Rev. automotive-12.0.0_1.1.0 — 2 June 2022

User Guide

1 Overview

This document provides the technical information related to the i.MX 8 devices:

- Instructions for building from sources or using pre-built images.
- · Copying the images to boot media.
- Hardware/software configurations for programming the boot media and running the images.

This document describes how to configure a Linux build machine and provides the steps to download, patch, and build the software components that create the Android system image when working with the sources.

For more information about building the Android platform, see source.android.com/source/building.html.

1.1 Acronyms

Table 1. Acronyms

Acronym	Description
U-Boot	Universal Boot Loader
SPL	U-Boot Secondary Program Loader
os	Operating system
EVS	Android Exterior View System - https://source.android.com/devices/automotive/camera-hal
i.MX8	i.MX 8 Series Applications Processors
PC	Personal (host) computer
AOSP	Android Open Source Project - https://source.android.com/
GCC	GNU Compiler collection - https://gcc.gnu.org/
MEK	Multisensory Enablement Kit - https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards:SABRE_HOME
SoC	System on Chip - https://en.wikipedia.org/wiki/System_on_a_chip
GAS	Google Automotive Services - https://developers.google.com/cars
CST	(NXP) Code Signing Tool
GPT	GUID partition table - https://en.wikipedia.org/wiki/GUID_Partition_Table
OTA	Over-The-Air programming

Table continues on the next page...

Contents

1	Overview	. 1
2	Preparation	2
3	Building the Android platform for	
	i.MX	. 3
4	Running the Android Platform with	а
	Prebuilt Image	
5	Programming Images	
6	Booting	
7	Over-The-Air (OTA) Update	
8	Customized Configuration	
9	Revision History	
Legal	information	

Table 1. Acronyms (continued)

Acronym	Description
ВТ	Bluetooth
HVAC	Heating, ventilation, and air conditioning
eMMC	Embedded Multi-Media Card

2 Preparation

2.1 Setting up your computer

To build the Android source files, use a computer running the Linux OS. The Ubuntu 18.04 64bit version is the most tested environment for the Android 12.0 build.

To synchronize the code and build images of this release, the computer should at least have:

- 16 GB RAM
- 450 GB hard disk

After the setup of Linux PC, check whether you have all the necessary packages installed for an Android build. See "Setting up your machine" on the Android website.

In addition to the packages requested on the Android website, the following packages are also needed:

```
sudo apt-get install uuid uuid-dev
sudo apt-get install zliblg-dev liblz-dev
sudo apt-get install liblzo2-2 liblzo2-dev
sudo apt-get install lzop
sudo apt-get install git-core curl
sudo apt-get install u-boot-tools
sudo apt-get install mtd-utils
sudo apt-get install android-tools-fsutils
sudo apt-get install device-tree-compiler
sudo apt-get install gdisk
sudo apt-get install liblz4-tool
sudo apt-get install m4
sudo apt-get install libz-dev
sudo apt-get install bison
sudo apt-get install flex
sudo apt-get install libssl-dev
sudo apt-get install gcc-multilib
```

NOTE

Configure git before use. Set the name and email as follows:

- git config --global user.name "First Last"
- git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package

After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

```
$ cd ~ (or any other directory you like) $ tar xzvf imx-automotive-12.0.0_1.1.0.tar.gz
```

User Guide 2/58

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code

The i.MX Android release source code consists of three parts:

- NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.
- AOSP Android public source code, which is maintained in android.googlesource.com.
- NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

Assume you have i.MX Android proprietary source code package imx-automotive-12.0.0_1.1.0.tar.gz under ~/. directory. To generate the i.MX Android release source code build environment, execute the following commands:

```
$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-automotive-12.0.0_1.1.0/imx_android_setup.sh
# By default, after the preceding command is executed, the current working directory changes to the
i.MX Android source code root directory.
# ${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX Android
release documentation.
$ export MY_ANDROID=`pwd`
```

NOTE

In the <code>imx_android_setup.sh</code> script, a .xml file that contains the code repositories' information is specified. Code repository revision is specified with the release tag in this file. The release tag should not be moved when the code is externally released, so no matter when the <code>imx_android_setup.sh</code> is executed, the working areas of code repositories synchronized by this script are the same.

If the released code is critically fixed, another .xml file is created to help customers to synchronize the code. Then customers need to modify imx and roid setup.sh. For this release, make the following changes on the script:

The wireless-regdb repository may fail to be synchronized with the following log:

```
fatal: unable to access 'https://git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb/':
server certificate verification failed. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile: none
```

If this issue is encountered, execute the following command on the host as a fix:

```
$ git config --global http.sslVerify false
```

User Guide 3/58

3.2 Building Android images

The Android image can be built after the source code has been downloaded (Section 3.1 Getting i.MX Android release source code).

Execute the source build/envsetup.sh command to import shell functions in \${MY ANDROID}/build/envsetup.sh.

Execute the lunch <BuildName-BuildMode> command to set up the build configuration.

The Product Name is the Android device name found in the directory $MM_ANDROID$ /device/nxp/. Search for the keyword PRODUCT NAME under this directory for the product name.

Table 2. Build names

Build name	Description
mek_8q_car	i.MX 8QuadMax/8QuadXPlus MEK Board with the Exterior View System (EVS) function enabled on the Arm Cortex-M4 CPU core
mek_8q_car2	i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex-M4 core in this configuration)

The "Build Mode" is used to specify what debug options are provided in the final image. The following table lists the build modes.

Table 3. Build modes

Build mode	Description	
user	Production ready image, no debug	
userdebug	Provides image with root access and debug, similar to user	
eng	Development image with debug tools	

After the two commands above are executed, then the build process starts. The behaviour of the i.MX Android build system used to be aligned with the original Android system. The command of make could start the build process and all images were built out before. There are some differences now. A shell script named imx-make.sh is provided and its symlink file can be found under the \${MY ANDROID} directory. ./imx-make.sh should be executed to start the build process.

The original purpose of this imx-make.sh is used to build U-Boot/kernel before building Android images.

Google puts a limit on the host tools used when compiling Android code from the Android 10.0 platform. Some host tools necessary for building U-Boot/kernel now cannot be used in Android build system, which is under the control of <code>soong_ui</code>, so U-Boot/kernel cannot be built together with Android images. Google also recommends to use prebuilt binaries for U-Boot/kernel in Android build system. It takes some steps to build U-Boot/kernel to binaries and puts these binaries in proper directories, so some specific Android images depending on these binaries can be built without error. <code>imx-make.sh</code> is then added to do these steps to simplify the build work. After U-Boot/kernel are compiled, any build commands in standard Android can be used.

imx-make.sh can also start the <code>soong_ui</code> with the <code>make</code> function in <code>\${MY_ANDROID}/build/envsetup.sh</code> to build the Android images after U-Boot/kernel are compiled, so customers can still build the i.MX Android images with only one command with this script.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch mek 8g car-userdebug, or can be issued without the argument presenting a menu of selection.

The users need to do some preparations for the first time when building the images. A detailed example of image building steps are as follows:

1. Prepare the build environment for U-Boot.

This step is mandatory because there is no GCC cross-compile tool chain in the AOSP codebase.

An approach is provided to use the self-installed GCC cross-compile tool chain.

User Guide 4/58

First, download the tool chain for the A-profile architecture on the arm Developer GNU-A Downloads page. It is recommended to use the 8.3 version for this release. You can download the gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz or gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz. The first one is dedicated for compiling bare-metal programs, and the second one can also be used to compile the application programs.

Then, decompress the file into a path on local disk. For example, to /opt/, export a variable named AARCH64 GCC CROSS COMPILE to point to the tool as follows:

```
# if "gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz" is used
sudo tar -xvJf gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz -C /opt
export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-elf/bin/aarch64-elf-
# if "gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz" is used
sudo tar -xvJf gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz -C /opt
export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/aarch64-
linux-gnu-
```

Finally, follow the steps below to set external clang tools for kernel building.

```
sudo git clone https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86 /opt/
prebuilt-android-clang -b master
cd /opt/prebuilt-android-clang
sudo git checkout bceb7274dda5bb587a5473058bd9f52e678dde98
export CLANG_PATH=/opt/prebuilt-android-clang
```

The final export command can be added to /etc/profile. When the host boots up, AARCH64_GCC_CROSS_COMPILE and CLANG PATH are set and can be directly used.

2. Prepare the build environment for the Arm Cortex-M4 image. Download the GCC tool chain from the Arm Developers GNU-RM Downloads page. It is recommended to download the 7-2018-q2-update version. Extract it to your installation directory, for example, /opt. Then, export a variable named ARMGCC DIR to point to the tool as follows:

```
sudo tar -jxvf gcc-arm-none-eabi-7-2018-q2-update-linux.tar.bz2 -C /opt
export ARMGCC_DIR=/opt/gcc-arm-none-eabi-7-2018-q2-update
```

The preceding export command can be added to /etc/profile. When the host boots up, ARMGCC_DIR is set and can be directly used.

Upgrade the cmake version to 3.13.0 or higher. If the cmake version on your machine is not higher than 3.13.0, you can follow the steps below to upgrade it:

```
wget https://github.com/Kitware/CMake/releases/download/v3.13.2/cmake-3.13.2.tar.gz
tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;
sudo ./bootstrap
sudo make
sudo make install
```

3. Change to the top level build directory.

```
$ cd ${MY_ANDROID}
```

4. Set up the environment for building. This only configures the current terminal.

```
$ source build/envsetup.sh
```

5. Execute the Android lunch command.

User Guide 5/58

In this example, the setup is for the production image of i.MX 8QuadMax/8QuadXPlus MEK Board/Platform device with EVS function enabled in the Cortex-M4 CPU core.

```
$ lunch mek_8q_car-userdebug
```

6. Execute the imx-make.sh script to generate the image.

```
$ ./imx-make.sh -j4 2>&1 | tee build-log.txt
```

The commands below can achieve the same result.

```
# First, build U-Boot/kernel with imx-make.sh, but not to build Android images
$ ./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
# Start the process of building Android images with "make" function
$ make -j4 2>&1 | tee -a build-log.txt
```

The output of make command will be written to standard output and build-log.txt. If there are errors when building the image, error logs can be found in the build-log.txt file for checking.

The following outputs are generated by default in \${MY ANDROID}/out/target/product/mek 8q:

- root/: root file system. It is used to generate system.img together with files in system/.
- system/: Android system binary/libraries. it is used to generate system.img together with files in root/.
- recovery/: Root file system when booting in "recovery" mode. Not used directly.
- dtbo-imx8qm.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK.
- dtbo-imx8qm-md.img: Board's device tree binary. It is used to support multiple-display feature for i.MX 8QuadMax MEK.
- dtbo-imx8qxp.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.
- vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK.
- vbmeta-imx8qm-md.img: Android Verify boot metadata image for dtbo-imx8qm-md.img. It is used to support multipledisplay feature for i.MX 8QuadMax MEK.
- vbmeta-imx8qxp.img: Android Verify boot metadata image for dtbo-imx8qxp.img. It is used to support the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.
- ramdisk.img: Ramdisk image generated from root/. Not directly used.
- system.img: EXT4 image generated from system/ and root/.
- $system_ext.img$: EXT4 image generated from $system_ext/$.
- product.img: EXT4 image generated from product/.
- partition-table.img: GPT partition table image. Used for 16 GB boot storage.
- partition-table-28GB.img: GPT partition table image. Used for 32 GB boot storage.
- spl-imx8qm.bin: A composite image, which includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadMax MEK.
- spl-imx8qm-secure-unlock.bin: A composite image, which includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadMax MEK. It is a demonstration of secure unlock mechanism.
- spl-imx8qxp.bin: A composite image, which includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip.
- spl-imx8qxp-secure-unlock.bin: A composite image, which includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a demonstration of secure unlock mechanism.

User Guide 6 / 58

- spl-imx8qxp-c0.bin: A composite image, which includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision C0 chip.
- bootloader-imx8qm.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadMax MEK.
- bootloader-imx8qm-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted firmware, trusty OS, and U-Boot proper for i.MX 8QuadMax MEK. It is a demonstration of secure unlock mechanism.
- bootloader-imx8qxp.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip.
- bootloader-imx8qxp-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty
 OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a demonstration secure unlock
 mechanism.
- bootloader-imx8qxp-c0.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision C0 chip.
- u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to MMC.
- u-boot-imx8qxp-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is not flashed to MMC.
- u-boot-imx8qxp-mek-c0-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon revision C0 chip. It
 is not flashed to MMC.
- vendor.img: Vendor image, which holds platform binaries. Mounted at /vendor.
- boot .img: A composite image that includes the kernel Image, ramdisk, and boot parameters.
- rpmb_key_test.bin: Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
- testkey public rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

NOTE

- To build the U-Boot image separately, see Building U-Boot images.
- To build the kernel ulmage separately, see Building a kernel image.
- To build boot.img, see Building boot.img.
- To build dtbo.img, see Building dtbo.img.

3.2.1 Configuration examples of building i.MX devices

The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX device is set up, the ./imx-make.sh command is used to start the build.

Table 4. i.MX device lunch examples

Build name	Description
i.MX 8QuadXPlus/8QuadMax MEK Board with EVS function enabled on the Arm Cortex-M4 CPU core	<pre>\$ lunch mek_8q_car-userdebug</pre>
i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex-M4 core in this configuration)	\$ lunch mek_8q_car2-userdebug

3.2.2 Build mode selection

There are three types of build mode to select: eng, user, and userdebug.

NOTE
To pass CTS, use user build mode.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates the security model of the platform. This makes the userdebug build with greater diagnosis capabilities.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug builds, so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with makefile variable <code>LOCAL_MODULE_TAGS</code>, which can be one or more values of <code>optional</code> (default), <code>debug</code>, <code>eng</code>, and <code>tests</code>. The value of <code>debug</code> and <code>eng</code> are being deprecated. It is recommended to use <code>PRODUCT_PACKAGES_ENG</code> and <code>PRODUCT_PACKAGES_DEBUG</code> to specify the modules in the appropriate product makefiles.

If a module does not specify a tag with <code>LOCAL_MODULE_TAGS</code>, its tag defaults to <code>optional</code>. An optional module is installed only if it is required by product configuration with <code>PRODUCT PACKAGES</code>.

The main differences among the three modes are listed as follows:

- eng: development configuration with additional debugging tools
 - Installs modules tagged with: eng and/or debug through LOCAL_MODULE_TAGS, or specified by PRODUCT_PACKAGES_ENG and/or PRODUCT PACKAGES DEBUG.
 - Installs modules according to the product definition files, in addition to tagged modules.
 - ro.secure=0
 - ro.debuggable=1
 - ro.kernel.android.checkjni=1
 - adb is enabled by default.
- user: limited access; suited for production
 - Installs modules tagged with user.
 - Installs modules according to the product definition files, in addition to tagged modules.
 - ro.secure=1
 - ro.debuggable=0
 - adb is disabled by default.
- userdebug: like user but with root access and debuggability; preferred for debugging
 - Installs modules tagged with debug through LOCAL MODULE TAGS, or specified by PRODUCT PACKAGES DEBUG.
 - ro.debuggable=1
 - adb is enabled by default.

There are two methods for the build of Android image.

To build of Android images, an example for the i.MX 8QuadMax/8QuadXPlus MEK with EVS function enabled in the Cortex-M4 CPU core is:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh -j4
```

The commands below can achieve the same result:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
```

User Guide 8 / 58

```
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make -j4
```

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images

The U-Boot images can be generated separately. For example, you can generate a U-Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with the EVS function enabled in the Arm Cortex-M4 CPU core as follows:

```
# U-Boot image for 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-M4 CPU
core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader -j4
```

Multiple U-Boot variants are generated for different purposes. You can check $\{MY_Android\}/device/nxp/imx8q/mek_8q/UbootKernelBoardConfig.mk for more details. The following table lists the U-Boot configurations and images for lunch target mek_8q_car-userdebug.$

Table 5. U-Boot configurations and images

SoC	U-Boot configurations	Generated images	Description
i.MX 8QuadMax	imx8qm_mek_androidauto_t rusty_defconfig	<pre>spl- imx8qm.bin, bootloader- imx8qm.img</pre>	Default i.MX 8QuadMax Android Auto image
i.MX 8QuadMax	<pre>imx8qm_mek_androidauto_t rusty_secure_unlock_defc onfig</pre>	spl-imx8qm-secure- unlock.bin, bootloader- imx8qm-secure-unlock.img	i.MX 8QuadMax Android Auto image with secure unlock feature enabled. See Section 2.3.10 in <i>i.MX Android</i> [™] Security User's Guide (ASUG) for more details about secure unlock.
i.MX 8QuadXPlus B0 chip	imx8qxp_mek_androidauto_ trusty_defconfig	spl- imx8qxp.bin,bootloader- imx8qxp.img	Default i.MX 8QuadXPlus B0 chip Android Auto image
i.MX 8QuadXPlus C0 chip	imx8qxp_mek_androidauto_ trusty_defconfig	spl-imx8qxp- c0.bin, bootloader- imx8qxp-c0.img	Default i.MX 8QuadXPlus C0 chip Android Auto image
i.MX 8QuadXPlus B0 chip	imx8qxp_mek_androidauto_ trusty_secure_unlock_def config	spl-imx8qxp-secure- unlock.bin, bootloader- imx8qxp-secure- unlock.img	i.MX 8QuadXPlus B0 chip Android Auto image with secure unlock feature enabled. See Section 2.3.10 in i.MX Android™ Security User's Guide (ASUG) for more details about secure unlock.
i.MX 8QuadMax	imx8qm_mek_android_uuu_d efconfig	u-boot-imx8qm-mek- uuu.imx	U-Boot image aims to flash images for i.MX 8QuadMax.

Table continues on the next page...

User Guide 9/58

Table 5. U-Boot configurations and images (continued)

SoC	U-Boot configurations	Generated images	Description
			This should not be shipped to end users.
i.MX 8QuadXPlus B0 chip	imx8qxp_mek_android_uuu_ defconfig	u-boot-imx8qxp-mek- uuu.imx	U-Boot image aims to flash images for i.MX 8QuadXPlus B0 chip. This should not be shipped to end users.
i.MX 8QuadXPlus C0 chip	imx8qxp_mek_android_uuu_defconfig	u-boot-imx8qxp-mek-c0- uuu.imx	U-Boot image aims to flash images for i.MX 8QuadXPlus C0 chip. This should not be shipped to end users.

3.4 Building a kernel image

Kernel image is automatically built when building the Android root file system.

To build out the kernel image independently from the default Android build command:

```
$ cd ${MY ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
\ ./imx-make.sh kernel -j4
```

With a successful build in the use case above, the generated kernel images are: \${MY_ANDROID}/out/target/product/ mek 8q/obj/KERNEL OBJ/arch/arm64/boot/Image.

3.5 Building boot.img

The following commands are used to generate boot.img under the Android environment:

```
# Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-M4
CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootimage -j4
```

The following commands can achieve the same result:

```
# Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-M4
CPU core
$ cd ${MY ANDROID}
$ source build/envsetup.sh
$ lunch mek 8q car-userdebug
$ ./imx-make.sh kernel -j4
$ make bootimage -j4
```

3.6 Building dtbo.img

DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo.img under the Android environment:

```
# dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-M4
CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh dtboimage -j4
```

The following commands can achieve the same result:

```
# dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-M4
CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh kernel -j4
$ make dtboimage -j4
```

4 Running the Android Platform with a Prebuilt Image

To test the Android platform before building any code, use the prebuilt images from the following packages and go to "Programming Images" and "Booting".

Table 6. Image packages

Image package	Description
automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz	Prebuilt-image for i.MX 8QuadXPlus/8QuadMax MEK board with EVS function enabled in the Arm Cortex-M4 CPU core, which includes NXP extended features.
android_automotive-12.0.0_1.1.0_ image_8qmek_car2.tar.gz	Prebuilt-image and UUU script files for i.MX 8QuadMax/8QuadXPlus MEK board without EVS function enabled in the Arm Cortex-M4 CPU core, which includes NXP extended features.

The following tables list the detailed contents of android_automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz image package. Images are almost the same for i.MX 8QuadMax and i.MX 8QuadXPlus MEK with/without EVS function enabled in the Arm Cortex-M4 CPU core.

The table below shows the prebuilt images to support the system boot from eMMC on i.MX 8QuadXPlus MEK boards.

Table 7. Images for i.MX 8QuadXPlus MEK

i.MX 8QuadXPlus/8QuadMax MEK image	Description	
spl-imx8qm.bin	The secondary program loader (SPL) for i.MX 8QuadMax MEK board.	
spl-imx8qm-secure-unlock.bin	The secondary program loader (SPL) for i.MX 8QuadMax MEK board.	
spl-imx8qxp.bin	The secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with silicon revision B0 chip.	
spl-imx8qxp-secure-unlock.bin	The secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with silicon revision B0 chip.	

Table continues on the next page...

User Guide 11/58

Table 7. Images for i.MX 8QuadXPlus MEK (continued)

i.MX 8QuadXPlus/8QuadMax MEK image	Description
spl-imx8qxp-c0.bin	The secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with silicon revision C0 chip.
bootloader-imx8qm.img	The next loader image after SPL for the i.MX 8QuadMax MEK board.
bootloader-imx8qm-secure-unlock.img	The next loader image after SPL for the i.MX 8QuadMax MEK board,including the Arm trusted firmware, Trusty OS, and U-Boot proper.
bootloader-imx8qxp.img	The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon revision B0 chip.
bootloader-imx8qxp-secure-unlock.img	The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon revision B0 chip, including the Arm trusted firmware, Trusty OS, and U-Boot proper.
bootloader-imx8qxp-c0.img	The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon revision C0 chip.
u-boot-imx8qm-mek-uuu.imx	Bootloader used by UUU for i.MX 8QuadMax MEK board. It is not flashed to MMC.
u-boot-imx8qxp-mek-uuu.imx	The bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon revision B0 chip. It is not flashed to MMC.
u-boot-imx8qxp-mek-c0-uuu.imx	The bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon revision C0 chip. It is not flashed to MMC.
boot.img	Boot image to support LVDS-to-HDMI display.
partition-table.img	GPT table image for 16 GB boot storage
partition-table-28GB.img	GPT table image for 32 GB boot storage
vbmeta-imx8qm.img	Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support LVDS-to-HDMI display
vbmeta-imx8qm-md.img	Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support multiple-display feature.
vbmeta-imx8qxp.img	Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support LVDS-to-HDMI display
system.img	System Boot image
system_ext.img	System extension image.
vendor.img	Vendor image
product.img	Product image.
dtbo-imx8qm.img	Device tree image for i.MX 8QuadMax
dtbo-imx8qm-md.img	Device Tree Image for i.MX 8QuadMax MEK.
dtbo-imx8qxp.img	Device tree image for i.MX 8QuadXPlus

Table continues on the next page...

Table 7. Images for i.MX 8QuadXPlus MEK (continued)

i.MX 8QuadXPlus/8QuadMax MEK image	Description
rpmb_key_test.bin	Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
testkey_public_rsa4096.bin	Prebuilt AVB public key. It is extracted from the default AVB private key.

NOTE

boot.img is an Android image that stores kernel Image and ramdisk together. It also stores other information such as the kernel boot command line, machine name. This information can be configured in android.mk. It can avoid touching the boot loader code to change any default boot arguments.

5 Programming Images

The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, gpt image, vendor image, and vbmeta image. At a minimum, the storage devices on the development system (eMMC) must be programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access based on the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read to determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

- · UUU to download all images to the eMMC storage.
- fastboot imx flashall script to download all images to the eMMC storage.

5.1 System on eMMC

The images needed to create an Android system on eMMC can either be obtained from the release package or be built from source.

The images needed to create an Android system on eMMC are listed below:

- Secondary program loader image: spl.bin
- Android bootloader image: bootloader.img
- GPT table image: partition-table.img
- Android DTBO image: dtbo.img
- Android boot image: boot.img
- Android system image: system.img
- Android system extension image: system ext.img
- Android vendor image: vendor.img
- Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions

The layout of the eMMC card for Android system is shown below:

- [Partition type/index] which is defined in the GPT.
- [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata partition is used to put the unpacked codes/data of the applications, system configuration database, and so on. In recovery mode, the root file system is mounted with ramdisk from the boot partition.

Table 8. Storage partitions

Partition type/index	Name	Start offset	Size	File system	Content
N/A	bootloader0	0 KB (i.MX 8QuadMax, i.MX 8QuadXPlus C0) or 32KB (i.MX 8QuadXPlus B0)	4 MB	N/A	spl.bin
1	bootloader_a	8 MB	4 MB	N/A	bootloader.img
2	bootloader_b	Follow bootloader_ a	4 MB	N/A	bootloader.img
3	dtbo_a	Follow bootloader_b	4 MB	N/A	dtbo.img
4	dtbo_b	Follow dtbo_a	4 MB	N/A	dtbo.img
5	boot_a	Follow dtbo_b	64 MB	boot.img format, a kernel + recovery ramdisk	boot.img
6	boot_b	Follow boot_a	64 MB	boot.img format, a kernel + recovery ramdisk	boot.img
7	system_a	Follow boot_b	1536 MB	EXT4. Mount at /	system.img
8	system_b	Follow system_a	1536 MB	EXT4. Mount at /	system.img
9	system_ext_a	Follow system_b	128 MB	EXT4. Mount at / system_ext	system_ext.img
10	system_ext_b	Follow system_ext_a	128 MB	EXT4. Mount at / system_ext	system_ext.img
11	misc	Follow system_ext_b	4 MB	N/A	For recovery storage bootloader message, reserve
12	metadata	Follow misc	16 MB	N/A	Metadata of OTA update, remount, etc.
13	presistdata	Follow metadata	1 MB	N/A	Option to operate unlock\unlock
14	vendor_a	Follow persistdata	512 MB	EXT4. Mount at / vendor	vendor.img
15	vendor_b	Follow vendor_a	512 MB	EXT4. Mount at /	vendor.img

Table continues on the next page...

Table 8. Storage partitions (continued)

Partition type/index	Name	Start offset	Size	File system	Content
16	product_a	Follow vendor_b	1792 MB	EXT4. Mount at / product	product.img
17	product_b	Follow product_a	1792 MB	EXT4. Mount at / product	product.img
18	userdata	Follow vendor_b	Remained space	EXT4. Mount at /	Application data storage for system application, and for internal media partition, in the /mnt/sdcard/ directory
19	fbmisc	Follow userdata	1 MB	N/A	For storing the state of lock/ unlock
20	vbmeta_a	Follow fbmisc	1 MB	N/A	For storing the verify boot's metadata
21	vbmeta_b	Follow vbmeta_a	1 MB	N/A	For storing the verify boot's metadata

To create these partitions, use UUU described in the *Android*[™] *Quick Start Guide* (AQSUG).

5.1.2 Downloading images with UUU

UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading images. See *Android* TM *Quick Start Guide* (AQSUG) for a detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script

UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode firstly, and make the board enter boot mode once flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System Image into board. It requires the target board be able to enter fastboot mode and the device is unlocked. There is no need to change the boot mode with this fastboot imx flashall script.

The table below lists the fastboot imx flashall scripts.

Table 9. fastboot_imx_flashall script

Name	Host system to execute the script
fastboot_imx_flashall.sh	Linux OS
fastboot_imx_flashall.bat	Windows OS

With the help of $fasboot_imx_flashall$ scripts, you do not need to use fastboot to flash Android images one by one manually. These scripts will automatically flash all images with only one line of command.

With virtual A/B feature enabled, your host fastboot tool version should be equal to or greater than 30.0.4. You can download the host fastboot tool from Android website or you can build it with the Android project. Based on Section 3, which describes how to build Android images, perform the following steps to build fastboot:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ make -j4 fastboot
```

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

- Linux version binary file: \${MY ANDROID}/out/host/linux-x86/bin/
- Windows version binary file: \${MY ANDROID}/out/host/windows-x86/bin/

The way to use these scripts is as follows:

- Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
- Windows batch script usage: fastboot imx flashall.bat <option>

```
Options:
     -h
                       Displays this help message
     -f soc name
                      Flashes the Android image file with soc name
     -a
                       Only flashes the image to slot a
     -b
                      Only flashes the image to slot b
                       Optional setting: 28
     -c card size
                       If it is not set, use partition-table.img (default).
                       If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
                       Make sure that the corresponding file exists on your platform.
                       Flashes the Cortex-M4 image.
      -u uboot feature Flashes U-Boot or SPL&bootloader images with "uboot feature" in their names.
For QXP CO revision please use -u cO.
                           For Android Automative:
                               Only dual-bootloader feature is supported. By default, SPL&bootloader
image is flashed.
                               For i.MX 8QuadXPlus C0 revision, use the -u c0 parameter.
     -d dtb feature Flashes dtbo, vbmeta, and recovery image file with "dtb feature" in their
names.
                           If it is not set, use the default dtbo, vbmeta, and recovery image.
                      Erases user data after all image files are flashed.
     -0
     -1
                      Locks the device after all image files are flashed.
                     Directory of images.
     -D directory
                      If this script is execute in the directory of the images, it does not need to
use this option.
                      Serial number of the board.
     -s ser num
                       If only one board connected to computer, it does not need to use this option
```

NOTE

- -f option is mandatory. SoC name can be imx8qm or imx8qxp.
- · Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

Example:

```
sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_android-12.0/mek_8q_car/
```

Option explanations:

- -f imx8gm: Flashes images for i.MX 8QuadMax MEK Board.
- -a: Only flashes slot a.

User Guide 16 / 58

- -e: Erases user data after all image files are flashed.
- -D /imx android-12.0/mek 8q car/: Images to be flashed are in the directory of /imx android-12.0/mek 8q car/.

5.1.4 Downloading a single image with fastboot

Sometimes only a single image needs to be flashed again with fastboot for debug purposes.

fastboot is also implemented in userspace (recovery) in addition to the implementation in U-Boot. With dynamic partition feature enabled, the partitions are categorized into three parts. fastboot implemented in U-Boot and userspace can individually recognize part of them. The relationship between them are listed as follows.

Table 10. Partition categories

Partition category	Partition	Can be recognized by
U-Boot hard-coded partition	bootloader0,gpt,mcu_os	U-Boot fastboot
EFI partition	boot_a, boot_b, vendor_boot_a, vendor_boot_b, dtbo_a, dtbo_b, vbmeta_a, vbmeta_b, misc, metadata, presistdata, super, userdata, fbmisc	U-Boot fastboot, userspace fastboot
Logical partition	system_a, system_b, system_ext_a, system_ext_b, vendor_a, vendor_b, product_a, product_b	Userspace fastboot

NOTE

Logical partitions only exist if dynamic partition feature is enabled. That is to say, with images in ${\tt automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz}, \ {\tt there is no logical partition}.$

To enter U-Boot fastboot mode, for example, you can first make the board enter U-Boot command mode, and then execute the following command on the console:

```
> fastboot 0
```

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may need root permission on Linux OS:

```
# board in U-Boot fastboot mode, execute the following command on the host
$ fastboot reboot fastboot
# board boot up to the Android system, execute the following command on the host
$ adb reboot fastboot
```

To use fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented on the device that can recognize the partition to be operated on. For example, images in automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz have dynamic partition feature enabled. To flash system.img to the partition of system_a, make the board enter userspace fastboot mode, and execute the following command on the host:

```
$ fastboot flash system_a system.img
```

6 Booting

This chapter describes booting from MMC.

6.1 Booting from eMMC

User Guide 17/58

6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board

The following tables list the boot switch settings to control the boot storage.

Table 11. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadMax boot switch	download Mode (UUU mode)	eMMC boot
SW2 Boot_Mode (1-6 bit)	001000	000100

Table 12. Boot switch settings for i.MX 8QuadXPlus

i.MX 8QuadXPlus boot switch	download Mode (UUU mode)	eMMC boot
SW2 Boot_Mode (1-4 bit)	1000	0100

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i.MX 8QuadMax.

Change the board Boot_Mode switch to 0100 (1-4 bit) for i.MX 8QuadXPlus.

To use the default environment in boot.img, do not set bootargs environment in U-Boot.

NOTE bootargs is an optional setting for boota. The boot.img includes a default bootargs, which will be used if there is no bootargs defined in U-Boot.

6.2 Boot-up configurations

This section describes some common boot-up configurations, such as U-Boot environments, kernel command line, and DM-verity configurations.

6.2.1 U-Boot environment

- bootcmd: the first variable to run after U-Boot boot.
- · bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line (bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs environment variable, it uses the default bootargs inside the image. If you have the environment variable, it is then used.

To use the default environment in boot.img, use the following command to clear the bootargs environment variable.

```
> setenv bootargs
```

If the environment variable append bootargs is set, the value of append bootargs is appended to bootargs automatically.

boota command parses the boot .img header to get the Image and ramdisk. It also passes the bootargs as needed (it only passes bootargs in boot.img when it cannot find bootargs variable in your U-Boot environment).

To boot the system, execute the following command:

```
U-Boot=> boota
```

To boot into recovery mode, execute the following command:

```
U-Boot=> boota recovery
```

6.2.2 Kernel command line (bootargs)

Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootags.

Table 13. Kernel boot parameters

Kernel parameter	Description	Typical value	Used when
console	Where to output kernel log by printk.	console=ttymxc0	i.MX 8QuadMax MEK uses console=ttyLP0.
init	Tells kernel where the init file is located.	init=/init	All use cases. init in the Android platform is located in / instead of in /sbin.
androidboot.console	The Android shell console. It should be the same as console=.	androidboot.console=ttym xc0	To use the default shell job control, such as Ctrl+C to terminate a running process, set this for the kernel.
Cma	CMA memory size for GPU/VPU physical memory allocation.	cma=1184M@0x960M-0xe00M	Start address is 0x96000000 and end address is 0xDFFFFFFFF. The CMA size can be configured to other value, but cannot exceed 1184 MB, because the Cortex-M4 core will also allocate memory from CMA and Cortex-M4 cannot use the memory larger than 0xDFFFFFFFF.
androidboot.selinux	Argument to disable selinux check. For details about selinux, see Security-Enhanced Linux in Android.	androidboot.selinux=perm issive	Setting this argument will also bypass all the selinux rules defined in Android system. It is recommended to set this argument for internal developer.
androidboot.fbTileSuppor	It is used to enable framebuffer super tile output.	androidboot.fbTileSuppor t=enable	-
firmware_class.path	It is used to set the Wi-Fi firmware path.	firmware_class.path=/ vendor/firmware	-
androidboot.wificountryc ode=CN	It is used to set Wi-Fi country code. Different countries use different Wi-Fi channels.	androidboot.wificountryc ode=CN	-
	For details, see the i.MX Android Frequently Asked Questions.		
androidboot.xen_boot	It is used to configure which environment automotive works at, normal environment or Xen environment.	Normal environment: androidboot.xen_ boot=default	-

Table continues on the next page...

Table 13. Kernel boot parameters (continued)

Kernel parameter	Description	Typical value	Used when
		Xen environment: androidboot.xen_boot=xen	
transparent_hugepage	It is used to change the sysfs boot time defaults of Transparent Hugepage support.	transparent_ hugepage=never/always/ madvise	-
galcore.contiguousSize	It is used to configure the GPU reserved memory.	galcore.contiguousSize=3 3554432	It is 128 MB by default. i.MX 8QuadMax/8QuadXPlus automatically configures it to 32 MB to shorten the GPU driver initialization time.
androidboot.vendor.sysrq	It is used to enable sysrq.	androidboot.vendor.sysrq =1	-

6.2.3 DM-verity configuration

DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system, vbmeta) will make the board unbootable. Disabling DM-verity provides convenience for developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

- 1. Unlock the device.
 - a. Boot up the device.
 - b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
 - c. Execute the following command on the target side to make the board enter fastboot mode:

```
reboot bootloader
```

d. Unlock the device. Execute the following command on the host side:

```
fastboot oem unlock
```

- e. Wait until the unlock process is complete.
- 2. Disable DM-verity.
 - a. Boot up the device.
 - b. Disable the DM-verity feature. Execute the following command on the host side:

```
adb root
adb disable-verity
adb reboot
```

7 Over-The-Air (OTA) Update

This section provides an example for the i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled in the Arm Cortex-M4 CPU core to build and implement OTA update.

User Guide 20 / 58

For other platforms, use "lunch" to set up the build configuration. For detailed build configuration, see Section 3.2 "Building Android images".

7.1 Building OTA update packages

7.1.1 Building target files

You can use the following commands to generate target files under the Android environment:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4
```

After building is complete, you can find the target files in the following path:

```
MY\_ANDROID/out/target/product/mek_8q_car/obj/PACKAGING/target_files_intermediates/mek_8q_cartarget_files-${date}.zip
```

7.1.2 Building a full update package

A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is contained in the package.

You can use the following commands to build a full update package under the Android environment:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make otapackage -j4
```

```
NOTE
The command line $ make otapackage -j4 is used for i.MX 8QuadMax. For i.MX 8QuadXPlus, use the command line make OTA_TARGET=8qxp otapackage -j4.
```

After building is complete, you can find the OTA packages in the following path:

```
${MY_ANDROID}/out/target/proudct/mek_8q_car/mek_8q_car-ota-${date}.zip
```

 $\verb|mek_8q_car-ota-\${date}|. \verb|zip| includes| payload.bin| and payload_properties.txt|. The two files| are used for full update.$

```
NOTE
• ${date} is the BUILD_NUMBER in build_id.mk.
```

7.1.3 Building an incremental update package

An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result in considerably smaller update packages:

- · Files that have not changed do not need to be included.
- Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding of the
 differences between the two files. You can install the incremental update package only on a device that has the old or source
 build used when constructing the package.

Before building an incremental update package, see Section Building target files to build two target files:

User Guide 21/58

- PREVIOUS-target files.zip: one old package that has already been applied on the device.
- NEW-target files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

```
$ cd ${MY_ANDROID}
$ ./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-
target_files.zip incremental_ota_update.zip
```

\${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform

update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports updating system from a remote server or board's storage.

To update the system from a remote server, perform the following steps:

- 1. Copy full-ota.zip or incremental_ota.zip (generated on Building a full update package and Building an incremental update package) to the HTTP server (for example, 192.168.1.1:/var/www/).
- 2. Unzip the packages to get payload.bin and payload properties.txt.
- 3. Cat the content of payload properties.txt like this:
 - FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
 - FILE SIZE=379074366
 - METADATA HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
 - METADATA SIZE=46866
- 4. Log in to the ADB shell and execute the following command to update:

```
update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"
```

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to reboot" in the logcat.

To update the system from board's storage, perform the following steps:

- 1. Unzip full-ota.zip or incremental_ota.zip (Generated on Building a full update package and Building an incremental update package) to get payload.bin and payload properties.txt.
- 2. Push payload.bin to board's storage:

```
adb root
adb push payload.bin /data/ota_package
```

- 3. Cat the content of payload properties.txt like this:
 - FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
 - FILE SIZE=379074366
 - METADATA HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=

User Guide 22 / 58

- METADATA SIZE=46866
- 4. Input the following command in board's console to update:

```
update_engine_client --payload=file:///data/ota_package/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"
```

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to reboot" in the logcat.

NOTE

Make sure that the -- header equals to the exact content of payload_properties.txt. No more "space" or "return" character.

7.2.2 Using a customized application to update the Android platform

Google provides a reference OTA application (named as SystemUpdaterSample) under \${MY_ANDROID}/bootable/recovery/updater_sample, which can do OTA job. Perform the following steps to use this application:

1. Generate a JSON configuration file from the OTA package.

```
PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip
```

And you can use the following command to generate an incremental OTA JSON file:

```
PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip
```

NOTE

http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold your OTA package.

2. Set up the HTTP server (for example, lighttpd, apache).

You need one HTTP server to hold OTA packages.

```
scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}
```

NOTE

- server_ota_folder is one folder on your remote server to hold OTA packages.
- full-ota.zip and incremental-ota.zip are built from Building a full update package and Building an incremental update package.
- 3. Push JSON files to the board.

Use the following command to push JSON files to the board:

```
adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp
```

Then use the following command to move JSON files to the private folder of the SystemUpdaterSample application:

```
su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/configs
cp /data/local/tmp/*.json /data/user/0/com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/*.json
```

NOTE

If you use the Android Automative system, move JSON files to the user/10 folder as follows:

```
su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/com.example.android.systemupdatersample/
files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/configs/
*.json
```

4. Open the SystemUpdaterSample OTA application.

There are many buttons on the UI. Their brief description is as follows:

```
Reload - reloads update configs from device storage.

View config - shows selected update config.

Apply - applies selected update config.

Stop - cancel running update, calls UpdateEngine#cancel.

Reset - reset update, calls UpdateEngine#resetStatus, can be called only when update is not running.

Suspend - suspend running update, uses UpdateEngine#cancel.

Resume - resumes suspended update, uses UpdateEngine#applyPayload.

Switch Slot - if ab_config.force_switch_slot config set true, this button will be enabled after payload is applied, to switch A/B slot on next reboot.
```

First, choose the desired JSON configuration file, and then click the APPLY button to do the update.

After the update is complete, you can see "SUCCESS" in the **Engine error** text field, and "REBOOT_REQUIRED" in the **Updater state** text field. Then, reboot the board to finish the whole OTA update.

The OTA package includes the dtbo image, which stores the board's DTB. There may be many DTBs for one board. For example, in $\PMY_ANDROID$ /device/nxp/imx8q/mek_8q/BoardConfig.mk:

```
TARGET_BOARD_DTS_CONFIG := imx8qm:imx8qm-mek-car.dtb imx8qm-xen:imx8qm-mek-domu.dtb imx8qxp:imx8qxp-mek-car.dtb
```

There is one variable to specify which dtbo image is stored in the OTA package:

```
BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qm.img
```

User Guide 24 / 58

Therefore, the default OTA package can only be applied for the mek_8qm board. To generate an OTA package for mek_8qxp, modify this BOARD PREBUILT DTBOIMAGE as follows:

```
BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qxp.img
```

The OTA package includes the bootloader image, which is specified by the following variable in \${MY_ANDROID}/device/nxp/imx8q/mek 8q/BoardConfig.mk:

To generate an OTA package for mek 8qxp, modify BOARD OTA BOOTLOADERIMAGE as follows:

```
\verb|BOARD_OTA_BOOTLOADERIMAGE|:= out/target/product/mek_8q/obj/UBOOT_COLLECTION/bootloader-imx8qxp.img|
```

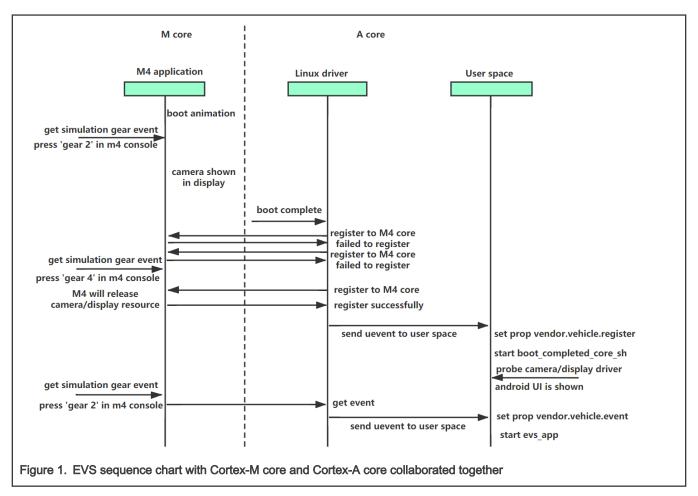
For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For information about the SystemUpdaterSample application, see https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/.

8 Customized Configuration

8.1 Camera configuration

Exterior View System (EVS) is supported in i.MX Android Automotive release. This feature supports fastboot camera, which starts camera within 1 second when the board is powered on.


This section describes how this feature is implemented and how the interfaces are used to control the EVS function. This can help customers to do customization work on the EVS function.

8.1.1 Interfaces to control the EVS function

 $\textbf{Starting the EVS function with images in } \texttt{automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz}$

With images in automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz, the Arm Cortex-A core runs Android Automotive system and the Arm Cortex-M core runs RTOS collaborate to realize this EVS function. The work sequence chart of EVS is shown in the following figure. It starts with the board power-on.

User Guide 25 / 58

Rear view camera (RVC) is only supported in Android cars. The following is the registration process of the vehicle client.

- Set vendor.all.system_server.ready to 1 in frameworks/base/packages/SystemUI/src/com/android/ systemUi/SystemUIApplication.java.
- 2. Write 1 to /sys/devices/platform/vehicle_rpmsg_m4/register in AP. Register the RPMSG client to the Cortex-M4 side
- 3. Cortex-M4 releases camera/display resource and sends Response of RPMSG client register. If the registration status is successful, go to Step 5; otherwise, go to Step 4.
- 4. AP gets state values VEHICLE GEAR and register ready.
- 5. Send extcon_set_state_sync to evs_service in AP. vendor.vehicle.register is then set.
- $\textbf{6. Start} \ \mathtt{boot_completed_core_sh}, \ \textbf{which probes the display/camera modules}.$

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview camera:

- 1. Connect the camera as described in i.MX Android Quick Start Guide (AQSUG).
- 2. Open the Cortex-M4 console.

Cortex-M4 console on the i.MX 8QuadXPlus MEK board: USB-to-UART port has two consoles. One is Cortex-A core console, and the other one is Cortex-M4 console.

Cortex-M4 console on i.MX 8QuadMax MEK board: RS232 port on the base board.

3. Input gear 2 on the Cortex-M4 console when the board is powered on and Android Automotive running on Cortex-A core is not fully booted. The rearview camera will appear on the screen.

Input gear 4 when Android Automotive is fully booted. The Android UI will appear on the screen.

27 / 58

4. Input gear 2 on the Cortex-M4 console after Android system boot is complete. The rearview camera will appear on the screen.

Input gear 4 on the Cortex-M4 console. The Android UI will appear on the screen.

```
NOTE
• Inputting gear 2 on the Cortex-M4 console indicates that the Cortex-M4 core gets the reverse signal.
```

- Inputting gear 4 on the Cortex-M4 console indicates that the Cortex-M4 core gets the drive signal.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip also support multiple EVS cameras. The relationship between the orientation of cameras and hardware connection is show as follows.

Table 14. Relationship between the orientation of cameras and hardware connection

Hardware connection	Camera orientation
IN0	Rear
IN1	Front
IN2	Right
IN3	Left

The logic to handle the vehicle information is shown with the following pseudo code:

```
if (gear state == reverse)
   show rear camera view
else if (turn signal == right)
   show right camera view
else if (turn signal == left)
   show left camera
else if (gear state == park)
   show all cameras' view
else
    show no camera view
```

The meaning of commands input on the Cortex-M4 console is as follows:

Table 15. Meaning of commands input on the Cortex-M4 console

Command	Meaning
turn 0	Not turn
turn 1	Turn right
turn 2	Turn left
gear 1	Park
gear 2	Reverse
gear 4	Drive

To start multiple-EVS-camera function:

- 1. Input su && start evs app on the AP console to start evs app. You can also start the rearview camera on the Cortex-M4 console with gear 2. The display should be rear camera view.
- 2. Input gear 1 on the Cortex-M4 console. It shows all cameras' views on the display as follows.

Figure 2. All cameras' views on the display

- 3. Input turn 1 on the Cortex-M4 console. It shows the right camera view on the display.
- 4. Input turn 2 on the Cortex-M4 console. It shows left camera view on the display.
- 5. Input turn 0 on the Cortex-M4 console. It shows all cameras' views on the display.
- 6. Stop EVS with stop evs app on the Cortex-A core console.

NOTE

You can input gear 2 on the Cortex-M4 console anytime in boot process to start the rearview camera.

Starting the EVS function with images in automotive-12.0.0 1.1.0 image 8qmek car2.tar.gz

With images in automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz, the EVS function is realized on Android Automotive running on the Cortex-A core.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview camera:

- 1. Connect the camera as described in i.MX Android Quick Start Guide (AQSUG).
- 2. Open the Cortex-A core console.

Input $su \& \& start evs_app$ on the Cortex-A console to start evs_app. You can also start the rearview camera with echo 2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The display should be rear camera view. Input stop evs app on the Cortex-A console to stop the rearview camera EVS function.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip can also support multiple EVS cameras.

The relationship between the orientation of cameras and hardware connection is show as follows.

Table 16. Relationship between the orientation of cameras and hardware connection

Hardware connection	Camera orientation
IN0	Rear
IN1	Front
IN2	Right
IN3	Left

The logic to handle the vehicle information is shown with the following pseudo code:

```
if (gear state == reverse)
    show rear camera view
```

User Guide 28 / 58

```
else if (turn signal == right)
   show right camera view
else if (turn signal == left)
   show left camera
else if (gear state == park)
   show all cameras' view
    show no camera view
```

The meaning of commands input on the Cortex-A core console is as follows.

Table 17. Meaning of commands input on the Cortex-A core console

Command	Meaning
echo 0 > sys/devices/platform/vehicle-dummy/turn	Not turn
echo 1 > sys/devices/platform/vehicle-dummy/turn	Turn right
echo 2 > sys/devices/platform/vehicle-dummy/turn	Turn left
echo 1 > sys/devices/platform/vehicle-dummy/gear	Park
echo 2 > sys/devices/platform/vehicle-dummy/gear	Reverse
echo 4 > sys/devices/platform/vehicle-dummy/gear	Drive

To start multiple-EVS-camera function:

- 1. Input su && start evs app on the Cortex-A console to start evs app. You can also start rearview camera with echo 2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The display should be rear camera view.
- 2. Input echo 1 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. It shows all cameras' views on display as follows.

Figure 3. All cameras' views on the display

- 3. Input echo 1 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows right camera view on the display.
- 4. Input echo 2 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows left camera view on the display.
- 5. Input echo 0 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows all cameras' views on the display.
- 6. Stop EVS with stop evs app on the Cortex-A console.

8.1.2 EVS related code

For images in automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz, the Cortex-M4 core runs with its code on the DDR on i.MX board. It is responsible for the following work:

- Take over control of camera/display before the Android system is fully booted.
- Get the vehicle event and pass this event to the Cortex-A core.

Source code for the Cortex-M4 core is in the \${MY ANDROID}/vendor/nxp/mcu-sdk-auto directory.

After modifying the Cortex-M4 core source code, execute the following command to build and update the Cortex-M4 image:

```
cd ${MY_ANDROID}
source build/envsetup.sh
lunch mek_8q_car-userdebug
./imx-make.sh bootloader -j4
```

Directory of EVS related code running on the Cortex-A core is listed as follows:

- EVS HAL: \${MY ANDROID}/vendor/nxp-opensource/imx/evs
- EVS service: \${MY_ANDROID}/vendor/nxp-opensource/imx/evs_service
- EVS kernel driver: \${MY ANDROID}/vendor/nxp-opensource/kernel imx/drivers/mxc/vehicle
- EVS application: \${MY ANDROID}/packages/services/Car/evs/app/

After modifying the Cortex-A core source code, build the whole system to update Android Automotive images.

8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core

Images in automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz is built with target lunched with mek_8q_car-userdebug. EVS function in this package is realized with both Cortex-A core and the Cortex-M4 core.

The communication commands and related response packet between the Cortex-A core and the Cortex-M4 core are listed as follows.

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)

Category	Version	Туре	Command	Data	Function
0x08	0x0100	REQUEST	REGISTER	Data[0-3]: clientId Data[4]: reserved Data[5]: partition Data[6-15]: reserved	Registers the RPMSG client. clientId indicates different clients. partition indicates the Android Xen partition. Partition: 0xFF: This parameter is invalid.
0x08	0x0100	REQUEST	UNREGIST ER	Data[0-3]: clientId Data[4]: reserved Data[5]: causeOf Data[6-15]: reserved	Unregisters the RPMSG client. Cortex-M4 and remote processor cannot communicate again. The causeOf parameter can indicate the reason of unregister. causeOf: 0x00: AP will power off.
0x08	0x0100	REQUEST	CONTROL	Data[0-3]: clientId Data[4]: reserved Data[5-6]: controlCode Data[7-10]: timeout	Sends control command to Cortex-M4 to request Cortex-M4 to do some actions. It needs to complete and give a response to Android in "timeout" ms. Reserved for future.

Table continues on the next page...

User Guide 30 / 58

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4) (continued)

Category	Version	Туре	Command	Data	Function
				Data[11- 15]: controlParam Data[15]: index	Example: controlCode: 0x0000: air conditioner temperature controlParam: 4bytes (float): temperature Index: left or right.
80x0	0x0100	REQUEST	PWR_ REPORT	Data[0-3]: clientId Data[4]: reserved Data[5-6]: androidPwrState Data[7-10]: time_postpone Data[11-15]: reserved	Reports Android power state androidPwrState: 0x0000: BOOT_COMPLETE 0x0001: DEEP_SLEEP_ENTRY 0x0002: DEEP_SLEEP_EXIT 0x0003: SHUTDOWN_POSTPONE 0x0004: SHUTDOWN_START 0x0005: DISPLAY_OFF 0x0006: DISPLAY_ON.
0x08	0x0100	REQUEST	GET_INFO	Data[0-3]: clientId Data[4]: reserved Data[5-6]: infoIndex Data[7-15]: reserved	Gets information from Cortex-M4 side. Android and Cortex-M4 should have the same information table. The information includes the sensor data, fuel data, battery data, etc. infoIndex:0x0001: vehicle unique ID.
0x08	0x0100	RESPONS E	BOOT_ REASON	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Responds to Cortex-M4's boot reason request (USER_POWER_ON, DOOR_OPEN, DOOR_UNLOCK, REMOTE_START, TIMER).
0x08	0x0100	RESPONS E	PWR_CTRL	Data[0-3]: clientId Data[4]: retCode Data[5- 6]: androidPwrState Data[7-15]: reserved	Responds the current power state of Android.
0x08	0x0100	RESPONS E	VSTATE	Data[0-3]: clientId Data[4]: retCode Data[5-6]: unitType Data[7-15]: reserved	Responds to the control command from Cortex-M4 side. state indicates the current IVI state.

User Guide 31/58

Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)

Category	Version	Туре	Command	Data	Function
0x08	0x0100	RESPONS E	REGISTER	Data[0-3]: clientId Data[4]: retCode Data[5-6]: mcuOperateMode Data[7-15]: reserved	Response of RPMSG client register. (success, failed), mcuOperateMode indicates Cortex-M4 work state mcuOperateMode: SHARED_RESOURCE_FREE: 0x0000 SHARED_RESOURCE_OCCUPIED: 0x0001.
0x08	0x0100	RESPONS E	UNREGIST ER	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Response of RPMSG client unregister.
0x08	0x0100	RESPONS E	CONTROL	Data[0-3]: clientId Data[4]: retCode Data[5-6]: actionState Data[7-15]: reserved	Response the result of the control request. MCU will do some actions to complete Android's request. actionState is not used currently.
0x08	0x0100	RESPONS E	PWR_ REPORT	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Response to Android power state report
0x08	0x0100	RESPONS E	GET_INFO	Data[0-3]: clientId Data[4]: retCode Data[5-6]: infoIndex Data[7-14]: data Data[15]: reserve	Response to the GET_INFO request. infoIndex should be the same as request index. The length of infoData should be specific according to infoIndex. The information includes sensor data, fuel data, and battery data. And it is a response packet to Android's request.
0x08	0x0100	REQUEST	BOOT_ REASON	Data[0-3]: clientId Data[4]: reserved Data[5]: bootReason Data[6-15]: reserved	Notifies Android system why VMCU boots the Cortex-A core (Android). It is sent after the MCU sends normal drive command to the Android system. bootReason: 0x00: USER_POWER_ON 0x01: DOOR_OPEN 0x02: DOOR_UNLOCK 0x03: REMOTE_START.
0x08	0x0100	REQUEST	PWR_CTRL	Data[0-3]: clientId Data[4]: reserved Data[5-6]: powerStateReq Data[7-8]: additionParam	Requests Android system to enter specific power state (ON_DISP_OFF, ON_FULL, SHUTDOWN_PREPARE) powerStateReq: 0x0000: ON_DISP_OFF

Table continues on the next page...

Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A) (continued)

Category	Version	Туре	Command	Data	Function
				Data[9-15]: reserved	0x0001: ON_FULL
					0x0002: SHUTDOWN_PREPARE
0x08	0x0100	REQUEST	VSTATE	Data[0-3]: clientId	Requests Vehicle state to Android
				Data[4]: reserved	(Door open/close/lock/unlock, Fan on/ off/speed/recycle/direction, AC on/off/
				Data[5-6]: unitType	temperature, heater on/off/power, defrost
				Data[7-10]: stateValue	on/off/front/back)
				Data[11-15]: reserved	(mute/unmute, volume adjust, rear view camera on/off, lights on/off)
					unitType indicates the type of each unit of vehicle, such as door, fan, and air condition. stateValue indicates the unit state parameter.

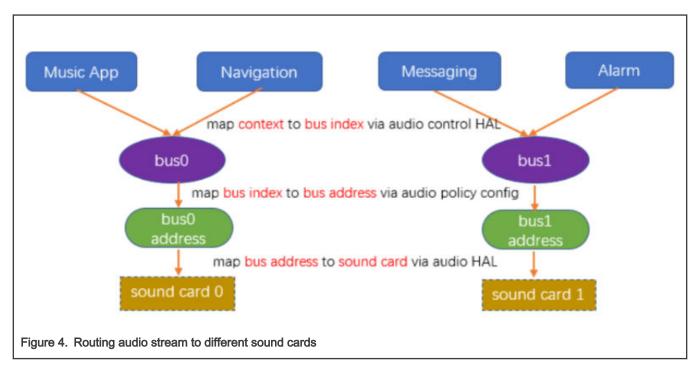
8.1.4 Delay of camera/display module probe

The RVC is occupied by the Cortex-M4 core in early stage when booting up in an Android car. AP needs to separate camera/ display resource in boot stage. There are two resources that need to pay attention in AP boot stage: clock and power domain.

- 1. Separate clock in boot stage.
 - a. Add <code>config_vehicle_clk_post_init</code>, which does not register camera/display related CLK in <code>clk-imx8qxp.c</code> and <code>clk-imx8qm.c</code>.
 - b. Add clk-post-imx8qm.c and clk-post-imx8qxp.c, which are probed in notice_evs_released.
- 2. Separate power domain in boot stage.

 $SC_R_CSI_0/SC_R_LVDS_1/SC_R_DC_1/SC_R_ISI_CH0$ are used at Cortex-M4 side. The related power domain used in DTS needs to be removed under the DTS node $vehicle\ rpmsg\ m4$.

- The node whose power domain is pd dc1 needs to be moved into vehicle rpmsg m4.
- The node whose power domain is under pd_dc1 (such as pd_mipi1/pd_lvds1/pd_mipi1_i2c0/..) needs to be moved into the DTS node vehicle rpmsg m4.
- The node whose power domain is pd_isi_ch0 needs to be moved into the DTS node vehicle_rpmsg_m4.
- The node whose power domain is under pd_isi_ch0 (such as pd_csi0/pd_csi1/..) needs to be moved into the DTS node vehicle rpmsg m4.
- The camera node needs to be moved into the DTS node vehicle rpmsg m4.


8.2 Audio configuration

8.2.1 Routing audio stream to different sound cards

In Android Automotive, different audio streams route to different sound cards. When configured, the route is statically decided, unlike the dynamically routed in standard Android image.

In the Android Automotive release, the route is configured as follows: Alarm, notification, and system sounds are played from the audio jack on the CPU board. Other sounds such as music are played from the extended audio board. The following are steps to change the route. For example, music and navigation go through the extended audio board, and others go through the audio jack on the CPU board.

User Guide 33 / 58

1. Map the bus index to bus address in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/audio policy configuration car.xml. The bus index "0/1" is parsed from the tagName.

2. Bind the bus address to a specific sound card in \${MY ANDROID}/vendor/nxp-opensource/imx/alsa.

```
In config_cs42888.h, cs42888_card.bus_name = "bus0_media_out".
In wm8960.h, wm8960_card.bus_name = "bus1_system_sound_out".
```

3. Build the image.

8.3 Display configuration

8.3.1 Configuring the logical display density

The Android UI framework defines a set of standard logical densities to help application developers target application resources. Device implementations must report one of the following logical Android framework densities:

- · 120 dpi, known as 'ldpi'
- 160 dpi, known as 'mdpi'

- 213 dpi, known as 'tvdpi'
- · 240 dpi, known as 'hdpi'
- · 320 dpi, known as 'xhdpi'
- · 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical density of the screen, unless that logical density pushes the reported screen size below the minimum supported.

 $The \ default \ display \ density \ value \ is \ defined \ in \ \$\{MY_ANDROID\}/device/nxp/imx8q/mek_8q/BoardConfig.mk \ as \ shown \ below: \ and \ an \ shown \ below: \ shown \ shown \ below: \ shown \ shown$

```
BOARD KERNEL CMDLINE += androidboot.lcd density=240
```

The display density value can be changed by modifying the related lines mentioned above in \${MY ANDROID}/device/nxp/ imx8q/mek 8q/BoardConfig.mk and recompile the code or set in U-Boot command line as bootargs during boot-up.

8.3.2 Starting the cluster display

Cluster display is supported in the i.MX Android Automotive release package. With this feature, two displays connected to the board can display different content.

To do customization work on this function, you need to know how this function can be started and controlled.

To start the cluster display, connect the two i.MX mini SAS cables with LVDS-to-HDMI adapters to the "LVDS0" and "LVDS1" ports of the board. After the system boots into Android launcher, different content is displayed on the two displays connected to the board.

8.3.3 Enabling the multiple-display function

The following boards support more than one display.

Table 20. Displays supported by different boards

Board	Number of displays	Display port
i.MX 8QuadMax MEK	4	If physical HDMI is used: HDMI_TX, LVDS0_CH0, LVDS1_CH0, MIPI_DSI1 If physical HDMI is not used: LVDS0_CH0 and LVDS1_CH0, MIPI_DSI0 and MIPI_DSI1
i.MX 8QuadXPlus MEK	2	DSI0/LVDSI0, DSI1/LVDSI1

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

To evaluate the multiple-display feature with physical HDMI on i.MX 8QuadMax MEK, flash dtbo-imx8qm-md.img.

8.3.3.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/etc/input-portassociations.xml is used to do this work when the system is running, but the input device location and display-id vary with the connection forms of these ports with corresponding input and display devices, which means that the input location and display-id need to be retrieved before the connection is fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the \${MY ANDROID}/ device/nxp/ directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

```
dumpsys SurfaceFlinger --display-id
Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=NXP displayName="NXP Android"
Display 4692921138614786 (HWC display 2): port=2 pnpId=NXP displayName="NXP Android"
Display 18309706364381699 (HWC display 3): port=3 pnpId=NXP displayName="NXP Android"
```

2. Use the following commands to get the touch input location:

```
getevent -i | grep location location:
location: "usb-xhci-hcd.1.auto-1.3.4/input0"
location: "usb-xhci-hcd.1.auto-1.2.4/input0"
```

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be modified according to the actual connection. One display port can be bound with multiple input ports.

```
<ports>
<port display="0" input="usb-xhci-hcd.1.auto-1.1.4/input0" />
<port display="1" input="usb-xhci-hcd.1.auto-1.2.4/input0" />
<port display="2" input="usb-xhci-hcd.1.auto-1.3.4/input0" />
<port display="3" input="usb-xhci-hcd.1.auto-1.4.4/input0" />
<port display="0" input="usb-xhci-hcd.1.auto-1.4/input0" />
<port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</ports>
```

To make the modifications take effect, you can modify the source file under the \${MY_ANDROID}/device/nxp/ directory and re-build the images. Keep the connection of display devices and input devices unchanged and reflash the images. You can also disable DM-verity on the board and then use the adb_push command to push the file to the vendor partition to overwrite the original one.

8.3.3.2 Enabling multi-client input method

Only multi-client IMEs support typing at the same time with different displays. The following is the way to enable the pre-installed multi-client IME.

```
# Enable multi-client IME for the side-loaded sample multi-client IME
adb root
adb shell setprop
persist.debug.multi_client_ime com.example.android.multiclientinputmethod/.MultiClientInputMethod
adb reboot
```

To disable multi-client IME on non-supported devices, clear persist.debug.multi_client_ime as follows. Then, reboot the system to make it take effect.

```
# Disable multi-client IME again
adb root
adb shell "setprop persist.debug.multi_client_ime ''"
adb reboot
```

The pre-installed multi-client IME in the system is a sample multi-client IME from AOSP. The performance is not as good as the default Google Input Method Editor. To develop multi-client IME, see the document in source code ($\$\{MY_ANDROID\}/frameworks/base/services/core/java/com/android/server/inputmethod/multi-client-ime.md$).

8.3.3.3 Launching applications on different displays

To launch an application to a display, select the Home application (MultiDisplay or Quickstep). The MultiDisplay is the new launcher for multi-display feature. The Quickstep is the original launcher of Android system. If Quickstep is selected as the Home

User Guide 36 / 58

application, you can also tap the "MD Launcher" application to get multi-display home screen. Select different display ports on the top of the popup menu, the selected application is displayed on the specific display port.

8.3.4 Configuring the primary display resolution

The whole Android UI stack needs a display resolution to be defined before Android framework boots up.

In normal Android and car2 build, the display resolution is obtained when enumerating /dev/dri/cardx in display HAL. The system selects the best aligned resolution when the ro.boot.displaymode property is set, or select the default "1080p60" when the property is not set.

In car build, the predefined resolution is defined by the ro.boot.fake.ui_resolution property and it should be aligned with physical display device. When the physical display is ready, the PollFileThread gets the event and enumerates the /dev/dri/cardx again to configure the physical display.

When the MCU takes over the display, the resolution of the display is hardcoded in the MCU-SDK code by macro APP_FRAME_HEIGHT and APP_FRAME_WIDTH in the isi_example.h file. This resolution should align with Android UI settings, or the display experience is different.

8.4 HVAC configuration

HVAC is short for "Heating, Ventilation and Air Conditioning". This section describes the interfaces to control the HVAC system. It helps customers to do customization work on HVAC.

8.4.1 Interfaces to control the HVAC system

For images in automotive-automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz built with the lunch target mek_8q_car-userdebug, see the following table to control the HVAC system.

Table 21. HVAC test items for automotive-automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz

	AP-> Cortex-M4	Cortex-M4 -> AP (input on the Cortex-M4 console)	Comment
AC ON	Cortex-M4 Console has the following print when AC is on: Android control: AC_ON, on/off	=>report ac_on 0/1 AC on the panel is close/open.	-
Fan direction	Android control: FAN_ DIRECTION, 0x2 Typical value: 0x1 (to face) 0x2 (to floor) 0x03 (to face and floor) 0x06 (to floor and defrost)	N	Google APK issue for not support Cortex-M4->AP
Fan speed	Android control: FAN_SPEED, 0x6 Typical value: 0x00(off)/0x01/0x02/ 0x03/0x04/0x05/0x06(MAX)	=>report fan_speed 1/2/3/4/ 5/6 It sets the fan speed.	-
HVAC power on	Cortex-M4 Console has the following print when HVAC is on:	N	Google APK issue for not support Cortex-M4->AP

Table continues on the next page...

User Guide 37/58

Table 21. HVAC test items for automotive-automotive-12.0.0_1.1.0_image_8qmek_car.tar.gz (continued)

	AP-> Cortex-M4	Cortex-M4 -> AP (input on the Cortex-M4 console)	Comment
	Android control: HVAC_POWER_ ON, on/off		
AUTO ON	Cortex-M4 Console has the following print when HVAC is auto: Android control: AUTO_ON, on/off	=>report auto_on 0/1 AUTO in panel is close/open.	-
Defrost	Left one: Android control: DEFROST, index=1, on/off Right one: Android control: DEFROST, index=2, on/off	Left one:=>report defrost 0/1 1 defrost in panel is close/open. Right one:=>report defrost 0/1 2 defrost in panel is close/open.	-
Temperature	Left temp +-: Android control: AC_ TEMP, index=49, temp=16.16 Right temp +-: Android control: AC_ TEMP, index=68, temp=18.18	=>report ac_temp 23.45 49/ 68 sends 23.45 Centigrade value to the Android side, and the left/right HVAC temp bar changes to 74.	You can calculate the Fahrenheit temp with the following ways: Fahrenheit = 32 + 1.8 * CentigradeFahrenheit: the num shown in hvacCentigrade: printed on the Cortex-M4 console.
RECIRC	Cortex-M4 Console has the following print when recirc is on: Android control: RECIRC_ON, off/on	=>report recirc_on 0/1 RECIRC in panel is close/open.	-
SEAT TEMPERATURE	Left one: Android control: SEAT_TEMP, index=1, values 0,1,2,3 Right one: Android control: SEAT_TEMP, index=4, values 0,1,2,3	=>report seat_temp 1/4 0/1/2/3	-

For images in automotive-automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz built with the lunch target mek_8q_car2-userdebug, see the following table to control the HVAC system.

Table 22. HVAC test items for automotive-automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz

	AP-> dummy vehicle driver	Cortex-M4 -> dummy vehicle driver	Comment
AC ON	AP Console has the following print when AC is off/on: set fan AC on with value 0/1	echo 0/1 > sys/devices/platform/ vehicle-dummy/ac_on AC on the panel is close/open.	
Fan direction	Set fan direction with value 8 Typical value:	echo 1/2/3/6 > /sys/devices/	

Table continues on the next page...

User Guide 38 / 58

Table 22. HVAC test items for automotive-automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz (continued)

	AP-> dummy vehicle driver	Cortex-M4 -> dummy vehicle driver	Comment
	0x1 (to face) 0x2 (to floor) 0x03 (to face and floor) 0x06 (to floor and defrost)	platform/vehicle- dummy/fan_direction	
Fan speed	Set fan speed with value 8 Typical value: 0x00(off)/0x01/0x02/ 0x03/0x04/0x05/0x06(MAX)	echo 1/2/3/4/5/6 > sys/devices/platform/ vehicle-dummy/fan_speed It sets the fan speed.	
HVAC power on	HVAC on: Android control: HVAC_ POWER_ON, on/off	echo 0/1 > /sys/devices/platform/ vehicle-dummy/hvac_on	
AUTO ON	Set auto on with value 0/1 Set auto off/on	echo 0/1 > sys/devices/platform/ vehicle-dummy/auto_on AUTO on the panel is close/open	
Defrost	Left one: set defroster index 1 with value 0/1 Right one: set defroster index 2 with value 0/1	Left one: echo 0/1 > sys/devices/ platform/vehicle-dummy/ defrost_right defrost on the panel is close/open. Right one: echo 0/1 > sys/devices/ platform/vehicle-dummy/ defrost_right defrost on the panel is close/open.	
Temperature	Left temp +-: set temp index 49 with value 1097859072 Right temp +-: set temp index 68 with value 1100422258	echo 1095528903 > sys/devices/platform/ vehicle-dummy/temp_left The left HVAC temp bar changes to 55.	You can calculate the Fahrenheit temp as follows: Fahrenheit = 32 + 1.8 * Centigrade Fahrenheit: the num shown in HVAC Centigrade: 1095528903 is the float of Centigrade. You can use the following tool to convert:http://www.23bei.com/tool-23.html#

Table continues on the next page...

Table 22. HVAC test items for automotive-automotive-12.0.0_1.1.0_image_8qmek_car2.tar.gz (continued)

	AP-> dummy vehicle driver	Cortex-M4 -> dummy vehicle driver	Comment
RECIRC	Recirc on: set recirc on with value 0/1	echo 0/1 > sys/devices/platform/ vehicle-dummy/recirc_on RECIRC on the panel is close/open	
SEAT TEMPERATURE	Control seat temperature with values 0/1/2/3/4. Value 0 means OFF.	echo 0/1/2/3 > sys/devices/ platform/ vehicle- dummy/seat_temp_left echo 0/1/2/3 > sys/devices/ platform/ vehicle- dummy/seat_temp_right	-

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can support only one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable it and disable the USB 3.0 gadget driver.

For i.MX 8QuadMax MEK, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under \${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

```
\verb|diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/imx8qm_mek_androidauto_trusty_defconfig b/config b/con
index 9ceb9d58fl..a54766eb6a 100644
 --- a/configs/imx8qm mek androidauto trusty defconfig
 +++ b/configs/imx8qm mek androidauto trusty defconfig
 @@ -101,13 +101,11 @@ CONFIG_SPL_DM_USB_GADGET=y
CONFIG_USB=y
CONFIG USB GADGET=y
 -#CONFIG CI UDC=y
 +CONFIG CI UDC=y
CONFIG USB GADGET DOWNLOAD=y
CONFIG USB GADGET MANUFACTURER="FSL"
CONFIG_USB_GADGET_VENDOR_NUM=0x0525
CONFIG USB GADGET PRODUCT NUM=0xa4a5
 -CONFIG USB CDNS3=y
 -CONFIG USB CDNS3 GADGET=y
CONFIG USB GADGET DUALSPEED=y
CONFIG SPL USB GADGET=y
@@ -124,7 +122,7 @@ CONFIG_FSL_FASTBOOT=y
CONFIG FASTBOOT BUF ADDR=0x98000000
 CONFIG FASTBOOT BUF SIZE=0x19000000
CONFIG FASTBOOT FLASH=Y
 -CONFIG FASTBOOT USB DEV=1
+CONFIG FASTBOOT USB DEV=0
CONFIG_BOOTAUX_RESERVED_MEM_BASE=0x88800000
```

User Guide 40 / 58

For i.MX 8QuadXPlus, to enable USB2.0 for the u-boot-imx8qxp.imx, make the following changes under \${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

```
diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/
configs/imx8qxp mek androidauto trusty defconfig
index e3f60821b0..6b59fa71ab 100644
--- a/configs/imx8qxp mek androidauto trusty defconfig
+++ b/configs/imx8qxp mek androidauto trusty defconfig
@@ -103,13 +103,11 @@ CONFIG SPL DM USB GADGET=y
CONFIG USB=y
CONFIG USB GADGET=y
-#CONFIG CI UDC=y
+CONFIG CI UDC=y
CONFIG USB GADGET DOWNLOAD=y
CONFIG USB GADGET MANUFACTURER="FSL"
CONFIG USB GADGET VENDOR NUM=0x0525
CONFIG USB GADGET PRODUCT NUM=0xa4a5
-CONFIG USB CDNS3=y
-CONFIG USB CDNS3 GADGET=y
CONFIG USB GADGET DUALSPEED=y
CONFIG SPL USB GADGET=y
CONFIG SPL USB SDP SUPPORT=y
@@ -124,7 +122,7 @@ CONFIG_FSL_FASTBOOT=y
CONFIG FASTBOOT BUF ADDR=0x98000000
CONFIG FASTBOOT BUF SIZE=0x19000000
CONFIG FASTBOOT FLASH=y
-CONFIG FASTBOOT USB DEV=1
+CONFIG FASTBOOT USB DEV=0
CONFIG SYS I2C IMX VIRT I2C=y
CONFIG I2C MUX IMX VIRT=y
CONFIG IMX VSERVICE SHARED BUFFER=0x90000000
diff --git a/include/configs/imx8qxp mek android auto.h b/include/configs/imx8qxp mek android auto.h
index 95ec29d307..376b306c72 100644
--- a/include/configs/imx8qxp mek android auto.h
+++ b/include/configs/imx8qxp_mek_android_auto.h
@@ -45,7 +45,6 @@
#endif
#define CONFIG SKIP RESOURCE CHECKING
-#define CONFIG FASTBOOT USB DEV 1
#define CONFIG ANDROID RECOVERY
#define CONFIG CMD BOOTA
```

User Guide 41/58

More than one defconfig file are used to build U-Boot images for one platform. Make the same changes on defconfig files as above to enable USB 2.0 for other U-Boot images. You can use the following command under the \${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/ directory to list all related defconfig files:

```
ls configs | grep "imx8q.*android.*"
```

NOTE

U-Boot used by UUU is compiled with $imx8qm_mek_android.h$ and $imx8qxp_mek_android.h$, not the $imx8qm_mek_android_auto.h$ and $imx8qxp_mek_android_auto.h$ listed above.

8.6 Trusty OS/security configuration

Trusty OS firmware is used in the i.MX Android 12 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports i.MX 8QuadMax MEK and i.MX 8QuadXplus MEK Board. This section describes some basic configurations to make Trusty OS work on MEK boards. For more configurations about security related features, see the *i.MX Android Security User's Guide* (ASUG).

Customers can modify the Trusty OS code to make different configurations and enable different features. First, use the following commands to fetch code to build the target Trusty OS binary.

```
# firslty create a directory for Trusty OS code and enter into this directory
$ repo init -u https://source.codeaurora.org/external/imx/imx-manifest.git -b imx-android-12 -m imx-
trusty-automotive-automotive-12.0.0_1.1.0.xml
$ repo sync
$ source trusty/vendor/google/aosp/scripts/envsetup.sh
$ make imx8qxp #i.MX 8QuadXPlus MEK
$ cp ${TRUSTY_REPO_ROOT}/build-imx8qxp/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/
imx8q_car/tee-imx8qx.bin
```

Then, build the images, and tee-imx8qx.bin is integrated into bootloader-imx8qxp.img and bootloader-imx8qxp-secure-unlock.img. Flash the spl-imx8qxp.bin and bootloader-imx8qxp.img files to the target device.

NOTE

- For i.MX 8QuadMax MEK, use make imx8qm_a72 to build the Trusty OS image, and copy the final lk.bin to \${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-imx8qm.bin.
- \${TRUSTY REPO ROOT} is the root directory of the Trusty OS codebase.
- \${MY ANDROID} is the root directory of the Android codebase.

8.6.1 Initializing the secure storage for Trusty OS

Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC chip. RPMB needs to be initialized with a key, and default execution flow of images does not make this initialization.

Initialize the RPMB with CAAM hardware bound key or vendor specified key are both supported. Note that the RPMB key cannot be changed once it is set.

• To set a CAAM hardware bound key, perform the following steps:

Make your board enter fastboot mode, and then execute the following commands on the host side:

— fastboot oem set-rpmb-hardware-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

To set a vendor specified key, perform the following steps:

User Guide 42/58

Make your board enter fastboot mode, and then execute the following commands on the host side:

- fastboot stage < path-to-your-rpmb-key >
- fastboot oem set-rpmb-staged-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

NOTE

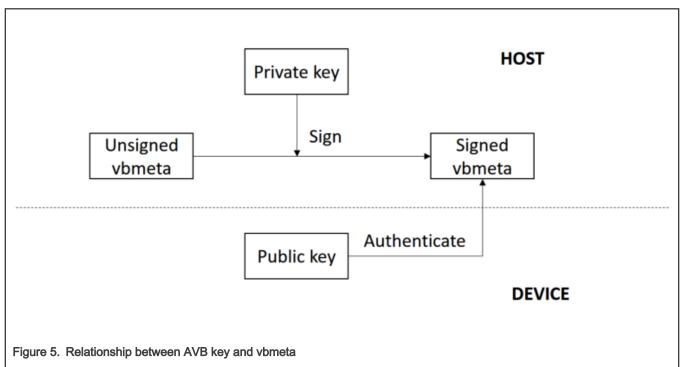
- The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.
- A prebuilt rpmb key test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated with the following shell commands:

```
color rpmb_key_test.bin

color rpmb_key_test.bin

color repmb rpmb_key_test.bin

color repmb rpmb rpmb rpmb rpmb repmb rpmb repmb re
```


The "xHH' means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above with the key you want to set.

NOTE

For more details, see the *i.MX Android* ™ Security User's Guide (ASUG).

8.6.2 AVB key provision

The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the vbmeta image. The public key is used by AVB to authenticate the vbmeta image. The following figure shows the relationships between the private key and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot. With Trusty OS, it is saved in secure storage.

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to generate the RSA-4096 private key test rsa4096 private.pem:

```
openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM - out test_rsa4096_private.pem
```

The public key can be extracted from the private key. The avbtool in \${MY_ANDROID}/external/avb supports such commands. You can get the public key test rsa4096 public.bin with the following commands:

```
avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin
```

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from \${MY_ANDROID}/external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the BOARD_AVB_ALGORITHM and BOARD_AVB_KEY_PATH to use different algorithm and private key:

```
BOARD_AVB_ALGORITHM := <algorithm-type>
BOARD_AVB_KEY_PATH := <key-path>
```

Algorithm SHA256_RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM) can help accelerate the hash calculation. The Android build system signs the vbmeta image with the private key above and stores one copy of the public key in the signed vbmeta image. During AVB verification, the U-Boot validates the public key first and then use the public key to authenticate the signed vbmeta image.

8.6.2.2 How to set the vbmeta public key

The public key must be stored in Trusty OS backed RPMB for Android system when Trusty OS is enabled. Perform the following steps to set the public key.

Make your board enter fastboot mode, and execute the following commands on the host side:

```
fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key
```

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private key is specified, set the public key as prebuilt testkey public rsa4096.bin, which is extracted from the default private key testkey rsa4096.pem.

8.6.3 Key attestation

The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-backed, what the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the corresponding certificate chains to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse the "keybox" and provision the keys and certificates to secure storage. Both keys and certificates should be Distinguished Encoding Rules (DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure storage is properly initialized for Trusty OS:

· Set RSA private key:

```
fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key
```

User Guide 44 / 58

Set ECDSA private key:

```
fastboot stage <path-to-ecdsa-private-key>
fastboot oem set-ec-atte-key
```

· Append RSA certificate chain:

```
fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert
```

NOTE

This command may need to be executed multiple times to append the whole certificate chain.

· Append ECDSA certificate chain:

```
fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert
```

NOTE

This command may need to be executed multiple times to append the whole certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly. Besides, secure provision provides a way to prevent the plaintext attestation keys and certificates from exposure. For more details, see the *i.MX Android Security User's Guide* (ASUG).

8.7 SCFW configuration

SCFW is a binary stored in \${MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into bootloader.

To customize the SCFW, download the SCFW porting kit on the i.MX Software and Development Tools page. For this release, click **Embedded Linux**, and then click the **RELEASES** tab, find the Linux LF5.10.72_2.2.0 release and download its corresponding SCFW Porting kit. Then, decompress the file with the following commands:

```
tar -zxvf imx-scfw-porting-kit-1.10.0.tar.gz
cd packages
chmod a+x imx-scfw-porting-kit-1.10.0.bin
./imx-scfw-porting-kit-1.10.0.bin
cd imx-scfw-porting-kit-1.10.0/src
tar -zxvf scfw_export_mx8qm_b0.tar.gz  # for i.MX 8QuadMax MEK
tar -zxvf scfw_export_mx8qx_b0.tar.gz  # for i.MX 8QuadXPlus MEK
```

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration file, taking i.MX 8QuadXPlus MEK as an example, it is the scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c. Based on this file, some changes are made for Android Automotive and the file is stored in \${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/board-imx8qxp.c.

You can copy board-imx8qxp.c/board-imx8qm.c in vendor/nxp/fsl-proprietary to the SCFW porting kit, modify it, and then build the SCFW.

The following are steps to build SCFW (taking i.MX 8QuadXPlus as example):

- 1. Download the GCC tool from the arm Developer GNU-RM Downloads page. It is recommended to download the version of "6-2017-q2-update" as it is verified.
- 2. Unzip the GCC tool to /opt/scfw gcc.
- 3. Export TOOLS="/opt/scfw-gcc".

User Guide 45 / 58

4. Copy the board configuration file from \${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-imx8qxp.c to the porting kit.

```
cp {MY\_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-imx8qxp.cscfw\_export\_mx8qx\_b0/platform/board/mx8qx\_mek/board.c}
```

5. Build SCFW.

```
cd scfw_export_mx8qx_b0  # enter the directory just uncompressed for i.MX 8QuadXPlus MEK make clean make qx R=B0 B=mek
```

6. Copy the SCFW binary to the uboot-firmware folder.

```
cp build_mx8qx_b0/scfw_tcm.bin \MY_ANDROID\/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/mx8qx-scfw-tcm.bin
```

7. Build the bootloader.

```
cd ${MY_ANDROID}
./imx-make.sh bootloader -j4
```

NOTE

To build SCFW for i.MX 8QuadMax MEK, use "qm" to replace "qx" in the steps above.

8.8 Power state configuration

Android automotive power HAL supports power request property, which can be used to control the system power state: ON, OFF, or suspend.

It is assumed that the power state of the Cortex-A core is controlled by separate power controller. In the following use case, MCU and dummy vehicle driver play the role of power controller in the car and car2 image accordingly.

Connect the board to a BT device to better show the system power state.

Table 23. Power state configuration

	Power control from car MCU console	Power control from car2 AP console	Comment
shutdown now	power 1 1	echo "1 1" > /sys/devices/platform/ vehicle-dummy/power_req	The system shuts down right now. Then, long press the power-on key to wake up the system.
suspend	power 1 2	echo "1 2" > /sys/devices/platform/ vehicle-dummy/power_req	The system disconnects from BT, waits for all tasks to be done, and then enter suspend mode. Press the power-on key to wake up the system. BT is connected again. Sometimes the system wakes up by itself.
shutdown postpone	power 1 3	echo "1 3" > /sys/devices/platform/ vehicle-dummy/power_req	The system waits for all tasks to be done, and then shuts down.

Table continues on the next page...

User Guide 46 / 58

Table 23. Power state configuration (continued)

	Power control from car MCU console	Power control from car2 AP console	Comment
cancel	power 2 0	echo "2 0" > /sys/devices/platform/ vehicle-dummy/power_req	Cancel the shutdown and suspend command if it has not been executed. First, enter power 1 3 for car image or echo 1 3 to power_req for car2 image. The system disconnects from the BT, turns off the display, and prepares for shutdown. Before the system shuts down, enter power 2 02 0 to power_req for car2 image. The system cancels shutdown command, turns on the display, and connects BT.

8.9 Boot time tuning

8.9.1 Boot time overview

In this document, the boot time is the duration from the time the hardware is started from cold boot to that the Android Automotive Launcher UI is showed on the display screen when the hardware is not in the first time boot from factory. Because the very first successfully boot sets up the accelerating software executing environment, it costs a longer time to boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug efficiency, some debug purpose modules and interfaces are kept in the release. Before the product is ready to ship, these modules and interfaces can be configured to save the boot time and make the boot time performance best in the final product.

8.9.2 What NXP did to tune the boot time

To make Android Automotive boot faster, lots of changes were made on different modules to achieve better performance. The following changes impact the boot time:

- · Removed the debug command in U-Boot and Linux kernel to save its initialization time and image size.
- · Built Linux kernel as zImage to save the image size.
- · Removed unused driver in U-Boot and Linux kernel.
- · Make some drivers as kernel module, and load them when Android boot is completed so that the connectivity devices and camera driver are initialized after the Android Automotive Launcher UI is shown on the display. This makes the Android Automotive Launcher UI show earlier.
- Removed unused device from Android Framework, such as Ethernet, Sensors.
- Refined Android Verify Boot procedure.
- · Optimized Android Framework to make service executed on different CPUs.
- Delayed some non-critical services for SystemUI module of Android after boot is completed.
- Delayed Zygote32 to when UI is shown.
- · Delayed Bluetooth service to when UI is shown.
- Removed some unused service in Android Framework.
- Booted from the Cortex-A72 core instead of Cortex-A53 (only for i.MX 8QuadMax MEK).

All the changes above do not impact any of the functions and the performance except the boot time.

8.9.3 How to get the shorter boot time

For debug and development purpose, the U-Boot boot delay and the logs in U-Boot, Trusty OS, and Linux kernel are enabled by default. In field measurement, the Linux kernel dmesg takes about 1.15 seconds during the boot process because UART is a slow device. Therefore, before the final product, it is recommended to remove the U-Boot delay and the logs in U-Boot, Trusty OS, and Linux Kernel by performing the following operations:

- 1. Set CONFIG BOOTDELAY=-2 in the U-Boot defconfig file to remove boot delay.
- 2. Remove CONFIG SPL SERIAL SUPPORT=y in U-Boot defconfig file to disable logs at SPL stage.
- 3. Set CONFIG_SERIAL_PRESENT=n in U-Boot defconfig file to disable logs in U-Boot proper. Disable the UART node in U-Boot DTS. Take i.MX 8QuadMax as example:

```
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
diff --git a/arch/arm/dts/fsl-imx8qm-mek-auto.dts b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
index 461ee46fa8..58356e1466 100644
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
@@ -54,6 +54,10 @@
   };
};
+&lpuart0 {
  status = "disabled";
+ };
/delete-node/ &pd dc0;
/delete-node/ &pd dc1;
/delete-node/ &pd isi ch0;
•Disable "DEBUG" in Trusty OS to remove TA logs like below:
diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index e58c15a..8c20e99 100644
--- a/project/imx8-inc.mk
+++ b/project/imx8-inc.mk
@@ -16,7 +16,7 @@
LOCAL DIR := $ (GET LOCAL DIR)
-DEBUG := 1
+DEBUG := 0
WITH SMP := 1
SMP MAX CPUS ?= 4
SMP CPU CLUSTER SHIFT ?= 2
```

- 4. Modify the Linux bootargs in build system. Append <code>loglevel=0</code> in it, which will prevent the dmesg printing on the console when the system is booted.
- 5. By default, the images are built by userdebug build. When it is changed to user build, it saves about 0.5 seconds boot time.

```
NOTE
When setting loglevel=0, the debug message is not displayed directly to the console. To check it, however, you can use the $dmesg command in the shell to output it.
```

8.9.4 How to build system.img with squashfs files system type

The default file system of <code>system.img</code> is ext4. After the <code>system.img</code> file system type is changed to <code>squashfs</code>, the <code>system.img</code> size can be reduced to about 50%. Smaller storage size costs more CPU resource but less eMMC IO operation, so this is a balanced option between IO and CPU loading. By default, this is not enabled. If the target device have strong CPU but weak eMMC, <code>squashfs</code> is an option for boot time tuning.

To change the default file system type to squashfs, perform the following steps:

User Guide 48 / 58

- 1. Add the following Linux kernel macro in \${MY ANDROID}/vendor/nxp-opensource/kernel imx/arch/arm64/ configs/android car config:
 - CONFIG SQUASHFS=y
 - CONFIG SQUASHFS LZ4=y
 - CONFIG SQUASHFS XATTR=y
 - CONFIG SQUASHFS DECOMP MULTI=y
- 2. Add the following configuration in \${MY ANDROID}/device/nxp/imx8q/mek 8q/BoardConfig.mk:

```
BOARD SYSTEMIMAGE FILE SYSTEM TYPE := squashfs
```

Rebuild the whole images for the mek 8g board. It can shorten the automotive boot time for the i.MX 8QuadMax MEK Board, but there is no boot time optimization on the i.MX 8QuadXPlus MEK Board.

8.9.5 How to measure the boot time

Per the definition of the boot time described in Boot time overview, users need to measure the boot time duration from power-on to when the display shows the desktop.

Pay attention to the following:

- Keep the device in lock state by \$fastboot oem lock.
- Make sure that the device is powered down safely. \$setprop sys.powerctl shutdown makes the device powered down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.
- Make sure the action of How to get the shorter boot time has been done.

The boot time is different for different boot that the AOSP Android Framework schedules the system services. To evaluate the boot time performance, calculate the average values based on about 50 times boot. According to the boot time analyzing tools provided by Google (https://source.android.com/devices/tech/perf/boot-times), evaluate the time by that first sys.boot completed=1 shown from initialization logs. The process is easier. You can also get the bootanylaze tool from \${MY ANDROID}/system/extras/ boottime tools/bootanalyze. To make sure that this log is printed, append printk.devkmsg=on in bootargs. Based on the timestamp for the first time, sys.boot completed=1 is displayed in the log. This is the boot time from kernel started to Android Framework boot completed.

Then, evaluate the boot time for the modules, which boot before the Linux kernel. It is easy to evaluate it by adding the following codes to print the timer value before jumping to Linux in U-Boot.

```
diff --git a/arch/arm/lib/bootm.c b/arch/arm/lib/bootm.c
index 96cac780b5..aae07a98ba 100644
--- a/arch/arm/lib/bootm.c
+++ b/arch/arm/lib/bootm.c
@@ -423,6 +423,8 @@ int do bootm linux(int flag, int argc, char * const argv[],
       return 0;
       printf("%d\n", get timer(0));
if (flag & (BOOTM STATE OS GO | BOOTM STATE OS FAKE GO)) {
        boot_jump_linux(images, flag);
        return 0;
```

The boot evaluation by software is the sum of the timestamp for the first time we see sys.boot completed=1 and the timer values printed in U-Boot.

In this release, based on the Android bootanylaze tool, the boot time performance is obtained as listed in the following table.

Table 24. Boot time performance

Platform	mek_8q_car Build	mek_8q_car2 Build
i.MX 8QuadXPlus MEK	21.4s	21.9s
i.MX 8QuadMax MEK	13.9s	14.2s

8.10 Configuration for the load orders of driver modules

8.10.1 Why does Android Automotive have driver load orders

As the boot time performance of Android Automotive is important, make Linux kernel boot as soon as possible to enable some critical services earlier. Therefore, some drivers that are not critical for the Android Automotive booting are not loaded during the early boot stage. The set of drivers are built into kernel modules during build time and are loaded and probed after the Android Automotive key service boots successfully. This makes the display and UI ready earlier.

In this release, the following module related drivers are probe before the initialization process starts:

- Camera (only in mek_8q_car)
- USB
- Wi-Fi

8.10.2 How does the non-critical driver load

In i.MX Android Automotive, there are two kinds of build. The mek 8q car and mek 8q car2. mek 8q car have special design to support the EVS features, which use the Arm Cortex-M4 core to handle camera related modules before the Android display related service is ready. Therefore, mek 8q car and mek 8q car2 loads different driver modules in different stages.

In i.MX Android Automotive, all kernel driver modules are loaded in init.rc by the script named init.insmod.sh.

For mek 8q car, when the EVS service running in the Arm Cortex-M4 core releases the hardware resource for camera modules, Android Automotive loads the camera related driver modules. This typically happens when the late start service is triggered in init.rc, if the EVS service running in Android Automotive is initialized successfully. This part of drivers are listed in \${MY ANDROID}/device/nxp/imx8q/mek 8q/setup.core.cfg. After the core drivers are probed successfully, it triggers low-priority driver modules to load and probe by triggering the service named boot completed main sh, which loads drivers listed in \${MY ANDROID}/device/nxp/imx8q/mek 8q/setup.main.cfg in init.rc. The "main" drivers are the rest of driver modules.

For mek_8q_car2, not like mek_8q_car, it has no "core" driver modules to be loaded and probed during the boot process. As all necessary camera driver modules are built-in inside the kernel image, like mek 8g car, the "main" drivers are the same ones like rfkill for BT, USB, and Wi-Fi. The driver load and probe are triggered once sys.boot completed property is set to be 1. This is handled in init.rc.

8.10.3 How to change driver load orders

Generally, the driver follows the priority below to be loaded:

- · Built-in
- Listed in setup.core.cfg
- Listed in setup.main.cfg

In each cfg file, the drivers are loaded one by one. To change the driver load orders, in setup.core.cfg or setup.main.cfg, just change the text list order. If some built-in drivers need to be loaded in low priority, follow the changes below:

- In the kernel defconfig file, mark specific CONFIG to be m instead of y.
- Modify the BOARD VENDOR KERNEL MODULES in \${MY ANDROID}/device/nxp/imx8q/mek 8q/SharedBoardConfig.mk to copy the specific .ko files to the target image.

Add the driver module name in setup.core.cfg or setup.main.cfg based on its loading priority.

8.11 Dual-bootloader configuration

8.11.1 Dual-bootloader layout

Dual-bootloader feature splits the default u-boot.imx into two parts: spl.bin and bootloader.img. The spl.bin goes to the bootloader0 partition, which is managed by U-Boot itself. The bootloader.img goes to the bootloader_a/bootloader_b partitions, which are managed by GPT and thus gets a chance to be updated.

The layout of dual-bootloader is as follows (taking i.MX 8Quad as an example):

The bootloader.img contains U-Boot proper, Arm Trusted Firmware, and Trusty OS. All of them can be updated easily through OTA to fix some power or security issues.

8.11.2 Configuring dual-bootloader

Dual-bootloader feature is enabled for Android Automotive by default. It is enabled by configuring <code>config_dual_bootloader</code> in U-Boot. Take i.MX 8Quad as an example:

```
diff --git a/configs/imx8qm mek androidauto trusty defconfig b/
configs/imx8qm mek androidauto trusty defconfig
index 82ec5ca..e0b210e 100644
--- a/configs/imx8qm mek androidauto trusty defconfig
+++ b/configs/imx8qm mek androidauto trusty defconfig
@@ -170,4 +170,4 @@ CONFIG APPEND BOOTARGS=y
CONFIG LIBAVB=y
CONFIG SHA256=y
CONFIG SPL MMC WRITE=y
+CONFIG DUAL BOOTLOADER=y
diff --git a/configs/imx8qxp mek androidauto trusty defconfig b/
configs/imx8qxp mek androidauto trusty defconfig
index 30fe32d..2f709d2 100644
--- a/configs/imx8qxp mek androidauto trusty defconfig
+++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
@@ -179,4 +179,4 @@ CONFIG APPEND BOOTARGS=y
CONFIG LIBAVB=y
CONFIG SHA256=y
CONFIG SPL MMC WRITE=y
+CONFIG DUAL BOOTLOADER=y
```

Then, imx-mkimage needs to pack spl.bin and bootloader.img separately. Taking i.MX 8QuadMax and i.MX 8QuadXPlus as an example, two targets are used to handle the dual-bootloader image generation with Cortex-M4 images in imx-mkimage:

```
i.MX 8QuadMax: flash_b0_spl_container_m4_1_trusty
i.MX 8QuadXPlus: flash_all_spl_container_ddr_car
```

When Trusty OS is enabled, bootloader rollback index can be used to prevent rollback attack. For more details to set the bootloader rollback index, see Section 2.3.5 in the *i.MX Android Security User's Guide* (ASUG).

Besides, after enabling dual-bootloader, the steps to sign images with the CST tool are different. For more information, see Section 2.1 in the *i.MX Android Security User's Guide* (ASUG).

8.12 Miscellaneous configuration

8.12.1 Changing boot command line in boot.img

After boot.img is used, the default kernel boot command line is stored inside this image. It packages together during Android build.

User Guide 51/58

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the \${MY_ANDROID}/device/nxp/imx8q/mek_8q/BoardConfig.mk file.

8.12.2 Changing the partition size

Partition name and size is defined in partition-table.img, which is built from \${MY_ANDROID}/device/nxp/common/partition/device-partitions.bpt. The following patch is an example of changing the system partition from 1536 MB to 1792 MB for images that do not have dynamic partition feature enabled. It should be applied on the repository located under \${MY_ANDROID}/device/nxp.

```
diff --qit a/common/partition/device-partitions-13GB-ab.bpt b/common/partition/device-partitions-13GB-
ab.bpt
index 1af4c201b..0ef52552b 100644
--- a/common/partition/device-partitions-13GB-ab.bpt
+++ b/common/partition/device-partitions-13GB-ab.bpt
@@ -22,7 +22,7 @@
         {
             "ab": true,
             "label": "system",
             "size": "1536 MiB",
             "size": "1792 MiB",
             "quid": "auto",
             "type quid": "0f2778c4-5cc1-4300-8670-6c88b7e57ed6"
         },
diff --qit a/imx8q/BoardConfiqCommon.mk b/imx8q/BoardConfiqCommon.mk
index a2d75d211..448e2c71f 100644
--- a/imx8q/BoardConfigCommon.mk
+++ b/imx8q/BoardConfigCommon.mk
@@ -182,7 +182,7 @@ else
ifeq ($(IMX NO PRODUCT PARTITION), true)
 BOARD SYSTEMIMAGE PARTITION SIZE := 2952790016
else
     BOARD SYSTEMIMAGE PARTITION SIZE := 1610612736
    BOARD SYSTEMIMAGE PARTITION SIZE := 1879048192
BOARD USES PRODUCTIMAGE := true
BOARD PRODUCTIMAGE PARTITION SIZE := 1879048192
```

The following table lists the minimum requirement of the partition size for images that do not have dynamic partition feature enabled.

Table 25. Minimum requirement of the partition size

Partition name	Partition size with GAS built-in	Partition size without GAS built-in
system	1.6 GB	1.2 GB
system_ext	128 MB	128 MB
vendor	512 MB	512 MB
product	350 MB	350 MB

For images that have dynamic partition feature enabled, changing the super partition size is a bit different from the preceding example.

The partition of super is used to hold logical partitions. Metadata describing the layout of logical partitions in super partition is at the beginning of super partition. When the system boots up, init parses the metadata in super partition and creates logical partitions to mount.

User Guide 52/58

With virtual A/B feature, the super partition can only have the size for one slot of logical partitions. Now the size of the super partition is 3.5 GB. 10 MB is reserved in this 3.5 GB for metadata. You can find the code as follows in \${MY ANDROID}/device/nxp.

```
BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624
```

The patch below is an example to change the super partition size from 3.5 GB to 4 GB:

```
diff --git a/common/partition/device-partitions-13GB-ab-no-vb super.bpt b/common/partition/device-
partitions-13GB-ab-no-vb super.bpt
index 1201287a..e75a6a5f 100644
--- a/common/partition/device-partitions-13GB-ab-no-vb super.bpt
+++ b/common/partition/device-partitions-13GB-ab-no-vb super.bpt
@@ -39,7 +39,7 @@
         },
             "label": "super",
             "size": "3584 MiB",
             "size": "4096 MiB",
             "quid": "auto",
             "type guid": "c1dedb9a-a0d3-42e4-b74d-0acf96833624"
         },
diff --git a/imx8q/BoardConfigCommon.mk b/imx8q/BoardConfigCommon.mk
index 8a4f60a3..1b94e594 100644
--- a/imx8q/BoardConfigCommon.mk
+++ b/imx8q/BoardConfigCommon.mk
@@ -191,8 +191,8 @@ ifeq ($(TARGET USE DYNAMIC PARTITIONS),true)
      BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4024434688
     endif
   else
    BOARD SUPER PARTITION SIZE := 3758096384
    BOARD NXP DYNAMIC PARTITIONS SIZE := 3747610624
    BOARD SUPER PARTITION SIZE := 4294967296
   BOARD NXP DYNAMIC PARTITIONS SIZE := 4284481536
   endif
   ifeq ($(IMX NO PRODUCT PARTITION), true)
      BOARD NXP DYNAMIC PARTITIONS PARTITION LIST := system system ext vendor
```

8.12.3 Notices before the debugging work

When doing the customization work, you may need to do some debugging work. The debugging work will be convenient and flexible if the read-only filesystems are remounted as writable, so that files in it can be replaced with the adb push command. It helps to avoid flashing the images again and saves time.

To remount the read-only filesystems, perform the following steps:

- 1. Unlock the device.
- 2. Boot up the system to Android platform.
- 3. Execute the following commands on the host. The second command takes seconds to finish.

```
$ adb root
$ adb disable-verity
```

4. Reboot the device, and execute the following command on the host:

```
$ adb root
$ adb remount
```

Android User's Guide, Rev. automotive-12.0.0_1.1.0, 2 June 2022

User Guide 53 / 58

Then, the images can be pushed to the board with the adb push command. Before the further debugging work, be aware of the following notices:

• Do not erase the "userdata" partition after adb disable-verity is executed.

With the dynamic partition feature enabled in i.MX Android images, and the size is not specified for system, system_ext, vendor, and product partitions when building the images, overlayfs is used when remounting the read-only filesystems. An upper directory that can be written in overlayfs is needed in this condition. When the adb_push command is executed, the files are pushed to the upper directory of overlayfs, while the original read-only filesystems are not modified.

i.MX Android images use only one partition named "super" to store images in logical partitions, and ext4 filesystem is used for the userdata partition, which is mounted on <code>/data</code>. When executing the <code>adb disable-verity</code> command, an image is allocated under <code>/data/gsi/remount/scratch.img.0000</code>. Its size is half the size of the "super" partition and should not be greater than 2 GB. The layout information of this image is stored in <code>/metadata/gsi/remount/lpmetadata</code> in the format logical partition metadata.

When rebooting the system, at the first stage of the init program, the information in /metadata/gsi/remount/lpmetadata is used to create a logical partition named "scratch", and it is mounted on /mnt/scratch. This is used as the upper directory in overlayfs used in remount. When the adb push command is executed to modify the originally read-only filesystems, files are written to the "scratch" partition.

At the first stage of the init program, the userdata partition is not mounted. The code judges whether the backing image of the scratch partition exists in the userdata partition by checking whether the <code>/metadata/gsi/remount/lpmetadata</code> file can be accessed. Therefore, if the userdata partition is erased, but the logical partition is still created, this could be catastrophic and may make the system crash.

- To make changes to files from the console, execute remount on the console first.
 adb and sh are in different mount namespaces. adb remount does not change the mount status that sh sees.
- For MEK boards, if files need to be pushed to /vendor/etc, push them to another path.

Images for i.MX 8Quad Max MEK and i.MX 8QuadXPlus MEK are built together with one target. Media codec configuration files' names and paths are hardcoded in framework, while these two SoCs need different media codec configurations. It means that the media codec configuration files for these two boards with different content should have the same name and being accessed with the same path. Therefore, overlayfs is used, and images for these two boards have different overlayfs upper directories. The mount command can be found in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/init.rc:

```
mount overlay overlay /vendor/etc ro lowerdir=/vendor/vendor_overlay_soc/${ro.boot.soc_type}/
vendor/etc:/vendor/etc,override_creds=off
```

The value of \${ro.boot.soc type} can be imx8qxp or imx8qm here.

With the preceding command executed, access to files under /vendor/etc can access files both under /vendor/etc and /vendor/vendor_overlay_soc/\${ro.boot.soc_type}/vendor/etc. The /vendor/vendor_overlay_soc/\${ro.boot.soc_type}/vendor/etc directory is the upper directory in overlayfs and /vendor/etc is both the lower directory and mount point.

After remount, the lower directory <code>/vendor/etc</code> is still read-only, and files can be pushed to other sub-paths under <code>/vendor except /vendor/etc</code>. To push a modified file, which should be accessed from <code>/vendor/etc</code>, push it to <code>/vendor/vendor/etc</code> and then reboot the system to make it take effect.

For example, if you modified the file <code>cdnhdmi_config.json</code>, a file should be under <code>/vendor/etc/configs/audio/</code>. Execute the following commands on the console:

```
su
umask 000
cd /vendor/vendor_overlay_soc/imx8qm/vendor/etc/
mkdir -p configs/audio/
```

User Guide 54 / 58

Then, execute the following commands on the host:

sudo adb push cdnhdmi_config.json /vendor/vendor_overlay_soc/imx8qm/vendor/etc/

At last, reboot the device to make this change take effect.

There are two limitations here:

- To delete a file under /vendor/etc/, you can only rebuild the image and flash the vendor image again.
- The overlayfs is mounted with a command in an init .rc file. The init .rc files are all parsed by the init program before the overlayfs is mounted. Therefore, to modify init .rc files under /vendor/etc, you can only rebuild the image and flash the vendor image again.

9 Revision History

Table 26. Revision history

Revision number	Date	Substantive changes
O8.1.0_1.1.0_AUTO-EAR	02/2018	Initial release
O8.1.0_1.1.0_AUTO-beta	05/2018	i.MX 8QuadXPlus/8QuadMax Beta release
P9.0.0_1.0.2-AUTO-alpha	11/2018	i.MX 8QuadXPlus/8QuadMax Automotive Alpha release
P9.0.0_1.0.2-AUTO-beta	01/2019	i.MX 8QuadXPlus/8QuadMax Automotive Beta release
P9.0.0_2.1.0-AUTO-ga	04/2019	i.MX 8QuadXPlus/8QuadMax Automotive GA release
P9.0.0_2.1.0-AUTO-ga	08/2019	Updated the location of the SCFW porting kit
automotive-10.0.0_1.1.0	03/2020	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0) GA release
android-10.0.0_2.2.0-AUTO	06/2020	i.MX 8QuadXPlus/8QuadMax MEK GA release
android-10.0.0_2.4.0	07/2020	i.MX 8QuadMax MEK GA release
android-11.0.0_1.1.0-AUTO	01/2021	i.MX 8QuadXPlus/8QuadMax MEK GA release
automotive-11.0.0_2.1.0	11/2021	Added the examples for i.MX 8QuadXPlus and upgraded the tool version
automotive-11.0.0_2.3.0	12/2021	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-11.0.0_2.5.0	03/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-12.0.0_1.1.0	06/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0)
		GA release

User Guide 55 / 58

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

User Guide 56 / 58

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile — are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ - is a trademark of NXP B.V.

 $\textbf{EdgeLock} \, -\! \text{ is a trademark of NXP B.V.}$

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

eIQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus - logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorlQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission. All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2018-2022.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com