
 

NXP Semiconductors © 2017-2018 NXP B.V.   

 

 

 

 

 

Code-Signing Tool 
User’s Guide 

 

 

 

 

 

Rev. 3.1.0 

09/2018 
 



 

 

 

 

 

How to Reach Us: 

Home Page: 

nxp.com 

Web Support: 

nxp.com/support 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information in this document is provided solely to enable system and 

software implementers to use NXP products. There are no express or 

implied copyright licenses granted hereunder to design or fabricate any 

integrated circuits based on the information in this document. NXP reserves 

the right to make changes without further notice to any products herein. 

NXP makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does NXP assume 

any liability arising out of the application or use of any product or circuit, and 

specifically disclaims any and all liability, including without limitation 

consequential or incidental damages. “Typical” parameters that may be 

provided in NXP data sheets and/or specifications can and do vary in 

different applications, and actual performance may vary over time. All 

operating parameters, including “typicals,” must be validated for each 

customer application by customer’s technical experts. NXP does not convey 

any license under its patent rights nor the rights of others. NXP sells 

products pursuant to standard terms and conditions of sale, which can be 

found at the following address: nxp.com/SalesTermsandConditions. 

 

© 2017-2018 NXP B.V. 

 

This product includes software developed by the OpenSSL Project for use 

in the OpenSSL Toolkit. (http://www.openssl.org) 

 

This product includes cryptographic software written by Eric Young 

(eay@cryptsoft.com) 

 

For more information, see LICENSE.openssl in the installation directory. 
 

 

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions
http://www.openssl.org/
mailto:eay@cryptsoft.com


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                    iii 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Contents 

About This Book ........................................................................................................ vi 

Audience ............................................................................................................................................. vi 

Scope .................................................................................................................................................. vi 

Organization ....................................................................................................................................... vi 

Revision History ............................................................................................................................... vii 

Conventions ..................................................................................................................................... viii 

Definitions, Acronyms, and Abbreviations ................................................................................... viii 

References ......................................................................................................................................... ix 

Additional Documents ...................................................................................................................... ix 

1 Introduction .......................................................................................................... 1 

1.1 Code Signing Components ....................................................................................................... 1 

1.1.1 Secure components ........................................................................................................... 1 

1.1.1.1 Secure components API ............................................................................................ 5 

1.1.2 CST ....................................................................................................................................... 5 

2 Installation ............................................................................................................ 8 

2.1 CST Package Contents and Installation ................................................................................. 9 

2.1.1 Linux System Requirements ............................................................................................. 9 

2.1.2 Windows System Requirements ...................................................................................... 9 

2.1.3 Unpacking the Files.......................................................................................................... 10 

3 Key and Certificate Generation ........................................................................... 13 

3.1 Generating HAB3 Keys and Certificates .............................................................................. 13 

3.1.1 HAB3 PKI Tree ................................................................................................................. 13 

3.1.2 Running the hab3_pki_tree script Example ................................................................. 14 

3.1.3 Programming the SRK Hash Value to Efuses ............................................................. 17 

3.1.4 Adding a Key to a HAB3 PKI Tree ................................................................................. 18 

3.2 Generating HAB4 Keys and Certificates .............................................................................. 20 

3.2.1 HAB4 PKI Tree ................................................................................................................. 20 

3.2.2 Running the hab4_pki_tree script Example ................................................................. 21 

3.2.3 Generating HAB4 SRK tables and Efuse Hash ........................................................... 23 

3.2.4 Programming the SRK Hash Value to Efuses ............................................................. 25 

3.2.5 Adding a Key to a HAB4 PKI Tree ................................................................................. 25 

3.3 Generating AHAB Keys and Certificates .............................................................................. 27 

3.3.1 AHAB PKI Tree ................................................................................................................. 27 

3.3.2 Running the ahab_pki_tree script Example ................................................................. 28 

3.3.3 Generating AHAB SRK tables and Efuse Hash .......................................................... 32 



 

 

iv   NXP Semiconductors © 2017-2018 NXP B.V. 

                                                    Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

 

3.3.4 Programming the SRK Hash Value to Efuses ............................................................. 33 

3.3.5 Adding a Key to a AHAB PKI Tree ................................................................................ 33 

4 CST Usage .......................................................................................................... 35 

4.1 CST (Code Signing Tool) ........................................................................................................ 35 

4.2 SRK Tool ................................................................................................................................... 37 

4.2.1 SRK Tool Usage for HAB3 .............................................................................................. 37 

4.2.2 SRK Tool Usage for HAB4 .............................................................................................. 38 

4.2.3 SRK Tool Usage for AHAB ............................................................................................. 41 

4.3 X5092WTLS Tool ..................................................................................................................... 42 

5 CSF Description Language ................................................................................. 44 

5.1 Overview .................................................................................................................................... 44 

5.2 CSF Commands ....................................................................................................................... 45 

5.2.1 Header ............................................................................................................................... 45 

5.2.1.1 Header Examples ..................................................................................................... 47 

5.2.2 Install SRK ......................................................................................................................... 47 

5.2.2.1 Install SRK Examples .............................................................................................. 48 

5.2.3 Install CSFK (HAB only) .................................................................................................. 49 

5.2.3.1 Install CSFK Examples ............................................................................................ 49 

5.2.4 Install NOCAK (HAB4 only) ............................................................................................ 49 

5.2.4.1 Install NOCAK Examples ........................................................................................ 50 

5.2.5 Authenticate CSF (HAB only) ......................................................................................... 50 

5.2.5.1 Authenticate CSF Examples ................................................................................... 50 

5.2.6 Install Key (HAB only) ...................................................................................................... 51 

5.2.6.1 Install Key Examples ................................................................................................ 52 

5.2.7 Authenticate Data ............................................................................................................. 52 

5.2.7.1 Authenticate Data Examples .................................................................................. 53 

5.2.8 Install Secret Key (HAB only) ......................................................................................... 54 

5.2.8.1 Install Secret Key Examples ................................................................................... 55 

5.2.9 Decrypt Data (HAB only) ................................................................................................. 55 

5.2.9.1 Decrypt Data Examples ........................................................................................... 56 

5.2.10 NOP (HAB only)................................................................................................................ 56 

5.2.10.1 NOP Example ........................................................................................................... 56 

5.2.11 Set Engine (HAB only) ..................................................................................................... 56 

5.2.11.1 Set Engine Example ................................................................................................ 57 

5.2.12 Init (HAB only) ................................................................................................................... 57 

5.2.12.1 Init Example ............................................................................................................... 58 

5.2.13 Unlock (HAB only) ............................................................................................................ 58 

5.2.13.1 Unlock Examples ...................................................................................................... 59 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                    v 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

5.2.14 Install Certificate (AHAB only) ........................................................................................ 59 

5.2.14.1 Install Key Examples ................................................................................................ 60 

5.3 CSF Examples .......................................................................................................................... 60 

5.3.1 HAB3 CSF Example ........................................................................................................ 60 

5.3.2 HAB3 Binding CSF Example .......................................................................................... 61 

5.3.3 HAB4 CSF Example ........................................................................................................ 62 

5.3.4 HAB4 CSF Fast Authentication Example ..................................................................... 63 

5.3.5 HAB4 CSF Example for Encrypted Boot ...................................................................... 64 

5.3.6 AHAB CSF Example ........................................................................................................ 66 

5.3.7 AHAB CSF with Certificate Example ............................................................................. 66 

Appendix A HAB Library Version 3 Details .......................................................... A-1 

A.1 HAB CST Certificate Details ................................................................................................. A-1 

A.2 HAB Signature Verification Details ...................................................................................... A-1 

A.3 HAB3 SRK Structure Information ........................................................................................ A-2 

Appendix B Replacing the CST Backend Implementation .................................... B-1 

B.1 CST Architecture ..................................................................................................................... B-1 

B.2 Back End Components ........................................................................................................... B-2 

B.3 Back End Replacement for Linux ......................................................................................... B-3 

B.4 Front End References to Code Signing Keys ..................................................................... B-4 

B.5 Back End alternative ............................................................................................................... B-4 

 

  



 

 

vi   NXP Semiconductors © 2017-2018 NXP B.V. 

                                                    Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

 

About This Book 

This manual, the Code-Signing Tool User’s Guide, provides the details necessary to install, 

configure, and run the code-signing tool (CST).  

Audience 

This document provides installation instructions and describes the use of the code signing tools 

for administrators and engineers performing codes signing for the NXP High Assurance Boot 

(HAB) and Advanced High Assurance Boot (AHAB) feature. 

Scope 

This document focuses on the use of the CST to generate keys, certificates, HAB4/AHAB SRK 

tables, HAB3 SRK hash values and generating data which include digital signatures. The use of 

the NXP Manufacturing tool to load images and to burn e-fuses are beyond the scope of this 

document. 

Organization 

The remainder of this manual is divided into sections according to the main HAB Code Signing 

Tool user tasks: 

•  Section 1, “Introduction,” describes the background of the code-signing tool and the 

goals of the procedures in later sections. 

•  Section 2, “Installation,” describes the steps to install the Code-Signing Tool (CST) 

program files. 

•  Section 3, “Key and Certificate Generation,” details the steps to generate signing keys 

and certificates for the HAB Version 3, HAB Version 4 and AHAB. 

•  Section 4, “CST Usage,” describes how to use the CST client command line interface. 

•  Section 5, “CSF Description Language,” provides CST description language details 

required to create a CSF description file. 

Two appendices also included: 

•  Appendix A, “HAB Library Version 3 Details,” presents details about CST Certificates, 

Signature Verification, and a description of the HAB Version 3 constants. 

•  Appendix B, “Replacing the CST Backend Implementation,” presents details about other 

possible solutions for the CST Backend such as a Hardware Security Module (HSM) 

  



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                    

vii 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Revision History 

Version Date Change Description 

1.0 11/15/2011 Initial Version 

2.0 11/09/2012 Bug fixes and other updates 

2.1 4/15/2013 Add Support for HAB4 fast authentication 

2.2 10/14//2014 Add note on Linux RNG dependency 

Add Appendix B containing details on replacing the 

CST Back End 

Corrected CA flag documentation 

2.3 3/30/2015 Bug fixes related to encrypted images 

2.3.1 7/1/2015 Fix for 64-bit version of srktable 

2.3.2 3/15/2016 Added support for manufacturing protection 

Changed input from STDIN to command line 

argument 

Made RNG unlock automatic only for CAAM 

2.3.3 11/14/2017 Added support for MS Windows 

Removed support for several commands: 

Write Data 

Clear Mask 

Set Mask 

Check Clear/Set 

Set MID 

3.0.0 04/04/2018 Added support for AHAB 

3.0.1 05/11/2018 Bug fixes related to Windows support 

3.1.0 08/2018 Added OpenSSL 1.1.0 support 

Added ECDSA support for HAB4 



 

 

viii   NXP Semiconductors © 2017-2018 NXP B.V. 

                                                    Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

 

Fix encrypted boot issue 

Conventions 

Use this section to name, describe, and define any conventions used in the book. This document 

uses the following notational conventions: 

•  Courier monospaced type indicates commands, command parameters, code examples, 

expressions, datatypes, and directives. 

•  Italic type indicates replaceable command parameters. 

•  All source code examples are in C. 

Definitions, Acronyms, and Abbreviations 

The following list defines the acronyms and abbreviations used in this document. 

AES Advanced Encryption Standard 

API Application Programming Interface 

ASN.1 Abstract Syntax Notation One 

CA Certificate Authority 

CCM Counter with CBC-MAC 

CSF Command Sequence File 

CMS Cryptographic Message Syntax 

CST Code-Signing Tool 

DEK Data Encryption Key 

DER ASN.1 Distinguished Encoding Rules 

HAB High Assurance Boot 

HAB3 High Assurance Boot Version 3 

HAB4 High Assurance Boot Version 4 

AHAB Advanced High Assurance Boot 

HSM Hardware Security Module 

MMU Memory Management Unit 

OS Operating System 

PEM Privacy Enhanced Mail 

PKI Public Key Infrastructure 

PKCS Public Key Cryptography Standards 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                    ix 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

RVT ROM Vector Table 

RSA Public key encryption algorithm created by Rivest, Shamir and Adleman 

SA Signature Authority 

SHA Secure Hash Algorithm 

SoC System on Chip 

SRK Super Root Key 

SW Software 

UID Unique ID — a field in the processor and CSF identifying a device or 

group of devices 

WTLS Wireless Transport Layer Security 

References 

The following sources were referenced to produce this book: 

1.  Open Secure Socket Layer (OpenSSL), http://www.openssl.org. 

2.  RFC 3369: Cryptographic Message Syntax (CMS), http://www.ietf.org/rfc/rfc3852.txt 

3.  RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate 

Revocation List (CRL) Profile, http://www.ietf.org/rfc/rfc5280.txt 

4.  RSA Private-Key Cryptography Standard #8 (PKCS #8) - Private-Key Information 

Syntax Standard, version 1.2, RSA Laboratories, http://www.rsa.com/rsalabs. 

5.  WAP Certificate and CRL Profiles (WAP-211-WAPCert), 22-May-2001, 

http://www.openmobilealliance.org 

6.  RFC 3610: Counter with CBC-MAC (CCM), http://www.ietf.org/rfc/rfc3610.txt 

7.  AES and Combined Encryption/Authentication Modes, Brian Gladman, 

http://www.gladman.me.uk/ 

 

Additional Documents 

The following documents provide additional information on secure boot with NXP processors 

8.  High Assurance Boot Version 4 Application Programming Interface Reference Manual. 

Included as part of the NXP Reference CST release. 

9.  AN4547: Secure Boot on i.MX25, i.MX35, and i.MX51 using HABv3, 

http://www.nxp.com 

10. AN4555: Secure Boot with i.MX28 HAB v4,  

http://www.nxp.com 

11. AN4581: Secure Boot on i.MX50, i.MX53, and i.MX 6 Series using HABv4, 

http://www.nxp.com 

12. i.MX 8 QXP/QM SRM 

http://www.nxp.com 



 

 

x   NXP Semiconductors © 2017-2018 NXP B.V. 

                                                    Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

 

 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

1 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

1 Introduction 

This section introduces code signing for HAB and AHAB using the Code-Signing Tool (CST). 

The CST allows manufacturers to sign or encrypt the software for their products incorporating 

NXP processors. Coupled with the HAB or AHAB feature included in NXP processors, the CST 

can be used to ensure that only genuine or authentic software is allowed to run on the end 

product. At the moment, AHAB is only used by i.MX 8 QXP/QM families only. 

 

1.1 Code Signing Components 

The secure boot feature using HAB or AHAB included in many NXP processors is based on 

Public Key Infrastructure. The secure systems consist of two main components: 

•  The HAB library sub-component of NXP Processor Boot ROMs or the AHAB secure 

sub-system including a dedicated ARM core, ROM and FW. 

•  The CST 

 

1.1.1 Secure components 

The HAB library is a sub-component of the boot ROM and the AHAB component is a complete 

sub-system on select NXP processors. They are responsible for verifying the digital signatures 

included as part of the product software and ensures that, when the processor is configured as a 

secure device, no unauthenticated code is allowed to run. On NXP processors supporting the 

feature, encrypted boot may also be used to provide image cloning protection and, depending on 

the use case, image confidentiality. The secure components cannot only be used to authenticate 

the first stage of the boot chain, but the other components of the boot chain as well. The use of 

HAB or AHAB is bootloader and OS agnostic. An example is shown in Figure 1 and 2 for a 

generic boot chain. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    2 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure 1. Generic Boot Flow using HAB 

 

Figure 2. Generic Boot Flow using AHAB (SECO ROM & FW) 

 

The secure boot process starts with the ROM reading eFuses to determine the security 

configuration of the SoC and the type of the boot device. The ROM then loads the images to 

memory. For HAB, the bootloader image contains both the bootloader itself in addition to: 

commands that the HAB uses to verify the image, digital signature data and public key certificate 

data which are collectively called Command Sequence File (CSF) data. The CSF data is 

generated off-line using the Code-Signing Tool (CST) which is introduced in the next section. 

For AHAB, the boot image contains the user-provided images (for the user programmable cores) 

in addition to a container header and a signature block that the AHAB uses to verify the images, 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

3 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

the digital signatures and public key certificate data. The container header is generated off-line, 

using the mkimage tool that is not described as part of this document. The signature block is 

generated off-line by the Code Signing Tool (CST) which is introduced in the next section. Once 

ROM has completed loading the images, execution is then passed to the secure components 

which will verify the signatures. If signature verification fails, execution is not allowed to leave 

the ROM for securely configured SoCs. The exact behavior on signature verification failure at 

the ROM stage is SoC dependent. If all signatures, including image decryption, are successful 

then execution is passed to the next images which can perform similar steps to verify the next 

boot stage by calling back into the secure API. 

NOTE 

The ROM, HAB and AHAB cannot be changed so they can be 

considered as trusted software components. This allows the use of 

ROM, HAB and AHAB to establish a secure boot chain. 

HAB and AHAB require the use of physical addresses, so if an MMU and a Level 2 cache are 

enabled within the bootloader stage then the address translation must be idempotent. This 

ensures that all boot components provide HAB or AHAB with physical addresses. Once all boot 

components have been verified, HAB and AHAB are no longer needed and the MMU and Layer 

2 cache may be re-configured as required by the Operating System (OS). 

The ROM/HAB/AHAB library integration also provides access to the APIs that boot 

components outside the ROM may call for image verification. The exact implementation of API 

is SoC dependent so please refer to the Reference Manual for the NXP processor you are using 

for specific details.  

There are three major versions of the secure components that exist on NXP processors: HAB 

Version 3 (HAB3), HAB Version 4 (HAB4) and AHAB version. Both HAB versions support the 

flow shown in Figure 1. AHAB version supports the flow shown in Figure 2. HAB3, HAB4 and 

AHAB use public key signature verification to ensure that product code is authentic. There some 

differences between these versions which are highlighted in Table 1 below. Please see the 

reference manual for the NXP processor you are using to determine which version of HAB or 

AHAB is supported. 

 

 

 

 

 

 

 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    4 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Table 1. HAB3 - HAB4 - AHAB Differences  

Feature HAB3 HAB4 AHAB 

Image Authentication Yes Yes Yes 

Super Root Key Single, fused hash 
Multiple, revocable, fused 

hash 

Multiple, revocable, fused 

hash 

Public Key Type RSA-2048 (Max) RSA-4096 (Max) 

ECC-P256, ECC-P384, 

ECC-P521, RSA-2048, RSA-

3072, RSA-4096 

Certificate Format WTLS X.509 NXP proprietary 

Signature Format Proprietary (PKCS#1) 

CMS (PKCS#1) 

CMS (ECDSA) (HAB 4.5 and 

later) 

ECDSA (raw format, no DER 

encoding), PKCS#1 

Hash Algorithm SHA-1, SHA-256 SHA-256 
SHA-256, SHA-384, SHA-

512 

Image Decryption No Yes (HAB4.1 and later) Not supported yet 

Image Decryption 

Algorithm 
N/A AES-CCM AES-CCM 

Image Decryption Key 

Blob Algorithm 
N/A NXP proprietary NXP proprietary 

Wrapped Key Format None 

CAAM Blob - Secret keys 

stored in CAAM secure RAM 

partition 

CAAM Blob – Secret keys 

stored in CAAM secure RAM 

partition 

Secret Key Type None AES-128/192/256 AES-128/192/256 

Decryption Algorithm None 
AES-CCM - authenticated 

decryption 

AES-CCM – authenticated 

decryption 

Device Configuration 

Commands 
Write value 

Write value 

Set/Clear bitmask 

Wait on bitmask 

Not applicable 

Unlock Commands None 

Field Return Fuse 

Revocation Fuses 

Secure JTAG 

etc. 

Not applicable 

 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

5 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

1.1.1.1 Secure components API 

In order to allow boot components outside the ROM to continue the secure boot chain it must be 

possible for these components to call back into the HAB or AHAB. There are three versions of 

the API, one for HAB3, one for HAB4 and one for AHAB. 

HAB3 API information can be found in System Boot Chapter of either the Reference Manual or 

Security Reference Manual for the following NXP processors: i.MX25, i.MX35 and i.MX51. 

This also includes the jump table and vector table location details for each of the API calls. 

Information on the HAB4 API can be found in the HAB4 API Reference Manual. 

Information on the AHAB API can be found in the i.MX8 QXP/QM SRM. 

 

1.1.2 CST 

There are several participants involved when performing cryptographic signatures as illustrated 

in Figure 2. These include: 

•  A Certificate Authority (CA). The CA is responsible for protecting the top-level CA key 

and for certifying lower level code signing keys. 

•  A Signature Authority (SA). The SA is responsible for performing the act of code 

signing. 

•  A Manufacturer. The Manufacturer is responsible for requesting digital signatures across 

product software 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    6 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure 2. Generic Code Signing Participants 

The CST is a set of command line tools residing on a host computer which serves as both the 

Certificate Authority (CA) and Signature Authority (SA) allowing manufacturers to control all 

aspects of the signing process. 

The CST can establish a PKI tree of keys and certificates (CA function) needed for code signing 

in addition to generating digital signatures across data provided by a user (SA Function). The 

signatures generated by the CST can then be included as part of the end-product software image. 

The signatures are then verified by the secure components on the NXP processor at boot time. 

Figure 3 shows how the CST is used to generate data which includes signatures, certificates and 

CSF commands (HAB only) the secure components in ROM will use to validate the product 

software. The CST takes two main inputs: 

•  A binary image or image(s) of the product software to be signed. 

•  A Command Sequence File (CSF). The CSF description file provides the instructions to 

the CST on what areas of the binary image need to be signed, which keys to sign the 

image with, etc. 

The CST takes these inputs and generates binary data, which includes signatures, certificates and 

CSF commands (HAB only) that can then be attached to the product software to create a signed 

image. This User Guide focuses on the details of how to generate the key, certificates, CSF 

description files and how to run the CST executable. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

7 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 3. Code-Signing Tool - Digital Signatures 

 

On certain NXP processors supporting HAB4, encrypted boot may also be used. Figure 4 shows 

the encrypted boot process with the CST. The encrypted boot case is very similar to generating 

signed images, but there are two main differences. The first is that the binary image is both 

decrypted and authenticated using a symmetric key rather than signed using a private asymmetric 

key. The second is the CST generates a one-time AES Data Encryption Key (DEK) which is 

used to encrypt the image. Note that when performing an encrypted boot digital signatures are 

still required, see Section 5.3.4 for an example CSF description file. The DEK is independent of 

the public keys used for code signing. The DEK output from the CST is protected but is not in 

the final form required for an encrypted boot on NXP processors. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    8 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure 4. Code Signing Tool - Encrypted Boot  

A cryptographic blob of the DEK must be created during the OEM manufacturing stages on each 

processor and then attached to the image on the boot device. The reason for this is the DEK blob 

is created using the device unique key embedded into the NXP processor which is only readable 

by the on-chip encryption engine. The DEK is common to all ICs using the same encrypted 

image but the DEK blob is unique per IC. Figure 5 provides an overview of DEK blob creation. 

The remaining details on DEK blob creation are beyond the scope of the CST and this document. 

 

Figure 5. DEK Blob Creation 

2 Installation 

This section describes the installation of the CST code-signing client files. 

 

NXP PROCESSOR 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

9 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

2.1 CST Package Contents and Installation 

The CST is delivered in an archive file, which contains a version for Linux and a version for 

Windows. The archive contains a contents.txt file that lists the entire contents of the archive.  

 

2.1.1 Linux System Requirements 

The following checklist can be used to ensure appropriate software is available for the Linux 

CST. Check with your system administrator if any components are missing. 

Table 2.a. Linux — CST System Requirements Checklist 

Required Component 


A Linux distribution: Ubuntu 14.04 and 16.04 known to work although other 

distributions should also work but have not been formally tested. 

 •  Check by viewing information shown on Linux login screen 


GNU objcopy 2.15 or later 
 •  Check by running "objcopy -V" 

 •  Available at http://directory.fsf.org/wiki/Binutils 


Even if OpenSSL 1.0.2 is known to work, OpenSSL 1.1.0 or later is recommended 

for generating signing private keys and public key certificates. 
 •  Check by running "openssl version" 

 •  Available at http://www.openssl.org/ 

 

NOTE 

The NXP Reference CST uses the Linux OS to generate random numbers for use as 

keys for encrypted boot. Given this, the Linux host on which the reference CST is 

installed MUST have good sources of entropy. Generally, this requires multiple 

entropy sources such as keyboard input, mouse input, network packet arrival times 

etc. Running the CST without these sources of entropy will cause lengthy delays in 

seeding the Linux random number generator. 

2.1.2 Windows System Requirements 

The following checklist can be used to ensure appropriate software is available for the MS 

Windows CST. Check with your system administrator if any components are missing. 

Table 2.b. Windows — CST System Requirements Checklist 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    10 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Required Component 


Windows 7 32bit and Windows 10 64bit are known to work. 

 •  Check by viewing information shown on system panel 


Even if OpenSSL 1.0.2 is known to work, OpenSSL 1.1.0 or later is recommended 

for generating signing private keys and public key certificates. 
 •  Check by running "openssl version" 

 •  Available at http://www.openssl.org/ 

Note: OpenSSL 1.0.2 can be used with the restriction to convert the password file 
(“key_pass.txt”) to Unix format. The small tool convlb.exe that can be found 

within the keys directory does this conversion when using the script for generating 

the keys. 

Note: it may happen that the OpenSSL Windows installer does not set the PATH 

environment variable. Please make sure this variable is set to the OpenSSL bin 

directory. 

 

NOTE 

The NXP Reference CST uses the Windows OS to generate random numbers for use as 

keys for encrypted boot. Given this, the Windows host on which the reference CST is 

installed MUST have good sources of entropy. Generally, this requires multiple 

entropy sources such as keyboard input, mouse input, network packet arrival times etc. 

Running the CST without these sources of entropy will cause lengthy delays in seeding 

the Windows random number generator. 

2.1.3 Unpacking the Files 

Unpack the CST archive to the desired installation point. The following is an example for Linux 

and assumes that the client archive was saved in a directory named /home/<username>/cst: 

%cd /home/<username>/cst/ 
%tar -zxvf <release package name>.tgz 

This creates the following directories:  

ca/ 

Contains the OpenSSL configuration files. These configuration files are 

used when generating signing keys and certificates with the OpenSSL 

command line tool. 

code/ 

The /backend directory contains the source and headers necessary for 

replacing the open source cryptographic libraries with a different 

implementation. 

The /back_end-hsm directory contains the sources and headers necessary 

for replacing the open source cryptographic libraries with an 

http://www.openssl.org/


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

11 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

implementation that can interact directly with an Hardware Security 

Module (HSM) by using the PKCS#11 interface definition. More detailed 

information can be found in the README file located in the directory.The 

/hab_csf_parser directory contains the sources and headers necessary to 

build a parser of the HAB CSF binaries generated by CST. More detailed 

information can be found in the README file located in the directory. 

The /hab_srktool_scripts directory contains scripts that mimic the 

SRKTOOL executable behavior. More detailed information can be found 

in the README file located in the directory. 

The /hab3 directory contains the header defining the data structure for the 

Super Root Key required when building signed images for NXP 

processors containing HAB version 3. 

crts/ 

Contains the public key certificates used for signing. Initially this directory 

is empty. 

docs/ 

Contains the CST release notes and this user guide. 

linux32/ 

Contains the CST executables for 32-bit Linux OS: 

bin/cst — The CST executable used to sign code 

bin/srktool— Generate SRK table and e-fuse files for HAB4 or 

AHAB. Generates SRK e-fuse information for HAB3. 

bin/x5092wtls — Converts X.509 certificates to equivalent WTLS 

certificates required for HAB3. 

bin/hab_log_parser — Parse HAB persistent memory dumps and print 

out the HAB events. 

/lib — Contains library files needed for replacing the CST backend 

implementation. 

linux64/ 

Contains the CST executables for 64-bit Linux OS: 

bin/cst — The CST executable used to sign code 

bin/srktool— Generate SRK table and e-fuse files for HAB4 or 

AHAB. Generates SRK e-fuse information for HAB3. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    12 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

bin/x5092wtls — Converts X.509 certificates to equivalent WTLS 

certificates required for HAB3. 

bin/hab_log_parser — Parse HAB persistent memory dumps and print 

out the HAB events. 

/lib — Contains library files needed for replacing the CST backend 

implementation. 

 

keys/ 

Contains the private key files used for signing. Initially this directory 

contains scripts to generate the PKI tree: 

hab3_pki_tree.sh — Use to generate a series of keys and certificates 

on a Linux machine for use with a NXP processor supporting HAB3. 

hab3_pki_tree.bat — Use to generate a series of keys and certificates 

on a Windows machine for use with a NXP processor supporting 

HAB3. 

hab4_pki_tree.sh — Use to generate a series of keys and certificates 

on a Linux machine for use with a NXP processor supporting HAB4. 

hab4_pki_tree.bat — Use to generate a series of keys and certificates 

on a Windows machine for use with a NXP processor supporting 

HAB4. 

ahab_pki_tree.sh — Use to generate a series of keys and certificates 

on a Linux machine for use with a NXP processor supporting AHAB. 

ahab_pki_tree.bat — Use to generate a series of keys and certificates 

on a Windows machine for use with a NXP processor supporting 

AHAB.add_key.sh — Use to add new keys to an existing HAB3 or 

HAB4 PKI tree. 

convlb.exe — Use to convert the line breaks of Windows text files to 

Unix format. Use to workaround OpenSSL 1.0.2 limitations with file 

handling. 

 

mingw32/ 

Contains the CST executables for MS Windows: 

bin/cst.exe — The CST executable used to sign code 

bin/srktool.exe— Generate SRK table and e-fuse files for HAB4 or 

AHAB. Generates SRK e-fuse information for HAB3. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

13 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

bin/x5092wtls.exe — Converts X.509 certificates to equivalent WTLS 

certificates required for HAB3. 

/lib — Contains library files needed for replacing the CST backend 

implementation. 

 

Once the archive is unpacked, there are no additional installation steps required in order to use 

the CST. 

3 Key and Certificate Generation 

Once the CST installation is complete. The first step in signing code is generating private keys 

and certificates. The CST is not delivered with keys or certificates since these will be different 

for each manufacturer and perhaps even each product line. 

The NXP reference CST generates keys by making use of the OpenSSL command line tool and a 

set of shell scripts for Linux. This makes OpenSSL the CA component shown in Figure 2. The 

provided scripts illustrate how to generate a PKI tree of keys and certificates. There are three sets 

of scripts generating an initial PKI tree. One for HAB3, one for HAB4 and one for AHAB. The 

reason for this is that the PKI tree structure is different for each version as well as the final public 

key certificate format. HAB3 requires public key certificates to be in WTLS [5] format where 

HAB4 and AHAB requires X.509 [3] format certificates. The provided key and certificate 

generation scripts are for reference to illustrate how they should be generated with OpenSSL. 

Users may update these scripts or replace these scripts with something equivalent if required. 

CAUTION 
The NXP reference CST requires a one-to-one correspondence between the 

key names in the /keys directory and the certificates in /crts directory. 

The convention is <keyname>_key.<ext> for keys and 

<keyname>_crt.<ext> for certificates. For example, a key named 

keys/SRK1_sha256_2048_65537_v3_ca_key.der must have a 

corresponding certificate crts/SRK1_sha256_2048_65537_v3_ca_crt.der. 

 

3.1 Generating HAB3 Keys and Certificates 
This section covers key and certificate generation for HAB3. 

3.1.1 HAB3 PKI Tree 

The tree structure for HAB3 generated by the hab3_pki_tree.sh script for Linux. This 

script will generate a HAB3 PKI tree as shown in Figure 6 and is in the /keys directory of the 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    14 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

NXP Reference CST.

  

Figure 6. HAB3 PKI Tree 

A HAB3 PKI tree consists of the following keys and certificates: 

•  CA key: is the top most key and is only used for signing SRK certificates. 

•  SRK: is the root key for HAB code signing keys. The cryptographic hash of this key is 

burned to one-time programmable efuses to establish a root of trust. The SRK must not 

be used for signing image code. Since the hash of the SRK is blown to efuses on the NXP 

processor only one SRK may be used for a product or product line. 

•  CSF: is a subordinate key of the SRK and is used to verify the signature across CSF 

commands and to verify signatures of image key certificates. 

•  IMG: is a subordinate key of the CSF key. Image keys are used to verify signatures 

across product software. 

The hab3_pki_tree script generates a basic tree in which up to a maximum of four SRKs may be 

generated. For each SRK a single CSF key and IMG key are also generated. Additional keys may 

be added to the tree later. It is also possible to replace the OpenSSL and the hab3_pki_tree script 

with an alternative key generation solution, but this is beyond the scope of this document. If the 

key generation scheme described here is replaced a new scheme must follow these constraints: 

•  Keys must be in PKCS#8 format 

•  Certificates must be in WTLS format 

•  Keys and Certificates must follow the file naming convention specified in the caution 

message found in Section 3, “HAB Key and Certificate Generation”. 

 

3.1.2 Running the hab3_pki_tree script Example 

The following are the steps to generate a HAB3 PKI tree for Linux.  

1. cd <CST Installation Path>/keys 

2.  Using your favorite text editor create a file called ‘serial’ in the /keys directory with 

contents 12345678. OpenSSL uses the contents of this file for the certificate serial 

numbers. You may choose to use another number for the initial certificate serial number. 

CA

SRK1

CSF1_1

IMG1_1

SRK2

CSF2_1

IMG2_1

SRKN

CSFN_1

IMGN_1

CSF1_2

IMG1_2

Not generated

automatically by

the hab3_pki_tree

script



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

15 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

3.  Using your favorite text editor create a file called ‘key_pass.txt’ in the /keys directory. 

This file contains your pass phrase that will protect the HAB code signing private keys. 

The format of this file is the pass phase repeated on the first and second lines of the file. 

For example: 

my_pass_phrase 

my_pass_phrase 

NOTE 

Failure to generate the serial and key_pass.txt files prior to running 

the hab3_pki_tree script will result in OpenSSL errors and the 

script will fail to generate the requested tree. 

CAUTION 

It is up to the user how best to protect the pass phrase for the 

private keys. Loss of the pass phrase will result in not being able to 

sign code with the affected keys. 

NOTE 

Note that OpenSSL enforces that the pass phrase must be at least 

four characters long.  

4.  Prior to running the hab3_pki_tree.sh ensure that OpenSSL is included in your 

search path by running: 

> openssl version 

5.  Run the hab3_pki_tree.sh script. The script will ask a series of questions: 

—  Do you want to use an existing CA key (y/n)? 

–  Choose no here unless you already have an existing CA key. 

–  If you choose yes, the script will ask you to provide the filenames (including path 

information) to the location of the CA key and corresponding CA public key 

certificate. 

—  Enter key length in bits for PKI tree: 

–  This is the length in bit for the keys in the tree. For HAB3 1024 and 2048-bit RSA 

keys are supported. All keys in the tree are generated with the same length. 

—  Enter PKI tree duration (years): 

–  This defines the validity period of the corresponding certificates. 

—  How many Super Root Keys should be generated? 

–  Up to four SRKs may be generated by this script. This allows for different SRKs to 

be used for different product lines for example. 

At this point the script will generate the SRK, CSF and IMG keys and certificates in the 

/keys and /crts directory. The generated keys will exist in PKCS#8 [4] format in both 

PEM and DER forms. The CST will accept key files in either form. Although the script 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    16 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

generates the public key certificates in the /crts in both X.509 [3]and WTLS [5] formats, 

the CST uses the WTLS certificates only for HAB3. The WTLS certificates exist only in 

binary format. 

NOTE 

You may notice that there are a number of pem files such as 

12345678.pem, serial.old, index.txt.attr and so on. These files are 

left over from the OpenSSL key and certificate generation process. 

Figure 7 below illustrates the use of the hab3_pki_tree script. 

 

Figure 7. Example Usage of the hab3_pki_tree Script 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

17 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

In addition to the keys and certificates there are additional files created which are 

required for generating signed images for HAB3. These include: 

—  SRK C files: The script generates a C data structure containing the RSA public key 

exponent and modulus data. For the example above the file 

/crts/SRK1_sha256_2048_65537_v3_ca_crt.der.c is generated. This file in addition to 

the /hdr/hab_super_root.h file can be included as part of a signed image. 

This data structure is pointed to by the super root pointer of the ROM application 

header. Please see the System Boot chapter of the NXP processor that you are using 

for further details. 

—  srk_wtls_cert_efuse_info.txt: This file contains the certificate information in addition 

to a SHA-1 and SHA-256 hash value of the modulus and exponent for each SRK 

generated. This is the hash value that must be burned to the SRK_HASH fuse field. 

The results are displayed in little endian meaning the first byte of the hash listed is to 

be burned to the lowest SRK_HASH address which corresponds to SRK_HASH[255: 

248] and the last byte of the hash corresponds to SRK_HASH[7:0]. See Section 3.1.3, 

“Programming the SRK Hash Value to Efuses” for further details. 

 

 

Figure 8. Example Output for srk_wtls_cert_efuse_info.txt 

At this point all key and certificate information required for signing an image for HAB3 is now 

available. 

 

3.1.3 Programming the SRK Hash Value to Efuses 

The previous section provided the details on how to generate keys and certificated for HAB3 

code signing. Included as part of the certificate generation process is the computation of the hash 

value for each SRK. This hash value is intended to be burned to the SRK_HASH Efuse field on 

the SoC supporting HAB3 and is computed automatically by the hab3_pki_tree script using the 

x5092wtls tool. 

The hash value as shown in Figure 8 must be burned to the SoC Efuses in the following order: 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    18 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure 9. SRK Hash Value Assignment to SoC SRK_HASH Efuse Field for HAB3 

Please refer to the fuse map for the NXP processor you are using for location details of the 

SRK_HASH field. 

 

3.1.4 Adding a Key to a HAB3 PKI Tree 

Adding to an existing HAB3 PKI tree can be done using the add_key script. The following steps 

are used to add a new key: 

1.  Run the add_key.sh script for Linux. The script will prompt you with several 

questions: 

—  Which version of HAB/AHAB do you want to generate the key for (3/4/a)? 

—  Enter 3 here for HAB3 

—  Enter new key name (e.g. SRK5): 

–  This the name of the new key, such as SRK2, CSF1_2, etc. 

—  Enter new key length in bits: 

–  This is the length of the new key in bits. This should match the key length of the 

signing key. 

—  Enter certificate duration (years): 

–  This defines the validity period for the corresponding certificate generated 

—  Which version of HAB do you want to generate the key for (3/4)? 

–  Enter 3 here for HAB3 

—  Is this an SRK key? 

–  If you are generating a new SRK enter ‘y’, otherwise enter ‘n’ 

–  If you enter no you will be prompted with “Is this a CSF key?”. Like the SRK 

enter ‘y’ if you are generating a CSF key and ‘n’ if you are generating an IMG 

key. 

–  Note that if you are generating a new SRK the 

./crts/srk_wtls_cert_efuse_info.txt is automatically updated with 

the certificate information including the SRK hash value. 

—  Enter <key type> signing key name: 

–  If you are generating an new SRK <key type> is CA. Enter the path and filename 

of the CA key in the /keys directory. 

SRK_HASH[255:248] = 0xcb

SRK_HASH[247:240] = 0x46

SRK_HASH[239:232] = 0x07

...

SRK_HASH[15:8] = 0x75

SRK_HASH[7:0] = 0x9a



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

19 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

–  If you are generating a new CSF key <key type> is SRK. Enter the path and 

filename of the SRK in the /keys directory you wish to use to generate the CSF 

key.  

–  If you are generating a new IMG key <key type> is CSF. Enter the path and 

filename of the CSF key in the /keys directory you with to use to generate the IMG 

key. 

—  Enter <cert type> signing certificate name: 

–  If you are generating a new SRK certificate the <cert type> is CA. Enter the path 

and filename of the CA certificate in the /crts directory. 

–  If you are generating a new CSF certificate <cert type> is SRK. Enter the path and 

filename of the SRK certificate in the /certs directory you wish to use to generate 

the CSF certificate. Note this must be the filename of the SRK X.509 certificate 

not the SRK WTLS certificate. 

–  If you are generating a new IMG certificate <cert type> is CSF. Enter the path and 

filename of the CSF certificate in the /certs directory you wish to use to generate 

the IMG certificate. Note this must be the filename of the CSF X.509 certificate 

not the CSF WTLS certificate. 

Using the example from the previous section Figure 10 below shows how to add a new SRK key 

to the PKI tree.  

 

Figure 10. Adding a New SRK to a HAB3 PKI Tree Example 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    20 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

CAUTION 

Do not run this script without first generating a HAB3 PKI tree. 

Failure to do so will result in errors. 

 

3.2 Generating HAB4 Keys and Certificates 

This section covers only key and certificate generation for HAB4. Note that when using making 

use of the encrypted boot feature digital signatures are still required. Data structures required by 

ROM and HAB cannot be encrypted but still must be covered by a valid digital signature. Also, a 

new symmetric key is dynamically generated by the CST for each Install Secret Key/Decrypt 

Data command pair. These symmetric keys are an output of the CST and encrypted with a 

supplied public key. See Section 5.3.4 for an example encrypted boot CSF file. 

 

3.2.1 HAB4 PKI Tree 

The tree structure for HAB4 generated by the hab4_pki_tree.sh script for Linux. This 

script will generate a HAB4 PKI tree as shown in Figure 11 and is located in the /keys directory 

of the NXP Reference CST.

  

Figure 11. HAB4 PKI Tree 

A HAB4 PKI tree consists of the following keys and certificates: 

•  CA key: is the top most key and is only used for signing SRK certificates. 

•  SRK: is the root key for HAB code signing keys. The cryptographic hash of a table of 

SRK is burned to one-time programmable efuses to establish a root of trust. Only one of 

the SRKs in the table may be selected for use on the NXP processor per reset cycle. The 

selection of which SRK to use is a parameter within the Install Key CSF command (see 

Section 5.2.2, “Install SRK”). The SRK may only be used for signing certificate data of 

subordinate keys. 

•  CSF: is a subordinate key of the SRK and is used to verify the signature across CSF 

commands. 

•  IMG: is a subordinate key of the SRK key and is used to verify signatures across product 

software. 

CA

SRK1

CSF1_1 IMG1_1

SRK2

CSF2_1 IMG2_1

SRKN

CSFN_1 IMGN_1

Not generated

automatically by

the hab4_pki_tree

script

CSF1_2 IMG2_2



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

21 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

•  NOTE: The CSF and IMG keys are not generated for a fast authentication PKI tree 

The hab4_pki_tree script generates a basic tree in which up to a maximum of four SRKs may be 

generated. For each SRK a single CSF key and IMG key are also generated. Additional keys may 

be added to the tree later using a separate script. It is also possible to replace the OpenSSL and 

the hab4_pki_tree script with an alternative key generation solution, but this is beyond the scope 

of this document. If the key generation scheme described here is replaced a new scheme must 

follow these constraints: 

•  Keys must be in PKCS#8 format 

•  Certificates must be in X.509 format following the certificate profile specified by HAB4. 

Keys and Certificates must follow the file naming convention specified in Section 3, 

“HAB Key and Certificate Generation”. 

 

3.2.2 Running the hab4_pki_tree script Example 

The following are the steps to generate a HAB4 PKI tree for Linux.  

2. cd <CST Installation Path>/keys 

3.  Using your favorite text editor create a file called ‘serial’ in the /keys directory with 

contents 12345678. OpenSSL uses the contents of this file for the certificate serial 

numbers. You may choose to use another number for the initial certificate serial number. 

4.  Using your favorite text editor create a file called ‘key_pass.txt’ in the /keys directory. 

This file contains your pass phrase that will protect the HAB code signing private keys. 

The format of this file is the pass phase repeated on the first and second lines of the file. 

For example: 

my_pass_phrase 

my_pass_phrase 

NOTE 

Failure to generate the serial and key_pass.txt files prior to running 

the hab4_pki_tree script will result in OpenSSL errors and the 

script will fail to generate the requested tree. 

CAUTION 

It is up to the user how best to protect the pass phrase for the 

private keys. Loss of the pass phrase will result in not being able to 

sign code with the affected keys. 

NOTE 

Note that OpenSSL enforces that the pass phrase must be at least 

four characters long.  



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    22 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

5.  Prior to running the hab4_pki_tree.sh ensure that OpenSSL is included in your 

search path by running: 

> openssl version 

6.  Run the hab4_pki_tree.sh script. The script will ask a series of questions: 

—  Do you want to use an existing CA key (y/n)? 

–  Choose no here unless you already have an existing CA key. 

–  If you choose yes, the script will ask you to provide the filenames (including path 

information) to the location of the CA key and corresponding CA public key 

certificate. 

— Do you want to use Elliptic Curve Cryptography (y/n)?: 

—  If “n”, Enter key length in bits for PKI tree: 

–  This is the length in bit for the keys in the tree. For HAB4 1024, 2048, 3072 and 

4096-bit RSA keys are supported. All keys in the tree are generated with the 

same length. 

— If “y”, Enter length for elliptic curve to be used for PKI tree: Possible values p256, 

p384, p521: 

–  This is the length in bit for the keys in the tree. For HAB4 P256, P384 and P521 

EC keys are supported. All keys in the tree are generated with the same length. 

—  Enter PKI tree duration (years): 

–  This defines the validity period of the corresponding certificates. 

—  How many Super Root Keys should be generated? 

–  Up to four SRKs may be generated by this script. This allows for up to four SRKs 

to be included in a HAB4 SRK table. See Section 4.2, “SRK Tool” for further 

details. 

–  Do you want the SRK certificates to have the CA Flag set? 

–  Answer ‘y’ for a standard tree, ‘n’ for fast authentication tree. 

At this point the script will generate the SRK, CSF and IMG keys and certificates in the 

/keys and /crts directory. The generated keys will exist in PKCS#8 [4] format in both 

PEM and DER forms. Certificates are located in the /crts directory X.509 [3] format in 

both PEM and DER format. The cst will accept key and certificate files in either PEM 

or DER form. 

NOTE 

You may notice that there are a number of pem files such as 

12345678.pem, serial.old, index.txt.attr and so on. These files are 

left over from the OpenSSL key and certificate generation process. 

 

Figure 12 below illustrates the use of the hab4_pki_tree script. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

23 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 12. Example Usage of the hab4_pki_tree Script 

At this point all key and certificate information required for signing an image for HAB4 is now 

available. 

3.2.3 Generating HAB4 SRK tables and Efuse Hash 

The previous section discussed the steps to generate the keys and certificates for a HAB4 PKI 

tree. Now that they have been generated, the next step is to generate a HAB4 SRK table and 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    24 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

corresponding hash value for burning to efuses on the SoC. Unlike HAB3, in HAB4 it is possible 

to include up to four SRKs in a signed image, although only one may be used per reset cycle. By 

collecting SRKs in a table it is possible to select one of the SRKs at boot time. The Install SRK 

CSF command (see Section 5.2.2, “Install SRK”) selects which SRK to use from the table to 

establish the root of trust. Any of the SRKs in the table may be selected without having to 

change the SRK_HASH value burned to efuses on the SoC. 

This is useful on NXP processors where additional fuses are available for SRK revocation. That 

is, in the event one or more of the SRKs in the table are compromised, efuses corresponding to 

the compromised keys can be burned preventing those SRKs from ever being used again. This is 

enforced by the HAB library. The next SRK in the table can be used to sign new images. A 

minimum of one and maximum of four SRKs can be placed in an SRK table.  

NOTE 

Only the first three SRKs in a table can be revoked, so it 

recommended to use an SRK table with four keys in order to have 

one SRK to fall back on which cannot be revoked. 

SRK tables are generated using the srktool. The following illustrates the generation of an 

SRK table from the /crts directory using the four SRKs created in the previous section. 

 

Figure 13. SRK Table and Efuse Generation Example 

In this example: 

•  All four SRKs are included in the table 

•  The SHA-256 hash value is generated with 32 bit of fuse data per word. Some NXP 

processors require the hash value to be generated with 8 bits of fuse data per word. In that 

case use the ‘-f 0’ option. 

•  The hash result in the resulting SRK_1_2_3_4_fuse.bin file is in little endian 

format. This means that the first byte in the file corresponds to SRK_HASH[255:248] 

and the last byte corresponds to SRK_HASH[7:0] in the efuse map. Similarly when using 

the ‘-f 0’ option the first non-zero byte in the file corresponds to SRK_HASH[255:248] 

and the last non-zero byte corresponds to SRK_HASH[7:0]. 

CAUTION 

Do not enter spaces between the ‘,’ when specifying the SRKs in 

the -c or --certs option. Doing so will cause all certificates 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

25 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

specified after the first space not to be included in the table and 

resulting efuse hash. 

3.2.4 Programming the SRK Hash Value to Efuses 

The previous section provided the details on how to SRK tables and the corresponding efuse 

data. In this section the hash value is of interest. The value located in the efuse file is intended to 

be burned to the SRK_HASH efuse field on the SoC supporting HAB4 and is computed 

automatically by the hab4_pki_tree script using the srktool. The SRK1_2_3_4_fuse.bin 

file from the example in the previous section has the following contents: 

93ea61d0bd30ffb62aba0b9d5e144d082dd7faeb39223d9e3f9a22a06429895a 

This hash value must be burned to the SoC efuses in the following order: 

 

Figure 14. SRK Hash Value Assignment to SoC SRK_HASH Efuse Field for HAB4 

Please refer to the fuse map for the NXP processor you are using for location details of the 

SRK_HASH field. 

 

3.2.5 Adding a Key to a HAB4 PKI Tree 

Adding to an existing HAB4 PKI tree can be done using the add_key script. The following steps 

are used to add a new key: 

1.  Run the add_key.sh script for Linux. The script will prompt you with several 

questions: 

—  Which version of HAB/AHAB do you want to generate the key for (3/4/a)? 

—  Enter 4 here for HAB4 

—  Enter new key name (e.g. SRK5): 

–  This the name of the new key, such as SRK2, CSF1_2, etc. 

—  Enter new key length in bits: 

–  This is the length of the new key in bits. This should match the key length of the 

signing key. 

—  Enter certificate duration (years): 

–  This defines the validity period for the corresponding certificate generated 

—  Which version of HAB do you want to generate the key for (3/4)? 

SRK_HASH[255:248] = 0x93

SRK_HASH[247:240] = 0xea

SRK_HASH[239:232] = 0x61

...

SRK_HASH[15:8] = 0x89

SRK_HASH[7:0] = 0x5a



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    26 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

–  Enter 4 here for HAB4 

—  Is this an SRK key? 

–  If you are generating a new SRK enter ‘y’, otherwise enter ‘n’ 

–  If you enter no you will be prompted with “Is this a CSF key?”. Like the SRK 

enter ‘y’ if you are generating a CSF key and ‘n’ if you are generating an IMG 

key. 

—  Enter <key type> signing key name: 

–  If you are generating a new SRK <key type> is CA. Enter the path and filename of 

the CA key in the /keys directory. 

–  If you are generating a new CSF key <key type> is SRK. Enter the path and 

filename of the SRK in the /keys directory you wish to use to generate the CSF 

key.  

–  If you are generating a new IMG key <key type> is CSF. Enter the path and 

filename of the CSF key in the /keys directory you with to use to generate the IMG 

key. 

—  Enter <cert type> signing certificate name: 

–  If you are generating a new SRK certificate the <cert type> is CA. Enter the path 

and filename of the CA certificate in the /crts directory. 

–  If you are generating a new CSF certificate <cert type> is SRK. Enter the path and 

filename of the SRK certificate in the /certs directory you wish to use to generate 

the CSF certificate.  

–  If you are generating a new IMG certificate <cert type> is CSF. Enter the path and 

filename of the CSF certificate in the /certs directory you wish to use to generate 

the IMG certificate.  

Using the keys generated in Section 3.2.2, “Running the hab4_pki _tree script Example”, Figure 

15 below shows how to add a new SRK key to the PKI tree.  



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

27 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 15. Adding a New SRK to a HAB4 PKI Tree Example 

CAUTION 

Do no run this script without first generating a HAB4 PKI tree. 

Failure to do so will result in errors. 

 

3.3 Generating AHAB Keys and Certificates 

This section covers only key and certificate generation for AHAB. Note that when making use of 

the encrypted boot feature digital signatures are still required. Data structures required by ROM and 

AHAB cannot be encrypted but still must be covered by a valid digital signature.  

 

3.3.1 AHAB PKI Tree 

The tree structure for AHAB generated by the ahab_pki_tree.sh script for Linux. This 

script will generate a AHAB PKI tree as shown in Figure 11 and is located in the /keys directory 

of the NXP Reference CST.  

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure11


 

 

NXP Semiconductors © 2017-2018 NXP B.V.    28 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure 11. AHAB PKI Tree 

A AHAB PKI tree consists of the following keys and certificates: 

•  CA key: is the top most key and is only used for signing SRK certificates. 

•  SRK: is the root key for AHAB code signing keys. The cryptographic hash of a table of 

SRK is burned to one-time programmable efuses to establish a root of trust. Only one of 

the SRKs in the table may be selected for use on the NXP processor. The selection of 

which SRK to use is a parameter within the Install SRK CSF command (see Section 

5.2.2, “Install SRK”). The SRK may only be used for signing certificate data of 

subordinate keys. 

•  SGK: is a subordinate key of the SRK key and is used to verify signatures across product 

software. 

•  NOTE: The SGK keys are not generated if the SRK keys do not have the CA flag set 

The ahab_pki_tree script generates a basic tree in which four SRKs may be generated. For each 

SRK a single SGK key is also generated. Additional keys may be added to the tree later using a 

separate script. It is also possible to replace the OpenSSL and the ahab_pki_tree script with an 

alternative key generation solution, but this is beyond the scope of this document. If the key 

generation scheme described here is replaced a new scheme must follow these constraints: 

•  Keys must be in PKCS#8 format 

•  Certificates must be in X.509 format following the certificate profile specified by AHAB. 

Keys and Certificates must follow the file naming convention specified in Section 3, 

“Key and Certificate Generation”. 

 

3.3.2 Running the ahab_pki_tree script Example 

The following are the steps to generate a AHAB PKI tree.  

1. cd <CST Installation Path>/keys 

2. Using your favorite text editor create a file called ‘serial’ in the /keys directory with 

contents 12345678. OpenSSL uses the contents of this file for the certificate serial 

numbers. You may choose to use another number for the initial certificate serial number. 

3. Using your favorite text editor create a file called ‘key_pass.txt’ in the /keys directory. 

This file contains your pass phrase that will protect the AHAB code signing private keys. 

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_HAB_Key_and
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_HAB_Key_and


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

29 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

The format of this file is the pass phase repeated on the first and second lines of the file. 

For example: 

my_pass_phrase 

my_pass_phrase 

NOTE 

Failure to generate the serial and key_pass.txt files prior to running 

the ahab_pki_tree script will result in OpenSSL errors and the 

script will fail to generate the requested tree. 

CAUTION 

It is up to the user how best to protect the pass phrase for the 

private keys. Loss of the pass phrase will result in not being able to 

sign code with the affected keys. 

NOTE 

Note that OpenSSL enforces that the pass phrase must be at least 

four characters long.  

4. Prior to running the ahab_pki_tree script ensure that OpenSSL is included in your 

path by running: 

> openssl version 

5. Run the ahab_pki_tree script. The script will ask a series of questions: 

–  Do you want to use an existing CA key (y/n)? 

–  Choose no here unless you already have an existing CA key. 

–  If you choose yes, the script will ask you to provide the filenames (including path 

information) to the location of the CA key and corresponding CA public key 

certificate. 

–  Do you want to use Elliptic Curve Cryptography (y/n)? 

–  This is the type of the keys in the tree. 

–  If you choose yes, the script will ask you to provide the Elliptic Curve to be used. 

For AHAB, P-256, P-384 and P-521curves are supported. 

–  If you choose no, the script will ask you to enter the length in bit for the RSA 

keys in the tree. For AHAB 2048, 3072 and 4096-bit RSA keys are supported. 

–  All keys in the tree are generated with the same length. 

–  Enter PKI tree duration (years): 

–  This defines the validity period of the corresponding certificates. 

–  Do you want the SRK certificates to have the CA Flag set? 

–  Answer ‘y’ for a tree with Certificates as defined by the AHAB architecture. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    30 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

At this point the script will generate the SRK and SGK keys and certificates in the /keys 

and /crts directory. The generated keys will exist in PKCS#8 [4] format in both PEM and 

DER forms. Certificates are located in the /crts directory X.509 [3] format in both PEM 

and DER format. The cst will accept key and certificate files in either PEM or DER 

form. 

NOTE 

You may notice that there are a number of pem files such as 

12345678.pem, serial.old, index.txt.attr and so on. These files are 

left over from the OpenSSL key and certificate generation process. 

 

Figure 12 below illustrates the use of the ahab_pki_tree script. 

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure12


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

31 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 12. Example Usage of the AHAB_pki_tree Script 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    32 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

At this point all key and certificate information required for signing an image for AHAB is now 

available. 

3.3.3 Generating AHAB SRK tables and Efuse Hash 

The previous section discussed the steps to generate the keys and certificates for a AHAB PKI 

tree. Now that they have been generated, the next step is to generate a AHAB SRK table and 

corresponding hash value for burning to efuses on the SoC. In AHAB four SRKs are included in 

a signed image, although only one may be used. By collecting SRKs in a table it is possible to 

select one of the SRKs at boot time. The Install SRK CSF command (see Section 5.2.2, “Install 

SRK”) selects which SRK to use from the table to establish the root of trust. Any of the SRKs in 

the table may be selected without having to change the SRK_HASH value burned to efuses on 

the SoC. 

This is useful on NXP processors where additional fuses are available for SRK revocation. That 

is, in the event one or more of the SRKs in the table are compromised, efuses corresponding to 

the compromised keys can be burned preventing those SRKs from ever being used again. This is 

enforced by the AHAB code. The next SRK in the table can be used to sign new images. Four 

SRKs can be placed in an SRK table.  

NOTE 

The four SRKs in a table can be revoked. 

SRK tables are generated using the srktool. The following illustrates the generation of an 

SRK table from the /crts directory using the four SRKs created in the previous section. 

 

Figure 13. SRK Table and Efuse Generation Example 

In this example: 

•  All four SRKs are included in the table 

•  The signature hash algorithm that will be used for signing is SHA-384 (option “-s”) 

•  The SHA-512 hash value to be fused is generated with 32 bit of fuse data per word. Some 

NXP processors require the hash value to be generated with 8 bits of fuse data per word. 

In that case use the ‘-f 0’ option. 

•  The hash result is in the resulting SRK1234fuse.bin file. 

CAUTION 

Do not enter spaces between the ‘,’ when specifying the SRKs in 

the -c or --certs option. Doing so will cause all certificates 

specified after the first space not to be included in the table and 

causing an execution error of srktool. 

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Install_SRK


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

33 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

3.3.4 Programming the SRK Hash Value to Efuses 

The previous section provided the details on how to SRK tables and the corresponding efuse 

data. In this section the hash value is of interest. The value located in the efuse file is intended to 

be burned to the SRK_HASH efuse field on the SoC supporting AHAB and is computed 

automatically by the AHAB_pki_tree script using the srktool. The SRK1234fuse.bin file 

from the example in the previous section has the following contents: 

988a35b6073c42120ebaf31be8324d817331adb386d7b8933574eaa27264ec5eba63147fff99717d450efd

2ec28de640b2daff23f9ffb15f42402a7d00fa7d4e 

Here is the corresponding hexadecimal dump of the fuse file. 

$ hexdump -C SRK1234fuse.bin 

00000000  98 8a 35 b6 07 3c 42 12  0e ba f3 1b e8 32 4d 81  |..5..<B......2M.| 

00000010  73 31 ad b3 86 d7 b8 93  35 74 ea a2 72 64 ec 5e  |s1......5t..rd.^| 

00000020  ba 63 14 7f ff 99 71 7d  45 0e fd 2e c2 8d e6 40  |.c....q}E......@| 

00000030  b2 da ff 23 f9 ff b1 5f  42 40 2a 7d 00 fa 7d 4e  |...#..._B@*}..}N| 

This hash value must be burned to the SoC efuses in the following order (the first word to the 

first fuse row index): 

$ hexdump -e '/4 "0x"' -e '/4 "%X""\n"' ../crts/SRKfuse.bin 

0xB6358A98 

0x12423C07 

0x1BF3BA0E 

0x814D32E8 

0xB3AD3173 

0x93B8D786 

0xA2EA7435 

0x5EEC6472 

0x7F1463BA 

0x7D7199FF 

0x2EFD0E45 

0x40E68DC2 

0x23FFDAB2 

0x5FB1FFF9 

0x7D2A4042 

0x4E7DFA00 

Please refer to the fuse map for the NXP processor you are using for location details of the 

SRK_HASH field. 

 

3.3.5 Adding a Key to a AHAB PKI Tree 

Adding to an existing AHAB PKI tree can be done using the add_key script. The following steps 

are used to add a new key: 

1.  Run the add_key.sh script for Linux. The script will prompt you with several 

questions: 

–  Which version of HAB/AHAB do you want to generate the key for (3/4/a)? 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    34 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

–  Enter a here for AHAB 

–  Enter new key name (e.g. SRK5): 

–  This is the name of the new key, such as SRK2, SGK3, etc. 

–  Enter new key type (ecc / rsa): 

–  This is the type of the new key, either ECC or RSA. 

–  Enter new key length in bits: 

–  This is the length of the new key in bits. This should match the key length of the 

signing key. 

–  Enter new message digest: 

–  This is the digest of the key signature. 

–  Enter certificate duration (years): 

–  This defines the validity period for the corresponding certificate generated 

–  Is this an SRK key? 

–  If you are generating a new SRK enter ‘y’, otherwise enter ‘n’ 

–  If you enter yes, you will be prompted with “Do you want the SRK to have the CA 

flag set?”. Enter yes if you are generating a SRK with the CA flag set. 

–  If you enter no, you are generating a new SGK key. 

–  Enter <key type> signing key name: 

–  If you are generating a new SRK <key type> is CA. Enter the path and filename of 

the CA key in the /keys directory. 

–  If you are generating a new SGK key <key type> is SRK. Enter the path and 

filename of the SRK in the /keys directory you wish to use to generate the SGK 

key.  

–  Enter <cert type> signing certificate name: 

–  If you are generating a new SRK certificate the <cert type> is CA. Enter the path 

and filename of the CA certificate in the /crts directory. 

–  If you are generating a new SGK certificate <cert type> is SRK. Enter the path and 

filename of the SRK certificate in the /certs directory you wish to use to generate 

the SGK certificate.  

Using the keys generated in Section 3.2.2, “Running the AHAB_pki _tree script Example”, 

Figure 15 below shows how to add a new SRK key to the PKI tree.  

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23_Running_the_hab4_pki_tree
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure15


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

35 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 15. Adding a New SRK to a AHAB PKI Tree Example 

CAUTION 

Do no run this script without first generating a AHAB PKI tree. 

Failure to do so will result in errors. 

 

4 CST Usage 

This section describes how to use the CST and other tools in the release package. 

 

4.1 CST (Code Signing Tool) 

The cst tool in the release package is the main application used to generate binary CSF data 

using input CSF description files passed as standard input. The CST can be executed from any 

location provided the correct absolute or relative path is provided. The paths to certificate and 

image files inside CSF can be either relative to the current working directory location or as 

absolute paths. 

CAUTION 

Due to limitation in current cst implementation the cst must be run 

from a directory at the same level as <Installation path>/keys. For 

example, <Installation path>/product_code where the product code 

to be signed is located. 

Usage:  

cst --output <binary> [--cert <cert_file>] --input <input_csf> 

[--license] [--help] 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    36 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Description: 

-o, --output <binary>: 

 For HAB, output binary CSF filename. For AHAB, output signed binary 

filename. Required when generating binary output. An input CSF passed as 

standard input is required when this option is given. 

-l, --license: 

 Optional, displays program license information. No additional arguments are 

required 

-h, --help: 

 Optional, displays usage information. No additional arguments are required 

-i, --input <input_csf>: 

 Text file with CSF language commands. 

--cert <cert_file>: 

 Valid only for HAB. Public key certificate filename.  Required when input 

CSF contains Install Secret Key command(s).  Symmetric key(s) are encrypted 

using the public key and saved to a filename specified in the CSF command 

 

Command line arguments that specify a file or directory can contain spaces if they are 

quoted. File names with leading and trailing spaces are not supported. 

If an error occurs during the operation of cst, an error message will be printed to the 

standard output stream and the executable will exit with a non-zero status. 

Exit Status: 

0 if the executable succeeded, or 

>0 otherwise. 

Cautions:  

None. 

Pre Conditions/Assumptions:  

Input CSF must be present at specified path.  

Certificates must be in a directory called crts. 

Keys must be in a directory called keys. The keys directory must be located at the 

same level as the crts directory. 

Filenames for the keys and certificates must use the following convention 

<filename>_<type>.pem or <filename>_<type>.der 

 where: <filename> is the root of the key/certificate filename 

  <type> is key for keys and crt for certificates. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

37 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 Example: keys/SRK1_sha256_2048_65537_v3_ca_key.der must have a 

corresponding certificate crts/SRK1_sha256_2048_65537_v3_ca_crt.der 

Post Conditions:  

None. 

Examples:  

1.  To generate out.bin file from input example.csf, use 

    cst -o out.bin -i example.csf 

2.  To print program license information, use 

    cst --license 

3.  To print usage information, use 

    cst --help 

4.  To generate out.bin from input hab4.csf and public key certificate to encrypt symmetric 

key(s) 

cst -o out.bin --cert dek_protection_crt.pem -i example.csf 

 

4.2 SRK Tool 

For HAB4 or AHAB the SRK tool is used to generate super root key table data and its hash (for 

efuses) and for HAB3 it is used to generate efuse information for given keys. 

 

4.2.1 SRK Tool Usage for HAB3 

This section describes usage of SRK tool for HAB3. 

Usage:  

srktool --hab_ver <version> --certs <srk>,<srk>,... [--output] 

Description: 

-h, --hab_ver <version>: 

      HAB Version - set to 3 to generate HAB3 SRK data/files 

-c, --certs <srk1>,<srk2>,...,<srk8>: 

      WTLS certificate filenames. 

        - WTLS certificates are always in binary format 

        - Certificate filenames must be separated by a ',' with no spaces 

        - A maximum of 8 certificate filenames may be provided. Additional 

          certificate names are ignored 

-o, --output: 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    38 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

      Optional, generate file containing the C structures of the 

              public keys from the given WTLS certificates. C files use 

              certificate filename appending a .c suffix 

-l, --license: 

      Optional, displays program license information. No additional 

      arguments are required. 

Command line arguments that specify a file or directory can contain spaces if they are 

quoted. File names with leading and trailing spaces are not supported. 

If an error occurs during the operation of srktool, an error message will be printed to the 

standard error stream and the executable will exit with a non-zero status. 

Exit Status: 

0 if the executable succeeded, or 

>0 otherwise. 

Cautions:  

None. 

Pre-Conditions/Assumptions:  

None. 

Post Conditions:  

None. 

Examples:  

1.  To display information for two WTLS certificates 

 

    srktool --hab_ver 3 --certs SRK.CA1.FSL.wtls.crt,SRK.CA2.FSL.wtls.crt 

 

2.  To display information for two WTLS certificates and generate corresponding C data 

output files 

 

    srktool --hab_ver 3 --certs SRK.CA1.FSL.wtls.crt,SRK.CA2.FSL.wtls.crt –o 

 

4.2.2 SRK Tool Usage for HAB4 

This section describes usage of SRK tool for HAB4. 

Usage:  

srktool --hab_ver <version> --table <tablefile> --efuses <efusefile> 

            --digest <digestalg> --certs <srk>,%<srk>,... 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

39 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

            [--fuse_format <format>] [--license] 

Description: 

-h, --hab_ver <version>: 

      HAB Version - set to 4 for HAB4 SRK table generation 

-t, --table <tablefile>: 

      Filename for output SRK table binary file 

-e, --efuses <efusefile>: 

      Filename for the output SRK efuse binary file containing the SRK table 

hash 

-d, --digest <digestalg>: 

      Message Digest algorithm. Only sha256 is supported 

-c, --certs <srk1>,<srk2>,...,<srk4>: 

      X.509v3 certificate filenames. 

        - Certificates may be either DER or PEM encoded format 

        - Certificate filenames must be separated by a ',' with no spaces 

        - A maximum of 4 certificate filenames may be provided. Additional 

          certificate names are ignored 

        - Placing a % in front of a filename replaces the public 

          key data in the SRK table with a corresponding hash digest 

-f, --fuse_format <format>: 

      Optional, Data format of the SRK efuse binary file. The 

      format may be selected by setting <format> to either: 

        - 0: 8 fuses per word, ex: 00 00 00 0a 00 00 00 01 ... 

        - 1 (default): 32 fuses per word, ex: 0a 01 ff 8e 

-l, --license: 

      Optional, displays program license information. No additional 

      arguments are required. 

Command line arguments that specify a file or directory can contain spaces if they are 

quoted. File names with leading and trailing spaces are not supported. 

If an error occurs during the operation of srktool, an error message will be printed to the 

standard output stream and the executable will exit with a non-zero status. 

Exit Status: 

0 if the executable succeeded, or 

>0 otherwise. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    40 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

NOTE 

Using the % prefix in the -c option does not change the SRL fuse 

pattern generated but does reduce the overall size of the SRK 

Table. However, an SRK prefixed with % cannot be selected in the 

Install SRK command using that SRK Table. 

Cautions:  

None. 

Pre-Conditions/Assumptions:  

None. 

Post Conditions:  

None. 

Examples:  

1.  To generate an SRK table and corresponding fuse pattern from 3 certificates 

•  using PEM encoded certificate files 

•  using full key for first two certificates and hash digest for the 

third 

•  using the default 32 fuse bits per word for the efuse file 

 

    srktool --hab_ver 4 --table table.bin --efuses fuses.bin \ 

                --digest sha256 \ 

                --certs srk1_crt.pem,srk2_crt.pem,%srk3_crt.pem 

2.  To generate an alternative SRK Table with the same fuse pattern as in example 1 and 

with SRK3 selectable: 

 

srktool --hab_ver 4 --table table.bin  --efuses fuses.bin \ 

                --digest sha256 \ 

                --certs %srk1_crt.pem,%srk2_crt.pem,srk3_crt.pem 

 

3.  To generate an SRK table and corresponding fuse pattern from 2 certificates 

•  using DER encoded certificate files 

•  using the optional 8 fuse bits per word for the efuse file 

 

    srktool --hab_ver 4 --table table.bin  --efuses fuses.bin \ 

                --digest sha256 \ 

                --certs srk1_crt.der,srk2_crt.der\ 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

41 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

                             --fuse_format 1 

 

4.2.3 SRK Tool Usage for AHAB 

This section describes usage of SRK tool for AHAB. 

Usage:  

srktool --ahab_ver --table <tablefile> --efuses <efusefile> 

            --digest <digestalg> --certs <srk>,%<srk>,... 

            [--fuse_format <format>] [--license] 

Description: 

-a, --ahab_ver: 

      AHAB Version - set for AHAB SRK table generation 

-t, --table <tablefile>: 

      Filename for output SRK table binary file 

-e, --efuses <efusefile>: 

      Filename for the output SRK efuse binary file containing the SRK table 

hash 

-s, --sign_digest <digestalg>: 

      Signature Digest algorithm that will be used later on for the digital 

signatures. Either sha256, sha384 or sha512 

-c, --certs <srk1>,<srk2>,...,<srk4>: 

      X.509v3 certificate filenames. 

        - Certificates may be either DER or PEM encoded format 

        - Certificate filenames must be separated by a ',' with no spaces 

        - 4 certificate filenames may be provided. Additional 

          certificate names are ignored 

-f, --fuse_format <format>: 

      Optional, Data format of the SRK efuse binary file. The 

      format may be selected by setting <format> to either: 

        - 0: 8 fuses per word, ex: 00 00 00 0a 00 00 00 01 ... 

        - 1 (default): 32 fuses per word, ex: 0a 01 ff 8e 

-l, --license: 

      Optional, displays program license information. No additional 

      arguments are required. 

Command line arguments that specify a file or directory can contain spaces if they are 

quoted. File names with leading and trailing spaces are not supported. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    42 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

If an error occurs during the operation of srktool, an error message will be printed to the 

standard output stream and the executable will exit with a non-zero status. 

Exit Status: 

0 if the executable succeeded, or 

>0 otherwise. 

Cautions:  

None. 

Pre-Conditions/Assumptions:  

None. 

Post Conditions:  

None. 

Examples:  

1.  To generate an SRK table and corresponding fuse pattern 

•  using PEM encoded certificate files 

•  using the default 32 fuse bits per word for the efuse file 

 

    srktool --ahab_ver --table table.bin --efuses fuses.bin \ 

                --sign_digest sha384 \ 

                --certs 

srk1_crt.pem,srk2_crt.pem,srk3_crt.pem,srk4_crt.pem 

 

2. To generate an SRK table and corresponding fuse pattern 

•  using DER encoded certificate files 

•  using the optional 8 fuse bits per word for the efuse file 

 

    srktool --ahab_ver --table table.bin --efuses fuses.bin \ 

                --sign_digest sha256 \ 

                --certs 

srk1_crt.der,srk2_crt.der,srk3_crt.der,srk4_crt.der \ 

                             --fuse_format 1 

 

4.3 X5092WTLS Tool 

The x5092wtls tool is used to convert certificates in X509 format to WTLS required for HAB3. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

43 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

Usage:  

x5092wtls --cert <certfile> --key <keyfile> 

       --wtls <wtlsfile> [--passin <password file>] [--license] 

Description: 

-c, --cert <certfile>: 

      X509 certificate file. May be either a PEM or DER encoded file 

-k, --key <keyfile>: 

      PKCS #8 private key used to sign the input X.509 certificate. May be 

      either a PEM or DER encoded file 

-w, --wtls <wtlsfile>: 

      Output WTLS file in binary format 

-p, --passin <passfile>: 

      Optional password file. Max. supported password length is 20 characters 

-l, --license: 

      Optional, displays program license information. No additional 

      arguments are required. 

Command line arguments that specify a file or directory can contain spaces if they are 

quoted. File names with leading and trailing spaces are not supported. 

PEM files must have a pem extension. All other extensions are considered to be binary 

DER encoded files. 

If an error occurs during the operation of x5092wtls, an error message will be printed to 

the standard output stream and the executable will exit with a non-zero status. 

Exit Status: 

0 if the executable succeeded, or 

>0 otherwise. 

Cautions:  

None. 

Pre-Conditions/Assumptions:  

None. 

Post Conditions:  

None. 

Examples:  



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    44 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

1.  To generate a WTLS certificate (wtls.der) from a given x509 certificate (x509_cert.pem) 

by the given key (key.pem): 

 

x5092wtls.exe --cert x509_cert.pem --key key.pem --wtls wtls.der 

 

2.  To generate a WTLS certificate (wtls.der) from a given x509 certificate (x509_cert.pem) 

by the given encrypted key (key.pem): 

 

x5092wtls.exe -c x509_cert.pem -k key.pem -w wtls.der -p key_pass.txt 

 

where key_pass.txt is a file containing the password for the encrypted key. 

 

5 CSF Description Language 
This section describes the CSF description language. A CSF description file is written in the CSF 

description language, which is parsed and processed by the CST application and generates a 

binary file containing the CSF commands (valid only for HAB), certificates, and signatures, 

which are interpreted by the secure element on the end-product device. 

 

5.1 Overview 

The following are the general properties of CSF description files: 

•  The CSF description file is a text file containing statements, one per line. 

•  A backslash character ‘\’ at the end of a line (ignoring white space or comments) 

continues the statement to the next line. 

•  Blank lines are ignored. 

•  Comments beginning with the # character on any line are ignored. 

•  Multiple white space characters are equivalent to a single space. Except where noted, 

keywords and parameters are separated by white space. White space at the beginning or 

end of a line is ignored. 

•  Except for file names, all keywords and parameters are case-insensitive. 

•  All certificate file parameters are relative to current folder from where CST application is 

being executed. 

•  All byte parameters are specified as integers in the range 0...255. They can be specified in 

hexadecimal or decimal. 

•  All parameters that specify a file name must be double quoted. A quoted file name can 

contain spaces. The following file names are not supported: 

—  File name with leading or trailing spaces. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

45 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

—  File name that contains a double quote (") as part of the file name. 

•  Ordering of commands within the CSF description is significant only to the following 

extent:  

—  The Header command must precede any other command. Valid for HAB and AHAB. 

The next statements are valid only for HAB. 

—  The Install SRK command must precede the Install CSFK command. 

—  The Install CSFK must precede the Authenticate CSF command. 

—  Install SRK, Install CSFK and Authenticate CSF commands must appear exactly once 

in a CSF description file. 

—  A verification index in an Authenticate Data command must appear as the target 

index in a previous Install Key command. 

—  Commands in the binary CSF follow the order in which they appear in the CSF 

description. 

 

5.2 CSF Commands 

This section describes each CSF command in detail. 

 

5.2.1 Header 

The Header command contains data used in the CSF header as well as default values used by the 

CST for other commands throughout the remaining CSF.  

There must be exactly one Header command and it must appear first in the CSF.  

Table 3 below lists the Header command arguments. 

Table 3. Header arguments  

Argument name Description Valid values HAB3 HAB4 AHAB 

Target 
Targeted secure element. If not 

specified, HAB will be assumed. 
HAB, AHAB O O M 

Version Version of HAB 
3, 3.5, 4.x,  

where x=0,1,... 
M M M 

Mode 
Mode of CST execution (to be specified 

only for HSM handling) 
HSM O O O 

Security Configuration Fused security configuration Engineering, Production M X X 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    46 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

UID Value expected in UID fuses 

Generic (matches any value) 

U0, U1,... Un 

where each Ui=0..255 and n<255 

M X X 

CODE 
Value expected in “customer code” 

fuses 
0..255 M X X 

Hash Algorithm Default hash algorithm 
SHA1, SHA256 (HAB3) 

SHA256 (HAB4) 
O O X 

Engine Default engine. 
ANY, SAHARA, RTIC, DCP, 

CAAM and SW 
O O X 

Engine Configuration Default engine configuration See Table 4 O O X 

Certificate Format Default certificate format) WTLS, X509 O O X 

Signature Format Default signature format PKCS1, CMS O O X 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

Table 4 below lists valid engine configuration values for each engine type 

Table 4. Valid Engine configuration values 

Engine name Valid engine configuration values 

ANY 0 

SAHARA One or more of these, separated by ‘|’: 

0 

IN SWAP8 

IN SWAP16 

DSC BE816 

DSC BE832 

DCP One or more of these, separated by ‘|’: 

0 

IN SWAP8 

IN SWAP32 

OUT SWAP8 

OUT SWAP32 

CAAM One or more of these, separated by ‘|’: 

0 

IN SWAP8 

IN SWAP16 

OUT SWAP8 

OUT SWAP16 

DSC SWAP8 

DSC SWAP16 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

47 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

RTIC One or more of these, separated by ‘|’: 

0 

IN SWAP8 

IN SWAP16 

OUT SWAP8 

KEEP 

SW 0 

 

5.2.1.1 Header Examples 
[Header] 

Version = 3.5 # HAB3 example 

Security Configuration = Engineering 

UID = Generic 

Hash Algorithm = SHA256 

Certificate Format = WTLS 

Signature Format = PKCS1 

 

[Header] 

Version = 4.1 # HAB4 example  

Hash Algorithm = SHA256 

Engine = Any 

Engine Configuration = 0 

Certificate Format = X509 

Signature Format = CMS 

 

[Header] 

Target = AHAB # AHAB example 

Version = 1.0  

 

 

5.2.2 Install SRK 

The Install SRK command authenticates and installs the root public key for use in subsequent 

Install CSFK (HAB only) or Install Key (HAB4 only) commands. 

HAB or AHAB authenticates the SRK using the SRK hash (SRK_HASH) fuses. HAB4 or 

AHAB allows revocation of individual keys within the SRK table using the SRK revocation 

(SRK_REVOKE) fuses. 

HAB installs the SRK in slot 0 of its internal public key store. 

There must be exactly one Install SRK command in a CSF, and it must occur before the Install 

CSFK (HAB only) command. Table 5 lists the Install SRK command arguments. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    48 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Table 5. Install SRK arguments 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.2.1 Install SRK Examples 
 

[Install SRK] # HAB3 example 

File = “../crts/srk.der” 

 

[Install SRK] # HAB4 example 

File = “../crts/srk_table.bin” 

Source Index = 0 

Hash Algorithm = sha256 

 

 

[Install SRK] # AHAB example 

File = “../crts/srk_table.bin” 

Source = “../crts/srk3_crt.pem 

Source index = 2 

Source set = OEM 

Revocations = 0x0 

 

 

Argument 

name 
Description Valid values HAB3 HAB4 AHAB 

File 
SRK certificate (HAB3) 

SRK table (HAB4, AHAB) 
Valid file path M M M 

Source Index 

SRK index within SRK table. 

Installation fails if the SRK 

revocation fuse with this index is 

burned. 

0..3 X M M 

Source 
SRK certificate corresponding to 

the specified SRK index 
Valid file path X X M 

Source Set Origin of the SRK table 
NXP, OEM (NXP is reserved for 

NXP deliverables) 
X X M 

Revocations 

Revoked SRKs (Note that this 

field may trigger a fusing 

procedure) 

4-bit bitmask X X M 

Hash 

Algorithm 
SRK table hash algorithm SHA256 (HAB4) X D X 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

49 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

5.2.3 Install CSFK (HAB only) 

The Install CSFK command authenticates and installs a public key for use in subsequent Install 

Key (HAB3 only) or Authenticate CSF commands. 

HAB authenticates the CSFK from the CSFK certificate using the SRK. 

HAB installs the CSFK in slot 1 of its internal public key store. 

There must be exactly one Install CSFK command in a CSF, and it must occur before the 

Authenticate CSF command. Table 6 lists the Install CSFK command arguments. 

 

Table 6. Install CSFK arguments 

Argument name Description Valid values HAB3  
HAB4

  

File CSFK certificate Valid file path M M 

Certificate Format CSFK certificate format WTLS, X509 D D 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.3.1 Install CSFK Examples 
[Install CSFK] # HAB3 example 

File = “../crts/csf.der” 

Certificate Format = WTLS 

 

[Install CSFK] # HAB4 example 

File = “../crts/csf.pem” 

Certificate Format = X509 

 

5.2.4 Install NOCAK (HAB4 only) 

The Install NOCAK command authenticates and installs a public key for use with the fast 

authentication mechanism (HAB 4.1.2 and later only). With this mechanism, one key is used for 

all signatures. 

HAB installs the no-CA key in slot 1 of its internal public key store. 

There must be exactly one Install NOCAK command in a CSF, and it must occur before the 

Authenticate CSF command and there must be no Install Key commands. Table 7 lists the install 

NOCAK command arguments. 

Table 7. Install CSFK arguments 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    50 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Argument name Description Valid values HAB3  
HAB4

  

File CSFK certificate Valid file path M M 

Certificate Format CSFK certificate format WTLS, X509 D D 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.4.1 Install NOCAK Examples 
[Install NOCAK] # HAB4 example 

File = “../crts/csf.pem” 

Certificate Format = X509 

 

5.2.5 Authenticate CSF (HAB only) 

The Authenticate CSF command authenticates the CSF from which it is executed. 

HAB authenticates the CSF using the CSFK public key, from a digital signature generated 

automatically by the CST. 

There must be exactly one Authenticate CSF command in a CSF file, and it must occur after the 

Install CSFK command. Most other CSF commands are allowed only after the Authenticate CSF 

command. Table 8 lists the Authenticate CSF command arguments. 

 

Table 8. Authenticate CSF arguments 

Argument name Description Valid values HAB3 HAB4 

Engine CSF signature hash engine ANY, SAHARA, RTIC, DCP, 

CAAM and SW 

X D 

Engine Configuration Configuration flags for the hash 

engine. Note that the hash is 

computed over an internal RAM copy 

of the CSF. 

see Table 4 X D 

Signature Format CSF signature format PKCS1, CMS D D 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.5.1 Authenticate CSF Examples 
[Authenticate CSF] # HAB3/HAB4 example using all default arguments 

 

[Authenticate CSF] # HAB4 example 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

51 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

Engine = DCP 

Engine Configuration = 0 

Signature Format = CMS 

 

5.2.6 Install Key (HAB only) 

The Install Key command authenticates and installs a public key for use in subsequent Install 

Key or Authenticate Data commands. 

HAB authenticates a public key from a public key certificate using a previously installed 

verifying key and a hash of the public key certificate. 

HAB installs the authenticated public key in an internal public key store with a zero-based array 

of key slots. 

The CSF author is responsible for managing the key slots in the internal public key store to 

establish the desired public key hierarchy and determine the keys used in authentication 

operations. Overwriting occupied key slots is not allowed, although a repeat command to re-

install the same public key occupying the target slot will be skipped and not generate an error. 

Multiple Install Key commands are allowed in a CSF. An Install Key command must precede 

any command which uses the installed key, and all Install Key commands must come after the 

Authenticate CSF command. Table 9 lists the Install Key command arguments. 

Table 9. Install Key arguments 

Argument 

name 
Description Valid values HAB3 HAB4 

File Public key certificate Valid file path M M 

Verification 

Index 

Verification key index in key store. 1, ..., 4 (HAB3) 

0, 2, ..., 4 (HAB4) 

SRK (HAB3), CSFK (HAB4) 

not supported 

M M 

Target Index Target key index in key store. 2, ..., 4 (HAB3) 

2, ..., 4 (HAB4) 

SRK, CSFK slots reserved. 

M M 

Certificate 

Format 

Public key certificate format. WTLS, X509 D D 

Hash 

Algorithm 

Hash algorithm for certificate binding. 

If present, a hash of the certificate 

specified in the File argument is 

included in the command to prevent 

installation from other sharing the 

same verification key. 

SHA1, SHA256 (HAB3) 

SHA256 (HAB4) 

D O 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    52 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.6.1 Install Key Examples 
[Install Key] # HAB3 example 

Key = “../crts/imgk.der” 

Verification Index = 1 

Target Index = 2 

Certificate Format = WTLS 

Hash Algorithm = SHA1 

 

[Install Key] # HAB4 example 

Key = “../crts/imgk.pem” 

Verification Index = 0 

Target Index = 2 

Certificate Format = X509 

 

5.2.7 Authenticate Data 

The Authenticate Data command verifies the authenticity of pre-loaded data in memory. The 

data may include executable SW instructions and may be spread across multiple non-contiguous 

address ranges drawn from multiple object files. 

HAB authenticates the pre-loaded data using a previously installed public key from a digital 

signature generated automatically by the CST. For HAB3, authentication may be restricted to a 

single chip and security configuration. 

The security configuration is taken from the Header command. Table 10 lists the Authenticate 

Data command arguments. 

Table 10. Authenticate Data arguments 

Argument 

name 
Description Valid values HAB3 HAB4 AHAB 

Blocks 

List of one or more data blocks. 

Each block is specified by four 

parameters: 

 •  source file (must be binary), 

 •  starting load address in 

memory 

 •  starting offset within the 

source file 

 •  length (in bytes) 

file address offset length 

with 

file: valid pathname 

address: 32-bit unsigned integer 

offset: 0, ..., size of file 

length: 0, ..., size of file - offset 

 

Block parameters separated by 

spaces.  

Multiple blocks separated by 

commas. 

M M X 

Verification 

Index 

Verification key index in key 

store. 

2, ..., 4 (HAB3) 

2, ..., 4 (HAB4) 

SRK, CSFK not supported 

 

NOTE: For HAB4 Fast 

Authentication, this must be 0 

M M X 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

53 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

Engine Data signature hash engine. 
ANY, SAHARA, RTIC, DCP, 

CAAM and SW 
D D X 

Engine 

Configuration 

Configuration flags for the 

engine. 
See Table 4 D D X 

Signature 

Format 
Data signature format PKCS1, CMS D D X 

Binding 

64-bit unique ID (UID) for 

binding. 

If present, authentication 

succeeds only if the UID fuse 

value matches this argument, 

and the TYPE fuse value 

matches the Security 

Configuration argument from the 

Header command. 

U0, U1, ... U7 

with 

Ui: 0, ..., 255. 

 

UID bytes separated by 

commas. 

O X X 

File Binary to be signed Valid file path X X M 

Offsets 

List of 2 offsets. Meaningful 

information for CST into the 

binary to be signed (this 

information is printed out by 

mkimage) 

container_header_offset 

signature_block_offset 

 

Offset parameters separated by 

spaces 

Unsigned integers 

X X M 

Signature 

Binary file containing the 

signature of the container. 

This field has been added for the 

HSM support. 

Valid file path X X O 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.7.1 Authenticate Data Examples 
[Authenticate Data] # HAB3 example 

Blocks = 0xf8000000 0x0 0x10000 “flash.bin”, \ 

           0xf8010000 0x0 0x1000 “xyz.bin” 

Verification Index = 2 

 
[Authenticate Data] # HAB3 example 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    54 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Blocks = 0xf8000000 0x0 0x10000 “flash.bin”, \ 

           0xf8010000 0x0 0x1000 “xyz.bin”, \ 

           0xf8012000 0x2000 0x4000 “xyz.bin”, \ 

           0xf8018000 0x8000 0x1000 “xyz.bin” 

Verification Index = 3 

Engine = SAHARA 

Binding = 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef 

 
[Authenticate Data] # HAB4 example 

Blocks = 0xf8000000 0x0 0x10000 “flash.bin”, \ 

           0xf801000 0x0 0x1000 “xyz.bin” 

Verification Index = 2 

Engine = DCP 

Engine Configuration = 0 

Signature Format = CMS 

 

[Authenticate Data] # AHAB example 

File = “flash.bin” 

Offsets = 0x400 0x610 

 

 

5.2.8 Install Secret Key (HAB only) 

This command is applicable from HAB 4.1 onwards and only on processors which include 

CAAM and SNVS. Each instance of this command generates a CSF command to install a secret 

key in CAAM's secret key store. A key blob as described in Section 1.1.2 is unwrapped using a 

master key encryption key (KEK) supplied by SNVS. A random key is generated and protected 

by the CST back end and encrypted using a public key passed with --cert command line option to 

CST and saved in a file under the name passed in the Key argument. This file is intended for 

later use by provisioning software to create the blob. Table 11 lists the Install Secret Key 

command arguments. Each execution of the CST will generate a different secret key, overwriting 

any previous secret key in the given file. 

 

Table 11. Install Secret Key arguments 

Argument name Description Valid values 
HAB 

(> 4.0) 

Key Output filename for CST to create the 

cms encrypted data encryption key 

Valid pathname M 

Key length Key length in bits 128, 192 and 256 M 

Verification Index Master KEK index 0 or 1: OTPMK from fuses 

2: ZMK from SNVS 

3: CMK from SNVS 

D 

Target Index Target secret key store index 0, 1, 2 or 3 of secret key store M 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

55 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

Blob Address Absolute memory address where blob 

will be loaded 

Internal or external DDR address M 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.8.1 Install Secret Key Examples 
[Install Secret Key] # Example using OPTMK (Default) 

Key = “data_encryption.key” 

Target Index = 0 /* Secret key store index */ 

Blob Address = 0x0090a000 /* internal ram address */ 

 

[Install Secret Key] # Example using ZMK 

Key = “data_encryption.key” 

Verification Index = 2 /* ZMK */ 

Target Index = 0 /* Secret key store index */ 

Blob Address = 0x0090a000 /* internal ram address */ 

 

5.2.9 Decrypt Data (HAB only) 

This command is applicable from HAB4.1 onwards. Each instance generates a CSF command to 

decrypt and authenticate a list of code/data blocks using secret key stored in the secret key store. 

CST will generate a corresponding AUT_DAT command. CST will encrypt the data blocks in-

place in the given files using a secret key and generate MAC data which is appended to the CSF. 

Table 12 lists the Decrypt Data command arguments. The secret key index must have been the 

target key index in a preceding Install Secret Key command. The same secret key must never be 

used more than once.  The secret key used is removed from the secret key store by the Decrypt 

Data command.  A separate Install Secret Key command (which generates a fresh secret key) is 

required for another Decrypt Data command. 

Table 12. Decrypt Data arguments 

Argument name Description Valid values 
HAB 

(> 4.0) 

Blocks List of one or more data blocks. Each 

block is specified by four parameters: 

 •  source file (must be binary), 

 •  starting load address in memory 

 •  starting offset within the source file 

 •  length (in bytes) 

file address offset length 

with 

file: valid pathname 

address: 32-bit unsigned integer 

offset: 0, ..., size of file 

length: 0, ..., size of file - offset 

 

Block parameters separated by 

spaces.  

Multiple blocks separated by 

commas. 

M 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    56 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Verification Index Secret key index in Secret key store 0, 1, 2 or 3 from secret key store M 

Engine MAC engine CAAM (Default) D 

Engine 

Configuration 

Configuration flags for the engine. See Table 4 

Default from header command 

D 

MAC Bytes Size of MAC in bytes. Even value between 4 and 16 

(Default 16) 

D 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.9.1 Decrypt Data Examples 
[Decrypt Data]  

Blocks = 0xf8000000 0x0 0x10000 “flash.bin”, \ 

0xf8010000 0x0 0x1000 “xyz.bin” 

Verification Index = 0 

 
[Decrypt Data]  

Blocks = 0xf8000000 0x0 0x10000 “flash.bin”, \ 

           0xf8010000 0x0 0x1000 “xyz.bin”, \ 

           0xf8012000 0x2000 0x4000 “xyz.bin”, \ 

           0xf8018000 0x8000 0x1000 “xyz.bin” 

Verification Index = 3 

Engine = CAAM 

Engine Configuration = 0 

 

5.2.10 NOP (HAB only) 

The NOP command has no effect. 

Multiple NOP commands may appear in a CSF after the Authenticate CSF command. For 

HAB4, NOP commands may also appear between the Header and Authenticate CSF commands. 

The NOP command has no arguments. 

 

5.2.10.1 NOP Example 
[NOP] 

 

5.2.11 Set Engine (HAB only) 

The Set Engine command selects the default engine and engine configuration for a given 

algorithm. HAB3 does not support the Set Engine command. 

Some CSF commands allow the CSF author to select the engine used for an algorithm by 

specifying an argument other than ANY. However, if the engine argument is ANY, then HAB 

selects the engine to use based on internal criteria. The Set Engine command overrides the HAB 

internal criteria and selects the engine and configuration to use when ANY is specified. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

57 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

Some algorithm types do not have an associated engine argument in the CSF commands (e.g. the 

signature algorithm in Authenticate Data commands). By default, HAB selects the engine to use 

for such algorithms based on internal criteria. The Set Engine command overrides the HAB 

internal criteria in such cases as well. 

Multiple Set Engine commands may appear anywhere in a CSF after the Header command. 

Subsequent commands use the engine selected by the most recent Set Engine command. Table 

21 lists the Set Engine command arguments. 

Table 21. Set Engine arguments 

Argument name Description Valid values HAB3 HAB4 

Hash Algorithm Hash algorithm SHA256 (HAB4) X M 

Engine Engine 

Use ANY to restore the HAB internal 

criteria. 

ANY, SAHARA, RTIC, DCP, 

CAAM and SW 

X M 

Engine Configuration Configuration flags for the engine. See Table 4 X O 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.11.1 Set Engine Example 
[Set Engine] 

Hash Algorithm = SHA256 

Engine = DCP 

Engine Configuration = 0 

 

5.2.12 Init (HAB only) 

The Init command initializes specified engine features when exiting the internal boot ROM. 

HAB3 does not support the Init command. 

Multiple Init commands may appear after the Authenticate CSF command. A feature will be 

initialized if specified in one or more Init commands. Table 22 lists the Init command arguments. 

Table 22. Init arguments 

Argument name Description Valid values HAB3 HAB4 

Engine Engine to initialize SRTC X M 

Features Comma-separated list of features to 

initialize 

See Table 24 X O 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    58 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.12.1 Init Example 
[Init] 

Engine = SRTC 

 

5.2.13 Unlock (HAB only) 

The Unlock command prevents specified engine features from being locked when exiting the 

internal boot ROM. HAB3 does not support the Unlock command. 

Multiple Unlock commands may appear after the Authenticate CSF command. A feature will be 

unlocked if specified in one or more Unlock commands. Table 23 lists the Unlock command 

arguments. 

Table 23. Unlock arguments 

Argument name Description Valid values HAB3 HAB4 

Engine Engine to unlock SRTC, CAAM, SNVS and 

OCOTP 

X M 

Features Comma-separated list of features to 

unlock 

See Table 24 X O 

UID Device specific 64-bit UID 

Required to unlock certain features, 

must be absent for others (see Table 

24). 

U0,U1,... U7 

with 

Ui=0..255 

 

UID bytes separated by commas 

X M/X 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

Table 24 shows valid Features values available in Init/Unlock commands for each Engine 

argument. 

Table 24. Valid feature values 

Engine Features UID Init/Unlock command effect 

SRTC  X The Init command clears any failure status flags and clears the 

low-power counters and timers if the SRTC is in Init state. 

The Unlock command prevents the secure timer and monotonic 

counter being locked if the SRTC is in Valid state 

CAAM MID X Leaves Job Ring and DECO master ID registers unlocked. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

59 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 RNG X Leaves RNG state handle 0 uninstantiated, does not generate 

descriptor keys, does not set the AES DPA mask, and does not 

block state handle 0 test instantiation. 

MFG X Keep manufacturing protection private key in CAAM internal 

memory. 

SNVS LP SWR X Leaves LP SW reset unlocked. 

ZMK WRITE X Leaves Zeroisable Master Key write unlocked. 

OCOTP FIELD RETURN M Leave Field Return activation unlocked. 

SRK REVOKE X Leave SRK revocation unlocked. 

SCS M Leave SCS register unlocked. 

JTAG M Unlock JTAG using SCS HAB_JDE bit. 

M = mandatory, O = optional, D = use default from Header if absent and X = not present 

 

5.2.13.1 Unlock Examples 
[Unlock] 

Engine = SRTC 

 
[Unlock] 

Engine = CAAM 

Features = RNG 

 
[Unlock] 

Engine = OCOTP 

Features = JTAG, SRK REVOKE 

UID = 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef 

 

5.2.14 Install Certificate (AHAB only) 

The Install Certificate command is optional. 

The Install Certificate command converts a public key into the NXP format. 

AHAB authenticates a Certificate from a previously installed verifying SRK and a hash of the 

public key certificate. 

There must be up to one Install Certificate command in a CSF. Table 9 lists the Install Certificate 

command arguments. 

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Table9


 

 

NXP Semiconductors © 2017-2018 NXP B.V.    60 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

Table 9. Install Key arguments 

Argument 

name 
Description Valid values AHAB 

File Public key certificate Valid file path M 

Permissions 

Please refer to the AHAB 

architecture specification for setting 

this value correctly 

8-bit bitmask  M 

Signature 

Binary file containing the signature of 

the NXP-format public key certificate.  

This field has been added for the 

HSM support. 

Valid file path O 

M = mandatory, O = optional 

 

5.2.14.1 Install Key Examples 
  

[Install Certificate] 

File = “../crts/sgk1_crt.pem” 

Permissions = 0x1 

 

 

5.3 CSF Examples 

This section provides some examples for HAB3, HAB4 and AHAB CSF. 

 

5.3.1 HAB3 CSF Example 

Figure 16 is an example of HAB3 CSF description. This example CSF description:  

•  Defines a version 3 CSF description. 

•  Uses a generic UID for a processor with the HAB_TYPE fuses burned to Engineering 

•  Covers three blocks of memory loaded from two different files with a single signature 

verification. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

61 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 16. Example Development CSF Description File 

 

5.3.2 HAB3 Binding CSF Example 

Figure 17 is an example of HAB3 CSF description. This example CSF description: 

•  Defines a version 3.5 CSF description. 

•  Uses a generic UID for the CSF of a processor with HAB_TYPE fuses set for Production. 

# Illustrative Command Sequence File Description (generic UID)

[Header]

    Version = 3.0

    Security Configuration = Engineering

    Hash Algorithm = sha256

    Engine = ANY

    Engine Configuration = 0

    Certificate Format = WTLS

    Signature Format = PKCS1

    UID = Generic

    Code = 0x0F

[Install SRK]

    File = "../crts/SRK1_sha256_2048_65537_v3_ca_crt.der"

[Install CSFK]

    File = "../crts/CSF1_1_sha256_2048_65537_v3_ca_crt.der"

[Authenticate CSF]

[Install Key]

    Verification index = 1

    Target index = 2

    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.der"

# whole line comment

[Authenticate Data]   # part line comment

    Verification index = 2

    Blocks = 0x80000000 0 0x00001000 "image.bin" \

             0x80004000 0x4000 0x00001000 "image.bin" \

             0x8000a000 0 0x00002000 "image2.bin"



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    62 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

•  Uses a bound signature for the software load. The bound signature is specified by using 

the Binding argument in Authenticate Data command. This binds the signature to the 

device by including the UID in the signature process. 

•  Uses the RTIC hash engine and keeps the calculated hash value to allow activating RTIC 

run-time monitoring later in the boot flow. 

 

Figure 17. Example Production CSF Description File 

 

5.3.3 HAB4 CSF Example 

Figure 18 is an example of a HAB4 CSF description. This example CSF description: 

•  Defines a version 4 CSF description. 

# Illustrative Command Sequence File Description (generic UID)

[Header]

Version = 3.5

Security Configuration = Production

Hash Algorithm = sha256

Certificate Format = WTLS

Signature Format = PKCS1

UID = Generic

Code = 0x0F

[Install SRK]

File = "../crts/SRK1_sha256_2048_65537_v3_ca_crt.der"

[Install CSFK]

File = "../crts/CSF1_1_sha256_2048_65537_v3_ca_crt.der"

[Authenticate CSF]

[Install Key]

Verification index = 1

Engine = RTIC

Engine Configuration = KEEP

Target index = 2

File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.der"

# whole line comment

[Authenticate Data]   # part line comment

    Verification index = 2

    Binding = 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef

    Blocks = 0x80000000 0 0x00001000 "image.bin" \

             0x80004000 0x4000 0x00001000 "image.bin" \

             0x8000a000 0 0x00002000 "image2.bin"



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

63 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

•  Overrides default engine ANY with DCP in Authenticate Data command 

•  Lists three blocks from image for signing. 

 

Figure 18. Example HAB4 CSF Description File 

 

5.3.4 HAB4 CSF Fast Authentication Example 

Figure 19 is an example of a HAB4 CSF description for fast authentication. This example CSF 

description: 

# Illustrative Command Sequence File Description

[Header]

    Version = 4.0

    Hash Algorithm = sha256

    Engine = ANY

    Engine Configuration = 0

    Certificate Format = X509

    Signature Format = CMS

[Install SRK]

    File = "../crts/TBL_1_sha256_tbl.bin"

    Source index = 0

[Install CSFK]

    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate CSF]

[Install Key]

    Verification index = 0

    Target index = 2

    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

# whole line comment

[Authenticate Data]   # part line comment

    Verification index = 2

    Engine = DCP

    Blocks = 0xf8009400 0x400 0x40 "MCUROM-OCRAM-ENG_img.bin", \

             0xf8009440 0x440 0x40 "MCUROM-OCRAM-ENG_img.bin", \

             0xf800a000 0x1000 0x8000 "MCUROM-OCRAM-ENG_img.bin"



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    64 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

•  Defines a version 4 CSF description. 

•  Tells HAB to use fast authentication mechanism 

•  Lists single block from image for signing 

 

 

 

Figure 19. Example HAB4 CSF Description File 

 

5.3.5 HAB4 CSF Example for Encrypted Boot 

Figure 20 is an example of a HAB version 4.1 CSF description demonstrating on how to use 

Install Secret Key and Decrypt Data commands. This example CSF description: 

•  Defines a version 4.1 CSF description. 

•  Necessary blocks from image for signing. 

•  Install Secret Key command 

•  Blocks for encryption by CST and decryption by ROM/HAB 

#Illustrative Command Sequence File Description 

[Header] 

    Version = 4.1 

    Hash Algorithm = sha256 

    Engine = ANY 

    Engine Configuration = 0 

    Certificate Format = X509 

    Signature Format = CMS 

 

[Install SRK] 

    File = “../crts/TBL_1_sha256+tbl.bin” 

    Source index = 0 

 

[Install NOCAK] 

    File = “../crts/SRK1_sha256_2048_65537_v3_usr_crt.pem” 

 

[Authenticate CSF] 

#whole line comment 

 

[Authenticate Data]    # part line comment 

    Verification index = 0 

    Blocks = 0x877fb000 0x000 0x48000 “signed-uboot.bin” 

 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

65 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

Figure 20. Example HAB4 CSF Description File with Decrypt Data Command 

 

# Illustrative Command Sequence File Description

[Header]

    Version = 4.1

Hash Algorithm = SHA256

    Engine Configuration = 0

    Certificate Format = X509

    Signature Format = CMS

    Engine = CAAM

    Engine Configuration = 0

[Install SRK]

    File = "../crts/SRK_1_2_3_4_table.bin"

    Source index = 0

[Install CSFK]

    File = "../crts/CSF1_1_sha256_4096_65537_v3_usr_crt.der"

[Authenticate CSF]

[Install Key]

    Verification index = 0

    Target index = 2

    File = "../crts/IMG1_1_sha256_4096_65537_v3_usr_crt.der"

[Authenticate data]

    Verification index = 2

    Blocks = 0x27800400 0x400 800 "u-boot-mx6q-arm2_padded.bin"

[Install Secret Key]

    Verification index = 0

    Target index = 0

    Key = "dek.bin"

    Key Length = 128

    Blob address = 0x27831000

[Decrypt Data]

    Verification index = 0

    Mac Bytes = 16

    Blocks = 0x27800720 0x720 0x2E8E0 "u-boot-mx6q-arm2_padded.bin"



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    66 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

5.3.6 AHAB CSF Example 

Figure 18 is an example of a AHAB CSF description. This example CSF description: 

 

[Header] 

Target = AHAB 

Version = 1.0 

 

[Install SRK] 

# Output of srktool 

File = "…/crts/srk_table.bin" 

# Public key certificate in PEM or DER format 

Source = "…/crts/srk1_crt.pem" 

# Index of SRK in SRK table 

Source index = 0 

# Origin of SRK table 

Source set = OEM 

# Revoked SRKs 

Revocations = 0x0 

 

[Authenticate Data] 

# Output of mkimage 

File = "flash.bin" 

# Offsets = Container header  Signature block (printed out by mkimage) 

Offsets   = 0x400             0x490 

 

Figure 18. Example AHAB CSF Description File 

 

5.3.7 AHAB CSF with Certificate Example 

Figure 19 is an example of a AHAB CSF description with the Certificate. This example CSF 

description: 

 

[Header] 

Target = AHAB 

Version = 1.0 

 

[Install SRK] 

# Output of srktool 

File = "…/crts/srk_table.bin" 

# Public key certificate in PEM or DER format 

Source = "…/crts/srk3_crt.pem" 

# Index of SRK in SRK table 

Source index = 2 

# Origin of SRK table 

Source set = OEM 

# Revoked SRKs 

Revocations = 0x1 

[Install Certificate] 

# Public key certificate in PEM or DER format 

File = "…/crts/sgk3_crt.pem" 

Permissions = 0x1 

file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure18
file:///Z:/repo-cst/cst/docs/user/AHABCST_UG.docx%23Figure19


 

 

NXP Semiconductors © 2017-2018 NXP B.V.                                                                                                                                            

67 

 Code-Signing Tool User’s Guide, Rev. 3.1.0  

 

 

 

[Authenticate Data] 

# Output of mkimage 

File = "flash.bin" 

# Offsets = Container header  Signature block (printed out by mkimage) 

Offsets   = 0x400             0x710 

 

Figure 19. Example AHAB CSF Description File 





 

HAB Code-Signing Tool User’s Guide, Rev. 3.1.0 

A-1  NXP 
 

 

Appendix A HAB Library Version 3 Details 
This section provides additional details on the Certificate and Signature formats supported by 

SoCs including the HAB library Version 3. 

A.1 HAB CST Certificate Details 

The HAB CST supports public key certificates in WTLS version 1 format using the RSA/SHA-

256 signature format. This format is a proprietary extension to the RSA/SHA-1 algorithm 

specified in [5]. 

The RSA/SHA-1 signature format in [5] and the RSA/SHA-256 signature format both use 

PKCS#1 v1.5 Block Type 1 padding, but it is unclear whether the Signature scheme or 

Encryption scheme (which differs in the use of ASN.1 encoding) is intended. The HAB supports 

either choice (see Section A.2, “HAB Signature Verification Details”). Note that the Block Type 

1 Encryption scheme is not supported in PKCS#1 v2.0. 

 

A.2 HAB Signature Verification Details 

HAB Version 3 signature verification is the authentication of digital signature(s) on a chain of 

data blocks, which can be optionally bound to other data. Signature Verification supports RSA 

PKCS#1 v1.5 Block Type 1 encoding with SHA-1, SHA-256, or MD5 as the hash algorithm. 

Either the Signature scheme or Encryption scheme is accepted as valid. MD5 support is disabled 

by default in HAB ROM code. For SoCs using SHA-256 as the default hash algorithm, both 

MD-5 and SHA-1 are disabled in the HAB ROM.  

Signature lengths are equal to the modulus length of the verifying RSA key. 

Signature verification in the HAB ROM component performs the following operations given a 

signature algorithm, chain of data blocks, an optional rehash chain, a signature, and a public key: 

•  Verifies that the signature algorithm is supported. 

•  Computes a hash on the data block chain with the hash algorithm appropriate to the 

signature algorithm. 

•  Computes an optional hash on the rehash chain if required as part of a bound signature. 

•  Recovers the padded hash digest from the signature using RSA computation and the 

public key. 

•  Verifies that the recovered padded hash conforms to the PKCS #1 v1.5 Block Type 1 

padding format for either the Signature scheme or the Encryption scheme. 

•  Verifies that the hash within the recovered padded hash matches the computed hash (if 

the optional rehash chain is present, the hash on the rehash chain is used). 

The hash algorithm to use is embedded in the padding recovered in the PKCS#1 v1.5 Signature 

scheme.  



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    A-2 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

A.3 HAB3 SRK Structure Information 

On SoCs supporting HAB3 the ROM expects an Application Header (also known as the Flash 

Header) to be included as part of the product code which is usually a bootloader. The SoC boot 

ROM expects the Application Header to be located at a fixed offset from the beginning of the 

product code image. Note that one of the fields in the Application Header is the pointer to the 

SRK data structure which is defined as: 

 typedef struct 

 { 

  /* RSA public exponent */ 

  unsigned char rsa_exponent[HAB_MAX_EXPONENT_BYTES]; 

  unsigned char *rsa_modulus;              /* RSA modulus pointer */ 

  unsigned short int exponent_bytes;       /* Exponent size in bytes */ 

  unsigned short int modulus_bytes;        /* Modulus size in bytes */ 

  unsigned char init_flag;                 /* Indicates if key initialized */ 

 } hab_rsa_public_key; 

 

This data structure is defined in the file hab_super_root.h included in the /code/hab3/hdr 

directory of the CST release. Further details on the Application Header are available in the 

System Boot chapter of the Reference Manual for the NXP Processor that you are using. 

A C file containing the static data for each SRK public key is generated by the hab3_pki_tree 

script (See Section 3.1.2, “Running the hab3_pki_tree script Example”). The data generated in 

the C files is the public key exponent and modulus data the HAB library on the SoC requires and 

follows the structure given above. To include the SRK public key data in your product code add 

the selected SRK C file in your product code build process, being sure to include 

hab_super_root.h to the include search path. Then be sure that the SRK field of the Application 

Header points to this data.



 

HAB Code-Signing Tool User’s Guide, Rev. 3.1.0 

B-1  NXP 
 

 

Appendix B Replacing the CST Backend Implementation 

The NXP CST is a reference implementation and is sufficient for most use cases. However, there 

may be instances where a higher level of security is required. In such cases the level of 

protection required for signing keys needs to be much higher than what the CST reference 

implementation provides. To accommodate this NXP has architected the CST in two parts a 

Front End and a Back End. The Front End contains all the NXP proprietary operations of the 

CST with the Back End containing all standard cryptographic operations.  

The CST Back End make use of standard cryptographic protocols allowing the use of common 

cryptographic library implementations. The CST makes use of the OpenSSL library [1] for 

performing basic cryptographic operations related to digital signature generation. For encrypted 

boot operations using AES in CCM mode the reference CST makes use of the AES library from 

Brian Gladman [7]. 

The remainder of this appendix describes how the reference Back End can be replaced with a 

different solution such as a Hardware Security Module (HSM). The replacement of the Back End 

with another solution is completely optional. 

 

B.1 CST Architecture 

Figure B-1 provides an overview of the CST components. To replace the Back End of the CST 

not only do you need to replace the OpenSSL commands, OpenSSL library and AES library but 

you must develop new Adaptation Layer software. The Adaptation Layer must be written to 

provide the equivalent functionality to the Front End as the reference Back End. 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    B-2 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

 

Figure B-1. Overview of Reference CST components 

B.2 Back End Components 

The section provides a brief overview of each of the components that make up the CST Back 

End. Note that the CST depends on OpenSSL in two ways. The first is by using the command 

line interface for generating code signing keys. The second is programmatically via the 

cryptographic library for generating signatures and making use of cryptographic algorithms. The 

reference implementation of the CST acts as both an CA through the use of OpenSSL command 

and an SA through the use of the OpenSSL library: 

•  OpenSSL genrsa: OpenSSL command line option the CST key generation scripts use to 

create code signing RSA key pairs. 

•  OpenSSL ecparam: OpenSSL command line option the CST key generation scripts use 

to create code signing EC key pairs. 

•  OpenSSL pkcs8: OpenSSL command line option the CST key generation scripts use to 

protect the confidentiality of the private keys. Keys stored in PKCS#8 format encrypted 

with a pass phrase. 

•  OpenSSL req: OpenSSL command line option used to generate a PKCS#10 certificate 

requests. 

•  OpenSSL ca: OpenSSL command line option used to generate X.509 certificates for use 

with code signing. The High Assurance Boot Version 4 Application Programming 



 

HAB Code-Signing Tool User’s Guide, Rev. 3.1.0 

B-3  NXP 
 

Interface Reference Manual [8] provides details on the X.509 certificate profile supported 

by HAB. 

•  OpenSSL Library: Provides support for the PKCS standards and the underlying 

cryptographic algorithms. The exception is AES CCM mode which at the time of CST 

development OpenSSL did not include support. 

•  AES Library: This library includes Brian Gladman’s reference AES implementation [7] 

together with CCM mode [6]. This is to encrypt images for HAB encrypted boot. 

•  CST Adaptation Layer: The adaptation layer provides the interface linking the CST 

Front End to the Back-End services provided by the OpenSSL and AES libraries. To 

replace the Back-End services provided open source libraries requires a new 

implementation of the adaptation layer based on the new Back-End services. The 

implementation will be specific to the Back-End Service implementation you have 

chosen. For example, if OpenSSL and the AES libraries are replaced with and HSM, then 

the adaptation layer must be re-written to interface with the HSM APIs. 

B.3 Back End Replacement for Linux 

In addition to the reference CST executables the CST is delivered with the following additional 

components: 

•  ./linux/lib/libfrontend.a: This is the Front End library containing the NXP 

proprietary features of the CST as shown in Figure B-1. This is a 32-bit library built with 

GCC 3.4.3 using the -m32 compiler option. 

•  ./code/back_end/hdr/adapt_layer.h: Is the main header file for the 

adaptation layer and includes the documentation for the APIs used by the Front End. 

There are two APIs used by the Front End: 

—  gen_sig_data: The CST Front End uses this API to generate HAB signatures.  

—  gen_auth_encrypted_data: The CST Front End uses this API to generate 

encrypted data using AES-CCM. 

•  Any new Back End implementation must follow implement these two APIs in an 

equivalent adaptation layer corresponding to the new cryptographic services replacing 

OpenSSL and the AES libraries. 

•  For reference the source code and header files for the NXP reference implementation are 

included in ./code/back_end.  

•  To use a new method for public key generation, replace the key generation scripts with 

the new implementation. 

These components will assist you in developing a new Adaptation Layer component. 

NOTE 

Although the Back End may replace OpenSSL for code signing, 

SA and CA support, the CST Front End still makes use of 

OpenSSL for some non-code signing operations. This means that 

when linking library components together to generate a CST 

executable an OpenSSL library must also be included. NXP 



 

 

NXP Semiconductors © 2017-2018 NXP B.V.    B-4 
 

Code-Signing Tool User’s Guide, Rev. 3.1.0 

recommends using OpenSSL 1.1.0 or later which is available at 

[1]. 

B.4 Front End References to Code Signing Keys 

When replacing the CST Back-End it is important to keep in mind that he CST Front End refers 

to code signing keys and certificates using file names. These are the key filenames that 

correspond to the RSA public key certificate and private key files generated by the CST. 

However, filenames may not be the native method for referencing keys in a new replacement 

Back End service. If this is the case, then the new Adaptation Layer is responsible for converting 

to and from file name references.  

This is also true for Data Encryption Keys that the CST generates for encrypting images. 

 

B.5 Back End alternative 

An alternative Back-End replacement is proposed under the directory /code/back_end-hsm. 

This alternative provides the support to interact with an Hardware Security Module (HSM) by using 

the PKCS#11 interface definition. 

More detailed information can be found in the documentation located in the directory 

/code/back_end-hsm/doc. 

Here is an overview of the proposed solution. 



 

HAB Code-Signing Tool User’s Guide, Rev. 3.1.0 

B-5  NXP 
 

Figure B-2. Overview of the Back-End HSM alternative replacement 

 


