Freescale Semiconductor Application Note

Document Number: AN3300 Rev. 0, 07/2006

General Soldering Temperature Process Guidelines

Solder Joint and Package Temperature for Pb-free BGA in SnPB and Pb-free Solders in IR or Convection Reflow Ovens

Freescale Semiconductor's commitment to quality, continuous improvement, and global leadership in developing electronics products also extends to protecting and promoting environmental, health, and safety values. Freescale continues to develop semiconductor product technology that meets these needs.

Because of legislation in Europe and Japan that bans Pb and other materials, the ball grid array (BGA) from Freescale may be provided in a Pb-free version. The Pb-free solder sphere consists of an SnAgCu alloy. SnAgCu has a melting temperature of 222°C, compared to the regular SnPb sphere of 183°C. To achieve good solder joining yields, the solder profile needs to be examined.

A key factor in board assembly is to provide a temperature profile to match the solder paste flux requirement. Some flux needs a long dwell time below the temperature of 180°C, but others will burn up in a long dwell. Temperatures out of the solder paste flux

Contents

1	Soldering using SnPb solder
2	Soldering using Pb-Free solder,
	Nemi SnAgCu Pb-Free solder2

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Soldering Using SnPb Solder

recommendations could result in poor solderability of all components on the board. The solder paste vendor can provide an ideal reflow profile, which gives the best solderability.

Another factor to be taken care of during soldering is the components' processability. This is expressed by the moisture sensitivity level (MSL) and package peak temperature (PPT) as given in J-STD-020C.

1 Soldering Using SnPb Solder

- 1. Preheat Raise temperature of leads/spheres to 100°C over a period of no less than 50 seconds.
- 2. Infrared or convection reflow.

Reach a minimum solder joint temperature (SJT) of 225–235°C so the solder volume of paste and ball melt, but do not exceed any components' specified PPT. SJT dwell time is less than three minutes above the eutectic tin/lead solder melting point of 183°C. Desirable dwell time above 183°C is greater than 50 seconds and less than 80 seconds.

NOTE

If assembly is expected to use temperatres above 225°C verify before assembly that all components can withstand PPT greater than 225°C. Profiling the PPT of components on the board is also recommended.

Packages that were qualified prior to the release of J-STD-020B in August 2002 may have only been qualified for a maximum PPT of 225°C.

If semiconductor packages are subjected to process temperatures higher than those used for qualification, reliability issues can occur.

2 Soldering Using Pb-Free Solder, Nemi SnAgCu Pb-Free Solder

- 1. Preheat Raise temperature of leads/spheres to 100°C, over a period of no less than 50 seconds.
- 2. Infrared or convection reflow.

Achieve a minimum SJT of 235° C – 245° C, but do not exceed the specified PPT. SJT dwell time is less than three minutes above the solder melt temperature of 217° C. Desirable dwell time above 217° C is greater than 50 seconds and less than 80 seconds.

In infrared or convection processes the temperature can vary greatly across the PC board, depending on the furnace type, on the size and mass of components, and on components' location on the board. Profiles must be carefully tested to determine the coolest solder joint and the hottest package on the board. Oven settings must ensure the minimum solder joint temperature is reached long enough for good solder joint formation including self-registration of the component in the solder bed. At the same time, the specified PPT of any component on the board must not be exceeded. Thermocouples must be carefully attached with very small amounts of thermally conductive grease or epoxy to the package top for PPT, directly to the solder joint interface between the package leads and board for the SJT measurement.

Soldering Using Pb-Free Solder, Nemi SnAgCu Pb-Free Solder

These guidelines do not necessarily indicate the extremes that can safely be applied to listed surface mount packages. In most cases, the package can withstand higher temperatures than the standard PC board. These guidelines are meant to represent good soldering practices that will yield high quality assemblies with minimum rework.

Solder flux technologies have improved dramatically in recent years, to the point that most of the industry is using "no clean" fluxes. Some of these fluxes require specific reflow profiles. These recommendations should always be obeyed precisely, together with the solder joint and package temperature guidelines above.

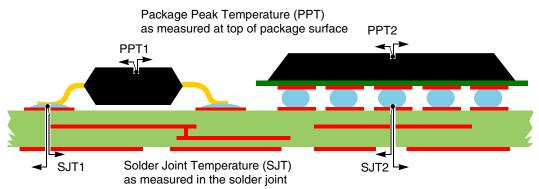


Figure 1. SJT and PPT Must be Determined for Critical Components on the Boards

SJT and PPT must be determined for critical components on the boards. In production, the minimum SJT must be reached and the maximum PPT must not be exceeded for any component on the printed circuit board during any soldering step.

THIS PAGE IS INTENTIONALLY BLANK

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN3300 Rev. 0 07/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

