

4. Copy the image of uPower firmware image upower.bin to imx-mkimage/
iMX8ULP/.

5. Copy the Cortex-M33 image m33_image.bin to imx-mkimage/iMX8ULP/.
6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8ULP/. The bl31.bin

copied in Step 2 must be built with OP-TEE SPD enabled.
7. Run make SOC=iMX8ULP flash_singleboot_m33 to generate flash.bin.

Note: For the location where the binaries for Sentinel/SECO/uPower/M33/V2X
firmwares are available to download, see the Table "BSP and multimedia standard
packages" in the i.MX Linux Release Notes (IMXLXRN).

The following table list the imx-mkimage targets used on i.MX 8ULP.

Boot type Cortex-A35 Cortex-M33 SW5[8:1]

Single Boot (Default) Boot Cortex-A35 + Cortex-M33 from eMMC:
make SOC=iMX8ULP flash_singleboot_m33
Boot Cortex-A35 only from eMMC:
make SOC=iMX8ULP flash_singleboot

1000_xx00 Single Boot-
eMMC

Table 60. imx-mkimage targets used on i.MX 8ULP

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
39 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Boot type Cortex-A35 Cortex-M33 SW5[8:1]

Boot Cortex-A35 + Cortex-M33 from FlexSPI NOR:
make SOC=iMX8ULP flash_singleboot_m33_flexspi
Boot Cortex-A35 only from FlexSPI NOR:
make SOC=iMX8ULP flash_singleboot_flexspi

1010_xx00 Single Boot-
NOR

make SOC=iMX8ULP flash_
dualboot

1000_0010 A35-eMMC/
M33-NOR

Dual Boot

make SOC=iMX8ULP flash_
dualboot_flexspi

1010_0010 A35-Nor/
M33-NOR

- 1000_00x1 A35-eMMC/
M33-NOR

Low Power
Boot

-

For RAM target:
make SOC=iMX8ULP
flash_dualboot_m33For Flash target:
make SOC=iMX8ULP flash_
dualboot_m33_xip

1010_00x1 A35-Nor/
M33-NOR

Table 60. imx-mkimage targets used on i.MX 8ULP...continued

For i.MX 8M EVK, to build imx-boot image by using imx-mkimage, perform the
following steps:

1. Copy and rename mkimage from u-boot/tools/mkimage to imx-mkimage/
iMX8M/mkimage_uboot.

2. Copy u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/
iMX8M/.

3. Copy u-boot-nodtb.bin from u-boot/u-boot-nodtb.bin to imx-mkimage/
iMX8M/.

4. Copy imx8mq-evk.dtb (for i.MX 8M Quad EVK), imx8mm-evk.dtb (for i.MX 8M
Mini LPDDR4 EVK), imx8mm-ddr4-evk.dtb (for i.MX 8M Mini DDR4 EVK), or
imx8mp-evk.dtb (for i.MX 8M Plus LPDDR4 EVK) from u-boot/arch/arm/dts/
to imx-mkimage/iMX8M/.

5. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8M/.
6. Copy firmware/hdmi/cadence/signed_hdmi_imx8m.bin from the

firmware-imx package to imx-mkimage/iMX8M/.
7. For i.MX 8M Quad and i.MX 8M Mini LPDDR4 EVK, copy

lpddr4_pmu_train_1d_dmem.bin, lpddr4_pmu_train_1d_imem.bin,
lpddr4_pmu_train_2d_dmem.bin, and lpddr4_pmu_train_2d_imem.bin
from firmware/ddr/synopsys of the firmware-imx package to imx-mkimage/
iMX8M/.
For i.MX 8M Mini DDR4 EVK, copy ddr4_imem_1d.bin, ddr4_dmem_1d.bin,
ddr4_imem_2d.bin, and ddr4_dmem_2d.bin from firmware/ddr/synopsys
of the firmware-imx package to imx-mkimage/iMX8M.
For i.MX 8M Plus LPDDR4 EVK, copy
lpddr4_pmu_train_1d_dmem_201904.bin,
lpddr4_pmu_train_1d_imem_201904.bin,
lpddr4_pmu_train_2d_dmem_201904.bin, and
lpddr4_pmu_train_2d_imem_201904.bin from firmware/ddr/synopsys of
the firmware-imx package to imx-mkimage/iMX8M/.

8. For i.MX 8M Quad EVK, run make SOC=iMX8M flash_evk to generate
flash.bin (imx-boot image) with HDMI FW included.
For i.MX 8M Mini LPDDR4 EVK, run make SOC=iMX8MM flash_evk to generate
flash.bin (imx-boot image).
For i.MX 8M Mini DDR4 EVK, run make SOC=iMX8MM flash_ddr4_evk to
generate flash.bin (imx-boot image).

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
40 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

For i.MX 8M Plus LPDDR4 EVK, run make SOC=iMX8MP flash_evk to generate
flash.bin (imx-boot-image).
To boot with eMMC fasboot on i.MX 8M Quad EVK and i.MX 8M Mini LPDDR4 EVK,
use flash_evk_emmc_fastboot target.

For i.MX 93, to build imx-boot image by using imx-mkimage, perform the following
steps:

1. Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from
uboot/ spl/u-boot-spl.bin to imx-mkimage/iMX9/.

2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/iMX9/.
3. Copy the image of Sentinel firmware container mx93a0-ahab-container.img to

imx-mkimage/iMX9/.
4. If using OP-TEE, copy tee.bin to imx-mkimage/iMX9/. The bl31.bin copied in

Step 2 must be built with OP-TEE SPD enabled.
5. Run make SOC=iMX9 flash_singleboot to generate flash.bin.

4.6 Flash memory maps
This section describes the software layout in memory on memory devices used on the
i.MX boards.

This information is useful for understanding subsequent sections about image
downloading and how the images are placed in memory.

The mtdparts directive can be used in the Linux boot command to specify memory
mapping. The following example briefly describes how to use memory maps. Memory is
allocated in the order of how it is listed. The dash (-) indicates the the rest of the memory.

mtdparts=[memory type designator]:[size]([name of partition]),
[size]([name of partition]),-([name of final partition])

4.6.1 MMC/SD/SATA memory map

The MMC/SD/SATA memory scheme is different from the NAND and NOR flash, which
are deployed in the BSP software. The MMC/SD/SATA must keep the first sector (512
bytes) as the Master Boot Record (MBR) to use MMC/SD as the rootfs.

Upon boot-up, the MBR is executed to look up the partition table to determine which
partition to use for booting. The bootloader should be after the MBR. The kernel image
and rootfs may be stored at any address after the bootloader. By default, the the U-Boot
boot arguments use the first FAT partition for kernel and DTB, and the following ext3
partition for the root file system. Alternatively, users can store the kernel and the DTB
in any raw memory area after the bootloader. The boot arguments must be updated to
match any changed memory addresses.

The MBR can be generated through the fdisk command when creating partitions in MMC/
SD cards on a Linux host server.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
41 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

4.6.2 NAND flash memory map

The NAND flash memory map is configured from the Linux kernel command line.

For example:

mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)

4.6.3 Parallel NOR flash memory map

The default configuration contains only one parallel NOR partition. The parallel NOR
device is generally 4 MB. U-Boot is loaded at the beginning of parallel NOR so that the
device can boot from it. The default configuration is that on boot up, U-Boot loads the
kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user
can change the default settings according to their needs. More partitions can be added
through the kernel command line. The memory type designator for the command below
consists of the NOR address and the designator. This information can be found in the
i.MX .dtsidevice tree file in arch/arm/boot/dts. The following is an example of
what might be added to the Linux boot command line:

mtdparts=8000000.nor:1m(uboot),-(rootfs)

The address for parallel NOR is 0x8000000 for i.MX 6 SABRE-AI.

4.6.4 SPI-NOR flash memory map

The SPI-NOR flash memory can be configured using the Linux kernel command line.

U-Boot should be loaded at the 1 KB offset of the SPI-NOR memory, so that the device
can boot from it. The default configuration is that on boot up, U-Boot loads the kernel,
DTB, and root file system from the SD/MMC card into DDRAM. The end user can change
the default settings according to their needs. More partitions can be added through the
kernel command line. The following is an example of what might be added to the Linux
boot command line:

mtdparts=spi32766.0:768k(uboot),8k(env),128k(dtb),-(kernel)

4.6.5 QuadSPI flash memory map

The QuadSPI flash memory can be configured using the Linux kernel command line.

U-Boot is loaded at the beginning of the QuadSPI memory so that the device can boot
from it. The default configuration is that on boot up, U-Boot loads the kernel, DTB, and
root file system from the SD/MMC card into DDRAM. The end user can change the
default settings according to their requirements. More partitions can be added through
the kernel command line. The following is an example of what might be added to the
Linux boot command line:

mtdparts=21e4000.qspi:1m(uboot),8m(kernel),1m(dtb),-(user)

U-Boot has the mapping below to help in accessing the QuadSPI flash in U-Boot for non-
parallel mode.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
42 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Device on hardware Device in U-Boot Memory address in U-
Boot

Remark

QuadSPI1 Port A
CS0

sf probe 0:0 on i.MX 6SoloX
SABRE-AI board, i.MX 7Dual
SABRE-SD board, i.MX 6Ultra
Lite EVK board, i.MX 8QuadMax
MEK, i.MX 8QuadXPlus MEK,
and i.MX 8DXL EVK

0x60000000
0x08000000

-

QuadSPI1 Port B
CS0

sf probe 1:0 on i.MX 6 SoloX
SABRE-AI board

0x68000000 -

QuadSPI2 Port A
CS0

sf probe 0:0 on i.MX 6SoloX
SABRE-SD board

0x70000000 -

QuadSPI2 Port B
CS0

sf probe 1:0 on i.MX 6SoloX
SABRE-SD board

0x78000000 -

Table 61. U-Boot mapping for QuadSPI

Device on hardware Device in U-Boot Memory address in U-
Boot

Remark

Flexspi0 PortA CS0 sf probe 0:0 0x04000000 -

Flexspi2 PortA CS0 sf probe 2:0 0x60000000 -

Table 62. U-Boot mapping for FlexSPI for i.MX 8ULP

4.7 Running Linux OS on the target
This section describes how to run a Linux image on the target using U-Boot.

These instructions assume that you have downloaded the kernel image using the
instructions in Section 4.4 or Section 4.3. If you have not set up your Serial Terminal, see
Section 3.

The basic procedure for running Linux OS on an i.MX board is as follows. This document
uses a specific set of environment variable names to make it easier to describe the
settings. Each type of setting is described in its own section as follows.

1. Power on the board.
2. When U-Boot comes up, set the environment variables specific to your machine and

configuration. Common settings are described below and settings specific to a device
are described in separate sections.

3. Save the environment setup:

U-Boot > saveenv

4. Run the boot command:

U-Boot > run bootcmd

The commands env default -f -a and saveenv can be used to return to the
default environment.

Specifying the console

The console for debug and command-line control can be specified on the Linux boot
command line. The i.MX 6Quad SABRE-AI board uses ttymxc2, so it is not same for all

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
43 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

boards. It is usually specified as follows, but the baud rate and the port can be modified.
Therefore, for NFS, it might be ttymxc3.

U-Boot > setenv consoleinfo 'console=ttymxc2,115200'

For the i.MX 7ULP EVK, i.MX 8QuadMax MEK boards, and i.MX 8QuadXPlus MEK
board, change to " console=ttyLP0,115200".

Specifying displays

The display information can be specified on the Linux boot command line. It is not
dependent on the source of the Linux image. If nothing is specified for the display, the
settings in the device tree are used. Add ${displayinfo} to the environment macro
containing bootargs. The specific parameters can be found in the i.MX Linux Release
Notes (IMXLXRN). The following are some examples of these parameters.

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=hdmi,1920x1080
M@60,if=RGB24' for an HDMI display

• U-Boot > setenv displayinfo 'video=mxcfb1:dev=ldb
video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24' for LVDS and HDMI dual
displays

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=lcd,if=RGB565' for
an LCD

• U-Boot > setenv displayinfo 'video=mxcepdcfb:E060SCM,bpp=16
max17135:pass=2,vcom=-2030000' for an EPDC connection

• U-Boot > setenv displayinfo
'video=mxcfb0:mxcfb0:dev=lcd,if=RGB565
video=mxcfb1:dev=hdmi,1920x1080M@60,if=RGB24' for LCD and HDMI dual
displays

Specifying memory addresses

The addresses in the memory where the kernel and device tree are loaded to do not
change based on the device that runs Linux OS. The instructions in this chapter use the
environment variables loadaddr and ftd_addr to indicate these values. The following
table shows the addresses used on different i.MX boards.

Variable 6Quad,
6QuadPlus,
and 6Dual
Lite SABRE
(AI and SD)

6SoloX SD 7Dual
SABRE-SD

6UltraLite,
6ULL and
6ULZ EVK

7ULP EVK 8QuadMax,
8Quad
XPlus,
8DualX,
and 8DXL

8ULP 8M Quad/
8M Mini
EVK

i.MX 93 Description

loadaddr 0x12000000 0x80800000 0x80800000 0x80800000 0x60800000 0x80200000 0x80400000 0x40400000 0x80400000 Address in
the memory
the kernel
are loaded
to

fdt_addr 0x18000000 0x83000000 0x83000000 0x83000000 0x63000000 0x83000000 0x83000000 0x43000000 0x83000000 Address in
the memory
the device
tree code
are copied
to

Table 63. Board-specific default values

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
44 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

In addition, fdtfile is used to specify the filename of the device tree file. The
commands used to set the U-Boot environment variables are as follows:

U-Boot > setenv loadaddr 0x80080000
U-Boot > setenv fdtaddr 0x80f00000
U-Boot > setenv fdtfile fsl-imx7ulp-evk.dtb

Specifying the location of the root file system

The rootfs can be located on a device on the board or on NFS. The settings below show
some options for specifying these.

• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp nfsroot=
${serverip}:${nfsroot},v3,tcp'

• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp weim-nor
nfsroot=${serverip}:${nfsroot},v3,tcp'

• U-Boot > setenv rootfsinfo 'ubi.mtd=4 root=ubi0:rootfs
rootfstype=ubifs rootwait rw mtdparts=gpmi-
nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)'

• U-Boot > setenv rootfsinfo 'root=/dev/mmcblk0p2 rootwait rw'

Special settings

i.XM 6Solo, and 6UltraLite can specify uart_from_osc on the command line to specify
that the OSC clock rather than PLL3 should be used. This allows the system to enter low
power mode.

U-Boot > setenv special 'uart_from_osc'

Creating the boot command line

For clarification, this document groups the bootargs into one macro as follows:

U-Boot > setenv bootargsset 'setenv bootargs ${consoleinfo}
 ${rootfsinfo} ${displayinfo} ${special}'

The executed boot command is then as follows. Arguments vary by device.

U-Boot > setenv bootcmd 'run bootargsset; {settings-for-
device}; bootz ${loadaddr} - ${fdt_addr}'

4.7.1 Running the image from NAND

NAND can be found on i.MX 6 SABRE-AI boards.

Power on the board, and then enter the commands provided. The following settings may
be used to boot the Linux system from NAND.

Assume that the kernel image starts from the address 0x1400000 byte (the block starting
address is 0x800). The kernel image size is less than 0x400000 byte. The rootfs is
located in /dev/mtd2.

U-Boot > setenv bootcmd 'run bootargsset; nand read
 ${loadaddr} 0x1000000 0x800000; nand read ${fdt_addr}
 0x2000000 0x100000; bootz ${loadaddr} - ${fdt_addr}'

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
45 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

4.7.2 Running Linux OS from Parallel NOR

Parallel NOR is available on i.MX 6 SABRE-AI boards. The following procedure can be
used to boot the system from Parallel NOR.

1. Assume that the kernel image starts at address 0xc0000 bytes.
2. At the U-Boot prompt, set up these variables:

U-Boot > setenv bootcmd 'run bootargsset; cp.b 0x80c0000
 ${loadaddr} 0x800000;cp.b 0x80a0000 ${fdt_addr}
 0x20000;bootz ${loadaddr} - ${fdt_addr} '

4.7.3 Running the Linux OS image from QuadSPI

QuadSPI is available on i.MX 6SoloX SABRE-SD boards, i.MX 7Dual SABRE-SD
boards, i.MX 6UltraLite EVK boards, i.MX 6ULL EVK boards, and i.MX 8QuadMax MEK,
and i.MX 8QuadXPlus MEK. The following procedure may be used to boot the Linux
system from QuadSPI NOR.

1. Assume that the kernel image starts from the address 0xA00000 byte and the DTB
file starts from address 0x800000.

2. At the U-Boot prompt, set the following environment variables:

U-Boot > setenv bootcmd 'run bootargsset; sf probe; sf read
 ${loadaddr} 0xA00000 0x2000; sf read ${fdt_addr} 0x800000
 0x800; bootz ${loadaddr} - ${fdt_addr} '

4.7.4 Running the Arm Cortex-M4/7/33 image

On the i.MX 6SoloX boards, there are two ways to boot Arm Cortex-M4 images in U-
Boot:

• Arm Cortex-M4 processor Normal Up (supported on i.MX 6SoloX SABRE-AI and
SABRE-SD boards). Performed by running the U-Boot command. Requires:
1. U-Boot normal SD image if Arm Cortex-A9 processor boots from the SD card. U-

Boot normal QSPI image if Arm Cortex-A9 processor boots from the QSPI NOR
flash.

2. Kernel DTB: imx6sx-sdb-m4.dtb for i.MX 6SoloX SABRE-SD board. imx6sx-
sabreauto-m4.dtb for i.MX 6SoloX SABRE-AI board.

3. Have the Arm Cortex-M4 image burned. (NOR flash of QuadSPI2 PortB CS0
for i.MX 6SoloX SABRE-SD board. NOR flash of QuadSPI1 PortB CS0 for i.MX
6SoloX SABRE-AI board.)

• Arm Cortex-M4 processor Fast Up (only supported on i.MX 6SoloX SABRE-SD
boards). Initiated by U-Boot at a very early boot phase to meet the requirement of Arm
Cortex-M4 processor booting in 50 ms. No U-Boot command is involved. Requires:
1. U-Boot Arm Cortex-M4 fast up image and Arm Cortex-A9 processor must boot from

the QSPI2 NOR flash.
2. Kernel DTB: imx6sx-sdb-m4.dtb.
3. Have the Arm Cortex-M4 image burned (NOR flash of QuadSPI2 PortB CS0).

To facilitate the Arm Cortex-M4 processor Normal Up, a script has been added to the
default U-Boot. The following steps may help users who need to run the Cortex-M4
processor Normal Up script.

1. Power on the board.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
46 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

2. On the i.MX 6SoloX SABRE-SD board, assumed that the Arm Cortex-M4 image is
at address 0x78000000 (NOR flash of QuadSPI2 PortB CS0). On the i.MX 6SoloX
SABRE-AI board, assumed that the Arm Cortex-M4 image is at address 0x68000000
(NOR flash of QuadSPI1 PortB CS0).

At the U-Boot prompt:

U-Boot > run m4boot

Or users can perform the commands without depending on the script:

U-Boot > sf probe 1:0

For the i.MX 6SoloX SABRE-SD board:

U-Boot > bootaux 0x78000000

For the i.MX 6SoloX SABRE-AI board:

U-Boot > bootaux 0x68000000

Note:

For how to add the MCC demo to the kernel and limit RAM available to kernel to use
it, see Chapter 53 "i.MX 6 SoloX MultiCore Communication (MCC)" of the i.MX Linux
Reference Manual (IMXLXRM).

As well as supporting running the Arm Cortex-M4 image from QuadSPI, the default i.MX
7Dual SABRE-SD board supports loading the Arm Cortex-M4 image from the SD card
and running it on OCRAM.

Prepare the Arm Cortex-M4 image to the FAT partition of the SD card. Name the file to
m4_qspi.bin when using m4boot script.

After the board is powered on, the following information is displayed at the U-Boot
prompt:

U-Boot > run m4boot

Or perform the commands without depending on the script:

u-boot=> fatload mmc 0:0 ${loadaddr} m4_qspi.bin
u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
u-boot=> bootaux 0x7e0000

Note:

If your demo has no resource table, such as NXP hello_world.bin, clear the
resource table area. Otherwise, Linux OS may shows the garbage value.

• For i.MX 8M Mini/Nano/Quad LPDDR4 EVK: run #mw 0xb80ff000 0 4 to clear the
garbage resource table area.

• For i.MX 8M Plus LPDDR4 EVK: run #mw 0x550ff000 0 4 to clear the garbage
resource table area.

On the i.MX 8M boards, perform the commands to boot the Arm Cortex-M Core core:

u-boot=> fatload mmc 1:1 ${loadaddr} m4.bin

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
47 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
u-boot=> bootaux 0x7e0000

There are two methods to start the remote core: U-Boot bootaux and Linux
remoteproc.

Whether to use bootaux or remoteproc to start the remote core, use remoteproc to
stop or start the Cortex-M core for debug purposes only. It is not recommended to stop
the Cortex-M core from Linux OS in a production system.

If you choose to use remoteproc to start the remote core directly, execute run
prepare_mcore in U-Boot before starting the Linux OS.

On the i.MX 8QuadMax and i.MX 8QuadXPlus boards, there are two ways to boot the
Arm Cortex-M4 cores:

• Booting from ROM
Users need to use imx-mkimage to pack the Arm Cortex-M4 images into imx-boot
image. It is necessary to specify the core ID and its TCML address in the build
command. The following is an example:

flash_linux_m4: $(MKIMG) mx8qmb0-ahab-container.img
 scfw_tcm.bin u-boot-spl.bin m4_image.bin m4_1_image.bin u-
boot-atf-container.img
 ./$(MKIMG) -soc QM -rev B0 -dcd skip -append mx8qmb0-ahab-
container.img -c -flags 0x00200000 -scfw scfw_tcm.bin -ap u-
boot-spl.bin a53 0x00100000 -p3 -m4 m4_image.bin 0 0x34FE0000
 -p4 -m4 m4_1_image.bin 1 0x38FE0000 -out flash.bin
 cp flash.bin boot-spl-container.img
 @flashbin_size=`wc -c flash.bin | awk '{print $$1}'`; \
 pad_cnt=$$(((flashbin_size + 0x400 - 1) /
 0x400)); \
 echo "append u-boot-atf-container.img at $
$pad_cnt KB"; \
 dd if=u-boot-atf-container.img of=flash.bin
 bs=1K seek=$$pad_cnt;

Note:
When booting with the packed Cortex-M4 image (flash_linux_m4), use kernel DTB
with RPMSG enabled, like fsl-imx8qm-mek-rpmsg.dtb for i.MX 8QuadMax MEK
or fsl-imx8qxp-mek-rpmsg.dtb for i.MX 8QuadXPlus MEK.

• Booting from U-Boot (not support multiple partitions enabled)
U-Boot supports loading the Arm Cortex-M4 image from the FAT partitions of the SD
card with default name m4_0.bin and m4_1.bin. After the board is booted into the U-
Boot console, use the following command to boot Arm Cortex-M4 core 0:

U-Boot > run m4boot_0
Or the command to boot M4 core 1:
U-Boot > run m4boot_1
Or perform the commands for core 0 without depending on the
 script:
U-Boot > fatload mmc 1:1 0x80280000 m4_0.bin
U-Boot > dcache flush; bootaux 0x80280000 0

On the i.MX 93 11x11 EVK, use bootaux:

=> fatload mmc 1:1 ${loadaddr}
 imx93_m33_TCM_rpmsg_lite_str_echo_rtos.bin
15948 bytes read in 4 ms (3.8 MiB/s)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
48 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

=> cp.b ${loadaddr} 0x201e0000 ${filesize}
=> bootaux 0x201e0000 0
Starting auxiliary core stack = 0x20020000, pc =
 0x0FFE05D5...

Pass clk_ignore_unused in bootargs when using bootaux to kick Arm Cortex-M33.

For i.MX 93, users can directly start/stop Cortex-M33 using remoteproc as follows:

[138.693391] remoteproc remoteproc0: stopped remote processor
 imx-rproc
root@imx93evk:~# echo
 imx93_m33_TCM_rpmsg_lite_str_echo_rtos_imxcm33.elf > /sys/
devices/platform/imx93-cm33/remoteproc/remoteproc0/firmware
root@imx93evk:~# echo start > /sys/devices/platform/imx93-cm33/
remoteproc/remoteproc0/state
[162.361023] remoteproc remoteproc0: powering up imx-rproc
[162.368617] remoteproc remoteproc0: Booting fw image
 imx93_m33_TCM_rpmsg_lite_str_echo_rtos_imxcm33.elf, size
 175644
[162.916805] remoteproc0#vdev0buffer: assigned reserved
 memory node vdevbuffer@a4020000
[162.926429] virtio_rpmsg_bus virtio0: rpmsg host is online
[162.935336] remoteproc0#vdev0buffer: registered virtio0
 (type 7)
[162.941986] remoteproc0#vdev1buffer: assigned reserved
 memory node vdevbuffer@a4020000
[162.951071] virtio_rpmsg_bus virtio1: rpmsg host is online
[162.956649] virtio_rpmsg_bus virtio1: creating channel
 rpmsg-virtual-tty-channel addr 0x1e
[162.962559] remoteproc0#vdev1buffer: registered virtio1
 (type 7)
[162.971179] remoteproc remoteproc0: remote processor imx-
rproc is now up
root@imx93evk:~#
root@imx93evk:~# echo stop > /sys/devices/platform/imx93-cm33/
remoteproc/remoteproc0/state
[172.114287] remoteproc remoteproc0: stopped remote processor
 imx-rproc

4.7.5 Linux OS login

The default login user name for the i.MX Linux OS is root with no password.

4.7.6 Running Linux OS from MMC/SD

This scenario assumes that the board is configured to boot U-Boot, that the Linux kernel
image is named zImage and is stored on the SD card in an MS-DOS FAT partition, and
one or more device tree files are also stored in this partition. The rootfs is also stored on
the SD/MMC card in another partition.

When U-Boot boots up, it detects the slot where it is booting from and automatically sets
mmcdev and mmcroot to use the rootfs on that SD card. In this scenario, the same SD
card can be used to boot from any SD card slot on an i.MX 6/7 board, without changing
any U-Boot settings. From the U-Boot command line, type boot to run Linux OS.

The following instructions can be used if the default settings are not desired.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
49 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Set mmcautodetect to "no" to turn off the automatic setting of the SD card slot
in mmcdev and mmcroot. The U-Boot mmcdev is based on the soldered SD/MMC
connections, so it varies depending on the board. The U-Boot mmc dev 0 is the lowest
numbered SD slot present, 1 is the next, and so on. The Linux kernel, though, indexes
all the uSDHC controllers whether they are present or not. The following table shows this
mapping.

uSDHC mmcroot

uSDHC 1 mmcblk0*

uSDHC 2 mmcblk1*

uSDHC 3 mmcblk2*

uSDHC 4 mmcblk3*

Table 64. Linux uSDHC relationships

In the default configuration of the SD card and the example here, U-Boot is at the 1024
byte offset, 32 KB offset for the i.MX 8QuadXPlus B0 and i.MX 8QuadMax B0, or 33 KB
offset for the i.MX 8QuadXPlus A0, i.MX 8QuadMax A0, i.MX 8M EVK boards before
the first partition, partition 1 is the partition with the Linux kernel and device trees, and
partition 2 is the rootfs.

Setting up the environment variables

For convenience, this document uses a standard set of variables to describe the
information in the Linux command line. The values used here may be different for
different machines or configurations. By default, U-Boot supports setting mmcdev and
mmcroot automatically based on the uSDHC slot that we boot from. This assumes
zImage, the device tree file (DTB), and the rootfs are on the same SD/MMC card. To set
these environment variables manually, set mmcautodetect to no to disable the feature.

The following is one way to set up the items needed to boot Linux OS.

U-Boot > setenv mmcpart 1
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart}
 ${fdt_addr} ${fdtfile}'
U-Boot > setenv loadkernel 'fatload mmc ${mmcdev}:${mmcpart}
 ${loadaddr} zImage'
U-Boot > setenv bootcmd 'mmc dev ${mmcdev}; run loadkernel; run
 mmcargs; run loadfdt; bootz ${loadaddr} - ${fdt_addr};'

The descriptions of the variables used above are as follows:

• mmcpart - This is the partition on the MMC/SD card containing the kernel image.
• mmcroot - The location of the root file system on the MMC SD card along with

directives for the boot command for the rootfs.

Note: The U-Boot environment on the pre-built SD card does not match this. It is more
complex so that it can automatically deal with more variations. The example above is
designed to be easier to understand and use manually.

Reading the kernel image from eMMC

eMMC has user area, boot partition 1, and boot partition 2. To switch between the eMMC
partitions, the user needs to use the command mmc dev [dev id] [partition
id]. For example,

mmc dev 2 0 ---> user area

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
50 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

mmc dev 2 1 ---> boot partition 1
mmc dev 2 2 ---> boot partition 2

4.7.7 Running the Linux image from NFS

To boot from NFS, set the following environment variables at the U-Boot prompt:

U-Boot > setenv serverip <your server IP>
U-Boot > setenv image <your kernel zImage name on the TFTP
 server>
U-Boot > setenv fdtfile <your dtb image name on the TFTP
 server>
U-Boot > setenv rootfsinfo 'setenv bootargs ${bootargs} root=/
dev/nfs ip=dhcp \
 nfsroot=${serverip}:/data/rootfs_home/
rootfs_mx6,v3,tcp'
U-Boot > setenv bootcmd_net 'run rootfsinfo; dhcp ${image};
 dhcp ${fdt_addr} \
 ${fdtfile}; booti ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_net'

Note: If the MAC address has not been burned into the fuses, set the MAC address to
use the network in U-Boot.

eth0:
setenv ethaddr xx:xx:xx:xx:xx:xx
eth1:
setenv eth1addr xx:xx:xx:xx:xx:xx

4.8 Arm SystemReady-IR

4.8.1 Arm SystemReady-IR ACS compliance test

To run the SystemReady-IR ACS on the i.MX 8M Mini EVK board, refer to the Arm
SystemReady-IR ACS from: https://github.com/ARM-software/arm-systemready

1. Clone the ACS Git.
2. Flash the pre-build release image or image built from source code on to the U-

Disk, SD, or eMMC. If the target storage is also boot storage, flash the boot image
(flash.bin) thereafter the ACS image. For example, on the U-Disk:

sudo dd if=ir_acs_live_image.img of=/dev/sde bs=64M;sync

3. Boot the board. The ACS test will automatically run up.
4. There will be manual step for the power-off test from ACS. Just re-power on the

board when run into that test case.
The test result will be stored on the storage.

5. Use the SCT_Parser to analyze the ACS result. The SCT_Parser can be obtained
from: https://github.com/vstehle/SCT_Parser

6. Copy the acs_results\sct_results\Overall\Summary.ekl file from the
RESULT partition in U-disk to the SCT_Parser folder. Run python3 parser.py --
config EBBR.yaml Summary.ekl EBBR.seq to get the final report.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
51 / 129

https://github.com/ARM-software/arm-systemready
https://github.com/vstehle/SCT_Parser

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

4.8.2 Capsule update

Use the following command to do the capsule update:

• For SD:

U-Boot > env set dfu_alt_info "mmc 1=1 raw 0x42 0x2000"

• For eMMC:

U-Boot > env set dfu_alt_info "mmc 2=1 raw 0x42 0x2000 mmcpart
 1"
U-Boot > efidebug boot add 0 Boot0000 mmc 1:1
 capsule1.bin;efidebug boot next 0
U-Boot > setenv serverip 10.192.242.218;dhcp $loadaddr
 capsule1.bin;fatwrite mmc 1:1 ${loadaddr} /EFI/UpdateCapsule/
capsule1.bin 0x${filesize}
U-Boot > setenv -e -nv -bs -rt -v OsIndications =0x04
U-Boot > efidebug capsule disk-update
reset

Do not interrupt U-Boot. Let the board run into grub. Before grub runs, it should update
the bootloader automatically and remove capsule1.bin. And reboot the board again.
The board will boot up with the updated U-Boot.

4.8.3 Linux distro installation

Fedora34:

1. Download the Fedora34 IOT version.
2. Burned into the SD card.
3. Boot from eMMC.
4. Install distro from the SD card to eMMC.

OpenSUSE:

1. Download the OpenSUSE Tumbleweed version.
2. Burn ISO into the USB disk.
3. Boot from eMMC.
4. Install from ISO to eMMC.

5 Enabling Solo Emulation

Solo emulation can be enabled on the i.MX 6DualLite SABRE-SD and i.MX 6DualLite
SABRE-AI boards. This is achieved by using a specific U-Boot configuration in the
bootloader build process.

When this Solo emulation is enabled on the i.MX 6DualLite SABRE platforms, the
capabilities of the i.MX 6DualLite change to the following:

• For solo emulation, use 6DualLite DTB and add maxcpus=1 to bootcmd of U-Boot.
• 32-bit data bus on DDR RAM.
• 1 GB of RAM for i.MX 6DualLite SABRE-AI.
• 512 MB of RAM for i.MX 6DualLite SABRE-SD.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
52 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-SD card, use the
following command:

MACHINE=imx6solosabresd bitbake u-boot-imx

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-AI card, use the following
command:

MACHINE=imx6solosabreauto bitbake u-boot-imx

6 Power Management

The i.MX power management uses the standard Linux interface. Check the standard
Linux power documentation for information on the standard commands. The i.MX Linux
Reference Manual (IMXLXRM) contains information on the power modes that are
available and other i.MX-specific information in the power management section.

There are three main power management techniques on i.MX boards: suspend and
resume commands, CPU frequency scaling, and bus frequency scaling. They are
described in the following sections.

6.1 Suspend and resume
The power state can be changed by setting the standard Linux state, /sys/power/
state. The command used to set the power state into suspend mode, available from the
command line, is echo mem > /sys/power/state. The value mem can be replaced
by any of the valid power states, as described by the i.MX Linux Reference Manual
(IMXLXRM).

Use one of the following methods to wake up the system from suspend mode.

• The debug UART can be set as a wake-up source with:

echo enabled > /sys/class/tty/ttymxc0/power/wakeup

Note:
It is ttylp0 for i.MX 8QuadXPlus and i.MX 8QuadMax, and ttyLP0 for i.MX 8DXL.
To identify the current debug UART and configure it as a wake-up source:

echo enabled > /sys/class/tty/$(tty | cut -d'/' -f 3)/power/
wakeup

• RTC can be used to enter and exit from suspend mode by using the command:

/unit_test/SRTC/rtcwakeup.out -d rtc0 -m mem -s 10

This command indicates to sleep for 10 secs. This command automatically sets the
power state to mem mode.

6.2 CPU frequency scaling

Scaling governors are used in the Linux kernel to set the CPU frequency. CPU
frequencies can be scaled automatically depending on the system load either in
response to ACPI events or manually by userspace programs. For more information
about governors, read governors.txt from www.kernel.org/doc/Documentation/cpu-freq/
governors.txt.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
53 / 129

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The following are some of the more frequently used commands:

These commands return information about the system and the current settings.

• The kernel is pre-configured to support only certain frequencies. The list of frequencies
currently supported can be obtained from:

cat /sys/devices/system/cpu/cpu0/cpufreq/
scaling_available_frequencies

• To get the available scaling governors:

cat /sys/devices/system/cpu/*/cpufreq/
scaling_available_governors

• To check the current CPU frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_cur_freq

The frequency is displayed depending on the governor set.
• To check the maximum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_max_freq

• To check the minimum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_min_freq

These commands set a constant CPU frequency:

• Use the maximum frequency:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_governor

• Use the current frequency to be the constant frequency:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_governor

• The following two commands set the scaling governor to a specified frequency, if
that frequency is supported. If the frequency is not supported, the closest supported
frequency is used:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_governor
echo <frequency> > /sys/devices/system/cpu/cpu0/cpufreq/
scaling_setspeed

6.3 Bus frequency scaling
This release does not support the bus frequency scaling feature on i.MX 7ULP EVK.

This release does not support the bus frequency scaling feature on i.MX 8QuadXPlus
and i.MX 8QuadMax.

The system automatically adjusts the bus frequency (DDR, AHB, etc.) for optimal
performance based on the devices that are active.

The bus frequency driver is enabled by default. The following DDR frequencies are
supported:

• Normal DDR frequency – Default frequency in U-Boot

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
54 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Audio DDR frequency – 50 MHz on i.MX 6Quad, i.MX 6DualLite, and i.MX 6SoloX, and
100 MHz on i.MX 7Dual.

• Low power idle DDR frequency – 24 MHz

On the i.MX 8M board:

• For LPDDR4, the Audio DDR frequency is 25 MHz, the low power idle DDR frequency
is 25 MHz.

• For DDR4, the audio DDR frequency is 166 MHz, the low power idle DDR frequency is
166 MHz.

To enter a low power idle DDR frequency, ensure that all devices that require high DDR
frequency are disabled. Most drivers do active clock management, but certain commands
can be used to avoid waiting for timeouts to occur:

echo 1 > /sys/class/graphics/fb0/blank -> to blank the display (may need to
blank fb1, fb2, and so on, if more than one display is active).

ifconfig eth0 down -> disables the Ethernet module. On i.MX 6SoloX, i.MX 7Dual,
i.MX 6UltraLite, and i.MX 6UltraLiteLite should also disable Ethernet 1 (eth1).

i.MX 8M Plus needs some additional steps to enable USB runtime PM:

echo auto > /sys/bus/platform/
devices/32f10100.usb/38100000.dwc3/power/control
echo auto > /sys/bus/platform/
devices/32f10108.usb/38200000.dwc3/power/control
echo auto > /sys/bus/platform/
devices/32f10108.usb/38200000.dwc3/xhci-hcd.1.auto/power/
control

Execute the following command for i.MX 8ULP to enable system level voltage and
frequency scaling:

ifconfig eth0 down
systemctl stop weston
echo 1 > /sys/devices/platform/imx8ulp-lpm/enable

On most systems, the chip enters low power IDLE mode after the above two commands
are executed.

To manipulate bus frequency, use the following commands to achieve the results desired:

cat /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable ->
displays the status of bus frequency.

echo 0 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enab
le -> disables bus frequency.

echo 1 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enab
le -> enables bus frequency.

The i.MX Linux Reference Manual (IMXLXRM) has more information on the bus
frequency in the chapter about DVFS.

7 Multimedia

i.MX provides audio optimized software codecs, parsers, hardware acceleration units,
and associated plugins. The i.MX provides GStreamer plugins to access the i.MX

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
55 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

multimedia libraries and hardware acceleration units. This chapter provides various
multimedia use cases with GStreamer command line examples.

7.1 i.MX multimedia packages
Due to license limitations, i.MX multimedia packages can be found in two locations:

• Standard packages: provided on the NXP mirror.
• Limited access packages: provided on nxp.com with controlled access.

For details, see the i.MX Release Notes (IMXLXRN).

7.2 Building limited access packages
Place the limited access package in the downloads directory and read the readme file
in each package.

For example, README-microsoft in the package imxcodec-microsoft-
$version.tar.gz.

7.3 Multimedia use cases
GStreamer is the default multimedia framework on Linux OS. The following sections
provide examples of GStreamer commands to perform the specific functions indicated.
The following table shows how this document refers to common functions and what the
actual command is.

Variable $GSTL $PLAYBIN $GPLAY $GSTINSPECT

GStreamer 1.x gst-launch-1.0 playbin gplay-1.0 gst-inspect-1.0

Table 65. Command mapping

One option is to set these as environment variables as shown in the following examples.
Use the full path to the command on your system.

export GSTL=gst-launch-1.0
export PLAYBIN=playbin
export GPLAY=gplay-1.0
export GSTINSPECT=gst-inspect-1.0

In this document, variables are often used to describe the command parameters that
have multiple options. These variables are of the format $description where the
type of values that can be used are described. The possible options can be found in the
Section about Multimedia in the i.MX Linux Release Notes (IMXLXRN) for i.MX-specific
options, or at "gstreamer.freedesktop.org/ for the community options.

The GStreamer command line pipes the input through various plugins. Each plugin
section of the command line is marked by an exclamation mark (!). Each plugin can have
arguments of its own that appear on the command line after the plugin name and before
the next exclamation mark (!). Use $GSTINSPECT $plugin to get information on a
plugin and what arguments it can use.

Square brackets ([]) indicate optional parts of the command line.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
56 / 129

http://www.nxp.com
http://gstreamer.freedesktop.org/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

7.3.1 Playback use cases

Playback use cases include the following:

• Audio-only playback
• Video-only playback
• Audio/Video file playback
• Other methods for playback

7.3.1.1 Audio-only playback

An audio-only playback command uses this format:

$GSTL filesrc location=$clip_name [typefind=true] !
 [$id3parse] ! queue ! $audio_parser_plugins
 ! $audio_decoder_plugin ! $audio_sink_plugin

If the file to be played contains an ID3 header, use the ID3 parser. If the file does not
have an ID3 header, this has no effect.

This example plays an MP3 file in the audio jack output.

$GSTL filesrc location=test.mp3 ! id3demux ! queue !
 mpegaudioparse ! beepdec ! pulsesink

7.3.1.2 Video-only playback

$GSTL filesrc location=test.video typefind=true
 ! $capsfilter ! $demuxer_plugin ! queue max-size-time=0
 ! $video_decoder_plugin ! $video_sink_plugin

This is an example of an MP4 container with H.264 encoding format video file playback:

$GSTL filesrc location=test.mp4 typefind=true
 ! video/quicktime ! aiurdemux ! queue max-size-time=0
 ! v4l2h264dec ! autovideosink

7.3.1.3 Audio/Video file playback

This is an example of a command to play a video file with audio:

$GSTL filesrc location=test_file typefind=true ! $capsfilter
 ! $demuxer_plugin name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 !
 $video_decoder_plugin
 ! $video_sink_plugin demux.
 ! queue max-size-buffers=0 max-size-time=0 !
 $audio_decoder_plugin
 ! $audio_sink_plugin

This is an example of an AVI file:

$GSTL filesrc location=test.avi typefind=true ! video/x-msvideo
 ! aiurdemux name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 !
 $video_decoder_plugin

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
57 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ! autovideosink demux.
 ! queue max-size-buffers=0 max-size-time=0 ! beepdec
 ! alsasink

For the platforms without VPU hardware, $video_decoder_plugin could be a
software decoder plugin like avdec_h264.

7.3.1.4 Multichannel audio playback

For the multichannel audio playback settings to be used when PulseAudio is enabled,
see Section 7.4.

7.3.1.5 Other methods for playback

Use the $PLAYBIN plugin or the i.MX $GPLAY command line player for media file
playback.

$GSTL $PLAYBIN uri=file:///mnt/sdcard/test.avi
$GPLAY /mnt/sdcard/test.avi

7.3.1.6 Video playback to multiple displays

Video playback to multiple displays can be supported by a video sink plugin. The video
sink for multidisplay mode does not work on i.MX 8 family SoCs.

This use case requires that the system boots in multiple-display mode (dual/triple/four,
the number of displays supported is determined by the SOC and the BSP). For how to
configure the system to boot in this mode, see the i.MX Porting Guide (IMXBSPPG).

7.3.1.6.1 Playing different videos on different displays

The command line to play two videos on different displays might look like this:

$GSTL $PLAYBIN uri=file:///$file1 $PLAYBIN uri=file:///$file2
 video-sink="overlaysink
 display-master=false display-slave=true"

7.3.1.6.2 Routing the same video to different displays

A video can be displayed on multiple displays with a command as follows:

$GSTL $PLAYBIN uri=file:///$filename video-sink="overlaysink
 display-slave=true"

7.3.1.6.3 Multiple videos overlay

The overlaysink plugin provides support for compositing multiple videos together and
rendering them to the same display. The result might look like the following image.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
58 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Figure 2. Multiple video overlay

gst-launch-1.0 playbin uri=file://$FILE1
 video-sink="overlaysink overlay-width=512 overlay-
height=384"
 playbin uri=file://$FILE2 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-width=512
 overlay-height=384"
 playbin uri=file://$FILE3 flags=0x41
 video-sink="overlaysink overlay-top=384 overlay-width=512
 overlay-height=384"
 playbin uri=file://$FILE4 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-top=384
 overlay-width=512
 overlay-height=384"
 playbin uri=file://$FILE5 flags=0x41
 video-sink="overlaysink overlay-left=352 overlay-top=264
 overlay-width=320
 overlay-height=240 zorder=1"

7.3.2 Audio encoding

Here are some examples for MP3 encoding.

$GSTL filesrc location=test.wav ! wavparse ! lamemp3enc
 ! filesink location=output.mp3

7.3.3 Video encoding

The following commands provide some suggestions on how to use the plugins
accelerated by VPU hardware to encode some media files (though they only work on a
SoC with a VPU).

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6, use the following command:

$GSTL filesrc location=test.yuv
 ! videoparse format=2 witdh=$WIDTH height=$HEIGHT
 framerate=30/1

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
59 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ! vpuenc_xxx ! $MUXER ! filesink location=$output

For i.MX 8M Mini/8M Plus, use the following command:

$GSTL filesrc location=test.yuv
! rawvideoparse format=2 witdh=$WIDTH height=$HEIGHT
 framerate=30/1 colorimetry=bt709
! v4l2xxxenc ! $MUXER ! filesink location=$output

• The target encoder codec type can be:
– MPEG4, H.263, H.264, and MJPEG for i.MX 6
– H.264, VP8 for i.MX 8M Mini
– H.264, HEVC for i.MX 8M Plus

• The vpuenc_xxx can be:
– vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, and vpuenc_jpeg for i.MX 6

• The v4l2xxxenc can be:
– v4l2h264enc and v4l2vp8enc for i.MX 8M Mini
– v4l2h264enc and v4l2h265enc for i.MX 8M Plus

• VPU encoder is v4l2h264enc on i.MX 8QuadMax and 8QuadXPlus.
• The $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.
• Different muxers support different encoded codec types. Use $GSTINSPECT and
$MUXER to see the capabilities of the muxer to be used.

The following table lists the encoding bitrate modes for i.MX 8M Mini/8M Plus.

V4L2_CID_
MPEG_VIDEO_
FRAME_RC_
ENABLE

Video bitrate mode Encoded file

1 V4L2_MPEG_VIDEO_BITRATE_
MODE_CBR

Bitrate takes effect limited by MIN_QP
and MAX_QP.
V4L2_CID_MPEG_VIDEO_BITRATE
V4L2_CID_MPEG_VIDEO_H264_
MIN_QP
V4L2_CID_MPEG_VIDEO_H264_
MAX_QP

1 V4L2_MPEG_VIDEO_BITRATE_
MODE_VBR

Same as the above case but with
bigger bitrate variance.

0 V4L2_MPEG_VIDEO_BITRATE_
MODE_CBR/
V4L2_MPEG_VIDEO_BITRATE_
MODE_VBR

Qp takes effect.
V4L2_CID_MPEG_VIDEO_H264_I_
FRAME_QP
V4L2_CID_MPEG_VIDEO_H264_P_
FRAME_QP
V4L2_CID_MPEG_VIDEO_H264_B_
FRAME_QP

Table 66. Encoding bitrate modes

Use extra-controls property after v4l2xxxenc to specify the value for different
codec controls. v4l2-ctl --device device_path --list-ctrls shows all video
device's controls and their values.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
60 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

For example:

gst-launch-1.0 filesrc location=test.yuv !
 rawvideoparse format=2 width=$WIDTH height=
$HEIGHT colorimetry=bt709 ! v4l2h264enc extra-
controls="encode,frame_level_rate_control_enable=1,h264_mb_level_rate_control=1,video_bitrate_mode=1,video_bitrate=300000" !
 filesink location=output.h264

7.3.4 Transcoding

Transcoding is converting a file from one video encoding to another.

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6 family with VPU, use the following command:

$GSTL filesrc location=$filename typefind=true ! $capsfilter !
 aiurdemux
! vpudec ! imxvideoconvert_ipu ! $CAPS1 ! vpuenc_xxx !
 matroskamux ! filesink location=720p.mkv

capsfilter is the container's mime type. CAPS1 is the target video resolution, and the
vpuenc_xxx can be vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, and vpuenc_jpeg.

For example:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true !
 video/quicktime ! aiurdemux !
vpudec ! imxvideoconvert_ipu ! video/x-
raw,format=NV12,width=1280,height=720 ! vpuenc_h264 !
 [h264parse] ! matroskamux ! filesink location=$FILE.mkv

For i.MX 8QuadMax/8QuadXPlus, use the following command:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true !
 video/quicktime ! aiurdemux ! v4l2h264dec ! queue !
 imxvideoconvert_g2d ! queue ! videoconvert ! queue !
 v4l2h264enc ! [h264parse] ! matroskamux ! filesink location=
$FILE.mkv

For i.MX 8M Mini/8M Plus, use the following command:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true !
 video/quicktime ! aiurdemux ! v4l2h264dec ! queue !
 v4l2h264enc ! [h264parse] ! matroskamux ! filesink location=
$FILE.mkv

Note:

• For some mux, such as matroskamux, add h264parse/h265parse before mux.
• For i.MX 6, h264parse is not required, because the VPU can output AVC and byte-

stream formats. For i.MX 8, h264parse/h265parse should be added before some mux,
because the VPU supports only the byte-stream output.

7.3.5 Audio recording

Audio recording from EARC or S/PDIF on i.MX 8M Plus.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
61 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Since Multimedia version 4.7.0, PCM and compressed format eARC recording pipeline
are unified into the following commandline:

gst-launch-1.0 -v alsasrc provide-clock=false device=hw:1,0 !
 spdifdemux ! decodebin ! playsink audio-sink="alsasink
 device=sysdefault:CARD=wm8960audio buffer-time=40000
 sync=false"

Note: The imxaudioxcvr card number is 1.

For backward compatibility, the following legacy pipelines are still supported:

For PCM format:

gst-launch-1.0 -v alsasrc device=sysdefault:CARD=imxaudioxcvr
 ! audio/x-raw,format=S16LE,channels=2,rate=48000 ! playsink
 audio-sink="alsasink device=sysdefault:CARD=wm8960audio
 buffer-time=40000"

For compressed format:

gst-launch-1.0 alsasrc device=sysdefault:CARD=imxaudioxcvr !
 audio/x-raw,format=S16LE,channels=2,rate=48000 ! queue
 max-size-buffers=0 max-size-bytes=0 max-size-time=0 !
 spdifdemux ! decodebin ! playsink audio-sink="alsasink
 device=sysdefault:CARD=wm8960audio buffer-time=40000
 sync=false"

Note:

Run the following command to work in EARC mode:

amixer -c imxaudioxcvr cset numid=1,iface=MIXER,name='XCVR
 Mode' 'eARC'

The following examples show how to make an MP3 or WMA audio recording.

• MP3 recording

$GSTL pulsesrc num-buffers=$NUMBER blocksize=$SIZE !
 lamemp3enc
! filesink location=output.mp3

Note:

The recording duration is calculated as $NUMBER * $SIZE * 8 / (samplerate *
channel * bit width).

Therefore, to record 10 seconds of a stereo channel sample with a 44.1K sample rate
and a 16 bit width, use the following command:

$GSTL pulsesrc num-buffers=430 blocksize=4096 ! 'audio/x-raw,
 rate=44100, channels=2' ! lamemp3enc
! filesink location=output.mp3

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
62 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

7.3.6 Video recording

Video recording is done using the camera input, so this activity only applies to platforms
with a camera. Different cameras need to be set with different capture modes for special
resolutions. See Chapter 14 "supporting cameras with CSI" and Chapter 15 "supporting
cameras with MIPI-CSI" in the i.MX BSP Porting Guide (IMXBSPPG).

VPU video encoding only works on SoC with VPU encoder support. imxv4l2src is only
supported on i.MX 6 and i.MX 7. i. MX 8 supports opensource plugin v4l2src as camera
source.

Use the $GSTINSPECT command to obtain more information about the codec property.

An example of recording might look like this:

$GSTL $V4L2SRC device=$DEVICE num-buffers=300 ! $INPUT_CAPS !
 queue ! $video_encoder_plugin ! [h264parse] ! $MUXER !
 filesink location=output.$EXTENSION

• $V4L2SRC can be imxv4l2src, or v4l2src according to the SoC.
• $DEVICE could be set to /dev/video, /dev/video0, or /dev/video1 according to

the system video input device.
• $INPUT_CAPS should be set to video/x-
raw,format=(string)NV12,width=1920,height=1080,framerate=(fraction)30/1.

• $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.
• $EXTENSION is filename extension according to the muxer type.

Refer to Section Section 7.3.3 to choose the correct $video_encoder_plugin.

7.3.7 Audio/Video recording

This is an example of a command used to record audio and video together:

$GSTL –e $V4L2SRC device=$DEVICE ! $INPUT_CAPS ! queue !
 $video_encoder_plugin ! [h264parse] ! queue ! mux. pulsesrc !
 'audio/x-raw, rate=44100, channels=2' ! lamemp3enc ! queue !
 mux. $MUXER name=mux ! filesink location= output.$EXTENSION

• $V4L2SRC can be imxv4l2src or v4l2src according to SoC.
• $INPUT_CAPS should be set to video/x-raw, format=(string)NV12,
width=1920, height=1080, framerate=(fraction)30/1.

• $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.

Refer to Section Section 7.3.3 to choose the correct $video_encoder_plugin.

Common parameters are as follows:

• -e indicates to send EOS when the user presses Ctrl+C to avoid output corruption.
• $EXTENSION is the filename extension according to the multiplexer type.

7.3.8 Camera preview

This example displays what the camera sees. It is only available on platforms with a
camera.

$GSTL v4l2src ! 'video/x-raw, format=(string)$FORMAT,
 width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1'

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
63 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ! v4l2sink

Camera preview example:

$GSTL v4l2src device=/dev/video1 ! 'video/x-raw,

 format=(string)UYVY,width=640,height=480,framerate=(fraction)30/1'
 ! autovideosink

Parameter comments:

• Get the camera support format and resolution using gst-inspect-1.0 v4l2src.
• Set caps filter according to the camera's supported capabilities if the user needs other

format or resolution.
• Ensure that the right caps filter has been set, which also needs to be supported by

v4l2sink.

7.3.9 Recording the TV-in source

The TV-in source plugin gets video frames from the TV decoder. It is based on the V4l2
capture interface. A command line example is as follows:

gst-launch-1.0 v4l2src ! autovideosink

Note:

The TV decoder is ADV7180. It supports NTSC and PAL TV mode. The output video
frame is interlaced, so the sink plugin needs to enable deinterlace. The default value of
v4l2sink deinterface is True.

7.3.10 Web camera

The following command line is an example of how to record and transfer web camera
input.

$GSTL v4l2src device=/dev/video1 ! $video_encoder_plugin !
 rtph264pay ! udpsink host=$HOST_IP

HOST_IP is the IP/multicast group to send the packets to.

This command line is an example of how to receive and display web camera input.

$GSTL udpsrc ! buffer-size=204800 (example number) application/
x-rtp ! rtph264depay ! $video_decoder_plugin ! autovideosink

7.3.11 HTTP streaming

The HTTP streaming includes the following:

• Manual pipeline

$GSTL souphttpsrc location= http://SERVER/test.avi ! typefind
 ! aiurdemux name=demux demux. ! queue max-size-buffers=0
 max-size-time=0
 ! $video_decoder_plugin ! $video_sink_plugin demux. !
 queue max-size-buffers=0 max-size-time=0

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
64 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ! beepdec ! $audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.avi

• GPLAY

$GPLAY http://SERVER/test.avi

7.3.12 HTTP live streaming

The HLS streaming includes the following:

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.m3u8

• GPLAY

$GPLAY http://SERVER/test.m3u8

7.3.13 MPEG-DASH streaming

The MPEG-DASH streaming includes the following:

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.mpd

• GPLAY

$GPLAY http://SERVER/test.mpd

Note: Supports TS, MP4, and WebM container format segment currently.

7.3.14 Real Time Streaming Protocol (RTSP) playback

Use the following command to see the GStreamer RTP depacketize plugins:

$GSTINSPECT | grep depay

RTSP streams can be played with a manual pipeline or by using playbin. The format of
the commands is as follows.

• Manual pipeline

$GSTL rtspsrc location=$RTSP_URI name=source
 ! queue ! $video_rtp_depacketize_plugin ! $vpu_dec !
 $video_sink_plugin source.
 ! queue ! $audio_rtp_depacketize_plugin !
 $audio_parse_plugin ! beepdec ! $audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=$RTSP_URI

Two properties of rtspsrc that are useful for RTSP streaming are:

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
65 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Latency: This is the extra added latency of the pipeline, with the default value of 200
ms. If you need low-latency RTSP streaming playback, set this property to a smaller
value.

• Buffer-mode: This property is used to control the buffering algorithm in use. It includes
four modes:
– None: Outgoing timestamps are calculated directly from the RTP timestamps, not

good for real-time applications.
– Slave: Calculates the skew between the sender and receiver and produces smoothed

adjusted outgoing timestamps, good for low latency communications.
– Buffer: Buffer packets between low and high watermarks, good for streaming

communication.
– Auto: Chooses the three modes above depending on the stream. This is the default

setting.

To pause or resume the RTSP streaming playback, use a buffer-mode of slave or none
for rtspsrc, as in buffer-mode=buffer. After resuming, the timestamp is forced to
start from 0, and this causes buffers to be dropped after resuming.

Manual pipeline example:

$GSTL rtspsrc location=rtsp://10.192.241.11:8554/test
 name=source
 ! queue ! rtph264depay ! avdec_h264 ! overlaysink source.
 ! queue ! rtpmp4gdepay ! aacparse ! beepdec ! pulsesink

Playback does not exit automatically in GStreamer 1.x, if buffer-mode is set to buffer
in the rtpsrc plugin.

7.3.15 RTP/UDP MPEGTS streaming

There are some points to keep in mind when doing RTP/UDP MPEGTS Streaming:

• The source file that the UDP/RTP server sends must be in TS format.
• Start the server one second earlier than the time client starts.
• Two properties of aiurdemux that are useful for UDP/RTP TS streaming are:

streaming-latency: This is the extra added latency of the pipeline, and the default
value is 400 ms. This value is designed for the situation when the client starts first.
If the value is too small, the whole pipeline may not run due to lack of audio or video
buffers. In that situation, you should cancel the current command and restart the
pipeline. If the value is too large, wait for a long time to see the video after starting the
server.
low_latency_tolerance: This value is a range that total latency can jitter around
streaming-latency. This property is disabled by default. When the user sets this value,
the maximum latency is (streaming-latency + low_latency_tolerance).

The UDP MPEGTS streaming command line format looks like this:

$GSTL udpsrc do-timestamp=false uri=$UDP_URI caps="video/
mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue !
 $vpu_dec

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
66 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ! queue ! $video_render_sink sync=true d. ! queue !
 beepdec ! $audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000
 caps="video/mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue !
 vpudec
 ! queue ! overlaysink sync=true d. ! queue ! beepdec !
 pulsesink sync=true

The format for an RTP MPEGTS streaming command is covered as follows:

$GSTL udpsrc do-timestamp=false uri=$RTP_URI caps="application/
x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d
 d. ! queue ! $vpu_dec
 ! queue ! $video_render_sink sync=true d. ! queue !
 beepdec ! $audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000
 caps="application/x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d.
 ! queue ! vpudec ! queue ! overlaysink sync=true d. !
 queue ! beepdec
 ! pulsesink sync=true

7.3.16 RTSP streaming server

The RTSP streaming server use case is based on the open source gst-rtsp-server
package. It uses the i.MX aiurdemux plugin to demultiplex the file to audio or video
elementary streams and to send them out through RTP. Start the RTSP streaming
server on one board, and play it on another board with the RTSP streaming playback
commands.

The gst-rtsp-server package is not installed by default in the Yocto Project release.
Follow these steps to build and install it.

1. Enable the layer meta-openembedded/meta-multimedia:
Add the line BBLAYERS += "${BSPDIR}/sources/meta-openembedded/
meta-multimedia" to the configuration file $yocto_root/build/conf/
bblayers.conf.

2. Include gst-rtsp-server into the image build:
Add the line IMAGE_INSTALL:append = " gstreamer1.0-rtsp-server" to
the configuration file $yocto_root/build/conf/local.conf.

3. Run bitbake for your image to build with gst-rstp-server.
4. You can find the test-uri binary in the folder:

$yocto_root/build/tmp/work/cortexa9hf-vfp-neon-poky-linux-
gnueabi/gstreamer1.0-rtsp-server/$version/
build/examples/

5. Flash the image.
Copy test-uri into /usr/bin in the rootfs on your board and assign execute
permission to it.

Some information on running the tool is as follows:

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
67 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Command:

test-uri $RTSP_URI

For example:

test-uri file:///home/root/temp/TestSource/mp4/1.mp4

• Server address:

rtsp://$SERVER_IP:8554/test

For example:

rtsp://10.192.241.106:8554/test

• Client operations supported are Play, Stop, Pause, Resume, and Seek.

7.3.17 Video conversion

There are three video conversion plugins, imxvideoconvert_ipu, imxvideoconvert_g2d,
and imxvideoconvert_pxp. All of them can be used to perform video color space
conversion, resize, and rotate. imxvideoconvert_ipu can also be used to perform video
deinterlacing. They can be used to connect before ximagesink to enable the video
rendering on X Windows or used in transcoding to change video size, rotation, or
deinterlacing.

Use gst-inspect-1.0 to get each converter's capability and supported input and output
formats. Note that imxvideoconvert_g2d can only perform color space converting to RGB
space.

Color Space Conversion (CSC)

gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12 !
 imxvideoconvert_{xxx} ! video/x-raw,format=RGB16 ! ximagesink
 display=:0

Resize

gst-launch-1.0 videotestsrc ! video/x-
raw,format=NV12,width=800,height=600 ! imxvideoconvert_{xxx} !
 video/x-raw, width=640, height=480 ! ximagesink display=:0

Rotate

gst-launch-1.0 videotestsrc ! imxvideoconvert_{xxx}
 rotation=2 ! ximagesink display=:0

Video crop with i.MX with G2D

gst-launch-1.0 videotestsrc ! videocrop top=10 bottom=10
 right=10 left=10 !imxvideoconvert_g2d videocrop-meta-
enable=true ! queue ! ximagesink display=:0

Deinterlacing with i.MX with IPU

gst-launch-1.0 playbin uri=file://$FILE video-
sink="imxvideoconvert_ipu deinterlace=3 ! ximagesink display=:0
 sync=false"

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
68 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Transcoding with i.MX with VPU

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true !
 video/quicktime ! aiurdemux ! vpudec ! imxvideoconvert_ipu !
 video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h263 !
 avimux ! filesink location=$FILE.avi

Combination with i.MX with IPU or VPU

It is possible to combine CSC, resize, rotate, and deinterlace at one time. Both of
imxvideoconvert_ipu and imxvideoconvert_g2d can be used at the same time in a
pipeline. The following is an example:

gst-launch-1.0 videotestsrc ! video/x-
raw,format=I420,width=1280,height=800,interlace-
mode=interleaved ! imxvideoconvert_ipu rotation=2
 deinterlace=3 ! video/x-raw,format=NV12,width=800,height=600 !
 vpuenc_h264 ! vpudec ! imxvideoconvert_g2d rotation=3 ! video/
x-raw,format=RGB16,width=640,height=480 ! ximagesink sync=false
 display=:0

7.3.18 Video composition

imxcompositor_g2d uses corresponding hardware to accelerate video composition. It
can be used to composite multiple videos into one. The video position, size, and rotation
can be specified while composition. Video color space conversion is also performed
automatically if input and output video are not same. Each video can be set to an alpha
and z-order value to get alpha blending and video blending sequence.

Note that imxcompositor_g2d can only output RGB color space format. Use gst-
inspect-1.0 to get more detailed information, including the supported input and output
video format.

• Composite two videos into one.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_1::xpos=160
 sink_1::ypos=120 ! overlaysink videotestsrc ! comp.sink_0
 videotestsrc ! comp.sink_1

• Composite two videos into one with red background color.

gst-launch-1.0 imxcompositor_{xxx} background=0x000000FF
 name=comp sink_1::xpos=160 sink_1::ypos=120 ! overlaysink
 videotestsrc ! comp.sink_0 videotestsrc ! comp.sink_1

• Composite two videos into one with CSC, resize, and rotate.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640
 sink_0::height=480
 sink_1::xpos=160 sink_1::ypos=120 sink_1::width=640
 sink_1::height=480 sink_1::rotate=1 !
 video/x-raw,format=RGB16 ! overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 !
 comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 !
 comp.sink_1

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
69 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Composite three videos into one with CSC, resize, rotate, alpha, z-order, and keep
aspect ratio.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640
 sink_0::height=480
 sink_0::alpha=0.5 sink_0::z-order=3 sink_1::alpha=0.8
 sink_1::z-order=2 sink_1::xpos=160
 sink_1::ypos=120 sink_1::width=640 sink_1::height=480
 sink_1::rotate=1 sink_2::xpos=320
 sink_2::ypos=240 sink_2::width=500 sink_2::height=500
 sink_2::alpha=0.6
 sink_2::keep-ratio=true ! video/x-raw,format=RGB16 !
 overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 !
 comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 !
 comp.sink_1 videotestsrc !
 video/x-raw,format=RGB16,width=320,height=240 !
 comp.sink_2

7.4 PulseAudio input/output settings
If PulseAudio is installed in the rootfs, the PulseAudio input/output settings may need to
be set.

Audio output settings

Use the pactl command to list all the available audio sinks:

$ pactl list sinks

A list of available audio sinks is displayed:

Sink #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo
 ...
 ...
Sink #1
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.4.analog-stereo
 Description: imx-hdmi-soc Analog Stereo
 ...
 ...

Use the pacmd command to set the default audio sink according to the sink number in
the list shown above:

$ pacmd set-default-sink $sink-number

$sink-number could be 0 or 1 in the example above.

After setting the default sink, use the command below to verify the audio path:

$ gst-launch audiotestsrc ! pulsesink

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
70 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Audio input settings

Use the pactl command to list all the available audio sources:

$ pactl list sources

A list of available audio sources is displayed:

Source #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-
stereo.monitor
 Description: Monitor of sgtl5000-audio Analog Stereo
 ...
 ...
Source #1
 State: SUSPENDED
 Name: alsa_input.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo ...
 ...
 ...

Use the pacmd command to set the default audio source according to the source number
in the list shown above:

$ pacmd set-default-source $source-number

$sink-number could be 0 or 1 in the example above. If record and playback at the
same time is not needed, there is no need to set the monitor mode.

The PulseAudio I/O path setting status can be checked with:

$ pactl stat

Multichannel output support settings

For those boards that need to output multiple channels, these are the steps needed to
enable the multichannel output profile:

1. Use the pacmd command to list the available cards:

$ pacmd list-cards

The available sound cards and the profiles supported are listed.

2 card(s) available.
 index: 0
 name: <alsa_card.platform-sound-cs42888.34>
 driver: <module-alsa-card.c>
 owner module: 6
 properties:
 alsa.card = "0"
 alsa.card_name = "cs42888-audio"
 ...
 ...
 profiles:
 input:analog-mono: Analog Mono Input
 (priority 1, available: unknown)
 input:analog-stereo: Analog Stereo Input
 (priority 60, available: unknown)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
71 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 ...
 ...
 active profile: <output:analog-stereo+input:analog-stereo>
 ...
 ...

2. Use the pacmd command to set the profile for particular features.

$ pacmd set-card-profile $CARD $PROFILE

$CARD is the card name listed by pacmd list-cards (for example,
alsa_card.platform-sound-cs42888.34 in the example above), and
$PROFILE is the profile name. These are also listed by pamcd list-cards. (for
example, output:analog-surround-51 in the example above).

3. After setting the card profile, use $ pactl list sinks and $pacmd set-
default-sink $sink-number to set the default sink.

7.5 Installing gstreamer1.0-libav into rootfs
The following steps show how to install gstreamer1.0-libav into a rootfs image.

1. Add the following lines into the configuration file conf/local.conf.

IMAGE_INSTALL:append = " gstreamer1.0-libav"
LICENSE_FLAGS_ACCEPTED = "commercial"

2. Build gstreamer1.0-libav.

$ bitbake gstreamer1.0-libav

3. Build the rootfs image.

$ bitbake <image_name>

8 Audio

8.1 DSP support
DSP support is provided on specific i.MX 8QuadXPlus, i.MX 8QuadMax, and i.MX 8M
Plus SoC.

8.1.1 HiFi 4 DSP framework

Supporting HiFi 4 on a custom board is documented in the i.MX DSP User's Guide
(IMXDSPUG).

8.1.2 Sound Open Firmware

Sound Open Firmware is an open source alternative to HiFi 4 DSP framework. For
supporting the HiFi 4 on a custom board, see the SOF project documentation https://
thesofproject.github.io available in the public domain.

For details about toolchains, supported platforms, binary packaging, and quick setup of
audio scenarios, see SOF User Guide on NXP i.MX 8 platforms.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
72 / 129

https://thesofproject.github.io
https://thesofproject.github.io
https://thesofproject.github.io/latest/getting_started/nxp/sof_imx_user_guide.html

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

8.2 HDMI eARC support
eARC is supported on the i.MX 8M Plus EVK board.

The procedure enables audio, which is input through the imxaudioxcvr card and
played back through the wm8960audio card.

Make sure there is a headset plugged into the i.MX 8M Plus EVK audio jack. The
procedure is as follows:

1. On i.MX 8M Plus EVK, set eARC mode. The default mode is SPDIF:

amixer -c 0 cset numid=1 2

2. On i.MX 8M Plus EVK, use alsamixer to set Headphone and Playback controls
to the maximum values for the wm8960-audio card.

3. On i.MX 8M Plus EVK, start audio recording on the imxaudioxcvr card and
playback on the wm8960audio card.

arecord -Dsysdefault:CARD=imxaudioxcvr -c2 -r48000 -fS32_LE -
twav | aplay -Dsysdefault:CARD=wm8960audio

4. Make sure Digital Audio Out from the TV is PCM. Then, set eARC mode to
ON and check audio on the headset connected to the i.MX 8M Plus EVK jack. The
settings on the TV should be as shown in the following figure.

Digital Audio Out PCM

eARC mode ON

Audio Output

Figure 3. eARC support

Note: The procedure has been tested on Sony and LG TV.

The firmware on the eARC RX (i.MX 8M Plus EVK) waits until HPD=high is sensed.
Therefore, start recording and playback on i.MX 8M Plus before enabling eARC mode on
the TV as described in Steps 3 and 4 above. This makes the behavior more predictable
on the RX side. In addition, set the subsequent eARC mode to OFF then to ON on
the TV while keeping arecord … | aplay … running on i.MX 8M Plus EVK. Check
whether you can hear audio in the headset after subsequent eARC mode is set to ON on
the TV.

Besides, enabling the complete eARC feature, per the HDMI 2.1 specification, is more of
a system-level application that integrates different layers and modules of the CEC driver,
DRM, HDMI/HDCP controller driver, EDID, and eARC driver modules.

8.3 Low-power voice solution

8.3.1 Introduction

The Cortex-M core on the i.MX 8M Plus, i.MX 8M Mini and i.MX 93 platforms can be
used in an AsymmetricMultiprocessing (AMP) architecture for a low-power voice UI
solution.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
73 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Thevoice activity detection and wake work engine shall use the lowest power core of the
i.MX 8M and i.MX 93, so that the Cortex-A cluster and related peripherals can remain in
sleep mode for most of the “active listening” time.

Upon successful detection of a wake word, the Cortex-M core shall wake up the Cortex-A
domain for better acoustic performance and further voice processing.

There are three components needed for this solution:

• Audio Front End (AFE)
• Linux drivers
• Cortex-M Image

Note: The Cortex-M image for i.MX 93 is not available yet.

Figure 4. Low power voice solution architecture

8.3.2 Standard voice solution

In addition to the low-power voice solution described in the previous section, a standard
voice solution is also available. This solution does not leverage a Cortex-M image and
therefore takes the microphone and speaker inputs/outputs directly from the Linux kernel
(through drivers and the ALSA library). It also leverages VIT wake word detection engine
(in place of VoiceSpot in the low-power voice solution).

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
74 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Figure 5. Standardvoice solution architecture

8.3.3 Audio Front End (AFE)

To precisely detect human language, the audio signal from the microphone must
be clean, without echo, noise, or other disturbances. To achieve this, a microphone
array is typically used, with multiple, (usually) interleaved microphone signals input
to the embedded device. Such a compound signal is then fed into a signal processor
(commonly known as an Audio Front End), which filters out the noise, echo, and other
disturbances. The output from the signal processor is then the desired single channel,
clean microphone audio, which is used for further processing (wake-word detection and
natural language processing).

To interface audio with the Linux OS, the Advanced Linux Sound Architecture (ALSA)
library is used. The following figure shows the audio architecture.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
75 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Figure 6. Audio front end architecture

The AFE code is on GitHub: https://github.com/nxp-imx/nxp-afe/, Git tag:
lf-5.15.52-2.1.0.

The AFE deliveries are in Yocto rootfs/unit_tests/nxp-afe/ and /usr/lib/
nxp-afe/.

• /unit_tests/nxp-afe/afe: The main application of the AFE
• /unit_tests/nxp-afe/TODO.md: User guide document
• /unit_tests/nxp-afe/asound.conf: Used for i.MX 8M Mini default dtb
• /unit_tests/nxp-afe/asound.conf_imx8mp: Used for i.MX 8M Plus default dtb
• /unit_tests/nxp-afe/asound.conf_rpmsg_imx8mm: Used for i.MX 8M Mini

RPMsg dtb
• /unit_tests/nxp-afe/asound.conf_rpmsg_imx8mp: Used for i.MX 8M Plus

RPMsg dtb
• . /unit_tests/nxp-afe/asound.conf_imx93: Used for i.MX 93 default dtb
• /usr/lib/nxp-afe/libdummyimpl.so: Dummy signal processor
• /usr/lib/nxp-afe/libdummyimpl.so.2.0: Dummy signal processor

In addition to the AFE, the Yocto BSP integrates VoiceSeeker (a multi-microphone voice
control audio front-end signal processing solution), VoiceSpot (a small memory and MIPS
profile wake word engine supporting the "Hey NXP" voice trigger word), and VIT for local
voice command recognition. These deliveries are available on GitHub: https://github.com/
nxp-imx/imx-voiceui. This contains:

• VoiceSeeker_wrapper folder contains the code used for generating the shared
library used by the AFE wrapper. Check the TODO.md in the nxp-afe repository..

• Voice_UI_Test_app folder contains the code used for generating the voice UI
application called "voice_ui_app". This application contains the VoiceSpot wake-
word engine and VIT for local voice command recognition. This application uses the
output of the AFE for voice detection (wake-word and voice commands).

See the README file in this GitHub repository, which explains how to build the
VoiceSeeker library and the Voice UI Test application. Once these are built, the user shall
copy the following files to Yocto rootfs:

• Copy release/Config.ini to /unit_tests/nxp-afe/.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
76 / 129

https://github.com/nxp-imx/nxp-afe/
https://github.com/nxp-imx/imx-voiceui
https://github.com/nxp-imx/imx-voiceui

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Copy release/HeyNXP_1_params.bin to /unit_tests/nxp-afe/.
• Copy release/HeyNXP_en-US_1.bin to /unit_tests/nxp-afe/.
• Copy release/libvoiceseekerlight.so.2.0 to /usr/lib/nxp-afe/
libvoiceseekerlight.so.2.0, symbol link libvoiceseekerlight.so to
libvoiceseekerlight.so.2.0.

• Copy release/voice_ui_app to /unit_tests/nxp-afe/.

After this, follow the steps in /unit_tests/nxp-afe/TODO.md to perform a test. The
typical test method is as follows:

• ./voice_ui_app &
• ./afe libvoiceseekerlight &
• aplay test.wav &
• arecord -d10 -fS32_LE -r16000 -c1 voiceseeker_afe_on.wav

The voice_ui_app binary enables the following VIT commands:

• MUTE
• NEXT
• SKIP
• PAIR DEVICE
• PAUSE
• STOP
• POWER OFF
• POWER ON
• PLAY MUSIC
• PLAY GAME
• WATCH CARTOON
• WATCH MOVIE

When users say "Hey NXP, power on", the "Hey NXP" wakes up the system, and the
"power on" command is detected.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
77 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

There is a configuration file called Config.ini through which user can choose the
wake-word engine, select the VIT language or implement other settings. It is a part of the
standard voice solution.

$ cat /unit_tests/nxp-afe/Config.ini
[AFEConfig]
WWDectionDisable = 0
WakeWordEngine = VoiceSpot
DebugEnable = 0
RefSignalDelay = 3211
mic0 = 35.0, 15.15, 0.0
mic1 = 17.5, -15.15, 0.0
mic2 = -17.5, -15.15, 0.0
mic3 = -35.0, 15.15, 0.0
VoiceSpotModel = HeyNXP_en-US_1.bin
VoiceSpotParams = HeyNXP_1_params.bin
VITLanguage = English

• WWDectionDisable
Disables/Enables the wake-word and command detection.
– 0 - By default, enables the wake-word and command detection.
– 1 - Disables wake-word and command detection. voice_ui_app does not work.

• WakeWordEngine
This configuration depends on setting WWDectionDisable to 0. Selects if the
voice_ui_app uses VoiceSpot or VIT for wake-word detection.
– VoiceSpot - By default, use VoiceSpot to detect the wake-word.
– VIT - Use VIT to detect wake-word.

• DebugEnable
– 0 - By default, no debug recordings are made.
– 1 - Enables recording the AFE input/output streams for debugging and tuning the
RefSignalDelay.

• RefSignalDelay
Used to calibrate the reference signal delay when using VoiceSeeker’s Acoustic Echo
Cancellation (AEC). The AEC enabled library is delivered with controlled access
through Flexera. Please contact voice@nxp.com for more information.

• Mic coordinates
XYZ coordinates of the microphones in millimeters. The origin of the coordinate axis
can be chosen as convenient.

• VoiceSpotModel/VoiceSpotParams
The two parameters depend on setting WakeWordEngine to "VoiceSpot". They are
used to specify the wake-word model and parameters used by VoiceSpot.

• VITLanguage
This configuration depends on setting WakeWordEngine to "VIT". Selects the VIT
language used to detect the wake-word and commands.
– English - By default, uses English.
– Mandarin - If set, available VIT wake-words and commands are listed in Mandarin.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
78 / 129

mailto:voice@nxp.com

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Notes on VIT model:
– VIT Wake-word and commands can be updated with generating new VIT Model

thanks to the VIT Model generation online tool.
– To have the new VIT Model considered by the application, the VIT model has

be updated in ./vit/i.MX8M_A53/Lib/ or /vit/i.MX9X_A55/Lib/ and
Voice_ui_app recompiled.

– Same VIT model is used by the Voice_ui_app in low power or standard
configuration. In the low power configuration, since VIT is used in voice commands
mode only, VIT wake-word information is not considered by the VIT engine.

8.3.4 Linux drivers

Theprimary Linux drivers used by the voice solutions are as follows:

• Loopback sound card: sound/drivers/aloop.c
• RPMsg sound card:

– sound/soc/fsl/fsl_rpmsg.c
– sound/soc/fsl/imx-pcm-rpmsg.c
– sound/soc/fsl/imx-rpmsg.c

8.3.5 Cortex-M Image

8.3.5.1 Application name

There are two different Cortex-M applications:

• low_power_voice, where Cortex-M runs the VIT LPVAD algorithm. When the
Linux OS is suspended, Cortex-M wakes up the Linux OS as soon as voice activity is
detected.

• low_power_wakeword using VoiceSeeker and VoiceSpot. The Linux OS is resumed
only when the “Hey NXP” wake-word is recognized.

Both applications are provided for i.MX 8M Mini and i.MX 8M Plus. This results in the
application names below:

• imx8mm_m4_TCM_low_power_voice.bin
• imx8mm_m4_TCM_low_power_wakeword.bin
• imx8mp_m7_TCM_low_power_voice.bin
• imx8mp_m7_TCM_low_power_wakeword.bin

8.3.5.2 Board setup

To set up the board, perform the following steps:

1. Ensure the appropriate Cortex-M application is copied to the “boot” partition of your
SD Card. The low_power_voice and low_power_wakeword applications should
already exist from the public Yocto builds.

2. Boot the board, stop in U-Boot prompt, and run the commands below:
a. Chose the appropriate device tree:

• i.MX 8M Mini:

setenv fdtfile imx8mm-evk-rpmsg-wm8524-lpv.dtb

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
79 / 129

https://vit.nxp.com/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• i.MX 8M Plus:

setenv fdtfile imx8mp-evk-rpmsg-lpv.dtb

b. Load the Cortex-M image from Flash to TCM and boot the core before booting
the Linux OS.

setenv lpv 'fatload mmc 1:1 0x48000000 <application_name>;
 cp.b 0x48000000 0x7e0000 0x40000; bootaux 0x7e0000;'
setenv bootcmd 'run lpv;'${bootcmd}

c. Save the changes above.

saveenv

3. Reboot the board, and the Cortex-M will be automatically started before the Linux
OS. This can be checked on the Cortex-M console.

4. Apply the appropriate ALSA configuration. After the Linux OS has booted, from the
console:
• i.MX 8M Mini:

cp /unit_tests/nxp-afe/asound.conf_rpmsg_imx8mm /etc/
asound.conf

• i.MX 8M Plus:

cp /unit_tests/nxp-afe/asound.conf_rpmsg_imx8mp /etc/
asound.conf

• Reboot to apply the changes above.
5. Before starting any audio application, e.g., arecord, aplay, afe, load the audio

loopback driver. From a Linux OS console:

modprobe snd-aloop

8.3.5.3 Execution

Once started, users have no direct actions to control the Cortex-M application. It
automatically executes appropriate actions according to the Linux state:

• When Linux OS is active: The Cortex-M application is acting as a data pump, getting
audio data from the microphones and providing them to ALSA drivers through RPMsg.

• When Linux OS is suspended: Audio data are processed locally on Cortex-M (by either
VIT LPVAD or VoiceSeeker/VoiceSpot). The data is also stored in a ring-buffer. Once
voice or the wake-word is detected (depending on the application), the Linux OS is
automatically resumed, data from the ring buffer is sent to ALSA (so the Linux OS also
gets the wakeword), and then the data-pump is re-started.

• Suspending Linux OS: Cortex-M only has the possibility to resume the Linux OS, not
to suspend it. Instead, the Linux OS should be suspended by user-space action (the
decision to suspend cannot be based only on voice. It should also consider all the other
potential user applications running on the Linux OS). For test purposes, this can be
forced by the user by entering the following command to the Linux console.

echo mem > /sys/power/state

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
80 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

8.3.6 Power consumption notes

These applications using the public Yocto release demonstrate the voice UI mechanism
described above to suspend the Linux OS and wake up on voice activity or a wakeword,
but they still have a much higher power consumption than expected.

Some changes are required in both the Cortex-M application and the Yocto image to
achieve as low as possible power consumption during the “Linux suspended” state. They
are delivered with controlled access through Flexera. For more information, contact your
NXP representative.

9 Graphics

There are a number of graphics tools, tests, and example programs that are built and
installed in the Linux rootfs. There are some variation on what is included based on
the build and packages selected, the board, and the backend specified. This section
describes some of them.

The kernel module version of graphics used on the system can be found by running the
following command on the board:

dmesg | grep Galcore

The user-side GPU drivers version of graphics can be displayed using the following
command on the board:

grep VERSION /usr/lib/libGAL*

When reporting problems with graphics, this version number is needed.

9.1 imx-gpu-sdk
This graphics package contains source for several graphics examples for OpenGLES
2.0 and OpenGLES 3.0 APIs for X11, Framebuffer, and XWayland graphical backends.
These applications show that the graphics acceleration is working for different APIs.
The package includes samples, demo code, and documentation for working with the
i.MX family of graphic cores. More details about this SDK are in the i.MX Graphics
User's Guide. This SDK is only supported for hardware that has OpenGLES hardware
acceleration.

9.2 G2D-imx-samples
The G2D Application Programming Interface (API) is designed to make it easy to use and
understand the 2D BLT functions. It allows the user to implement customized applications
with simple interfaces. It is hardware and platform independent when using 2D graphics.

The G2D API supports the following features and more:

• Simple BLT operation from source to destination
• Alpha blend for source and destination with Porter-Duff rules
• High-performance memory copy from source to destination
• Up-scaling and down-scaling from source to destination
• 90/180/270 degree rotation from source to destination
• Horizontal and vertical flip from source to destination

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
81 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Enhanced visual quality with dither for pixel precision-loss
• High performance memory clear for destination
• Pixel-level cropping for source surface
• Global alpha blend for source only
• Asynchronous mode and synchronization
• Contiguous memory allocator
• VG engine

The G2D API document includes the detailed interface description and sample code for
reference. The API is designed with C-Style code and can be used in both C and C++
applications.

The G2D is supported on all i.MX. The hardware that supports G2D is described
below. For more details, see the Frame Buffer information in the i.MX Release Notes
(IMXLXRN) to check which hardware is used for G2D.

• For i.MX 6 with GPU, the G2D uses the 2D GPU.
• For i.MX with PXP, the G2D uses the PXP with limited G2D features.

The following is the directory structure for the G2D test applications located under /opt.

• g2d_samples
– g2d_test

– g2d_overlay_test
– g2d_multiblit_test

9.3 viv_samples
The directory viv_samples is found under /opt. It contains binary samples for
OpenGL ES 1.1/2.0 and OpenVG 1.1.

The following are the basic sanity tests, which help to make sure that the system is
configured correctly.

• cl11: This contains unit tests and FFT samples for OpenCL 1.1 Embedded Profile.
OpenCL is implemented on the i.MX 6Quad, i.MX 6QuadPlus, and i.MX 8 boards.
– – UnitTest

– clinfo
– loadstore
– math
– threadwalker
– test_vivante

– functions_and_kernels
– illegal_vector_sizes
– initializers
– multi_dimensional_arrays
– reserved_data_types
– structs_and_enums
– unions

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
82 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

– unsupported_extensions
– fft

• es20: This contains tests for Open GLES 2.0.
– vv_launcher

– coverflow.sh
– vv_launcher

• tiger: A simple OpenVG application with a rotating tiger head. This is to demonstrate
OpenVG.

• vdk: Contains sanity tests for OpenGL ES 1.1 and OpenGL ES 2.0.

The tiger and VDK tests show that hardware acceleration is being used. They will not run
without it.

9.4 Qt 6
Qt 6 is built into the Linux image in the Yocto Project environment with the command
bitbake imx-image-full. For more details on Qt enablement, check out
the README in the meta-imx repo and the i.MX Yocto Project User's Guide
(IMXLXYOCTOUG).

10 Security

The i.MX platforms define a series of security acceleration subsystems.

10.1 CAAM kernel driver

10.1.1 Introduction

The Linux kernel contains a Scatterlist Crypto API driver for the NXP CAAM security
hardware block. It integrates seamlessly with in-kernel crypto users, such as DM-Crypt,
Keyctl, in a way that any disk encryption and key management suites will automatically
use the hardware to do the crypto acceleration. CAAM hardware is known in Linux
kernel as 'caam', after its internal block name: Cryptographic Accelerator and Assurance
Module.

There are several HW interfaces ("backends") that can be used to communicate (for
example, submit requests) with the engine, their availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted
on DPAA2 SoCs).
Its main purpose is debugging (such as single-stepping through descriptor commands),
though it is used also for RNG initialization.

• Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there
are 4 rings.
Note:
There are cases when fewer rings are accessible or visible in the kernel, for example,
when firmware like Trusted Firmware-A (TF-A) reserves one of the rings.

On top of these backends, there are the "frontends" - drivers that sit between the Linux
Crypto API and backend drivers. Their main tasks aim to:

• Register supported crypto algorithms.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
83 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Process crypto requests coming from users (through the Linux Crypto API) and
translate them into the proper format understood by the backend being used.

• Forward the CAAM engine responses from the backend being used to the users.

To use a specific implementation, it is possible to ask for it explicitly by using the specific
(unique) "driver name" instead of the generic "algorithm name". See official Linux
Kernel Crypto API documentation (section Crypto API Cipher References And Priority).
Currently, the default priority is 3000 for JRI frontend.

Figure 7. Kernel CAAM Driver Architecture

10.1.2 Source files

The drivers source code is maintained in the Linux kernel source tree, under drivers/
crypto/caam.The following is a non-exhaustive list of files, mapping to CAAM (some
files have been omitted because their existence is justified only by driver logic or design).

Source File Description Module name

ctrl.[c,h] Init (global settings, RNG, power management,
etc.)

caam

desc.h HW description (CCSR registers, etc.) N/A

desc_constr.h Inline append - descriptor construction library N/A

caamalg_desc.
[c,h]

(Shared) Descriptors library (symmetric
encryption, AEAD)

caamalg_desc

caamhash_desc.
[c,h]

(Shared) Descriptors library (HASH) caamhash_desc

Table 67. Source files

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
84 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Source File Description Module name

caamrng.c RNG (runtime) N/A

caamkeyblob_desc.
[c,h]

Descriptors library (black keys and blobs) caamkeyblob_desc

jr.[c,h] JRI backend caam_jr

caamalg.c JRI frontend (symmetric encryption, AEAD) N/A

caamhash.c JRI frontend (hashing) N/A

caampkc.c, pkc_
desc.c

JRI frontend (public key cryptography) N/A

caamkeyblob.[c,h] JRI frontend (black keys and blobs) N/A

caamkeygen.c IOCTL calls for key and blob generation/import N/A

Table 67. Source files...continued

10.1.3 Module loading

CAAM backend drivers can be compiled either built-in or as modules. Frontend drivers
are linked to the backend driver. See Section Section 10.1.2 for the list of module names
and Section Section 10.1.4 for how kernel configuration looks like and a mapping
between menu entries and modules and/or functionalities enabled.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
85 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

10.1.4 Kernel configuration

The designated driver should be configured in the kernel by default for the target
platform. If unsure, check CONFIG_CRYPTO_DEV_FSL_CAAM, which is located in the
Cryptographic API -> Hardware crypto devices sub-menu in the kernel configuration.

Kernel configuration tree view option Description

---Cryptographic API --->
[*] Hardware crypto devices --->
<*>CAAM/SNVS Security Violation
 Handler (EXPERIMENTAL)
<*>Freescale CAAM-Multicore platform
 driver backend
[] Enable debug output in
 CAAM driver
<*> Freescale CAAM Job Ring
 driver backend --->
(9) Job Ring size
[] Job Ring interrupt
 coalescing
[*] Register algorithm
 implementations with the Crypto API
[*] Register hash algorithm
 implementations with Crypto API
[*] Register public key
 cryptography implementations with
 Crypto API
[*] Register caam device for
 hwrng API
[*] Register tagged key
 cryptography implementations with
 Crypto API
[] Test caam rng
[*] CAAM Secure Memory /
 Keystore API (EXPERIMENTAL)
(7) Size of each keystore
 slot in Secure Memory
<M> CAAM Secure Memory
 - Keystore Test/Example
 (EXPERIMENTAL)
<M> Freescale Job Ring UIO
 support

Enable CAAM device driver:
• Basic platform driver: Freescale

CAAM-Multicore platform driver
backend

• Backends/interfaces: Freescale
CAAM Job Ring driver backend -
 JRI

• Frontends/crypto algorithms:
symmetric encryption, AEAD,
"stitched" AEAD; Register algorithm
implementations with the Crypto
API - via JRI (caamalg driver)

• Register hash algorithm
implementations with Crypto API -
 hashing (only via JRI - caamhash
driver)

• Register public key cryptography
implementations with Crypto API -
 asymmetric/public key (only via JRI
- caampkc driver)

• Register CAAM device for hwrng
API - HW RNG (only via JRI -
 caamrng driver)

• Register algorithms supporting
tagged key and generate black keys
and encapsulate them into black
blobs

Table 68. Kernel configuration tree view

Property Type Status Description

compatible String Required fsl, sec-vX.Y
(preferred) or fsl,
secX.Y

Table 69. Device tree binding

Sample Device Tree crypto node

crypto@30000 {
 compatible = "fsl,sec-v4.0";
 fsl,sec-era = <2>;
 #address-cells = <1>;

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
86 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 #size-cells = <1>;
 reg = <0x300000 0x10000>;
 ranges = <0 0x300000 0x10000>;
 interrupt-parent = <&mpic>;
 interrupts = <92 2>;
 clocks = <&clks IMX6QDL_CLK_CAAM_MEM>,
 <&clks IMX6QDL_CLK_CAAM_ACLK>,
 <&clks IMX6QDL_CLK_CAAM_IPG>,
 <&clks IMX6QDL_CLK_EIM_SLOW>;
 clock-names = "mem", "aclk", "ipg", "emi_slow";
};

10.1.5 How to test the drivers

Crypto drivers could be validated in two modes: at boot time and at request. To enable
crypto testing feature, the kernel needs to be updated as follows.

Kernel configuration Description

--- Cryptographic API --->
[] Disable run-time self
 tests
[] Enable extra run-time
 crypto self tests
<M> Testing module

Deselect the feature that bypass crypto driver
validation. By default, Linux kernel is bypassing
crypto driver validation. Disable run-time self
tests that normally take place at algorithm
registration.
Enable extra run-time self tests of registered
crypto algorithms, including randomized fuzz
tests. This is intended for developer use only,
as these tests take much longer to run than the
normal self tests.
Enable testing module.

Table 70. Kernel configuration

Section from boot log that specify where crypto test are made (If a boot test is passing
with success, no information will be reported. For algorithms with no tests available, a
line in dmesg will be printed):

[4.647985] alg: No test for
 authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-
ecb-cipher_null-caam)
[4.661181] alg: No test for
 authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-
ecb-cipher_null-caam)
[4.671345] alg: No test for
 authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-
ecb-cipher_null-caam)
[4.681486] alg: No test for
 authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-
ecb-cipher_null-caam)
[4.691608] alg: No test for authenc(hmac(md5),cbc(aes))
 (authenc-hmac-md5-cbc-aes-caam)
[4.699802] alg: No test for
 echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam)
[4.710445] alg: No test for
 echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-
sha1-cbc-aes-caam)
[4.720488] alg: No test for authenc(hmac(sha224),cbc(aes))
 (authenc-hmac-sha224-cbc-aes-caam)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
87 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

[4.734647] alg: No test for
 echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-
hmac-sha224-cbc-aes-caam)
[4.750504] alg: No test for
 echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-
hmac-sha256-cbc-aes-caam)
[4.762468] alg: No test for authenc(hmac(sha384),cbc(aes))
 (authenc-hmac-sha384-cbc-aes-caam)
[4.771188] alg: No test for
 echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-
hmac-sha384-cbc-aes-caam)
[4.782380] alg: No test for
 echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-
hmac-sha512-cbc-aes-caam)
[4.792765] alg: No test for
 authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-
des3_ede-caam)
[4.801832] alg: No test for
 echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-
hmac-md5-cbc-des3_ede-caam)
[4.812814] alg: No test for
 echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-
hmac-sha1-cbc-des3_ede-caam)
[4.823942] alg: No test for
 echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-
authenc-hmac-sha224-cbc-des3_ede-caam)
[4.835465] alg: No test for
 echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-
authenc-hmac-sha256-cbc-des3_ede-caam)
[4.846980] alg: No test for
 echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-
authenc-hmac-sha384-cbc-des3_ede-caam)
[4.858497] alg: No test for
 echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-
authenc-hmac-sha512-cbc-des3_ede-caam)
[4.869764] alg: No test for authenc(hmac(md5),cbc(des))
 (authenc-hmac-md5-cbc-des-caam)
[4.877977] alg: No test for
 echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-
md5-cbc-des-caam)
[4.888078] alg: No test for
 echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-
sha1-cbc-des-caam)
[4.898356] alg: No test for
 echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-
hmac-sha224-cbc-des-caam)
[4.908994] alg: No test for
 echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-
hmac-sha256-cbc-des-caam)
[4.919653] alg: No test for
 echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam)
[4.930292] alg: No test for
 echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-
hmac-sha512-cbc-des-caam)
[4.940688] alg: No test for
 authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-hmac-md5-
rfc3686-ctr-aes-caam)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
88 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

[4.950372] alg: No test for
 seqiv(authenc(hmac(md5),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-md5-rfc3686-ctr-aes-caam)
[4.961281] alg: No test for
 seqiv(authenc(hmac(sha1),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha1-rfc3686-ctr-aes-caam)
[4.972281] alg: No test for
 authenc(hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-
rfc3686-ctr-aes-caam)
[4.982482] alg: No test for
 seqiv(authenc(hmac(sha224),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha224-rfc3686-ctr-aes-caam)
[4.993903] alg: No test for
 seqiv(authenc(hmac(sha256),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha256-rfc3686-ctr-aes-caam)
[5.005331] alg: No test for
 seqiv(authenc(hmac(sha384),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha384-rfc3686-ctr-aes-caam)
[5.016763] alg: No test for
 seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha512-rfc3686-ctr-aes-caam)
[5.028023] caam algorithms registered in /proc/crypto
[5.157622] caam_jr 31430000.jr2: registering rng-caam
[5.206167] caam 31400000.caam: caam pkc algorithms
 registered in /proc/crypto

10.2 Crypto algorithms support
• Algorithms supported in the Linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its
IPsec implementation, sometimes referred to as the NETKEY stack. The driver, after
registering supported algorithms with the Crypto API, is therefore used to process
per packet symmetric crypto requests and forward them to the CAAM hardware.
Since CAAM hardware processes requests asynchronously, the driver registers
asynchronous algorithm implementations with the crypto API: ahash, skcipher,
and a head with CRYPTO_ALG_ASYNC set in .cra_flags. Different combinations of
hardware and driver software version support different sets of algorithms, so searching
for the driver name in /proc/crypto on the desired target system will ensure the
correct report of what algorithms are supported.

• Authenticated Encryption with Associated Data (AEAD) algorithms
These algorithms are used in applications where the data to be encrypted overlaps,
or partially overlaps, the data to be authenticated, as is the case with IPsec and TLS
protocols. These algorithms are implemented in the driver such that the hardware
makes a single pass over the input data, and both encryption and authentication data
are written out simultaneously. The AEAD algorithms are mainly for use with IPsec ESP
(however there is also support for TLS (1.x) record layer encryption (KTLS Support)).
CAAM drivers currently supports offloading the following AEAD algorithms:
– "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-
EDE, RFC3686-CTR-AES } x HMAC-{MD-5, SHA-1,-224,-256,-384,-512}

– "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and
RFC4106-GCM-AES

• Encryption algorithms
The CAAM driver currently supports offloading the following encryption algorithms.

• Authentication algorithms

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
89 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing
algorithms.

• Asymmetric (public key) algorithms
Currently, CAAM driver supports RSA-Encrypt and RSA-Decrypt together with
pkcs1pad (rsa-caam, sha256) driver.

• Algorithms supported by CAAM drivers

root@imx8mqevk:~# cat /proc/crypto | grep caam driver :
 pkcs1pad(rsa-caam,sha256) driver : rsa-caam driver : cmac-
aes-caam driver : xcbc-aes-caam driver : md5-caam driver :
 hmac-md5-caam driver : sha256-caam driver : hmac-sha256-
caam driver : sha224-caam driver : hmac-sha224-caam driver :
 sha1-caam driver : hmac-sha1-caam driver : seqiv-authenc-
hmac-sha256-rfc3686-ctr-aes-caam driver : authenc-hmac-sha256-
rfc3686-ctr-aes-caam driver : seqiv-authenc-hmac-sha224-
rfc3686-ctr-aes-caam driver : authenc-hmac-sha224-rfc3686-
ctr-aes-caam driver : seqiv-authenc-hmac-sha1-rfc3686-ctr-aes-
caam driver : authenc-hmac-sha1-rfc3686-ctr-aes-caam driver :
 seqiv-authenc-hmac-md5-rfc3686-ctr-aes-caam driver : authenc-
hmac-md5-rfc3686-ctr-aes-caam driver : echainiv-authenc-
hmac-sha256-cbc-des-caam driver : authenc-hmac-sha256-cbc-
des-caam driver : echainiv-authenc-hmac-sha224-cbc-des-caam
 driver : authenc-hmac-sha224-cbc-des-caam driver : echainiv-
authenc-hmac-sha1-cbc-des-caam driver : authenc-hmac-sha1-
cbc-des-caam driver : echainiv-authenc-hmac-md5-cbc-des-caam
 driver : authenc-hmac-md5-cbc-des-caam driver : echainiv-
authenc-hmac-sha256-cbc-des3_ede-caam driver : authenc-
hmac-sha256-cbc-des3_ede-caam driver : echainiv-authenc-
hmac-sha224-cbc-des3_ede-caam driver : authenc-hmac-sha224-
cbc-des3_ede-caam driver : echainiv-authenc-hmac-sha1-cbc-
des3_ede-caam driver : authenc-hmac-sha1-cbc-des3_ede-caam
 driver : echainiv-authenc-hmac-md5-cbc-des3_ede-caam driver :
 authenc-hmac-md5-cbc-des3_ede-caam driver : echainiv-authenc-
hmac-sha256-cbc-aes-caam driver : authenc-hmac-sha256-cbc-
aes-caam driver : echainiv-authenc-hmac-sha224-cbc-aes-caam
 driver : authenc-hmac-sha224-cbc-aes-caam driver : echainiv-
authenc-hmac-sha1-cbc-aes-caam driver : authenc-hmac-sha1-
cbc-aes-caam driver : echainiv-authenc-hmac-md5-cbc-aes-caam
 driver : authenc-hmac-md5-cbc-aes-caam driver : authenc-hmac-
sha256-ecb-cipher_null-caam driver : authenc-hmac-sha224-ecb-
cipher_null-caam driver : authenc-hmac-sha1-ecb-cipher_null-
caam driver : authenc-hmac-md5-ecb-cipher_null-caam driver :
 gcm-aes-caam driver : rfc4543-gcm-aes-caam driver : rfc4106-
gcm-aes-caam driver : ecb-arc4-caam driver : ecb-des3-caam
 driver : tk-ecb-aes-caam driver : ecb-aes-caam driver : ecb-
des-caam driver : rfc3686-ctr-aes-caam driver : ctr-aes-caam
 driver : cbc-des-caam driver : cbc-3des-caam driver : tk-cbc-
aes-caam driver : cbc-aes-caam root@imx8mqevk:~#

10.3 CAAM Job Ring backend driver specifications
CAAM Job Ring backend driver (caam_jr) implements and uses the job ring interface
(JRI) for submitting crypto API service requests from the frontend drivers (caamalg,
caamhash, caampkc, caamrng, caamkeyblob) to CAAM engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt
coalescing. They can be used to fine-tune performance for a particular use case.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
90 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The option Freescale CAAM Job Ring driver backend enables the Job Ring backend
(caam_jr). The sub-option Job Ring Size allows the user to select the size of the
hardware job rings. If requests arrive at the driver enqueue entry point in a bursty nature,
the bursts' maximum length can be approximated. The user can set the greatest burst
length to save performance and memory consumption.

The sub-option Job Ring interrupt coalescing allows the user to select the use of the
hardware's interrupt coalescing feature. Note that the driver already performs IRQ
coalescing in software, and zero-loss benchmarks have in fact produced better results
with this option turned off. If selected, two additional options become effective:

• Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD)
Device Drivers. Selects the value of the descriptor completion threshold, in the range
1-256. A selection of 1 effectively defeats the coalescing feature, and any selection
equal or greater than the selected ring size will force timeouts for each interrupt.

• Job Ring interrupt coalescing timer threshold
(CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD) Selects the value of the completion
timeout threshold in multiples of 64 CAAM interface clocks, to which, if no new
descriptor completions occur within this window (and at least one completed job is
pending), then an interrupt will occur. This is selectable in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers
to register their algorithm capabilities with the corresponding APIs. They should be
deselected only when the purpose is to perform Crypto API requests in software (on the
GPPs) instead of offloading them on CAAM engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of
the application may be such that it prefers software (core) crypto latency due to many
small-sized requests.

caampkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an
alternate source of entropy available to the kernel.

caamkeyblob frontend (algorithms supporting tagged key) can be turned off if tagged
keys or blobs are not used.

10.3.1 Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also
ensure the hardware is doing the crypto by looking for driver messages in dmesg. The
driver emits console messages at initialization time:

[1.830397] caam 30900000.crypto: device ID =
 0x0a16040100000000 (Era 9)
[1.837113] caam 30900000.crypto: job rings = 2, qi = 0
[1.849949] caam algorithms registered in /proc/crypto
[1.855972] caam 30900000.crypto: caam pkc algorithms
 registered in /proc/crypto
[1.865564] caam_jr 30901000.jr: registering rng-caam
[1.870766] Device caam-keygen registered

If the messages are not present in the logs, either the driver is not configured in the
kernel, or no CAAM compatible device tree node is present in the device tree.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
91 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

10.3.2 Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the CAAM hardware will fire
completion notification interrupts on the corresponding Job Ring:

root@imx8qxpmek:~# cat /proc/interrupts | grep jr
418: 1059 0 0 0 GICv3 485
 Level 31430000.jr2
419: 21 0 0 0 GICv3 486
 Level 31440000.jr3
root@imx8qxpmek:~#

If the number of interrupts fired increment, then the hardware is being used to do the
crypto. If the numbers do not increment, then check the algorithm being exercised is
supported by the driver. If the algorithm is supported, there is a possibility that the driver
is in polling mode (NAPI mechanism) and the hardware statistics in debugfs (inbound/
outbound bytes encrypted/protected - see below) should be monitored.

10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for
the algorithm with the kernel crypto API:

name : cbc(des)
driver : cbc-des-caam
module : kernel
priority : 3000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 8
min keysize : 8
max keysize : 8
ivsize : 8
geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the
driver, the kernel will emit messages saying which algorithms weren't tested, and mark
them as 'passed' anyway:

[4.647985] alg: No test for
 authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-
ecb-cipher_null-caam)
[4.661181] alg: No test for
 authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-
ecb-cipher_null-caam)
[4.671345] alg: No test for
 authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-
ecb-cipher_null-caam)
[4.681486] alg: No test for
 authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-
ecb-cipher_null-caam)

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
92 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

10.4 OpenSSL offload
The Secure Socket Layer (SSL) protocol is the most widely deployed application
protocol to protect data during transmission by encrypting the data using commonly used
cipher algorithms such as AES, DES and 3DES. Apart from encryption, it also provides
message authentication services using hash/digest algorithms such as SHA1 and MD5.
SSL is widely used in application web servers (HTTP) and other applications such as
SMTP POP3, IMAP, and Proxy servers, where protection of data in transit is essential
for data integrity. There are various versions of SSL protocol such as TLSv1.0, TLSv1.1,
TLSv1.2, TLSv1.3, and DTLS (Datagram TLS). This document describes NXP SSL
acceleration solution on i.MX platforms using OpenSSL:

• OpenSSL software architecture
• Building OpenSSL with hardware offload support
• Examples of OpenSSL Offloading

10.4.1 OpenSSL software architecture

The SSL protocol is implemented as a library in OpenSSL - the most popular library
distribution in Linux and BSD systems. The OpenSSL library has several sub-
components such as:

• SSL protocol library
• SSL protocol library Crypto library (Symmetric and Asymmetric cipher support, digest

support, etc.)
• Certificate Management

The following figure presents the general interconnect architecture for OpenSSL. Each
relevant layer is represented with a clear separation between Linux User Space and
Linux Kernel Space.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
93 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Figure 8.  OpenSSL Software stack architecture

10.4.2 OpenSSL's ENGINE interface

OpenSSL Crypto library provides Symmetric and Asymmetric (PKI) cipher support that is
used in a wide variety of applications such as OpenSSH, OpenVPN, PGP, IKE, and XML-
SEC. The OpenSSL Crypto library provides software support for:

• Cipher algorithms
• Digest algorithms
• Random number generation
• Public Key Infrastructure

Apart from the software support, the OpenSSL can offload these functions to hardware
accelerators through the ENGINE interface. The ENGINE interface provides callback
hooks that integrate hardware accelerators with the crypto library. The callback hooks

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
94 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

provide the glue logic to interface with the hardware accelerators. Generic offloading of
cipher and digests algorithms through Linux kernel is possible with cryptodev engine.

10.4.3 NXP solution for OpenSSL hardware offloading

The following layers can be observed in NXP's solution for OpenSSL hardware
offloading:

• OpenSSL (user space): implements the SSL protocol
• cryptodev-engine (user space): implements the OpenSSL ENGINE interface; talks

to cryptodev-linux (/dev/crypto) through ioctls, offloading cryptographic
operations in the kernel

• cryptodev-linux (kernel space): Linux module that translates ioctl requests from
cryptodev-engine into calls to Linux Crypto API

• AF_ALG is a netlink-based in the kernel asynchronous interface that adds an AF_ALG
address family introduced in 2.6.38.

• Linux Crypto API (kernel space): Linux kernel crypto abstraction layer
• CAAM driver (kernel space): Linux device driver for the CAAM crypto engine

The following are offloaded in hardware in current BSP:

• Symmetric Ciphering operations - AES (CBC, ECB), 3DES (CBC, ECB)
• Digest Operations - SHA (1, 256, 384, 512), MD5
• Public Key Operations - RSA Sign (1k, 2k, 4k) / RSA Verify (1k, 2k, 4k)

10.4.4 Deploying OpenSSL into rootfs

Typically, the imx-image-full includes the OpenSSL and cryptodev modules, but for other
Yocto targets, users need to update the conf file from the build directory. Update conf/
local.conf by adding the following line:

CORE_IMAGE_EXTRA_INSTALL+="cryptodev-module openssl-bin"

Restart the build procedure:

bitbake imx-image-full

10.4.5 Running OpenSSL benchmarking tests with cryptodev engine

Probe the cryptodev-module:

root@imx8qxpmek:~# modprobe cryptodev
[17044.896494] cryptodev: driver 1.10 loaded.
root@imx8qxpmek:~# openssl engine
(devcrypto) /dev/crypto engine
(dynamic) Dynamic engine loading support
root@imx8qxpmek:~#

Note:

Starting from OpenSSL 1.1.1, the cryptodev engine is invoked by OpenSSL by default
if the corresponding module has been inserted in the kernel. Thus to perform only SW
benchmark test using OpenSSL, remove the cryptodev module by running rmmod
cryptodev.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
95 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

In the speed test file, a series of performance tests are made to check the performance
of the symmetric and digest operations. The following is described in the OpenSSL test
execution:

root@imx8qxpmek:~# openssl speed -engine devcrypto -multi 8 -elapsed -evp
 aes-128-cbc
Forked child 1
engine "devcrypto" set.
Forked child 2
engine "devcrypto" set.
...
Got: +F:22:aes-128-
cbc:378616.72:1611328.00:5084501.33:13994666.67:10731793.98:16219060.40 from 6
Got: +H:16:64:256:1024:8192:16384 from 7
Got: +F:22:aes-128-
cbc:120773.33:9344.00:3088298.67:13588480.00:31642965.33:16471967.79 from 7
OpenSSL 1.1.1b 26 Feb 2019
built on: Thu Nov 14 13:22:07 2019 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) idea(int) blowfish(ptr)
compiler: aarch64-poky-linux-gcc --sysroot=recipe-sysroot -O2 -pipe -g -
feliminate-unused-debug-types -fmacro-prefix-map=
-fdebug-prefix-map= -fdebug-prefix-map= -fdebug-prefix-map= -
DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_BN_ASM_MONT
-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DVPAES_ASM -
DECP_NISTZ256_ASM -DPOLY1305_ASM -DNDEBUG
evp 2242.05k 9681.05k 35017.46k 106866.86k 127787.74k
 130077.23k
root@imx8qxpmek:~#

Additional ciphers that could be benchmarked: aes-192-cbc, aes-256-cbc,
aes-128-ecb, aes-192-ecb, aes-256-ecb, aes-128-ctr, aes-192-ctr,
aes-256-ctr, des-cbc, des-cbc, des-ede3-cbc.

Additional digests that could be benchmarked: sha1, sha224, sha256, sha384,
sha512, md5.

10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine

Execute the following commands:

Probe the af_alg:
root@imx8mmevk:~# rmmod cryptodev
root@imx8mmevk:~# modprobe af_alg
root@imx8mmevk:~# modprobe algif_hash
root@imx8mmevk:~# modprobe algif_skcipher
root@imx8mmevk:~# modprobe algif_rng
root@imx8mmevk:~# modprobe algif_aead

10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

Execute the following command:

root@imx8mmevk:~# openssl speed -engine afalg -multi 8 -elapsed -evp aes-128-
cbc
Forked child 0
Forked child 1
engine "afalg" set.
+DT:aes-128-cbc:3:16
engine "afalg" set.
engine "afalg" set.
engine "afalg" set.
...
Got: +H:16:64:256:1024:8192:16384 from 0

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
96 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Got: +F:22:aes-128-
cbc:333888.00:1359317.33:4248405.33:5720064.00:6160384.00:6176768.00 from 0
Got: +H:16:64:256:1024:8192:16384 from 1
Got: +F:22:aes-128-
cbc:378336.00:1382826.67:5117269.33:5739178.67:6190421.33:6176768.00 from 1
...
OpenSSL 1.1.1k 25 Mar 2021
built on: Thu Mar 25 13:28:38 2021 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) blowfish(ptr)
compiler: aarch64-poky-linux-gcc -mcpu=cortex-a53 -march=armv8-a+crc+crypto
 -fstack-protector-strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security
 -Werror=format-security --sysroot=recipe-sysroot -O2 -pipe -g -feliminate-
unused-debug-types -fmacro-prefix-map= -fdebug-prefix-
map= -fdebug-prefix-map= -fdebug-
prefix-map= -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -
DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -
DVPAES_ASM -DECP_NISTZ256_ASM -DPOLY1305_ASM -DNDEBUG
evp 2682.45k 10842.73k 35957.50k 45915.48k 49722.71k
 50135.04k

10.4.7 Running OpenSSL asymmetric tests with PKCS#11 based engine

Prerequisites:

1. For running the PKCS#11 OpenSSL Engine with our PKCS#11 Library, add
the following into your global OpenSSL configuration file (often in /etc/ssl/
openssl.cnf).
This line must be placed at the top, before any sections are defined:

openssl_conf = openssl_init

Make sure there are no other openssl_conf = ... lines in the file.
This should be added to the bottom of the file:

[openssl_init]
engines=engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
engine_id = pkcs11
dynamic_path = /usr/lib/engines-3/pkcs11.so
MODULE_PATH = /usr/lib/libckteec.so.0
init = 0

The dynamic_path value is the PKCS#11 engine plug-in, and the MODULE_PATH
value is the NXP PKCS#11 library. The engine_id value is an arbitrary identifier for
OpenSSL applications to select the engine by the identifier.

2. Make sure tee-supplicant is running.

root@imx8mpevk:~# ps -aux | grep tee
root 661 0.0 0.0 76424 1432 ? Ssl May27
 0:00 /usr/bin/tee-supplicant

If it is not running, run the following command:

root@imx8mpevk:~# tee-supplicant &

10.4.7.1 Running p11tool to generate key (RSA or EC)

root@imx8mpevk:~# mkdir /etc/gnutls
root@imx8mpevk:~# echo load=`find /usr/lib -name
 libckteec.so.0` > /etc/gnutls/pkcs11.conf
root@imx8mpevk:~# p11tool --list-tokens

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
97 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

root@imx8mpevk:~# p11tool --initialize "<token url>" --
label="<token label>"
Enter Security Officer's PIN:
root@imx8mpevk:~# p11tool --list-tokens
root@imx8mpevk:~# p11tool --initialize-pin "<token url>"
Setting user's PIN...
Enter User's new PIN:
Token <toke label> with URL <token url> requires security
 officer PIN
Enter PIN:<Security Officer's PIN>

To generate an RSA key:

root@imx8mpevk:~# p11tool --login --generate-rsa --bits=2048 --
label="RSA-key-2048" --outfile="RSA-key-2048.pub" "<token url>"
 --set-pin="<user pin>"
root@imx8mpevk:~# p11tool --login --list-privkeys "<token url>"
 --set-pin="<user pin>"
Object 0:
 URL: token url private
 Type: Private key (RSA-2048)
 Label: RSA-key-2048
 Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE;
 CKA_SENSITIVE;
 ID:
 bc:8e:f3:ca:95:d6:e7:ae:57:89:43:1f:67:a3:e5:d1:05:d8:5d:66

Or to generate an EC key:

root@imx8mpevk:~# p11tool --login --generate-ecc --
curve=secp256r1 --label="ec-key-256" --outfile="ec-key-256.pub"
 "<token url>" --set-pin="<user pin>"
root@imx8mpevk:~# p11tool --login --list-privkeys "<token url>"
 --set-pin="<user pin>"
Object 0:
 URL: token url private
 Type: Private key (EC/ECDSA-SECP256R1)
 Label: ec-key-256
 Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE;
 CKA_SENSITIVE;
 ID:
 9b:54:b4:c5:88:3f:19:44:cb:b2:40:04:46:fa:a0:48:19:eb:0e:70

10.4.7.2 Using OpenSSL from command line

To generate a certificate with its key in the PKCS #11 module, use the following
commands. The first command creates a self-signed Certificate for "NXP
Semiconductor". The signing is done using the key specified by the URL.

root@imx8mpevk:~# openssl req -engine pkcs11 -new -key "<token
 url private>" -keyform engine -out req.pem -text -x509 -subj
 "/CN=NXP Semiconductor"
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
98 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The second command creates a self-signed certificate for the request. The private key
used to sign the certificate is the same private key used to create the request.

root@imx8mpevk:~# openssl x509 -engine pkcs11 -signkey "<token
 url private>" -keyform engine -in req.pem -out cert.pem
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# ls
cert.pem req.pem

10.4.7.3 Running OpenSSL test for RSA

root@imx8mpevk:~# echo "This is plain message 2021-01-18" >
 plain.text
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -encrypt -in
 plain.text -out encrypted.enc -inkey cert.pem -certin
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -decrypt -in
 encrypted.enc -out plain.dec -inkey "<token url private>" -
keyform engine
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# cat plain.text
This is plain message 2021-01-18
root@imx8mpevk:~# cat plain.dec
This is plain message 2021-01-18

10.4.7.4 Running OpenSSL test for EC

root@imx8mpevk:~# echo "This is plain message 2021-01-18" >
 plain.text
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -sign -in
 plain.text -out cert_ecc.sign -inkey "<token url private>" -
keyform engine
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# openssl pkeyutl -verify -in plain.text -
sigfile cert_ecc.sign -inkey ecc_cert.pem -certin
Signature Verified Successfully

10.5 Disk encryption acceleration
Disk encryption is a technology that protects information by converting it into unreadable
code that cannot be deciphered easily by unauthorized people. Disk encryption uses disk
encryption software or hardware to encrypt every bit of data that goes on a disk or disk
volume. It is used to prevent unauthorized access to data storage. On i.MX Applications
Processors, the disk encryption scenarios could be implemented in various ways with
different methods of key protection.

This section provides steps to run a transparent storage encryption at block level using
DM-Crypt. The figure below presents the software stack that implements disk encryption.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
99 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Figure 9. Disk Encryption use case

10.5.1 Enabling disk encryption support in kernel

By default, the kernel configuration file enables the Device Mapper configuration and
Crypt Target support as modules. Therefore, to enable disk encryption scenario, after the
board is booted up, insert the following modules:

root@imx8mqevk:/# modprobe dm-mod
[266.982638] device-mapper: ioctl: 4.41.0-ioctl (2019-09-16)
 initialised: dm-devel@redhat.com
root@imx8mqevk:/# modprobe dm-crypt
root@imx8mqevk:/# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0

If the disk encryption scenario is not enabled, some features in the kernel need to be
enabled:

Kernel Configure Tree View Options Description

< Device Drivers --->
[*] Multiple devices driver support (RAID
 and LVM) --->
<*> Device mapper support
[] Device mapper debugging support

DM Crypt support
enablement in Linux
kernel

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
100 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Kernel Configure Tree View Options Description
< > Unstriped target (NEW)
<*> Crypt target support
<*> Multipath target
[*] DM uevents

CONFIG_BLK_DEV_
DM=y

< Cryptographic API --->
<*> User-space interface for hash
 algorithms
<*> User-space interface for symmetric
 key cipher algorithms
<*> User-space interface for AEAD cipher
 algorithms

Enable user space crypto
API's to allow simple
cryptsetup benchmarks

Cryptographic API --->
[*] Hardware crypto devices --->
<*> CAAM/SNVS Security Violation Handler
 (EXPERIMENTAL)
<*> Freescale CAAM-Multicore platform
 driver backend
[] Enable debug output in CAAM driver
<*> Freescale CAAM Job Ring driver backend
 --->
[*] Register tagged key cryptography
 implementations with Crypto API

Selecting this will
register algorithms
supporting tagged key,
generate black keys and
encapsulate them into
black blobs.

10.5.2 User space tools for disk encryption

All the required user space tools needed for DM-Crypt are already installed on the board
when using Linux i.MX BSP.

If the required user space tools are not installed in the build, add them by editing the
conf/local.conf file and appending:

CORE_IMAGE_EXTRA_INSTALL+="coreutils keyutils lvm2 e2fsprogs-
mke2fs utillinux"

• keyutils: provides keyctl, which is required to manage Linux Key retention service.
• lvm2: provides dmsetup utility and libraries to manage device-mapper.
• e2fsprogs-mke2fs: contains necessary tools to create filesystems.
• util-linux: provides blockdev utility needed to read number of sectors from a volume.

10.5.3 DM-Crypt using CAAM backed keys

In Linux Unified Key Setup (LUKS) mode, to generate the disk encryption key (master
key), the user supplies a passphrase, which is combined with a salt, and then a hash
function is applied for a supplied number of rounds. When the user wants to mount an
encrypted volume, the passphrase should be supplied. An alternative could be providing
a key file stored in an external drive containing necessary decryption information. Those
approaches are not convenient with embedded devices usage.

These blobs are used to import either the plain-key or black-key from a red-blob or black-
blob, respectively.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
101 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

The aim of using DM-Crypt with:

• Trusted keys backed by CAAM
• CAAM’s tagged key, used to suppress the mechanism of encrypting the master volume

key with a key derived from a user-supplied passphrase

Linux OS provides an in-kernel key management and retention facility called Keyrings.
Keyring also enables interfaces to allow accessing keys and performing operations such
as add, update, and delete from user-space.

The kernel provides several basic types of keys including ecrypted, trusted, user, and
logon.

The CAAM driver has associated a user-space application used to generate:

• A plain key and encapsulated it into Red blob
• A tagged key and encapsulated it into a black blob

10.5.3.1 DM-Crypt with Trusted keys backed by CAAM

DM-Crypt fetches the trusted key which was generated through CAAM, from the kernel
keyring, to take advantage of CAAM state.

The key de-capsulated from Red-Blob is different for different CAAM states:

• If System is booted in secure boot with Chain-of-trust established, CAAM state is
secure state.

• If system is booted in non-secure (or compromised) state, CAAM state is non-secure
state.

Key Value add:

Data that was written in secure state using the trusted key, is not read back from non-
trusted or compromised system.

10.5.3.1.1 Usage

The following steps shows how to perform a full disk encryption on i.MX devices.

1. Insert the kernel module.

$>: modprobe trusted

2. Generate the trusted key:

$>: KEYNAME=dm_trust
$>: KEY="$(keyctl add trusted $KEYNAME 'new 32' @s)"
$>: keyctl pipe $KEY >~/$KEYNAME.blob
$>: keyctl list @s

Output:

$>: keyctl list @s
2 keys in keyring:
 48178143: ----s-rv 0 0 user: invocation_id
143779047: --alswrv 0 0 trusted: dm_trust

3. Create a secure volume. It could be a physical partition. In this example, make use of
an image file and mount it later.

$>: DEV=/dev/loop0
$>: BLOCKS=20
$>: fallocate -l $((BLOCKS*512)) ~/loop0.img

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
102 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

$>: losetup -P $DEV ~/loop0.img

4. Create the mapping table "TABLE". Where:
• Algo is set in Kernel Crypto API format to use the plain key. Algo/cipher is set to
cbc(aes)-plain.

• Key is set as the trusted key of length 32 and the name is exported as $KEYNAME.

$>: DEV=/dev/loop0
$>: ALGO=capi:cbc(aes)-plain
$>: KEYNAME=dm_trust
$>: BLOCKS=20
$>: TARGET=crypt
$>: TABLE="0 $BLOCKS $TARGET $ALGO :32:trusted:$KEYNAME 0
 $DEV 0 1 allow_discards"

5. Use dmsetup to create a new device-mapper device named encrypted for
example, and specify the mapping table "TABLE" created above, as argument.

$>: echo $TABLE | dmsetup create encrypted

6. Load the device-mapper device named encrypted created in the previous step.

$>: echo $TABLE | dmsetup load encrypted

7. Create a secure volume.

$>: dd if=/dev/zero of=/dev/mapper/encrypted || true

8. Write to the volume.

$>: echo "It works. Congratulations" 1<> /dev/mapper/
encrypted

9. Unmount the device.

$>: umount /mnt/encrypted/

10. Deactivate the device mapper device.

$>: dmsetup remove encrypted

Restart the board:

$>: reboot

11. In the next boot, insert the kernel module.

$>: modprobe trusted
Step 11: Load the trusted key:
$>: KEYNAME=dm_trust
$>: keyctl add trusted $KEYNAME "load $(cat ~/$KEYNAME.blob)"
 @s
$>: keyctl list @s

Output:

$>: keyctl list @s
2 keys in keyring:
 48178143: ----s-rv 0 0 user: invocation_id
143779047: --alswrv 0 0 trusted: dm_trust

12. Create the mapping table "TABLE". Where:
• Algo is set in Kernel Crypto API format to use the plain key. Algo/cipher is set to
cbc(aes)-plain.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
103 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• Key is set as the trusted key of length 32 and name is exported as $KEYNAME.

$>: DEV=/dev/loop0
$>: ALGO=capi:cbc(aes)-plain
$>: KEYNAME=dm_trust
$>: BLOCKS=20
$>: TARGET=crypt
$>: TABLE="0 $BLOCKS $TARGET $ALGO :32:trusted:$KEYNAME 0
 $DEV 0 1 allow_discards"

13. Mount the encrypted device.

$>: losetup -P $DEV ~/loop0.img

14. Specify the mapping table "TABLE" to encrypt the volume using dmsetup.

$>: echo $TABLE | dmsetup create encrypted
$>: echo $TABLE | dmsetup load encrypted

15. Read from the device to verify if the content is same as it was written in the previous
boot.

$>: hexdump -C /dev/mapper/encrypted

10.5.3.2 DM-Crypt with CAAM’s tagged key

DM-Crypt can also take advantages of tagged key to protect storage volumes from offline
decryption. In addition, the volume could only be opened by the devices that have the
same OTPMK burned in the fuses. For more details, see the Security Reference Manual
for specific SoC.

The tagged key feature is based on CAAM’s black key mechanism. Black key protects
user keys against bus snooping while the keys are being written to or read from memory
external to the SoC. CAAM supports two different black key encapsulation schemes,
which are AES-ECB and AES-CCM.

Regarding AES-ECB encryption, the data is a multiple of 16 bytes long and is intended
for quick decryption.

The AES-CCM mode is not as fast as AES-ECB mode, but includes a “MAC
tag” (integrity check value) that ensures the integrity of the encapsulated key. A CCM-
encrypted black key is always at least 12 bytes longer than the encapsulated key (nonce
value + MAC tag).

Black keys are session keys; therefore, they are not power-cycles safe. CAAM's blob
mechanism provides a method for protecting user-defined data across system power
cycles. It provides both confidentiality and integrity protection. The data to be protected
is encrypted so that it can be safely placed into non-volatile storage before the SoC is
powered down.

The following diagram illustrates the changes that have been added to support full
disk encryption using tagged key. The CAAM driver registers new Cryptographic
transformations in the kernel to use ECB and CBC blacken keys, tk(ecb(aes)) and
tk(cbc(aes)). The tk prefix refers to Tagged Key.

A Tagged Key is a black key that contains metadata indicating what it is and how to
handle it.

$./caam-keygen
CAAM keygen usage: caam-keygen [options]

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
104 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Options:
create <key_name> <key_enc> <key_mode> <key_val>
 <key_name> the name of the file that will contain the black
 key.
 A file with the same name, but with .bb extension, will
 contain the black blob.
 <key_enc> can be ecb or ccm
 <key_mode> can be -s or -t.
 -s generate a black key from random with the size given in
 the next argument
 -t generate a black key from a plaintext given in the next
 argument
 <key_val> the size or the plaintext based on the previous
 argument (<key_mode>)
import <blob_name> <key_name>
 <blob_name> the absolute path of the file that contains the
 blob
 <key_name> the name of the file that will contain the black
 key.

By default, the keys and blobs are created in KEYBLOB_LOCATION, which is /data/
caam/.

Later, CAAM Tagged Key is added into Linux Key Retention service and managed by
user-space application such as keyctl. Black blobs can be stored on any non-volatile
storage.

Figure 10. DM-Crypt using CAAM Tagged key - overall architecture

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
105 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Dmsetup (part of the libdevmapper package) is a powerful tool for performing very low-
level configuration and is used to manage encrypted volumes.

10.5.4 Usage

The following are the steps to perform a full disk encryption on i.MX devices.

1. After booting the device, make sure that cryptographic transformations using Tagged
Key are registered.

root@imx8mqevk:~# grep -B1 -A2 tk- /proc/crypto|grep -v
 kernel
name : tk(ecb(aes))
driver : tk-ecb-aes-caam
priority : 3000
--
name : tk(cbc(aes))
driver : tk-cbc-aes-caam
priority : 3000
root@imx8mqevk:~#

And caam-keygen application is available:

root@imx8mmevk:~# cd /; find -name "caam-keygen"
./usr/bin/caam-keygen
./dev/caam-keygen
./sys/class/misc/caam-keygen
./sys/devices/virtual/misc/caam-keygen

For now, we only support AES algorithms. Therefore, the size of the key accepted for
encryption/decryption is 16, 24, and 32 bytes.

2. Make sure DM-Crypt is enabled.

root@imx8mqevk:~# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0

If any of the above is missing, check Kernel configurations or see section Enable disk
encryption support in kernel.

3. Then, provide the device with its key, the black key, which could be created either
from a defined plain key or randomly.
Here is an example for black key encrypted with ECB, from a given plaintext of size
16 bytes:

root@imx8mqevk:~# ./caam-keygen create fromTextkey ecb -t
 0123456789abcdef

The result is a Tagged Key and a Blob files written to filesystem (the default location
is /data/caam). The used key encryption scheme is ECB.

root@imx8mqevk:~# ls -la /data/caam/
total 16
drwxr-xr-x 2 root root 4096 Aug 25 15:38 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r-- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r-- 1 root root 96 Aug 25 15:38 fromTextkey.bb

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
106 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Next, add the key in key retention service, using keyctl:

root@imx8mqevk:~# cat /data/caam/fromTextkey | keyctl padd
 logon logkey: @s
876928653

4. Create a secure volume. It could be a physical partition. In this example, make use of
an image file and mount it later.

root@imx8mqevk:~# dd if=/dev/zero of=encrypted.img bs=1M
 count=32
32+0 records in
32+0 records out
33554432 bytes (34 MB, 32 MiB) copied, 3.20227 s, 10.5 MB/s
root@imx8mqevk:~#
root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#

5. Use dmsetup to create a new device-mapper device named encrypted for example,
and specify the mapping table. The table can be provided on stdin or as argument.

root@imx8mqevk:~# dmsetup -v create encrypted --table "0
 $(blockdev --getsz /dev/loop0) crypt capi:tk(cbc(aes))-
plain :36:logon:logkey: 0 /dev/loop0 0 1 sector_size:512"
Name: encrypted
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0
Major, minor: 253, 0
Number of targets: 1

The following is a breakdown of the mapping table:
• start means encrypting begins with sector 0.
• size is the size of the volume in sectors.
• blockdev gets the number of sectors of the device.
• target is crypt.
• cipher is set in Kernel Crypto API format to use Tagged Key. cipher set to
capi:tk(cbc(aes))-plain and key set to :36:logon:logkey: leads to use
of the logon key with CAAM Tagged Key transformation.

• IV is the Initialization Vector defined to plain, initial vector, which is the 32-bit little-
endian version of the sector number, padded with zeros if necessary.

• key type is the Keyring key service type, set to Logon Key. 36 is the key size in
bytes.

• key name is the key description to identify the key to load.
• IV offset is the value to add to sector number to compute the IV value.
• device is the path to device to be used as backend; it contains the encrypted

data.
• offset represents encrypted data begins at sector 0 of the device.
• optional parameters represent the number of optional parameters.
• sector_size specifies the encryption sector size.
For more detailed options and descriptions, refer to https://gitlab.com/cryptsetup/
cryptsetup/-/wikis/DMCrypt.
The created device appears in /dev/mapper:

root@imx8mqevk:~# dmsetup table --showkey encrypted

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
107 / 129

https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

0 65536 crypt capi:tk(cbc(aes))-plain :36:logon:logkey: 0 7:0
 0

6. Create a file system on the device.

root@imx8mqevk:~# mkfs.ext4 /dev/mapper/encrypted
mke2fs 1.45.3 (14-Jul-2019)
Creating filesystem with 32768 1k blocks and 8192 inodes
Filesystem UUID: 3ba01ad8-ba03-4389-a955-5136b3173c35
Superblock backups stored on blocks:
 8193, 24577
Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information:l
 done

7. Set up a mount point.

root@imx8mqevk:~# mkdir /mnt/encrypted

8. Mount the mapped device.

root@imx8mqevk:~# mount -t ext4 /dev/mapper/encrypted /mnt/
encrypted/
[9409.936183] EXT4-fs (dm-0): mounted filesystem with
 ordered data mode. Opts: (null)
[9409.943892] ext4 filesystem being mounted at /mnt/
encrypted supports timestamps until 2038 (0x7fffffff)

9. Write to device.

root@imx8mqevk:~# echo "This is an encrypt with black
 key (ECB from text 16 bytes key size) test of full disk
 encryption on i.MX" > /mnt/encrypted/readme.txt

10. Unmount the device.

root@imx8mqevk:~# umount /mnt/encrypted/

11. Deactivate the device mapper device.

root@imx8mqevk:~# dmsetup remove encrypted

12. Restart the board.

root@imx8mqevk:~# reboot
...
root@imx8mqevk:~#

13. Import the key from blob and add it to key retention service.

root@imx8mqevk:~# ./caam-keygen import /data/caam/
fromTextkey.bb importKey
root@imx8mqevk:~# cat /data/caam/importKey | keyctl padd
 logon logkey2: @s
605536287
root@imx8mqevk:~# ls -la /data/caam/
total 20
drwxr-xr-x 2 root root 4096 Aug 25 15:47 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r-- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r-- 1 root root 96 Aug 25 15:38 fromTextkey.bb
-rw-r--r-- 1 root root 36 Aug 25 15:47 importKey

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
108 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

root@imx8mqevk:~#

14. Mount the encrypted device.

root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#

15. Specify the mapping table to encrypt the volume using dmsetup.

root@imx8mqevk:~# dmsetup -v create encrypted --table "0
 $(blockdev --getsz /dev/loop0) crypt capi:tk(cbc(aes))-
plain :36:logon:logkey2: 0 /dev/loop0 0 1 sector_size:512"
Name: encrypted
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0
Major, minor: 253, 0
Number of targets: 1

16. Mount.

root@imx8mqevk:~# mount /dev/mapper/encrypted /mnt/encrypted/
[191.961828] EXT4-fs (dm-0): mounted filesystem with
 ordered data mode. Opts: (null)
[191.969533] ext4 filesystem being mounted at /mnt/
encrypted supports timestamps until 2038 (0x7fffffff)
root@imx8mqevk:~

17. Read from the device.

root@imx8mqevk:~# cat /mnt/encrypted/readme.txt
This is an encrypt with black key (ECB from text 16 bytes key
 size) test of full disk encryption on i.MX.
root@imx8mqevk:~#

18. Unmount the device and deactivate the device mapper device.

root@imx8mqevk:~# umount /mnt/encrypted/; dmsetup remove
 encrypted

10.6 crypto_af_alg application support

10.6.1 Prerequisites

The caam-keygen application is needed to import the black key from the black blob.
Make sure that the caam-keygen application is already present at /usr/bin.

10.6.2 Building the kernel

10.6.2.1 Kernel configuration

• CONFIG_CRYPTO_USER_API
• CONFIG_CRYPTO_USER_API_HASH
• CONFIG_CRYPTO_USER_API_SKCIPHER
• CONFIG_CRYPTO_USER_API_RNG

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
109 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• CONFIG_CRYPTO_USER_API_AEAD

Get a bootable image that includes the black key support and AF_ALG socket interface
for the Linux kernel. Or build the kernel from here: https://github.com/nxp-imx/linux-imx/.

10.6.2.2 Building a toolchain

Build a toolchain to cross compile the sources of the caam-decrypt application. For
details, see the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-
a/8.2-2019.01/gcc-arm-8.2-2019.01-x86_64-aarch64-elf.tar.xz
$ tar xf gcc-arm-8.2-2019.01-x86_64-aarch64-elf.tar.xz

10.6.2.3 Cross compiling the user space sources

Set up the environment for cross compilation using the toolchain previously prepared.

1. In the toolchain folder, set up the environment.

$ export CROSS_COMPILE=<path to toolchain>/bin/aarch64-linux-
gnu-
$ export CC=${CROSS_COMPILE}gcc
$ export LD=${CROSS_COMPILE}ld

2. Build the caam-decrypt user space application. Go to the source folder and run:

$ make clean
$ make

10.6.3 Usage

After the device successfully boots with the previously generated image, caam-decrypt
can be used to decrypt an encrypted data stored in a file.

$./caam-decrypt
Application usage: caam-decrypt [options]
Options:
<blob_name> <enc_algo> <input_file> <output_file>
<blob_name> the absolute path of the file that contains the
 black blob
<enc_algo> can be AES-256-CBC
<input_file> the absolute path of the file that contains input
 data
 initialization vector(iv) of 16 bytes prepended
 size of input file must be multiple of 16
<output_file> the absolute path of the file that contains
 output data

10.6.4 Use case example

$ caam-decrypt myblob AES-256-CBC my_encrypted_file
 output_decrypted

where:

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
110 / 129

https://github.com/nxp-imx/linux-imx/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• myblob: generated black key blob. The caam-keygen application imports a black key
from the black blob. This black key is used by CAAM for decryption.

• AES-256-CBC: currently the only supported symmetric algorithm used for decryption
operation. Make sure that the encrypted data must use the same algorithm.

• my_encrypted_file: Encrypted data stored in a file. Initialization vector(iv) of 16
bytes used during encryption must be prepended to encrypted data.

AES Encrypted file format
 16 Octets - Initialization Vector (IV) is an input to
 encryption algorithm.
 nn Octets - Encrypted message (for AES-256-CBC, it must be
 multiple of 16)

• output_decrypted: contains decrypted data after successful decryption operation.

10.7 Kernel TLS offload
Linux kernel provides TLS connection offload infrastructure. Once a TCP connection is
in ESTABLISHED state, user space can enable the TLS Upper Layer Protocol (ULP) and
install the cryptographic connection state. For details regarding the user-facing interface,
refer to the TLS documentation in Kernel TLS.

10.7.1 Prerequisites

Check OpenSSL version using the following command. It must be 3.0.0 or higher.

openssl version

10.7.2 Running Kernel TLS test

On server generate RSA 2048 key, certificate and run openssl s_server:

root@imx8mmevk:~# openssl req -new -newkey rsa:2048 -nodes -
keyout rsa.key -out rsa.csr
root@imx8mmevk:~# openssl x509 -req -sha256 -days 365 -in
 rsa.csr -signkey rsa.key -out server.pem
root@imx8mmevk:~# openssl s_server -key rsa.key -cert
 server.pem -accept 443 -ssl_config ktls
Using default temp DH parameters
ACCEPT

Run openssl s_client from another terminal:

root@imx8mmevk:~# openssl s_client -quiet -connect <server
 ip>:443 -tls1_2 -ssl_config ktls -cipher 'ECDHE-RSA-AES256-
GCM-SHA384'
Connecting to <server ip>
Can't use SSL_get_servername
...
Using Kernel TLS for sending
Using Kernel TLS for receiving
<write some message and enter>

Remove -quiet to see full client logs. With TLSv1.2, the Kernel TLS supports these
ciphers:

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
111 / 129

https://jira.sw.nxp.com/browse/AES-256
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

• AES128-GCM-SHA256
• AES256-GCM-SHA384
• ECDHE-RSA-AES128-GCM-SHA256
• ECDHE-RSA-AES256-GCM-SHA384

10.8 IMA/EVM on i.MX SoCs
Integrity Measurement Architecture (IMA): is the Linux integrity subsystem used
to detect if files have been accidentally or maliciously altered. It appraises a file's
measurement against a "good" value stored as an extended attribute (security.ima)
and enforces local file integrity checks. The extended attribute (security.ima) of a file
is the hash value (SHA-1, SHA-256, or SHA-512) of its content. IMA maintains a list of
hash values over all executables and other sensitive system files loaded at runtime into
the system.

Extended Verification Module (EVM): protects a file’s extended attributes
against integrity attacks. The extended security attribute (security.evm) stores
the HMAC value over other extended attributes associated with the file such as
security.selinux, security.SMACK64, and security.ima.

EVM depends on the kernel key retention system and requires an encrypted key named
evm-key for the HMAC operation. The key is loaded onto the root user keyring using
keyctl utility. EVM is enabled by setting an enable flag in securityfs/evm file.

In normal secure boot process, contents of root file system mounted over persistent
storage device are not validated by any mechanism and hence cannot be trusted.
Any malicious changes in non-trusted rootfs contents are undetected. IMA EVM is the
Linux standard mechanism to verify the integrity of the rootfs. Integrity checks over file
attributes and its contents are performed by Linux IMA EVM module before its execution.
IMA EVM depends on encrypted key loaded on user’s keyring. Loading keys to root user
keyring and enabling EVM is typically done using initramfs image. The initramfs image
is validated using secure boot process and becomes the part of chain of trust. Initramfs
switches control to main rootfs mounted over storage device, after EVM is successfully
enabled on the system.

10.8.1 EVM Key on user keyrings

The EVM security attribute depends on an encrypted key (named evm-key) loaded on
the user keyring. The encrypted key is derived by the kernel using the master key. The
master key can be of the following types:

• User-Key
• Secure-Key
• Trusted-Key

Secure and trusted keys are derived using a hardware security engine for greater
security while the security of user-key depends on the user-defined mechanisms
irrespective of the hardware. The secure-key is derived using the Layerscape's SEC (aka
CAAM). The trusted-key can be used on the platforms supporting TPM.

The encrypted key acts as an HMAC key, which is subsequently used to calculate the
HMAC value (security.evm) over other security attributes. This key is stored internally
by the kernel and user can only see its blob.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
112 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

10.8.2 Modes of operation in IMA EVM

IMA/EVM is enabled in two modes:

• Fix mode
• Enforce mode

To enable a system with IMA EVM, both modes must be implemented in a sequence as
described below:

1. The system needs to be booted in fix mode with ima_appraise=fix and evm=fix
bootargs. After loading the keys on the root keyring, the entire file system is labelled
with security attributes. In fix mode, any file with INTEGRITY_UNKNOWN is labelled
with proper attribute values. This mode must be executed only once while preparing
system for field deployment.

2. After the fix mode execution is completed successfully, system needs to
be booted IMA EVM in enforce mode. Enforce mode is enabled by setting
ima_appraise=enforce bootargs. In enforce mode, the files are measured
against their “good” values. In case there is a mismatch between calculated security
attribute value and stored value, access to that file is denied. While in field the
system boot is done in enforce mode only.

10.8.3 Build Steps

Follow instructions mentioned in https://bitbucket.sw.nxp.com/projects/IMX/repos/meta-
imx-integrity/browse for building initramfs.

1. After building integrity-image-minimal-<board-name>-<build_
no>.rootfs.tar.zst, extract tar.zst.

2. Convert the extracted directory into CPIO file using the following command:

find . | cpio -H newc -o > ../<rootfs_name>.cpio

3. Gzip the built rootfs above using the following command:

gzip ../<rootfs_name>.cpio

4. Convert gzipped rootfs into Ramdisk file using the following command:

mkimage -A arm -O linux -T ramdisk -d <gzipped_rootfs>
 <Ramdisk_name>

5. Flash the kernel image, dtb file, and Ramdisk file on the i.MX board.
6. For fix mode, add the following bootargs to the current bootargs:

rootwait rw lsm=integrity rootflags=i_version
 ima_appraise=fix ima_policy=appraise_tcb evm=fix
 initrd=<Ramdisk path>

7. For enforce mode, add the following bootargs to the current bootargs:

rootwait rw lsm=integrity rootflags=i_version
 ima_appraise_tcb ima_appraise=enforce initrd=<Ramdisk path>"

10.8.4 Steps to verify IMA EVM feature

Perform the following checks to ensure that IMA EVM is successfully enabled in enforce
mode.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
113 / 129

https://bitbucket.sw.nxp.com/projects/IMX/repos/meta-imx-integrity/browse
https://bitbucket.sw.nxp.com/projects/IMX/repos/meta-imx-integrity/browse

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

1. Trusted keys and encrypted keys are enabled in kernel image. The Following kernel
logs ensures that secure key and encrypted key is successful registered.

[6.893635] Key type trusted registered
[6.905123] Key type encrypted registered

2. IMA EVM is enabled in the kernel image. The following kernel logs ensures IMA EVM
is enabled.

[6.909218] ima: No TPM chip found, activating TPM-bypass!
[6.914738] ima: Allocated hash algorithm: sha1
[6.962804] evm: HMAC attrs: 0x1

3. System is up in enforce mode. The following logs from initramfs and kernel ensures
enforce mode is enabled.

[8.248060] EXT4-fs (mmcblk0p2): mounted filesystem with
 ordered data mode. Opts: (null). Quota mode: none.
Loading blobs
[8.294368] evm: key initialized

4. EVM attributes over a file can be checked using getfattr utility.

root@imx8ulpevk:~# getfattr -d -m . /path/to/file

5. Security attribute are appraised successfully upon changing any file contents. The
following commands verify the appraise functionality.

root@imx8ulpevk:~# vim test_file // write contents "abc"
root@imx8ulpevk:~# getfattr -d -m . /path/to/test_file
root@imx8ulpevk:~# vim test_file // write contents "abcd"
root@imx8ulpevk:~# getfattr -d -m . /path/to/test_file

11 Connectivity

This section describes the connectivity for Bluetooth wireless technology and Wi-Fi, as
well as for USB type-C.

11.1 Connectivity for Bluetooth wireless technology and Wi-Fi
Bluetooth and Wi-Fi are supported on i.MX through on-board chip solutions and external
hardware. The following table lists the various on-board chips and external solutions.

SoC On-board chip PCIe M.2 card uSD card or SDIO M.2
card

8QuadXPlus/8DXL - NXP 88W8997 (tested
with Murata LBEE5
XV1YM)
NXP PCIe 88W9098
(tested with Murata
LBEE5ZZ1XL)

-

Table 71. On-board chips and external solutions for Bluetooth and Wi-Fi support

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
114 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

SoC On-board chip PCIe M.2 card uSD card or SDIO M.2
card

8QuadMax - NXP 88W8997 (tested
with Murata LBEE5
XV1YM)
NXP PCIe 88W9098
(tested with Murata
LBEE5ZZ1XL)

-

8M Quad - NXP 88W8997 (tested
with Murata LBEE5
XV1YM)
NXP PCIe 88W9098
(tested with Murata
LBEE5ZZ1XL).

NXP SDIO 88W8997
(tested with Murata
LBEE5XV1YM)
NXP SDIO IW416
(tested with Murata
LBEE5CJ1XK)
NXP SDIO 88W8801
(tested with Murata
LBWA0ZZ2DS)
NXP SDIO 88W9098
(tested with Murata
LBEE5ZZ1XL)

8M Nano NXP 88W8987 (tested
with
AzureWave AW-
CM358SM)

- -

8M Mini NXP 88W8987 (tested
with
AzureWave AW-
CM358SM)

- -

7ULP - - NXP 88W8987 (tested
with Murata LBEE5
QD1ZM)

7Dual - - NXP 88W8987 (tested
with Murata LBEE5
QD1ZM)

6QuadPlus/Quad/Dual/
Solo

- - NXP 88W8987 (tested
with Murata LBEE5
QD1ZM)

6SLL/6UltraLite/6ULL/
6ULZ

- - NXP 88W8987 (tested
with Murata LBEE5
QD1ZM)
NXP SDIO IW416
(tested with Murata
LBEE5CJ1XK)
NXP SDIO 88W8801
(tested with Murata
LBWA0ZZ2DS)

Table 71. On-board chips and external solutions for Bluetooth and Wi-Fi support...continued

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
115 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

SoC On-board chip PCIe M.2 card uSD card or SDIO M.2
card

8M Plus - NXP 88W8997 (tested
with AW-CM276
MAPUR)
NXP PCIe 88W9098
(tested with Murata
LBEE5ZZ1XL).

NXP SDIO 88W8997
(tested with Murata
LBEE5XV1YM)
NXP SDIO 88W9098
(tested with Murata
LBEE5ZZ1XL)

8ULP - - NXP SDIO IW416
(tested with Murata
LBEE5CJ1XK)

i.MX 93 - - NXP SDIO IW612
(tested with Murata
LBES5PL2EL)

Table 71. On-board chips and external solutions for Bluetooth and Wi-Fi support...continued

Note: All Murata LBEE5QD1ZM are tested on i.MX 6/i.MX 7 platforms along with the
Murata M.2-to-usd adapter.

The wireless driver supports wpa_supplicant, which is a WEP/WPA/WPA2/WPA3
encryption authenticated tool.

• Wi-Fi driver: supports NXP 88W8987-based modules with SDIO interface, NXP
88W9098-based modules with PCIe and SDIO interfaces, NXP 88W8997-based
modules with PCIe and SDIO interfaces, NXP IW416-based modules with SDIO
interface, NXP 88W8801-based modules with SDIO interface, and NXP IW612-based
modules with SDIO interface.

• Firmware
The NXP release package already includes all NXP, Wi-Fi/Bluetooth firmware. It
requires to accept NXP license.

To run Wi-Fi, execute the following commands first and follow common commands
below:

• For the following steps, execute these commands using connman

For IW612 on i.MX 93:
modprobe sdxxx mod_para=nxp/wifi_mod_para.conf
For all the other Wi-Fi modules:
modprobe moal mod_para=nxp/wifi_mod_para.conf
$connmanctl
connmanctl> enable wifi
connmanctl> scan wifi
connmanctl> services /* This should list of the network. For
 example wifi_c0e4347f5053_4a62726f_managed_psk*/
connmanctl> agent on
connmanctl> connect wifi_c0e4347f5053_4a62726f_managed_psk /*
 Enter Passphrase */
Agent RequestInput wifi_c0e4347f5053_4a62726f_managed_psk
Passphrase = [Type=psk, Requirement=mandatory]
Passphrase?
connmanctl> quit

To run NXP Bluetooth with BlueZ stack, execute the following commands (it requires load
Wi-Fi first to load Bluetooth firmware):

hciattach <device> any 115200 flow

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
116 / 129

https://wiki.archlinux.org/index.php/ConnMan#Wi-Fi

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

hciconfig hci0 up
hcitool -i hci0 cmd 0x3f 0x0009 0xc0 0xc6 0x2d 0x00
killall hciattach
hciattach <device> any -s 3000000 3000000 flow
hciconfig hci0 up

Run the following commands to connect the Bluetooth device for all chips:

$ bluetoothctl
[bluetooth]# default-agent
[bluetooth]# agent on
[bluetooth]# scan on
[bluetooth]# pair xx:xx:xx:xx:xx:xx
[BT dev]# connect xx:xx:xx:xx:xx:xx
[BT dev]# quit

Note:

• Device: /dev/ttymxcN or /dev/ttyLPN.
• Different boards have different devices.

The i.MX 6 boards require board rework to support the Bluetooth/Wi-Fi enablement
as well as running with the Bluetooth/Wi-Fi device tree. The following is a list of the
hardware modifications required and possibly conflicts caused by these modifications.

• i.MX 6QuadPlus/Quad/Dual/DualLite/Solo: See https://community.nxp.com/docs/
DOC-94235. This change HAS a pin conflict with: EPDC/SPI-NOR/GPIO-LED.

• i.MX 6SoloX: Install R328, and disconnect R327. Connect with SD2 slot and
BLUETOOTH CABLE CONNECTOR J19. It has no Pin conflict with other modules.

• i.MX 6SLL: Install R127, and double check to ensure R126 and R128 are installed.
Connect with SD3 slot and BLUETOOTH CABLE CONNECTOR J4. It has no Pin
conflict with other modules.

• i.MX 6UL/ULL/ULZ: Install R1701. It has no Pin conflict with other modules.

Rework is also required to support NXP PCIe 88W9098 on i.MX 8M Plus, and NXP SDIO
88W89997, NXP SDIO IW416, NXP SDIO 88W8801, and SDIO 88W9098 on i.MX 8M
Quad.

• To run NXP PCIe 88W9098 on i.MX 8M Plus, perform the hardware rework as follows:
Change R452 to 0 ohm.

• To run NXP SDIO 88W89997, NXP SDIO IW416, SDIO 88W8801, and SDIO 88W9098
on i.MX 8M Quad, perform the hardware rework as follows:
Remove the following 0 Ω 0402 resistors: R1603, R1617, R1618, R1619, R1620, and
R1621 (micro SD card J1601)
Install the following 0 Ω 0402 resistors: R1429, R1430, R1431, R1432, R1433, R1434,
R1435, and R1436 (M.2 J1401)

11.2 Connectivity for USB type-C

The following describes the connectivity for USB type-C and power delivery connection
on the i.MX 8QuadXPlus MEK board.

• The Linux release includes USB type-C and PD stack, which is enabled by default. The
specific power parameters are passed in by DTS. The following fsl-imx8qxp-mek is an
example:

typec_ptn5110: typec@50 {

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
117 / 129

https://community.nxp.com/docs/DOC-94235
https://community.nxp.com/docs/DOC-94235

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

 compatible = "usb,tcpci";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_typec>;
 reg = <0x50>;
 interrupt-parent = <&gpio1>;
 interrupts = <3 IRQ_TYPE_LEVEL_LOW>;
 ss-sel-gpios = <&gpio5 9 GPIO_ACTIVE_LOW>;
 reset-gpios = <&pca9557_a 7 GPIO_ACTIVE_HIGH>;
 src-pdos = <0x380190c8>;
 snk-pdos = <0x380190c8 0x3802d0c8>;
 max-snk-mv = <9000>;
 max-snk-ma = <1000>;
 op-snk-mw = <9000>;
 port-type = "drp";
 sink-disable;
 default-role = "source";
 status = "okay";
};

For power capability related configuration, users need to check the PD specification to
see how to composite the PDO value. To make it support power source role for more
voltages, specify the source PDO. The i.MX 8QuadXPlus board can support 5 V and 12
V power supply.

• The Linux BSP of the Alpha and Beta releases on the i.MX 8QuadXPlus MEK platform
only supports power source role for 5 V.

• Users can use /sys/kernel/debug/tcpm/2-0050 to check the power delivery state, which
is for debugging purpose information.

• Booting only by type-C port power supply is not supported on the Alpha release.

11.3 NXP Bluetooth/Wi-Fi information
The NXP Bluetooth/Wi-Fi information is as follows:

• SoC version: SDIO 88W8987, PCIe 88W8997, SDIO 88w8997, PCIe 88w9098, SDIO
88W9098, SDIO IW416, SDIO 88W8801, SDIO IW612

• SDIO W8801 Firmware version: 14.92.36.p178
• SDIO-UART IW416 Firmware version: 16.92.21.p55.3
• PCIE-UART W9098 Firmware version: 17.92.1.p136.13
• SDIO-UART W8997 Firmware version: 16.92.21.p55.3
• PCIE-UART W8997 Firmware version: 16.92.21.p55.3
• SDIO-UART W8987 Firmware version: 16.92.21.p69.3
• SDIO-UART W9098 Firmware version: 17.92.1.p136.13
• SDIO-UART IW612 Firmware version: 18.99.1.p75.8
• Wi-Fi/Bluetooth firmware version: for example, 16.92.10.p210

– 16: Major revision
– 92: Feature pack
– 10: Release version
– p210: Patch number

• For IW612 on i.MX 93, Driver version: MXM5X18312.p7-MGPL
For all other Wi-Fi modules, Driver version: MXM5x17366.p5-MGPL
– 5X: Linux 5.x
– 17366: Release version
– p5: Patch number

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
118 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

– MGPL: General

Tested using iPerf3 version 3.11.

11.4 Certification

11.4.1 WFA certification

The following table lists the WFA certification.

STA Certification

STA 802.11n

STA 802.11ac

STA WPS2.0

STA PMF

STA WMM-PS

STA WPA3

Table 72. WFA certification

For details, see Wi-Fi Alliance Derivative Certification (AN12976).

11.4.2 Bluetooth controller certification

Listing details: https://launchstudio.bluetooth.com/ListingDetails/115533

12 DDR Performance Monitor

12.1 Introduction
There are counters in some i.MX 8 DDR controllers, which are used to monitor DDR
signals. Some signals can help users monitor DDR transactions and calculate DDR
bandwidth.

12.2 Frequently used events
The following events are frequently used to monitor DDR transactions for different
platforms.

• i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano: cycles, read-cycles, write-
cycles

• i.MX 8M Plus: axid-read, axid-write
• i.MX 8DXL: cycles, read-cycles, write-cycles, axid-read, axid-write

Note:

• i.MX 8M Plus and 8DXL support AXI ID filtering.
• For i.MX 8M Plus, cycles, read-cycles, write-cycles cannot be used since there is a

hardware bug that leads to counter overflow.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
119 / 129

https://www.nxp.com/products/wireless/wi-fi-plus-bluetooth/88w8987-2-4-5-ghz-dual-band-1x1-wi-fi-5-802-11ac-plus-bluetooth-5-solution:88W8987?tab=Documentation_Tab
https://launchstudio.bluetooth.com/ListingDetails/115533

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

12.3 Showing supported events
Run the following commands to show the supported events:

perf list pmu | grep imx8_ddr
imx8_ddr0/activate/ [Kernel PMU event]
imx8_ddr0/axid-read/ [Kernel PMU event]
imx8_ddr0/axid-write/ [Kernel PMU event]
imx8_ddr0/cycles/ [Kernel PMU event]
imx8_ddr0/hp-read-credit-cnt/ [Kernel PMU event]
imx8_ddr0/hp-read/ [Kernel PMU event]
imx8_ddr0/hp-req-nocredit/ [Kernel PMU event]
imx8_ddr0/hp-xact-credit/ [Kernel PMU event]
imx8_ddr0/load-mode/ [Kernel PMU event]
imx8_ddr0/lp-read-credit-cnt/ [Kernel PMU event]
imx8_ddr0/lp-req-nocredit/ [Kernel PMU event]
imx8_ddr0/lp-xact-credit/ [Kernel PMU event]
imx8_ddr0/perf-mwr/ [Kernel PMU event]
imx8_ddr0/precharge/ [Kernel PMU event]
imx8_ddr0/raw-hazard/ [Kernel PMU event]
imx8_ddr0/read-accesses/ [Kernel PMU event]
imx8_ddr0/read-activate/ [Kernel PMU event]
imx8_ddr0/read-command/ [Kernel PMU event]
imx8_ddr0/read-cycles/ [Kernel PMU event]
imx8_ddr0/read-modify-write-command/ [Kernel PMU event]
imx8_ddr0/read-queue-depth/ [Kernel PMU event]
imx8_ddr0/read-write-transition/ [Kernel PMU event]
imx8_ddr0/read/ [Kernel PMU event]
imx8_ddr0/refresh/ [Kernel PMU event]
imx8_ddr0/selfresh/ [Kernel PMU event]
imx8_ddr0/wr-xact-credit/ [Kernel PMU event]
imx8_ddr0/write-accesses/ [Kernel PMU event]
imx8_ddr0/write-command/ [Kernel PMU event]
imx8_ddr0/write-credit-cnt/ [Kernel PMU event]
imx8_ddr0/write-cycles/ [Kernel PMU event]
imx8_ddr0/write-queue-depth/ [Kernel PMU event]
imx8_ddr0/write/ [Kernel PMU event]

12.4 Examples for monitoring transactions
This section shows some examples to monitor DDR transactions.

• For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano:

perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-
cycles/,imx8_ddr0/write-cycles/

• For i.MX 8M Plus:
– All masters:

perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_mask=0xffff/,imx8_ddr0/axid-write,axi_mask=0xffff/

– GPU 3D:

perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_id=0x70/,imx8_ddr0/axid-write,axi_id=0x70/

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
120 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

– LCDIF1:

perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_id=0x68/,imx8_ddr0/axid-write,axi_id=0x68/

• For i.MX 8DXL:
– All masters:

perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-
cycles/,imx8_ddr0/write-cycles/
perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_mask=0xffff/,imx8_ddr0/axid-write,axi_mask=0xffff/

– USB 2.0:

perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_mask=0xb0,axi_id=0x40b/,imx8_ddr0/axid-
write,axi_mask=0xb0,axi_id=0x40b/

– USDHC0:

perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_id=0x1b/,imx8_ddr0/axid-write,axi_id=0x1b/

12.5 Performance metric
Try to use metric instead of event if event command line is too cumbersome to you. The
following is the example on i.MX 8QuadXPlus.

12.5.1 Showing supported metric

Run the following commands to show the supported metric:

perf list metric
List of pre-defined events (to be used in -e):
Metrics:
imx8qxp_bandwidth_usage.lpddr4
 [bandwidth usage for lpddr4 mek board. Unit: imx8_ddr]
imx8qxp_ddr_read.all
 [bytes all masters read from ddr based on read-cycles
 event. Unit: imx8_ddr]
imx8qxp_ddr_write.all
 [bytes all masters wirte to ddr based on write-cycles
 event. Unit: imx8_ddr]

12.5.2 Monitoring transactions

Run the following commands to monitor transactions:

perf stat -a -I 1000 -M
 imx8qxp_ddr_read.all,imx8qxp_ddr_write.all
time counts unit events
1.001115250 28264 imx8_ddr0/read-cycles/ # 441.6 KB
 imx8qxp_ddr_read.all
1.001115250 11622 imx8_ddr0/write-cycles/ # 181.6 KB
 imx8qxp_ddr_write.all
2.002718000 14496 imx8_ddr0/read-cycles/ # 226.5 KB
 imx8qxp_ddr_read.all

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
121 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

2.002718000 4585 imx8_ddr0/write-cycles/ # 71.6 KB
 imx8qxp_ddr_write.all

12.6 DDR Performance usage summary
It is recommended to use metric to monitor DDR transactions, as it is more convenient.
You can get DDR bandwidth of all masters or specific master directly without doing extra
calculations. Especially on platforms that support AXI ID filtering, get rid of searching
masters' ID.

13 One-Time Programmable Controller Driver Using NVMEM Subsystem

13.1 Introduction
The One-Time Programmable Controller driver is realized with the NVMEM Subsystem,
which introduces DT representation for consumer devices to get the data they require
(MAC addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs.

13.2 NVMEM provider OCOTP
Use struct nvmem_config to set the configuration of theNVMEM device OCOTP. This
structure can define callback to read/write the eFUSE data.

In the read/write function prototype:

• The 1st parameter is the private data of the OCOTP device, and it contains a pointer to
the remapped memory.

• The 2nd parameter is from the first data in property reg of a NVMEM consumer,
and this offset represents the OCOTP shadow register, to which a eFuse address is
mapped.

• The 3rd parameter returns the read data when reading or passes the data to write
when writing.

• The 4th parameter, which indicates how many bytes to read/write, is from the second
data in property reg of a NVMEM consumer.

typedef int (*nvmem_reg_read_t)(void *priv, unsigned int
 offset, void *val, size_t bytes);
typedef int (*nvmem_reg_write_t)(void *priv, unsigned int
 offset, void *val, size_t bytes);

13.3 NVMEM consumer
NVMEM consumers are the entities that make use of the NVMEM provider to read from
and to NVMEM. In the DTS file, the NVMEM consumer node needs to be written in the
NVMEM provider node. The indispensable property is reg. The first data represents the
offset of the OCOTP shadow register, to which a eFuse address is mapped. The second
data indicates the number of bytes to read or write.

Take the MAC address on i.MX 8M Nano as an example:

The first data in reg is 0x90, 0x400 + 0x90 * 0x4 = 0x640, 0x640 is the first Fuse address
of MAC_ADDR. 0x4 represents 4 bytes.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
122 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

13.4 Examples to read/write the raw NVMEM file in user space
• i.MX 6/i.MX 7/i.MX 8M Mini/8M Nano/8M Plus/8M Quad

hexdump /sys/bus/nvmem/devices/imx-ocotp0/nvmem

• i.MX 8ULP

hexdump /sys/bus/nvmem/devices/fsb_s400_fuse1/nvmem

14 NXP eIQ Machine Learning

The NXP eIQ machine learning software development environment enables the use of
machine learning algorithms on i.MX family SoCs. The eIQ software for i.MX includes
inference engines, optimized libraries for hardware acceleration, and an ML security
package.

The main eIQ toolkit is integrated in the Yocto BSP, contained in meta-imx/meta-ml
layer. The following inference engines are currently supported: TensorFlow Lite, ONNX
Runtime, OpenCV, DeepViewRT, and PyTorch. See the i.MX Machine Learning User's
Guide (IMXMLUG) for details about the eIQ software development environment.

In addition to the toolkit integrated in the Yocto BPS, there is an ML security package
delivered separately. See also Security for Machine Learning Package (AN12867).

15 Murata Wi-Fi/Bluetooth Solutions

NXP chipset Murata module (Part
number)

Embedded Artists M.2 EVB

88W8801 Type 2DS (LBWA0ZZ2DS)

EAR00386

IW416 Type 1XK (LBEE5CJ1XK)

EAR00385

Table 73.  Murata Wi-Fi/Bluetooth solutions with NXP chipsets

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
123 / 129

https://www.nxp.com/docs/en/application-note/AN12867.pdf
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type2ds
https://www.embeddedartists.com/products/2ds-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.embeddedartists.com/products/1xk-m-2-module/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

NXP chipset Murata module (Part
number)

Embedded Artists M.2 EVB

88W8987 Type 1ZM (LBEE5QD1ZM)

EAR00364

88W8997 Type 1YM (LBEE5XV1YM)

EAR00370

88W9098 Type 1XL (LBEE5ZZ1XL)

EAR00387

Table 73.  Murata Wi-Fi/Bluetooth solutions with NXP chipsets...continued

EVK Murata module Interconnect Embedded Artists
M.2 Module Part #

Type 1YM (PCIe) M.2 EAR00370NXP i.MX 8QuadMax

Type 1XL (PCIe) M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370NXP i.MX 8QuadXPlus

Type 1XL (PCIe) M.2 EAR00387

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

Type 1XL (SDIO[1]) uSD-M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

NXP i.MX 8M

Type 1XL (PCIe) M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370NXP i.MX 8DXL

Type 1XL (PCIe) M.2 EAR00387

Table 74. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
124 / 129

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadxplus-multisensory-enablement-kit-mek:MCIMX8QXP-CPU
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/MCIMX8M-EVKB
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/MCIMX8DXL-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

EVK Murata module Interconnect Embedded Artists
M.2 Module Part #

Type 1XK M.2 EAR00385

Type 1ZM M.2 EAR00364

Type 1YM (SDIO[1]) M.2 EAR00370

Type 1XL (SDIO[1]) M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

NXP i.MX 8M Plus

Type 1XL (PCIe) M.2 EAR00387

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

Type 1XL (SDIO[1]) uSD-M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

NXP i.MX 8M Mini LPDDR4

Type 1XL (PCIe) M.2 EAR00387

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

NXP i.MX 8M Nano
LPDDR4

Type 1XL (SDIO[1]) uSD-M.2 EAR00387

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

NXP i.MX 7Dual

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

Type 1XK uSD-M.2 EAR00385NXP i.MX 7ULP

Type 1ZM uSD-M.2 EAR00364

Type 1XK uSD-M.2 EAR00385NXP i.MX 6QuadPlus
NXP i.MX 6Quad
NXP i.MX 6DL

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

NXP i.MX 6SLL
NXP i.MX 6UL
NXP i.MX 6ULL/ULZ

Type 1YM (SDIO[1]) uSD-M.2 EAR00370

Table 74. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs...continued

[1] Default strapping option on Embedded Artists 1YM/1XL M.2 module is WLAN-PCIe. Refer to Embedded Artists datasheet
on how to modify strapping on M.2 module for WLAN-SDIO configuration.

16 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause
license:

Copyright 2019 NXP Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
125 / 129

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/8MPLUSLPD4-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/8MMINILPD4-EVKB
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/8MNANOLPD4-EVK
https://www.nxp.com/part/8MNANOLPD4-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.nxp.com/part/MCIMX7SABRE
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.nxp.com/part/MCIMX7ULP-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.nxp.com/part/MCIMX6QP-SDB
https://www.nxp.com/part/MCIMX6Q-SDB
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-for-automotive-infotainment-based-on-the-i-mx-6-series-for-automotive-avb-development:SABRE-AUTO-IMX6-RD2
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.nxp.com/part/MCIMX6SLL-EVK
https://www.nxp.com/part/MCIMX6UL-EVKB
https://www.nxp.com/part/MCIMX6ULL-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17 Revision History

This table provides the revision history.

Revision number Date Substantive changes

L4.9.51_imx8qxp-alpha 11/2017 Initial release

L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad

L4.9.51_8qm-beta2/8qxp-
beta

02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8Quad
XPlus Beta

L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release

L4.9.88_2.1.0_8mm-alpha 06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo
upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates

L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project
Upgrades

L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades

LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades

L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and
8DXL EVK boards

Revision history

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
126 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Revision number Date Substantive changes

L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2
for 8DXL, and consolidated GA for released i.MX
boards

L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta
for 8DXL, and consolidated GA for released i.MX
boards

L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards
including i.MX 8M Plus and i.MX 8DXL

L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running
the Arm Cortex-M4 image"

LF5.10.9_1.0.0 03/2021 Upgraded Yocto Project to Gatesgarth and the
kernel upgraded to 5.10.9

LF5.10.35_2.0.0 06/2021 Upgraded Yocto Project to Hardknott and the
kernel upgraded to 5.10.35

LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel
upgraded to 5.10.52

LF5.10.52_2.1.0 10/2021 Added an appendix for Murata Wi-Fi/Bluetooth
solutions

LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the
BSP

LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto,
and Qt6

LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04,
and Kirkstone Yocto

LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the
i.MX 93.

LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

Revision history...continued

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
127 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

Contents
1 Overview .. 2
1.1 Audience ..2
1.2 Conventions ... 2
1.3 Supported hardware SoCs and boards 2
1.4 References ...3
2 Introduction ... 4
3 Basic Terminal Setup ..5
4 Booting Linux OS ... 5
4.1 Software overview ... 5
4.1.1 Bootloader ..6
4.1.2 Linux kernel image and device tree7
4.1.3 Root file system ...8
4.2 Universal update utility 8
4.2.1 Downloading UUU ... 8
4.2.2 Using UUU ...8
4.3 Preparing an SD/MMC card to boot 9
4.3.1 Preparing the card ...10
4.3.2 Copying the full SD card image11
4.3.3 Partitioning the SD/MMC card 11
4.3.4 Copying a bootloader image12
4.3.5 Copying the kernel image and DTB file 12
4.3.6 Copying the root file system (rootfs)13
4.4 Downloading images 14
4.4.1 Downloading images using U-Boot14
4.4.1.1 Flashing an Arm Cortex-M4 image on

QuadSPI .. 14
4.4.1.2 Downloading an image to MMC/SD15
4.4.1.3 Using eMMC ..18
4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot 20
4.4.1.5 Flashing U-Boot on Parallel NOR from U-

Boot ..22
4.4.2 Using an i.MX board as the host server to

create a rootfs ... 22
4.5 How to boot the i.MX boards25
4.5.1 Booting from an SD card in slot SD126
4.5.2 Booting from an SD card in slot SD226
4.5.3 Booting from an SD card in slot SD327
4.5.4 Booting from an SD card in slot SD428
4.5.5 Booting from eMMC .. 28
4.5.6 Booting from SATA .. 30
4.5.7 Booting from NAND ...31
4.5.8 Booting from SPI-NOR 31
4.5.9 Booting from EIM (Parallel) NOR 31
4.5.10 Booting from QuadSPI or FlexSPI32
4.5.11 Serial download mode for the

Manufacturing Tool .. 33
4.5.12 How to build U-Boot and Kernel in

standalone environment 35
4.5.13 How to build imx-boot image by using imx-

mkimage .. 38
4.6 Flash memory maps ..41
4.6.1 MMC/SD/SATA memory map 41
4.6.2 NAND flash memory map42
4.6.3 Parallel NOR flash memory map 42
4.6.4 SPI-NOR flash memory map 42
4.6.5 QuadSPI flash memory map 42

4.7 Running Linux OS on the target 43
4.7.1 Running the image from NAND 45
4.7.2 Running Linux OS from Parallel NOR 46
4.7.3 Running the Linux OS image from QuadSPI ... 46
4.7.4 Running the Arm Cortex-M4/7/33 image 46
4.7.5 Linux OS login ...49
4.7.6 Running Linux OS from MMC/SD49
4.7.7 Running the Linux image from NFS 51
4.8 Arm SystemReady-IR 51
4.8.1 Arm SystemReady-IR ACS compliance test 51
4.8.2 Capsule update ... 52
4.8.3 Linux distro installation 52
5 Enabling Solo Emulation52
6 Power Management .. 53
6.1 Suspend and resume 53
6.2 CPU frequency scaling 53
6.3 Bus frequency scaling 54
7 Multimedia ..55
7.1 i.MX multimedia packages56
7.2 Building limited access packages 56
7.3 Multimedia use cases56
7.3.1 Playback use cases ...57
7.3.1.1 Audio-only playback ...57
7.3.1.2 Video-only playback ...57
7.3.1.3 Audio/Video file playback57
7.3.1.4 Multichannel audio playback58
7.3.1.5 Other methods for playback 58
7.3.1.6 Video playback to multiple displays 58
7.3.2 Audio encoding ..59
7.3.3 Video encoding ..59
7.3.4 Transcoding ... 61
7.3.5 Audio recording ... 61
7.3.6 Video recording ..63
7.3.7 Audio/Video recording 63
7.3.8 Camera preview .. 63
7.3.9 Recording the TV-in source64
7.3.10 Web camera .. 64
7.3.11 HTTP streaming .. 64
7.3.12 HTTP live streaming ..65
7.3.13 MPEG-DASH streaming 65
7.3.14 Real Time Streaming Protocol (RTSP)

playback ...65
7.3.15 RTP/UDP MPEGTS streaming 66
7.3.16 RTSP streaming server 67
7.3.17 Video conversion ... 68
7.3.18 Video composition ... 69
7.4 PulseAudio input/output settings 70
7.5 Installing gstreamer1.0-libav into rootfs 72
8 Audio .. 72
8.1 DSP support .. 72
8.1.1 HiFi 4 DSP framework72
8.1.2 Sound Open Firmware 72
8.2 HDMI eARC support ..73
8.3 Low-power voice solution 73
8.3.1 Introduction .. 73
8.3.2 Standard voice solution 74

IMXLUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. LF5.15.71_2.2.0 — 16 December 2022
128 / 129

NXP Semiconductors IMXLUG
i.MX Linux User's Guide

8.3.3 Audio Front End (AFE)75
8.3.4 Linux drivers .. 79
8.3.5 Cortex-M Image ...79
8.3.5.1 Application name ... 79
8.3.5.2 Board setup ... 79
8.3.5.3 Execution ... 80
8.3.6 Power consumption notes 81
9 Graphics ...81
9.1 imx-gpu-sdk ... 81
9.2 G2D-imx-samples .. 81
9.3 viv_samples ... 82
9.4 Qt 6 ..83
10 Security .. 83
10.1 CAAM kernel driver ... 83
10.1.1 Introduction .. 83
10.1.2 Source files ..84
10.1.3 Module loading .. 85
10.1.4 Kernel configuration ...86
10.1.5 How to test the drivers 87
10.2 Crypto algorithms support 89
10.3 CAAM Job Ring backend driver

specifications ... 90
10.3.1 Verifying driver operation and correctness91
10.3.2 Incrementing IRQs in /proc/interrupts 92
10.3.3 Verifying the 'self test' fields say 'passed'

in /proc/crypto .. 92
10.4 OpenSSL offload ... 93
10.4.1 OpenSSL software architecture93
10.4.2 OpenSSL's ENGINE interface 94
10.4.3 NXP solution for OpenSSL hardware

offloading ... 95
10.4.4 Deploying OpenSSL into rootfs 95
10.4.5 Running OpenSSL benchmarking tests with

cryptodev engine ... 95
10.4.5.1 Running OpenSSL benchmarking tests for

symmetric ciphering and digest 96
10.4.6 Running OpenSSL benchmarking tests with

AF_ALG engine ... 96
10.4.6.1 Running OpenSSL benchmarking tests for

symmetric ciphering and digest 96
10.4.7 Running OpenSSL asymmetric tests with

PKCS#11 based engine 97
10.4.7.1 Running p11tool to generate key (RSA or

EC) ...97
10.4.7.2 Using OpenSSL from command line 98
10.4.7.3 Running OpenSSL test for RSA 99
10.4.7.4 Running OpenSSL test for EC99
10.5 Disk encryption acceleration99
10.5.1 Enabling disk encryption support in kernel100
10.5.2 User space tools for disk encryption101
10.5.3 DM-Crypt using CAAM backed keys 101
10.5.3.1 DM-Crypt with Trusted keys backed by

CAAM ...102
10.5.3.2 DM-Crypt with CAAM’s tagged key 104
10.5.4 Usage ...106
10.6 crypto_af_alg application support 109

10.6.1 Prerequisites .. 109
10.6.2 Building the kernel ...109
10.6.2.1 Kernel configuration109
10.6.2.2 Building a toolchain 110
10.6.2.3 Cross compiling the user space sources 110
10.6.3 Usage ...110
10.6.4 Use case example ...110
10.7 Kernel TLS offload ...111
10.7.1 Prerequisites .. 111
10.7.2 Running Kernel TLS test 111
10.8 IMA/EVM on i.MX SoCs 112
10.8.1 EVM Key on user keyrings 112
10.8.2 Modes of operation in IMA EVM113
10.8.3 Build Steps .. 113
10.8.4 Steps to verify IMA EVM feature 113
11 Connectivity ...114
11.1 Connectivity for Bluetooth wireless

technology and Wi-Fi114
11.2 Connectivity for USB type-C117
11.3 NXP Bluetooth/Wi-Fi information 118
11.4 Certification .. 119
11.4.1 WFA certification ..119
11.4.2 Bluetooth controller certification119
12 DDR Performance Monitor 119
12.1 Introduction .. 119
12.2 Frequently used events 119
12.3 Showing supported events 120
12.4 Examples for monitoring transactions120
12.5 Performance metric 121
12.5.1 Showing supported metric 121
12.5.2 Monitoring transactions121
12.6 DDR Performance usage summary122
13 One-Time Programmable Controller Driver

Using NVMEM Subsystem122
13.1 Introduction .. 122
13.2 NVMEM provider OCOTP122
13.3 NVMEM consumer ...122
13.4 Examples to read/write the raw NVMEM file

in user space ...123
14 NXP eIQ Machine Learning 123
15 Murata Wi-Fi/Bluetooth Solutions123
16 Note About the Source Code in the

Document ...125
17 Revision History ..126

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 16 December 2022

	1 Overview
	1.1 Audience
	1.2 Conventions
	1.3 Supported hardware SoCs and boards
	1.4 References

	2 Introduction
	3 Basic Terminal Setup
	4 Booting Linux OS
	4.1 Software overview
	4.1.1 Bootloader
	4.1.2 Linux kernel image and device tree
	4.1.3 Root file system

	4.2 Universal update utility
	4.2.1 Downloading UUU
	4.2.2 Using UUU

	4.3 Preparing an SD/MMC card to boot
	4.3.1 Preparing the card
	4.3.2 Copying the full SD card image
	4.3.3 Partitioning the SD/MMC card
	4.3.4 Copying a bootloader image
	4.3.5 Copying the kernel image and DTB file
	4.3.6 Copying the root file system (rootfs)

	4.4 Downloading images
	4.4.1 Downloading images using U-Boot
	4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI
	4.4.1.2 Downloading an image to MMC/SD
	4.4.1.3 Using eMMC
	4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot
	4.4.1.4.1 Flashing an Arm Cortex-M4 image on QuadSPI

	4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot

	4.4.2 Using an i.MX board as the host server to create a rootfs

	4.5 How to boot the i.MX boards
	4.5.1 Booting from an SD card in slot SD1
	4.5.2 Booting from an SD card in slot SD2
	4.5.3 Booting from an SD card in slot SD3
	4.5.4 Booting from an SD card in slot SD4
	4.5.5 Booting from eMMC
	4.5.6 Booting from SATA
	4.5.7 Booting from NAND
	4.5.8 Booting from SPI-NOR
	4.5.9 Booting from EIM (Parallel) NOR
	4.5.10 Booting from QuadSPI or FlexSPI
	4.5.11 Serial download mode for the Manufacturing Tool
	4.5.12 How to build U-Boot and Kernel in standalone environment
	4.5.13 How to build imx-boot image by using imx-mkimage

	4.6 Flash memory maps
	4.6.1 MMC/SD/SATA memory map
	4.6.2 NAND flash memory map
	4.6.3 Parallel NOR flash memory map
	4.6.4 SPI-NOR flash memory map
	4.6.5 QuadSPI flash memory map

	4.7 Running Linux OS on the target
	4.7.1 Running the image from NAND
	4.7.2 Running Linux OS from Parallel NOR
	4.7.3 Running the Linux OS image from QuadSPI
	4.7.4 Running the Arm Cortex-M4/7/33 image
	4.7.5 Linux OS login
	4.7.6 Running Linux OS from MMC/SD
	4.7.7 Running the Linux image from NFS

	4.8 Arm SystemReady-IR
	4.8.1 Arm SystemReady-IR ACS compliance test
	4.8.2 Capsule update
	4.8.3 Linux distro installation

	5 Enabling Solo Emulation
	6 Power Management
	6.1 Suspend and resume
	6.2 CPU frequency scaling
	6.3 Bus frequency scaling

	7 Multimedia
	7.1 i.MX multimedia packages
	7.2 Building limited access packages
	7.3 Multimedia use cases
	7.3.1 Playback use cases
	7.3.1.1 Audio-only playback
	7.3.1.2 Video-only playback
	7.3.1.3 Audio/Video file playback
	7.3.1.4 Multichannel audio playback
	7.3.1.5 Other methods for playback
	7.3.1.6 Video playback to multiple displays
	7.3.1.6.1 Playing different videos on different displays
	7.3.1.6.2 Routing the same video to different displays
	7.3.1.6.3 Multiple videos overlay

	7.3.2 Audio encoding
	7.3.3 Video encoding
	7.3.4 Transcoding
	7.3.5 Audio recording
	7.3.6 Video recording
	7.3.7 Audio/Video recording
	7.3.8 Camera preview
	7.3.9 Recording the TV-in source
	7.3.10 Web camera
	7.3.11 HTTP streaming
	7.3.12 HTTP live streaming
	7.3.13 MPEG-DASH streaming
	7.3.14 Real Time Streaming Protocol (RTSP) playback
	7.3.15 RTP/UDP MPEGTS streaming
	7.3.16 RTSP streaming server
	7.3.17 Video conversion
	7.3.18 Video composition

	7.4 PulseAudio input/output settings
	7.5 Installing gstreamer1.0-libav into rootfs

	8 Audio
	8.1 DSP support
	8.1.1 HiFi 4 DSP framework
	8.1.2 Sound Open Firmware

	8.2 HDMI eARC support
	8.3 Low-power voice solution
	8.3.1 Introduction
	8.3.2 Standard voice solution
	8.3.3 Audio Front End (AFE)
	8.3.4 Linux drivers
	8.3.5 Cortex-M Image
	8.3.5.1 Application name
	8.3.5.2 Board setup
	8.3.5.3 Execution

	8.3.6 Power consumption notes

	9 Graphics
	9.1 imx-gpu-sdk
	9.2 G2D-imx-samples
	9.3 viv_samples
	9.4 Qt 6

	10 Security
	10.1 CAAM kernel driver
	10.1.1 Introduction
	10.1.2 Source files
	10.1.3 Module loading
	10.1.4 Kernel configuration
	10.1.5 How to test the drivers

	10.2 Crypto algorithms support
	10.3 CAAM Job Ring backend driver specifications
	10.3.1 Verifying driver operation and correctness
	10.3.2 Incrementing IRQs in /proc/interrupts
	10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto

	10.4 OpenSSL offload
	10.4.1 OpenSSL software architecture
	10.4.2 OpenSSL's ENGINE interface
	10.4.3 NXP solution for OpenSSL hardware offloading
	10.4.4 Deploying OpenSSL into rootfs
	10.4.5 Running OpenSSL benchmarking tests with cryptodev engine
	10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

	10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine
	10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

	10.4.7 Running OpenSSL asymmetric tests with PKCS#11 based engine
	10.4.7.1 Running p11tool to generate key (RSA or EC)
	10.4.7.2 Using OpenSSL from command line
	10.4.7.3 Running OpenSSL test for RSA
	10.4.7.4 Running OpenSSL test for EC

	10.5 Disk encryption acceleration
	10.5.1 Enabling disk encryption support in kernel
	10.5.2 User space tools for disk encryption
	10.5.3 DM-Crypt using CAAM backed keys
	10.5.3.1 DM-Crypt with Trusted keys backed by CAAM
	10.5.3.1.1 Usage

	10.5.3.2 DM-Crypt with CAAM’s tagged key

	10.5.4 Usage

	10.6 crypto_af_alg application support
	10.6.1 Prerequisites
	10.6.2 Building the kernel
	10.6.2.1 Kernel configuration
	10.6.2.2 Building a toolchain
	10.6.2.3 Cross compiling the user space sources

	10.6.3 Usage
	10.6.4 Use case example

	10.7 Kernel TLS offload
	10.7.1 Prerequisites
	10.7.2 Running Kernel TLS test

	10.8 IMA/EVM on i.MX SoCs
	10.8.1 EVM Key on user keyrings
	10.8.2 Modes of operation in IMA EVM
	10.8.3 Build Steps
	10.8.4 Steps to verify IMA EVM feature

	11 Connectivity
	11.1 Connectivity for Bluetooth wireless technology and Wi-Fi
	11.2 Connectivity for USB type-C
	11.3 NXP Bluetooth/Wi-Fi information
	11.4 Certification
	11.4.1 WFA certification
	11.4.2 Bluetooth controller certification

	12 DDR Performance Monitor
	12.1 Introduction
	12.2 Frequently used events
	12.3 Showing supported events
	12.4 Examples for monitoring transactions
	12.5 Performance metric
	12.5.1 Showing supported metric
	12.5.2 Monitoring transactions

	12.6 DDR Performance usage summary

	13 One-Time Programmable Controller Driver Using NVMEM Subsystem
	13.1 Introduction
	13.2 NVMEM provider OCOTP
	13.3 NVMEM consumer
	13.4 Examples to read/write the raw NVMEM file in user space

	14 NXP eIQ Machine Learning
	15 Murata Wi-Fi/Bluetooth Solutions
	16 Note About the Source Code in the Document
	17 Revision History
	Contents

