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Chapter 1
Software Stack Introduction
The NXP® eIQ® Machine Learning Software Development Environment (hereinafter referred to as "NXP eIQ") provides a set of 
libraries and development tools for machine learning applications targeting NXP microcontrollers and application processors. The 
NXP eIQ is contained in the meta-imx/meta-ml Yocto layer. See also the i.MX Yocto Project User's Guide (IMXLXYOCTOUG) for 
more information.

The following six inference engines are currently supported in the NXP eIQ software stack: TensorFlow Lite, ONNX Runtime, 
PyTorch, DeepViewTMRT, OpenCV, and Arm NN. The following figure shows the supported eIQ inference engines accross the 
computing units.

Figure 1. NXP eIQ supported compute vs. inference engines

The NXP eIQ inference engines support multi-threaded execution on Cortex-A cores. Additionally, ONNX Runtime, TensorFlow 
Lite, DeepViewRT, and Arm NN also support acceleration on the GPU or NPU through Neural Network Runtime (NNRT). See also 
eIQ Inference Runtime Overview.

 
Arm NN inference engine is deprecated and will be removed in the future.

  NOTE  

Generally, the NXP eIQ is prepared to support the following key application domains:

• Vision

— Multi camera observation

— Active object recognition

— Gesture control
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• Voice

— Voice processing

— Home entertainment

• Sound

— Smart sense and control

— Visual inspection

— Sound monitoring
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Chapter 2
eIQ Inference Runtime Overview
The chapter describes an overview of the NXP eIQ software stack for use with the NXP Neural Network Accelerator IPs (GPU or 
NPU). The following figure shows the data flow between each element. The below diagram has two key parts:

• Neural Network Runtime (NNRT), which is a middleware bridging various inference frameworks and the NN 
accelerator driver.

• TIM-VX, which is a software integration module to facilitate deployment of Neural Networks on OpenVX enabled 
ML accelerators.

ModelRunner for DeepViewRT is a server application being able to receive requests using HTTP REST API, Python API, or UNIX 
RPC service, and delegate those to different inference engines, or the NN accelerator driver directly. See also ModelRunner for 
more details.

The NNRT supplies different backends for Android NN HAL, Arm NN, ONNX, and TensorFlow Lite allowing quick application 
deployment. The NNRT also empowers an application-oriented framework for use with i.MX8 processors. Application frameworks 
such as Android NN, TensorFlow Lite, and Arm NN can be speed-up by NNRT directly benefiting from its built-in backend plug-ins. 
Additional backend can be also implemented to expand support for other frameworks.
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OpenVX driver

VSI NPU
backend

Android

Android application

Android HAL
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Backend
interface HIDL

Android ecosystem

NNAPI

C API

Extended
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Figure 2. eIQ inference software architecture
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NNRT supports different Machine Learning frameworks by registering itself as a compute backend. Because each framework 
defines a different backend API, a lightweight backend layer is designed for each:

• For Android NN, the NNRT follows the Android HIDL definition. It is compatible with v1.2 HAL interface

• For TensorFlow Lite, the NNRT supports NNAPI Delegate. It supports most operations in Android NNAPI v1.2

• For Arm NN, the NNRT registers itself as a compute backend

• For ONNX Runtime, the NNRT registers itself as an execution provider

In doing so, NNRT unifies application framework differences and provides an universal runtime interface into the driver stack. At 
the same time, NNRT also acts as the heterogeneous compute platform for further distributing workloads efficiently across i.MX8 
compute devices, such as NPU, GPU and CPU.

 
Both the OpenCV and PyTorch inference engines are currently not supported for running on the NXP NN 
accelerators. Therefore, both frameworks are not included in the above NXP-NN architecture diagram.

  NOTE  
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Chapter 3
TensorFlow Lite
TensorFlow Lite is an open-source software library focused on running machine learning models on mobile and embedded 
devices (available at http://www.tensorflow.org/lite). It enables on-device machine learning inference with low latency and small 
binary size. TensorFlow Lite also supports hardware acceleration using the VX Delegate or Android OS Neural Networks API 
(NNAPI) on various i.MX 8 platforms (in the NXP eIQ).

The TensorFlow Lite source code for this Yocto Linux release is available at this repository, branch lf-5.15.5_1.0.0. This repository 
is a fork of the mainline https://github.com/tensorflow/tensorflow, and it is optimized for NXP i.MX8 platforms.

Features:

• TensorFlow Lite v2.6.0

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units)

• C++ and Python API (supported Python version 3)

• Per-tensor and Per-channel quantized models support

3.1 TensorFlow Lite software stack
The TensorFlow Lite software stack is shown in the following picture. The TensorFlow Lite supports computation on the following 
hardware units:

• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the Android NNAPI driver or VX Delegate

See Software Stack Introduction for some details about supporting of computation on GPU/NPU hardware accelerator on different 
hardware platforms.
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Figure 3. TensorFlow Lite software stack

 
The first execution of model inference using the NNAPI or VX Delegate will take longer, because of the 
time required for computational graph initialization by the GPU/NPU driver. The iterations following the graph 
initialization will perform much quicker. Note the computational graph is the representation of the operations and 
theirs dependencies to perform computation specified by the model. The computation graph is built during the 
model parsing phase.

The NNAPI and VX Delegate implementations use the OpenVX™ library for computational graph execution on the 
GPU/NPU hardware accelerator. Therefore, OpenVX library support must be available for the selected device to 
be able to use the acceleration. For more details on the OpenVX library availability, see the i.MX Graphics User's 
Guide (IMXGRAPHICUG).

Refer to i.MX Graphics Users Guide for list GPUs with OpenVX support. Note the GC7000 Lite and GC7000 Ultra 
Lite GPUs does not support full OpenVX however still capable to run ML workload.

The GPU/NPU hardware accelerator driver support both per-tensor and per-channel quantized models. The 
GPU/NPU hardware accelerator is optimized for per-tensor quantized models. In case of per-channel quantized 
models, the performance might be lower. The actual impact depends on the model used.

  NOTE  

3.2 Compute backends and delegates
TensorFlow Lite comes with options to execute compute operations of various compute units. We will refer to them as 
inference backends.

3.2.1 Built-in kernels
Default inference backend is the CPU with reference kernels from TensorFlow Lite implementation. Built-in kernels provide full 
support for TensorFlow Lite operator set.
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The built-in kernels are built with RUY matrix multiplication library enabled, which increases the performance of the kernels for 
floating point and quantized operations.

3.2.2 XNNPACK delegate
XNNPACK library is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and 
x86 platforms. The XNNPACK library is available through XNNPACK delegate in TensorFlow Lite. The XNNPACK delegate 
computation is performed on the CPU.

It provides optimized implementation for a subset of TensorFlow Lite operator set for floating point operators. In general, it provides 
better performance than the built-in kernels for floating point operators.

 
Since TensorFlow Lite 2.6.0, the floating point models are executed via the XNNPACK Delegate by default.

  NOTE  

3.2.3 NNAPI delegate
NNAPI delegate enables accelerating the inference on on-chip hardware accelerator. The delegate is based on Android’s 
Neural Network API (NNAPI) specification. The full specification is available here: https://developer.android.com/ndk/reference/
group/neural-networks.

The TensorFlow Lite library uses the Android NNAPI implementation from the GPU/NPU driver for running inference using the 
GPU/NPU hardware accelerator. The implemented NNAPI version is 1.2 which has some limitations in supported tensor data 
types and operations, compared to the feature set of TensorFlow Lite. Therefore, some models may work without acceleration 
enabled, but may fail when using the NNAPI. For the full list of supported features, see the NN HAL versions section of the 
NNAPI documentation.

NNAPI specification comes with its own operator set, which includes most but not all operator from TensorFlow Lite operator set. 
Moreover, not all variants of TensorFlow Lite operators are supported by NNAPI. This is valid for hardware accelerators operator 
support, where some operators are supported by the accelerator but are not part of NNAPI specification. Therefore, some layers 
execution can unnecessarily fall back on CPU, even if the HW accelerator supports the particular layer.

For all operators in the model, which was refused by the NNAPI delegate the TensorFlow Lite runtime print a warning message 
with reason why the operator was refused by the delegate:

WARNING: Operator ARG_MAX (v1) refused by NNAPI delegate: NNAPI only supports int32 output.

This information can be used to optimize the model for better performance.

 
The NNAPI Delegate for Linux platform is deprecated and will be removed in the future. Use VX Delegate instead. 
The NNAPI Delegate is not supported in the Python API.

  NOTE  

3.2.4 VX Delegate
VX Delegate is a successor of the NNAPI Delegate on i.MX 8 Linux platforms. It enables accelerating the inference on on-chip 
hardware accelerator. The VX Delegate directly uses the hardware accelerator driver (OpenVX with extension) to fully utilize the 
accelerator capabilities. Over the NNAPI delegate it offers better alignment with the on-chip HW accelerator capabilities.

The VX Delegate is available as external delegate[1]. The corresponding library is available in /usr/lib/libvx_delegate.so.

VX Delegate is supported in both C++ and Python API. For using VX Delegate (or any external delegate), see the 
external_delegate_provider implementation in C++ and/or label_image.py for Python. List of supported operators are available 
in op_status.md.

[1] An external delegate is a special Tensorflow Lite delegate that is simply initialized from loading a dynamic library which 
encapsulates an actual TensorFlow Lite delegate implementation
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3.3 Delivery package
The TensorFlow Lite is available using Yocto Project recipes.

The TensorFlow Lite delivery package contains:

• TensorFlow Lite shared libraries

• TensorFlow Lite header files

• Python Module for TensorFlow Lite

• Image classification example application for C++ (label_image) and for Python (label_image.py)

• TensorFlow Lite benchmark application (benchmark_model)

• TensorFlow Lite evaluation tools (coco_object_detection_run_eval, imagenet_image_classification_run_eval, 
inference_diff_run_eval), see TensorFlow Lite Delegates for details.

For application development, the TensorFlow Lite shared libraries and header files are available in the SDK. See Section 
Application development for more details.

There are following delegates available in the TensorFlow Lite 2.6.0 delivery package:

• XNNPACK Delegate

• NNAPI Delegate (deprecated)

• VX Delegate

3.4 Build details
TensorFlow Lite uses CMake build system for compilation. Notable remarks to package building are:

• RUY matrix multiplication library is enabled (TFLITE_ENABLE_RUY=On). RUY matrix multiplication library offers better 
performance compared to kernels build with Eigen and GEMLOWP.

• XNNPACK Delegate support (TFLITE_ENABLE_XNNPACK=On)

• NNAPI Delegate support[2] (TFLITE_ENABLE_NNAPI=On), including warning messages for refused 
operation (TFLITE_ENABLE_NNAPI_VERBOSE_VALIDATION=On)

• External Delegate support (TFLITE_ENABLE_EXTERNAL_DELEGATE=On)

• The runtime library is built and provided as a shared library (TFLITE_BUILD_SHARED_LIB=On). If static linking of the 
TensorFlow Lite library to the application is preferred, keep this switch in off state (default settings). This might be convenient 
if the application is built with CMake as described in the Section Create CMake project which uses TensorFlow Lite.

• The package is compiled with the default -O2 optimization level. Some CPU kernels, e.g. RESIZE_BILINEAR, are known 
to performs better with -O3 optimization level, however some performs better with -O2, e.g. ARG_MAX. We recommend to 
adjust the optimization level, based on the application needs.

Yocto project builds the TensorFlow Lite with these settings. The build configuration can be changed by either updating the 
TensorFlow Lite Yocto recipe in the meta-imx layer (located in meta-imx/meta-ml/recipes-libraries/tensorflow-lite/), or 
building the TensorFlow Lite from source code using the CMake and the Yocto SDK.

3.5 Application development
This section describes how to use TensorFlow Lite C++ API in the application development.

[2] Only for platforms with OpenVX support
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To start with TensorFlow Lite C++ application development, a Yocto SDK must be generated firstly. See the i.MX Yocto Project 
User’s Guide (IMXLXYOCTOUG) for detailed information how to generate Yocto SDK environment for cross-compiling. To 
activate this Yocto SDK environment on your host machine, use this command:

$ source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

To build an application which uses the TensorFlow Lite, following options are available:

• Create CMake project which uses TensorFlow Lite (CMake superbuild pattern)

• Using Yocto SDK precompiled libraries

The TensorFlow Lite’s CMake configuration file is in tensorflow/lite/CMakeLists.txt from the root repository (for NXP 
i.MX8 platforms).

3.5.1 Create CMake project which uses TensorFlow Lite
The recommended way is to create a CMake project which uses TensorFlow Lite as described in Build TensorFlow Lite with 
CMake. CMake takes care of dependencies preparation, including download, configure and build steps.

To demonstrate this build option, there is a minimal example project available in tensorflow/lite/examples/minimal. To 
build it:

1. Set up the Yocto SDK as described above

2. Configure the project using CMake:

$ mkdir build-minimal-example; cd build-minimal-example
$ cmake -DCMAKE_TOOLCHAIN_FILE=${OE_CMAKE_TOOLCHAIN_FILE} -DTFLITE_ENABLE_XNNPACK=on \  
-DTFLITE_ENABLE_RUY=on -DTFLITE_ENABLE_NNAPI=on  -DTFLITE_ENABLE_NNAPI_VERBOSE_VALIDATION=on \ 
-DTIM_VX_INSTALL=${SDKTARGETSYSROOT}/usr ../tensorflow/lite/examples/minimal

3. Build the project:

$ cmake --build . -j4

4. The minimal example is available in the build directory:

$ file minimal
minimal: ELF 64-bit LSB shared object, ARM aarch64, version 1 (GNU/Linux), dynamically linked, 
interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=4a928894439e0b33217ea28790378690ab4ce7cd, 
for GNU/Linux 3.14.0, with debug_info, not stripped

5. Optionally you can strip the final binary:

$ $STRIP --remove-section=.comment --remove-section=.note --strip-unneeded <file>

This build option has several advantages:

• Automatic dependency resolution based on configure options

• Option to choose between static or dynamic linking (TFLITE_BUILD_SHARED_LIB=on/off)

• Building the whole project (including its dependencies) in the Debug mode (CMAKE_BUILD_TYPE=Debug/Release/…), for 
enhanced debugging experience

3.5.2 Using Yocto SDK precompiled libraries
Another option is to use the precompiled binaries and header files which are directly available in the Yocto SDK. The TensorFlow 
Lite artifacts are in the Yocto SDK as follows:

• TensorFlow Lite shared library (libtensorflow-lite.so) in /usr/lib
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• TensorFlow Lite header files in /usr/include

 
Not all TensorFlow Lite dependencies are installed in the Yocto SDK and it is necessary to download and 
optionally build them manually. For the required versions see the tensorflow/lite/tools/cmake/
modules/ folder.

  NOTE  

To build the image classification demo (label_image), located in tensorflow/lite/examples/label_image/, follow these steps:

1. Create build directory:

$ mkdir build-manual
$ cd build-manual

2. Download the Abseil library dependency:

$ wget https://github.com/abseil/abseil-cpp/archive/
6f9d96a1f41439ac172ee2ef7ccd8edf0e5d068c.tar.gz -O abseil-cpp.tar.gz
$ tar -xzf abseil-cpp.tar.gz
$ mv abseil-cpp-6f9d96a1f41439ac172ee2ef7ccd8edf0e5d068c abseil-cpp

3. Build the label_image example:

$ $CC ../tensorflow/lite/examples/label_image/label_image.cc ../tensorflow/lite/examples/
label_image/bitmap_helpers.cc ../tensorflow/lite/tools/evaluation/utils.cc ../tensorflow/lite/
tools/delegates/delegate_provider.cc -Iabseil-cpp -O2 -ltensorflow-lite -lstdc++ -lpthread 
-lm -ldl -lrt

3.6 Running image classification example
A Yocto Linux BSP image with machine learning layer included by default contains a simple pre-installed example called 
‘label_image’ usable with image classification models. The example binary file is located at:

/usr/bin/tensorflow-lite-2.6.0/examples

Figure 4. TensorFlow image classification input

Demo instructions:
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To run the example with mobilenet model on the CPU, use the following command:

$ ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt

The output of a successful classification on the i.MX 8MPlus SoC for the 'grace_hopper.bmp' input image is as follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
average time: 39.271 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

To run the example application on the CPU with using the XNNPACK delegate, use the --use_xnnpack=true switch:

$ ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt --
use_xnnpack=true

To run the example with the same model on the GPU/NPU hardware accelerator, add the --use_nnapi=true (for NNAPI Delegate) 
or --external_delegate_path=/usr/lib/libvx_delegate.so (for VX Delegate) command line argument. To differentiate between the 3D 
GPU and the NPU, use the USE_GPU_INFERENCE environmental variable. For example, to run the model accelerated on the NPU 
hardware using VX Delegate, use this command:

$ USE_GPU_INFERENCE=0 ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l 
labels.txt --external_delegate_path=/usr/lib/libvx_delegate.so

The output of the NPU acceleration on the i.MX 8MPlus processor is as follows:

INFO: Loaded model ./mobilenet_v1_1.0_224_quant.tflite
INFO: resolved reporter
Vx delegate: allowed_builtin_code set to 0.
Vx delegate: error_during_init set to 0.
Vx delegate: error_during_prepare set to 0.
Vx delegate: error_during_invoke set to 0.
EXTERNAL delegate created.
INFO: Applied EXTERNAL delegate.
W [HandleLayoutInfer:257]Op 18: default layout inference pass.
INFO: invoked
INFO: average time: 2.567 ms
INFO: 0.768627: 653 military uniform
INFO: 0.105882: 907 Windsor tie
INFO: 0.0196078: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit

Alternatively, the example using the TensorFlow Lite interpreter-only Python API can be run. The example file is located at:

/usr/bin/tensorflow-lite-2.6.0/examples

To run the example using the predefined command line arguments, use the following command:

$ python3 label_image.py
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The output should be as follows:

Warm-up time: 159.1 ms
Inference time: 156.5 ms
0.878431: military uniform
0.027451: Windsor tie
0.011765: mortarboard
0.011765: bulletproof vest
0.007843: sax

The Python example supports external delegates also. The switch --ext_delegate <PATH> and --ext_delegate_options 
<EXT_DELEGATE_OPTIONS>, can be used to specify the external delegate library and optionally its arguments.

3.7 Running benchmark applications
A Yocto Linux BSP image with machine learning layer included by default contains a pre-installed benchmarking application. It 
performs a simple TensorFlow Lite model inference and prints benchmarking information. The application binary file is located at:

/usr/bin/tensorflow-lite-2.6.0/examples

Benchmarking instructions are as follows:

To run the benchmark with computation on CPU, use the following command:

$ ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

You can optionally specify the number of threads with the --num_threads=X parameter to run the inference on multiple cores. For 
highest performance, set X to the number of cores available.

The output of the benchmarking application should be similar to:

STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Loaded model mobilenet_v1_1.0_224_quant.tflite
Going to apply 0 delegates one after another.
The input model file size (MB): 4.27635
Initialized session in 3.051ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 
150 seconds.
count=4 first=160408 curr=155384 min=155384 max=160408 avg=156869 std=2076
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 
150 seconds.
count=50 first=155586 curr=155424 min=155274 max=155622 avg=155443 std=81

Inference timings in us: Init: 3051, First inference: 160408, Warmup (avg): 156869, Inference 
(avg): 155443
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the 
actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=4.49219 overall=10.6133

To run the inference using the XNNPACK delegate, add the --use_xnnpack=true switch:

$ ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --use_xnnpack=true

To run the inference using the GPU/NPU hardware accelerator for NNAPI Delegate, add the --use_nnapi=true switch:

$ ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --use_nnapi=true
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To run the inference using the GPU/NPU hardware accelerator for VX Delegate, add the --
external_delegate_path=/usr/lib/libvx_delegate.so switch:

$ ./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --
external_delegate_path=/usr/lib/libvx_delegate.so

The output with GPU/NPU module acceleration enabled (for VX Delegate) should be similar to:

STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
External delegate path: [/usr/lib/libvx_delegate.so]
Loaded model mobilenet_v1_1.0_224_quant.tflite
Vx delegate: allowed_builtin_code set to 0.
Vx delegate: error_during_init set to 0.
Vx delegate: error_during_prepare set to 0.
Vx delegate: error_during_invoke set to 0.
EXTERNAL delegate created.
Going to apply 1 delegates one after another.
Explicitly applied EXTERNAL delegate, and the model graph will be completely executed by the delegate.
The input model file size (MB): 4.27635
Initialized session in 13.437ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 
150 seconds.
W [HandleLayoutInfer:257]Op 18: default layout inference pass.
count=1 curr=4586473
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 
150 seconds.
count=398 first=2541 curr=2419 min=2419 max=2549 avg=2467.87 std=13
Inference timings in us: Init: 13437, First inference: 4586473, Warmup (avg): 4.58647e+06, Inference 
(avg): 2467.87
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the 
actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=7.24609 overall=34.0117

The delegates are not required to support the full set of operators defined by the TensorFlow Lite runtime. If the model contains 
such a operation, which is not supported by the particular delegate, this operation execution falls back to CPU using the 
TensorFlow Lite reference kernels. This way the computational graph represented by the model gets divided into segments and 
each segment is executed . The graph segmentation or also called graph partitioning is the process, where the computational 
graph defined by the model is divided into smaller segments (or partitions) and each of them is executed via the delegate or on 
the CPU using reference kernels (CPU fallback), based on operation supported by the delegate.

The benchmark application is also useful to check the optional segmentation of the models if accelerated on GPU/NPU hardware 
accelerator. For this purpose, the combination of the --enable_op_profiling=true and --max_delegated_partitions=<big 
number> (e.g., 1000) options can be used.

In addition to the output presented above, the NNAPI Delegate reports details on why a particular layer was refused by 
the delegate:

INFO: Created TensorFlow Lite delegate for NNAPI.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due 
performance reasons.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due 
performance reasons.
WARNING: Operator RESIZE_BILINEAR (v1) refused by NNAPI delegate: Operator refused due 
performance reasons.
WARNING: Operator ARG_MAX (v1) refused by NNAPI delegate: NNAPI only supports int32 output.
Explicitly applied NNAPI delegate, and the model graph will be partially executed by the delegate w/ 
2 delegate kernels.
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And detailed profiling information is available:

Profiling Info for Benchmark Initialization:
================================= Run Order ===================================
[node type]                 [start]   [first]   [avg ms]       [%]       [cdf%]
ModifyGraphWithDelegate       0.000     4.597      4.597   95.791%      95.791%
AllocateTensors               4.528     0.198      0.101    4.209%     100.000%
======================== Top by Computation Time ==============================
[node type]                 [start]   [first]   [avg ms]       [%]       [cdf%]
ModifyGraphWithDelegate       0.000     4.597      4.597   95.791%      95.791%
AllocateTensors               4.528     0.198      0.101    4.209%     100.000%
Number of nodes executed: 2
=========================== Summary by node type ==============================
            [Node type] [count][avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate       1   4.597 95.791% 95.791%  684.000              1
AllocateTensors               1   0.202  4.209% 100.000%   0.000              2
Timings (microseconds): count=1 curr=4799
Memory (bytes): count=0
2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
================================ Run Order ====================================
        [node type]    [start]    [first]    [avg ms]         [%]        [cdf%]
TfLiteNnapiDelegate      0.000     14.890      14.894     11.349%       11.349%
    RESIZE_BILINEAR     14.896      1.331       1.331      1.014%       12.363%
TfLiteNnapiDelegate     16.227      2.944       2.909      2.216%       14.579%
    RESIZE_BILINEAR     19.137      0.279       0.277      0.211%       14.790%
    RESIZE_BILINEAR     19.415     44.316      44.496     33.905%       48.695%
            ARG_MAX     63.912     67.438      67.332     51.305%      100.000%
========================= Top by Computation Time =============================
        [node type]     [start]   [first]   [avg ms]          [%]        [cdf%]
            ARG_MAX      63.912    67.438     67.332      51.305%       51.305%
    RESIZE_BILINEAR      19.415    44.316     44.496      33.905%       85.210%
TfLiteNnapiDelegate       0.000    14.890     14.894      11.349%       96.559%
TfLiteNnapiDelegate      16.227     2.944      2.909       2.216%       98.775%
    RESIZE_BILINEAR      14.896     1.331      1.331       1.014%       99.789%
    RESIZE_BILINEAR      19.137     0.279      0.277       0.211%      100.000%
Number of nodes executed: 6
========================== Summary by node type ===============================
        [Node type] [count] [avg ms]  [avg %]   [cdf %] [mem KB] [times called]
            ARG_MAX       1   67.332  51.306%   51.306%    0.000              1
    RESIZE_BILINEAR       3   46.102  35.129%   86.435%    0.000              3
TfLiteNnapiDelegate       2   17.802  13.565%  100.000%    0.000              2
Timings (microseconds): count=8 first=131198 curr=130580 min=130580 max=132766 avg=131238 std=616
Memory (bytes): count=0
6 nodes observed

Based on section “Number of nodes executed” in the output, it can be determined which part of the computation graph was 
executed on GPU/NPU hardware accelerator. Every node except TfLiteNnapiDelegate falls back to CPU. In the example above, 
the ARG_MAX and RESIZE_BILINEAR nodes fall back to CPU.

3.8 Post training quantization using TensorFlow Lite converter
TensorFlow offers several methods for model quantization:

• Post training quantization with TensorFlow Lite Converter

• Quantization aware training using Model Optimization Toolkits and TensorFlow Lite Converter

• Various other methods available in previous TensorFlow releases
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The model quantization is also supported by the "eIQ Toolkit". See also eIQ Toolkit User's Guide (EIQTUG).

  NOTE  

Covering all of them is beyond the scope of this documentation. This section describes the approach for the post training 
quantization using the TensorFlow Lite Converter.

The Converter is available as a part of standard TensorFlow desktop installation. It is used to convert and optionally quantize 
TensorFlow model into TensorFlow Lite model format. There are two options how to use the tool:

• The Python API (recommended)

• Command line script

The post training quantization using the Python API is described in this chapter. The documentation useful for model conversion 
and quantization is available here:

• Python API documentation: https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/lite/TFLiteConverter

• Guide for model conversion: www.tensorflow.org/lite/convert

• Guide for model quantization: https://www.tensorflow.org/lite/performance/post_training_quantization

• Guide for model optimization: https://www.tensorflow.org/model_optimization

 
The guides on TensorFlow page usually covers the most up to date version of TensorFlow, which might be different 
from the version available in the NXP eIQ. To see what features are available, check the corresponding API for the 
specific version of the TensorFlow or TensorFlow Lite.

  NOTE  

The current version of the TensorFlow Lite available in the NXP eIQ is 2.6.0. It is recommended to use the TensorFlow Lite 
converter from corresponding TensorFlow version. The TensorFlow Lite runtime should be compatible with models generated 
by previous version of TensorFlow Lite Converter, however this backward compatibility is not guaranteed. Usage of successive 
version of TensorFlow Lite converter shall be avoided.

The 2.6.0 version of the converter has the following properties:

• In the post training quantization regime, the per-channel quantization is the only option. The per-tensor quantization is 
available only in connection with quantization aware training.

• Input and output tensors quantization is supported by setting the required data type in inference_input_type 
and inference_output_type.

• TOCO or MLIR based conversions are available. This is controlled by the experimental_new_converter attribute. As TOCO 
is becoming obsolete, MLIR-based conversion is already set by default in the 2.6.0 version of the converter.

MLIR converter uses dynamic tensor shapes, what means the batch size of the input tensor is unspecified. Dynamic tensor 
shapes are not supported, by the GPU and NPU hardware accelerators and this shall be turned off. Standard installation 
of TensorFlow does not provide API to control the dynamic tensor shape feature, but can be deactivated in the tensorflow 
instalation, as follows. Locate the <python-install-dir>/site-packages/tensorflow/lite/python/lite.py file and 
change the private method TFLiteConverterBase._is_unknown_shapes_allowed(self) to return False value, as follows:

def _is_unknown_shapes_allowed(self):
# Unknown dimensions are only allowed with the new converter.
# Return self.experimental_new_converter
# Disable unknown dimensions support.
return False

 
MLIR is a new NN compiler used by TensorFlow, which supports quantization. Before MLIR, quantization was 
performed by TOCO (or TOCO Converter), which is now obsolete. See https://www.tensorflow.org/api_docs/
python/tf/compat/v1/lite/TocoConverter. For details about MLIR, see https://www.tensorflow.org/mlir.

  NOTE  
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Do not use the dynamic range method for models being run on NN accelerators (GPU or NPU). It converts only the 
weights to 8-bit integers, but retains the activations in fp32, which results in the inference running in fp32 with an 
additional overhead for data conversion. In fact, the inference is even slower compared to a fp32 model, because 
the conversion is done on the fly.

  NOTE  

For the full-integer post training quantization, a representative dataset is needed. The proper choice of samples in representative 
dataset highly influences the accuracy of the final quantized model. The best practices for creating the representative dataset are:

• Use train samples for which the original floating points model has very good accuracy, based on metrics the model used (e.g., 
SoftMax score for classification models, IOU for object detection models, etc.).

• There shall be enough samples in representative dataset.

• The size of representative dataset and the specific samples available in it are considered as hyperparameters to tune, with 
respect of the required model accuracy.
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Chapter 4
Arm Compute Library
Arm Compute Library (ACL) is a collection of low-level functions optimized for Arm CPU and GPU architectures targeted at image 
processing, computer vision, and machine learning.

Arm Compute Library is designed as a compute engine for the Arm NN framework, so it is suggested to use Arm NN unless there 
is a need for a more optimized runtime.

Source codes are available at https://source.codeaurora.org/external/imx/arm-computelibrary-imx.

Features:

• Arm Compute Library 21.08

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A CPU cores

• C++ API only

• Low-level control over computation

 
The GPU OpenCL backend is not supported on i.MX 8 devices.

  NOTE  

4.1 Running a DNN with random weights and inputs
Arm Compute Library comes with examples for most common DNN architectures like: AlexNet, MobileNet, ResNet, Inception v3, 
Inception v4, SqueezeNet, etc.

All available examples can be found in this example build location:

/usr/bin/arm-compute-library-21.08/examples

Each model architecture can be tested using graph_[dnn_model] application.

For example, to run the MobileNet v2 DNN model, use the following command:

$ ./graph_mobilenet_v2 --data=<path_cnn_data> --image=<input_image> --labels=<labels> --target=neon --
type=<data_type> --threads=<num_of_threads>

The parameters are not mandatory. When not provided, the application runs the model with random weights and inputs. If 
inference finishes successfully, the “Test passed" message is printed.

4.1.1 Running AlexNet using graph API
In 2012, AlexNet shot to fame when it won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual 
challenge that aims to evaluate algorithms for object detection and image classification. AlexNet is made up of eight trainable 
layers: five convolution layers and three fully connected layers. All the trainable layers are followed by a ReLu activation function, 
except for the last fully connected layer, where the Softmax function is used.

Location of the C++ AlexNet example implementation using the graph API is in this folder:

/usr/bin/arm-compute-library-21.08/examples

Demo instructions:

• Download the archive file (compute_library_alexnet.zip) to the example location folder.
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• Create a new sub-folder and unzip the file:

$ mkdir assets_alexnet
$ unzip compute_library_alexnet.zip -d assets_alexnet

• Set environment variables for execution:

$ export PATH_ASSETS=/usr/bin/arm-compute-library-21.08/examples/assets_alexnet/

• Run the example with following command line arguments:

$ ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --labels=$PATH_ASSETS/
labels.txt --target=neon --type=f32 --threads=4

The output of a successful classification should be similar as the one below:

---------- Top 5 predictions ----------
0.9736 - [id = 573], n03444034 go-kart
0.0108 - [id = 751], n04037443 racer, race car, racing car
0.0118 - [id = 518], n03127747 crash helmet
0.0022 - [id = 817], n04285008 sports car, sport car
0.0006 - [id = 670], n03791053 motor scooter, scooter
Test passed
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Chapter 5
Arm NN
Arm NN is an open-source inference engine framework developed by Linaro Artificial Intelligence Initiative, which NXP is a part 
of. It does not perform computations on its own, but rather delegates the input from multiple model formats such as TensorFlow 
Lite, or ONNX, to specialized compute engines.

Source codes are available at https://source.codeaurora.org/external/imx/armnn-imx.

Features:

• Arm NN 21.08

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided by the ACL 
Neon backend

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units) provided by the VSI 
NPU backend

• C++ and Python API (supported Python version 3)

• Supports multiple input formats (TensorFlow Lite, ONNX)

• Off-line tools for serialization, deserialization, and quantization (must be built from source)

 
Arm NN inference engine is deprecated and will be removed in the future.

  NOTE  

5.1 Arm NN software stack
The Arm NN software stack is shown in the picture below. Arm NN supports computation on the following HW units:

• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the VSI NPU backend, which runs on both the GPU and the NPU depending on 
which is available

See Software Stack Introduction for details about the support of GPU/NPU accelerators for each hardware platform.
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Figure 5. Arm NN SW stack

5.2 Compute backends
Arm NN on its own does not specialize in implementing compute operations. There is only the C++ reference backend running 
on the CPU, which is not optimized for performance and should be used for testing, checking results, prototyping, or as the final 
fallback, if none of the other backends supports a specific layer. The other backends delegate compute operations to other more 
specialized libraries such as Arm Compute Library (ACL).

• For the CPU: there is the NEON backend, which uses Arm Compute Library with the Arm NEON SIMD extension.
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• For the GPUs and NPUs: NXP provides the VSI NPU backend, which leverages the full capabilities of i.MX 8's GPUs/
NPUs using OpenVX and provides a great performance boost. ACL OpenCL backend, which you might notice in the 
source codes, is not supported due to Arm NN OpenCL requirements not being fulfilled by the i.MX 8 GPUs.

To activate the chosen backend while running the examples described in the following sections, add the following argument. The 
user can give multiple backends for the example applications. A layer in the model will be executed by the first backend, which 
supports the layer:

<example_binary> --compute=arg

Where arg can be:

• CpuRef: Arm NN C++ backend (no SIMD instructions); a set of reference implementations with NO acceleration on the CPU, 
which is used for testing, prototyping, or as the final fallback. It is very slow.

• CpuAcc: ACL NEON backend (runs on CPU with NEON instructions = SIMD)

• VsiNpu: For the GPUs and NPUs, NXP provides the VSI NPU backend, which leverages the full capabilities of i.MX 8's GPUs.

To develop your own application, make sure that you pass the chosen backend (CpuAcc, VsiNpu, or CpuRef) to the Optimize 
function for inference.

 
VsiNpu backend delegates execution to the OpenVX driver. It depends on the driver if the workload is executed on 
the NPU or the GPU.

  NOTE  

5.3 Running Arm NN tests
Arm NN SDK provides a set of tests, which can also be considered as demos showing what Arm NN does and how to use it. They 
load neural network models of various formats (TensorFlow Lite, ONNX), run the inference on a specified input data, and output 
the inference result. Arm NN tests are built by default when building the Yocto image and are installed in /usr/bin/armnn-21.08. 
Note that input data, model configurations, and model weights are not distributed with Arm NN. The user must download them 
separately and make sure they are available on the device before running the tests. However, Arm NN tests do not come with a 
documentation. Input file names are hardcoded, so investigate the code to find out what input file names are expected.

To help get started with Arm NN, the following sections provide details about how to prepare the input data and how to run Arm 
NN tests. All of them use well-known neural network models. Therefore, with only a few exceptions, such pre-trained networks 
are available freely on the Internet. Input images, models, formats, and their content was deduced using code analysis. However, 
this was not possible for all the tests, because either the models are not publicly available or it is not possible to deduce clearly 
what input files are required by the application. General workflow is first to prepare data on a host machine and then to deploy it 
on the board, where the actual Arm NN tests will be run.

The following sections assume that neural network model files are stored in a folder called models and input image files are stored 
in a folder called data. Create this folder structure on the larger partition using the following commands:

$ cd /usr/bin/armnn-21.08 
$ mkdir data 
$ mkdir models 

5.3.1 TensorFlow Lite tests
Arm NN SDK provides the following test for TensorFlow Lite models:

/usr/bin/armnn-21.08/TfLiteInceptionV3Quantized-Armnn 
/usr/bin/armnn-21.08/TfLiteInceptionV4Quantized-Armnn 
/usr/bin/armnn-21.08/TfLiteMnasNet-Armnn 
/usr/bin/armnn-21.08/TfLiteMobileNetSsd-Armnn 
/usr/bin/armnn-21.08/TfLiteMobilenetQuantized-Armnn 
/usr/bin/armnn-21.08/TfLiteMobilenetV2Quantized-Armnn 
/usr/bin/armnn-21.08/TfLiteResNetV2-Armnn 
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/usr/bin/armnn-21.08/TfLiteVGG16Quantized-Armnn 
/usr/bin/armnn-21.08/TfLiteResNetV2-50-Quantized-Armnn 
/usr/bin/armnn-21.08/TfLiteMobileNetQuantizedSoftmax-Armnn 
/usr/bin/armnn-21.08/TfLiteYoloV3Big-Armnn

 
For the full list of the supported operators, see TensorFlow Lite support.

  NOTE  

The following table provides the list of all dependencies for each Arm NN TensorFlow Lite binary example.

Table 1. Arm NN TensorFlow Lite example dependencies

Arm NN binary Model file name Renamed input files and data

TfLiteInceptionV3Quantized-Armnn inception_v3_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMnasNet-Armnn mnasnet_1.3_224.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMobilenetQuantized-Armnn mobilenet_v1_1.0_224_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteMobilenetV2Quantized-Armnn mobilenet_v2_1.0_224_quant.tflite shark.jpg, Dog.jpg, Cat.jpg

TfLiteResNetV2-50-Quantized-Armnn Model not available N/A

TfLiteInceptionV4Quantized-Armnn Model not available N/A

TfLiteMobileNetSsd-Armnn Model not available N/A

TfLiteResNetV2-Armnn Model not available N/A

TfLiteVGG16Quantized-Armnn Model not available N/A

TfLiteMobileNetQuantizedSoftmax-Armnn Model not available N/A

TfLiteYoloV3Big-Armnn Model not available N/A

 
Some models or input files are not publicly available.

  NOTE  

Perform the following steps to run each of the examples above:

1. Download the model (column 2 of the table) and copy it to the models folder on the device.

2. Download the input data (column 3 of the table) and copy it to the data folder on the device. Rename all JPG images 
according to the expected input (shark.jpg, Dog.jpg, Cat.jpg). All these names are case sensitive.

3. Run the test:

$ cd /usr/bin/armnn-21.08 
$ ./<armnn_binary> --data-dir=data --model-dir=models

5.3.2 ONNX tests
The Arm NN provides the following set of tests for ONNX models:

/usr/bin/armnn-21.08/OnnxMnist-Armnn 
/usr/bin/armnn-21.08/OnnxMobileNet-Armnn

 
For the full list of the supported operators, see ONNX support.

  NOTE  

The following table provides the list of all dependencies for each Arm NN ONNX binary example.
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Table 2. Arm NN ONNX example dependencies

Arm NN binary Model file name Renamed input files and data Renamed model 
file name

OnnxMnist-Armnn model.onnx t10k-images.idx3-ubyte, t10k-labels.
idx1-ubyte

mnist_onnx.onnx

OnnxMobileNet-
Armnn

mobilenetv2-1.0.onnx shark.jpg, Dog.jpg, Cat.jpg mobilenetv2-1.0.onnx

Perform the following steps to run each of the examples above:

1. Download the model (column 2 of the table).

2. Rename the original model name to the new model name (column 4 of the table) and copy it to the models folder on 
the device.

3. Download the input data (column 3 of the table) and copy it to the data folder on the device.

4. Rename all the JPG images according to the expected input (shark.jpg, Dog.jpg, Cat.jpg). All these names are 
case sensitive.

5. Run the test:

$ cd /usr/bin/armnn-21.08 
$ ./<armnn_binary> --data-dir=data --model-dir=models

5.4 Using Arm NN in a custom C/C++ application
You can create your own C/C++ applications for the i.MX 8 family of devices using Arm NN capabilities. This requires writing 
the code using the Arm NNAPI, setting up the build dependencies, cross-compiling the code for an aarch64 architecture, and 
deploying your application. Below is a detailed description for each of these steps:

1. Write the code.

A good starting point to understand how to use Arm NNAPI in your own application is to go through "How-to guides" 
provided by Arm. These include application which shows how to load and run inference for an MNIST TensorFlow model.

2. Prepare and install the SDK.

From a software developer’s perspective, Arm NN is a library. Therefore, to create and build an application, which uses 
Arm NN, you need header files and matching libraries. For how to build the Yocto SDK, see the i.MX Yocto Project User's 
Guide (IMXLXYOCTOUG). By default, header files and libraries are not added. To make sure that the SDK contains both 
the header files and the libraries, add the following to your local.conf.

TOOLCHAIN_TARGET_TASK_append += " armnn-dev"

3. Build the code.

To build the "armnn-mnist" example provided by Arm, you need to make a few modifications to make it work with a Yocto 
cross-compile environment:

• Remove the definition of ARMNN_INC and all its uses from Makefile. The Arm NN headers are already available in 
the default include directories.

• Remove the definition of ARMNN_LIB and all its uses from Makefile. The Arm NN libraries are already available in 
the default linker search path.

• Replace "g++" with "${CXX}" in Makefile.

Build the example:
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• Setup the SDK environment:

$ source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

• Run make:

$ make

4. Copy the built application to the board.

Input data are described in the "How-to guides". If the image you are using on your board is the same as the one for which you 
built the SDK, all the runtime dynamic libraries needed to run the application should be available on the board.

5.5 Python interface to Arm NN (PyArmNN)
PyArmNN is a Python extension for Arm NN SDK. PyArmNN provides interface similar to Arm NN C++ API. It is supported only 
for Python 3.x and not Python 2.x.

For full API documentation please refer to NXPmicro GitHub: https://github.com/NXPmicro/pyarmnn-release

5.5.1 Getting started
The easiest way to begin using PyArmNN is by using the Parsers. We will demonstrate how to use them below:

Install dependency.

pip3 install imageio

Create a parser object and load your model file.

import pyarmnn as ann
import imageio
# ONNX parser also exist.
parser = ann.ITfLiteParser()
network = parser.CreateNetworkFromBinaryFile('./model.tflite')

Get the input binding information by using the name of the input layer.

input_binding_info = parser.GetNetworkInputBindingInfo(0, 'input_layer_name')
# Create a runtime object that will perform inference.
options = ann.CreationOptions()
runtime = ann.IRuntime(options)

Choose preferred backends for execution and optimize the network.

# Backend choices earlier in the list have higher preference.
preferredBackends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')]
opt_network, messages = ann.Optimize(network, preferredBackends, runtime.GetDeviceSpec(), 
ann.OptimizerOptions())
# Load the optimized network into the runtime.
net_id, _ = runtime.LoadNetwork(opt_network)

Make workload tensors using input and output binding information.

# Load an image and create an inputTensor for inference.
# img must have the same size as the input layer; PIL or skimage might be used for resizing if img 
has a different size
img = imageio.imread('./image.png')
input_tensors = ann.make_input_tensors([input_binding_info], [img])
# Get output binding information for an output layer by using the layer name.
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output_binding_info = parser.GetNetworkOutputBindingInfo(0, 'output_layer_name')
output_tensors = ann.make_output_tensors([outputs_binding_info])

Perform inference and get the results back into a numpy array.

runtime.EnqueueWorkload(0, input_tensors, output_tensors)
results = ann.workload_tensors_to_ndarray(output_tensors)
print(results)

5.5.2 Running examples
For a more complete Arm NN experience, there are several examples located in /usr/bin/armnn-21.08/pyarmnn/, which 
require requests, PIL and maybe some other Python3 modules depending on your image. You may install the missing modules 
using pip3 package installer. For example, for the image classification demo:

$ cd /usr/bin/armnn-21.08/pyarmnn/image_classification 
$ pip3 install -r requirements.txt

To run the examples, execute them using the Python3 interpreter. There are no arguments and the resources are downloaded 
by the scripts. For example, for the image classification demo:

$ python3 tflite_mobilenetv1_quantized.py

The output should be similar to the following:

Downloading 'mobilenet_v1_1.0_224_quant_and_labels.zip' from 'https://storage.googleapis.com/
download.tensorflow.org/models/tflite/mobilenet_v1_1.0_224_quant_and_labels.zip' ...
Finished.
Downloading 'kitten.jpg' from 'https://s3.amazonaws.com/model-server/inputs/kitten.jpg' ...
Finished.
Running inference on 'kitten.jpg' ...
class=tabby ; value=99
class=Egyptian cat ; value=84
class=tiger cat ; value=71
class=cricket ; value=0
class=zebra ; value=0

 
example_utils.py is a file containg common functions for the rest of the scripts and it does not execute anything 
on its own.

  NOTE  

5.6 Arm NN delegate for TensorFlow Lite
The Arm NN Delegate is a standalone piece of software that can be used together with the TensorFlow Lite framework to load a 
TensorFlow Lite model, and delegate the workload to the Arm NN library.

 
In the 5.10.52-2.1.0 Yocto release, only the TensorFlow Lite C++ API is supported. The Python TensorFlow Lite 
API does not support loading dynamic delegates.

  NOTE  

5.6.1 Arm NN delegate C++ project integration
The following example demonstrates a sample project using a TensorFlow Lite interpreter delegating workloads to the Arm 
NN framework.
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1. Activate the Yocto SDK environment on your host machine for cross-compiling (make sure that tensorflow-lite-dev 
and armnn-dev packages are installed in the SDK, they should be there by default when building the SDK), 
e.g.:<yocto_sdk_install_dir>/environment-setup-cortexa53-crypto-poky-linux

2. Source code should be available in the aarch64 sysroot directory, e.g: <yocto_sdk_install_dir>/sysroots/cortexa53-
crypto-poky-linux/usr/bin/armnn-21.08/delegate. Cross-compile using: $CXX -o armnn_delegate_example 
armnn_delegate_example.cpp -larmnn -larmnnDelegate -ltensorflow-lite

3. Copy armnn_delegate_example to your board and run it. The output should look similar to the following:

$ ./armnn_delegate_example
INFO: TfLiteArmnnDelegate: Created TfLite ArmNN delegate.
Warm-up time: 4662.1 ms
Inference time: 2.809 ms
TOP 1: 412

Now let's have a look at the code in armnn_delegate_example.cpp:

1. First we need to load a model, create the TensorFlow Lite Interpreter, and allocate input tensors of the appropriate size. 
You may use a different tflite model from the one supplied below for your own project:

std::unique_ptr<tflite::FlatBufferModel> model 
= tflite::FlatBufferModel::BuildFromFile("/usr/bin/tensorflow-lite-2.6.0/examples/
mobilenet_v1_1.0_224_quant.tflite"); auto interpreter = std::make_unique<Interpreter>(); 
tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder(*model, resolver)
(&interpreter); if (interpreter->AllocateTensors() != kTfLiteOk) { std::cout << "Failed to 
allocate tensors!" << std::endl; return 0; } 

2. Then we need to fill the tensor with some data. You may load the data from a file, or simply fill the buffer with random 
numbers. Note that in our example we are using a quantized model, so the input should be in <0, 255> range and that the 
input tensor has 3 channels and 224x224 input:

srand (time(NULL));
uint8_t* input = interpreter->typed_input_tensor<uint8_t>(0);    
for (int i = 0; i < (3 * 224 * 224); ++i) {
    input[i] = rand() % 256;
}  

3. To configure the Arm NN backend, we have to specify the delegate options. Backends are assigned to individual layers from 
left to right based on layer support:

std::vector<armnn::BackendId> backends = { armnn::Compute::VsiNpu, 
armnn::Compute::CpuAcc, armnn::Compute::CpuRef };
armnnDelegate::DelegateOptions delegateOptions(backends);
std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
                    theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
                                     armnnDelegate::TfLiteArmnnDelegateDelete);

4. Now we must apply the delegate to the graph. This partitions the graph into subgraphs which will be executed using the 
Arm NN delegate if possible. The rest will fall back to TensorFlow Lite built-in kernels for the CPU:

if (interpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) != kTfLiteOk)
{
    std::cout << "Failed to modify graph!" << std::endl;
    return EXIT_FAILURE;
}
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5. Afterwards we may run inference, retrieve the result, and process it. The output from the mobilenet model is a softmax array, 
so for example to retrieve the top labels, we would have to apply an argmax function. Note that in the example, we are 
running inference 2 times. That is due to the usage of the VsiNpu backend which has a significant warm-up time:

if (interpreter->Invoke() != kTfLiteOk)
{
    std::cout << "Failed to run second inference!" << std::endl;
    return EXIT_FAILURE;
}
...
uint8_t* output = interpreter->typed_output_tensor<uint8_t>(0);
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Chapter 6
ONNX Runtime
ONNX Runtime is an open-source inference engine to run ONNX models, which enables the acceleration of machine 
learning models across all of your deployment targets using a single set of API. Source codes are available at https://
source.codeaurora.org/external/imx/onnxruntime-imx.

 
For the full list of the CPU supported operators, see the 'operator kernels' documentation section: OperatorKernels.

  NOTE  

Features:

• ONNX Runtime 1.10.0

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided by the ACL and 
Arm NN execution providers

• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units) provided by the VSI NPU and 
NNAPI execution providers

• C++ and Python API (supported Python version 3)

• ONNX Runtime 1.10.0 supports ONNX 1.10 and Opset version 15.

 
The opset only defines all the operators which are available. It does not necessarily mean they are implemented 
in the execution provider in use. See section Execution providers for more details.

  NOTE  

6.1 ONNX Runtime software stack
The ONNX Runtime software stack is shown in the following figure. The ONNX Runtime supports computation on the following 
HW units:

• CPU Arm Cortex-A cores using CPU, ACL and Arm NN execution providers

• GPU/NPU hardware accelerator using VSI NPU or NNAPI execution providers

(deprecated)

See Software Stack Introduction for some details about supporting of computation on GPU/NPU hardware accelerator on different 
HW platforms.
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Figure 6. ONNX Runtime software stack

6.2 Execution providers
Execution providers (EP) are a mechanism to delegate inference execution to an underlying framework or hardware. By default, 
the ONNX Runtime uses the CPU EP, which executes inference on the CPU.

Officially supported Execution Providers which provide means of acceleration compared to the default CPU EP are the following:

• acl - runs on the CPU, and leverages acceleration directly using the NEON implementation in Arm Compute Library.

• armnn - runs on the CPU, and leverages acceleration using the NEON backend of the Arm Compute Library.

• vsi_npu - runs either on the GPU or the NPU depending on what HW is available. Leverages OpenVX implementation directly.

• nnapi - runs either on the GPU or the NPU depending on what HW is available. Leverages the NNAPI implementation which 
uses OpenVX.

 
The NNAPI execution provider is deprecated and will be removed in the future.

  NOTE  
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6.2.1 ONNX model test
ONNX Runtime provides a tool that can run the collection of standard tests provided in the ONNX Model Zoo. The tool named 
onnx_test_runner is installed in /usr/bin/onnxruntime-1.10.0.

ONNX models are available at https://github.com/onnx/models and consist of models and sample test data. Because some 
models require a lot of disk space, it is advised to store the ONNX test files on a larger partition, as described in the SD card image 
flashing section.

Here is an example with the steps required to run the mobilenet version 2 test:

• Download and unpack the mobilenet version 2 test archive to some folder, for example to/home/root:

$ cd /home/root
$ wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/
mobilenetv2-7.tar.gz
$ tar -xzvf mobilenetv2-7.tar.gz
$ ls ./mobilenetv2-7
mobilenetv2-7.onnx  test_data_set_0  test_data_set_1  test_data_set_2

• Run the onnx_test_runner tool providing mobilenetv2-7 folder path and setting the execution provider to Arm NN:

$ /usr/bin/onnxruntime-1.10.0/onnx_test_runner -j 1 -c 1 -r 1 -e [cpu/armnn/acl/vsi_npu/nnapi] ./
mobilenetv2-7/
result:
Models: 1
Total test cases: 3
Succeeded: 3
Not implemented: 0
Failed: 0
Stats by Operator type:
Not implemented(0):
Failed:
Failed Test Cases:
$

 
Use onnx_test_runner -h for the full list of supported options.

  NOTE  

6.2.2 C API
ONNX Runtime also provides a C API sample code described here: https://github.com/microsoft/onnxruntime/blob/v1.10.0/
docs/C_API_Guidelines.md.

To build the sample from the repository, run the following build command under the generated Yocto SDK environment (make sure 
that the onnxruntime-dev Yocto package is installed in the SDK, it should be installed by default):

$CXX -std=c++0x -I$SDKTARGETSYSROOT/usr/include/onnxruntime/core/session -lonnxruntime 
C_Api_Sample.cpp -o onnxruntime_sample

 
SqueezeNet model included in the BSP can be used with the executables.

  NOTE  

6.2.2.1 Enabling execution provider

To enable a specific execution provider, you need to do the following in your code:
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• Set the execution provider in code (see the previous C API sample how that is done for the CUDA EP). If not set, the default 
CPU EP would be used: OrtSessionOptionsAppendExecutionProvider_<execution_provider>(<parameters>);

• Include headers based on the EP used in the code: #include "<execution_provider>_provider_factory.h".

• Add includes to the build command: -I/usr/include/onnxruntime/core/providers/<execution_provider>/

6.2.3 ONNX performance test
To run model benchmarks, ONNX Runtime provides a tool that measures performance. The tool named onnxruntime_perf_test is 
installed in /usr/bin/onnxruntime-1.10.0. In order to run it, the user must provide an .onnx model file together with test data. To 
benchmark the SqueezeNet model running a single iteration using the VSI NPU execution provider, run to the following command:

$/usr/bin/onnxruntime-1.10.0/onnxruntime_perf_test /usr/bin/onnxruntime-1.10.0/squeezenet/model.onnx -r 1 -e vsi_npu

 
Use onnxruntime_perf_test -h for the full list of supported options.

  NOTE  
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Chapter 7
PyTorch
PyTorch is a scientific computing package based on Python that facilitates building deep learning projects using power of graphics 
processing units.

Features:

• PyTorch 1.9.1

• Python version 3 supported

• Deep neural networks built on a tape-based autograd sytem

 
This release of PyTorch does not yet support the tensor computation on the NXP GPU/NPU. Only the CPU is 
supported. By default, the PyTorch runtime is running with floating point model. To enable quantized model, the 
quantized engine should be specified explicitly as follows:

torch.backends.quantized.engine = 'qnnpack'

  NOTE  

7.1 Running image classification example
There is an example located in the examples folder, which requires urllib, PIL, and maybe some other Python3 modules depending 
on your image. You may install the missing modules using pip3.

$ cd /usr/bin/pytorch/examples

To run the example with inference computation on the CPU, use the following command. There are no arguments and the 
resources will be downloaded automatically by the script:

$ python3 pytorch_mobilenetv2.py

The output should be similar as follows:

File does not exist, download it from
https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
... 100.00%, downloaded size: 13.55 MB
File does not exist, download it from
https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt
... 100.00%, downloaded size: 0.02 MB
File does not exist, download it from
https://s3.amazonaws.com/model-server/inputs/kitten.jpg
... 100.00%, downloaded size: 0.11 MB
('tabby, tabby cat', 46.34805679321289)
('Egyptian cat', 15.802854537963867)
('lynx, catamount', 1.1611212491989136)
('lynx, catamount', 1.1611212491989136)
('tiger, Panthera tigris', 0.20774540305137634)

7.2 Building and installing wheel packages
This release includes building script for PyTorch and TorchVision on aarch64 platform. Currently, it supports the native building 
on the NXP aarch64 platform with BSP SDK.
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Generally, in the yocto rootfs of the BSP SDK, the PyTorch and TorchVision wheel packages are already 
integrated. There is no need to build and install from scratch. If you would like to build them by your own, perform 
the steps below.

  NOTE  

7.2.1 How to build
Perform the following steps:

1. Get the latest i.MX BSP from https://source.codeaurora.org/external/imx/imx-manifest.

2. Set up the build environment for one of the NXP aarch64 platforms and edit the local.conf to add the following dependency 
for PyTorch native build:

IMAGE_INSTALL_append = " python3-dev python3-pip python3-wheel python3-pillow python3-setuptools 
python3-numpy python3-pyyaml
python3-cffi python3-future cmake ninja packagegroup-core-buildessential git git-perltools 
libxcrypt libxcrypt-dev

3. Build the BSP images using the following command:

$ bitbake imx-image-full

4. Get into the pytorch folder and execute the build script on NXP aarch64 platform to generate wheel packages. You can get 
the source from https://github.com/NXPmicro/pytorch-release as well:

$ cd /path/to/pytorch/src
$ ./build.sh

7.2.2 How to install
If the building is successful, the wheel packages should be found under /path/to/pytorch/src/dist:

$ pip3 install /path/to/torch-1.9.1-cp37-cp37m-linux_aarch64.whl 
$ pip3 install /path/to/torchvision-0.8.2-cp37-cp37m-linux_aarch64.whl
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Chapter 8
OpenCV machine learning demos
OpenCV is an open source computer vision library and one of its modules, called ML, provides traditional machine learning 
algorithms. OpenCV offers a unified solution for both neural network inference (DNN module) and classic machine learning 
algorithms (ML module).

Features:

• OpenCV 4.5.4

• C++ and Python API (supported Python version 3)

• Only CPU computation is supported

• Input image or live camera (webcam) is supported

8.1 Downloading OpenCV demos
OpenCV DNN demos (binaries) are located at:

/usr/share/OpenCV/samples/bin

Input data, and model configurations are located at:

/usr/share/opencv4/testdata/dnn

 
To have the testdata/dnn directory above on the image, put the following in local.conf before the image 
building. See Section "NXP eIQ machine learning" in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

PACKAGECONFIG_append_pn-opencv_mx8 += " tests tests-imx"

  NOTE  

Binary models are not located in the image, because of the size. Before running the DNN demos, these files should be downloaded 
to the device:

$ cd /usr/share/opencv4/testdata/dnn/
$ python3 download_models_basic.py

 
Use the download_models.py script if all possible models and configuration files are needed (10 GB SD 
card size is needed). Use the download_models_basic.py script if only basic models for the following DNN 
examples are needed (1 GB SD card size is needed).

  NOTE  

Copy all downloadable dependencies (models, inputs, and weights) to:

/usr/share/OpenCV/samples/bin

Download the configuration models.yml. This file contains preprocessing parameters for some DNN examples, which accepts the 
--zoo parameter. Copy the model file to:

/usr/share/OpenCV/samples/bin

8.2 OpenCV DNN demos
The OpenCV DNN module implements an inference engine and does not provide any functionalities for neural network training.
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8.2.1 Image classification demo
This demo performs image classification using a pretrained SqueezeNet network. Demo dependencies are from 
opencv_extra-4.5.4.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• squeezenet_v1.1.caffemodel

• squeezenet_v1.1.prototxt

Other demo dependencies:

• classification_classes_ILSVRC2012.txt from

/usr/share/OpenCV/samples/data/dnn

• models.yml from github

Running the C++ example with image input from the default location:

$ ./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

Figure 7. Image classification graphics output

Running the C++ example with the live camera connected to the port 3:

$ ./example_dnn_classification --device=3 --zoo=models.yml squeezenet
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Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command 
to check it.

  NOTE  

8.2.2 YOLO object detection example
The YOLO object detection demo performs object detection using You Only Look Once (YOLO) detector. It detects objects on 
camera, video, or image. Find out more information about this demo at OpenCV Yolo DNNs page. Demo dependencies are from 
opencv_extra-4.5.4.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• yolov3.weights

• yolov3.cfg

Other demo dependencies:

• models.yml from github

• object_detection_classes_yolov3.txt from

/usr/share/OpenCV/samples/data/dnn

Running the C++ example with image input from the default location:

$ ./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --input=dog416.png --rgb 
--zoo=models.yml yolo

Figure 8. YOLO object detection graphics output
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Running the C++ example with the live camera connected to the port 3:

$ ./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --device=3 --rgb --
zoo=models.yml yolo

 
Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command 
to check it.

  NOTE  

 
Running this example with live camera input is quite slow, because of running the example on the CPU only.

  NOTE  

8.2.3 Image segmentation demo
The image segmentation means dividing the image into groups of pixels based on some criteria grouping based on color, texture, 
or some other criteria. Demo dependencies are from opencv_extra-4.5.4.zip or from:

/usr/share/opencv4/testdata/dnn

• dog416.png

• fcn8s-heavy-pascal.caffemodel

• fcn8s-heavy-pascal.prototxt

Other demo dependencies are models.yml from github. Run the C++ example with image input from the default location:

$ ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --zoo=models.yml fcn8s

Figure 9. Image segmentation graphics output

Running the C++ example with the live camera connected to the port 3:

$ ./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --device=3 --zoo=models.yml fcn8s
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Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command 
to check it.

  NOTE  

 
Running this example with live camera input is quite slow, because of running the example on the CPU only.

  NOTE  

8.2.4 Image colorization demo
This sample demonstrates recoloring grayscale images with DNN. The demo supports input images only, not the live camera 
input. Demo dependencies are from opencv_extra-4.5.4.zip or from:

/usr/share/opencv4/testdata/dnn

• colorization_release_v2.caffemodel

• colorization_deploy_v2.prototxt

Other demo dependencies are basketball1.png from

/usr/share/OpenCV/examples/data

Running the C++ example with image input from the default location:

$ ./example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png

Figure 10. Image colorization graphics output

8.2.5 Human pose detection demo
This application demonstrates human or hand pose detection with a pretrained OpenPose DNN. The demo supports input images 
only and no live camera input. Demo dependencies are from opencv_extra-4.5.4.zip or from:

/usr/share/opencv4/testdata/dnn

• grace_hopper_227.png
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• openpose_pose_coco.caffemodel

• openpose_pose_coco.prototxt

Running the C++ example with image input from the default location:

$ ./example_dnn_openpose --model=openpose_pose_coco.caffemodel --proto=openpose_pose_coco.prototxt --
image=grace_hopper_227.png --width=227 --height=227 --dataset=COCO

Figure 11. Human pose estimation graphics output

8.2.6 Object Detection Example
This demo performs object detection using a pretrained SqueezeDet network. The demo supports input images only, not the live 
camera input. Demo dependencies are the following:

• SqueezeDet.caffemodel model weight file

• SqueezeDet_deploy.prototxt model definition file

• Input image aeroplane.jpg

Running the C++ example with image input from the default location:

$ ./example_dnn_objdetect_obj_detect SqueezeDet_deploy.prototxt SqueezeDet.caffemodel aeroplane.jpg

Running the model on the aeroplane.jpg image produces the following text results in the console:

------
Class: aeroplane
Probability: 0.845181
Co-ordinates:
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Figure 12. Object detection graphics output

8.2.7 CNN image classification example
This demo performs image classification using a pretrained SqueezeNet network. The demo supports input images only, not the 
live camera input. Demo dependencies are the following:

• SqueezeNet.caffemodel model weight file

• SqueezeNet_deploy.prototxt model definition file

• Input image space_shuttle.jpg from

/usr/share/opencv4/testdata/dnn

Running the C++ example with image input from the default location:

$ ./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt SqueezeNet.caffemodel 
space_shuttle.jpg

Running the model on the space_shuttle.jpg image produces the following text results in the console:

Best class Index: 812
Time taken: 0.649153
Probability: 15.8467
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8.2.8 Text detection
This demo is used for text detection in the image using EAST algorithm. Demo dependencies are the following:

• frozen_east_text_detection.pb model file based on EAST

• crnn_cs.onnx text recognition model

Other demo dependencies:

• Input file from

/usr/share/OpenCV/samples/data/imageTextN.png

• Vocabulary file for benchmark evaluation from

/usr/share/OpenCV/samples/data/alphabet_94.txt

Running the C++ example with image input from the default location:

$ ./example_dnn_text_detection --detModel=frozen_east_text_detection.pb --input=../data/
imageTextN.png --recModel=crnn_cs.onnx --vp=../data/alphabet_94.txt --rgb=1

 
This example accepts the PNG image format only.

  NOTE  

Figure 13. Text detection graphics output

Running the C++ example with the live camera connected to the port 3:

$ ./example_dnn_text_detection --detModel=frozen_east_text_detection.pb --recModel=crnn_cs.onnx --
vp=../data/alphabet_94.txt --rgb=1 --device=3
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Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices command 
to check it.

  NOTE  

8.3 OpenCV classical machine learning demos
After deploying OpenCV on the target device, Non-Neural Networks demos are installed in the rootfs in

/usr/share/OpenCV/samples/bin/

8.3.1 SVM Introduction
This example demonstrates how to create and train an SVM model using training data. Once the model is trained, labels for test 
data are predicted. The full description of the example can be found in (tutorial_introduction_to_svm). For displaying the result, an 
image with Qt5 enabled is required.

After running the demo, the graphics result is shown on the screen:

$ ./example_tutorial_introduction_to_svm

Result:

• The code opens an image and shows the training examples of both classes. The points of one class are represented with 
white circles, and other class uses black points.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image into a blue region 
and a green region. The boundary between both regions is the optimal separating hyperplane.

• Finally, the support vectors are shown using gray rings around the training examples.
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Figure 14. SVM introduction graphics output

8.3.2 SVM for non-linearly separable data
This example deals with non-linearly separable data and shows how to set parameters of SVM with linear kernel for this data. For 
more details, go to SVM_non_linearly_separable_data.

After running the demo, the graphics result is shown on the screen (it requires Qt5 support):

$ ./example_tutorial_non_linear_svms

Result:

• The code opens an image and shows the training data of both classes. The points of one class are represented with light 
green, the other class uses light blue points.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image into blue 
green regions. The boundary between both regions is the separating hyperplane. Since the training data is non-linearly 
separable, some of the examples of both classes are misclassified; some green points lay on the blue region and some 
blue points lay on the green one.

• Finally, the support vectors are shown using gray rings around the training examples.
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Figure 15. SVM for Non-linear training data

8.3.3 Prinicipal Component Analysis (PCA) introduction
Principal Component Analysis (PCA) is a statistical method that extracts the most important features of a dataset. 
This section describes how to use PCA to calculate the orientation of an object. For more details, check the OpenCV 
tutorial Introduction_to_PCA.

After running the demo, the graphics result is shown on the screen (it requires Qt 5 support):

$ ./example_tutorial_introduction_to_pca ../data/pca_test1.jpg

Results:

• Open an image (loaded from ../data/pca_test1.jpg).

• Find the orientation of the detected objects of interest.

• Visualizes the result by drawing the contours of the detected objects of interest, the center point, and the x-axis, y-axis 
regarding the extracted orientation.
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Figure 16. PCA graphics output

8.3.4 Logistic regression
In this sample, logistic regression is used for prediction of two characters (0 or 1) from an image. First, every image matrix is 
reshaped from its original size of 28x28 to 1x784. A logistic regression model is created and trained on 20 images. After training, 
the model can predict labels of test images. The source code is located on the logistic_regression link, and can be run by typing 
the following command.

Demo dependencies (preparing the train data files):

$ wget https://raw.githubusercontent.com/opencv/opencv/4.5.4/samples/data/data01.xml

After running the demo, the graphics result is shown on the screen (it requires Qt 5 support):

$ ./example_cpp_logistic_regression

Results:

• Training and test data are shown

• Comparison between original and predicted labels is displayed.

The console text output is as follows (the trained model reaches 95% accuracy):

original vs predicted:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%
saving the classifier to NewLR_Trained.xml
loading a new classifier from NewLR_Trained.xml
predicting the dataset using the loaded classifier...done!
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%
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Figure 17. Logistic regression graphics output
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Chapter 9
DeepViewRT
DeepViewRT is a proprietary neural network inference engine optimized for NXP microprocessors and microcontrollers, which not 
only implements its own compute engine, but it is also able to leverage popular 3rd party ones.

Features:

• DeepViewRT 2.4.37

• Plug-in API allowing for various compute engines:

— DeepViewRT (CPU/Neon)

— DeepViewRT (OpenVX)

— TensorFlow Lite

— Arm NN

— ONNX Runtime

• C and Python API

• Per-tensor and per-channel quantization model support

• Defines custom operations or custom behavior for existing operations

• Models to be deployed to all targets without explicitly programming the computation graph

9.1 DeepViewRT software stack
The DeepViewRT Software stack includes DeepViewRT library, modelrunner library and modelrunner server - see the 
following picture:

DeepView Creator & Model Tool

ModelRunner HTTP API server

ModelRunner Plug-in API

DeepViewRT TFLite Arm NN ONNX

ModelRunner Library

Inference Engines

ModelRunner Server

Desktop Tools

Figure 18. DeepViewRT SW stack

 
eIQ Portal and Model Tool are parts of the eIQ Toolkit.

  NOTE  

DeepViewRT supports the following hardware:
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• CPU Arm Cortex-A cores

• GPU/NPU hardware accelerator using the VSI NPU backend, which runs on both the GPU and the NPU depending on which 
is available

Python API C API

RT Models

GPU NPU

DeepViewRT API

libdeepview-rt libdeepview-rt-openvx

HW acceleratorsCPU

Cortex-A

i.MX8 series

Figure 19. DeepViewRT computing engines

 
Refer to DeepViewRT User Manual, included in the eIQ Toolkit docs folder, for more information about the 
DeepViewRT API.

  NOTE  

9.2 Delivery packages
The DeepViewRT is available in Yocto recipe and able to get DeepViewRT package through the DeepViewRT recipe.

The DeepViewRT packages include followings components for Yocto BSP release:

• DeepViewRT shared library (dynamic library)

• DeepViewRT header file

• DeepViewRT Python module

• ModelRunner binary and library

• ModelRunner plug-in libraries (OpenVX, TensorFlow Lite, Arm NN, ONNX Runtime)

• DeepViewRT examples (labelimg, detectimg, ssdcam-gst, labelcam-gst)

9.3 Example applications
All example application were integrated into the Yocto BSP image. You can use this Yocto command to extract source code and 
build all examples:

bitbake -c patch deepview-rt-examples
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The deepview-rt-examples source code were put under tmp/work/cortexa53-crypto-mx8mp-poky-linux/deepview-rt-
examples/1.3-r0/deepview-rt-examples-1.3.

The folder structure looks like:

Figure 20. DeepViewRT Yocto folder structure

For cross-compile of those examples, use Makefile under example source folder.

9.3.1 Image labelling applications
There are two example applications which demonstrate how to implement an image labelling application, targeting either the direct 
DeepViewRT C API or the ModelRunner REST API using the libCurl library.

The "labelimg" application directly calls DeepViewRT C API:

$ cd /usr/bin/deepview-rt-examples
$ ./labelimg mobilenet_v1_0.25_224_quant.rtm eagle.png

The "labelimg_remote" application uses ModelRunner REST API through libCurl library. Two terminals with below commands are 
needed to run it:

# Terminal 1: use -e rt -c 1 (for NPU) or -e rt -c 0 (for CPU)
$ modelrunner -e rt -c 1 -H 10818 -m mobilenet_v1_0.25_224_quant.rtm

# Terminal 2:
$ ./labelimg_remote mobilenet_v1_0.25_224_quant.rtm eagle.png
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9.3.2 Object detection applications
There are two example applications which demonstrate how to implement an object detection application, targeting either the 
direct DeepViewRT C API or the ModelRunner REST API using the libCurl library.

The "detectimg" application directly calls DeepViewRT C API:

$ cd /usr/bin/deepview-rt-examples
$ ./detectv4  DATA_PATH//mobilenet_ssd_v1_1.00_trimmed_new.rtm  DATA_PATH/ssd_resized.jpg -T 0.5 -I 
0.5 -i 50 -e /usr/lib/deepview-rt-openvx.so

The "detectimg_remote" application uses ModelRunner REST API through libCurl library. Two terminals with below commands 
are needed to run it:

# Terminal 1: use -e rt -c 1 (for NPU) or -e rt -c 0 (for CPU)
$ modelrunner -e rt -c 1 -H 10818 -m mobilenet_ssd_v1_1.00_trimmed_quant_anchors.rtm

# Terminal 2:
$ ./detectv4_remote -p 10818 -m mobilenet_ssd_v1_1.00_trimmed_quant_anchors.rtm -i horse.jpg -A 
10.10.40.190 -t 0.6 -n 50 -r 0

 
All examples use DeepViewRT RTM model format. The .rtm can be converted from .tflite. For a model conversion, 
refer to the eIQ Toolkit User's Guide (EIQTUG).

  NOTE  

9.3.3 Labelcam-gst example application
This sample demonstrates a GStreamer-based application which offers a camera to display pipeline with a split to an appsink 
which is used to interface with DeepViewRT. The results of inference are display as a text overlay over the video display.

The example can support running with DeepViewRT API (CPU) and ModelRunner REST API through libCurl library (through 
OpenVX plug-in to leverage NPU accelerating). The example will need camera and display; it can be either MIPI-CSI camera or 
USB camera. Please refer to the i.MX Porting Guide (IMXBSPPG) about how to use MIPI-CSI camera and display.

The demo can be executed as follows through the DeepViewRT API (CPU), assuming the user has a model named 
mobilenet_v1_0_1.0_224_quant_with_labels.rtm and uses USB camera (/dev/video3) and LCD.

$ ./labelcam-gst -m mobilenet_v1_0_1.0_224_quant_with_labels.rtm -c /dev/video3
IP not set! Streaming to localhost!!
video size: 640x480 center roi size: 480x480 model size: 224x224

The LCD will show the label name with possibility value and the runtime value.

The demo can also be executed as follows through ModelRunner REST API through libCurl library. This will leverage NPU 
for acceleration:

# Terminal 1: use -e rt -c 1 (for NPU) or -e rt -c 0 (for CPU)
$ modelrunner -e rt -c 1 -H 10818 -m mobilenet_v1_0_1.0_224_quant_with_labels.rtm

# Terminal 2:
$ ./labelcam-gst -m mobilenet_v1_0_1.0_224_quant_with_labels.rtm -c /dev/video3 -r 127.0.0.1 -p 10818 
-u 1
POST URL = http://127.0.0.1:10818/v1?run=1&output=MobilenetV1_Predictions_Reshape_1
IP not set! Streaming to localhost!!
video size: 640x480 center roi size: 480x480 model size: 224x224

The LCD will show the label name with possibility value, round trip time, and inference time.
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9.3.4 Ssdcam-gst example application
This project demonstrates how to integrate DeepViewRT with a GStreamer camera pipeline. In this example, we capture input 
from the default camera and then run single-shot detection to generate bounding boxes, labels, and probabilities for each detected 
object in a frame.

The example can support running with DeepViewRT API (CPU) and ModelRunner REST API through libCurl library (throuh 
OpenVX plug-in to leverage NPU accelarating). The example will need camera and display; it can be either MIPI-CSI camera or 
USB camera. Please refer to the i.MX Porting Guide (IMXBSPPG) about how to use MIPI-CSI camera and display.

The demo can be executed as follows through DeepViewRT API(CPU), assuming you have a model named 
mobilenet_v1_0_1.0_224_quant_with_labels.rtm, mobilenet_ssd_v1_1.00_trimmed_anchors_quant.rtm, and use USB camera 
(/dev/video3) and LCD.

$ ./ssdcam-gst -m mobilenet_ssd_v1_1.00_trimmed_anchors_quant.rtm -c /dev/video3 -t 0.5 -n 0.5 Score 
Threshold used = 0.50 video size: 640x480 model size: 300x300 Using display!

The LCD will show the inference time, draw bounding box for object and object's class name with possibility.

The demo can also be executed as follows through ModelRunner REST API through libCurl library, this will leverage NPU 
for acceleration:

# Terminal 1: use -e rt -c 1 (for NPU) or -e rt -c 0 (for CPU)
$ modelrunner -e rt -c 1 -H 10818 -m mobilenet_v1_0_1.0_224_quant_with_labels.rtm

# Terminal 2: 
$ ./ssdcam-gst -m mobilenet_ssd_v1_1.00_trimmed_anchors_quant.rtm -c /dev/video3 -t 0.5 -n 0.5 -r 
127.0.0.1 -p 10818 Score Threshold used = 0.50 video size: 640x480 model size: 300x300 Using display!

The LCD will show inference time, roundtrip time and draw bounding box for object and object's class name with possibility.

9.4 ModelRunner
The ModelRunner application provides an HTTP service for hosting DeepViewRT models, TensorFlow Lite models, ONNX 
Runtime models and remote evaluation. The service also provides a low-level UNIX socket service for low-latency video 
processing. It was integrated into BSP through the DeepViewRT Yocto recipe.

For ModelRunner HTTP REST API, please refer to DeepViewRT User Manual, which is included in the eIQ Toolkit docs folder.

To use Modelrunner for benchmark evaluation, refer to below commands (chapters) to measure the performance.

9.4.1 DeepViewRT
To run modelrunner with DeepViewRT backend and measure its performance:

$ modelrunner -e rt -c 0 -m mobilenet_v1_1.0_224_quant.rtm -b 50 -t 4
Plugin: libmodelrunner-rt.so;
Average model run time: 129.0078 ms (layer sum: 0.0000 ms)

 
Number of threads (-t parameter) should correlate with the number of device computing cores to get the best 
performance. For example, for i.MX 8QM device use -t 6, etc.

  NOTE  
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9.4.2 OpenVX
To run modelrunner with OpenVX by accelerating with NPU and measure its performance:

$ modelrunner -e rt -c 1 -m mobilenet_v1_1.0_224_quant.rtm -b 50
Plugin: libmodelrunner-ovx.so;
RTMx Output indices = [87 ]
Created empty VX graph, inputs = 1, outputs = 1
RTMx Layer count = 88
…
Average model run time: 2.2397 ms

9.4.3 TensorFlow Lite
To run modelrunner with TensorFlow Lite and NNAPI delegate and measure its performance:

$ modelrunner -e tflite -c 1 -m mobilenet_v1_1.0_224_quant.tflite -b 50
Plugin: libmodelrunner-tflite.so;
Loaded model
resolved reporter
INFO: Created TensorFlow Lite delegate for NNAPI.
Applied NPU delegate.
interpreter invoked
average time: 2.51356 ms
Average layer sum: 2.5105 ms

 
It can be changed to use CPU by replacing “-c 1” with “-c 0”. Use “-c 2” for XNNPACK and “-c 3” for VX Delegate.

  NOTE  

9.4.4 Arm NN
To run modelrunner with Arm NN and Vsi_Npu backend and measure its performance:

$ modelrunner -e armnn -c 3 -m mobilenet_v1_1.0_224_quant.tflite -b 50 -t 4
Plugin: libmodelrunner-armnn.so;
NPU backend preference
Model loaded and validated, size = 150528
…
Inference Time in ms = 2.56184

 
It can be changed to use CpuAcc by replacing “-c 3” with “-c 0”.

  NOTE  

9.4.5 ONNX Runtime
To run modelrunner with ONNX Runtime and Vsi_Npu execution provider and measure its performance:

$ modelrunner -e onnx -c 3 -m mobilenet_v1_1.0_224_quant.onnx -b 50
Plugin: libmodelrunner-onnx.so;
WARNING: Since openmp is enabled in this build, this API cannot be used to configure intra op num 
threads. Please use the openmp environment variables to control the number of threads.
Prefer Vsi_Npu execution provider
Input name=input, type=1, num_dims=4, shape=[ 1 3 224 224 ]
Number of outputs = 1
Output 0 : name=TFLITE2ONNX_Quant_MobilenetV1/Predictions/Reshape_1_dequantized
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Loaded ONNX model.
Average model run time: 434.220155 ms

To run modelrunner with ONNX Runtime and Arm NN execution provider and measure its performance:

$ modelrunner -e onnx -c 2 -m mobilenet_v1_1.0_224_quant.onnx -b 50 -t 4
Plugin: libmodelrunner-onnx.so;
WARNING: Since openmp is enabled in this build, this API cannot be used to configure intra op num 
threads. Please use the openmp environment variables to control the number of threads.
Prefer ArmNN execution provider
Input name=input, type=1, num_dims=4, shape=[ 1 3 224 224 ]
Number of outputs = 1
Output 0 : name=TFLITE2ONNX_Quant_MobilenetV1/Predictions/Reshape_1_dequantized
Loaded ONNX model.
Average model run time: 233.127588 ms

 
It can be changed to use “ArmNN” as execution provider by replacing “-c 3” with “-c 2”

  NOTE  
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Chapter 10
TVM
Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims 
to enable machine learning engineers to optimize and run computations efficiently on any hardware backend.

Features:

• TVM 0.7.0

• Compilation of deep learning models into minimum deployable modules

• Infrastructure to automatic generate and optimize models on more backend with better performance

• GPU/NPU support for i.MX8 (except for i.MX8MM and i.MX8MN) platforms with OpenVX library

• TVM builder supported for Ubuntu 18.04, x86_64 platform

 
Refer TVM Documentation for more detailed information.

  NOTE  

10.1 TVM software workflow
The pre-trained model will be transformed into the Relay IR and passed through to the TVM model optimizations like 
constant-folding, memory planning, and finally passed to a codegen phase. In this phase, the operators supported by the 
target device are transformed as intrinsic calls into the offloading library which connects the model accelerator devices such as 
GPU/NPU.

Figure 21. TVM software workflow

10.2 Getting started

10.2.1 Running example with RPC verification
TVM provides the Remote Procedure Call (RPC) capability to run a model on the remote device.
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User can run examples at tests/python/contrib/test_vsi_npu with RPC verification. The model running result on device will 
be verified against the result on host with same input.

• Launch the RPC server on the device

$ python3 -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090

• Export the system variables:

$ export TVM_HOME=/path/to/tvm
$ export PYTHONPATH=$TVM_HOME/python

• Run the specified models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_tflite_models.py -i {device_ip} -
m mobilenet_v2_1.0_224_quant

• Run all supported TensorFlow Lite models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_tflite_models.py -i {device_ip}

 
This test will download the model automatically, please be sure the network can access the public internet. 
Example scripts may import additional Python libraries. Please check scripts and make sure they are 
installed correctly.

  NOTE  

To test pytorch/onnx/keras model, additional python packages needs to be installed on the host PC:

$ python3 -m pip install torch==1.7.0 torchvision==0.8.1 
$ python3 -m pip install onnx=1.8.1 onnxruntime==1.8.1 
$ python3 -m pip install tensorflow==2.5.0

10.2.2 Running example individually on device
In this mode, the model is compiled on the host offline and saved as model.so. Please refer tests/python/contrib/
test_vsi_npu/compile_tflite_models.py to compile a TensorFlow Lite model on the host.

Below script snippet shows how to load and run a compiled model at the device:

ctx = tvm.cpu(0)
# load the compiled model
lib = tvm.runtime.load_module(args.model)
m = graph_runtime.GraphModule(lib["default"](ctx))
# set inputs
data = get_img_data(args.image, (args.input_size, args.input_size), args.data_type)
m.set_input(args.input_tensor, data)
# execute the model
m.run()
# get outputs
tvm_output = m.get_output(0)

Please refer tests/python/contrib/test_vsi_npu/label_image.py to a complete label image example with pre-processing 
of image decoding and post-processing to generate label.

10.3 How to build TVM stack on host
Conceptually, TVM can be split into two parts:
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• TVM build stack: compiles the deep learning model at host

• TVM runtime: loads and interprets the model at device

This build stack is using the LLVM to cross-compile the generated source as a deployable dynamic library for device. Please, 
follow the LLVM Doc to install LLVM on the host. If installed successfully, llvm-config should be found under /usr/bin.

To build the tvm, please be sure below dependence packages installed on the host:

• cmake

• python3-dev

• build-essential

• llvm-dev

• g++-aarch64-linux-gnu

• libedit-dev

• libxml2-dev

• python3-numpy

• python3-attrs

• python3-tflite

For Ubuntu 18.04, the user could use below commands to install all dependences:

$ sudo apt-get update
$ sudo apt-get install -y python3 python3-dev python3-setuptools
$ sudo apt-get install -y cmake llvm llvm-dev g++-aarch64-linux-gnu gcc-aarch64-linux-gnu
$ sudo apt-get install -y libtinfo-dev zlib1g-dev build-essential libedit-dev libxml2-dev
$ python3 -m pip install numpy decorator scipy attrs six tflite

Follow below instructions to build TVM stack on the host:

$ export TOP_DIR=`pwd`
$ git clone --recursive https://source.codeaurora.org/external/imx/eiq-tvm-imx/ tvm-host
$ cd tvm-host
$ mkdir build
$ cp cmake/config.cmake build
$ cd build
$ sed -i 's/USE_LLVM\ OFF/USE_LLVM\ \/usr\/bin\/llvm-config/' config.cmake
$ cmake ..
$ make tvm -j4 # make tvm build stack

10.4 Supported models
The following models are verified with TVM.

Table 3. TVM models ZOO

Model float32 int8 Input size

mobilenet_v1_0.25_128 mobilenet_v1_0.25_128 mobilenet_v1_0.25_128_quan
t

128

mobilenet_v1_0.25_224 mobilenet_v1_0.25_224 mobilenet_v1_0.25_224_quan
t

224

Table continues on the next page...
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Table 3. TVM models ZOO (continued)

Model float32 int8 Input size

mobilenet_v1_0.5_128 mobilenet_v1_0.5_128 mobilenet_v1_0.5_128_quant 128

mobilenet_v1_0.5_224 mobilenet_v1_0.5_224 mobilenet_v1_0.5_224_quant 224

mobilenet_v1_0.75_128 mobilenet_v1_0.75_128 mobilenet_v1_0.75_128_quan
t

128

mobilenet_v1_0.75_224 mobilenet_v1_0.75_224 mobilenet_v1_0.75_224_quan
t

224

mobilenet_v1_1.0_128 mobilenet_v1_1.0_128 mobilenet_v1_1.0_128_quant 128

mobilenet_v1_1.0_224 mobilenet_v1_1.0_224 mobilenet_v1_1.0_224_quant 224

mobilenet_v2_1.0_224 mobilenet_v2_1.0_224 mobilenet_v2_1.0_224_quant 224

inception_v1 N/A inception_v1_224_quant 224

inception_v2 N/A inception_v2_224_quant 224

inception_v3 inception_v3 inception_v3_quant 299

inception_v4 inception_v4 inception_v4_299_quant 299

deeplab_v3_257_mv_gpu deeplab_v3_256_mv_gpu N/A 257

deeplab_v3_mnv2_pascal N/A deeplab_v3_mnv2_pascal 513

ssdlite_mobiledet ssdlite_mobiledet_cpu_320x3
20_coco

N/A 320
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Chapter 11
NN Execution on Hardware Accelerators
11.1 Hardware accelerator description
The i.MX8 class devices are deployed with two kind of NN accelerators (see also Figure 1):

• Neural Processing Unit (NPU)

• Graphical Processing Unit (GPU)

Neural processing unit is optimized for fixed point arithmetic, in 8-bit and 16-bit width. For optimal performance on the NPU, 
quantized models shall be used.

Graphical processing unit is optimized for fixed point arithmetic and half precision floating point arithmetic. For optimal 
performance on the GPU, quantized models or floating-point models with half precision shall be used.

 
The TensorFlow Lite framework enables to compute the floating-point models directly in 16-bit half 
precision arithmetic.

  NOTE  

OpenVX Driver

SW Stack

Neural
Processing

Unit

Graphical
Processing

Unit

i.MX8 Series

Figure 22. NN accelerator SW stack

Interface to NPU/GPU HW accelerator is provided via the OpenVX v1.2 with NN Extensions. OpenVX is an open, royalty-free 
standard for cross platform acceleration of computer vision applications. It provides[3]:

• a library of predefined and customizable vision functions

• a graph-based execution model to combine function enabling both task and data independent execution

• a set of memory objects that abstract the physical memory

Open VX defines a C-application programming interface for building, verifying and coordinating graph execution and accessing 
memory objects. More information about OpenVX can be find on the OpenVX home page.

 
In the current OpenVX driver implementation, the maximum number of nodes supported in OpenVX graph is 2048.

  NOTE  

11.2 Profiling on hardware accelerators
This section describes how to enable profiler on the GPU/NPU, and how to capture logs.

[3] OpenVX 1.2 specification; https://www.khronos.org/registry/OpenVX/specs/1.2/html/index.html
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1. Stop the EVK board in the U-Boot by pressing Enter.

2. Update mmcargs by adding galcore.showArgs=1 and galcore.gpuProfiler=1.

u-boot=> editenv mmcargs
edit: setenv bootargs ${jh_clk} console=${console} root=${mmcroot} 
galcore.showArgs=1 galcore.gpuProfiler=1
u-boot=> boot

3. Boot the board and wait for the Linux OS prompt.

4. The following environment flags should be enabled before executing the application. VIV_VX_DEBUG_LEVEL and 
VIV_VX_PROFILE flags should always be 1 during the process of profiling. The CNN_PERF flag enables the driver’s 
ability to generate per layer profile log. NN_EXT_SHOW_PERF shows the details of how compiler estimates performance and 
determines tiling based on it.

export CNN_PERF=1 NN_EXT_SHOW_PERF=1 VIV_VX_DEBUG_LEVEL=1 VIV_VX_PROFILE=1

5. Capture the profiler log. We use the sample ML example part of standard NXP Linux release to explain the following section.

• TensorFlow Lite profiling

Run the TensorFlow Lite application with GPU/NPU backend as follows:

$ cd /usr/bin/tensorflow-lite-2.6.0/examples 
$ ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l labels.txt 
--external_delegate_path=/usr/lib/libvx_delegate.so -v 0 > viv_test_app_profile.log 2>&1

• Arm NN profiling

Run the Arm NN application (here TfMobilNet is taken as example) with GPU/NPU backend as follows:

$ cd /usr/bin/armnn-21.08/ 
$ ./TfMobileNet-Armnn --data-dir=data --model-dir=models --compute=VsiNpu > 
viv_test_app_profile.log 2>&1

 
The Armnn profiling example assumes that both the model file and input data are located at the respective 
subfolders. See also Running Arm NN tests.

  NOTE  

The log captures detailed information of the execution clock cycles and DDR data transmission in each layer.

 
The average time for inference might be longer than usual, as the profiler overhead is added.

  NOTE  

11.3 Hardware accelerators warmup time
For both Arm NN and TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph 
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup. This time duration 
can be decreased for subsequent application that runs by storing on disk the information resulted from the initial OpenVX graph 
processing. The following environment variables should be used for this purpose:

VIV_VX_ENABLE_CACHE_GRAPH_BINARY: flag to enable/disable OpenVX graph caching

VIV_VX_CACHE_BINARY_GRAPH_DIR: set location of the cached information on disk

For example, set these variables on the console in this way:

export VIV_VX_ENABLE_CACHE_GRAPH_BINARY="1"
export VIV_VX_CACHE_BINARY_GRAPH_DIR=`pwd`

NXP Semiconductors
NN Execution on Hardware Accelerators

i.MX Machine Learning User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 63 / 122



By setting up these variables, the result of the OpenVX graph compilation is stored on disk as network binary graph files (*.nb). 
The runtime performs a quick hash check on the network and if it matches the *.nb file hash, it loads it into the NPU memory 
directly. These environment variables need to be set persistently, for example, available after reboot. Otherwise, the caching 
mechanism is bypassed even if the *.nb files are available.

The iterations following the graph initialization are performed many times faster. When evaluating the performance of an 
application running on GPU/NPU, the time should be measured separately for warmup and inference. Warmup time usually affects 
only the first inference run. However, depending on the machine learning model type, it might be noticeable for the first few 
inference runs. Some preliminary tests must be done to make a decision on what to consider warmup time. When this phase 
is well delimited, the subsequent inference runs can be considered as pure inference and used to compute an average for the 
inference phase.

11.4 Switching between GPU and NPU
Some platforms are deployed with both 3D GPU and NPU hardware accelerators. Both can be used for execution of the 
OpenVX graph (i.e. for ML inference). To differentiate between the GPU and the NPU, there is an environmental variable 
USE_GPU_INFERENCE. The variable is directly read by the HW acceleration driver.

The behavior is as follows:

• If USE_GPU_INFERENCE=1, the graph is executed on the GPU

• Otherwise, the graph is executed on the NPU (if available)

By default, the NPU is used for OpenVX graph execution.

Example with TensorFlow Lite:

$ USE_GPU_INFERENCE=1 ./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l 
labels.txt --external_delegate_path=/usr/lib/libvx_delegate.so
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Chapter 12
Vision Pipeline with NNStreamer
NNStreamer is an efficient and flexible stream pipeline framework for complex neural network applications. It was initially 
developed by Samsung and then transferred to LF AI Foundation as an incubation project.

It is a set of GStreamer plugins that allows GStreamer developers to adopt neural network models easily and efficiently and neural 
network developers to manage neural network pipelines and their filters easily and efficiently.

The project is well documented through its dedicated github documentation site, but the main takeaways are described below 
for convenience.

In addition to the standard GStreamer data types, NNStreamer adds new data types “other/tensor” and “other/tensors” thanks to a 
dedicated converter element. This data type represents a stream of multidimensional array and a stream of a container of multiple 
instances of such arrays, respectively.

NNStreamer provides a set of stream filters applying multiple operations on tensors:

• tensor_converter converts audio, video, text, or arbitrary binary streams to others/tensor streams.

• tensor_decoder converts other/tensor(s) to video or text stream with assigned sub-plugins.

• tensor_filter invokes a neural network model with the given model path and neural network framework name.

• tensor_transform applies various operators to tensors including typecast, add, mul, transpose, and normalize. For faster 
processing, it supports SIMD instructions and multiple operators in a single filter.

• tensor_crop crops the regions of incoming tensor.

• tensor_rate controls a frame rate of tensor streams.

• tensor_mux, tensor_demux, tensor_merge, tensor_split, tensor_if, and tensor_aggregator support tensor stream 
path controls.

• tensor_sink is a sink plug-in for making an application to get a buffer of other/tensor(s).

• tensor_source allow non GStreamer standard input sources, such as sensors, to supply other/tensor(s) stream.

• tensor_reposink and tensor_reposrc implement recurrence path helpers, cutting GStreamer pipeline cycle thanks to 
a dedicated shared repository. The tensor_reposink pushes data to the repository, this latter reinjecting data upstream 
through a tensor_reposrc element.

The following figure shows the general architecture of a NNStreamer pipeline.
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Figure 23. NNStreamer pipeline

There are two elements allowing adding user created features in run-time: tensor_filter and tensor_decoder:
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tensor_filter
framework=tensorflow-lite

tensor_decoder
mode=bounding_boxes

“tensorflow-lite.so” “bounding_boxes.so”

Figure 24. NNStreamer filter and decoder flow

While instantiating the tensor_filter and tensor_decoder, the framework and mode options respectively specify the target 
implementation thanks to a dedicated shared library loaded at runtime. NNStreamer supplies a set of filters and decoders which 
are described briefly below, and APIs to implement customized user sub-plugins. Hence, it is possible to use a proprietary 
inference engine sub-plugin as tensor filter, or a specialized NN decoder.

NNStreamer supports the most popular inference engines (open source or not). On this release, TensorFlow Lite engine is 
supported. Arm NN engine support is deprecated.

Table 4. NNStreamer supported features

Framework/Tool i.MX 8M Plus i.MX 8M Quad i.MX8M Mini i.MX 8M

Nano

i.MX 
8QuadMax

i.MX 
8QuadXPlus

TensorFlow Lite CPU/NPU/GPU CPU/GPU CPU CPU/GPU CPU/GPU CPU/GPU

Arm 
NN (deprecated)

CPU/NPU/GPU CPU/GPU CPU CPU/GPU CPU/GPU CPU/GPU

Custom C++ CPU CPU CPU CPU CPU CPU

Custom Python CPU CPU CPU CPU CPU CPU

NNShark CPU - - - - -

In case an inference engine might be supported on multiple hardware backend, one can specify the device mapping the 
neural network.

Even though Tensor decoder element might not be appropriate for building an application which usually does not consume the 
neural network outputs for display purpose only, it is especially useful for implementing a prototype during the development phase 
which might focus on the neural network model or optimizing the data path. Indeed, most neural networks topologies are supported 
for classical computer vision use cases: classification, object detection, pose estimation or segmentation.

NNStreamer tensor filter element has to be configured to use specific engine and hardware accelerator. Available options are 
listed in the following tables.

Table 5. TensorFlow Lite engine

Delegate Tensor filter properties USE_GPU_INFERENCE env variable

No

delegate

framework=tensorflow-lite

custom=NumThreads:4
-

XNNPACK Delegate framework=tensorflow-lite

custom=Delegate:XNNPACK,NumThreads:4
-

Table continues on the next page...
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Table 5. TensorFlow Lite engine (continued)

Delegate Tensor filter properties USE_GPU_INFERENCE env variable

NNAPI 
Delegate (deprecated)

framework=tensorflow-lite

custom=Delegate:NNAPI

0: NPU

1: GPU

VX Delegate framework=tensorflow-lite

custom=Delegate:External,ExtDelegateLib:libv
x_delegate.so

0: NPU

1: GPU

Arm NN Delegate

(deprecated)

framework=tensorflow-lite 
custom=Delegate:External,ExtDelegateLib:liba
rmnnDelegate.so,ExtDelegateKeyVal:backends#<
backend>

backend = VsiNpu (NPU/GPU), CpuAcc

0: NPU

1: GPU

Table 6. Arm NN engine (deprecated)

Backend Tensor filter properties USE_GPU_INFERENCE env variable

CPU framework=armnn

accelerator=true:cpu.neon
-

GPU/NPU framework=armnn

accelerator=true:npu

0: NPU

1: GPU

12.1 Object detection pipeline example
In this example, the following pipeline will be implemented leveraging most all the compute backend available on i.MX 8M Plus 
to build an object detection scenario.

Figure 25. NNStreamer object detection example pipeline
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On the target, download the trained neural network from google coral github site, and export the filenames to bash 
environment variables:

root:~# wget https://github.com/google-coral/test_data/raw/master/ssd_mobilenet_v2_coco_quant_postprocess.tflite
root:~# wget https://github.com/google-coral/test_data/raw/master/coco_labels.txt
root:~# export MODEL=$(pwd)/ssd_mobilenet_v2_coco_quant_postprocess.tflite
root:~# export LABELS=$(pwd)/coco_labels.txt

Then builds and executes the GStreamer pipeline:

root:~# gst-launch-1.0 --no-position v4l2src device=/dev/video3 ! \ 
video/x-raw,width=640,height=480,framerate=30/1 ! \ 
tee name=t t. ! queue max-size-buffers=2 leaky=2 ! \ 
imxvideoconvert_g2d ! \ 
video/x-raw,width=300,height=300,format=RGBA ! \ 
videoconvert ! video/x-raw,format=RGB ! \ 
tensor_converter ! \ 
tensor_filter framework=tensorflow-lite model=${MODEL} 
custom=Delegate:External,ExtDelegateLib:libvx_delegate.so ! \ 
tensor_decoder mode=bounding_boxes option1=tf-ssd option2=${LABELS} \ 
option3=0:1:2:3,50 option4=640:480 option5=300:300 ! \ 
mix. t. ! queue max-size-buffers=2 ! \ 
imxcompositor_g2d name=mix sink_0::zorder=2 sink_1::zorder=1 ! waylandsink

 
Hit CTRL+C keystroke to halt the execution if necessary.

  NOTE  

12.2 Pipeline profiling
NNStreamer team developed NNShark, a profiling tool based on GstShark, to monitor several pipeline metrics useful to assess 
the SoC hardware usage.

NNShark can be used on the i.MX8M Plus only, where specific metrics were added:

• 2D GPU (GC520L) utilization load

• 3D GPU (GC7000UL) utilization load

• NPU (GC8000) utilization load

• SoC masters bandwidth, as reported by Linux kernel perf tool

• Additionally, power domain consumption, as reported by power measurement tool (PMT) if the power measurement 
evaluation kit is available to the user.

Considering the complex GPU/NPU architecture involving concurrent stages, their reported utilization loads shall be considered 
as an order of magnitude and might not precisely reflect each individual stage's status.

 
For the source code demo location see the nnshark repository.

  NOTE  

12.2.1 Enable profiling with NNShark
It is recommended to connect to the target through SSH as the NNShark UI refresh rate might not render well on the serial console.

Enable NNShark profiling through environment variables:

root:~# export GST_DEBUG="GST_TRACER:7"
root:~# export GST_TRACERS="live"
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In order to get GPU usage measurements, you must disable power saving in the GPU driver (galcore) thanks to command 
line kernel parameters. You can manually edit the bootargs uboot variable prior to execute the boot command, adding the 
following parameters:

galcore.gpuProfiler=1 galcore.powerManagement=0

Then run the previous gst-launch command line, and the following screen should now be displayed on your terminal screen. You 
can scroll through all the pipeline elements with up/bottom direction key to select the desired element and display its connections 
with other pipeline elements.

You can select the element pads with left/right direction keys to highlight its connection to other elements’ pads.

On this example, the tensor filter has an average processing time of 21.64 ms and its sink orange highlighted pad is connected 
to source pad of tensorconverter0 element (green highlighted).

Press ‘q’ or ‘Q’ to exit the profiling tool and return to the shell terminal. You can quit the application as previously explained 
through CTRL+C.

Figure 26. NNShark i.MX8M Plus example screenshot

12.2.2 Adding power measurement to NNShark
On the desktop PC connected to the power measurement evaluation kit, execute the power measurement tool (PMT) in server 
mode such as the power measurements are collected and available on 65432 TCP/IP port.

user@localhost:pmt# python3 main.py server -b imx8mpevkpwra0 -p 65432
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On the target, export the desktop PC ip address (192.168.1.99 for this example):

root:~# export GST_TRACERS_PWR_SERVER_IP=192.168.1.99

 
The user can run the NNShark without the power measurement kit.

  NOTE  

12.2.3 Known issues and limitations
In case perf reports inconsistent high numbers, this means that a perf process is still running in background of the previous run. 
If so, you must terminate manually their execution.

For your convenience, the below command can be used:

root:~# kill -9 $(ps -ef | grep nnshark-perf-ddr.sh | grep -v grep | tr -s ' ' | cut -d ' ' -f 2)
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Chapter 13
eIQ Demos

13.1 AWS end-to-end SageMaker demo
AWS SageMaker demo shows how to use the pre-built AWS IoT Greengrass and SageMaker Edge Manager packages in i.MX 
BSP to build, deploy and manage machine learning model and device software with the cloud services.

AWS IoT Greengrass is software that extends cloud capabilities to local devices. It enables local device messaging via MQTT 
protocol, establishing a secure connection to the cloud. AWS SageMaker Edge Manager provides a software agent that runs on 
edge device for model inference and a separate SageMaker Neo cloud service for managing models on edge devices.

Features:

• AWS IoT Greengrass v2

• AWS Sagemaker Edge Manager agent

• AWS commad-line interface (AWS CLI) v1.21.12

• Auto script examples based on AWS CLI to provision, operate cloud service and devices

• Video inference demo, performing these tasks:

— model deployment from cloud

— USB camera capturing image frame

— inference result return to cloud

13.1.1 AWS Greengrass/SageMaker demo workflow
This end-to-end flow (see also the following figure) uses a pre-trained mobilenetv2 image classification model to perform image 
classification at the edge with images captured from an USB camera. Inference is performed on the NPU of the i.MX 8M Plus, 
which allows for up to 50x performance increase when compared to running it on a CPU only. Results are uploaded to AWS IoT 
and input and output tensors are uploaded to Amazon S3.
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Figure 27. AWS demo workflow

The demo workflow is the following:

1. User uploads the pre-trained model to AWS S3.

2. SageMaker model compiler (a container that NXP offered to AWS) gets the model and compile the binary for the i.MX 8M 
Plus NPU.

3. The container uploads the binary back to S3.

4. Greengrass/IoT packages the model binary and users’ codes to APP component.

5. Greengrass/IoT deploys the APP component to the edge device (i.MX 8M Plus).

6. The APP component gets the image from the camera.

7. The APP component runs the model on DLR (the TVM runtime offered by NXP).

8. Greengrass Core sends the inference result to AWS.

Requirements:

• NXP i.MX8MP-EVK BSP with pre-builtin AWS device packages

• An AWS account

• A certificate and private key for the AWS account

• An USB camera that connected to the NXP i.MX8MP-EVK

13.1.2 Getting started
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13.1.2.1 Building BSP image

The building is based on using AWS packages and demo scripts:

• Follow the i.MX Yocto Project User's Guide (IMXLXYOCTOUG) to setup the project

• Repository initialization:

repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b imx-linux-hardknott -
m imx-5.10.72-2.2.0_aws.xml
repo sync

• Build the image:

$ DISTRO=fsl-imx-wayland MACHINE=imx8mpevk source imx-aws-setup-release.sh -b build-imx8mp
$ bitbake imx-image-full

• Flash the image to the SD card

$ sudo dd if=imx-image-full-imx8mpevk.wic of=/dev/xxxx

• Bootup the board with this SD card

13.1.2.2 Running demo scripts on device

The demo scripts can be found under /usr/bin/dlr-demo-scripts folder after booting-up the board. These scripts can operate 
with cloud resources and can setup the demo environment:

root@imx8mpevk:/usr/bin/dlr-demo-scripts# ls -l *.sh
00_setup_cloud_services.sh
01_create_greengrass_core.sh
02_create_greengrass_role.sh
03_upload_component_version.sh
04_create_device_fleet_register_device.sh
05_compile_and_package_neo_model.sh
06_create_greengrass_deployment.sh
07_setup_device_greengrass.sh
10_clean_up.sh
setup_cloud_service_and_device.sh

Before running these scripts, below environment variables needs to be specified:

• Set the AWS key environment:

$ export AWS_ACCESS_KEY_ID="YOUR AWS ACCESS KEY ID" 
$ export AWS_SECRET_ACCESS_KEY="YOUR AWS SECRET ACCESS KEY" 
$ export AWS_SESSION_TOKEN="YOUR AWS SESSION TOKEN" 
$ export AWS_REGION="us-west-2"    #replace with your aws region

• Optionally, set the ARN permission boundary if necessary. You can find it in AWS management Console->IAM->Policies:

$ export PERMISSIONS_BOUNDARY="YOUR PERMISSIONS BOUNDARY ARN"

• Optionally, set the camera device ID if necessary. The default value is 3:

$ export CAMERA_DEVICE=3
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• Set the PROJECT_NAME to one unique string with lowercase letters only:

$ export PROJECT_NAME={project_name}

• Run the demo script:

$ cd /usr/bin/dlr-demo-scripts
$ ./setup_cloud_service_and_device.sh

13.1.2.3 Check inference result

You can check inference results in two ways:

1. From the device Greengrass log file:

$ cd /greengrass/v2/logs 
$ tail -f aws.sagemaker.${project_name}_edgeManagerClientCamera Integration.log

stdout. {'index': '750', 'confidence': '0.4980392156862745', 'performance': '9.131669998168945', 
'model_name': 'mobilenetv2-224-10-quant'}.

stdout. {'index': '831', 'confidence': '0.49411764705882355', 'performance': 
'15.126943588256836', 'model_name': 'mobilenetv2-224-10-quant'}.

2. From the cloud service console:

Navigate to the AWS IoT Console -> Test -> MQTT test client (see the below figure). Under "Subscribe" menu, select "em/
inference". Every second, inference results should arrive on the "em/inference" topic with the result and confidence level.

Figure 28. AWS IoT console
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13.1.2.4 Clean up cloud environment

After testing, release cloud resources to save the cost:

$ /usr/bin/dlr-demo-scripts/10_clean_up.sh

13.1.3 Additional resources
Refer below links for more detailed information about AWS IoT Greengrass:

• AWS IoT Greengrass: What is AWS IoT Greengrass? - AWS IoT Greengrass (amazon.com)

• SageMaker Edge Manager: SageMaker Edge Manager - Amazon SageMaker

• Greengrass sagemaker example: Greengrass-v2-sagemaker-edge-manager-python

• IAM & Permission boundary: Permission boundary
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Chapter 14
Revision History
This table provides the revision history.

Table 7. Revision history

Revision number Date Substantive changes

L5.4.47_2.2.0 09/2020 Initial release

L5.4.70_2.3.0 01/2021 i.MX 5.4 consolidated GA for release i.MX boards including i.MX 8M 
Plus and i.MX 8DXL

LF5.10.9_1.0.0 03/2021 Kernel upgrade to 5.10.9 and Machine Learning upgrades

L5.4.70_2.3.2 04/2021 Patch release

LF5.10.35_2.0.0 06/2021 Upgraded to Yocto Project Hardknott and the kernel upgraded 
to 5.10.35

LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to 5.10.52

LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP

LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6
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Appendix A
Release Notes
A.1 Known issues and limitations

• Fails to build evaluation tools with Yocto SDK due to missing protobuf include files for TensorFlow Lite in the Yocto SDK:

TensorFlow Lite uses a different version of protobuf than available in Yocto SDK (3.9.2 vs. 3.15.2). The protobuf for 
TensorFlow Lite (tensorflow-protobuf-dev package) is not installed on generated Yocto SDK, therefore attempt to build the 
TensorFlow Lite model evaluation tools fails. The tensorflow-protobuf-dev (libprotobuf-dev_3.9.2-r0_arm64.deb) package 
needs to manually extract into the Yocto SDK:

dpkg -x libprotobuf-dev_3.9.2-r0_arm64.deb <YOCTO_SDK_PATH>/sysroots/cortexa53-crypto-poky-linux/

This package is located at tmp/deploy/deb/cortexa53-crypto/ in the Yocto build folder.

• Implicit padding for TransposeConv2D is not supported in NNAPI implementation:

— Models using implicit padding schema for TransposeConv2D fails to run using NNAPI Delegate, as the underlying 
NNAPI implementation do not support implicit padding schema. Use VX Delegate with these models.

• HW Accelerators on i.MX8 does not support layers with dynamic shapes.

• The NPU on i.MX8 M Plus is not optimized for models with dynamic weights. The layers with dynamic weights (e.g. in 
FullyConnected layer) are computed significantly slower.

• AWS end-to-end SageMaker demo still based on LF5.10.72-2.2.0 BSP.

A.2 Release notes for LF5.15.5-1.0.0
• Arm NN inference engine is deprecated in this release and will be removed in the future.

• NNAPI Delegate of TensorFlow Lite and NNAPI Execution Provider of ONNX Runtime is deprecated and will be removed in 
the future. For leveraging ML model acceleration use VX Delegate instead.

• TensorFlow Lite:

— Features and improvements:

◦ Fixed unit test build with TensorFlow Lite static library.

◦ Support FullyConnected layer with implicit bias in VX Delegate.

◦ Fix bug in stride_slice if end_dim set as -1 in VX Delegate.

◦ Other minor fixes.

• ONNX Runtime:

— Features and improvements:

◦ Version update from 1.8.2 to 1.10.0.

◦ Updated to GCC11 toolchain.

◦ NNAPI Execution Provider is ported from 1.5.3 (does not contain latest 1.10.0 updates) and it is considered 
experimental. We do not suggest using it in production.

◦ Arm NN and ACL Execution providers are deprecated and will be removed in the future

• PyTorch upgraded to version 1.9.1.

• TIM-VX:

— Features and improvements:
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◦ Version update from 1.1.34 to 1.1.37.

◦ DMA Buffer support.

◦ Support for additional operators (SVDF, GlobalPool2D, AdaptivePool2D, Erf, grouped Conv1D, Signal Frame, RNN 
Cell, One Hot).

◦ Support Layout inference for aditional operators (Batch Norm, Transpose, Fully Connected with no explicit bias).

• DeepViewRT:

— Features and improvements:

◦ Version update from 2.4.36 to 2.4.37

◦ C and Python API for NPU support are available.

◦ Align modelrunner plugin with TFLite/Arm NN/ONNX Runtime inference engine.

— Issues and limitations:

◦ Bug fix for deepview-rt library and example codes.

A.3 Release notes for LF5.10.72-2.2.0
• TensorFlow Lite:

— Upgraded to version 2.6.0.

— VX Delegate changed to external delegate.

— Optimization of the PCQ Transpose Convolution operator on the NPU hardware accelerator.

— Python API support external Delegates:

◦ With this change, the label_image.py Python example support the use of external delegates with arguments. See 
the help for more information.

◦ Python API supports using external delegate via the tflite.load_delegate() call.

◦ NNAPI delegate not available in Python API. For the model acceleration on the HW accelerator, the VX delegate 
can be used:

ext_delegate = [ tflite.load_delegate("/usr/lib/libvx_delegate.so") ]
interpreter = tflite.Interpreter(model_path=args.model_file, 
experimental_delegates=ext_delegate, num_threads=args.num_threads)

• Arm Compute Library:

— Features and improvements:

◦ Major version update from 21.02 to 21.08.

— Issues and limitations:

◦ Only the CPU-accelerated NEON backend is being built. Use Arm NN with the VSI NPU backend to leverage 
acceleration on the GPU or the NPU.

• Arm NN:

— Features and improvements:

◦ Major version update from 21.02 to 21.08.

◦ TensorFlow Parser, Caffe Parser and Quantizer were removed and are no longer available. Only ONNX Parser, 
TensorFlow Lite Parser and Arm NN Delegate for TF Lite are now available to load .tflite and .onnx models.

◦ See full list of changes added by the community.
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— Issues and limitations:

◦ Only ACL NEON backend is being built. Use the VSI NPU Backend instead of ACL OpenCL to leverage acceleration 
on the GPU or the NPU.

◦ There are significant performance optimizations for the NPU to TransposeConv2D which are not supported in the 
VSI NPU backend. If your model uses TransposeConv2D heavily try to use TF Lite with VXDelegate instead.

• ONNX Runtime:

— Features and improvements:

◦ Minor version update from 1.8.1 to 1.8.2.

◦ Experimental Python API enablement including support for all available Execution Providers (CPU, ACL, Arm NN, 
NNAPI, VSI NPU).

◦ Added /usr/bin/onnxruntime-1.8.2/onnxruntime_peft_test. Use this instead of onnx_test_runner to 
measure performance of your model.

◦ Fixed verbose logging during inference on NPU.

◦ Updated ACL and Arm NN Backends to leverage ACL and Arm NN 21.08.

◦ All ONNX Runtime artifacts are being installer to /usr/bin/onnxruntime-1.8.2 instead of /usr/bin.

◦ See full list of changes added by the community.

— Issues and limitations:

◦ There are significant performance optimizations for the NPU to TransposeConv2D which are not supported 
in the VSI NPU Execution Provider. If your model uses TransposeConv2D heavily try to use TF Lite with 
VXDelegate instead.

◦ Running SqueezeNet with the nnapi execution provider produces incorrect results.

• DeepViewRT:

— Features and improvements:

◦ Minor version update from 2.4.30 to 2.4.36.

◦ C API for NPU support is available.

◦ Performance optimization for DeepViewRT CPU.

◦ Bug fix for shuffle layer.

— Issues and limitations:

◦ nn_tensor_load_file_ex is one convenience function and not well optimized.
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Appendix B
List of Used Variables
The following table provides the summary of used variables described in this document for the particular inference engine. Use 
the export command to apply these variables.

Table 8. System variables summary

Variable name Description

CNN_PERF 0: Disable (default)

1: Prints the execution time for each operation (requires VIV_VX_
DEBUG_LEVEL=1). If VIV_VX_PROFILE=1 is set, the default value is 1.

NN_EXT_SHOW_PERF 0: Disable (default)

1: Shows more profiling details (requires VIV_VX_DEBUG_LEVEL=1)

PATH_ASSETS Sets the export path for user assets.

USE_GPU_INFERENCE Selection between the 3D GPU (1) and the NPU (otherwise).

VIV_VX_CACHE_BINARY_GRAPH_DIR Specifies the path of the cached NBG. Default is the current 
work directory.

VIV_VX_DEBUG_LEVEL 0: Disable (default)

1: Prints the debug information of driver on the console. Generally, this 
environment variable is used together with other environment variables to 
print logs.

VIV_VX_ENABLE_CACHE_GRAPH_BINARY 0: Disable (default)

1: Enables graph cache mode. The network loads the NBG file to run if the 
cached NBG file exists. Otherwise, it generates an NBG file. It can save 
the time for the verification stage.

VIV_MEMORY_PROFILE 0: Disable (default)

1: Prints the memory footprint of the system (CPU) and GPU (VIP) 
(requires VIV_VX_DEBUG_LEVEL=1)

VIV_VX_PROFILE 0: Disable (default)

1: Prints the DDR read and write bandwidth, AXI_SRAM read and write 
bandwidth, and the cycle count of VIP execution. The counter is per-
node-process (requires VIV_VX_DEBUG_LEVEL=1).

2: Prints the DDR read and write bandwidth, AXI_SRAM read and write 
bandwidth, and the cycle count of VIP execution. The counter is per-
graph-process (requires VIV_VX_DEBUG_LEVEL=1).
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Appendix C
Neural Network API Reference
The neural-network operations and corresponding supported API functions are listed in the following table. See also VX Delegate 
for details about supported operators.

Table 9. Neural-network operations and supported API functions

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

Activation

elu - - ELU - Elu

floor ANEURALNETWO
RKS_FLOOR

- Floor Floor Floor

leakyrelu - leaky_relu - Activation/
LeakyReLu

LeakyReL

prelu ANEURALNETWO
RKS_PRELU

prelu PRELU PreLu PreLu

relu ANEURALNETWO
RKS_RELU

relu RELU Activation/ReLu ReLu

relu1 ANEURALNETWO
RKS_RELU1

- RELU1 - -

relu6 ANEURALNETWO
RKS_RELU6

relu6 RELU6 - -

Hard_swish ANEURALNETWO
RKS_HARD_
SWISH

swish HARD_SWISH - -

rsqrt ANEURALNETWO
RKS_RSQRT

rsqrt RSQRT - -

sigmoid ANEURALNETWO
RKS_LOGISTIC

sigmoid/
sigmoid_fast

LOGISTIC Activation/Sigmoid Sigmoid

softmax ANEURALNETWO
RKS_SOFTMAX

softmax SOFTMAX Softmax Softmax

softrelu - - - Activation/
SoftReLu

-

sqrt ANEURALNETWO
RKS_SQRT

sqrt SQRT Activation/Sqrt Sqrt

tanh ANEURALNETWO
RKS_TANH

tanh TANH Activation/TanH TanH

bounded - - - Activation/
BoundedReLu

-
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

linear - linear - Activation/Linear -

Dense Layers

dense - dense - - -

Element Wise

abs ANEURALNETWO
RKS_ABS

abs ABS Activation/Abs Abs

add ANEURALNETWO
RKS_ADD

add ADD Addition Add

clip_by_value - - - - Clip

div ANEURALNETWO
RKS_DIdV

divide DIV Division Div

equal ANEURALNETWO
RKS_EQUAL

- EQUAL - Equal

exp ANEURALNETWO
RKS_EXP

exp EXP - Exp

log ANEURALNETWO
RKS_LOG

log LOG - Log

greater ANEURALNETWO
RKS_GREATER

- GREATER - Greater

greater_equal ANEURALNETWO
RKS_GREATER_
EQUAL

- GREATER_
EQUAL

- -

less ANEURALNETWO
RKS_LESS

- LESS - Less

less_equal ANEURALNETWO
RKS_LESS_
EQUAL

- LESS_EQUAL - -

logical_and ANEURALNETWO
RKS_LOGICAL_
AND

- LOGICAL_AND - And

logical_or ANEURALNETWO
RKS_LOGICAL_
OR

- LOGICAL_OR - Or

minimum ANEURALNETWO
RKS_MINIMUM

- MINIMUM Minimum Min
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

maximum ANEURALNETWO
RKS_MAXIMUM

- MAXIMUM Maximum Max

multiply ANEURALNETWO
RKS_MUL

multiply MUL Multiplication Mul

negative ANEURALNETWO
RKS_NEG

- NEG - Neg

not_equal ANEURALNETWO
RKS_NOT_EQUAL

- NOT_EQUAL - -

pow ANEURALNETWO
RKS_POW

- POW - POW

select ANEURALNETWO
RKS_SELECT

- SELECT - -

square - - - Activation/Square -

sub ANEURALNETWO
RKS_SUB

substract SUB Substraction Sub

where - - - - Where

Image Processing

resize_bilinear ANEURALNETWO
RKS_RESIZE_
BILINEAR

- RESIZE_
BILINEAR

- Unsample

resize_nearest_nei
ghbor

ANEURALNETWO
RKS_RESIZE_
NEAREST_
NEIGHBOR

resize RESIZE_
NEAREST_
NEIGHBOR

- Resize

Matrix Multiplication

fullconnect ANEURALNETWO
RKS_FULLY_
CONNECTED

- FULLY_
CONNECTED

FullyConnected -

matrix_mul - matmul/
matmul_cache

- - -

Normalization -

batch_normalize - batchnorm - BatchNormalizatio
n

BatchNormalizatio
n

instance 
_normalize

- - - Normalization InstanceNormalizat
ion
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

l2normalize ANEURALNETWO
RKS_L2_
NORMALIZATION

- L2_
NORMALIZATION

L2Normalization -

localresponsenorm
alization

ANEURALNETWO
RKS_LOCAL_
RESPONSE_
NORMALIZATION

- LOCAL_
RESPONSE_
NORMALIZATION

- LRN

Reshape

batch2space ANEURALNETWO
RKS_BATCH_TO_
SPACE_ND

- BATH_TO_
SPACE_ND

BatchToSpaceNd -

concat ANEURALNETWO
RKS_
CONCATENATIO
N

- CONCATENATIO
N

Concat Concat

depth_to_space ANEURALNETWO
RKS_DEPTH_TO_
SPACE

- DEPTH_
TO_SPACE

- DepthToSpace

expanddims ANEURALNETWO
RKS_EXPAND_
DIMS

- EXPAND_DIMS - -

flatten ANEURALNETWO
RKS_RESHAPE

- - - -

gather ANEURALNETWO
RKS_GATHER

- GATHER - Gather

pad ANEURALNETWO
RKS_PAD

- PAD Pad Pad

permute ANEURALNETWO
RKS_
TRANSPOSE

- TRANSPOSE Permute Transpose

reducemean ANEURALNETWO
RKS_MEAN

reduce_mean MEAN Mean ReduceMean

reducesum ANEURALNETWO
RKS_SUM

reduce_sum REDUCE_SUM - ReduseSum

gathernd - - - - GatherND

reducemax ANEURALNETWO
RKS_REDUCE_
MAX

reduce_max REDUCE_MAX - ReduceMax
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

reducemin ANEURALNETWO
RKS_REDUCE_
MIN

reduce_min REDUCE_MIN - ReduceMin

reduceproduct - reduce_product - - -

reshape ANEURALNETWO
RKS_RESHAPE

- RESHAPE Reshape Reshape

reverse - - - - ReverseSequence

slice ANEURALNETWO
RKS_SLICE

- SLICE - Slice

space2batch ANEURALNETWO
RKS_SPACE_TO_
BATCH_ND

- SPACE_TO_
BATCH_ND

SpaceToBatchNd -

split ANEURALNETWO
RKS_SPLIT

- SPLIT Split Split

squeeze ANEURALNETWO
RKS_SQUEEZE

- SQUEEZE Squeeze Squeeze

strided_slice ANEURALNETWO
RKS_STRIDED_
SLICE

- STRIDED_SLICE StridedSlice -

unstack - - - Unpack -

RNN

gru - - - - GRU

lstm - - UNIDIRECTIONAL
_SEQUEENCE_
LSTM

- -

lstmunit ANEURALNETWO
RKS_LSTM

- LSTM LstmUnit LSTM

rnn ANEURALNETWO
RKS_RNN

- RNN - -

Sliding Window

avg_pool ANEURALNETWO
RKS_AVERAGE_
POOL

avgpool/
avgpool_ex

AVERAGE_
POOL_2D

Pooling2D/avg AveragePool

convolution ANEURALNETWO
RKS_CONV_2D

conv/conv_ex CONV_2D Convolution2D Conv
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

deconvolution ANEURALNETWO
RKS_
TRANSPOSE_
CONV_2D

transpose_conv2d
_ex

TRANSPOSE_
CONV

- ConvTranspose

depthhwise_
convolution

ANEURALNETWO
RKS_
DEPTHWISE_
CONV_2D

- DEPTHWISE_
CONV_2D

Depthwise 
Convolution

-

Log_softmax ANEURALNETWO
RKS_LOG_
SOFTMAX

- LOG_SOFTMAX - Logsoftmax

l2pooling ANEURALNETWO
RKS_L2_POOL

- L2_POOL_2D Pooling2D/L2 -

max_pool ANEURALNETWO
RKS_MAX_POOL

maxpool/
maxpool_ex

MAX_POOL_2D Pooling2D/max MaxPool

Others

argmax ANEURALNETWO
RKS_ARGMAX

argmax ARGMAX - ArgMax

argmin ANEURALNETWO
RKS_ARGMIN

- ARGMIN - ArgMin

dequantize ANEURALNETWO
RKS_
DEQUANTIZE

- DEQUANTIZE Dequantize DequantizeLinear

quantize ANEURALNETWO
RKS_QUANTIZE

- QUANTIZE Quantize QuantizeLinear

roi_pool ANEURALNETWO
RKS_ROI_ALIGN

- - - -

shuffle_channel ANEURALNETWO
RKS_CHANNEL_
SHUFFLE

- - - -

tile ANEURALNETWO
RKS_TILE

- TILE - Tile

svdf ANEURALNETWO
RKS_SVDF

- SVDF - -

embedding_lookup ANEURALNETWO
RKS_
EMBEDDING_
LOOKUP

- EMBEDDING_
LOOKUP

- -
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Table 9. Neural-network operations and supported API functions (continued)

Op Category/Name Android NNAPI 1.2 DeepViewRT 
2.4.37

TensorFlow 
Lite 2.6.0

Arm NN

21.08

ONNX 1.10.0

cast ANEURALNETWO
RKS_CAST

- CAST - Cast

ssd - ssd_decode_nms_
standard_bbx/
ssd_decode_nms_
variance_bbx/
ssd_nms_full

- - -
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Appendix D
OVXLIB Operation Support with GPU
This section provides a summary of the neural network OVXLIB operations supported by the NXP Graphics Processing Unit 
(GPU) IP with hardware support for OpenVX and OpenCL and a compatible Software stacks. OVXLIB operations are listed in the 
following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8

• asym-i8: asymmetric_affine-int8

• fp32: float32

• pc-sym-i8: perchannel_symmetric_int8

• fp16: float16

• bool8: bool8

• int16: int16

• int32: int32

Table 10. OVXLIB operation support with GPU

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

Basic Operations

VSI_NN_OP_
CONV2D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
CONV1D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
DEPTHWISE_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 asym-i8 asym-i8 ✔

VSI_NN_OP_DEC
ONVOLUTION1D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
DECONVOLUTIO
N

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

Table continues on the next page...

NXP Semiconductors

i.MX Machine Learning User's Guide, Rev. LF5.15.5_1.0.0, 31 March 2022
User Guide 88 / 122



Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_FCL asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_GRO
UPED_CONV1D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_GRO
UPED_CONV2D

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

Activation 
Operations

VSI_NN_OP_ELU asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
HARD_SIGMOID

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SWISH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
LEAKY_RELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

VSI_NN_OP_
PRELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RELUN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RSQRT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SIGMOID

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SOFTRELU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SQRT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
TANH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_ABS asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_CLIP asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_EXP asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_LOG asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_NEG asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_MISH asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_LINE
AR

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_ERF asym-u8 asym-u8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SOFTMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
LOG_SOFTMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SQUARE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_SIN asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

Elementwise 
Operations

VSI_NN_OP_ADD asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SUBTRACT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
MULTIPLY

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

VSI_NN_OP_
DIVIDE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
MAXIMUN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
MINIMUM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_POW asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
FLOORDIV

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
MATRIXMUL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RELATIONAL_
OPS

asym-u8 bool8 ✔ ✔

asym-i8 bool8 ✔ ✔

fp32 bool8 ✔ ✔

fp16 bool8 ✔ ✔

bool8 bool8 ✔ ✔

VSI_NN_OP_
LOGICAL_OPS

bool8 bool8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_LOGI
CAL_NOT

bool8 bool8 ✔ ✔

VSI_NN_OP_
SELECT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

bool8 bool8 ✔ ✔

VSI_NN_OP_
ADDN

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

Normalization 
Operations

VSI_NN_OP_
BATCH_NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_LRN asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_LRN2 asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_L2_
NORMALIZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
L2NORMALZESC
ALE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

VSI_NN_OP_
LAYER_NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_GRO
UP_NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
BATCHNORM_
SINGLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
MOMENTS

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

Reshape 
Operations

VSI_NN_OP_EXP
AND_BROADCAS
T

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SLICE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
SPLIT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
CONCAT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
STACK

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
UNSTACK

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RESHAPE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SQUEEZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
PERMUTE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
REORG

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

VSI_NN_OP_
SPACE2DEPTH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
DEPTH2SPACE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
BATCH2SPACE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SPACE2BATCH

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_PAD asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
REVERSE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
STRIDED_SLICE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
CROP

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
REDUCE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
ARGMX

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

fp32 int32 ✔ ✔

fp16 asym-u8/int16/
int32

✔ ✔

VSI_NN_OP_
ARGMIN

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

fp32 int32 ✔ ✔

fp16 asym-u8/int16/
int32

✔ ✔

VSI_NN_OP_
SHUFFLECHANN
EL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

RNN Operations

VSI_NN_OP_
LSTMUNIT_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_LST
M_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
GRUCELL_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
GRU_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
SVDF

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

fp16 fp16 fp16 ✔ ✔

Pooling Operations

VSI_NN_OP_ROI_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
POOLWITHARGM
AX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
UPSAMPLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

Miscellaneous 
Operations

VSI_NN_OP_
PROPOSAL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

VSI_NN_OP_
VARIABLE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
DROPOUT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RESIZE

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_INTE
RP

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
DATACONVERT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_A_
TIMES_B_PLUS_C

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
FLOOR

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
EMBEDDING_
LOOKUP

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

VSI_NN_OP_
GATHER

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
GATHER_ND

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_SCA
TTER_ND

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_TILE asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
RELU_KERAS

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
ELTWISEMAX

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_FCL2 asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
SIGNAL_FRAME

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
CONCATSHIFT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_UPS
AMPLESCALE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp16 fp16 ✔

VSI_NN_OP_ROU
ND

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_CEIL asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_SEQ
UENCE_MASK

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_REP
EAT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔
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Table 10. OVXLIB operation support with GPU (continued)

OVXLIB 
Operations

Tensors Execution Engine

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_ONE
_HOT

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_CAS
T

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔
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Appendix E
OVXLIB Operation Support with NPU
This section provides a summary of the neural network OVXLIB operations supported by the NXP Neural Processor Unit (NPU) 
IP and a compatible Software stacks. OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8

• asym-i8: asymmetric_affine-int8

• fp32: float32

• pc-sym-i8: perchannel_symmetric-int8

• fp16: float16

• bool8: bool8

• int16: int16

• int32: int32

The following abbreviations are used to reference key Execution Engines (NPU) in the hardware:

• NN: Neural-Network Engine

• PPU: Parallel Processing Unit

• TP: Tensor Processor

Table 11. OVXLIB operation support with NPU

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

Basic 
Operations

VSI_NN_OP_
CONV2D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_
DEPTHWISE_
CONV1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 asym-i8 asym-i8 ✔

VSI_NN_OP_
DECONVOLUTI
ON

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_D
ECONVOLUTI
ON1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_
FCL

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_G
ROUPED_CON
V1D

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

VSI_NN_OP_G
ROUPED_CON
V2D

asym-u8 asym-u8 asym-u8

asym-i8 pc-sym-i8 asym-i8 ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

Activation 
Operations

VSI_NN_OP_
ELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
HARD_
SIGMOID

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SWISH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp16 fp16 ✔

VSI_NN_OP_
LEAKY_RELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
PRELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RELUN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RSQRT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SIGMOID

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SOFTRELU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SQRT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
TANH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
ABS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
CLIP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
EXP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
LOG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
NEG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
MISH

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SOFTMAX

asym-u8 asym-u8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
LOG_
SOFTMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SQUARE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SIN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_LI
NEAR

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_E
RF

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

fp16 fp16 ✔ ✔

Elementwise 
Operations

VSI_NN_OP_
ADD

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SUBTRACT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp16 fp16 ✔

VSI_NN_OP_
MULTIPLY

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
DIVIDE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
MAXIMUN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
MINIMUM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
POW

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
FLOORDIV

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
MATRIXMUL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RELATIONAL_
OPS

asym-u8 bool8 ✔

asym-i8 bool8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 bool8 ✔

fp16 bool8 ✔

bool8 bool8 ✔

VSI_NN_OP_
LOGICAL_OPS

bool8 bool8 ✔

VSI_NN_OP_L
OGICAL_NOT

bool8 bool8 ✔

VSI_NN_OP_
SELECT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

bool8 bool8 ✔

VSI_NN_OP_
ADDN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

Normalization 
Operations

VSI_NN_OP_
BATCH_NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
LRN

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
LRN2

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
L2_
NORMALIZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
L2NORMALZE
SCALE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
LAYER_NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
BATCHNORM_
SINGLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
MOMENTS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_G
ROUP_NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

Reshape 
Operations

VSI_NN_OP_E
XPAND_BROA
DCAST

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp16 fp16 ✔

VSI_NN_OP_
SLICE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SPLIT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
CONCAT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
STACK

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
UNSTACK

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RESHAPE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SQUEEZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
PERMUTE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
REORG

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SPACE2DEPT
H

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
DEPTH2SPAC
E

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

bool8 bool8

VSI_NN_OP_
BATCH2SPAC
E

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SPACE2BATC
H

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
PAD

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
REVERSE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
STRIDED_
SLICE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
CROP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
REDUCE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
ARGMAX

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

fp16 asym-u8/int16/
int32

✔

VSI_NN_OP_
ARGMIN

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

fp16 asym-u8/int16/
int32

✔

VSI_NN_OP_
SHUFFLECHA
NNEL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

RNN 
Operations

VSI_NN_OP_
LSTMUNIT_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_LS
TM_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
GRUCELL_
OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
GRU_OVXLIB

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔ ✔

VSI_NN_OP_
SVDF

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔ ✔

Pooling 
Operations

VSI_NN_OP_
ROI_POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_
POOLWITHAR
GMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
UPSAMPLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

Miscellaneous 
Operations

VSI_NN_OP_
PROPOSAL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
VARIABLE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
DROPOUT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RESIZE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_IN
TERP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
DATACONVER
T

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_A_
TIMES_B_
PLUS_C

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
FLOOR

asym-u8 asym-u8 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
EMBEDDING_
LOOKUP

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
GATHER

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
GATHER_ND

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_S
CATTER_ND

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
TILE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
RELU_KERAS

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
ELTWISEMAX

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_
INSTANCE_
NORM

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
FCL2

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
POOL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
SIGNAL_
FRAME

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_
CONCATSHIFT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_U
PSAMPLESCA
LE

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp16 fp16 ✔

VSI_NN_OP_R
OUND

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_C
EIL

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Table 11. OVXLIB operation support with NPU (continued)

OVXLIB 
Operations

Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

VSI_NN_OP_S
EQUENCE_MA
SK

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_R
EPEAT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_O
NE_HOT

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_C
AST

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔
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Legal information
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representations or warranties as to the accuracy or completeness of 
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Disclaimers
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therefore such inclusion and/or use is at the customer’s own risk.
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products are for illustrative purposes only. NXP Semiconductors makes no 
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and products using NXP Semiconductors products, and NXP Semiconductors 
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operating safeguards to minimize the risks associated with their applications 
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customer’s applications or products, or the application or use by customer’s 
third party customer(s). Customer is responsible for doing all necessary testing 
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products in order to avoid a default of the applications and the products or of the 
application or use by customer’s third party customer(s). NXP does not accept 
any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products 
are sold subject to the general terms and conditions of commercial sale, 
as published at http://www.nxp.com/profile/terms, unless otherwise agreed 
in a valid written individual agreement. In case an individual agreement 
is concluded only the terms and conditions of the respective agreement 
shall apply. NXP Semiconductors hereby expressly objects to applying the 
customer’s general terms and conditions with regard to the purchase of NXP 
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Suitability for use in non-automotive qualified products — Unless this 
data sheet expressly states that this specific NXP Semiconductors product 
is automotive qualified, the product is not suitable for automotive use. 
It is neither qualified nor tested in accordance with automotive testing 
or application requirements. NXP Semiconductors accepts no liability for 
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equipment or applications.
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automotive applications beyond NXP Semiconductors’ standard warranty and 
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applications. NXP accepts no liability for any vulnerability. Customer should 
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