
i.MX Linux® User's Guide

NXP Semiconductors Document identifier: IMXLUG
User Guide Rev. LF5.15.5_1.0.0, 31 March 2022

Contents
Chapter 1 Overview... 6

1.1 Audience..6
1.2 Conventions...6
1.3 Supported hardware SoCs and boards... 6
1.4 References.. 7

Chapter 2 Introduction... 9

Chapter 3 Basic Terminal Setup.. 10

Chapter 4 Booting Linux OS.. 11
4.1 Software overview... 11

4.1.1 Bootloader...12
4.1.2 Linux kernel image and device tree.. 12
4.1.3 Root file system...12

4.2 Universal update utility.. 13
4.2.1 Downloading UUU...13
4.2.2 Using UUU.. 13

4.3 Preparing an SD/MMC card to boot.. 14
4.3.1 Preparing the card...14
4.3.2 Copying the full SD card image...15
4.3.3 Partitioning the SD/MMC card...15
4.3.4 Copying a bootloader image... 16
4.3.5 Copying the kernel image and DTB file...16
4.3.6 Copying the root file system (rootfs)... 17

4.4 Downloading images .. 18
4.4.1 Downloading images using U-Boot... 18

4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI ...18
4.4.1.2 Downloading an image to MMC/SD...19
4.4.1.3 Using eMMC.. 21
4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot..23
4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot..25

4.4.2 Using an i.MX board as the host server to create a rootfs.. 25
4.5 How to boot the i.MX boards... 28

4.5.1 Booting from an SD card in slot SD1.. 28
4.5.2 Booting from an SD card in slot SD2.. 29
4.5.3 Booting from an SD card in slot SD3.. 30
4.5.4 Booting from an SD card in slot SD4.. 31
4.5.5 Booting from eMMC.. 31
4.5.6 Booting from SATA... 33
4.5.7 Booting from NAND...33
4.5.8 Booting from SPI-NOR..33
4.5.9 Booting from EIM (Parallel) NOR ... 34
4.5.10 Booting from QuadSPI or FlexSPI.. 34
4.5.11 Serial download mode for the Manufacturing Tool..35
4.5.12 How to build U-Boot and Kernel in standalone environment...37
4.5.13 How to build imx-boot image by using imx-mkimage.. 39

4.6 Flash memory maps..42

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 2 / 115

4.6.1 MMC/SD/SATA memory map... 42
4.6.2 NAND flash memory map... 42
4.6.3 Parallel NOR flash memory map...42
4.6.4 SPI-NOR flash memory map...43
4.6.5 QuadSPI flash memory map... 43

4.7 Running Linux OS on the target.. 43
4.7.1 Running the image from NAND ..46
4.7.2 Running Linux OS from Parallel NOR...46
4.7.3 Running the Linux OS image from QuadSPI ... 46
4.7.4 Running the Arm Cortex-M4 image...46
4.7.5 Linux OS login...48
4.7.6 Running Linux OS from MMC/SD... 48
4.7.7 Running the Linux image from NFS.. 49

4.8 Arm SystemReady-IR..49
4.8.1 Arm SystemReady-IR ACS compliance test... 50
4.8.2 Capsule update... 50
4.8.3 Linux distro installation..50

Chapter 5 Enabling Solo Emulation... 51

Chapter 6 Power Management.. 52
6.1 Suspend and resume.. 52
6.2 CPU frequency scaling..52
6.3 Bus frequency scaling... 53

Chapter 7 Multimedia...55
7.1 i.MX multimedia packages...55
7.2 Building limited access packages..55
7.3 Multimedia use cases..55

7.3.1 Playback use cases.. 55
7.3.1.1 Audio-only playback...56
7.3.1.2 Video-only playback...56
7.3.1.3 Audio/Video file playback...56
7.3.1.4 Multichannel audio playback..56
7.3.1.5 Other methods for playback...57
7.3.1.6 Video playback to multiple displays... 57

7.3.2 Audio encoding... 58
7.3.3 Video encoding... 58
7.3.4 Transcoding.. 59
7.3.5 Audio recording... 60
7.3.6 Video recording... 60
7.3.7 Audio/Video recording...61
7.3.8 Camera preview.. 61
7.3.9 Recording the TV-in source.. 62
7.3.10 Web camera..62
7.3.11 HTTP streaming.. 62
7.3.12 HTTP live streaming..62
7.3.13 MPEG-DASH streaming..63
7.3.14 Real Time Streaming Protocol (RTSP) playback.. 63
7.3.15 RTP/UDP MPEGTS streaming... 64
7.3.16 RTSP streaming server...64
7.3.17 Video conversion ..65

NXP Semiconductors
Contents

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 3 / 115

7.3.18 Video composition...66
7.4 PulseAudio input/output settings... 66
7.5 Installing gstreamer1.0-libav into rootfs...68

Chapter 8 Audio... 70
8.1 DSP support.. 70

8.1.1 HiFi 4 DSP framework...70
8.1.2 Sound Open Firmware.. 70

8.2 HDMI eARC support..70

Chapter 9 Graphics..72
9.1 imx-gpu-sdk...72
9.2 G2D-imx-samples..72
9.3 viv_samples...73
9.4 Qt 6..74

Chapter 10 Security... 75
10.1 CAAM kernel driver... 75

10.1.1 Introduction... 75
10.1.2 Source files... 76
10.1.3 Module loading..77
10.1.4 Kernel configuration.. 77
10.1.5 How to test the drivers.. 78

10.2 Crypto algorithms support... 80
10.3 CAAM Job Ring backend driver specifications..81

10.3.1 Verifying driver operation and correctness..81
10.3.2 Incrementing IRQs in /proc/interrupts... 82
10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto..82

10.4 OpenSSL offload... 82
10.4.1 OpenSSL software architecture.. 83
10.4.2 OpenSSL's ENGINE interface...84
10.4.3 NXP solution for OpenSSL hardware offloading... 84
10.4.4 Deploying OpenSSL into rootfs...84
10.4.5 Running OpenSSL benchmarking tests with cryptodev engine.. 84

10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest............................. 85
10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine.. 85

10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest............................. 85
10.5 Disk encryption acceleration..86

10.5.1 Enabling disk encryption support in kernel..87
10.5.2 User space tools for disk encryption... 88
10.5.3 DM-Crypt using CAAM's tagged key...88
10.5.4 Usage..90

10.6 crypto_af_alg application support.. 94
10.6.1 Prerequisites... 94
10.6.2 Building the kernel...94

10.6.2.1 Kernel configuration... 94
10.6.2.2 Building a toolchain..94
10.6.2.3 Cross compiling the user space sources... 94

10.6.3 Usage..95
10.6.4 Use case example...95

10.7 Kernel TLS offload...95
10.7.1 Prerequisites... 95

NXP Semiconductors
Contents

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 4 / 115

10.7.2 Running Kernel TLS test... 95

Chapter 11 Connectivity...97
11.1 Connectivity for Bluetooth wireless technology and Wi-Fi ..97
11.2 Connectivity for USB type-C..99
11.3 NXP Bluetooth/Wi-Fi information...100
11.4 Certification..100

11.4.1 WFA certification... 101
11.4.2 Bluetooth controller certification.. 101

Chapter 12 DDR Performance Monitor..102
12.1 Introduction..102
12.2 Frequently used events... 102
12.3 Showing supported events.. 102
12.4 Examples for monitoring transactions... 103
12.5 Performance metric... 103

12.5.1 Showing supported metric...103
12.5.2 Monitoring transactions... 104

12.6 DDR Performance usage summary...104

Chapter 13 One-Time Programmable Controller Driver Using NVMEM
Subsystem..105

13.1 Introduction..105
13.2 NVMEM provider OCOTP... 105
13.3 NVMEM consumer.. 105
13.4 Examples to read/write the raw NVMEM file in user space...105

Chapter 14 NXP eIQ® Machine Learning...106

Chapter 15 Revision History.. 107

Appendix A Murata Wi-Fi/Bluetooth Solutions... 109
Legal information... 113

NXP Semiconductors
Contents

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 5 / 115

Chapter 1
Overview
This document describes how to build and install the i.MX Linux® OS BSP, where BSP stands for Board Support Package, on the
i.MX platform. It also covers special i.MX features and how to use them.

The document also provides the steps to run the i.MX platform, including board DIP switch settings, and instructions on configuring
and using the U-Boot bootloader.

The later chapters describe how to use some i.MX special features when running the Linux OS kernel.

Features covered in this guide may be specific to particular boards or SoCs. For the capabilities of a particular board or SoC, see
the i.MX Linux® Release Notes (IMXLXRN).

1.1 Audience
This document is intended for software, hardware, and system engineers who are planning to use the product, and for anyone
who wants to know more about the product.

1.2 Conventions
This document uses the following conventions:

• Courier New font: This font is used to identify commands, explicit command parameters, code examples, expressions,
data types, and directives.

1.3 Supported hardware SoCs and boards
These are the systems covered in this guide:

• i.MX 6Quad SABRE-SD board and platform

• i.MX 6DualLite SABRE-SD platform

• i.MX 6SoloX SABRE-SD platform

• i.MX 7Dual SABRE-SD platform

• i.MX 6QuadPlus SABRE-SD platform

• i.MX 6UltraLite EVK platform

• i.MX 6ULL EVK platform

• i.MX 6ULZ EVK platform

• i.MX 7ULP EVK platform

• i.MX 8QuadMax MEK board

• i.MX 8QuadXPlus MEK platform

• i.MX 8DXL EVK Platform

• i.MX 8M Quad EVK platform

• i.MX 8M Mini EVK Board

• i.MX 8M Nano EVK Board

• i.MX 8M Plus EVK board

• i.MX 8DualX MEK Board

• i.MX 8ULP EVK Board

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 6 / 115

Some abbreviations are used in places in this document.

• SABRE-SD refers to the i.MX 6Quad SABRE-SD, i.MX 6DualLite SABRE-SD, i.MX 6QuadPlus SABRE-SD, and i.MX
7Dual SABRE-SD boards.

• SoloX or SX refers to the i.MX 6SoloX SABRE-SD boards.

• 6UL refers to the i.MX 6UltraLite board.

• 6ULL refers to the i.MX 6ULL board.

• 6ULZ refers to the i.MX 6ULZ board.

• 7ULP refers to the i.MX 7Ultra Low Power platform.

• 8QXP refers to the 8QuadXPlus platform.

• 8QM refers to the 8QuadMax platform.

• 8MQ refers to the 8M Quad platform.

• 8MM refers to the 8M Mini platform.

• 8MN refers to the 8M Nano platform.

• 8MP refers to the 8M Plus platform.

• 8DXL refers to the 8DualXLite platform.

• 8DX refers to the 8DualX platform.

• 8ULP refers to the i.MX 8Ultra Low Power platform.

1.4 References
i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The i.MX Linux®

Release Notes describes which SoC is supported in the current release. Some previously released SoCs might be buildable in
the current release but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ

• i.MX 7 Family: 7Dual, 7ULP

• i.MX 8 Family: 8QuadMax, 8ULP

• i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano

• i.MX 8X Family: 8QuadXPlus, 8DXL, 8DualX

This release includes the following references and additional information.

• i.MX Linux® Release Notes (IMXLXRN) - Provides the release information.

• i.MX Linux® User's Guide (IMXLUG) - Provides the information on installing U-Boot and Linux OS and using i.MX-specific
features.

• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Describes the board support package for NXP development
systems using Yocto Project to set up host, install tool chain, and build source code to create images.

• i.MX Machine Learning User's Guide (IMXMLUG) - Provides the machine learning information.

• i.MX Linux Reference Manual (IMXLXRM) - Provides the information on Linux drivers for i.MX.

• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.

• i.MX Porting Guide (IMXXBSPPG) - Provides the instructions on porting the BSP to a new board.

• i.MX VPU Application Programming Interface Linux® Reference Manual (IMXVPUAPI) - Provides the reference information
on the VPU API on i.MX 6 VPU.

• Harpoon User's Guide (IMXHPUG) - Presents the Harpoon release for i.MX 8M device family.

NXP Semiconductors
Overview

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 7 / 115

• i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax (IMXDCHPE) - Provides the i.MX Digital
Cockpit hardware solution for i.MX 8QuadMax.

• i.MX DSP User's Guide (IMXDSPUG) - Provides the information on the DSP for i.MX 8.

• i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG) - Provides the information on the ISP Independent Sensor
Interface API for the i.MX 8M Plus.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)

• SABRE Board Quick Start Guide (IMX6QSDBQSG)

• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)

• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)

• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)

• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)

• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)

• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)

• i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)

• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)

• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)

• i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series

• i.MX SABRE information is at nxp.com/imxSABRE

• i.MX 6UltraLite information is at nxp.com/iMX6UL

• i.MX 6ULL information is at nxp.com/iMX6ULL

• i.MX 7Dual information is at nxp.com/iMX7D

• i.MX 7ULP information is at nxp.com/imx7ulp

• i.MX 8 information is at nxp.com/imx8

• i.MX 6ULZ information is at nxp.com/imx6ulz

NXP Semiconductors
Overview

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 8 / 115

https://www.nxp.com/docs/en/user-guide/SABRESDP_IMX6_QSG.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG&location=null
https://www.nxp.com/webapp/Download?colCode=IMX6ULTRALITEQSG
https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/webapp/Download?colCode=IMX6SABREINFOQSG
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/document/guide/i-mx-8m-nano-evk-board-getting-started-guide:GS-8MNANOLPD4-EVK
https://www.nxp.com/webapp/Download?colCode=IMX8QUADXPLUSQSG
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

Chapter 2
Introduction
The i.MX Linux BSP is a collection of binary files, source code, and support files that can be used to create a U-Boot bootloader,
a Linux kernel image, and a root file system for i.MX development systems. The Yocto Project is the framework of choice to build
the images described in this document, although other methods can be used.

All the information on how to set up the Linux OS host, how to run and configure a Yocto Project, generate an image, and generate
a rootfs, are covered in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

When Linux OS is running, this guide provides information on how to use some special features that i.MX SoCs provide. The
release notes provide the features that are supported on a particular board.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 9 / 115

Chapter 3
Basic Terminal Setup
The i.MX boards can communicate with a host server (Windows® OS or Linux OS) using a serial cable. Common serial
communication programs such as HyperTerminal, Tera Term, or PuTTY can be used. The example below describes the serial
terminal setup using HyperTerminal on a host running Windows OS.

The i.MX 6Quad/QuadPlus/DualLite SABRE-AI boards connect to the host server using a serial cable.

The other i.MX boards connect the host driver using the micro-B USB connector.

1. Connect the target and the PC running Windows OS using a cable mentioned above.

2. Open HyperTerminal on the PC running Windows OS and select the settings as shown in the following figure.

Figure 1. Teraterm settings for terminal setup

The i.MX 8 board connects the host driver using the micro USB connector. The USB to serial driver can be found under
www.ftdichip.com/Drivers/VCP.htm. The FT4232 USB to serial converter provides four serial ports. The i.MX 8 board uses the
first port for the Arm® Cortex®-A cores console and the second port for SCU's console. Users need to select the first port (COM)
in the terminal setup. The i.MX 8DXL board uses the third and fourth ports respectively for Arm Cortex-A cores console and
SCU console.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 10 / 115

http://www.ftdichip.com/Drivers/VCP.htm

Chapter 4
Booting Linux OS
Before booting the Linux OS kernel on an i.MX board, copy the images (U-Boot, Linux kernel, device tree, and rootfs) to a boot
device and set the boot switches to boot that device. There are various ways to boot the Linux OS for different boards, boot
devices, and results desired. This section describes how to prepare a boot device, where files need to be in the memory map, how
to set switches for booting, and how to boot Linux OS from U-Boot.

4.1 Software overview
This section describes the software needed for the board to be able to boot and run Linux OS.

To boot a Linux image on i.MX 6 and i.MX 7, the following elements are needed:

• Bootloader (U-Boot)

• Linux kernel image (zImage)

• A device tree file (.dtb) for the board being used

• A root file system (rootfs) for the particular Linux image

• Arm Cortex-M4 image for i.MX 7ULP

To boot a Linux image on i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL, multiple elements are needed:

• Bootloader (imx-boot built by imx-mkimage, which is a tool that combines firmware and U-Boot to create a bootloader for i.MX
8), which includes U-Boot, Arm Trusted Firmware, DCD file, System controller firmware, and the SECO firmware since i.MX
8QuadMax/i.MX 8QuadXPlus B0 and i.MX 8DXL A1.

• (Optional) Arm Cortex-M4 image

• Linux kernel image (Image built by linux-imx)

• A device tree file (.dtb) for the board being used

• A root file system (rootfs) for the particular Linux image

On i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus, multiple elements are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, DDR firmware

• HDMI firmware (only supported by i.MX 8M Quad)

• Linux kernel image

• A device tree file (.dtb) for the board being used.

• A root file system (rootfs) for the particular Linux image

On i.MX 8ULP, four elements are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, OP-TEE, uPower Firmware, Sentinel
Firmware, and Arm Cortex-M33 image

• Linux kernel image

• A device tree file (.dtb) for the board being used

• A root file system (rootfs) for the particular Linux image

The system can be configured for a specific graphical backend. For i.MX 8, the graphical backend is XWayland. For i.MX 7ULP,
the default backend is XWayland.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 11 / 115

4.1.1 Bootloader
U-Boot is the tool recommended as the bootloader for i.MX 6 and i.MX 7. i.MX 8 requires a bootloader that includes U-Boot as
well as other components described below. U-Boot must be loaded onto a device to be able to boot from it. U-Boot images are
board-specific and can be configured to support booting from different sources.

The pre-built or Yocto project default bootloader names start with the name of the bootloader followed by the name of the
platform and board and followed by the name of the device that this image is configured to boot from: u-boot-[platform]
[board]_[machine_configuration].bin. If no boot device is specified, it boots from SD/MMC.

The manufacturing tool can be used to load U-Boot onto all devices with i.MX 6 and i.MX 7. U-Boot can be loaded directly onto
an SD card using the Linux dd command. U-Boot can be used to load a U-Boot image onto some other devices.

On i.MX 8, the U-Boot cannot boot the device by itself. The i.MX 8 pre-built images or Yocto Project default bootloader is imx-boot
for the SD card, which is created by the imx-mkimage. The imx-boot binary includes the U-Boot, Arm trusted firmware, DCD
file (8QuadMax/8QuadXPlus/8DXL), system controller firmware (8QuadMax/8QuadXPlus/8DXL), SPL (8M SoC), DDR firmware
(8M), HDMI firmware (8M Quad), and SECO firmware for B0 (8QuadMax/8QuadXPlus/8DXL).

On i.MX 8M SoC, the second program loader (SPL) is enabled in U-Boot. SPL is implemented as the first-level bootloader running
on TCML (For i.MX 8M Nano and i.MX 8M Plus, the first-level bootloader runs in OCRAM). It is used to initialize DDR and load
U-Boot, U-Boot DTB, Arm trusted firmware, and TEE OS (optional) from the boot device into the memory. After SPL completes
loading the images, it jumps to the Arm trusted firmware BL31 directly. The BL31 starts the optional BL32 (TEE OS) and BL33
(U-Boot) for continue booting kernel.

In imx-boot, the SPL is packed with DDR Firmware together, so that ROM can load them into Arm Cortex-M4 TCML or OCRAM
(only for i.MX 8M Nano and i.MX 8M Plus). The U-Boot, U-Boot DTB, Arm Trusted firmware, and TEE OS (optional) are packed
into a FIT image, which is finally built into imx-boot.

4.1.2 Linux kernel image and device tree
This i.MX BSP contains a pre-built kernel image based on the 5.15.5 version of the Linux kernel and the device tree files associated
with each platform.

The same kernel image is used for all the i.MX 6 and i.MX 7 with name zImage. Device trees are tree data structures, which
describe the hardware configuration allowing a common kernel to be booted with different pin settings for different boards or
configurations. Device tree files use the .dtb extension. The configuration for a device tree can be found in the Linux source code
under arch/arm/boot/dts in the *.dts files.

The i.MX Linux delivery package contains pre-built device tree files for the i.MX boards in various configurations. Filenames for
the prebuilt images are named Image-[platform]-[board]-[configuration].dtb. For example, the device tree file of the i.MX
8QuadMax MEK board is Image-imx8qm-mek.dtb.

For i.MX 6 and i.MX 7, the *ldo.dtb device trees are used for LDO-enabled feature support. By default, the LDO bypass is
enabled. If your board has the CPU set to 1.2 GHz, you should use the *ldo.dtb device tree instead of the default, because LDO
bypass mode is not supported on the CPU at 1.2 GHz. The device tree *hdcp.dtb is used to enable the HDCP feature because
of a pin conflict, which requires this to be configured at build time.

On i.MX 8, i.MX 8M, and i.MX 8ULP, the kernel is 64 bit and device trees are located in the arch/arm64/boot/dts/freescale
folder and use the dts extension. The kernel is built using linux-imx software provided in the release package and the filename
starting with Image.

4.1.3 Root file system
The root file system package (or rootfs) provides busybox, common libraries, and other fundamental elements.

The i.MX BSP package contains several root file systems. They are named with the following convention: [image name]-
[backend]-[platform][board].[ext4|wic]. The ext4 extension indicates a standard file system. It can be mounted as NFS,
or its contents can be stored on a boot media such as an SD/MMC card.

The graphical backend to be used is also defined by the rootfs.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 12 / 115

4.2 Universal update utility

The Universal Update Utility (UUU) runs on a Windows or Linux OS host and is used to download images to different devices on
an i.MX board.

4.2.1 Downloading UUU
Download UUU version 1.4.193 or later from https://github.com/NXPmicro/mfgtools/releases.

4.2.2 Using UUU
To use the UUU for i.MX 6, i.MX 7, i.MX 8, follow the instructions below:

1. Connect a USB cable from a computer to the USB OTG/TYPE C port on the board.

2. Connect a USB cable from the OTG-to-UART port to the computer for console output.

3. Open a Terminal emulator program. See Section "Basic Terminal Setup" in this document.

4. Set the boot pin to serial download mode mode. See Section "Serial download mode for the Manufacturing Tool" in this
document.

To use the UUU for i.MX 8ULP EVK, follow the instructions below:

• To burn single-boot image and rootfs to eMMC, run the following command:

uuu -b emmc_all imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33 <rootfs.wic.bz2>

• To burn single-boot image to FlexSPI2 NOR flash, run the following command:

uuu -b qspi imx-boot-imx8ulpevk-fspi.bin-flash_singleboot_m33_flexspi

• To burn dual-boot image and rootfs to eMMC and FlexSPI0 NOR flash, perform the following steps:

1. Prepare imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33, imx-boot-imx8ulpevk-sd.bin-
flash_dualboot, imx-boot-imx8ulpevk-sd.bin-flash_dualboot_m33, and <rootfs.wic>.

2. Update the UUU script file uuu_8ulp_dual.auto with the file path and name of the images above.

3. Run uuu mfgtools/scripts/samples/uuu_8ulp_dual.auto.

For detailed usage of UUU, see github.com/NXPmicro/mfgtools/wiki.

For example, the following command writes rootfs.wic into eMMC.

uuu -b emmc_all <bootloader> <rootfs.wic>

The following command decompresses bz2 file and writes into eMMC:

uuu -b emmc_all <bootloader> <rootfs.wic.bz2/*>

The following command executes downloading and bootloader (SPL and U-Boot) by USB:

uuu -b spl <bootloader>

The following command burns into eMMC (If only one board is supported in such a release package and the board supports
eMMC chip):

uuu <release package>.zip

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 13 / 115

https://github.com/NXPmicro/mfgtools/releases
https://github.com/NXPmicro/mfgtools/wiki

For i.MX 8QuadXPlus B0, UUU flashes the eMMC image to boot partition with 32 KB offset. It may not be
compatible with all eMMC devices. It is recommended to enable eMMC fastboot mode and use the UUU kernel
version script to flash the eMMC image to boot partition with 0 offset.

 NOTE

4.3 Preparing an SD/MMC card to boot
This section describes the steps to prepare an SD/MMC card to boot up an i.MX board using a Linux host machine. These
instructions apply to SD and MMC cards although for brevity, and usually only the SD card is listed.

For a Linux image to be able to run, four separate pieces are needed:

• Linux OS kernel image (zImage/Image)

• Device tree file (*.dtb)

• Bootloader image

• Root file system (for example, EXT4)

The Yocto Project build creates an SD card image that can be flashed directly. This is the simplest way to load everything needed
onto the card with one command.

A .wic image contains all four images properly configured for an SD card. The release contains a pre-built .wic image that is built
specifically for the one board configuration. It runs the Wayland graphical backend. It does not run on other boards unless U-Boot,
the device tree, and rootfs are changed.

When more flexibility is desired, the individual components can be loaded separately, and those instructions are included here as
well. An SD card can be loaded with the individual components one-by-one or the .wic image can be loaded and the individual
parts can be overwritten with the specific components.

The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning and re-loading the rootfs can increase
that to the size of the card. The rootfs can also be changed to specify the graphical backend that is used.

The device tree file (.dtb) contains board and configuration-specific changes to the kernel. Change the device tree file to change
the kernel for a different i.MX board or configuration.

By default, the release uses the following layout for the images on the SD card. The kernel image and DTB move to use the FAT
partition without a fixed raw address on the SD card. The users have to change the U-Boot boot environment if the fixed raw
address is required.

Table 1. Image layout

Start address (sectors) Size (sectors) Format Description

0x400 bytes (2) 0x9FFC00 bytes (20478) RAW i.MX 6 and i.MX 7 U-Boot and reserved area

0x8400 (66) 0x9F7C00 (20414) RAW i.MX 8M Quad and i.MX 8M Mini imx-boot
reserved area

0x8000 (64) 0x9F800 (20416) RAW i.MX 8QuadMax/8QuadXPlus/8M Nano/8M
Plus/8DXL/8DualX/8ULP

0xa00000 bytes (20480) 500 MB (1024000) FAT Kernel Image and DTBs

0x25800000
bytes (1228800)

Remaining space Ext3/Ext4 Rootfs

4.3.1 Preparing the card
An SD/MMC card reader, such as a USB card reader, is required. It is used to transfer the bootloader and kernel images to
initialize the partition table and copy the root file system. To simplify the instructions, it is assumed that a 4 GB SD/MMC card
is used.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 14 / 115

Any Linux distribution can be used for the following procedure.

The Linux kernel running on the Linux host assigns a device node to the SD/MMC card reader. The kernel might decide the device
node name or udev rules might be used. In the following instructions, it is assumed that udev is not used.

To identify the device node assigned to the SD/MMC card, carry out the following command:

$ cat /proc/partitions
major minor #blocks name
 8 0 78125000 sda
 8 1 75095811 sda1
 8 2 1 sda2
 8 5 3028221 sda5
 8 32 488386584 sdc
 8 33 488386552 sdc1
 8 16 3921920 sdb
 8 18 3905535 sdb1

In this example, the device node assigned is /dev/sdb (a block is 1024 Bytes).

Make sure that the device node is correct for the SD/MMC card. Otherwise, it may damage your operating system
or data on your computer.

 NOTE

4.3.2 Copying the full SD card image
The SD card image (with the extension .wic) contains U-Boot, the Linux image and device trees, and the rootfs for a 4 GB SD
card. The image can be installed on the SD card with one command if flexibility is not required.

Carry out the following command to copy the SD card image to the SD/MMC card. Change sdx below to match the one used by
the SD card.

$ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync

The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the additional space is not accessible.

4.3.3 Partitioning the SD/MMC card
The full SD card image already contains partitions. This section describes how to set up the partitions manually. This needs to be
done to individually load the bootloader, kernel, and rootfs.

There are various ways to partition an SD card. Essentially, the bootloader image needs to be at the beginning of the card, followed
by the Linux image and the device tree file. These can either be in separate partitions or not. The root file system needs to be
in a partition that starts after the Linux section. Make sure that each section has enough space. The example below creates
two partitions.

On most Linux host operating systems, the SD card is mounted automatically upon insertion. Therefore, before running fdisk,
make sure that the SD card is unmounted if it was previously mounted (through sudo umount /dev/sdx).

Start by running fdisk with root permissions. Use the instructions above to determine the card ID. We are using sdx here as
an example.

$ sudo fdisk /dev/sdx

Type the following parameters (each followed by <ENTER>):

p [lists the current partitions]
d [to delete existing partitions. Repeat this until no unnecessary partitions
 are reported by the 'p' command to start fresh.]
n [create a new partition]

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 15 / 115

p [create a primary partition - use for both partitions]
1 [the first partition]
20480 [starting at offset sector]
1024000 [ending position of the first partition to be used for the boot images]
p [to check the partitions]
n
p
2
1228800 [starting at offset sector, which leaves enough space for the kernel,
 the bootloader and its configuration data]
<enter> [using the default value will create a partition that extends to
 the last sector of the media]
p [to check the partitions]
w [this writes the partition table to the media and fdisk exits]

4.3.4 Copying a bootloader image
This section describes how to load only the bootloader image when the full SD card image is not used. Execute the following
command to copy the U-Boot image to the SD/MMC card.

$ sudo dd if=<U-Boot image> of=/dev/sdx bs=1k seek=<offset> conv=fsync

Where offset is:

• 1 - for i.MX 6 or i.MX 7

• 33 - for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, and i.MX 8M Quad, and i.MX 8M Mini

• 32 - for i.MX 8QuadXPlus B0, i.MX 8QuadMax B0, i.MX 8DualX, i.MX 8DXL, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8ULP

The first 16 KB of the SD/MMC card, which includes the partition table, is reserved.

4.3.5 Copying the kernel image and DTB file
This section describes how to load the kernel image and DTB when the full SD card image is not used. The pre-built SD card image
uses the VFAT partition for storing kernel image and DTB, which requires a VFAT partition that is mounted as a Linux drive and
the files are copied into it. This is the preferred method.

Another method that can be used is for users to put the kernel image and DTB to the fixed raw address of the SD card by using the
dd command. The later method needs to modify the U-Boot default environment variables for loading the kernel image and DTB.

Default: VFAT partition

1. Format partition 1 on the card as VFAT with this command:

$ sudo mkfs.vfat /dev/sdx1

2. Mount the formatted partition with this command:

$ mkdir mountpoint
$ sudo mount /dev/sdx1 mountpoint

3. Copy the zImage and *.dtb files to the mountpoint by using cp. The device tree names should match the one used by the
variable specified by U-Boot. Unmount the partition with this command:

$ sudo umount mountpoint

Alternative: Pre-defined raw address

The following command can be used to copy the kernel image to the SD/MMC card:

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 16 / 115

For i.MX 6 and i.MX7, use this command:

$ sudo dd if=zImage_imx_v7_defconfig of=/dev/sdx bs=512 seek=2048 conv=fsync

For i.MX 8, use this command:

sudo dd if=Image-imx8qmsabreauto.bin of=/dev/sdx bs=512 seek=2048 conv=fsync

Each of them copies the kernel to the media at offset 1 MB (bs x seek = 512 x 2048 = 1 MB). The file zImage_imx_v7_defconfig
refers to the zImage file created when using the imx_v7_defconfig configuration file, which supports both i.MX 6 and i.MX 7 SoCs.

The i.MX DTB image can be copied by using the copy command and copying the file to the 2nd partition or the following commands
copy an i.MX DTB image to the SD/MMC card by using dd command.

Choose a command for your board:

$ sudo dd if=zImage-imx6qp-sabreauto.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6qp-sabresd.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabreauto.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabresd.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6sl-evk.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx7d-sdb.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync

For i.MX 6 and i.MX 7, the following command can be used to copy the kernel image to the boards, such as the i.MX 6UltraLite
EVK board and i.MX 6ULL EVK board:

$ sudo dd if=zImage-imx6ul-14x14-evk.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6ull-14x14-evk.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync

For i.MX 6 and i.MX 7, this copies the board-specific .dtb file to the media at offset 10 MB (bs x seek = 512 x 20480 = 10 MB).

4.3.6 Copying the root file system (rootfs)
This section describes how to load the rootfs image when the full SD card image is not used.

Copy the target file system to a partition that only contains the rootfs. This example uses partition 2 for the rootfs. First format the
partition. The file system format ext3 or ext4 is a good option for the removable media due to the built-in journaling. Replace sdx
with the partition in use in your configuration.

$ sudo mkfs.ext3 /dev/sdx2
Or
$ sudo mkfs.ext4 /dev/sdx2

Copy the target file system to the partition:

$ mkdir /home/user/mountpoint
$ sudo mount /dev/sdx2 /home/user/mountpoint

Extract a rootfs package to a directory: for example, extract imx-image-multimedia-imx7ulpevk.tar.bz2 to /home/
user/rootfs:

$ cd /home/user/rootfs
$ tar -jxvf imx-image-multimedia-imx7ulpevk.tar.bz2

The rootfs directory needs to be created manually.

Assume that the root file system files are located in /home/user/rootfs as in the previous step:

$ cd /home/user/rootfs
$ sudo cp -a * /home/user/mountpoint

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 17 / 115

$ sudo umount /home/user/mountpoint
$ sync

The file system content is now on the media.

Copying the file system takes several minutes depending on the size of your rootfs.

 NOTE

4.4 Downloading images

Images can be downloaded to a device using a U-Boot image that is already loaded on the boot device or by using the
Manufacturing Tool UUU. Use a terminal program to communicate with the i.MX boards.

4.4.1 Downloading images using U-Boot
The following sections describe how to download images using the U-Boot bootloader.

The commands described below are generally useful when using U-Boot. Additional commands and information can be found by
typing help at the U-Boot prompt.

The U-Boot print command can be used to check environment variable values.

The setenv command can be used to set environment variable values.

4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the Arm Cortex-M4 processor and QuadSPI
memory that can be used to flash an image to it.

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the
MFGTool script uuu LF5.15.5_1.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and
Arm Cortex-M4 images.

 NOTE

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX SABRE-SD to flash the Arm Cortex-M4 image
from the SD card. To execute the script, perform the following steps:

1. Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name the file to m4_qspi.bin.

2. Boot from the SD card.

3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX
SABRE-SD board or QuadSPI1 PortA CS0 offset 1 MB on the i.MX 7Dual SABRE-SD board.

U-Boot > run update_m4_from_sd

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the following steps:

1. Boot from the SD card.

2. TFTP the Arm Cortex-M4 image.

U-Boot > tftp ${loadaddr} m4_qspi.bin

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board.

U-Boot > sf probe 1:0

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board and i.MX 7ULP EVK board.

U-Boot > sf probe 0:0

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 18 / 115

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is ${filesize}, around 64 Kbytes. This
example assumes that it is 128 Kbytes.

U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset, because the first 1 MB is used by the
U-Boot image in QuadSPI.

U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only when the U-Boot image is
built by the target mx7dsabresd_qspi1_defconfig booted by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from the SD card and runs it
on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it will not boot.

 NOTE

4.4.1.2 Downloading an image to MMC/SD

This section describes how to download U-Boot to an MMC/SD card that is not the one used to boot from.

Insert an MMC/SD card into the SD card slot. This is slot SD3 on i.MX 6 SABRE, SD2 on i.MX 6UltraLite EVK and i.MX 6ULL EVK,
SD1 on i.MX 7Dual SABRE-SD and i.MX 7ULP EVK (MicroSD), and SD1 on i.MX 8QuadMax MEK, 8QuadXPlus MEK, and i.MX
8M Quad EVK.

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the
MfgTool script uuu LF5.15.5_1.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and
Arm Cortex-M4 images.

 NOTE

For i.MX 7ULP, to burn the Arm Cortext-M4 image to QuadSPI, perform the following steps:

1. Copy the Arm Cortext-M4 image to the SD card vfat partition, insert the SD card, and then boot to the U-Boot console.

2. Probe the Quad SPI in U-Boot, and erase an enough big size QuardSPI flash space for this Arm Cortext-M4 image.

U-Boot > sf probe
U-Boot > sf erase 0x0 0x30000;

3. Read the Arm Cortext-M4 image (in the first vfat partition on the SD card) to memory address, the Arm Cortext-M4 image
name is sdk20-app.img here.

U-Boot > fatload mmc 0:1 0x62000000 sdk20-app.img;

4. Write the Arm Cortext-M4 image to the QuardSPI.

U-Boot > sf write 0x62000000 0x0 0x30000

To flash the original U-Boot, see Section Preparing an SD/MMC card to boot.

The U-Boot bootloader is able to download images from a TFTP server into RAM and to write from RAM to an SD card. For this
operation, the Ethernet interface is used and U-Boot environment variables are initialized for network communications.

The boot media contains U-Boot, which is executed upon power-on. Press any key before the value of the U-Boot environment
variable, bootdelay, decreases and before it times out. The default setting is 3 seconds to display the U-Boot prompt.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 19 / 115

1. To clean up the environment variables stored on MMC/SD to their defaults, execute the following command in the
U-Boot console:

U-Boot > env default -f -a U-Boot > saveenv U-Boot > reset

2. Configure the U-Boot environment for network communications. The following is an example. The lines preceded by the
"#" character are comments and have no effect.

U-Boot > setenv serverip <your TFTPserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the TFTP server>
U-Boot > setenv fdtfile <your dtb image name on the TFTP server>

The user can set a fake MAC address through ethaddr environment if the MAC address is not fused.

U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

3. Copy zImage/Image to the TFTP server. Then download it to RAM:

U-Boot > dhcp

4. Query the information about the MMC/SD card.

U-Boot > mmc devU-Boot > mmcinfo

5. Check the usage of the mmc command. The blk# is equal to <the offset of read/write>/<block length of the
card>. The cnt is equal to <the size of read/write>/<block length of the card>.

U-Boot > help mmc
mmc - MMC sub system
Usage:
mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices

6. Program the kernel zImage/Image located in RAM at ${loadaddr} into the SD card. For example, the command to
write the image with the size 0x800000 from ${loadaddr} to the offset of 0x100000 of the microSD card. See the
following examples for the definition of the MMC parameters.

blk# = (microSD Offset)/(SD block length) = 0x100000/0x200 = 0x800

cnt = (image Size)/(SD block length) = 0x800000/0x200 = 0x4000

This example assumes that the kernel image is equal to 0x800000. If the kernel image exceeds 0x800000, increase
the image length. After issuing the TFTP command, filesize of the U-Boot environment variable is set with the number
of bytes transferred. This can be checked to determine the correct size needed for the calculation. Use the U-Boot
command printenv to see the value.

U-Boot > mmc dev 2 0
U-Boot > tftpboot ${loadaddr} ${bootfile}
Suppose the kernel zImage is less than 8M.
U-Boot > mmc write ${loadaddr} 0x800 0x4000

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 20 / 115

7. Program the dtb file located in RAM at ${fdt_addr} into the microSD.

U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. On i.MX 6 SABRE boards, you can boot the system from rootfs on SD card, using the HannStar LVDS as display. The
kernel MMC module now uses a fixed mmcblk index for the uSDHC slot. The SD3 slot uses mmcblk2 on i.MX 6 SABRE
boards, the SD1 slot uses mmcblk0 on the i.MX 7Dual SABRE-SD board, and the SD2 slot uses mmcblk1 on the i.MX
6UltraLite board and i.MX 6ULL EVK board. The SD1 slot uses mmcblk1 on i.MX 8 MEK boards and i.MX 8M boards.

9. Boot the board.

U-Boot > setenv bootcmd_mmc 'run bootargs_base mmcargs;mmc dev;mmc
read ${loadaddr} 0x800 0x4000;mmc read ${fdt_addr} 0x5000 0x800;bootz ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_mmc'
U-Boot > saveenv

4.4.1.3 Using eMMC

There is an eMMC chip on i.MX SABRE boards, i.MX 8 MEK and EVK boards, i.MX 8M EVK boards, and i.MX 8ULP EVK boards.
It is accessed through SDHC4 on i.MX 6 SABRE boards, SDHC3 on i.MX 7Dual SABRE-SD board, SDHC1 on i.MX 8 MEK/EVK
boards and i.MX 8M EVK boards, and SDHC0 on i.MX 8ULP EVK board. The i.MX 7ULP EVK board also supports to rework
eMMC on the MicroSD port. The following steps describe how to use this memory device.

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the
MfgTool script uuu LF5.15.5_1.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and
Arm Cortex-M4 images.

 NOTE

1. Execute the following command on the U-Boot console to clean up the environments stored on eMMC:

U-Boot > env default -f -a
U-Boot > save
U-Boot > reset

2. Configure the boot pin. Power on the board and set the U-Boot environment variables as required. For example,

U-Boot > setenv serverip <your tftpserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the tftp server>
U-Boot > setenv fdtfile <your dtb image name on the tftp server>
The user can set fake MAC address via ethaddr enviroment if the MAC address is not fused
U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

3. Copy zImage to the TFTP server. Then download it to RAM:

U-Boot > dhcp

4. Query the information about the eMMC chip.

U-Boot > mmc dev
U-Boot > mmcinfo

5. Check the usage of the mmc command. blk# is equal to <the offset of read/write>/<block length of the
card>. cnt is equal to <the size of read/write>/<block length of the card>.

mmc read addr blk# cnt
mmc write addr blk# cnt

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 21 / 115

mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices

6. Program the kernel zImage/Image into eMMC. For example, the command below writes the image with the size
0x800000 from ${loadaddr} to the offset 0x100000 of the eMMC chip. Here, the following equations are used: 0x800
=0x100000/0x200, 0x4000=0x800000/0x200. The block size of this card is 0x200. This example assumes that the
kernel image is less than 0x800000 bytes. If the kernel image exceeds 0x800000, enlarge the image length.

Select mmc dev 2 (USDHC4) on the i.MX 6 SABRESD board:
U-Boot > mmc dev 2 0
Select mmc dev 1 (USDHC3) on the i.MX 7Dual SABRESD board:
U-Boot > mmc dev 1 0
Select mmc dev 1 (USDHC2) on the i.MX 6UltraLite EVK board:
U-Boot > mmc dev 1 0
Select mmc dev 0 (USDHC1) on the i.MX 7ULP EVK board:
U-Boot > mmc dev 0 0
Select mmc dev 0 (eMMC0) on the i.MX 8QuadMax MEK, i.MX 8QuadXPlus MEK, i.MX 8M Quad,
8DualX, and 8DXL boards:
U-Boot > mmc dev 0 0
select mmc dev 2 (USDHC3) on the i.MX 8M Mini EVK, i.MX 8M Nano EVK, and i.MX 8M Plus EVK:
U-Boot > mmc dev 2 0
select mmc dev 0 （USDHC0） on the i.MX 8ULP EVK
U-boot > mmc dev 0
Suppose kernel zImage is less than 8 MB:
U-Boot > tftpboot ${loadaddr} ${bootfile}
U-Boot > mmc write ${loadaddr} 0x800 0x4000

7. Program the dtb file located in RAM at ${fdt_addr} into the eMMC chip.

U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. Boot up the system through the rootfs in eMMC, using the HannStar LVDS as display. The kernel MMC module now
uses the fixed mmcblk indexes for the USDHC slots. The eMMC/SD4 slot on the i.MX 6 SABRE boards is mmcblk3.
The eMMC5.0 on the i.MX 8QuadMax MEK board, i.MX 8QuadXPlus MEK board, and i.MX 8M Quad EVK board are
mmcblk0. The eMMC5.0/SD3 slot on the i.MX 7Dual SABRE board is mmcblk2. eMMC is not populated on the i.MX
7Dual SABRE board.

U-Boot > setenv mmcboot 'run bootargs_base mmcargs; mmc dev 2;
mmc read ${loadaddr} 0x800 0x4000; mmc read ${fdt_addr} 0x5000 0x800;bootz ${loadaddr} - $
{fdt_addr} '
U-Boot > setenv bootcmd 'run mmcboot'
U-Boot > saveenv

9. Boot up the system through the rootfs in eMMC, using the CLAA WVGA panel as display:

• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk3p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565 ip=dhcp'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk2p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565 ip=dhcp'

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 22 / 115

10. Boot up the system through rootfs in eMMC, using HDMI as display:

• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk3p2 rootwait rw
video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk2p2 rootwait rw
video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Plus, the following display kernel parameters are supported:

a. Pick a particular video mode for legacy FB emulation since system startup.

video=HDMI-A-{n}: {video_mode}

n can be 1 to the maximum number of HDMI connectors in the system. video_mode should be the one that
the monitor on the connector supports. For example, video=HDMI-A-1:1920x1080@60. By default, if there is no
parameter in the command line, the system uses the video mode that the monitor recommends.

b. Enable or disable legacy FB emulation.

drm_kms_helper.fbdev_emulation=0 or 1

0 to disable, 1 to enable. By default, if there is no parameter in the command line, the emulation is enabled.

c. Set legacy FB emulation framebuffer’s bits per pixel (bpp) parameter.

imxdrm.legacyfb_depth=16 or 24 or 32

By default, if there is no parameter in the command line, bpp is 16.

To program the rootfs to MMC/SD, see Using an i.MX board as the host server to create a rootfs or Preparing an SD/MMC card
to boot.

4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot

Flashing directly to SPI-NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards. To flash U-Boot on SPI-NOR, perform the
following steps:

1. Boot from an SD card.

2. Set Jumper J3 to position: 2-3.

3. Fetch the U-Boot image with built-in SPI-NOR support. This example uses u-boot.imx.

U-Boot > tftpboot ${loadaddr} u-boot.imx

4. Flash the U-Boot image in SPI-NOR.

U-Boot > sf probe
U-Boot > sf erase 0 0x80000
U-Boot > sf write ${loadaddr} 0x400 0x7FC00

5. Set boot switches to boot from SPI-NOR on SABRE-AI.

• S2-1 1

• S2-2 1

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 23 / 115

• S2-3 0

• S2-4 0

• S1-[1:10] X

6. Reboot the target board.

4.4.1.4.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the Arm Cortex-M4 processor and QuadSPI
memory that can be used to flash an image to it.

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the
MFGTool script uuu LF5.15.5_1.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and
Arm Cortex-M4 images.

 NOTE

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX SABRE-SD to flash the Arm Cortex-M4 image
from the SD card. To execute the script, perform the following steps:

1. Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name the file to m4_qspi.bin.

2. Boot from the SD card.

3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX
SABRE-SD board or QuadSPI1 PortA CS0 offset 1 MB on the i.MX 7Dual SABRE-SD board.

U-Boot > run update_m4_from_sd

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the following steps:

1. Boot from the SD card.

2. TFTP the Arm Cortex-M4 image.

U-Boot > tftp ${loadaddr} m4_qspi.bin

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board.

U-Boot > sf probe 1:0

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board and i.MX 7ULP EVK board.

U-Boot > sf probe 0:0

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is ${filesize}, around 64 Kbytes. This
example assumes that it is 128 Kbytes.

U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset, because the first 1 MB is used by the
U-Boot image in QuadSPI.

U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 24 / 115

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only when the U-Boot image is
built by the target mx7dsabresd_qspi1_defconfig booted by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from the SD card and runs it
on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it will not boot.

 NOTE

4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot

Flashing directly to Parallel NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards. To flash U-Boot on Parallel NOR, perform
the following steps:

1. Check the jumper J3, should not between pins 2 and 3.

2. Update the SD U-Boot with EIM NOR version. For details on commands, see Copying a bootloader image. Then boot
from the SD card.

3. TFTP the U-Boot image.

tftpboot ${loadaddr} u-boot.imx

4. Flash the U-Boot image.

cp.b ${loadaddr} 0x08001000 ${filesize}

5. Change boot switches and reboot.

S2 all 0 S1-6 1 others 0

6. By default, rootfs is mounted on NFS.

4.4.2 Using an i.MX board as the host server to create a rootfs
Linux OS provides multiple methods to program images to the storage device. This section describes how to use the i.MX platform
as a Linux host server to create the rootfs on an MMC/SD card or the SATA device. The following example is for an SD card. The
device file node name needs to be changed for a SATA device.

1. Boot from NFS or other storage. Determine your SD card device ID. It could be mmcblk* or sd*. (The index is
determined by the USDHC controller index.) Check the partition information with the command:

$ cat /proc/partitions

2. To create a partition on the MMC/SD card, use the fdisk command (requires root privileges) in the Linux console:

root@ ~$ sudo fdisk /dev/$SD

Replace $SD above with the name of your device.

3. If this is a new SD card, you may get the following message:

The device contains neither a valid DOS partition table, nor Sun, SGI or OSF disk label
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that the previous content
won't be recoverable.
The number of cylinders for this disk is set to 124368.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 25 / 115

2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

The usual prompt and commands to partition the card are as follows. Text in boldface indicates what the user types.

Command (m for help): p
Disk /dev/sdd: 3965 MB, 3965190144 bytes
4 heads, 32 sectors/track, 60504 cylinders, total 7744512 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00080bff
 Device Boot Start End Blocks Id System

4. As described in Flash memory maps, the rootfs partition should be located after the kernel image. The first 0x800000
bytes can be reserved for MBR, bootloader, and kernel sections. From the log shown above, the Units of the current
MMC/SD card is 32768 bytes. The beginning cylinder of the first partition can be set to "0x300000/32768 = 96." The last
cylinder can be set according to the rootfs size. Create a new partition by typing the letters in bold:

Command (m for help): n
 e extended
 p primary partition (1-4)
Select (default p): p
Partition number (1-4): 1
First cylinder (1-124368, default 1): 96
Last cylinder or +size or +sizeM or +sizeK (96-124368, default 124368): Using default value
124368
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read $SD partition table

5. Check the partitions (see above) to determine the name of the partition. $PARTITION is used here to indicate the
partition to be formatted. Format the MMC/SD partitions as ext3 or ext4 type. For example, to use ext3:

root@ ~$ mkfs.ext3 /dev/$PARTITION
mke2fs 1.42 (29-Nov-2011)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
248992 inodes, 994184 blocks
49709 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1019215872
31 block groups
32768 blocks per group, 32768 fragments per group
8032 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 20 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 26 / 115

6. Copy the rootfs contents to the MMC/SD card. The name may vary from the one used below. Check the directory for the
rootfs desired. (Copy the *.ext2 to NFS rootfs).

mkdir /mnt/tmpmnt
mount -t ext3 -o loop /imx-image-multimedia.ext3 /mnt/tmpmnt
cd /mnt
mkdir mmcblk0p1
mount -t ext3 /dev/$PARTITION /mnt/mmcblk0p1
cp -af /mnt/tmpmnt/* /mnt/mmcblk0p1/
umount /mnt/mmcblk0p1
umount /mnt/tmpmnt

7. Type sync to write the contents to MMC/SD.

8. Type poweroff to power down the system. Follow the instructions in Running Linux OS on the target to boot the image
from the MMC/SD card.

By default, v2013.04 and later versions of U-Boot support loading the kernel image and DTB file from the SD/MMC
vfat partition by using the fatload command. To use this feature, perform the following steps:

1. Format the first partition (for example 50 MB) of the SD/MMC card with vfat filesystem.

2. Copy zImage and the DTB file into the VFAT partition after you mount the VFAT partition into your
host computer.

3. Make sure that the zImage and DTB filename are synchronized with the filename pointed to by the U-Boot
environment variables: fdtfile and image. Use the print command under U-Boot to display these two
environment variables. For example:

print fdtfile image

4. U-Boot loads the kernel image and the DTB file from your VFAT partition automatically when you boot from
the SD/MMC card.

 NOTE

The following is an example to format the first partition to a 50 MB vfat filesystem and format the second partition to an
ext4 filesystem:

~$ fdisk /dev/sdb
Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30318591, default 2048): 4096
Last sector, +sectors or +size{K,M,G} (4096-30318591, default 30318591): +50M
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux
Command (m for help): n
Partition type:
 p primary (1 primary, 0 extended, 3 free)
 e extended

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 27 / 115

Select (default p): p
Partition number (1-4, default 2): 2
First sector (2048-30318591, default 2048): 106496
Last sector, +sectors or +size{K,M,G} (106496-30318591, default 30318591):
Using default value 30318591
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux
/dev/sdb2 106496 30318591 15106048 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
~$ mkfs.vfat /dev/mmcblk0p1
~$ mkfs.ext4 /dev/mmcblk0p2

4.5 How to boot the i.MX boards
When U-Boot is loaded onto one of the devices that support booting, the DIP switches can be used to boot from that device. The
boot modes of the i.MX boards are controlled by the boot configuration DIP switches on the board. For help with locating the boot
configuration switches, see the quick start guide for the specific board as listed under References above.

The following sections list basic boot setup configurations. The tables below represent the DIP switch settings for the switch blocks
on the specified boards. An X means that particular switch setting does not affect this action.

4.5.1 Booting from an SD card in slot SD1
The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7Dual SABRE
SD boards.

Table 2. Booting from SD1 on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7ULP EVK boards.

Table 3. Booting from SD1 on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 ON OFF OFF ON

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadMax
MEK boards.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 28 / 115

Table 4. Booting from SD1 on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON ON OFF OFF - -

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadXPlus
MEK boards.

This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards.

 NOTE

Table 5. Booting from SD1 on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 ON ON OFF OFF

4.5.2 Booting from an SD card in slot SD2
The SD card slot that is labeled SD2 indicates that this slot is connected to the uSDHC pin SD2 on the processor. Most boards
label this slot as SD2. This slot is referred to as SD2 in this document.

The following table shows the DIP switch settings for booting from the SD card slot labeled SD2 and J500 on the i.MX 6 SABRE-SD
boards. The SD2 card slot is located beside the LVDS1 connection on the back of the board.

Table 6. Booting from SD2 (J500) on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON OFF OFF OFF OFF OFF ON OFF

The i.MX 6UltraLite EVK board or i.MX 6ULL EVK board has one TF card slot on the CPU board. This slot uses the USDHC2
controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 7. Booting from TF on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4

SW601 OFF OFF ON OFF

SW602 ON OFF - -

The i.MX 8M Quad EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP
switch settings for booting from the TF slot.

Table 8. Booting from TF on i.MX 8M Quad EVK

Switch D1 D2 D3 D4

SW801 ON ON OFF OFF

SW802 ON OFF - -

The i.MX 8M Mini EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch
settings for booting from the TF slot.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 29 / 115

Table 9. Booting from TF on i.MX 8M Mini EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF ON ON OFF

SW1102 OFF OFF ON ON OFF ON OFF OFF

The i.MX 8M Nano EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP
switch settings for booting from the TF slot.

Table 10. Booting from TF on i.MX 8M Nano EVK

Switch D1 D2 D3 D4

SW1101 ON ON OFF OFF

The i.MX 8M Plus EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch
settings for booting from the TF slot.

Table 11. Booting from TF on i.MX 8M Plus EVK

Switch D1 D2 D3 D4

SW4 OFF OFF ON ON

4.5.3 Booting from an SD card in slot SD3
The SD card slot that is labeled SD3 indicates that this slot is connected to the uSDHC pin SD3 on the processor. Most boards
label this slot as SD3. This slot is referred to as SD3 in this document.

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6 SABRE-AI boards.

Table 12. Booting from an SD card in slot SD3 on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF ON X X X X X

S2 X OFF ON OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6SoloX SABRE-AI boards.

Table 13. Booting from an MMC card in Slot SD3 on i.MX 6SoloX SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8

S4 OFF ON OFF X OFF OFF ON OFF

S3 X OFF OFF OFF ON ON OFF OFF

S1 OFF OFF ON OFF - - - -

The following table shows the DIP switch settings for booting from SD3, also labeled as J507. The SD3 slot is located between
the HDMI and UART ports.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 30 / 115

Table 14. Booting from an SD card in slot SD3 on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF ON OFF OFF OFF OFF ON OFF

4.5.4 Booting from an SD card in slot SD4
The following table describes the dip switch settings for booting from an SD card in slot SD4.

The SD4 slot is on the center of the edge of the SoloX board.

Table 15. Booting from an SD card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON OFF OFF OFF OFF OFF OFF

Table 16. Booting from an MMC card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON ON OFF OFF OFF OFF OFF

4.5.5 Booting from eMMC
eMMC 4.4 is a chip permanently attached to the board that uses the SD4 pin connections from the i.MX 6 processor. For more
information on switch settings, see table "MMC/eMMC Boot Fusemap" in the IC reference manual.

The following table shows the boot switch settings to boot from eMMC4.4 (SDIN5C2-8G) on i.MX 6 SABRE-SD boards.

Table 17. Booting from eMMC on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON ON OFF ON OFF ON ON OFF

i.MX 7Dual is different from i.MX 6. The eMMC uses the SD3 pin connections from the i.MX 7Dual processor.

Table 18. Booting from eMMC on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF ON OFF ON OFF OFF OFF OFF

SW3 ON OFF - - - - - -

The following table shows the boot switch settings to boot from eMMC4.4 on the i.MX 7ULP EVK boards.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 31 / 115

Table 19. Booting from eMMC on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 ON OFF OFF OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadMax MEK boards.

Table 20. Booting from eMMC on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON OFF OFF - -

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadXPlus MEK boards.

This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards, except that 8DXL EVK uses SW1.

 NOTE

Table 21. Booting from eMMC on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 OFF ON OFF OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8M Quad EVK boards.

Table 22. Booting from eMMC on i.MX 8M Quad EVK

Switch D1 D2 D3 D4

SW801 OFF OFF ON OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Mini EVK boards.

Table 23. Booting from eMMC on i.MX 8M Mini EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON ON ON OFF OFF ON OFF

SW1102 OFF OFF OFF OFF ON OFF ON OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Nano EVK boards.

Table 24. Booting from eMMC on i.MX 8M Nano EVK

Switch D1 D2 D3 D4

SW1101 OFF ON OFF OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Plus EVK boards.

Table 25. Booting from eMMC on i.MX 8M Plus EVK

Switch D1 D2 D3 D4

SW4 OFF OFF OFF ON

The following table lists the boot switch settings to boot from eMMC5.1 on the i.MX 8ULP EVK.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 32 / 115

Table 26. Singleboot booting from eMMC on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF OFF OFF OFF OFF OFF OFF ON

Table 27. Dualboot booting from eMMC for A35 on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF ON OFF OFF OFF OFF OFF ON

4.5.6 Booting from SATA
The following switch settings enable booting from SATA.

SATA booting is supported only by the i.MX 6Quad/6QuadPlus SABRE boards.

Table 28. Booting from SATA on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF OFF OFF OFF OFF ON OFF OFF

4.5.7 Booting from NAND
The following table shows the DIP switch settings needed to boot from NAND on i.MX 6 SABRE-AI boards.

Table 29. Booting from NAND on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 OFF OFF OFF ON OFF OFF OFF OFF OFF OFF

S2 OFF OFF OFF ON - - - - - -

S3 OFF OFF ON OFF - - - - - -

The following table shows the DIP switch settings needed to boot from NAND for i.MX 7Dual SABRE-SD boards.

Table 30. Booting from NAND on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S2 OFF ON ON X X X X OFF - -

S3 ON OFF X X X X X X - -

The following table shows the DIP switch settings needed to boot from NAND for i.MX 8M Mini DDR4 EVK boards.

Table 31. Booting from NAND on i.MX 8M Mini DDR4 EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

SW1101 OFF ON OFF OFF OFF OFF OFF ON - -

SW1102 OFF OFF OFF ON ON ON ON OFF - -

4.5.8 Booting from SPI-NOR
Enable booting from SPI NOR on i.MX 6 SABRE-AI boards by placing a jumper on J3 between pins 2 and 3.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 33 / 115

Table 32. Booting from SPI-NOR on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X X X X X X X X

S2 ON ON OFF OFF OFF OFF OFF OFF OFF OFF

S3 OFF OFF ON OFF - - - - - -

4.5.9 Booting from EIM (Parallel) NOR
The following table shows the DIP switch settings to boot from NOR.

Table 33. Booting from EIM NOR on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF OFF ON X X X X

S2 X OFF OFF OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

SPI and EIM NOR have pin conflicts on i.MX 6 SABRE-AI boards. Neither can be used for the same configuration.
The default U-Boot configuration is set to SPI NOR.

 NOTE

4.5.10 Booting from QuadSPI or FlexSPI
The following tables list the DIP switch settings for booting from QuadSPI.

Table 34. Booting from QuadSPI on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF OFF OFF OFF OFF OFF OFF

SW12 OFF OFF OFF ON ON OFF OFF OFF

Table 35. Booting from QuadSPI on i.MX 6SoloX SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW4 OFF OFF OFF OFF ON OFF OFF OFF

SW3 OFF OFF OFF OFF OFF OFF OFF OFF

SW1 OFF OFF ON OFF - - - -

Table 36. Booting from QuadSPI on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 ON OFF OFF OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 34 / 115

Table 37. Booting from QuadSPI on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4

SW601 OFF OFF OFF OFF

SW602 ON OFF - -

Table 38. Booting from FlexSPI on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON ON OFF - -

Table 39. Booting from FlexSPI on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 OFF ON ON OFF

Table 40. Booting from FlexSPI on i.MX 8M Mini LPDDR4 EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF OFF OFF OFF

SW1102 OFF ON OFF OFF OFF OFF OFF ON

Table 41. Booting from QuadSPI on i.MX Nano EVK

Switch D1 D2 D3 D4

SW601 OFF OFF OFF OFF

SW602 ON OFF - -

Table 42. Booting from QuadSPI on i.MX 8M Plus EVK

Switch D1 D2 D3 D4

SW4 OFF ON ON OFF

Table 43. Singleboot booting from FlexSPI NOR on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF OFF OFF OFF OFF ON OFF ON

Table 44. Dualboot booting from FlexSPI for A35 on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW5 OFF ON OFF OFF OFF ON OFF ON

4.5.11 Serial download mode for the Manufacturing Tool
No dedicated boot DIP switches are reserved for serial download mode on i.MX 6 SABRE-SD. There are various ways to enter
serial download mode. One way is to set the boot mode to boot from SD slot SD3 (set SW6 DIP switches 2 and 7 to on, and the rest
are off). Do not insert the SD card into slot SD3, and power on the board. After the message "HID Compliant device" is displayed,

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 35 / 115

the board enters serial download mode. Then insert the SD card into SD slot SD3. Another way to do this is to configure an invalid
boot switch setting, such as setting all the DIP switches of SW6 to off.

The following table shows the boot switch settings for i.MX 6 SABRE-AI boards, which are used to enter serial download mode
for the Manufacturing Tool. If the boot image in the boot media is not validated, the system also enters the serial download mode.

Table 45. Setup for the Manufacturing Tool on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4

S3 OFF ON OFF OFF

Table 46. Setup for the Manufacturing Tool on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4

S3 OFF ON - -

Table 47. Setup for Manufacturing Tool on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2

SW602 OFF ON

Table 48. Setup for Manufacturing Tool on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 OFF ON - -

Table 49. Setup for Manufacturing Tool on i.MX 8M Quad EVK

Switch D1 D2

SW802 OFF ON

Table 50. Setup for Manufacturing Tool on i.MX 8M Plus EVK

Switch D1 D2 D3 D4

SW4 OFF OFF OFF ON

Table 51. Setup for Manufacturing Tool on i.MX 8M Mini EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 ON OFF X X X X X X

SW1102 X X X X X X X X

Table 52. Setup for Manufacturing Tool on i.MX 8M Nano EVK

Switch D1 D2 D3 D4

SW1101 ON OFF OFF OFF

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 36 / 115

Table 53. Setup for Manufacturing Tool on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6

SW2 OFF OFF ON OFF OFF OFF

The following settings are same for the i.MX 8DualX MEK and i.MX 8DXL EVK boards (8DXL EVK uses SW1).

 NOTE

Table 54. Setup for Manufacturing Tool on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 ON OFF OFF OFF

Table 55. Setup for Manufacturing Tool on i.MX 8ULP EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF OFF OFF OFF ON OFF

If the SD card with bootable image is plugged in SD2 (baseboard), ROM will not fall back into the serial
download mode.

 NOTE

4.5.12 How to build U-Boot and Kernel in standalone environment
To build U-Boot and Kernel in a standalone environment, perform the following steps.

First, generate an SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.

• Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build
environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command, set
Target-Machine to the machine you are building for. The populate_sdk generates a script file that sets up a standalone
environment without Yocto Project. This SDK should be updated for each release to pick up the latest headers, toolchain,
and tools from the current release.

DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-minimal -c populate_sdk

If the building process is interrupted, modify conf/local.conf to comment out the line: PACKAGE_CLASSES =
"package_deb", and then execute the populate_sdk command again.

 NOTE

• From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and
execute the script to install the SDK. The default location is in /opt but can be placed anywhere on the host machine.

On the host machine, these are the steps to build U-Boot and Kernel:

• For i.MX 8 builds on the host machine, set the environment with the following command before building.

source /opt/fsl-imx-xwayland/5.15-honister/environment-setup-aarch64-poky-linux
export ARCH=arm64

• For i.MX 8ULP EVK board:

make distclean
make imx8ulp_evk_defconfig
make

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 37 / 115

• For i.MX 6 and i.MX 7 builds on the host machine, set the environment with the following command before building.

source /opt/fsl-imx-fb/5.15-honister/environment-setup-cortexa9hf-neon-poky-linux-gnueab
export ARCH=arm

• To build an i.MX 8 U-Boot in the standalone environment, find the configuration for the target boot. In the following
example, i.MX 8QuadMax MEK board is the target and it runs on the Arm Cortex-A53 core by default. SPL image
(u-boot-spl.bin) is also generated with the default defconfig. It is needed when booting with OP-TEE image.

make distclean
make imx8qm_mek_defconfig
make

For i.MX 8QuadXPlus MEK and i.MX 8DualX board:

make distclean
make imx8qxp_mek_defconfig
make

For i.MX 8DXL EVK board:

make distclean
make imx8dxl_evk_defconfig
make

• To build U-Boot for i.MX 8M Quad EVK:

make distclean
make imx8mq_evk_defconfig
make

• For i.MX 8M LPDDR4 EVK:

make distclean
make imx8mm_evk_defconfig
make

• For i.MX 8M DDR4 EVK:

make distclean
make imx8mm_ddr4_evk_defconfig
make

• For i.MX 8M Plus LPDDR4 EVK board:

make distclean
make imx8mp_evk_defconfig
make

• To build an i.MX 6 or i.MX 7 U-Boot in the standalone environment, find the configuration for the target boot. In the
following example, i.MX 6ULL is the target.

Download source by cloning with git clone https://source.codeaurora.org/external/imx/uboot-imx -b
lf_v2021.04
cd uboot-imx
make clean
make mx6ull_14x14_evk_defconfig
make

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 38 / 115

• To build the kernel in the standalone environment for i.MX 8, execute the following commands:

make imx_v8_defconfig
make

• To build the kernel in the standalone environment for i.MX 6 and i.MX 7, execute the following commands:

Download source by cloning with git clone https://source.codeaurora.org/external/imx/linux-imx -b
lf-5.15.y
cd linux-imx
make imx_v7_defconfig
make

Users need to modify configurations for fused parts. For example, the i.MX 6UltraLite has four parts, G0, G1, G2,
and G3.

The fused modules are as follows:

• G0: TSC, ADC2, FLEXCAN1, FLEXCAN2, FREQ_MON, TEMP_MON, VOLT_MONLCDIF, CSI, ENET2,
CAAM, USB_OTG2, SAI23, BEE, UART5678, PWM5678, ECSPI34, I2C34, GPT2, and EPIT2.

• G1: TSC, ADC2, FLEXCAN2, FREQ_MON, TEMP_MON, VOLT_MON, LCDIF, CSI, ENET2, and BEE.

• G2: FREQ_MON, TEMP_MON, VOLT_MON, and BEE.

• G3: No fused module.

U-Boot configuration changes:

G0:

/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */
#define CONFIG_USB_MAX_CONTROLLER_COUNT 1

G1:

/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */

G2:

/* #define CONFIG_CMD_BEE */

G3: No change.

 NOTE

4.5.13 How to build imx-boot image by using imx-mkimage
For i.MX 8QuadMax, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QM/.

2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QM/.

3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8QM/.

4. Copy the SECO firmware container image (ahab-container.img) to imx-mkimage/iMX8QM/.

5. Run make SOC=iMX8QM flash to generate flash.bin.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 39 / 115

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QM/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/
iMX8QM/. Run make SOC=iMX8QM flash_spl to generate flash.bin.

For i.MX 8QuadXPlus, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QX/.

2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QX/.

3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8QX/.

4. Copy the SECO firmware container image (ahab-container.img) to imx-mkimage/iMX8QX/.

5. Run make SOC=iMX8QX flash to generate flash.bin.

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QX/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/
iMX8QX/. Run make SOC=iMX8QX flash_spl to generate flash.bin.

For i.MX 8DXL, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8DXL/.

2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8DXL/.

3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8DXL/.

4. Copy the image of SECO firmware container (mx8dxla1-ahab-container.img) to imx-mkimage/iMX8DXL/.

5. Run make SOC=iMX8DXL flash to generate flash.bin.

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8DXL/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/
iMX8DXL/. Run make SOC=iMX8DXL flash_spl to generate flash.bin.

7. If skipping loading V2X firmware, add V2X=NO to make command, like make SOC=iMX8DXL V2X=NO flash.

The following is a matrix table for targets of i.MX 8QuadMax and i.MX 8QuadXPlus.

Table 56. Matrix table for targets of i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL

- OP-TEE U-Boot SPL Cortex-M4

flash_spl Yes Yes Yes No

flash No Yes No No

flash_linux_m4 Yes Yes Yes Yes

flash_regression_
linux_m4

No Yes No Yes

For i.MX 8ULP EVK, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/
iMX8ULP/.

2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/iMX8ULP/.

3. Copy the image of Sentinel firmware container mx8ulpa0-ahab-container.img to imx-mkimage/iMX8ULP/.

4. Copy the image of uPower firmware image upower.bin to imx-mkimage/iMX8ULP/.

5. Copy the Cortex-M33 image m33_image.bin to imx-mkimage/iMX8ULP/.

6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8ULP/. The bl31.bin copied in Step 2 must be built with OP-TEE
SPD enabled.

7. Run make SOC=iMX8ULP flash_singleboot_m33 to generate flash.bin.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 40 / 115

For the location where the binaries for Sentinel/SECO/uPower/M33/V2X firmwares are available to download, see
the Table "BSP and multimedia standard packages" in the i.MX Linux Release Notes (IMXLXRN).

 NOTE

The following table list the imx-mkimage targets used on i.MX 8ULP.

Table 57. imx-mkimage targets used on i.MX 8ULP

Boot type Cortex-A35 Cortex-M33 SW5[8:1]

Single Boot (Default) Boot Cortex-A35 + Cortex-M33 from eMMC:

make SOC=iMX8ULP flash_singleboot_m33

Boot Cortex-A35 only from eMMC:

make SOC=iMX8ULP flash_singleboot

1000_xx00 Single Boot
eMMC

Boot Cortex-A35 + Cortex-M33 from FlexSPI NOR:

make SOC=iMX8ULP flash_singleboot_m33_flexspi

Boot Cortex-A35 only from FlexSPI NOR:

make SOC=iMX8ULP flash_singleboot_flexspi

1010_xx00 Single Boot
NOR

Dual Boot
make SOC=iMX8ULP flash_dualboot

For RAM target:

make SOC=iMX8ULP
flash_dualboot_m33

For Flash target:

make SOC=iMX8ULP
flash_dualboot_m33_xi
p

1000_0010 A35-eMMC/
M33-NOR

make SOC=iMX8ULP flash_dualboot_flexspi
1010_0010 A35-Nor/
M33-NOR

Low Power
Boot

- 1000_00x1 A35-eMMC/
M33-NOR

- 1010_00x1 A35-Nor/
M33-NOR

For i.MX 8M EVK, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy and rename mkimage from u-boot/tools/mkimage to imx-mkimage/iMX8M/mkimage_uboot.

2. Copy u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8M/.

3. Copy u-boot-nodtb.bin from u-boot/u-boot-nodtb.bin to imx-mkimage/iMX8M/.

4. Copy imx8mq-evk.dtb (for i.MX 8M Quad EVK), imx8mm-evk.dtb (for i.MX 8M Mini LPDDR4 EVK), imx8mm-ddr4-
evk.dtb (for i.MX 8M Mini DDR4 EVK), or imx8mp-evk.dtb (for i.MX 8M Plus LPDDR4 EVK) from u-boot/
arch/arm/dts/ to imx-mkimage/iMX8M/.

5. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8M/.

6. Copy firmware/hdmi/cadence/signed_hdmi_imx8m.bin from the firmware-imx package to imx-mkimage/iMX8M/.

7. For i.MX 8M Quad and i.MX 8M Mini LPDDR4 EVK, copy lpddr4_pmu_train_1d_dmem.bin,
lpddr4_pmu_train_1d_imem.bin, lpddr4_pmu_train_2d_dmem.bin, and lpddr4_pmu_train_2d_imem.bin from
firmware/ddr/synopsys of the firmware-imx package to imx-mkimage/iMX8M/.

For i.MX 8M Mini DDR4 EVK, copy ddr4_imem_1d.bin, ddr4_dmem_1d.bin, ddr4_imem_2d.bin, and ddr4_dmem_2d.bin
from firmware/ddr/synopsys of the firmware-imx package to imx-mkimage/iMX8M.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 41 / 115

For i.MX 8M Plus LPDDR4 EVK, copy lpddr4_pmu_train_1d_dmem_201904.bin,
lpddr4_pmu_train_1d_imem_201904.bin, lpddr4_pmu_train_2d_dmem_201904.bin, and
lpddr4_pmu_train_2d_imem_201904.bin from firmware/ddr/synopsys of the firmware-imx package to imx-
mkimage/iMX8M/.

8. For i.MX 8M Quad EVK, run make SOC=iMX8M flash_evk to generate flash.bin (imx-boot image) with HDMI FW
included. For i.MX 8M Mini LPDDR4 EVK, run make SOC=iMX8MM flash_evk to generate flash.bin (imx-boot image).
For i.MX 8M Mini DDR4 EVK, run make SOC=iMX8MM flash_ddr4_evk to generate flash.bin (imx-boot image).

For i.MX 8M Plus LPDDR4 EVK, run make SOC=iMX8MP flash_evk to generate flash.bin (imx-boot-image).

To boot with eMMC fasboot on i.MX 8M Quad EVK and i.MX 8M Mini LPDDR4 EVK, use
flash_evk_emmc_fastboot target.

4.6 Flash memory maps
This section describes the software layout in memory on memory devices used on the i.MX boards.

This information is useful for understanding subsequent sections about image downloading and how the images are placed
in memory.

The mtdparts directive can be used in the Linux boot command to specify memory mapping. The following example briefly
describes how to use memory maps. Memory is allocated in the order of how it is listed. The dash (-) indicates the the rest of
the memory.

mtdparts=[memory type designator]:[size]([name of partition]),[size]([name of partition]),-([name of
final partition])

4.6.1 MMC/SD/SATA memory map
The MMC/SD/SATA memory scheme is different from the NAND and NOR flash, which are deployed in the BSP software. The
MMC/SD/SATA must keep the first sector (512 bytes) as the Master Boot Record (MBR) to use MMC/SD as the rootfs.

Upon boot-up, the MBR is executed to look up the partition table to determine which partition to use for booting. The bootloader
should be after the MBR. The kernel image and rootfs may be stored at any address after the bootloader. By default, the the U-Boot
boot arguments use the first FAT partition for kernel and DTB, and the following ext3 partition for the root file system. Alternatively,
users can store the kernel and the DTB in any raw memory area after the bootloader. The boot arguments must be updated to
match any changed memory addresses.

The MBR can be generated through the fdisk command when creating partitions in MMC/SD cards on a Linux host server.

4.6.2 NAND flash memory map
The NAND flash memory map is configured from the Linux kernel command line.

For example:

mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)

4.6.3 Parallel NOR flash memory map
The default configuration contains only one parallel NOR partition. The parallel NOR device is generally 4 MB. U-Boot is loaded
at the beginning of parallel NOR so that the device can boot from it. The default configuration is that on boot up, U-Boot loads the
kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the default settings according
to their needs. More partitions can be added through the kernel command line. The memory type designator for the command
below consists of the NOR address and the designator. This information can be found in the i.MX .dtsidevice tree file in
arch/arm/boot/dts. The following is an example of what might be added to the Linux boot command line:

mtdparts=8000000.nor:1m(uboot),-(rootfs)

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 42 / 115

The address for parallel NOR is 0x8000000 for i.MX 6 SABRE-AI.

4.6.4 SPI-NOR flash memory map
The SPI-NOR flash memory can be configured using the Linux kernel command line.

U-Boot should be loaded at the 1 KB offset of the SPI-NOR memory, so that the device can boot from it. The default configuration is
that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change
the default settings according to their needs. More partitions can be added through the kernel command line. The following is an
example of what might be added to the Linux boot command line:

mtdparts=spi32766.0:768k(uboot),8k(env),128k(dtb),-(kernel)

4.6.5 QuadSPI flash memory map
The QuadSPI flash memory can be configured using the Linux kernel command line.

U-Boot is loaded at the beginning of the QuadSPI memory so that the device can boot from it. The default configuration is that on
boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the
default settings according to their requirements. More partitions can be added through the kernel command line. The following is
an example of what might be added to the Linux boot command line:

mtdparts=21e4000.qspi:1m(uboot),8m(kernel),1m(dtb),-(user)

U-Boot has the mapping below to help in accessing the QuadSPI flash in U-Boot for non-parallel mode.

Table 58. U-Boot mapping for QuadSPI

Device on hardware Device in U-Boot Memory address in U-Boot Remark

QuadSPI1 Port A CS0 sf probe 0:0 on i.MX 6SoloX SABRE-AI
board, i.MX 7Dual SABRE-SD board, i.MX
6UltraLite EVK board, i.MX 8QuadMax MEK,
i.MX 8QuadXPlus MEK, and i.MX 8DXL EVK

0x60000000

0x08000000

-

QuadSPI1 Port B CS0 sf probe 1:0 on i.MX 6 SoloX SABRE-
AI board

0x68000000 -

QuadSPI2 Port A CS0 sf probe 0:0 on i.MX 6SoloX SABRE-
SD board

0x70000000 -

QuadSPI2 Port B CS0 sf probe 1:0 on i.MX 6SoloX SABRE-
SD board

0x78000000 -

Table 59. U-Boot mapping for FlexSPI for i.MX 8ULP

Device on hardware Device in U-Boot Memory address in U-Boot Remark

Flexspi0 PortA CS0 sf probe 0:0 0x04000000 -

Flexspi2 PortA CS0 sf probe 2:0 0x60000000 -

4.7 Running Linux OS on the target
This section describes how to run a Linux image on the target using U-Boot.

These instructions assume that you have downloaded the kernel image using the instructions in Downloading images or Preparing
an SD/MMC card to boot. If you have not set up your Serial Terminal, see Basic Terminal Setup.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 43 / 115

The basic procedure for running Linux OS on an i.MX board is as follows. This document uses a specific set of environment
variable names to make it easier to describe the settings. Each type of setting is described in its own section as follows.

1. Power on the board.

2. When U-Boot comes up, set the environment variables specific to your machine and configuration. Common settings
are described below and settings specific to a device are described in separate sections.

3. Save the environment setup:

U-Boot > saveenv

4. Run the boot command:

U-Boot > run bootcmd

The commands env default -f -a and saveenv can be used to return to the default environment.

Specifying the console

The console for debug and command-line control can be specified on the Linux boot command line. The i.MX 6Quad SABRE-AI
board uses ttymxc2, so it is not same for all boards. It is usually specified as follows, but the baud rate and the port can be modified.
Therefore, for NFS, it might be ttymxc3.

U-Boot > setenv consoleinfo 'console=ttymxc2,115200'

For the i.MX 7ULP EVK, i.MX 8QuadMax MEK boards, and i.MX 8QuadXPlus MEK board, change to " console=ttyLP0,115200".

Specifying displays

The display information can be specified on the Linux boot command line. It is not dependent on the source of the Linux image.
If nothing is specified for the display, the settings in the device tree are used. Add ${displayinfo} to the environment macro
containing bootargs. The specific parameters can be found in the i.MX Linux® Release Notes (IMXLXRN). The following are some
examples of these parameters.

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24' for an HDMI display

• U-Boot > setenv displayinfo 'video=mxcfb1:dev=ldb video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24' for
LVDS and HDMI dual displays

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=lcd,if=RGB565' for an LCD

• U-Boot > setenv displayinfo 'video=mxcepdcfb:E060SCM,bpp=16 max17135:pass=2,vcom=-2030000' for an EPDC
connection

• U-Boot > setenv displayinfo 'video=mxcfb0:mxcfb0:dev=lcd,if=RGB565
video=mxcfb1:dev=hdmi,1920x1080M@60,if=RGB24' for LCD and HDMI dual displays

Specifying memory addresses

The addresses in the memory where the kernel and device tree are loaded to do not change based on the device that runs Linux
OS. The instructions in this chapter use the environment variables loadaddr and ftd_addr to indicate these values. The following
table shows the addresses used on different i.MX boards.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 44 / 115

Table 60. Board-specific default values

Variable 6Quad,
6QuadPlus,
and
6DualLite
SABRE (AI
and SD)

6SoloX SD 7Dual
SABRE-SD

6UltraLite,
6ULL and
6ULZ EVK

7ULP EVK 8QuadMax,
8QuadXPlu
s, 8DualX,
and 8DXL

8M Quad/
8M Mini
EVK

Description

loadaddr 0x1200000
0

0x8080000
0

0x8080000
0

0x8080000
0

0x6080000
0

0x8028000
0

0x4048000
0

Address in
the memory
the kernel
are loaded
to

fdt_addr 0x1800000
0

0x8300000
0

0x8300000
0

0x8300000
0

0x6300000
0

0x8300000
0

0x4300000
0

Address in
the memory
the device
tree code
are copied
to

In addition, fdtfile is used to specify the filename of the device tree file. The commands used to set the U-Boot environment
variables are as follows:

U-Boot > setenv loadaddr 0x80080000
U-Boot > setenv fdtaddr 0x80f00000
U-Boot > setenv fdtfile fsl-imx7ulp-evk.dtb

Specifying the location of the root file system

The rootfs can be located on a device on the board or on NFS. The settings below show some options for specifying these.

• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp'

• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp weim-nor nfsroot=${serverip}:${nfsroot},v3,tcp'

• U-Boot > setenv rootfsinfo 'ubi.mtd=4 root=ubi0:rootfs rootfstype=ubifs rootwait rw mtdparts=gpmi-
nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)'

• U-Boot > setenv rootfsinfo 'root=/dev/mmcblk0p2 rootwait rw'

Special settings

i.XM 6Solo, and 6UltraLite can specify uart_from_osc on the command line to specify that the OSC clock rather than PLL3 should
be used. This allows the system to enter low power mode.

U-Boot > setenv special 'uart_from_osc'

Creating the boot command line

For clarification, this document groups the bootargs into one macro as follows:

U-Boot > setenv bootargsset 'setenv bootargs ${consoleinfo} ${rootfsinfo} ${displayinfo} ${special}'

The executed boot command is then as follows. Arguments vary by device.

U-Boot > setenv bootcmd 'run bootargsset; {settings-for-device}; bootz ${loadaddr} - ${fdt_addr}'

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 45 / 115

4.7.1 Running the image from NAND
NAND can be found on i.MX 6 SABRE-AI boards.

Power on the board, and then enter the commands provided. The following settings may be used to boot the Linux system
from NAND.

Assume that the kernel image starts from the address 0x1400000 byte (the block starting address is 0x800). The kernel image
size is less than 0x400000 byte. The rootfs is located in /dev/mtd2.

U-Boot > setenv bootcmd 'run bootargsset; nand read ${loadaddr} 0x1000000 0x800000; nand read $
{fdt_addr} 0x2000000 0x100000; bootz ${loadaddr} - ${fdt_addr}'

4.7.2 Running Linux OS from Parallel NOR
Parallel NOR is available on i.MX 6 SABRE-AI boards. The following procedure can be used to boot the system from Parallel NOR.

1. Assume that the kernel image starts at address 0xc0000 bytes.

2. At the U-Boot prompt, set up these variables:

U-Boot > setenv bootcmd 'run bootargsset; cp.b 0x80c0000 ${loadaddr} 0x800000;cp.b 0x80a0000
${fdt_addr} 0x20000;bootz ${loadaddr} - ${fdt_addr} '

4.7.3 Running the Linux OS image from QuadSPI
QuadSPI is available on i.MX 6SoloX SABRE-SD boards, i.MX 7Dual SABRE-SD boards, i.MX 6UltraLite EVK boards, i.MX 6ULL
EVK boards, and i.MX 8QuadMax MEK, and i.MX 8QuadXPlus MEK. The following procedure may be used to boot the Linux
system from QuadSPI NOR.

1. Assume that the kernel image starts from the address 0xA00000 byte and the DTB file starts from address 0x800000.

2. At the U-Boot prompt, set the following environment variables:

U-Boot > setenv bootcmd 'run bootargsset; sf probe; sf read ${loadaddr} 0xA00000 0x2000; sf read
${fdt_addr} 0x800000 0x800; bootz ${loadaddr} - ${fdt_addr} '

4.7.4 Running the Arm Cortex-M4 image
On the i.MX 6SoloX boards, there are two ways to boot Arm Cortex-M4 images in U-Boot:

• Arm Cortex-M4 processor Normal Up (supported on i.MX 6SoloX SABRE-AI and SABRE-SD boards). Performed by
running the U-Boot command. Requires:

1. U-Boot normal SD image if Arm Cortex-A9 processor boots from the SD card. U-Boot normal QSPI image if Arm
Cortex-A9 processor boots from the QSPI NOR flash.

2. Kernel DTB: imx6sx-sdb-m4.dtb for i.MX 6SoloX SABRE-SD board. imx6sx-sabreauto-m4.dtb for i.MX 6SoloX
SABRE-AI board.

3. Have the Arm Cortex-M4 image burned. (NOR flash of QuadSPI2 PortB CS0 for i.MX 6SoloX SABRE-SD board.
NOR flash of QuadSPI1 PortB CS0 for i.MX 6SoloX SABRE-AI board.)

• Arm Cortex-M4 processor Fast Up (only supported on i.MX 6SoloX SABRE-SD boards). Initiated by U-Boot at a very early
boot phase to meet the requirement of Arm Cortex-M4 processor booting in 50 ms. No U-Boot command is involved.
Requires:

1. U-Boot Arm Cortex-M4 fast up image and Arm Cortex-A9 processor must boot from the QSPI2 NOR flash.

2. Kernel DTB: imx6sx-sdb-m4.dtb.

3. Have the Arm Cortex-M4 image burned (NOR flash of QuadSPI2 PortB CS0).

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 46 / 115

To facilitate the Arm Cortex-M4 processor Normal Up, a script has been added to the default U-Boot. The following steps may help
users who need to run the Cortex-M4 processor Normal Up script.

1. Power on the board.

2. On the i.MX 6SoloX SABRE-SD board, assumed that the Arm Cortex-M4 image is at address 0x78000000 (NOR flash
of QuadSPI2 PortB CS0). On the i.MX 6SoloX SABRE-AI board, assumed that the Arm Cortex-M4 image is at address
0x68000000 (NOR flash of QuadSPI1 PortB CS0).

At the U-Boot prompt:

U-Boot > run m4boot

Or users can perform the commands without depending on the script:

U-Boot > sf probe 1:0

For the i.MX 6SoloX SABRE-SD board:

U-Boot > bootaux 0x78000000

For the i.MX 6SoloX SABRE-AI board:

U-Boot > bootaux 0x68000000

For how to add the MCC demo to the kernel and limit RAM available to kernel to use it, see Chapter 53 "i.MX 6
SoloX MultiCore Communication (MCC)" of the i.MX Linux® Reference Manual (IMXLXRM).

 NOTE

As well as supporting running the Arm Cortex-M4 image from QuadSPI, the default i.MX 7Dual SABRE-SD board supports loading
the Arm Cortex-M4 image from the SD card and running it on OCRAM.

Prepare the Arm Cortex-M4 image to the FAT partition of the SD card. Name the file to "m4_qspi.bin" when using "m4boot" script.

After the board is powered on, the following information is displayed at the U-Boot prompt:

U-Boot > run m4boot

Or perform the commands without depending on the script:

u-boot=> fatload mmc 0:0 ${loadaddr} m4_qspi.bin
u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
u-boot=> bootaux 0x7e0000

On the i.MX 8M boards, perform the commands to boot the Arm Cortex-M Core core:

u-boot=> fatload mmc 1:1 ${loadaddr} m4.bin
u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
u-boot=> bootaux 0x7e0000

On the i.MX 8QuadMax and i.MX 8QuadXPlus boards, there are two ways to boot the Arm Cortex-M4 cores:

• Booting from ROM

Users need to use imx-mkimage to pack the Arm Cortex-M4 images into imx-boot image. It is necessary to specify the core
ID and its TCML address in the build command. The following is an example:

flash_linux_m4: $(MKIMG) mx8qm-ahab-container.img scfw_tcm.bin u-boot-spl.bin m4_image.bin
m4_1_image.bin u-boot-atf-container.img
 ./$(MKIMG) -soc QM -rev B0 -dcd skip -append mx8qm-ahab-container.img -c -flags 0x00200000
-scfw scfw_tcm.bin -ap u-boot-spl.bin a53 0x00100000 -p3 -m4 m4_image.bin 0 0x34FE0000 -p4 -m4

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 47 / 115

m4_1_image.bin 1 0x38FE0000 -out flash.bin
 cp flash.bin boot-spl-container.img
 @flashbin_size=`wc -c flash.bin | awk '{print $$1}'`; \
 pad_cnt=$$(((flashbin_size + 0x400 - 1) / 0x400)); \
 echo "append u-boot-atf-container.img at $$pad_cnt KB"; \
 dd if=u-boot-atf-container.img of=flash.bin bs=1K seek=$$pad_cnt;

When booting with the packed Cortex-M4 image (flash_linux_m4), use kernel DTB with RPMSG enabled, like
fsl-imx8qm-mek-rpmsg.dtb for i.MX 8QuadMax MEK or fsl-imx8qxp-mek-rpmsg.dtb for i.MX 8QuadXPlus MEK.

 NOTE

• Booting from U-Boot (not support multiple partitions enabled)

U-Boot supports loading the Arm Cortex-M4 image from the FAT partitions of the SD card with default name "m4_0.bin" and
"m4_1.bin". After the board is booted into the U-Boot console, use the following command to boot Arm Cortex-M4 core 0:

U-Boot > run m4boot_0
Or the command to boot M4 core 1:
U-Boot > run m4boot_1
Or perform the commands for core 0 without depending on the script:
U-Boot > fatload mmc 1:1 0x80280000 m4_0.bin
U-Boot > dcache flush; bootaux 0x80280000 0

4.7.5 Linux OS login
The default login user name for the i.MX Linux OS is root with no password.

4.7.6 Running Linux OS from MMC/SD
This scenario assumes that the board is configured to boot U-Boot, that the Linux kernel image is named zImage and is stored
on the SD card in an MS-DOS FAT partition, and one or more device tree files are also stored in this partition. The rootfs is also
stored on the SD/MMC card in another partition.

When U-Boot boots up, it detects the slot where it is booting from and automatically sets mmcdev and mmcroot to use the rootfs on
that SD card. In this scenario, the same SD card can be used to boot from any SD card slot on an i.MX 6/7 board, without changing
any U-Boot settings. From the U-Boot command line, type boot to run Linux OS.

The following instructions can be used if the default settings are not desired.

Set mmcautodetect to "no" to turn off the automatic setting of the SD card slot in mmcdev and mmcroot. The U-Boot mmcdev is based
on the soldered SD/MMC connections, so it varies depending on the board. The U-Boot mmc dev 0 is the lowest numbered SD
slot present, 1 is the next, and so on. The Linux kernel, though, indexes all the uSDHC controllers whether they are present or
not. The following table shows this mapping.

Table 61. Linux uSDHC relationships

uSDHC mmcroot

uSDHC 1 mmcblk0*

uSDHC 2 mmcblk1*

uSDHC 3 mmcblk2*

uSDHC 4 mmcblk3*

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 48 / 115

In the default configuration of the SD card and the example here, U-Boot is at the 1024 byte offset, 32 KB offset for the i.MX
8QuadXPlus B0 and i.MX 8QuadMax B0, or 33 KB offset for the i.MX 8QuadXPlus A0, i.MX 8QuadMax A0, i.MX 8M EVK boards
before the first partition, partition 1 is the partition with the Linux kernel and device trees, and partition 2 is the rootfs.

Setting up the environment variables

For convenience, this document uses a standard set of variables to describe the information in the Linux command line. The values
used here may be different for different machines or configurations. By default, U-Boot supports setting mmcdev and mmcroot
automatically based on the uSDHC slot that we boot from. This assumes zImage, the device tree file (DTB), and the rootfs are on
the same SD/MMC card. To set these environment variables manually, set mmcautodetect to no to disable the feature.

The following is one way to set up the items needed to boot Linux OS.

U-Boot > setenv mmcpart 1
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr} ${fdtfile}'
U-Boot > setenv loadkernel 'fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} zImage'
U-Boot > setenv bootcmd 'mmc dev ${mmcdev}; run loadkernel; run mmcargs; run loadfdt; bootz $
{loadaddr} - ${fdt_addr};'

The descriptions of the variables used above are as follows:

• mmcpart - This is the partition on the MMC/SD card containing the kernel image.

• mmcroot - The location of the root file system on the MMC SD card along with directives for the boot command for the
rootfs.

The U-Boot environment on the pre-built SD card does not match this. It is more complex so that it can automatically
deal with more variations. The example above is designed to be easier to understand and use manually.

 NOTE

Reading the kernel image from eMMC

eMMC has user area, boot partition 1, and boot partition 2. To switch between the eMMC partitions, the user needs to use the
command mmc dev [dev id] [partition id]. For example,

mmc dev 2 0 ---> user area
mmc dev 2 1 ---> boot partition 1
mmc dev 2 2 ---> boot partition 2

4.7.7 Running the Linux image from NFS
To boot from NFS, set the following environment variables at the U-Boot prompt:

U-Boot > setenv serverip <your server IP>
U-Boot > setenv image <your kernel zImage name on the TFTP server>
U-Boot > setenv fdtfile <your dtb image name on the TFTP server>
U-Boot > setenv rootfsinfo 'setenv bootargs ${bootargs} root=/dev/nfs ip=dhcp \
 nfsroot=${serverip}:/data/rootfs_home/rootfs_mx6,v3,tcp'
U-Boot > setenv bootcmd_net 'run rootfsinfo; dhcp ${image}; dhcp ${fdt_addr} \
 ${fdtfile}; booti ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_net'

If the MAC address has not been burned into the fuses, set the MAC address to use the network in U-Boot.

setenv ethaddr xx:xx:xx:xx:xx:xx

 NOTE

4.8 Arm SystemReady-IR

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 49 / 115

4.8.1 Arm SystemReady-IR ACS compliance test
To run the SystemReady-IR ACS on the i.MX 8M Mini EVK board, refer to the Arm SystemReady-IR ACS from: https://github.com/
ARM-software/arm-systemready

1. Clone the ACS Git.

2. Flash the pre-build release image or image built from source code on to the U-Disk, SD, or eMMC. If the target storage is
also boot storage, flash the boot image (flash.bin) thereafter the ACS image. For example, on the U-Disk:

sudo dd if=ir_acs_live_image.img of=/dev/sde bs=64M;sync

3. Boot the board. The ACS test will automatically run up.

4. There will be manual step for the power-off test from ACS. Just re-power on the board when run into that test case.

The test result will be stored on the storage.

5. Use the SCT_Parser to analyze the ACS result. The SCT_Parser can be obtained from: https://github.com/
vstehle/SCT_Parser

6. Copy the acs_results\sct_results\Overall\Summary.ekl file from the RESULT partition in U-disk to the SCT_Parser
folder. Run python3 parser.py --config EBBR.yaml Summary.ekl EBBR.seq to get the final report.

4.8.2 Capsule update
Use the following command to do the capsule update:

• For SD:

U-Boot > env set dfu_alt_info "mmc 1=1 raw 0x42 0x2000"

• For eMMC:

U-Boot > env set dfu_alt_info "mmc 2=1 raw 0x42 0x2000 mmcpart 1"
U-Boot > efidebug boot add 0 Boot0000 mmc 1:1 capsule1.bin;efidebug boot next 0
U-Boot > setenv serverip 10.192.242.218;dhcp $loadaddr capsule1.bin;fatwrite mmc 1:1 $
{loadaddr} /EFI/UpdateCapsule/capsule1.bin 0x${filesize}
U-Boot > setenv -e -nv -bs -rt -v OsIndications =0x04
U-Boot > efidebug capsule disk-update
reset

Do not interrupt U-Boot. Let the board run into grub. Before grub runs, it should update the bootloader automatically and remove
capsule1.bin. And reboot the board again. The board will boot up with the updated U-Boot.

4.8.3 Linux distro installation
Fedora34:

1. Download the Fedora34 IOT version.

2. Burned into the SD card.

3. Boot from eMMC.

4. Install distro from the SD card to eMMC.

OpenSUSE:

1. Download the OpenSUSE Tumbleweed version.

2. Burn ISO into the USB disk.

3. Boot from eMMC.

4. Install from ISO to eMMC.

NXP Semiconductors
Booting Linux OS

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 50 / 115

https://github.com/ARM-software/arm-systemready
https://github.com/ARM-software/arm-systemready
https://github.com/vstehle/SCT_Parser
https://github.com/vstehle/SCT_Parser

Chapter 5
Enabling Solo Emulation
Solo emulation can be enabled on the i.MX 6DualLite SABRE-SD and i.MX 6DualLite SABRE-AI boards. This is achieved by using
a specific U-Boot configuration in the bootloader build process.

When this Solo emulation is enabled on the i.MX 6DualLite SABRE platforms, the capabilities of the i.MX 6DualLite change to
the following:

• For solo emulation, use 6DualLite DTB and add maxcpus=1 to bootcmd of U-Boot.

• 32-bit data bus on DDR RAM.

• 1 GB of RAM for i.MX 6DualLite SABRE-AI.

• 512 MB of RAM for i.MX 6DualLite SABRE-SD.

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-SD card, use the following command:

MACHINE=imx6solosabresd bitbake u-boot-imx

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-AI card, use the following command:

MACHINE=imx6solosabreauto bitbake u-boot-imx

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 51 / 115

Chapter 6
Power Management
The i.MX power management uses the standard Linux interface. Check the standard Linux power documentation for information
on the standard commands. The i.MX Linux® Reference Manual (IMXLXRM) contains information on the power modes that are
available and other i.MX-specific information in the power management section.

There are three main power management techniques on i.MX boards: suspend and resume commands, CPU frequency scaling,
and bus frequency scaling. They are described in the following sections.

6.1 Suspend and resume

The power state can be changed by setting the standard Linux state, /sys/power/state. The command used to set the power
state into suspend mode, available from the command line, is echo mem > /sys/power/state. The value mem can be replaced
by any of the valid power states, as described by the i.MX Linux® Reference Manual (IMXLXRM).

Use one of the following methods to wake up the system from suspend mode.

• The debug UART can be set as a wake-up source with:

echo enabled > /sys/class/tty/ttymxc0/power/wakeup

It is ttylp0 for i.MX 8QuadXPlus and i.MX 8QuadMax, and ttyLP0 for i.MX 8DXL.

 NOTE

• RTC can be used to enter and exit from suspend mode by using the command:

/unit_test/SRTC/rtcwakeup.out -d rtc0 -m mem -s 10

This command indicates to sleep for 10 secs. This command automatically sets the power state to mem mode.

6.2 CPU frequency scaling

Scaling governors are used in the Linux kernel to set the CPU frequency. CPU frequencies can be scaled automatically depending
on the system load either in response to ACPI events or manually by userspace programs. For more information about governors,
read governors.txt from www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

The following are some of the more frequently used commands:

These commands return information about the system and the current settings.

• The kernel is pre-configured to support only certain frequencies. The list of frequencies currently supported can be
obtained from:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

• To get the available scaling governors:

cat /sys/devices/system/cpu/*/cpufreq/scaling_available_governors

• To check the current CPU frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_cur_freq

The frequency is displayed depending on the governor set.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 52 / 115

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

• To check the maximum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_max_freq

• To check the minimum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_min_freq

These commands set a constant CPU frequency:

• Use the maximum frequency:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

• Use the current frequency to be the constant frequency:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

• The following two commands set the scaling governor to a specified frequency, if that frequency is supported. If the
frequency is not supported, the closest supported frequency is used:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo <frequency> > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

6.3 Bus frequency scaling
This release does not support the bus frequency scaling feature on i.MX 7ULP EVK.

This release does not support the bus frequency scaling feature on i.MX 8QuadXPlus and i.MX 8QuadMax.

The system automatically adjusts the bus frequency (DDR, AHB, etc.) for optimal performance based on the devices that
are active.

The bus frequency driver is enabled by default. The following DDR frequencies are supported:

• Normal DDR frequency – Default frequency in U-Boot

• Audio DDR frequency – 50 MHz on i.MX 6Quad, i.MX 6DualLite, and i.MX 6SoloX, and 100 MHz on i.MX 7Dual.

• Low power idle DDR frequency – 24 MHz

On the i.MX 8M board:

• For LPDDR4, the Audio DDR frequency is 25 MHz, the low power idle DDR frequency is 25 MHz.

• For DDR4, the audio DDR frequency is 166 MHz, the low power idle DDR frequency is 166 MHz.

To enter a low power idle DDR frequency, ensure that all devices that require high DDR frequency are disabled. Most drivers do
active clock management, but certain commands can be used to avoid waiting for timeouts to occur:

echo 1 > /sys/class/graphics/fb0/blank -> to blank the display (may need to blank fb1, fb2, and so on, if more than one
display is active).

ifconfig eth0 down -> disables the Ethernet module. On i.MX 6SoloX, i.MX 7Dual, i.MX 6UltraLite, and i.MX 6UltraLiteLite
should also disable Ethernet 1 (eth1).

i.MX 8M Plus needs some additional steps to enable USB runtime PM:

echo auto > /sys/bus/platform/devices/32f10100.usb/38100000.dwc3/power/control
echo auto > /sys/bus/platform/devices/32f10108.usb/38200000.dwc3/power/control
echo auto > /sys/bus/platform/devices/32f10108.usb/38200000.dwc3/xhci-hcd.1.auto/power/control

On most systems, the chip enters low power IDLE mode after the above two commands are executed.

NXP Semiconductors
Power Management

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 53 / 115

To manipulate bus frequency, use the following commands to achieve the results desired:

cat /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> displays the status of bus frequency.

echo 0 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> disables bus frequency.

echo 1 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> enables bus frequency.

The i.MX Linux® Reference Manual (IMXLXRM) has more information on the bus frequency in the chapter about DVFS.

NXP Semiconductors
Power Management

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 54 / 115

Chapter 7
Multimedia
i.MX provides audio optimized software codecs, parsers, hardware acceleration units, and associated plugins. The i.MX provides
GStreamer plugins to access the i.MX multimedia libraries and hardware acceleration units. This chapter provides various
multimedia use cases with GStreamer command line examples.

7.1 i.MX multimedia packages
Due to license limitations, i.MX multimedia packages can be found in two locations:

• Standard packages: provided on the NXP mirror.

• Limited access packages: provided on nxp.com with controlled access.

For details, see the i.MX Release Notes (IMXLXRN).

7.2 Building limited access packages
Place the limited access package in the downloads directory and read the readme file in each package.

For example, README-microsoft in the package imxcodec-microsoft-$version.tar.gz.

7.3 Multimedia use cases
GStreamer is the default multimedia framework on Linux OS. The following sections provide examples of GStreamer commands
to perform the specific functions indicated. The following table shows how this document refers to common functions and what
the actual command is.

Table 62. Command mapping

Variable $GSTL $PLAYBIN $GPLAY $GSTINSPECT

GStreamer 1.x gst-launch-1.0 playbin gplay-1.0 gst-inspect-1.0

One option is to set these as environment variables as shown in the following examples. Use the full path to the command on
your system.

export GSTL=gst-launch-1.0
export PLAYBIN=playbin
export GPLAY=gplay-1.0
export GSTINSPECT=gst-inspect-1.0

In this document, variables are often used to describe the command parameters that have multiple options. These variables
are of the format $description where the type of values that can be used are described. The possible options can
be found in the Section about Multimedia in the i.MX Linux® Release Notes (IMXLXRN) for i.MX-specific options, or at
"gstreamer.freedesktop.org/ for the community options.

The GStreamer command line pipes the input through various plugins. Each plugin section of the command line is marked by an
exclamation mark (!). Each plugin can have arguments of its own that appear on the command line after the plugin name and
before the next exclamation mark (!). Use $GSTINSPECT $plugin to get information on a plugin and what arguments it can use.

Square brackets ([]) indicate optional parts of the command line.

7.3.1 Playback use cases
Playback use cases include the following:

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 55 / 115

http://www.nxp.com
http://gstreamer.freedesktop.org/

• Audio-only playback

• Video-only playback

• Audio/Video file playback

• Other methods for playback

7.3.1.1 Audio-only playback

An audio-only playback command uses this format:

$GSTL filesrc location=$clip_name [typefind=true] ! [$id3parse] ! queue ! $audio_parser_plugins
 ! $audio_decoder_plugin ! $audio_sink_plugin

If the file to be played contains an ID3 header, use the ID3 parser. If the file does not have an ID3 header, this has no effect.

This example plays an MP3 file in the audio jack output.

$GSTL filesrc location=test.mp3 ! id3demux ! queue ! mpegaudioparse ! beepdec ! pulsesink

7.3.1.2 Video-only playback

$GSTL filesrc location=test.video typefind=true
 ! $capsfilter ! $demuxer_plugin ! queue max-size-time=0
 ! $video_decoder_plugin ! $video_sink_plugin

This is an example of an MP4 container with H.264 encoding format video file playback:

$GSTL filesrc location=test.mp4 typefind=true
 ! video/quicktime ! aiurdemux ! queue max-size-time=0
 ! v4l2h264dec ! autovideosink

7.3.1.3 Audio/Video file playback

This is an example of a command to play a video file with audio:

$GSTL filesrc location=test_file typefind=true ! $capsfilter
 ! $demuxer_plugin name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 ! $video_decoder_plugin
 ! $video_sink_plugin demux.
 ! queue max-size-buffers=0 max-size-time=0 ! $audio_decoder_plugin
 ! $audio_sink_plugin

This is an example of an AVI file:

$GSTL filesrc location=test.avi typefind=true ! video/x-msvideo
 ! aiurdemux name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 ! $video_decoder_plugin
 ! autovideosink demux.
 ! queue max-size-buffers=0 max-size-time=0 ! beepdec
 ! alsasink

For the platforms without VPU hardware, $video_decoder_plugin could be a software decoder plugin like avdec_h264.

7.3.1.4 Multichannel audio playback

For the multichannel audio playback settings to be used when PulseAudio is enabled, see PulseAudio input/output settings.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 56 / 115

7.3.1.5 Other methods for playback

Use the $PLAYBIN plugin or the i.MX $GPLAY command line player for media file playback.

$GSTL $PLAYBIN uri=file:///mnt/sdcard/test.avi
$GPLAY /mnt/sdcard/test.avi

7.3.1.6 Video playback to multiple displays

Video playback to multiple displays can be supported by a video sink plugin. The video sink for multidisplay mode does not work
on i.MX 8 family SoCs.

This use case requires that the system boots in multiple-display mode (dual/triple/four, the number of displays supported
is determined by the SOC and the BSP). For how to configure the system to boot in this mode, see the i.MX Porting
Guide (IMXBSPPG).

7.3.1.6.1 Playing different videos on different displays

The command line to play two videos on different displays might look like this:

$GSTL $PLAYBIN uri=file:///$file1 $PLAYBIN uri=file:///$file2 video-sink="overlaysink
 display-master=false display-slave=true"

7.3.1.6.2 Routing the same video to different displays

A video can be displayed on multiple displays with a command as follows:

$GSTL $PLAYBIN uri=file:///$filename video-sink="overlaysink display-slave=true"

7.3.1.6.3 Multiple videos overlay

The overlaysink plugin provides support for compositing multiple videos together and rendering them to the same display. The
result might look like the following image.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 57 / 115

Figure 2. Multiple video overlay

gst-launch-1.0 playbin uri=file://$FILE1
 video-sink="overlaysink overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE2 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE3 flags=0x41
 video-sink="overlaysink overlay-top=384 overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE4 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-top=384 overlay-width=512
 overlay-height=384"
 playbin uri=file://$FILE5 flags=0x41
 video-sink="overlaysink overlay-left=352 overlay-top=264 overlay-width=320
 overlay-height=240 zorder=1"

7.3.2 Audio encoding
Here are some examples for MP3 encoding.

$GSTL filesrc location=test.wav ! wavparse ! lamemp3enc
 ! filesink location=output.mp3

7.3.3 Video encoding
The following commands provide some suggestions on how to use the plugins accelerated by VPU hardware to encode some
media files (though they only work on a SoC with a VPU).

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6, use the following command:

$GSTL filesrc location=test.yuv
 ! videoparse format=2 witdh=$WIDTH height=$HEIGHT framerate=30/1
 ! vpuenc_xxx ! $MUXER ! filesink location=$output

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 58 / 115

For i.MX 8M Mini/8M Plus, use the following command:

$GSTL filesrc location=test.yuv
! rawvideoparse format=2 witdh=$WIDTH height=$HEIGHT framerate=30/1 colorimetry=bt709
! v4l2xxxenc ! $MUXER ! filesink location=$output

• The target encoder codec type can be:

— MPEG4, H.263, H.264, and MJPEG for i.MX 6

— H.264, VP8 for i.MX 8M Mini

— H.264, HEVC for i.MX 8M Plus

• The vpuenc_xxx can be:

— vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, and vpuenc_jpeg for i.MX 6

• The v4l2xxxenc can be:

— v4l2h264enc and v4l2vp8enc for i.MX 8M Mini

— v4l2h264enc and v4l2h265enc for i.MX 8M Plus

• VPU encoder is v4l2h264enc on i.MX 8QuadMax and 8QuadXPlus.

• The $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.

• Different muxers support different encoded codec types. Use $GSTINSPECT and $MUXER to see the capabilities of the
muxer to be used.

7.3.4 Transcoding
Transcoding is converting a file from one video encoding to another.

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6 family with VPU, use the following command:

$GSTL filesrc location=$filename typefind=true ! $capsfilter ! aiurdemux
! vpudec ! imxvideoconvert_ipu ! $CAPS1 ! vpuenc_xxx ! matroskamux ! filesink location=720p.mkv

capsfilter is the container's mime type. CAPS1 is the target video resolution, and the vpuenc_xxx can be vpuenc_mpeg4,
vpuenc_h263, vpuenc_h264, and vpuenc_jpeg.

For example:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux !
vpudec ! imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h264 !
[h264parse] ! matroskamux ! filesink location=$FILE.mkv

For i.MX 8QuadMax/8QuadXPlus, use the following command:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux ! v4l2h264dec !
queue ! imxvideoconvert_g2d ! queue ! videoconvert ! queue ! v4l2h264enc ! [h264parse] !
matroskamux ! filesink location=$FILE.mkv

For i.MX 8M Mini/8M Plus, use the following command:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux ! v4l2h264dec !
queue ! v4l2h264enc ! [h264parse] ! matroskamux ! filesink location=$FILE.mkv

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 59 / 115

• For some mux, such as matroskamux, add h264parse/h265parse before mux.

• For i.MX 6, h264parse is not required, because the VPU can output AVC and byte-stream formats. For
i.MX 8, h264parse/h265parse should be added before some mux, because the VPU supports only the
byte-stream output.

 NOTE

7.3.5 Audio recording
Audio recording from EARC on i.MX 8M Plus.

For PCM format:

gst-launch-1.0 -v alsasrc device=sysdefault:CARD=imxaudioxcvr !
audio/x-raw,format=S16LE,channels=2,rate=48000 ! playsink audio-sink="alsasink
device=sysdefault:CARD=wm8960audio buffer-time=40000"

For compressed format:

gst-launch-1.0 alsasrc device=sysdefault:CARD=imxaudioxcvr ! audio/x-
raw,format=S16LE,channels=2,rate=48000 ! queue max-size-buffers=0 max-size-bytes=0 max-size-time=0 !
spdifdemux ! decodebin ! playsink audio-sink="alsasink device=sysdefault:CARD=wm8960audio buffer-
time=40000 sync=false"

Run the following command to work in EARC mode:

amixer -c imxaudioxcvr cset numid=1,iface=MIXER,name='XCVR Mode' 'eARC'

 NOTE

The following examples show how to make an MP3 or WMA audio recording.

• MP3 recording

$GSTL pulsesrc num-buffers=$NUMBER blocksize=$SIZE ! lamemp3enc
! filesink location=output.mp3

The recording duration is calculated as $NUMBER * $SIZE * 8 / (samplerate * channel *
bit width).

Therefore, to record 10 seconds of a stereo channel sample with a 44.1K sample rate and a 16 bit width, use the
following command:

$GSTL pulsesrc num-buffers=430 blocksize=4096 ! 'audio/x-raw, rate=44100,
channels=2' ! lamemp3enc
! filesink location=output.mp3

 NOTE

7.3.6 Video recording
Video recording is done using the camera input, so this activity only applies to platforms with a camera. Different cameras need
to be set with different capture modes for special resolutions. See Chapter 14 "supporting cameras with CSI" and Chapter 15
"supporting cameras with MIPI-CSI" in the i.MX BSP Porting Guide (IMXBSPPG).

VPU video encoding only works on SoC with VPU encoder support. imxv4l2src is only supported on i.MX 6 and i.MX 7. i. MX 8
supports opensource plugin v4l2src as camera source.

Use the $GSTINSPECT command to obtain more information about the codec property.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 60 / 115

An example of recording might look like this:

$GSTL $V4L2SRC device=$DEVICE num-buffers=300 ! $INPUT_CAPS ! queue ! $video_encoder_plugin !
[h264parse] ! $MUXER ! filesink location=output.$EXTENSION

• $V4L2SRC can be imxv4l2src, or v4l2src according to the SoC.

• $DEVICE could be set to /dev/video, /dev/video0, or /dev/video1 according to the system video input device.

• $INPUT_CAPS should be set to video/x-
raw,format=(string)NV12,width=1920,height=1080,framerate=(fraction)30/1.

• $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.

• $EXTENSION is filename extension according to the muxer type.

Refer to Section Video encoding to choose the correct $video_encoder_plugin.

7.3.7 Audio/Video recording
This is an example of a command used to record audio and video together:

$GSTL –e $V4L2SRC device=$DEVICE ! $INPUT_CAPS ! queue ! $video_encoder_plugin ! [h264parse] !
queue ! mux. pulsesrc ! 'audio/x-raw, rate=44100, channels=2' ! lamemp3enc ! queue ! mux. $MUXER
name=mux ! filesink location= output.$EXTENSION

• $V4L2SRC can be imxv4l2src or v4l2src according to SoC.

• $INPUT_CAPS should be set to video/x-raw, format=(string)NV12, width=1920, height=1080,
framerate=(fraction)30/1.

• $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.

Refer to Section Video encoding to choose the correct $video_encoder_plugin.

Common parameters are as follows:

• -e indicates to send EOS when the user presses Ctrl+C to avoid output corruption.

• $EXTENSION is the filename extension according to the multiplexer type.

7.3.8 Camera preview
This example displays what the camera sees. It is only available on platforms with a camera.

$GSTL v4l2src ! 'video/x-raw, format=(string)$FORMAT,
 width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1'
 ! v4l2sink

Camera preview example:

$GSTL v4l2src device=/dev/video1 ! 'video/x-raw,
 format=(string)UYVY,width=640,height=480,framerate=(fraction)30/1'
 ! autovideosink

Parameter comments:

• Get the camera support format and resolution using gst-inspect-1.0 v4l2src.

• Set caps filter according to the camera's supported capabilities if the user needs other format or resolution.

• Ensure that the right caps filter has been set, which also needs to be supported by v4l2sink.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 61 / 115

7.3.9 Recording the TV-in source
The TV-in source plugin gets video frames from the TV decoder. It is based on the V4l2 capture interface. A command line example
is as follows:

gst-launch-1.0 v4l2src ! autovideosink

The TV decoder is ADV7180. It supports NTSC and PAL TV mode. The output video frame is interlaced, so the
sink plugin needs to enable deinterlace. The default value of v4l2sink deinterface is True.

 NOTE

7.3.10 Web camera
The following command line is an example of how to record and transfer web camera input.

$GSTL v4l2src device=/dev/video1 ! $video_encoder_plugin ! rtph264pay ! udpsink host=$HOST_IP

HOST_IP is the IP/multicast group to send the packets to.

This command line is an example of how to receive and display web camera input.

$GSTL udpsrc ! buffer-size=204800 (example number) application/x-rtp ! rtph264depay !
$video_decoder_plugin ! autovideosink

7.3.11 HTTP streaming
The HTTP streaming includes the following:

• Manual pipeline

$GSTL souphttpsrc location= http://SERVER/test.avi ! typefind
 ! aiurdemux name=demux demux. ! queue max-size-buffers=0 max-size-time=0
 ! $video_decoder_plugin ! $video_sink_plugin demux. ! queue max-size-buffers=0 max-size-
time=0
 ! beepdec ! $audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.avi

• GPLAY

$GPLAY http://SERVER/test.avi

7.3.12 HTTP live streaming
The HLS streaming includes the following:

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.m3u8

• GPLAY

$GPLAY http://SERVER/test.m3u8

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 62 / 115

7.3.13 MPEG-DASH streaming
The MPEG-DASH streaming includes the following:

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.mpd

• GPLAY

$GPLAY http://SERVER/test.mpd

Only supports TS container format segments currently.

 NOTE

7.3.14 Real Time Streaming Protocol (RTSP) playback
Use the following command to see the GStreamer RTP depacketize plugins:

$GSTINSPECT | grep depay

RTSP streams can be played with a manual pipeline or by using playbin. The format of the commands is as follows.

• Manual pipeline

$GSTL rtspsrc location=$RTSP_URI name=source
 ! queue ! $video_rtp_depacketize_plugin ! $vpu_dec ! $video_sink_plugin source.
 ! queue ! $audio_rtp_depacketize_plugin ! $audio_parse_plugin ! beepdec ! $audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=$RTSP_URI

Two properties of rtspsrc that are useful for RTSP streaming are:

• Latency: This is the extra added latency of the pipeline, with the default value of 200 ms. If you need low-latency RTSP
streaming playback, set this property to a smaller value.

• Buffer-mode: This property is used to control the buffering algorithm in use. It includes four modes:

— None: Outgoing timestamps are calculated directly from the RTP timestamps, not good for real-time applications.

— Slave: Calculates the skew between the sender and receiver and produces smoothed adjusted outgoing timestamps,
good for low latency communications.

— Buffer: Buffer packets between low and high watermarks, good for streaming communication.

— Auto: Chooses the three modes above depending on the stream. This is the default setting.

To pause or resume the RTSP streaming playback, use a buffer-mode of slave or none for rtspsrc, as in buffer-mode=buffer.
After resuming, the timestamp is forced to start from 0, and this causes buffers to be dropped after resuming.

Manual pipeline example:

$GSTL rtspsrc location=rtsp://10.192.241.11:8554/test name=source
 ! queue ! rtph264depay ! avdec_h264 ! overlaysink source.
 ! queue ! rtpmp4gdepay ! aacparse ! beepdec ! pulsesink

Playback does not exit automatically in GStreamer 1.x, if buffer-mode is set to buffer in the rtpsrc plugin.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 63 / 115

7.3.15 RTP/UDP MPEGTS streaming
There are some points to keep in mind when doing RTP/UDP MPEGTS Streaming:

• The source file that the UDP/RTP server sends must be in TS format.

• Start the server one second earlier than the time client starts.

• Two properties of aiurdemux that are useful for UDP/RTP TS streaming are:

streaming-latency: This is the extra added latency of the pipeline, and the default value is 400 ms. This value is designed for
the situation when the client starts first. If the value is too small, the whole pipeline may not run due to lack of audio or video
buffers. In that situation, you should cancel the current command and restart the pipeline. If the value is too large, wait for a
long time to see the video after starting the server.

low_latency_tolerance: This value is a range that total latency can jitter around streaming-latency. This property is disabled
by default. When the user sets this value, the maximum latency is (streaming-latency + low_latency_tolerance).

The UDP MPEGTS streaming command line format looks like this:

$GSTL udpsrc do-timestamp=false uri=$UDP_URI caps="video/mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue ! $vpu_dec
 ! queue ! $video_render_sink sync=true d. ! queue ! beepdec ! $audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000 caps="video/mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue ! vpudec
 ! queue ! overlaysink sync=true d. ! queue ! beepdec ! pulsesink sync=true

The format for an RTP MPEGTS streaming command is covered as follows:

$GSTL udpsrc do-timestamp=false uri=$RTP_URI caps="application/x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d. ! queue ! $vpu_dec
 ! queue ! $video_render_sink sync=true d. ! queue ! beepdec ! $audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000 caps="application/x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d.
 ! queue ! vpudec ! queue ! overlaysink sync=true d. ! queue ! beepdec
 ! pulsesink sync=true

7.3.16 RTSP streaming server
The RTSP streaming server use case is based on the open source gst-rtsp-server package. It uses the i.MX aiurdemux plugin to
demultiplex the file to audio or video elementary streams and to send them out through RTP. Start the RTSP streaming server on
one board, and play it on another board with the RTSP streaming playback commands.

The gst-rtsp-server package is not installed by default in the Yocto Project release. Follow these steps to build and install it.

1. Enable the layer meta-openembedded/meta-multimedia:

Add the line BBLAYERS += "${BSPDIR}/sources/meta-openembedded/meta-multimedia" to the configuration file
$yocto_root/build/conf/bblayers.conf.

2. Include gst-rtsp-server into the image build:

Add the line IMAGE_INSTALL_append += "gstreamer1.0-rtsp-server" to the configuration file $yocto_root/build/
conf/local.conf.

3. Run bitbake for your image to build with gst-rstp-server.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 64 / 115

4. You can find the test-uri binary in the folder:

$yocto_root/build/tmp/work/cortexa9hf-vfp-neon-poky-linux-gnueabi/gstreamer1.0-rtsp-server/
$version/
build/examples/

5. Flash the image.

Copy test-uri into /usr/bin in the rootfs on your board and assign execute permission to it.

Some information on running the tool is as follows:

• Command:

test-uri $RTSP_URI

For example:

test-uri file:///home/root/temp/TestSource/mp4/1.mp4

• Server address:

rtsp://$SERVER_IP:8554/test

For example:

rtsp://10.192.241.106:8554/test

• Client operations supported are Play, Stop, Pause, Resume, and Seek.

7.3.17 Video conversion
There are three video conversion plugins, imxvideoconvert_ipu, imxvideoconvert_g2d, and imxvideoconvert_pxp. All of them can
be used to perform video color space conversion, resize, and rotate. imxvideoconvert_ipu can also be used to perform video
deinterlacing. They can be used to connect before ximagesink to enable the video rendering on X Windows or used in transcoding
to change video size, rotation, or deinterlacing.

Use gst-inspect-1.0 to get each converter's capability and supported input and output formats. Note that imxvideoconvert_g2d can
only perform color space converting to RGB space.

Color Space Conversion (CSC)

gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12 ! imxvideoconvert_{xxx} ! video/x-
raw,format=RGB16 ! ximagesink display=:0

Resize

gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12,width=800,height=600 ! imxvideoconvert_{xxx} !
video/x-raw, width=640, height=480 ! ximagesink display=:0

Rotate

gst-launch-1.0 videotestsrc ! imxvideoconvert_{xxx} rotation=2 ! ximagesink display=:0

Deinterlacing with i.MX with IPU

gst-launch-1.0 playbin uri=file://$FILE video-sink="imxvideoconvert_ipu deinterlace=3 ! ximagesink
display=:0 sync=false"

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 65 / 115

Transcoding with i.MX with VPU

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux ! vpudec !
imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h263 ! avimux !
filesink location=$FILE.avi

Combination with i.MX with IPU or VPU

It is possible to combine CSC, resize, rotate, and deinterlace at one time. Both of imxvideoconvert_ipu and imxvideoconvert_g2d
can be used at the same time in a pipeline. The following is an example:

gst-launch-1.0 videotestsrc ! video/x-raw,format=I420,width=1280,height=800,interlace-
mode=interleaved ! imxvideoconvert_ipu rotation=2 deinterlace=3 ! video/x-
raw,format=NV12,width=800,height=600 ! vpuenc_h264 ! vpudec ! imxvideoconvert_g2d rotation=3 !
video/x-raw,format=RGB16,width=640,height=480 ! ximagesink sync=false display=:0

7.3.18 Video composition
imxcompositor_g2d uses corresponding hardware to accelerate video composition. It can be used to composite multiple videos
into one. The video position, size, and rotation can be specified while composition. Video color space conversion is also performed
automatically if input and output video are not same. Each video can be set to an alpha and z-order value to get alpha blending
and video blending sequence.

Note that imxcompositor_g2d can only output RGB color space format. Use gst-inspect-1.0 to get more detailed information,
including the supported input and output video format.

• Composite two videos into one.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_1::xpos=160 sink_1::ypos=120 ! overlaysink
videotestsrc ! comp.sink_0 videotestsrc ! comp.sink_1

• Composite two videos into one with red background color.

gst-launch-1.0 imxcompositor_{xxx} background=0x000000FF name=comp sink_1::xpos=160
sink_1::ypos=120 ! overlaysink videotestsrc ! comp.sink_0 videotestsrc ! comp.sink_1

• Composite two videos into one with CSC, resize, and rotate.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640 sink_0::height=480
 sink_1::xpos=160 sink_1::ypos=120 sink_1::width=640 sink_1::height=480 sink_1::rotate=1 !
 video/x-raw,format=RGB16 ! overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 ! comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 ! comp.sink_1

• Composite three videos into one with CSC, resize, rotate, alpha, z-order, and keep aspect ratio.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640 sink_0::height=480
 sink_0::alpha=0.5 sink_0::z-order=3 sink_1::alpha=0.8 sink_1::z-order=2 sink_1::xpos=160
 sink_1::ypos=120 sink_1::width=640 sink_1::height=480 sink_1::rotate=1 sink_2::xpos=320
 sink_2::ypos=240 sink_2::width=500 sink_2::height=500 sink_2::alpha=0.6
 sink_2::keep-ratio=true ! video/x-raw,format=RGB16 ! overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 ! comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 ! comp.sink_1 videotestsrc !
 video/x-raw,format=RGB16,width=320,height=240 ! comp.sink_2

7.4 PulseAudio input/output settings
If PulseAudio is installed in the rootfs, the PulseAudio input/output settings may need to be set.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 66 / 115

Audio output settings

Use the pactl command to list all the available audio sinks:

$ pactl list sinks

A list of available audio sinks is displayed:

Sink #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo
 ...
 ...
Sink #1
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.4.analog-stereo
 Description: imx-hdmi-soc Analog Stereo
 ...
 ...

Use the pacmd command to set the default audio sink according to the sink number in the list shown above:

$ pacmd set-default-sink $sink-number

$sink-number could be 0 or 1 in the example above.

After setting the default sink, use the command below to verify the audio path:

$ gst-launch audiotestsrc ! pulsesink

Audio input settings

Use the pactl command to list all the available audio sources:

$ pactl list sources

A list of available audio sources is displayed:

Source #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-stereo.monitor
 Description: Monitor of sgtl5000-audio Analog Stereo
 ...
 ...
Source #1
 State: SUSPENDED
 Name: alsa_input.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo ...
 ...
 ...

Use the pacmd command to set the default audio source according to the source number in the list shown above:

$ pacmd set-default-source $sink-number

$sink-number could be 0 or 1 in the example above. If record and playback at the same time is not needed, there is no need to
set the monitor mode.

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 67 / 115

The PulseAudio I/O path setting status can be checked with:

$ pactl stat

Multichannel output support settings

For those boards that need to output multiple channels, these are the steps needed to enable the multichannel output profile:

1. Use the pacmd command to list the available cards:

$ pacmd list-cards

The available sound cards and the profiles supported are listed.

2 card(s) available.
 index: 0
 name: <alsa_card.platform-sound-cs42888.34>
 driver: <module-alsa-card.c>
 owner module: 6
 properties:
 alsa.card = "0"
 alsa.card_name = "cs42888-audio"
 ...
 ...
 profiles:
 input:analog-mono: Analog Mono Input (priority 1, available: unknown)
 input:analog-stereo: Analog Stereo Input (priority 60, available: unknown)
 ...
 ...
 active profile: <output:analog-stereo+input:analog-stereo>
 ...
 ...

2. Use the pacmd command to set the profile for particular features.

$ pacmd set-card-profile $CARD $PROFILE

$CARD is the card name listed by pacmd list-cards (for example, alsa_card.platform-sound-cs42888.34 in the
example above), and $PROFILE is the profile name. These are also listed by pamcd list-cards. (for example,
output:analog-surround-51 in the example above).

3. After setting the card profile, use $ pactl list sinks and $pacmd set-default-sink $sink-number to set the
default sink.

7.5 Installing gstreamer1.0-libav into rootfs
The following steps show how to install gstreamer1.0-libav into a rootfs image.

1. Add the following lines into the configuration file conf/local.conf.

IMAGE_INSTALL:append = " gstreamer1.0-libav"
LICENSE_FLAGS_WHITELIST = "commercial"

2. Build gstreamer1.0-libav.

$ bitbake gstreamer1.0-libav

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 68 / 115

3. Build the rootfs image.

$ bitbake <image_name>

NXP Semiconductors
Multimedia

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 69 / 115

Chapter 8
Audio

8.1 DSP support
DSP support is provided on specific i.MX 8QuadXPlus, i.MX 8QuadMax, and i.MX 8M Plus SoC.

8.1.1 HiFi 4 DSP framework
Supporting HiFi 4 on a custom board is documented in the i.MX DSP User's Guide (IMXDSPUG).

8.1.2 Sound Open Firmware
Sound Open Firmware is an open source alternative to HiFi 4 DSP framework. For supporting the HiFi 4 on a custom board, see
the SOF project documentation https://thesofproject.github.io available in the public domain.

For details about toolchains, supported platforms, binary packaging, and quick setup of audio scenarios, see SOF User Guide on
NXP i.MX 8 platforms.

8.2 HDMI eARC support
eARC is supported on the i.MX 8M Plus EVK board.

The procedure enables audio, which is input through the imxaudioxcvr card and played back through the wm8960audio card.

Make sure there is a headset plugged into the i.MX 8M Plus EVK audio jack. The procedure is as follows:

1. On i.MX 8M Plus EVK, set eARC mode. The default mode is SPDIF:

amixer -c 0 cset numid=1 2

2. On i.MX 8M Plus EVK, use alsamixer to set Headphone and Playback controls to the maximum values for the
wm8960-audio card.

3. On i.MX 8M Plus EVK, start audio recording on the imxaudioxcvr card and playback on the wm8960audio card.

arecord -Dsysdefault:CARD=imxaudioxcvr -c2 -r48000 -fS32_LE -twav | aplay -
Dsysdefault:CARD=wm8960audio

4. Make sure Digital Audio Out from the TV is PCM. Then, set eARC mode to ON and check audio on the headset connected
to the i.MX 8M Plus EVK jack. The settings on the TV should be as shown in the following figure.

Digital Audio Out PCM

eARC mode ON

Audio Output

Figure 3. eARC support

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 70 / 115

https://thesofproject.github.io
https://thesofproject.github.io/latest/getting_started/nxp/sof_imx_user_guide.html
https://thesofproject.github.io/latest/getting_started/nxp/sof_imx_user_guide.html

The procedure has been tested on Sony and LG TV.

 NOTE

The firmware on the eARC RX (i.MX 8M Plus EVK) waits until HPD=high is sensed. Therefore, start recording and playback on i.MX
8M Plus before enabling eARC mode on the TV as described in Steps 3 and 4 above. This makes the behavior more predictable
on the RX side. In addition, set the subsequent eARC mode to OFF then to ON on the TV while keeping arecord … | aplay …
running on i.MX 8M Plus EVK. Check whether you can hear audio in the headset after subsequent eARC mode is set to ON on
the TV.

Besides, enabling the complete eARC feature, per the HDMI 2.1 specification, is more of a system-level application that integrates
different layers and modules of the CEC driver, DRM, HDMI/HDCP controller driver, EDID, and eARC driver modules.

NXP Semiconductors
Audio

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 71 / 115

Chapter 9
Graphics
There are a number of graphics tools, tests, and example programs that are built and installed in the Linux rootfs. There are
some variation on what is included based on the build and packages selected, the board, and the backend specified. This section
describes some of them.

The kernel module version of graphics used on the system can be found by running the following command on the board:

dmesg | grep Galcore

The user-side GPU drivers version of graphics can be displayed using the following command on the board:

grep VERSION /usr/lib/libGAL*

When reporting problems with graphics, this version number is needed.

9.1 imx-gpu-sdk
This graphics package contains source for several graphics examples for OpenGLES 2.0 and OpenGLES 3.0 APIs for X11,
Framebuffer, and XWayland graphical backends. These applications show that the graphics acceleration is working for different
APIs. The package includes samples, demo code, and documentation for working with the i.MX family of graphic cores. More
details about this SDK are in the i.MX Graphics User's Guide. This SDK is only supported for hardware that has OpenGLES
hardware acceleration.

9.2 G2D-imx-samples
The G2D Application Programming Interface (API) is designed to make it easy to use and understand the 2D BLT functions. It
allows the user to implement customized applications with simple interfaces. It is hardware and platform independent when using
2D graphics.

The G2D API supports the following features and more:

• Simple BLT operation from source to destination

• Alpha blend for source and destination with Porter-Duff rules

• High-performance memory copy from source to destination

• Up-scaling and down-scaling from source to destination

• 90/180/270 degree rotation from source to destination

• Horizontal and vertical flip from source to destination

• Enhanced visual quality with dither for pixel precision-loss

• High performance memory clear for destination

• Pixel-level cropping for source surface

• Global alpha blend for source only

• Asynchronous mode and synchronization

• Contiguous memory allocator

• VG engine

The G2D API document includes the detailed interface description and sample code for reference. The API is designed with
C-Style code and can be used in both C and C++ applications.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 72 / 115

The G2D is supported on all i.MX. The hardware that supports G2D is described below. For more details, see the Frame Buffer
information in the i.MX Release Notes (IMXLXRN) to check which hardware is used for G2D.

• For i.MX 6 with GPU, the G2D uses the 2D GPU.

• For i.MX with PXP, the G2D uses the PXP with limited G2D features.

The following is the directory structure for the G2D test applications located under /opt.

• g2d_samples

— g2d_test

◦ g2d_overlay_test

◦ g2d_multiblit_test

9.3 viv_samples
The directory viv_samples is found under /opt. It contains binary samples for OpenGL ES 1.1/2.0 and OpenVG 1.1.

The following are the basic sanity tests, which help to make sure that the system is configured correctly.

• cl11: This contains unit tests and FFT samples for OpenCL 1.1 Embedded Profile. OpenCL is implemented on the i.MX
6Quad, i.MX 6QuadPlus, and i.MX 8 boards.

— ◦ UnitTest

▪ clinfo

▪ loadstore

▪ math

▪ threadwalker

▪ test_vivante

• functions_and_kernels

• illegal_vector_sizes

• initializers

• multi_dimensional_arrays

• reserved_data_types

• structs_and_enums

• unions

• unsupported_extensions

◦ fft

• es20: This contains tests for Open GLES 2.0.

— vv_launcher

◦ coverflow.sh

◦ vv_launcher

• tiger: A simple OpenVG application with a rotating tiger head. This is to demonstrate OpenVG.

• vdk: Contains sanity tests for OpenGL ES 1.1 and OpenGL ES 2.0.

The tiger and VDK tests show that hardware acceleration is being used. They will not run without it.

NXP Semiconductors
Graphics

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 73 / 115

9.4 Qt 6
Qt 6 is built into the Linux image in the Yocto Project environment with the command bitbake imx-image-full. For more details
on Qt enablement, check out the README in the meta-imx repo and the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

NXP Semiconductors
Graphics

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 74 / 115

Chapter 10
Security
The i.MX platforms define a series of security acceleration subsystems.

10.1 CAAM kernel driver

10.1.1 Introduction
The Linux kernel contains a Scatterlist Crypto API driver for the NXP CAAM security hardware block. It integrates seamlessly with
in-kernel crypto users, such as DM-Crypt, Keyctl, in a way that any disk encryption and key management suites will automatically
use the hardware to do the crypto acceleration. CAAM hardware is known in Linux kernel as 'caam', after its internal block name:
Cryptographic Accelerator and Assurance Module.

There are several HW interfaces ("backends") that can be used to communicate (for example, submit requests) with the engine,
their availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs).

Its main purpose is debugging (such as single-stepping through descriptor commands), though it is used also for
RNG initialization.

• Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings.

There are cases when fewer rings are accessible or visible in the kernel, for example, when firmware like Trusted
Firmware-A (TF-A) reserves one of the rings.

 NOTE

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend drivers. Their
main tasks aim to:

• Register supported crypto algorithms.

• Process crypto requests coming from users (through the Linux Crypto API) and translate them into the proper format
understood by the backend being used.

• Forward the CAAM engine responses from the backend being used to the users.

To use a specific implementation, it is possible to ask for it explicitly by using the specific (unique) "driver name" instead of
the generic "algorithm name". See official Linux Kernel Crypto API documentation (section Crypto API Cipher References And
Priority). Currently, the default priority is 3000 for JRI frontend.

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 75 / 115

Figure 4. Kernel CAAM Driver Architecture

10.1.2 Source files
The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam.The following is a
non-exhaustive list of files, mapping to CAAM (some files have been omitted because their existence is justified only by driver logic
or design).

Table 63. Source files

Source File Description Module name

ctrl.[c,h] Init (global settings, RNG, power management, etc.) caam

desc.h HW description (CCSR registers, etc.) N/A

desc_constr.h Inline append - descriptor construction library N/A

caamalg_desc.[c,h] (Shared) Descriptors library (symmetric encryption, AEAD) caamalg_desc

caamhash_desc.[c,h] (Shared) Descriptors library (HASH) caamhash_desc

caamrng.c RNG (runtime) N/A

caamkeyblob_desc.[c,h] Descriptors library (black keys and blobs) caamkeyblob_desc

jr.[c,h] JRI backend caam_jr

Table continues on the next page...

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 76 / 115

Table 63. Source files (continued)

Source File Description Module name

caamalg.c JRI frontend (symmetric encryption, AEAD) N/A

caamhash.c JRI frontend (hashing) N/A

caampkc.c, pkc_desc.c JRI frontend (public key cryptography) N/A

caamkeyblob.[c,h] JRI frontend (black keys and blobs) N/A

caamkeygen.c IOCTL calls for key and blob generation/import N/A

10.1.3 Module loading
CAAM backend drivers can be compiled either built-in or as modules. Frontend drivers are linked to the backend driver. See
Section Source files for the list of module names and Section Kernel configuration for how kernel configuration looks like and a
mapping between menu entries and modules and/or functionalities enabled.

10.1.4 Kernel configuration
The designated driver should be configured in the kernel by default for the target platform. If unsure, check
CONFIG_CRYPTO_DEV_FSL_CAAM, which is located in the Cryptographic API -> Hardware crypto devices sub-menu in the
kernel configuration.

Table 64. Kernel configuration tree view

Kernel configuration tree view option Description

---Cryptographic API --->
[*] Hardware crypto devices --->
<*>CAAM/SNVS Security Violation Handler (EXPERIMENTAL)
<*>Freescale CAAM-Multicore platform driver backend
[] Enable debug output in CAAM driver
<*> Freescale CAAM Job Ring driver backend --->
(9) Job Ring size
[] Job Ring interrupt coalescing
[*] Register algorithm implementations with the
Crypto API
[*] Register hash algorithm implementations with
Crypto API
[*] Register public key cryptography
implementations with Crypto API
[*] Register caam device for hwrng API
[*] Register tagged key cryptography
implementations with Crypto API
[] Test caam rng
[*] CAAM Secure Memory / Keystore API
(EXPERIMENTAL)
(7) Size of each keystore slot in Secure Memory
<M> CAAM Secure Memory - Keystore Test/Example
(EXPERIMENTAL)
<M> Freescale Job Ring UIO support

Enable CAAM device driver:

• Basic platform driver: Freescale CAAM-
Multicore platform driver backend

• Backends/interfaces: Freescale CAAM Job
Ring driver backend - JRI

• Frontends/crypto algorithms: symmetric
encryption, AEAD, "stitched" AEAD;
Register algorithm implementations with the
Crypto API - via JRI (caamalg driver)

• Register hash algorithm implementations
with Crypto API - hashing (only via JRI -
caamhash driver)

• Register public key cryptography
implementations with Crypto API -
asymmetric/public key (only via JRI -
caampkc driver)

• Register CAAM device for hwrng API - HW
RNG (only via JRI - caamrng driver)

• Register algorithms supporting tagged key
and generate black keys and encapsulate
them into black blobs

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 77 / 115

Table 65. Device tree binding

Property Type Status Description

compatible String Required fsl, sec-vX.Y (preferred) or
fsl, secX.Y

Sample Device Tree crypto node

crypto@30000 {
 compatible = "fsl,sec-v4.0";
 fsl,sec-era = <2>;
 #address-cells = <1>;
 #size-cells = <1>;
 reg = <0x300000 0x10000>;
 ranges = <0 0x300000 0x10000>;
 interrupt-parent = <&mpic>;
 interrupts = <92 2>;
 clocks = <&clks IMX6QDL_CLK_CAAM_MEM>,
 <&clks IMX6QDL_CLK_CAAM_ACLK>,
 <&clks IMX6QDL_CLK_CAAM_IPG>,
 <&clks IMX6QDL_CLK_EIM_SLOW>;
 clock-names = "mem", "aclk", "ipg", "emi_slow";
};

10.1.5 How to test the drivers
Crypto drivers could be validated in two modes: at boot time and at request. To enable crypto testing feature, the kernel needs to
be updated as follows.

Table 66. Kernel configuration

Kernel configuration Description

--- Cryptographic API --->
[] Disable run-time self tests
[] Enable extra run-time crypto self tests
<M> Testing module

Deselect the feature that bypass crypto driver validation. By
default, Linux kernel is bypassing crypto driver validation.
Disable run-time self tests that normally take place at
algorithm registration.

Enable extra run-time self tests of registered crypto algorithms,
including randomized fuzz tests. This is intended for developer
use only, as these tests take much longer to run than the
normal self tests.

Enable testing module.

Section from boot log that specify where crypto test are made (If a boot test is passing with success, no information will be reported.
For algorithms with no tests available, a line in dmesg will be printed):

[4.647985] alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-
cipher_null-caam)
[4.661181] alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-
cipher_null-caam)
[4.671345] alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-ecb-
cipher_null-caam)
[4.681486] alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-ecb-
cipher_null-caam)
[4.691608] alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
[4.699802] alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-md5-cbc-

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 78 / 115

aes-caam)
[4.710445] alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-sha1-
cbc-aes-caam)
[4.720488] alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-caam)
[4.734647] alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-hmac-
sha224-cbc-aes-caam)
[4.750504] alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-hmac-
sha256-cbc-aes-caam)
[4.762468] alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-caam)
[4.771188] alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-hmac-
sha384-cbc-aes-caam)
[4.782380] alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-hmac-
sha512-cbc-aes-caam)
[4.792765] alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-des3_ede-caam)
[4.801832] alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-hmac-md5-
cbc-des3_ede-caam)
[4.812814] alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-hmac-
sha1-cbc-des3_ede-caam)
[4.823942] alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-authenc-hmac-
sha224-cbc-des3_ede-caam)
[4.835465] alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-authenc-hmac-
sha256-cbc-des3_ede-caam)
[4.846980] alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-authenc-hmac-
sha384-cbc-des3_ede-caam)
[4.858497] alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-authenc-hmac-
sha512-cbc-des3_ede-caam)
[4.869764] alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)
[4.877977] alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-md5-cbc-
des-caam)
[4.888078] alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-sha1-
cbc-des-caam)
[4.898356] alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-hmac-
sha224-cbc-des-caam)
[4.908994] alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-hmac-
sha256-cbc-des-caam)
[4.919653] alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-hmac-
sha384-cbc-des-caam)
[4.930292] alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-hmac-
sha512-cbc-des-caam)
[4.940688] alg: No test for authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-hmac-md5-rfc3686-ctr-
aes-caam)
[4.950372] alg: No test for seqiv(authenc(hmac(md5),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-md5-
rfc3686-ctr-aes-caam)
[4.961281] alg: No test for seqiv(authenc(hmac(sha1),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-sha1-
rfc3686-ctr-aes-caam)
[4.972281] alg: No test for authenc(hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-rfc3686-
ctr-aes-caam)
[4.982482] alg: No test for seqiv(authenc(hmac(sha224),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-
sha224-rfc3686-ctr-aes-caam)
[4.993903] alg: No test for seqiv(authenc(hmac(sha256),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-
sha256-rfc3686-ctr-aes-caam)
[5.005331] alg: No test for seqiv(authenc(hmac(sha384),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-
sha384-rfc3686-ctr-aes-caam)
[5.016763] alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-hmac-
sha512-rfc3686-ctr-aes-caam)
[5.028023] caam algorithms registered in /proc/crypto
[5.157622] caam_jr 31430000.jr2: registering rng-caam
[5.206167] caam 31400000.caam: caam pkc algorithms registered in /proc/crypto

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 79 / 115

10.2 Crypto algorithms support
• Algorithms supported in the Linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation, sometimes referred
to as the NETKEY stack. The driver, after registering supported algorithms with the Crypto API, is therefore used to process
per packet symmetric crypto requests and forward them to the CAAM hardware. Since CAAM hardware processes requests
asynchronously, the driver registers asynchronous algorithm implementations with the crypto API: ahash, skcipher, and a
head with CRYPTO_ALG_ASYNC set in .cra_flags. Different combinations of hardware and driver software version support
different sets of algorithms, so searching for the driver name in /proc/crypto on the desired target system will ensure the
correct report of what algorithms are supported.

• Authenticated Encryption with Associated Data (AEAD) algorithms

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the data to be
authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the driver such that the
hardware makes a single pass over the input data, and both encryption and authentication data are written out simultaneously.
The AEAD algorithms are mainly for use with IPsec ESP (however there is also support for TLS (1.x) record layer encryption
(KTLS Support)).

CAAM drivers currently supports offloading the following AEAD algorithms:

— "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x HMAC-
{MD-5, SHA-1,-224,-256,-384,-512}

— "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES

• Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.

• Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.

• Asymmetric (public key) algorithms

Currently, CAAM driver supports RSA-Encrypt and RSA-Decrypt together with pkcs1pad (rsa-caam, sha256) driver.

• Algorithms supported by CAAM drivers

root@imx8mqevk:~# cat /proc/crypto | grep caam driver : pkcs1pad(rsa-caam,sha256) driver : rsa-
caam driver : cmac-aes-caam driver : xcbc-aes-caam driver : md5-caam driver : hmac-md5-caam
driver : sha256-caam driver : hmac-sha256-caam driver : sha224-caam driver : hmac-sha224-caam
driver : sha1-caam driver : hmac-sha1-caam driver : seqiv-authenc-hmac-sha256-rfc3686-ctr-aes-
caam driver : authenc-hmac-sha256-rfc3686-ctr-aes-caam driver : seqiv-authenc-hmac-sha224-rfc3686-
ctr-aes-caam driver : authenc-hmac-sha224-rfc3686-ctr-aes-caam driver : seqiv-authenc-hmac-sha1-
rfc3686-ctr-aes-caam driver : authenc-hmac-sha1-rfc3686-ctr-aes-caam driver : seqiv-authenc-hmac-
md5-rfc3686-ctr-aes-caam driver : authenc-hmac-md5-rfc3686-ctr-aes-caam driver : echainiv-authenc-
hmac-sha256-cbc-des-caam driver : authenc-hmac-sha256-cbc-des-caam driver : echainiv-authenc-hmac-
sha224-cbc-des-caam driver : authenc-hmac-sha224-cbc-des-caam driver : echainiv-authenc-hmac-sha1-
cbc-des-caam driver : authenc-hmac-sha1-cbc-des-caam driver : echainiv-authenc-hmac-md5-cbc-des-
caam driver : authenc-hmac-md5-cbc-des-caam driver : echainiv-authenc-hmac-sha256-cbc-des3_ede-
caam driver : authenc-hmac-sha256-cbc-des3_ede-caam driver : echainiv-authenc-hmac-sha224-cbc-
des3_ede-caam driver : authenc-hmac-sha224-cbc-des3_ede-caam driver : echainiv-authenc-hmac-sha1-
cbc-des3_ede-caam driver : authenc-hmac-sha1-cbc-des3_ede-caam driver : echainiv-authenc-hmac-
md5-cbc-des3_ede-caam driver : authenc-hmac-md5-cbc-des3_ede-caam driver : echainiv-authenc-hmac-
sha256-cbc-aes-caam driver : authenc-hmac-sha256-cbc-aes-caam driver : echainiv-authenc-hmac-
sha224-cbc-aes-caam driver : authenc-hmac-sha224-cbc-aes-caam driver : echainiv-authenc-hmac-sha1-
cbc-aes-caam driver : authenc-hmac-sha1-cbc-aes-caam driver : echainiv-authenc-hmac-md5-cbc-aes-
caam driver : authenc-hmac-md5-cbc-aes-caam driver : authenc-hmac-sha256-ecb-cipher_null-caam
driver : authenc-hmac-sha224-ecb-cipher_null-caam driver : authenc-hmac-sha1-ecb-cipher_null-caam
driver : authenc-hmac-md5-ecb-cipher_null-caam driver : gcm-aes-caam driver : rfc4543-gcm-aes-
caam driver : rfc4106-gcm-aes-caam driver : ecb-arc4-caam driver : ecb-des3-caam driver : tk-ecb-

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 80 / 115

aes-caam driver : ecb-aes-caam driver : ecb-des-caam driver : rfc3686-ctr-aes-caam driver : ctr-
aes-caam driver : cbc-des-caam driver : cbc-3des-caam driver : tk-cbc-aes-caam driver : cbc-aes-
caam root@imx8mqevk:~#

10.3 CAAM Job Ring backend driver specifications
CAAM Job Ring backend driver (caam_jr) implements and uses the job ring interface (JRI) for submitting crypto API service
requests from the frontend drivers (caamalg, caamhash, caampkc, caamrng, caamkeyblob) to CAAM engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be used to fine-tune
performance for a particular use case.

The option Freescale CAAM Job Ring driver backend enables the Job Ring backend (caam_jr). The sub-option Job Ring Size
allows the user to select the size of the hardware job rings. If requests arrive at the driver enqueue entry point in a bursty
nature, the bursts' maximum length can be approximated. The user can set the greatest burst length to save performance and
memory consumption.

The sub-option Job Ring interrupt coalescing allows the user to select the use of the hardware's interrupt coalescing feature. Note
that the driver already performs IRQ coalescing in software, and zero-loss benchmarks have in fact produced better results with
this option turned off. If selected, two additional options become effective:

• Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD) Device Drivers. Selects the value of
the descriptor completion threshold, in the range 1-256. A selection of 1 effectively defeats the coalescing feature, and any
selection equal or greater than the selected ring size will force timeouts for each interrupt.

• Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD) Selects the value of the
completion timeout threshold in multiples of 64 CAAM interface clocks, to which, if no new descriptor completions occur
within this window (and at least one completed job is pending), then an interrupt will occur. This is selectable in the range
1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their algorithm capabilities with
the corresponding APIs. They should be deselected only when the purpose is to perform Crypto API requests in software (on the
GPPs) instead of offloading them on CAAM engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be such that it prefers
software (core) crypto latency due to many small-sized requests.

caampkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of entropy available to
the kernel.

caamkeyblob frontend (algorithms supporting tagged key) can be turned off if tagged keys or blobs are not used.

10.3.1 Verifying driver operation and correctness
Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto
by looking for driver messages in dmesg. The driver emits console messages at initialization time:

[1.830397] caam 30900000.crypto: device ID = 0x0a16040100000000 (Era 9)
[1.837113] caam 30900000.crypto: job rings = 2, qi = 0
[1.849949] caam algorithms registered in /proc/crypto
[1.855972] caam 30900000.crypto: caam pkc algorithms registered in /proc/crypto
[1.865564] caam_jr 30901000.jr: registering rng-caam
[1.870766] Device caam-keygen registered

If the messages are not present in the logs, either the driver is not configured in the kernel, or no CAAM compatible device tree
node is present in the device tree.

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 81 / 115

10.3.2 Incrementing IRQs in /proc/interrupts
Given a time period when crypto requests are being made, the CAAM hardware will fire completion notification interrupts on the
corresponding Job Ring:

root@imx8qxpmek:~# cat /proc/interrupts | grep jr
418: 1059 0 0 0 GICv3 485 Level 31430000.jr2
419: 21 0 0 0 GICv3 486 Level 31440000.jr3
root@imx8qxpmek:~#

If the number of interrupts fired increment, then the hardware is being used to do the crypto. If the numbers do not increment, then
check the algorithm being exercised is supported by the driver. If the algorithm is supported, there is a possibility that the driver
is in polling mode (NAPI mechanism) and the hardware statistics in debugfs (inbound/outbound bytes encrypted/protected - see
below) should be monitored.

10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto
An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

name : cbc(des)
driver : cbc-des-caam
module : kernel
priority : 3000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 8
min keysize : 8
max keysize : 8
ivsize : 8
geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages
saying which algorithms weren't tested, and mark them as 'passed' anyway:

[4.647985] alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-
cipher_null-caam)
[4.661181] alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-
cipher_null-caam)
[4.671345] alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-ecb-
cipher_null-caam)
[4.681486] alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-ecb-
cipher_null-caam)

10.4 OpenSSL offload
The Secure Socket Layer (SSL) protocol is the most widely deployed application protocol to protect data during transmission by
encrypting the data using commonly used cipher algorithms such as AES, DES and 3DES. Apart from encryption, it also provides
message authentication services using hash/digest algorithms such as SHA1 and MD5. SSL is widely used in application web
servers (HTTP) and other applications such as SMTP POP3, IMAP, and Proxy servers, where protection of data in transit is
essential for data integrity. There are various versions of SSL protocol such as TLSv1.0, TLSv1.1, TLSv1.2, TLSv1.3, and DTLS
(Datagram TLS). This document describes NXP SSL acceleration solution on i.MX platforms using OpenSSL:

• OpenSSL software architecture

• Building OpenSSL with hardware offload support

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 82 / 115

• Examples of OpenSSL Offloading

10.4.1 OpenSSL software architecture
The SSL protocol is implemented as a library in OpenSSL - the most popular library distribution in Linux and BSD systems. The
OpenSSL library has several sub-components such as:

• SSL protocol library

• SSL protocol library Crypto library (Symmetric and Asymmetric cipher support, digest support, etc.)

• Certificate Management

The following figure presents the general interconnect architecture for OpenSSL. Each relevant layer is represented with a clear
separation between Linux User Space and Linux Kernel Space.

Figure 5. OpenSSL Software stack architecture

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 83 / 115

10.4.2 OpenSSL's ENGINE interface
OpenSSL Crypto library provides Symmetric and Asymmetric (PKI) cipher support that is used in a wide variety of applications
such as OpenSSH, OpenVPN, PGP, IKE, and XML-SEC. The OpenSSL Crypto library provides software support for:

• Cipher algorithms

• Digest algorithms

• Random number generation

• Public Key Infrastructure

Apart from the software support, the OpenSSL can offload these functions to hardware accelerators through the ENGINE
interface. The ENGINE interface provides callback hooks that integrate hardware accelerators with the crypto library. The callback
hooks provide the glue logic to interface with the hardware accelerators. Generic offloading of cipher and digests algorithms
through Linux kernel is possible with cryptodev engine.

10.4.3 NXP solution for OpenSSL hardware offloading
The following layers can be observed in NXP's solution for OpenSSL hardware offloading:

• OpenSSL (user space): implements the SSL protocol

• cryptodev-engine (user space): implements the OpenSSL ENGINE interface; talks to cryptodev-linux (/dev/crypto)
through ioctls, offloading cryptographic operations in the kernel

• cryptodev-linux (kernel space): Linux module that translates ioctl requests from cryptodev-engine into calls to Linux
Crypto API

• AF_ALG is a netlink-based in the kernel asynchronous interface that adds an AF_ALG address family introduced in 2.6.38.

• Linux Crypto API (kernel space): Linux kernel crypto abstraction layer

• CAAM driver (kernel space): Linux device driver for the CAAM crypto engine

The following are offloaded in hardware in current BSP:

• Symmetric Ciphering operations - AES (CBC, ECB), 3DES (CBC, ECB)

• Digest Operations - SHA (1, 256, 384, 512), MD5

• Public Key Operations - RSA Sign (1k, 2k, 4k) / RSA Verify (1k, 2k, 4k)

10.4.4 Deploying OpenSSL into rootfs
Typically, the imx-image-full includes the OpenSSL and cryptodev modules, but for other Yocto targets, users need to update the
conf file from the build directory. Update conf/local.conf by adding the following line:

CORE_IMAGE_EXTRA_INSTALL+="cryptodev-module openssl-bin"

Restart the build procedure:

bitbake imx-image-full

10.4.5 Running OpenSSL benchmarking tests with cryptodev engine
Probe the cryptodev-module:

root@imx8qxpmek:~# modprobe cryptodev
[17044.896494] cryptodev: driver 1.10 loaded.
root@imx8qxpmek:~# openssl engine
(devcrypto) /dev/crypto engine

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 84 / 115

(dynamic) Dynamic engine loading support
root@imx8qxpmek:~#

Starting from OpenSSL 1.1.1, the cryptodev engine is invoked by OpenSSL by default if the corresponding module
has been inserted in the kernel. Thus to perform only SW benchmark test using OpenSSL, remove the cryptodev
module by running rmmod cryptodev.

 NOTE

10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

In the speed test file, a series of performance tests are made to check the performance of the symmetric and digest operations.
The following is described in the OpenSSL test execution:

root@imx8qxpmek:~# openssl speed -engine devcrypto -multi 8 -elapsed -evp aes-128-cbc
Forked child 1
engine "devcrypto" set.
Forked child 2
engine "devcrypto" set.
...
Got: +F:22:aes-128-cbc:378616.72:1611328.00:5084501.33:13994666.67:10731793.98:16219060.40 from 6
Got: +H:16:64:256:1024:8192:16384 from 7
Got: +F:22:aes-128-cbc:120773.33:9344.00:3088298.67:13588480.00:31642965.33:16471967.79 from 7
OpenSSL 1.1.1b 26 Feb 2019
built on: Thu Nov 14 13:22:07 2019 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) idea(int) blowfish(ptr)
compiler: aarch64-poky-linux-gcc --sysroot=recipe-sysroot -O2 -pipe -g -feliminate-unused-debug-
types -fmacro-prefix-map=
-fdebug-prefix-map= -fdebug-prefix-map= -fdebug-prefix-map= -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -
DOPENSSL_CPUID_OBJ -DOPENSSL_BN_ASM_MONT
-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DVPAES_ASM -DECP_NISTZ256_ASM -DPOLY1305_ASM
-DNDEBUG
evp 2242.05k 9681.05k 35017.46k 106866.86k 127787.74k 130077.23k
root@imx8qxpmek:~#

Additional ciphers that could be benchmarked: aes-192-cbc, aes-256-cbc, aes-128-ecb, aes-192-ecb, aes-256-ecb,
aes-128-ctr, aes-192-ctr, aes-256-ctr, des-cbc, des-cbc, des-ede3-cbc.

Additional digests that could be benchmarked: sha1, sha224, sha256, sha384, sha512, md5.

10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine
Execute the following commands:

Probe the af_alg:
root@imx8mmevk:~# rmmod cryptodev
root@imx8mmevk:~# modprobe af_alg
root@imx8mmevk:~# modprobe algif_hash
root@imx8mmevk:~# modprobe algif_skcipher
root@imx8mmevk:~# modprobe algif_rng
root@imx8mmevk:~# modprobe algif_aead

10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

Execute the following command:

root@imx8mmevk:~# openssl speed -engine afalg -multi 8 -elapsed -evp aes-128-cbc
Forked child 0
Forked child 1
engine "afalg" set.

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 85 / 115

+DT:aes-128-cbc:3:16
engine "afalg" set.
engine "afalg" set.
engine "afalg" set.
...
Got: +H:16:64:256:1024:8192:16384 from 0
Got: +F:22:aes-128-cbc:333888.00:1359317.33:4248405.33:5720064.00:6160384.00:6176768.00 from 0
Got: +H:16:64:256:1024:8192:16384 from 1
Got: +F:22:aes-128-cbc:378336.00:1382826.67:5117269.33:5739178.67:6190421.33:6176768.00 from 1
...
OpenSSL 1.1.1k 25 Mar 2021
built on: Thu Mar 25 13:28:38 2021 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) blowfish(ptr)
compiler: aarch64-poky-linux-gcc -mcpu=cortex-a53 -march=armv8-a+crc+crypto -fstack-protector-
strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=recipe-
sysroot -O2 -pipe -g -feliminate-unused-debug-types -fmacro-prefix-map= -fdebug-
prefix-map= -fdebug-prefix-map= -fdebug-prefix-map= -
DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM
-DSHA512_ASM -DKECCAK1600_ASM -DVPAES_ASM -DECP_NISTZ256_ASM -DPOLY1305_ASM -DNDEBUG
evp 2682.45k 10842.73k 35957.50k 45915.48k 49722.71k 50135.04k

10.5 Disk encryption acceleration
Disk encryption is a technology that protects information by converting it into unreadable code that cannot be deciphered easily
by unauthorized people. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk
or disk volume. It is used to prevent unauthorized access to data storage. On i.MX Applications Processors, the disk encryption
scenarios could be implemented in various ways with different methods of key protection.

This section provides steps to run a transparent storage encryption at block level using DM-Crypt. The figure below presents the
software stack that implements disk encryption.

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 86 / 115

Figure 6. Disk Encryption use case

10.5.1 Enabling disk encryption support in kernel
By default, the kernel configuration file enables the Device Mapper configuration and Crypt Target support as modules. Therefore,
to enable disk encryption scenario, after the board is booted up, insert the following modules:

root@imx8mqevk:/# modprobe dm-mod
[266.982638] device-mapper: ioctl: 4.41.0-ioctl (2019-09-16) initialised: dm-devel@redhat.com
root@imx8mqevk:/# modprobe dm-crypt
root@imx8mqevk:/# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0

If the disk encryption scenario is not enabled, some features in the kernel need to be enabled:

Kernel Configure Tree View Options Description

< Device Drivers --->
[*] Multiple devices driver support (RAID and
LVM) --->

DM Crypt support enablement in Linux kernel

CONFIG_BLK_DEV_DM=y

Table continues on the next page...

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 87 / 115

Table continued from the previous page...

Kernel Configure Tree View Options Description

<*> Device mapper support
[] Device mapper debugging support
< > Unstriped target (NEW)
<*> Crypt target support
<*> Multipath target
[*] DM uevents

< Cryptographic API --->
<*> User-space interface for hash algorithms
<*> User-space interface for symmetric key
cipher algorithms
<*> User-space interface for AEAD cipher
algorithms

Enable user space crypto API's to allow simple cryptsetup
benchmarks

Cryptographic API --->
[*] Hardware crypto devices --->
<*> CAAM/SNVS Security Violation Handler
(EXPERIMENTAL)
<*> Freescale CAAM-Multicore platform driver
backend
[] Enable debug output in CAAM driver
<*> Freescale CAAM Job Ring driver backend --->
[*] Register tagged key cryptography
implementations with Crypto API

Selecting this will register algorithms supporting tagged key,
generate black keys and encapsulate them into black blobs.

10.5.2 User space tools for disk encryption
All the required user space tools needed for DM-Crypt are already installed on the board when using Linux i.MX BSP.

If the required user space tools are not installed in the build, add them by editing the conf/local.conf file and appending:

CORE_IMAGE_EXTRA_INSTALL+="coreutils keyutils lvm2 e2fsprogs-mke2fs utillinux"

• keyutils: provides keyctl, which is required to manage Linux Key retention service.

• lvm2: provides dmsetup utility and libraries to manage device-mapper.

• e2fsprogs-mke2fs: contains necessary tools to create filesystems.

• util-linux: provides blockdev utility needed to read number of sectors from a volume.

10.5.3 DM-Crypt using CAAM's tagged key
In Linux Unified Key Setup (LUKS) mode, to generate the disk encryption key (master key), the user supplies a passphrase, which
is combined with a salt, and then a hash function is applied for a supplied number of rounds. When the user wants to mount an
encrypted volume, the passphrase should be supplied. An alternative could be providing a key file stored in an external drive
containing necessary decryption information. Those approaches are not convenient with embedded devices usage.

The aim of using DM-Crypt with CAAM’s tagged key is to suppress the mechanism of encrypting the master volume key with a
key derived from a user-supplied passphrase. DM-Crypt can also take advantages of tagged key to protect storage volumes from
offline decryption. In addition, the volume could only be opened by the devices that have the same OTPMK burned in the fuses.
For more details, see the Security Reference Manual for specific SoC.

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 88 / 115

The tagged key feature is based on CAAM’s black key mechanism. Black key protects user keys against bus snooping while
the keys are being written to or read from memory external to the SoC. CAAM supports two different black key encapsulation
schemes, which are AES-ECB and AES-CCM.

Regarding AES-ECB encryption, the data is a multiple of 16 bytes long and is intended for quick decryption.

The AES-CCM mode is not as fast as AES-ECB mode, but includes a “MAC tag” (integrity check value) that ensures the integrity
of the encapsulated key. A CCM-encrypted black key is always at least 12 bytes longer than the encapsulated key (nonce value
+ MAC tag).

Black keys are session keys; therefore, they are not power-cycles safe. CAAM's blob mechanism provides a method for protecting
user-defined data across system power cycles. It provides both confidentiality and integrity protection. The data to be protected
is encrypted so that it can be safely placed into non-volatile storage before the SoC is powered down.

The following diagram illustrates the changes that have been added to support full disk encryption using tagged key. The
CAAM driver registers new Cryptographic transformations in the kernel to use ECB and CBC blacken keys, tk(ecb(aes)) and
tk(cbc(aes)). The tk prefix refers to Tagged Key.

A Tagged Key is a black key that contains metadata indicating what it is and how to handle it.

Linux OS provides an in-kernel key management and retention facility called Keyrings. Keyring also enables interfaces to allow
accessing keys and performing operations such as add, update, and delete from user-space.

The kernel provides several basic types of keys including keyring, user, and logon.

The CAAM driver has associated a user-space application used to generate a tagged key and encapsulated it into a black blob.
This is also used to import a tagged key from a black blob.

$./caam-keygen
CAAM keygen usage: caam-keygen [options]
Options:
create <key_name> <key_enc> <key_mode> <key_val>
 <key_name> the name of the file that will contain the black key.
 A file with the same name, but with .bb extension, will contain the black blob.
 <key_enc> can be ecb or ccm
 <key_mode> can be -s or -t.
 -s generate a black key from random with the size given in the next argument
 -t generate a black key from a plaintext given in the next argument
 <key_val> the size or the plaintext based on the previous argument (<key_mode>)
import <blob_name> <key_name>
 <blob_name> the absolute path of the file that contains the blob
 <key_name> the name of the file that will contain the black key.

By default, the keys and blobs are created in KEYBLOB_LOCATION, which is /data/caam/.

Later, CAAM Tagged Key is added into Linux Key Retention service and managed by user-space application such as keyctl.
Black blobs can be stored on any non-volatile storage.

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 89 / 115

Figure 7. DM-Crypt using CAAM Tagged key - overall architecture

Dmsetup (part of the libdevmapper package) is a powerful tool for performing very low-level configuration and is used to manage
encrypted volumes.

10.5.4 Usage
The following are the steps to perform a full disk encryption on i.MX devices.

1. After booting the device, make sure that cryptographic transformations using Tagged Key are registered.

root@imx8mqevk:~# grep -B1 -A2 tk- /proc/crypto|grep -v kernel
name : tk(ecb(aes))
driver : tk-ecb-aes-caam
priority : 3000
--
name : tk(cbc(aes))
driver : tk-cbc-aes-caam
priority : 3000
root@imx8mqevk:~#

And caam-keygen application is available:

root@imx8mmevk:~# cd /; find -name "caam-keygen"
./usr/bin/caam-keygen
./dev/caam-keygen

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 90 / 115

./sys/class/misc/caam-keygen

./sys/devices/virtual/misc/caam-keygen

For now, we only support AES algorithms. Therefore, the size of the key accepted for encryption/decryption is 16, 24, and
32 bytes.

2. Make sure DM-Crypt is enabled.

root@imx8mqevk:~# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0

If any of the above is missing, check Kernel configurations or see section Enable disk encryption support in kernel.

3. Then, provide the device with its key, the black key, which could be created either from a defined plain key or randomly.

Here is an example for black key encrypted with ECB, from a given plaintext of size 16 bytes:

root@imx8mqevk:~# ./caam-keygen create fromTextkey ecb -t 0123456789abcdef

The result is a Tagged Key and a Blob files written to filesystem (the default location is /data/caam). The used key
encryption scheme is ECB.

root@imx8mqevk:~# ls -la /data/caam/
total 16
drwxr-xr-x 2 root root 4096 Aug 25 15:38 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r-- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r-- 1 root root 96 Aug 25 15:38 fromTextkey.bb

Next, add the key in key retention service, using keyctl:

root@imx8mqevk:~# cat /data/caam/fromTextkey | keyctl padd logon logkey: @s
876928653

4. Create a secure volume. It could be a physical partition. In this example, make use of an image file and mount it later.

root@imx8mqevk:~# dd if=/dev/zero of=encrypted.img bs=1M count=32
32+0 records in
32+0 records out
33554432 bytes (34 MB, 32 MiB) copied, 3.20227 s, 10.5 MB/s
root@imx8mqevk:~#
root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#

5. Use dmsetup to create a new device-mapper device named encrypted for example, and specify the mapping table. The
table can be provided on stdin or as argument.

root@imx8mqevk:~# dmsetup -v create encrypted --table "0 $(blockdev --getsz /dev/loop0) crypt
capi:tk(cbc(aes))-plain :36:logon:logkey: 0 /dev/loop0 0 1 sector_size:512"
Name: encrypted
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 91 / 115

Major, minor: 253, 0
Number of targets: 1

The following is a breakdown of the mapping table:

• start means encrypting begins with sector 0.

• size is the size of the volume in sectors.

• blockdev gets the number of sectors of the device.

• target is crypt.

• cipher is set in Kernel Crypto API format to use Tagged Key. cipher set to capi:tk(cbc(aes))-plain and key set
to :36:logon:logkey: leads to use of the logon key with CAAM Tagged Key transformation.

• IV is the Initialization Vector defined to plain, initial vector, which is the 32-bit little-endian version of the sector number,
padded with zeros if necessary.

• key type is the Keyring key service type, set to Logon Key. 36 is the key size in bytes.

• key name is the key description to identify the key to load.

• IV offset is the value to add to sector number to compute the IV value.

• device is the path to device to be used as backend; it contains the encrypted data.

• offset represents encrypted data begins at sector 0 of the device.

• optional parameters represent the number of optional parameters.

• sector_size specifies the encryption sector size.

For more detailed options and descriptions, refer to https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt.

The created device appears in /dev/mapper:

root@imx8mqevk:~# dmsetup table --showkey encrypted
0 65536 crypt capi:tk(cbc(aes))-plain :36:logon:logkey: 0 7:0 0

6. Create a file system on the device.

root@imx8mqevk:~# mkfs.ext4 /dev/mapper/encrypted
mke2fs 1.45.3 (14-Jul-2019)
Creating filesystem with 32768 1k blocks and 8192 inodes
Filesystem UUID: 3ba01ad8-ba03-4389-a955-5136b3173c35
Superblock backups stored on blocks:
 8193, 24577
Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information:l done

7. Set up a mount point.

root@imx8mqevk:~# mkdir /mnt/encrypted

8. Mount the mapped device.

root@imx8mqevk:~# mount -t ext4 /dev/mapper/encrypted /mnt/encrypted/
[9409.936183] EXT4-fs (dm-0): mounted filesystem with ordered data mode. Opts: (null)
[9409.943892] ext4 filesystem being mounted at /mnt/encrypted supports timestamps until
2038 (0x7fffffff)

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 92 / 115

https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt

9. Write to device.

root@imx8mqevk:~# echo "This is an encrypt with black key (ECB from text 16 bytes key size) test
of full disk encryption on i.MX" > /mnt/encrypted/readme.txt

10. Unmount the device.

root@imx8mqevk:~# umount /mnt/encrypted/

11. Deactivate the device mapper device.

root@imx8mqevk:~# dmsetup remove encrypted

12. Restart the board.

root@imx8mqevk:~# reboot
...
root@imx8mqevk:~#

13. Import the key from blob and add it to key retention service.

root@imx8mqevk:~# ./caam-keygen import /data/caam/fromTextkey.bb importKey
root@imx8mqevk:~# cat /data/caam/importKey | keyctl padd logon logkey2: @s
605536287
root@imx8mqevk:~# ls -la /data/caam/
total 20
drwxr-xr-x 2 root root 4096 Aug 25 15:47 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r-- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r-- 1 root root 96 Aug 25 15:38 fromTextkey.bb
-rw-r--r-- 1 root root 36 Aug 25 15:47 importKey
root@imx8mqevk:~#

14. Mount the encrypted device.

root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#

15. Specify the mapping table to encrypt the volume using dmsetup.

root@imx8mqevk:~# dmsetup -v create encrypted --table "0 $(blockdev --getsz /dev/loop0) crypt
capi:tk(cbc(aes))-plain :36:logon:logkey2: 0 /dev/loop0 0 1 sector_size:512"
Name: encrypted
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0
Major, minor: 253, 0
Number of targets: 1

16. Mount.

root@imx8mqevk:~# mount /dev/mapper/encrypted /mnt/encrypted/
[191.961828] EXT4-fs (dm-0): mounted filesystem with ordered data mode. Opts: (null)
[191.969533] ext4 filesystem being mounted at /mnt/encrypted supports timestamps until
2038 (0x7fffffff)
root@imx8mqevk:~

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 93 / 115

17. Read from the device.

root@imx8mqevk:~# cat /mnt/encrypted/readme.txt
This is an encrypt with black key (ECB from text 16 bytes key size) test of full disk
encryption on i.MX.
root@imx8mqevk:~#

18. Unmount the device and deactivate the device mapper device.

root@imx8mqevk:~# umount /mnt/encrypted/; dmsetup remove encrypted

10.6 crypto_af_alg application support

10.6.1 Prerequisites
The caam-keygen application is needed to import the black key from the black blob. Make sure that the caam-keygen application
is already present at /usr/bin.

10.6.2 Building the kernel

10.6.2.1 Kernel configuration

• CONFIG_CRYPTO_USER_API

• CONFIG_CRYPTO_USER_API_HASH

• CONFIG_CRYPTO_USER_API_SKCIPHER

• CONFIG_CRYPTO_USER_API_RNG

• CONFIG_CRYPTO_USER_API_AEAD

Get a bootable image that includes the black key support and AF_ALG socket interface for the Linux kernel. Or build the kernel
from here: https://source.codeaurora.org/external/imx/linux-imx/.

10.6.2.2 Building a toolchain

Build a toolchain to cross compile the sources of the caam-decrypt application. For details, see the i.MX Yocto Project User's
Guide (IMXLXYOCTOUG).

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-arm-8.2-2019.01-x86_64-
aarch64-elf.tar.xz
$ tar xf gcc-arm-8.2-2019.01-x86_64-aarch64-elf.tar.xz

10.6.2.3 Cross compiling the user space sources

Set up the environment for cross compilation using the toolchain previously prepared.

1. In the toolchain folder, set up the environment.

$ export CROSS_COMPILE=<path to toolchain>/bin/aarch64-linux-gnu-
$ export CC=${CROSS_COMPILE}gcc
$ export LD=${CROSS_COMPILE}ld

2. Build the caam-decrypt user space application. Go to the source folder and run:

$ make clean
$ make

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 94 / 115

https://source.codeaurora.org/external/imx/linux-imx/

10.6.3 Usage
After the device successfully boots with the previously generated image, caam-decrypt can be used to decrypt an encrypted data
stored in a file.

$./caam-decrypt
Application usage: caam-decrypt [options]
Options:
<blob_name> <enc_algo> <input_file> <output_file>
<blob_name> the absolute path of the file that contains the black blob
<enc_algo> can be AES-256-CBC
<input_file> the absolute path of the file that contains input data
 initialization vector(iv) of 16 bytes prepended
 size of input file must be multiple of 16
<output_file> the absolute path of the file that contains output data

10.6.4 Use case example

$ caam-decrypt myblob AES-256-CBC my_encrypted_file output_decrypted

where:

• myblob: generated black key blob. The caam-keygen application imports a black key from the black blob. This black key is
used by CAAM for decryption.

• AES-256-CBC: currently the only supported symmetric algorithm used for decryption operation. Make sure that the
encrypted data must use the same algorithm.

• my_encrypted_file: Encrypted data stored in a file. Initialization vector(iv) of 16 bytes used during encryption must be
prepended to encrypted data.

AES Encrypted file format
 16 Octets - Initialization Vector (IV) is an input to encryption algorithm.
 nn Octets - Encrypted message (for AES-256-CBC, it must be multiple of 16)

• output_decrypted: contains decrypted data after successful decryption operation.

10.7 Kernel TLS offload
Linux kernel provides TLS connection offload infrastructure. Once a TCP connection is in ESTABLISHED state, user space can
enable the TLS Upper Layer Protocol (ULP) and install the cryptographic connection state. For details regarding the user-facing
interface, refer to the TLS documentation in Kernel TLS.

10.7.1 Prerequisites
Check OpenSSL version using the following command. It must be 3.0.0 or higher.

openssl version

10.7.2 Running Kernel TLS test
On server generate RSA 2048 key, certificate and run openssl s_server:

root@imx8mmevk:~# openssl req -new -newkey rsa:2048 -nodes -keyout rsa.key -out rsa.csr
root@imx8mmevk:~# openssl x509 -req -sha256 -days 365 -in rsa.csr -signkey rsa.key -out server.pem
root@imx8mmevk:~# openssl s_server -key rsa.key -cert server.pem -accept 443 -ssl_config ktls
Using default temp DH parameters
ACCEPT

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 95 / 115

https://jira.sw.nxp.com/browse/AES-256
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls

Run openssl s_client from another terminal:

root@imx8mmevk:~# openssl s_client -quiet -connect <server ip>:443 -tls1_2 -ssl_config ktls -
cipher 'ECDHE-RSA-AES256-GCM-SHA384'
Connecting to <server ip>
Can't use SSL_get_servername
...
Using Kernel TLS for sending
Using Kernel TLS for receiving
<write some message and enter>

Remove -quiet to see full client logs. With TLSv1.2, the Kernel TLS supports these ciphers:

• AES128-GCM-SHA256

• AES256-GCM-SHA384

• ECDHE-RSA-AES128-GCM-SHA256

• ECDHE-RSA-AES256-GCM-SHA384

NXP Semiconductors
Security

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 96 / 115

Chapter 11
Connectivity
This section describes the connectivity for Bluetooth wireless technology and Wi-Fi, as well as for USB type-C.

11.1 Connectivity for Bluetooth wireless technology and Wi-Fi
Bluetooth and Wi-Fi are supported on i.MX through on-board chip solutions and external hardware. The following table lists the
various on-board chips and external solutions.

Table 67. On-board chips and external solutions for Bluetooth and Wi-Fi support

SoC On-board chip PCIe M.2 card uSD card or SDIO M.2 card

8QuadXPlus/8DXL - NXP 88W8997 (tested with
AW-CM276MA-PUR)

NXP PCIe 88W9098 (tested
with Murata LBEE6ZZ-1TA)

-

8QuadMax - NXP 88W8997 (tested with
AW-CM276MA-PUR)

NXP PCIe 88W9098 (tested
with Murata LBEE6ZZ-1TA)

-

8M Quad - NXP 88W8997 (tested with
AW-CM276MA-PUR)

NXP PCIe 88W9098 (tested
with Murata LBEE6ZZ-1TA).

NXP SDIO 88W8997 (tested
with AW-CM276MA-SUR)

NXP SDIO IW416 (tested with
Murata LBEE5CJ1XK)

NXP SDIO 88W8801 (tested
with Murata LBWA0ZZ2DS)

NXP SDIO 88W9098 (tested
with Murata LBEE6ZZ-1TA)

8M Nano NXP 88W8987 (tested with

AzureWave AW-CM358SM)

- -

8M Mini NXP 88W8987 (tested with

AzureWave AW-CM358SM)

- -

7ULP - - NXP 88W8987 (tested with
AW-CM358-uSD)

7Dual - - NXP 88W8987 (tested with
AW-CM358-uSD)

6QuadPlus/Quad/Dual/Solo - - NXP 88W8987 (tested with
AW-CM358-uSD)

6SLL/6UltraLite/6ULL/6ULZ - - NXP 88W8987 (tested with
AW-CM358-uSD)

Table continues on the next page...

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 97 / 115

Table 67. On-board chips and external solutions for Bluetooth and Wi-Fi support (continued)

SoC On-board chip PCIe M.2 card uSD card or SDIO M.2 card

NXP SDIO IW416 (tested
with Murata LBEE5CJ1XK
along with the Murata M.2-to
usd adapter)

NXP SDIO 88W8801 (tested
with Murata LBWA0ZZ2DS
along with the Murata M.2-to
usd adapter)

8M Plus - NXP 88W8997 (tested with
AW-CM276MA-PUR)

NXP PCIe 88W9098 (tested
with Murata LBEE6ZZ-1TA).

NXP SDIO 88W8997 (tested
with AW-CM276MA-SUR)

NXP SDIO 88W9098 (tested
with Murata LBEE6ZZ-1TA)

8ULP - - NXP SDIO IW416 (tested
with Murata LBEE5CJ1XK)

The wireless driver supports wpa_supplicant, which is a WEP/WPA/WPA2/WPA3 encryption authenticated tool.

• Wi-Fi driver: supports NXP 88W8987-based modules with SDIO interface, NXP 88W8997-based modules with PCIe and
SDIO interfaces, NXP SDIO 88W9098 (tested with Murata LBEE6ZZ-1TA), NXP IW416-based modules with SDIO interface,
and NXP 88W8801-based modules with SDIO interface.

• Firmware

The NXP release package already includes all NXP, Wi-Fi/Bluetooth firmware. It requires to accept NXP license.

To run Wi-Fi, execute the following commands first and follow common commands below:

• For the following steps, execute these commands using connman

modprobe moal mod_para=nxp/wifi_mod_para.conf
$connmanctl
connmanctl> enable wifi
connmanctl> scan wifi
connmanctl> services /* This should list of the network. For
example wifi_c0e4347f5053_4a62726f_managed_psk*/
connmanctl> agent on
connmanctl> connect wifi_c0e4347f5053_4a62726f_managed_psk /* Enter Passphrase */
Agent RequestInput wifi_c0e4347f5053_4a62726f_managed_psk
Passphrase = [Type=psk, Requirement=mandatory]
Passphrase?
connmanctl> quit

To run NXP Bluetooth with BlueZ stack, execute the following commands (it requires load Wi-Fi first to load Bluetooth firmware):

For PCIe9098 and SDIO9098:
hciattach <device> any -s 3000000 3000000 flow
hciconfig hci0 up
For For PCIe8997/SDIO8997/SDIO8987 and SDIO IW416:
hciattach <device> any 115200 flow
hciconfig hci0 up
hcitool -i hci0 cmd 0x3f 0x0009 0xc0 0xc6 0x2d 0x00
killall hciattach

NXP Semiconductors
Connectivity

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 98 / 115

https://wiki.archlinux.org/index.php/ConnMan#Wi-Fi

hciattach <device> any -s 3000000 3000000 flow
hciconfig hci0 up

Run the following commands to connect the Bluetooth device for all chips:

$ bluetoothctl
[bluetooth]# default-agent
[bluetooth]# agent on
[bluetooth]# scan on
[bluetooth]# pair xx:xx:xx:xx:xx:xx
[BT dev]# connect xx:xx:xx:xx:xx:xx
[BT dev]# quit

• Device: /dev/ttymxcN or /dev/ttyLPN.

• Different boards have different devices.

 NOTE

The i.MX 6 boards require board rework to support the Bluetooth/Wi-Fi enablement as well as running with the Bluetooth/Wi-Fi
device tree. The following is a list of the hardware modifications required and possibly conflicts caused by these modifications.

• i.MX 6QuadPlus/Quad/Dual/DualLite/Solo: See https://community.nxp.com/docs/DOC-94235. This change HAS a pin
conflict with: EPDC/SPI-NOR/GPIO-LED.

• i.MX 6SoloX: Install R328, and disconnect R327. Connect with SD2 slot and BLUETOOTH CABLE CONNECTOR J19. It
has no Pin conflict with other modules.

• i.MX 6SLL: Install R127, and double check to ensure R126 and R128 are installed. Connect with SD3 slot and
BLUETOOTH CABLE CONNECTOR J4. It has no Pin conflict with other modules.

• i.MX 6UL/ULL/ULZ: Install R1701. It has no Pin conflict with other modules.

Rework is also required to support NXP PCIe 88W9098 on i.MX 8M Plus, and NXP SDIO 88W89997, NXP SDIO IW416, NXP
SDIO 88W8801, and SDIO 88W9098 on i.MX 8M Quad.

• To run NXP PCIe 88W9098 on i.MX 8M Plus, perform the hardware rework as follows:

Change R452 to 0 ohm.

• To run NXP SDIO 88W89997, NXP SDIO IW416, SDIO 88W8801, and SDIO 88W9098 on i.MX 8M Quad, perform the
hardware rework as follows:

Remove the following 0 Ω 0402 resistors: R1603, R1617, R1618, R1619, R1620, and R1621 (micro SD card J1601)

Install the following 0 Ω 0402 resistors: R1429, R1430, R1431, R1432, R1433, R1434, R1435, and R1436 (M.2 J1401)

11.2 Connectivity for USB type-C

The following describes the connectivity for USB type-C and power delivery connection on the i.MX 8QuadXPlus MEK board.

• The Linux release includes USB type-C and PD stack, which is enabled by default. The specific power parameters are passed
in by DTS. The following fsl-imx8qxp-mek is an example:

typec_ptn5110: typec@50 {
 compatible = "usb,tcpci";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_typec>;
 reg = <0x50>;
 interrupt-parent = <&gpio1>;
 interrupts = <3 IRQ_TYPE_LEVEL_LOW>;
 ss-sel-gpios = <&gpio5 9 GPIO_ACTIVE_LOW>;
 reset-gpios = <&pca9557_a 7 GPIO_ACTIVE_HIGH>;
 src-pdos = <0x380190c8>;

NXP Semiconductors
Connectivity

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 99 / 115

https://community.nxp.com/docs/DOC-94235

 snk-pdos = <0x380190c8 0x3802d0c8>;
 max-snk-mv = <9000>;
 max-snk-ma = <1000>;
 op-snk-mw = <9000>;
 port-type = "drp";
 sink-disable;
 default-role = "source";
 status = "okay";
};

For power capability related configuration, users need to check the PD specification to see how to composite the PDO value.
To make it support power source role for more voltages, specify the source PDO. The i.MX 8QuadXPlus board can support
5 V and 12 V power supply.

• The Linux BSP of the Alpha and Beta releases on the i.MX 8QuadXPlus MEK platform only supports power source role for 5 V.

• Users can use /sys/kernel/debug/tcpm/2-0050 to check the power delivery state, which is for debugging purpose information.

• Booting only by type-C port power supply is not supported on the Alpha release.

11.3 NXP Bluetooth/Wi-Fi information
The NXP Bluetooth/Wi-Fi information is as follows:

• SoC version: SDIO 88W8987, PCIe 88W8997, SDIO 88w8997, PCIe 88w9098, SDIO 88W9098, SDIO IW416,
SDIO 88W8801

• SDIO W8801 Firmware version 14.92.36.p171

• SDIO-UART IW416 Firmware version 16.92.21.p11.2

• PCIE-UART W9098 Firmware version: 17.92.5.p11

• SDIO-UART W8997 Firmware version: 16.92.10.p219.5

• PCIE-UART W8997 Firmware version: 16.92.21.p26.1

• SDIO-UART W8987 Firmware version: 16.92.21.p26

• SDIO-UART W9098 Firmware version: 17.92.1.p98.1

• Wi-Fi/Bluetooth firmware version: 16.92.10.p210

— 16: Major revision

— 92: Feature pack

— 10: Release version

— p210: Patch number

• Driver version: MXM5x17299.p1-MGPL

— 5X: Linux 5.x

— 17299: Release version

— p1: Patch number

— MGPL: General

Tested using iperf3 version 3.9.

11.4 Certification

NXP Semiconductors
Connectivity

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 100 / 115

11.4.1 WFA certification
The following table lists the WFA certification.

Table 68. WFA certification

STA Certification

STA 802.11n

STA 802.11ac

STA WPS2.0

STA PMF

STA WMM-PS

STA WPA3

For details, see Wi-Fi Alliance Derivative Certification (AN12976).

11.4.2 Bluetooth controller certification
Listing details: https://launchstudio.bluetooth.com/ListingDetails/115533

NXP Semiconductors
Connectivity

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 101 / 115

https://www.nxp.com/products/wireless/wi-fi-plus-bluetooth/88w8987-2-4-5-ghz-dual-band-1x1-wi-fi-5-802-11ac-plus-bluetooth-5-solution:88W8987?tab=Documentation_Tab
https://launchstudio.bluetooth.com/ListingDetails/115533

Chapter 12
DDR Performance Monitor

12.1 Introduction
There are counters in some i.MX 8 DDR controllers, which are used to monitor DDR signals. Some signals can help users monitor
DDR transactions and calculate DDR bandwidth.

12.2 Frequently used events
The following events are frequently used to monitor DDR transactions for different platforms.

• i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano: cycles, read-cycles, write-cycles

• i.MX 8M Plus: axid-read, axid-write

• i.MX 8DXL: cycles, read-cycles, write-cycles, axid-read, axid-write

• i.MX 8M Plus and 8DXL support AXI ID filtering.

• For i.MX 8M Plus, cycles, read-cycles, write-cycles cannot be used since there is a hardware bug that leads
to counter overflow.

 NOTE

12.3 Showing supported events
Run the following commands to show the supported events:

perf list pmu | grep imx8_ddr
imx8_ddr0/activate/ [Kernel PMU event]
imx8_ddr0/axid-read/ [Kernel PMU event]
imx8_ddr0/axid-write/ [Kernel PMU event]
imx8_ddr0/cycles/ [Kernel PMU event]
imx8_ddr0/hp-read-credit-cnt/ [Kernel PMU event]
imx8_ddr0/hp-read/ [Kernel PMU event]
imx8_ddr0/hp-req-nocredit/ [Kernel PMU event]
imx8_ddr0/hp-xact-credit/ [Kernel PMU event]
imx8_ddr0/load-mode/ [Kernel PMU event]
imx8_ddr0/lp-read-credit-cnt/ [Kernel PMU event]
imx8_ddr0/lp-req-nocredit/ [Kernel PMU event]
imx8_ddr0/lp-xact-credit/ [Kernel PMU event]
imx8_ddr0/perf-mwr/ [Kernel PMU event]
imx8_ddr0/precharge/ [Kernel PMU event]
imx8_ddr0/raw-hazard/ [Kernel PMU event]
imx8_ddr0/read-accesses/ [Kernel PMU event]
imx8_ddr0/read-activate/ [Kernel PMU event]
imx8_ddr0/read-command/ [Kernel PMU event]
imx8_ddr0/read-cycles/ [Kernel PMU event]
imx8_ddr0/read-modify-write-command/ [Kernel PMU event]
imx8_ddr0/read-queue-depth/ [Kernel PMU event]
imx8_ddr0/read-write-transition/ [Kernel PMU event]
imx8_ddr0/read/ [Kernel PMU event]
imx8_ddr0/refresh/ [Kernel PMU event]
imx8_ddr0/selfresh/ [Kernel PMU event]
imx8_ddr0/wr-xact-credit/ [Kernel PMU event]
imx8_ddr0/write-accesses/ [Kernel PMU event]
imx8_ddr0/write-command/ [Kernel PMU event]

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 102 / 115

imx8_ddr0/write-credit-cnt/ [Kernel PMU event]
imx8_ddr0/write-cycles/ [Kernel PMU event]
imx8_ddr0/write-queue-depth/ [Kernel PMU event]
imx8_ddr0/write/ [Kernel PMU event]

12.4 Examples for monitoring transactions
This section shows some examples to monitor DDR transactions.

• For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano:

perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-cycles/,imx8_ddr0/write-cycles/

• For i.MX 8M Plus:

— All masters:

perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_mask=0xffff/,imx8_ddr0/axid-
write,axi_mask=0xffff/

— GPU 3D:

perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x70/,imx8_ddr0/axid-write,axi_id=0x70/

— LCDIF1:

perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x68/,imx8_ddr0/axid-write,axi_id=0x68/

• For i.MX 8DXL:

— All masters:

perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-cycles/,imx8_ddr0/write-cycles/
perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_mask=0xffff/,imx8_ddr0/axid-
write,axi_mask=0xffff/

— USB 2.0:

perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_mask=0xb0,axi_id=0x40b/,imx8_ddr0/axid-
write,axi_mask=0xb0,axi_id=0x40b/

— USDHC0:

perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x1b/,imx8_ddr0/axid-write,axi_id=0x1b/

12.5 Performance metric
Try to use metric instead of event if event command line is too cumbersome to you. The following is the example on
i.MX 8QuadXPlus.

12.5.1 Showing supported metric
Run the following commands to show the supported metric:

perf list metric
List of pre-defined events (to be used in -e):
Metrics:
imx8qxp_bandwidth_usage.lpddr4
 [bandwidth usage for lpddr4 mek board. Unit: imx8_ddr]

NXP Semiconductors
DDR Performance Monitor

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 103 / 115

imx8qxp_ddr_read.all
 [bytes all masters read from ddr based on read-cycles event. Unit: imx8_ddr]
imx8qxp_ddr_write.all
 [bytes all masters wirte to ddr based on write-cycles event. Unit: imx8_ddr]

12.5.2 Monitoring transactions
Run the following commands to monitor transactions:

perf stat -a -I 1000 -M imx8qxp_ddr_read.all,imx8qxp_ddr_write.all
time counts unit events
1.001115250 28264 imx8_ddr0/read-cycles/ # 441.6 KB imx8qxp_ddr_read.all
1.001115250 11622 imx8_ddr0/write-cycles/ # 181.6 KB imx8qxp_ddr_write.all
2.002718000 14496 imx8_ddr0/read-cycles/ # 226.5 KB imx8qxp_ddr_read.all
2.002718000 4585 imx8_ddr0/write-cycles/ # 71.6 KB imx8qxp_ddr_write.all

12.6 DDR Performance usage summary
It is recommended to use metric to monitor DDR transactions, as it is more convenient. You can get DDR bandwidth of all masters
or specific master directly without doing extra calculations. Especially on platforms that support AXI ID filtering, get rid of searching
masters' ID.

NXP Semiconductors
DDR Performance Monitor

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 104 / 115

Chapter 13
One-Time Programmable Controller Driver Using
NVMEM Subsystem

13.1 Introduction
The One-Time Programmable Controller driver is realized with the NVMEM Subsystem, which introduces DT representation for
consumer devices to get the data they require (MAC addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs.

13.2 NVMEM provider OCOTP
Use struct nvmem_config to set the configuration of theNVMEM device OCOTP. This structure can define callback to read/write
the eFUSE data.

In the read/write function prototype:

• The 1st parameter is the private data of the OCOTP device, and it contains a pointer to the remapped memory.

• The 2nd parameter is from the first data in property reg of a NVMEM consumer, and this offset represents the OCOTP
shadow register, to which a eFuse address is mapped.

• The 3rd parameter returns the read data when reading or passes the data to write when writing.

• The 4th parameter, which indicates how many bytes to read/write, is from the second data in property reg of a NVMEM
consumer.

typedef int (*nvmem_reg_read_t)(void *priv, unsigned int offset, void *val, size_t bytes);
typedef int (*nvmem_reg_write_t)(void *priv, unsigned int offset, void *val, size_t bytes);

13.3 NVMEM consumer
NVMEM consumers are the entities that make use of the NVMEM provider to read from and to NVMEM. In the DTS file, the
NVMEM consumer node needs to be written in the NVMEM provider node. The indispensable property is reg. The first data
represents the offset of the OCOTP shadow register, to which a eFuse address is mapped. The second data indicates the number
of bytes to read or write.

Take the MAC address on i.MX 8M Nano as an example:

The first data in reg is 0x90, 0x400 + 0x90 * 0x4 = 0x640, 0x640 is the first Fuse address of MAC_ADDR. 0x4 represents 4 bytes.

13.4 Examples to read/write the raw NVMEM file in user space
• i.MX 6/i.MX 7/i.MX 8M Mini/8M Nano/8M Plus/8M Quad

hexdump /sys/bus/nvmem/devices/imx-ocotp0/nvmem

• i.MX 8ULP

hexdump /sys/bus/nvmem/devices/fsb_s400_fuse1/nvmem

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 105 / 115

Chapter 14
NXP eIQ® Machine Learning
The NXP eIQ machine learning software development environment enables the use of machine learning algorithms on i.MX
family SoCs. The eIQ software for i.MX includes inference engines, optimized libraries for hardware acceleration, and an ML
security package.

The main eIQ toolkit is integrated in the Yocto BSP, contained in meta-imx/meta-ml layer. The following inference engines are
currently supported: TensorFlow Lite, ONNX Runtime, OpenCV, DeepViewRTTM, PyTorch, and Arm NN. See the i.MX Machine
Learning User's Guide (IMXMLUG) for details about the eIQ software development environment.

The Arm NN inference engine is deprecated and will be removed in the future.

 NOTE

In addition to the toolkit integrated in the Yocto BPS, there is an ML security package delivered separately. See also Security for
Machine Learning Package (AN12867).

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 106 / 115

https://www.nxp.com/docs/en/application-note/AN12867.pdf
https://www.nxp.com/docs/en/application-note/AN12867.pdf

Chapter 15
Revision History
This table provides the revision history.

Table 69. Revision history

Revision number Date Substantive changes

L4.9.51_imx8qxp-alpha 11/2017 Initial release

L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad

L4.9.51_8qm-beta2/8qxp-beta 02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta

L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release

L4.9.88_2.1.0_8mm-alpha 06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates

L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project Upgrades

L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades

LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades

L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK boards

L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL, and
consolidated GA for released i.MX boards

L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL, and
consolidated GA for released i.MX boards

L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards including i.MX
8M Plus and i.MX 8DXL

L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running the Arm Cortex-
M4 image"

LF5.10.9_1.0.0 03/2021 Upgraded Yocto Project to Gatesgarth and the kernel upgraded
to 5.10.9

LF5.10.35_2.0.0 06/2021 Upgraded Yocto Project to Hardknott and the kernel upgraded
to 5.10.35

LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to 5.10.52

LF5.10.52_2.1.0 10/2021 Added an appendix for Murata Wi-Fi/Bluetooth solutions

Table continues on the next page...

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 107 / 115

Table 69. Revision history (continued)

Revision number Date Substantive changes

LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP

LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6

NXP Semiconductors
Revision History

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 108 / 115

Appendix A
Murata Wi-Fi/Bluetooth Solutions
Table 70. Murata Wi-Fi/Bluetooth solutions with NXP chipsets

NXP chipset Murata module (Part number) Embedded Artists M.2 EVB

88W8801 Type 2DS (LBWA0ZZ2DS)

EAR00386

IW416 Type 1XK (LBEE5CJ1XK)

EAR00385

88W8987 Type 1ZM (LBEE5QD1ZM)

EAR00364

Table continues on the next page...

NXP Semiconductors

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 109 / 115

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type2ds
https://www.embeddedartists.com/products/2ds-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.embeddedartists.com/products/1zm-m-2-module/

Table 70. Murata Wi-Fi/Bluetooth solutions with NXP chipsets (continued)

NXP chipset Murata module (Part number) Embedded Artists M.2 EVB

88W8997 Type 1YM (LBEE5XV1YM)

EAR00370

88W9098 Type 1XL (LBEE5ZZ1XL)

EAR00387

Table 71. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs

EVK Murata module Interconnect Embedded Artists M.2
Module Part #

NXP i.MX 8QuadMax Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8QuadXPlus Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8M Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO1) uSD-M.2 EAR00370

Table continues on the next page...

NXP Semiconductors
Murata Wi-Fi/Bluetooth Solutions

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 110 / 115

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadxplus-multisensory-enablement-kit-mek:MCIMX8QXP-CPU
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/MCIMX8M-EVKB
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/

Table 71. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs (continued)

EVK Murata module Interconnect Embedded Artists M.2
Module Part #

Type 1XL (SDIO1) uSD-M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8DXL Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8M Plus Type 1XK M.2 EAR00385

Type 1ZM M.2 EAR00364

Type 1YM (SDIO1) M.2 EAR00370

Type 1XL (SDIO1) M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8M Mini LPDDR4 Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO1) uSD-M.2 EAR00370

Type 1XL (SDIO1) uSD-M.2 EAR00387

Type 1YM (PCIe) M.2 EAR00370

Type 1XL (PCIe) M.2 EAR00387

NXP i.MX 8M Nano LPDDR4 Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO1) uSD-M.2 EAR00370

Type 1XL (SDIO1) uSD-M.2 EAR00387

NXP i.MX 7Dual Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO1) uSD-M.2 EAR00370

NXP i.MX 7ULP Type 1XK uSD-M.2 EAR00385

Table continues on the next page...

NXP Semiconductors
Murata Wi-Fi/Bluetooth Solutions

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 111 / 115

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/MCIMX8DXL-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/8MPLUSLPD4-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/8MMINILPD4-EVKB
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/8MNANOLPD4-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xl
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xl-m-2-module/
https://www.nxp.com/part/MCIMX7SABRE
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/MCIMX7ULP-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/

Table 71. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs (continued)

EVK Murata module Interconnect Embedded Artists M.2
Module Part #

Type 1ZM uSD-M.2 EAR00364

NXP i.MX 6QuadPlus

NXP i.MX 6Quad

NXP i.MX 6DL

Type 1XK uSD-M.2 EAR00385

Type 1YM (SDIO1) uSD-M.2 EAR00370

NXP i.MX 6SLL

NXP i.MX 6UL

NXP i.MX 6ULL/ULZ

Type 1XK uSD-M.2 EAR00385

Type 1ZM uSD-M.2 EAR00364

Type 1YM (SDIO1) uSD-M.2 EAR00370

1. Default strapping option on Embedded Artists 1YM/1XL M.2 module is WLAN-PCIe. Refer to Embedded Artists datasheet
on how to modify strapping on M.2 module for WLAN-SDIO configuration.

NXP Semiconductors
Murata Wi-Fi/Bluetooth Solutions

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 112 / 115

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.nxp.com/part/MCIMX6QP-SDB
https://www.nxp.com/part/MCIMX6Q-SDB
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-for-automotive-infotainment-based-on-the-i-mx-6-series-for-automotive-avb-development:SABRE-AUTO-IMX6-RD2
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/
https://www.nxp.com/part/MCIMX6SLL-EVK
https://www.nxp.com/part/MCIMX6UL-EVKB
https://www.nxp.com/part/MCIMX6ULL-EVK
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1xk
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1xk-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1zm
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1zm-m-2-module/
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type1ym
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter
https://www.embeddedartists.com/products/1ym-m-2-module/

Legal information
Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with
the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products
are sold subject to the general terms and conditions of commercial sale,
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
in a valid written individual agreement. In case an individual agreement
is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP
Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.

NXP Semiconductors
Legal information

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 113 / 115

Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive
applications to automotive specifications and standards, customer (a) shall use
the product without NXP Semiconductors’ warranty of the product for such
automotive applications, use and specifications, and (b) whenever customer
uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and (c) customer
fully indemnifies NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of the product for
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved.

Airfast — is a trademark of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

CodeWarrior — is a trademark of NXP B.V.

ColdFire — is a trademark of NXP B.V.

ColdFire+ — is a trademark of NXP B.V.

EdgeLock — is a trademark of NXP B.V.

EdgeScale — is a trademark of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

elQ — is a trademark of NXP B.V.

FeliCa — is a trademark of Sony Corporation.

Freescale — is a trademark of NXP B.V.

HITAG — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

Immersiv3D — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Kinetis — is a trademark of NXP B.V.

Layerscape — is a trademark of NXP B.V.

Mantis — is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

MOBILEGT — is a trademark of NXP B.V.

NTAG — is a trademark of NXP B.V.

Processor Expert — is a trademark of NXP B.V.

QorIQ — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

StarCore — is a trademark of NXP B.V.

Synopsys — Portions Copyright © 2021 Synopsys, Inc. Used with permission.
All rights reserved.

Tower — is a trademark of NXP B.V.

UCODE — is a trademark of NXP B.V.

VortiQa — is a trademark of NXP B.V.

NXP Semiconductors
Legal information

i.MX Linux® User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 114 / 115

mailto:PSIRT@nxp.com
http://www.cadence.com/go/trademarks

Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.

© NXP B.V. 2017-2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 31 March 2022
Document identifier: IMXLUG

	Contents
	1 Overview
	1.1 Audience
	1.2 Conventions
	1.3 Supported hardware SoCs and boards
	1.4 References

	2 Introduction
	3 Basic Terminal Setup
	4 Booting Linux OS
	4.1 Software overview
	4.1.1 Bootloader
	4.1.2 Linux kernel image and device tree
	4.1.3 Root file system

	4.2 Universal update utility
	4.2.1 Downloading UUU
	4.2.2 Using UUU

	4.3 Preparing an SD/MMC card to boot
	4.3.1 Preparing the card
	4.3.2 Copying the full SD card image
	4.3.3 Partitioning the SD/MMC card
	4.3.4 Copying a bootloader image
	4.3.5 Copying the kernel image and DTB file
	4.3.6 Copying the root file system (rootfs)

	4.4 Downloading images
	4.4.1 Downloading images using U-Boot
	4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI
	4.4.1.2 Downloading an image to MMC/SD
	4.4.1.3 Using eMMC
	4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot
	Flashing an Arm Cortex-M4 image on QuadSPI

	4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot

	4.4.2 Using an i.MX board as the host server to create a rootfs

	4.5 How to boot the i.MX boards
	4.5.1 Booting from an SD card in slot SD1
	4.5.2 Booting from an SD card in slot SD2
	4.5.3 Booting from an SD card in slot SD3
	4.5.4 Booting from an SD card in slot SD4
	4.5.5 Booting from eMMC
	4.5.6 Booting from SATA
	4.5.7 Booting from NAND
	4.5.8 Booting from SPI-NOR
	4.5.9 Booting from EIM (Parallel) NOR
	4.5.10 Booting from QuadSPI or FlexSPI
	4.5.11 Serial download mode for the Manufacturing Tool
	4.5.12 How to build U-Boot and Kernel in standalone environment
	4.5.13 How to build imx-boot image by using imx-mkimage

	4.6 Flash memory maps
	4.6.1 MMC/SD/SATA memory map
	4.6.2 NAND flash memory map
	4.6.3 Parallel NOR flash memory map
	4.6.4 SPI-NOR flash memory map
	4.6.5 QuadSPI flash memory map

	4.7 Running Linux OS on the target
	4.7.1 Running the image from NAND
	4.7.2 Running Linux OS from Parallel NOR
	4.7.3 Running the Linux OS image from QuadSPI
	4.7.4 Running the Arm Cortex-M4 image
	4.7.5 Linux OS login
	4.7.6 Running Linux OS from MMC/SD
	4.7.7 Running the Linux image from NFS

	4.8 Arm SystemReady-IR
	4.8.1 Arm SystemReady-IR ACS compliance test
	4.8.2 Capsule update
	4.8.3 Linux distro installation

	5 Enabling Solo Emulation
	6 Power Management
	6.1 Suspend and resume
	6.2 CPU frequency scaling
	6.3 Bus frequency scaling

	7 Multimedia
	7.1 i.MX multimedia packages
	7.2 Building limited access packages
	7.3 Multimedia use cases
	7.3.1 Playback use cases
	7.3.1.1 Audio-only playback
	7.3.1.2 Video-only playback
	7.3.1.3 Audio/Video file playback
	7.3.1.4 Multichannel audio playback
	7.3.1.5 Other methods for playback
	7.3.1.6 Video playback to multiple displays
	Playing different videos on different displays
	Routing the same video to different displays
	Multiple videos overlay

	7.3.2 Audio encoding
	7.3.3 Video encoding
	7.3.4 Transcoding
	7.3.5 Audio recording
	7.3.6 Video recording
	7.3.7 Audio/Video recording
	7.3.8 Camera preview
	7.3.9 Recording the TV-in source
	7.3.10 Web camera
	7.3.11 HTTP streaming
	7.3.12 HTTP live streaming
	7.3.13 MPEG-DASH streaming
	7.3.14 Real Time Streaming Protocol (RTSP) playback
	7.3.15 RTP/UDP MPEGTS streaming
	7.3.16 RTSP streaming server
	7.3.17 Video conversion
	7.3.18 Video composition

	7.4 PulseAudio input/output settings
	7.5 Installing gstreamer1.0-libav into rootfs

	8 Audio
	8.1 DSP support
	8.1.1 HiFi 4 DSP framework
	8.1.2 Sound Open Firmware

	8.2 HDMI eARC support

	9 Graphics
	9.1 imx-gpu-sdk
	9.2 G2D-imx-samples
	9.3 viv_samples
	9.4 Qt 6

	10 Security
	10.1 CAAM kernel driver
	10.1.1 Introduction
	10.1.2 Source files
	10.1.3 Module loading
	10.1.4 Kernel configuration
	10.1.5 How to test the drivers

	10.2 Crypto algorithms support
	10.3 CAAM Job Ring backend driver specifications
	10.3.1 Verifying driver operation and correctness
	10.3.2 Incrementing IRQs in /proc/interrupts
	10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto

	10.4 OpenSSL offload
	10.4.1 OpenSSL software architecture
	10.4.2 OpenSSL's ENGINE interface
	10.4.3 NXP solution for OpenSSL hardware offloading
	10.4.4 Deploying OpenSSL into rootfs
	10.4.5 Running OpenSSL benchmarking tests with cryptodev engine
	10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

	10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine
	10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

	10.5 Disk encryption acceleration
	10.5.1 Enabling disk encryption support in kernel
	10.5.2 User space tools for disk encryption
	10.5.3 DM-Crypt using CAAM's tagged key
	10.5.4 Usage

	10.6 crypto_af_alg application support
	10.6.1 Prerequisites
	10.6.2 Building the kernel
	10.6.2.1 Kernel configuration
	10.6.2.2 Building a toolchain
	10.6.2.3 Cross compiling the user space sources

	10.6.3 Usage
	10.6.4 Use case example

	10.7 Kernel TLS offload
	10.7.1 Prerequisites
	10.7.2 Running Kernel TLS test

	11 Connectivity
	11.1 Connectivity for Bluetooth wireless technology and Wi-Fi
	11.2 Connectivity for USB type-C
	11.3 NXP Bluetooth/Wi-Fi information
	11.4 Certification
	11.4.1 WFA certification
	11.4.2 Bluetooth controller certification

	12 DDR Performance Monitor
	12.1 Introduction
	12.2 Frequently used events
	12.3 Showing supported events
	12.4 Examples for monitoring transactions
	12.5 Performance metric
	12.5.1 Showing supported metric
	12.5.2 Monitoring transactions

	12.6 DDR Performance usage summary

	13 One-Time Programmable Controller Driver Using NVMEM Subsystem
	13.1 Introduction
	13.2 NVMEM provider OCOTP
	13.3 NVMEM consumer
	13.4 Examples to read/write the raw NVMEM file in user space

	14 NXP eIQ® Machine Learning
	15 Revision History
	A Murata Wi-Fi/Bluetooth Solutions
	Legal information

